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pybind11 is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create Python
bindings of existing C++ code. Its goals and syntax are similar to the excellent Boost.Python library by David Abra-
hams: to minimize boilerplate code in traditional extension modules by inferring type information using compile-time
introspection.

The main issue with Boost.Python—and the reason for creating such a similar project—is Boost. Boost is an enor-
mously large and complex suite of utility libraries that works with almost every C++ compiler in existence. This
compatibility has its cost: arcane template tricks and workarounds are necessary to support the oldest and buggiest of
compiler specimens. Now that C++11-compatible compilers are widely available, this heavy machinery has become
an excessively large and unnecessary dependency.

Think of this library as a tiny self-contained version of Boost.Python with everything stripped away that isn’t relevant
for binding generation. Without comments, the core header files only require ~4K lines of code and depend on Python
(3.6+, or PyPy) and the C++ standard library. This compact implementation was possible thanks to some C++11
language features (specifically: tuples, lambda functions and variadic templates). Since its creation, this library has
grown beyond Boost.Python in many ways, leading to dramatically simpler binding code in many common situations.

Tutorial and reference documentation is provided at pybind11.readthedocs.io. A PDF version of the manual is available
here. And the source code is always available at github.com/pybind/pybind11.

Core features

pybind11 can map the following core C++ features to Python:

• Functions accepting and returning custom data structures per value, reference, or pointer

• Instance methods and static methods

• Overloaded functions

• Instance attributes and static attributes

• Arbitrary exception types

• Enumerations

• Callbacks

• Iterators and ranges

• Custom operators

• Single and multiple inheritance

• STL data structures

• Smart pointers with reference counting like std::shared_ptr

• Internal references with correct reference counting

• C++ classes with virtual (and pure virtual) methods can be extended in Python

• Integrated NumPy support (NumPy 2 requires pybind11 2.12+)

Goodies

In addition to the core functionality, pybind11 provides some extra goodies:

• Python 3.6+, and PyPy3 7.3 are supported with an implementation-agnostic interface (pybind11 2.9 was the last
version to support Python 2 and 3.5).

• It is possible to bind C++11 lambda functions with captured variables. The lambda capture data is stored inside
the resulting Python function object.

• pybind11 uses C++11 move constructors and move assignment operators whenever possible to efficiently transfer
custom data types.
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• It’s easy to expose the internal storage of custom data types through Pythons’ buffer protocols. This is handy
e.g.for fast conversion between C++ matrix classes like Eigen and NumPy without expensive copy operations.

• pybind11 can automatically vectorize functions so that they are transparently applied to all entries of one or more
NumPy array arguments.

• Python’s slice-based access and assignment operations can be supported with just a few lines of code.

• Everything is contained in just a few header files; there is no need to link against any additional libraries.

• Binaries are generally smaller by a factor of at least 2 compared to equivalent bindings generated by Boost.Python.
A recent pybind11 conversion of PyRosetta, an enormous Boost.Python binding project, reported a binary size
reduction of 5.4x and compile time reduction by 5.8x.

• Function signatures are precomputed at compile time (using constexpr), leading to smaller binaries.

• With little extra effort, C++ types can be pickled and unpickled similar to regular Python objects.

Supported compilers

1. Clang/LLVM 3.3 or newer (for Apple Xcode’s clang, this is 5.0.0 or newer)

2. GCC 4.8 or newer

3. Microsoft Visual Studio 2017 or newer

4. Intel classic C++ compiler 18 or newer (ICC 20.2 tested in CI)

5. Cygwin/GCC (previously tested on 2.5.1)

6. NVCC (CUDA 11.0 tested in CI)

7. NVIDIA PGI (20.9 tested in CI)

About

This project was created by Wenzel Jakob. Significant features and/or improvements to the code were contributed by
Jonas Adler, Lori A. Burns, Sylvain Corlay, Eric Cousineau, Aaron Gokaslan, Ralf Grosse-Kunstleve, Trent Houliston,
Axel Huebl, @hulucc, Yannick Jadoul, Sergey Lyskov, Johan Mabille, Tomasz Miąsko, Dean Moldovan, Ben Pritchard,
Jason Rhinelander, Boris Schäling, Pim Schellart, Henry Schreiner, Ivan Smirnov, Boris Staletic, and Patrick Stewart.

We thank Google for a generous financial contribution to the continuous integration infrastructure used by this project.

Contributing

See the contributing guide for information on building and contributing to pybind11.

License

pybind11 is provided under a BSD-style license that can be found in the LICENSE file. By using, distributing, or
contributing to this project, you agree to the terms and conditions of this license.
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CHANGELOG

Starting with version 1.8.0, pybind11 releases use a semantic versioning policy.

Changes will be added here periodically from the “Suggested changelog entry” block in pull request descriptions.

1.1 IN DEVELOPMENT

Changes will be summarized here periodically.

1.2 Version 2.12.0 (March 27, 2025)

New Features:

• pybind11 now supports compiling for NumPy 2. Most code shouldn’t change (see v2.12 for details). However,
if you experience issues you can define PYBIND11_NUMPY_1_ONLY to disable the new support for now, but this
will be removed in the future. #5050

• pybind11/gil_safe_call_once.h was added (it needs to be included explicitly). The primary use case is
GIL-safe initialization of C++ static variables. #4877

• Support move-only iterators in py::make_iterator, py::make_key_iterator,
py::make_value_iterator. #4834

• Two simple py::set_error() functions were added and the documentation was updated accordingly. In par-
ticular, py::exception<>::operator() was deprecated (use one of the new functions instead). The docu-
mentation for py::exception<> was further updated to not suggest code that may result in undefined behavior.
#4772

Bug fixes:

• Removes potential for Undefined Behavior during process teardown. #4897

• Improve compatibility with the nvcc compiler (especially CUDA 12.1/12.2). #4893

• pybind11/numpy.h now imports NumPy’s multiarray and _internal submodules with paths depending on
the installed version of NumPy (for compatibility with NumPy 2). #4857

• Builtins collections names in docstrings are now consistently rendered in lowercase (list, set, dict, tuple), in
accordance with PEP 585. #4833

• Added py::typing::Iterator<T>, py::typing::Iterable<T>. #4832

• Render py::function as Callable in docstring. #4829
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• Also bump PYBIND11_INTERNALS_VERSION for MSVC, which unlocks two new features without creating ad-
ditional incompatibilities. #4819

• Guard against crashes/corruptions caused by modules built with different MSVC versions. #4779

• A long-standing bug in the handling of Python multiple inheritance was fixed. See PR #4762 for the rather
complex details. #4762

• Fix bind_map with using declarations. #4952

• Qualify py::detail::concat usage to avoid ADL selecting one from somewhere else, such as modernjson’s
concat. #4955

• Use new PyCode API on Python 3.12+. #4916

• Minor cleanup from warnings reported by Clazy. #4988

• Remove typing and duplicate class_ for KeysView/ValuesView/ItemsView. #4985

• Use PyObject_VisitManagedDict() and PyObject_ClearManagedDict() on Python 3.13 and newer.
#4973

• Update make_static_property_type() to make it compatible with Python 3.13. #4971

• Render typed iterators for make_iterator, make_key_iterator, make_value_iterator. #4876

• Add several missing type name specializations. #5073

• Change docstring render for py::buffer, py::sequence and py::handle (to Buffer, Sequence, Any).
#4831

• Fixed base_enum.__str__ docstring. #4827

• Enforce single line docstring signatures. #4735

• Special ‘typed’ wrappers now available in typing.h to annotate tuple, dict, list, set, and function. #4259

• Create handle_type_name specialization to type-hint variable length tuples. #5051

• Setting PYBIND11_FINDPYTHON to OFF will force the old FindPythonLibs mechanism to be used. #5042

• Skip empty PYBIND11_PYTHON_EXECUTABLE_LAST for the first cmake run. #4856

• Fix FindPython mode exports & avoid pkg_resources if importlib.metadata available. #4941

• Python_ADDITIONAL_VERSIONS (classic search) now includes 3.12.

#4909

• pybind11.pc is now relocatable by default as long as install destinations are not absolute paths. #4830

• Correctly detect CMake FindPython removal when used as a subdirectory. #4806

• Don’t require the libs component on CMake 3.18+ when using PYBIND11_FINDPYTHON (fixes manylinux
builds). #4805

• pybind11_strip is no longer automatically applied when CMAKE_BUILD_TYPE is unset. #4780

• Support DEBUG_POSFIX correctly for debug builds. #4761

• Hardcode lto/thin lto for Emscripten cross-compiles. #4642

• Upgrade maximum supported CMake version to 3.27 to fix CMP0148 warnings. #4786

Documentation:

• Small fix to grammar in functions.rst. #4791

• Remove upper bound in example pyproject.toml for setuptools. #4774
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CI:

• CI: Update NVHPC to 23.5 and Ubuntu 20.04. #4764

• Test on PyPy 3.10. #4714

Other:

• Use Ruff formatter instead of Black. #4912

• An assert() was added to help Coverty avoid generating a false positive. #4817

1.3 Version 2.11.1 (July 17, 2023)

Changes:

• PYBIND11_NO_ASSERT_GIL_HELD_INCREF_DECREF is now provided as an option for disabling the default-on
PyGILState_Check()’s in pybind11::handle’s inc_ref() & dec_ref(). #4753

• PYBIND11_ASSERT_GIL_HELD_INCREF_DECREF was disabled for PyPy in general (not just PyPy Windows).
#4751

1.4 Version 2.11.0 (July 14, 2023)

New features:

• The newly added pybind11::detail::is_move_constructible trait can be specialized for cases in which
std::is_move_constructible does not work as needed. This is very similar to the long-established
pybind11::detail::is_copy_constructible. #4631

• Introduce recursive_container_traits. #4623

• pybind11/type_caster_pyobject_ptr.hwas added to support automatic wrapping of APIs that make use of
PyObject *. This header needs to included explicitly (i.e. it is not included implicitly with pybind/pybind11.
h). #4601

• format_descriptor<> & npy_format_descriptor<> PyObject * specializations were added. The latter
enables py::array_t<PyObject *> to/from-python conversions. #4674

• buffer_info gained an item_type_is_equivalent_to<T>() member function. #4674

• The capsule API gained a user-friendly constructor (py::capsule(ptr, "name", dtor)). #4720

Changes:

• PyGILState_Check()’s in pybind11::handle’s inc_ref()& dec_ref() are now enabled by default again.
#4246

• py::initialize_interpreter() using PyConfig_InitPythonConfig() instead of
PyConfig_InitIsolatedConfig(), to obtain complete sys.path. #4473

• Cast errors now always include Python type information, even if PYBIND11_DETAILED_ERROR_MESSAGES is
not defined. This increases binary sizes slightly (~1.5%) but the error messages are much more informative.
#4463

• The docstring generation for the std::array-list caster was fixed. Previously, signatures included the size of the
list in a non-standard, non-spec compliant way. The new format conforms to PEP 593. Tooling for processing
the docstrings may need to be updated accordingly. #4679
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• Setter return values (which are inaccessible for all practical purposes) are no longer converted to Python (only
to be discarded). #4621

• Allow lambda specified to function definition to be noexcept(true) in C++17. #4593

• Get rid of recursive template instantiations for concatenating type signatures on C++17 and higher. #4587

• Compatibility with Python 3.12 (beta). Note that the minimum pybind11 ABI version for Python 3.12 is version
5. (The default ABI version for Python versions up to and including 3.11 is still version 4.). #4570

• With PYBIND11_INTERNALS_VERSION 5 (default for Python 3.12+), MSVC builds use
std::hash<std::type_index> and std::equal_to<std::type_index> instead of string-based type
comparisons. This resolves issues when binding types defined in the unnamed namespace. #4319

• Python exception __notes__ (introduced with Python 3.11) are now added to the
error_already_set::what() output. #4678

Build system improvements:

• CMake 3.27 support was added, CMake 3.4 support was dropped. FindPython will be used if
FindPythonInterp is not present. #4719

• Update clang-tidy to 15 in CI. #4387

• Moved the linting framework over to Ruff. #4483

• Skip lto checks and target generation when CMAKE_INTERPROCEDURAL_OPTIMIZATION is defined. #4643

• No longer inject -stdlib=libc++, not needed for modern Pythons (macOS 10.9+). #4639

• PyPy 3.10 support was added, PyPy 3.7 support was dropped. #4728

• Testing with Python 3.12 beta releases was added. #4713

1.5 Version 2.10.4 (Mar 16, 2023)

Changes:

• python3 -m pybind11 gained a --version option (prints the version and exits). #4526

Bug Fixes:

• Fix a warning when pydebug is enabled on Python 3.11. #4461

• Ensure gil_scoped_release RAII is non-copyable. #4490

• Ensure the tests dir does not show up with new versions of setuptools. #4510

• Better stacklevel for a warning in setuptools helpers. #4516

1.6 Version 2.10.3 (Jan 3, 2023)

Changes:

• Temporarily made our GIL status assertions (added in 2.10.2) disabled by default (re-enable manually by defining
PYBIND11_ASSERT_GIL_HELD_INCREF_DECREF, will be enabled in 2.11). #4432

• Improved error messages when inc_ref/dec_ref are called with an invalid GIL state. #4427 #4436

Bug Fixes:

• Some minor touchups found by static analyzers. #4440
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1.7 Version 2.10.2 (Dec 20, 2022)

Changes:

• scoped_interpreter constructor taking PyConfig. #4330

• pybind11/eigen/tensor.h adds converters to and from Eigen::Tensor and Eigen::TensorMap. #4201

• PyGILState_Check()’s were integrated to pybind11::handle inc_ref() & dec_ref(). The added GIL
checks are guarded by PYBIND11_ASSERT_GIL_HELD_INCREF_DECREF, which is the default only if NDEBUG is
not defined. (Made non-default in 2.10.3, will be active in 2.11) #4246

• Add option for enable/disable enum members in docstring. #2768

• Fixed typing of KeysView, ValuesView and ItemsView in bind_map. #4353

Bug fixes:

• Bug fix affecting only Python 3.6 under very specific, uncommon conditions: move PyEval_InitThreads()
call to the correct location. #4350

• Fix segfault bug when passing foreign native functions to functional.h. #4254

Build system improvements:

• Support setting PYTHON_LIBRARIES manually for Windows ARM cross-compilation (classic mode). #4406

• Extend IPO/LTO detection for ICX (a.k.a IntelLLVM) compiler. #4402

• Allow calling find_package(pybind11 CONFIG)multiple times from separate directories in the same CMake
project and properly link Python (new mode). #4401

• multiprocessing_set_spawn in pytest fixture for added safety. #4377

• Fixed a bug in two pybind11/tools cmake scripts causing “Unknown arguments specified” errors. #4327

1.8 Version 2.10.1 (Oct 31, 2022)

This is the first version to fully support embedding the newly released Python 3.11.

Changes:

• Allow pybind11::capsule constructor to take null destructor pointers. #4221

• embed.h was changed so that PYTHONPATH is used also with Python 3.11 (established behavior). #4119

• A PYBIND11_SIMPLE_GIL_MANAGEMENT option was added (cmake, C++ define), along with many additional
tests in test_gil_scoped.py. The option may be useful to try when debugging GIL-related issues, to deter-
mine if the more complex default implementation is or is not to blame. See #4216 for background. WARNING:
Please be careful to not create ODR violations when using the option: everything that is linked together with
mutual symbol visibility needs to be rebuilt. #4216

• PYBIND11_EXPORT_EXCEPTION was made non-empty only under macOS. This makes Linux builds safer, and
enables the removal of warning suppression pragmas for Windows. #4298

Bug fixes:

• Fixed a bug where UnicodeDecodeError was not propagated from various py::str ctors when decoding
surrogate utf characters. #4294

• Revert perfect forwarding for make_iterator. This broke at least one valid use case. May revisit later. #4234

• Fix support for safe casts to void* (regression in 2.10.0). #4275
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• Fix char8_t support (regression in 2.9). #4278

• Unicode surrogate character in Python exception message leads to process termination in
error_already_set::what(). #4297

• Fix MSVC 2019 v.1924 & C++14 mode error for overload_cast. #4188

• Make augmented assignment operators non-const for the object-api. Behavior was previously broken for aug-
mented assignment operators. #4065

• Add proper error checking to C++ bindings for Python list append and insert. #4208

• Work-around for Nvidia’s CUDA nvcc compiler in versions 11.4.0 - 11.8.0. #4220

• A workaround for PyPy was added in the py::error_already_set implementation, related to PR #1895 re-
leased with v2.10.0. #4079

• Fixed compiler errors when C++23 std::forward_like is available. #4136

• Properly raise exceptions in contains methods (like when an object in unhashable). #4209

• Further improve another error in exception handling. #4232

• get_local_internals() was made compatible with finalize_interpreter(), fixing potential freezes
during interpreter finalization. #4192

Performance and style:

• Reserve space in set and STL map casters if possible. This will prevent unnecessary rehashing / resizing by
knowing the number of keys ahead of time for Python to C++ casting. This improvement will greatly speed up
the casting of large unordered maps and sets. #4194

• GIL RAII scopes are non-copyable to avoid potential bugs. #4183

• Explicitly default all relevant ctors for pytypes in the PYBIND11_OBJECT macros and enforce the clang-tidy
checks modernize-use-equals-default in macros as well. #4017

• Optimize iterator advancement in C++ bindings. #4237

• Use the modern PyObject_GenericGetDict and PyObject_GenericSetDict for handling dynamic attribute
dictionaries. #4106

• Document that users should use PYBIND11_NAMESPACE instead of using pybind11 when opening namespaces.
Using namespace declarations and namespace qualification remain the same as pybind11. This is done to ensure
consistent symbol visibility. #4098

• Mark detail::forward_like as constexpr. #4147

• Optimize unpacking_collector when processing arg_v arguments. #4219

• Optimize casting C++ object to None. #4269

Build system improvements:

• CMake: revert overwrite behavior, now opt-in with PYBIND11_PYTHONLIBS_OVERRWRITE OFF. #4195

• Include a pkg-config file when installing pybind11, such as in the Python package. #4077

• Avoid stripping debug symbols when CMAKE_BUILD_TYPE is set to DEBUG instead of Debug. #4078

• Followup to #3948, fixing vcpkg again. #4123
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1.9 Version 2.10.0 (Jul 15, 2022)

Removed support for Python 2.7, Python 3.5, and MSVC 2015. Support for MSVC 2017 is limited due to availability
of CI runners; we highly recommend MSVC 2019 or 2022 be used. Initial support added for Python 3.11.

New features:

• py::anyset & py::frozenset were added, with copying (cast) to std::set (similar to set). #3901

• Support bytearray casting to string. #3707

• type_caster<std::monostate> was added. std::monostate is a tag type that allows std::variant to
act as an optional, or allows default construction of a std::variant holding a non-default constructible type.
#3818

• pybind11::capsule::set_name added to mutate the name of the capsule instance. #3866

• NumPy: dtype constructor from type number added, accessors corresponding to Python API dtype.num,
dtype.byteorder, dtype.flags and dtype.alignment added. #3868

Changes:

• Python 3.6 is now the minimum supported version. #3688 #3719

• The minimum version for MSVC is now 2017. #3722

• Fix issues with CPython 3.11 betas and add to supported test matrix. #3923

• error_already_set is now safer and more performant, especially for exceptions with long tracebacks, by
delaying computation. #1895

• Improve exception handling in python str bindings. #3826

• The bindings for capsules now have more consistent exception handling. #3825

• PYBIND11_OBJECT_CVT and PYBIND11_OBJECT_CVT_DEFAULT macro can now be used to define classes in
namespaces other than pybind11. #3797

• Error printing code now uses PYBIND11_DETAILED_ERROR_MESSAGES instead of requiring NDEBUG, allowing
use with release builds if desired. #3913

• Implicit conversion of the literal 0 to pybind11::handle is now disabled. #4008

Bug fixes:

• Fix exception handling when pybind11::weakref() fails. #3739

• module_::def_submodule was missing proper error handling. This is fixed now. #3973

• The behavior or error_already_setwas made safer and the highly opaque “Unknown internal error occurred”
message was replaced with a more helpful message. #3982

• error_already_set::what() now handles non-normalized exceptions correctly. #3971

• Support older C++ compilers where filesystem is not yet part of the standard library and is instead included in
std::experimental::filesystem. #3840

• Fix -Wfree-nonheap-object warnings produced by GCC by avoiding returning pointers to static objects with
return_value_policy::take_ownership. #3946

• Fix cast from pytype rvalue to another pytype. #3949

• Ensure proper behavior when garbage collecting classes with dynamic attributes in Python >=3.9. #4051

• A couple long-standing PYBIND11_NAMESPACE __attribute__((visibility("hidden"))) inconsisten-
cies are now fixed (affects only unusual environments). #4043
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• pybind11::detail::get_internals() is now resilient to in-flight Python exceptions. #3981

• Arrays with a dimension of size 0 are now properly converted to dynamic Eigen matrices (more common in
NumPy 1.23). #4038

• Avoid catching unrelated errors when importing NumPy. #3974

Performance and style:

• Added an accessor overload of (object &&key) to reference steal the object when using python types as keys.
This prevents unnecessary reference count overhead for attr, dictionary, tuple, and sequence look ups. Added
additional regression tests. Fixed a performance bug the caused accessor assignments to potentially perform
unnecessary copies. #3970

• Perfect forward all args of make_iterator. #3980

• Avoid potential bug in pycapsule destructor by adding an error_guard to one of the dtors. #3958

• Optimize dictionary access in strip_padding for numpy. #3994

• stl_bind.h bindings now take slice args as a const-ref. #3852

• Made slice constructor more consistent, and improve performance of some casters by allowing reference stealing.
#3845

• Change numpy dtype from_args method to use const ref. #3878

• Follow rule of three to ensure PyErr_Restore is called only once. #3872

• Added missing perfect forwarding for make_iterator functions. #3860

• Optimize c++ to python function casting by using the rvalue caster. #3966

• Optimize Eigen sparse matrix casting by removing unnecessary temporary. #4064

• Avoid potential implicit copy/assignment constructors causing double free in strdup_gaurd. #3905

• Enable clang-tidy checks misc-definitions-in-headers, modernize-loop-convert, and
modernize-use-nullptr. #3881 #3988

Build system improvements:

• CMake: Fix file extension on Windows with cp36 and cp37 using FindPython. #3919

• CMake: Support multiple Python targets (such as on vcpkg). #3948

• CMake: Fix issue with NVCC on Windows. #3947

• CMake: Drop the bitness check on cross compiles (like targeting WebAssembly via Emscripten). #3959

• Add MSVC builds in debug mode to CI. #3784

• MSVC 2022 C++20 coverage was added to GitHub Actions, including Eigen. #3732, #3741

Backend and tidying up:

• New theme for the documentation. #3109

• Remove idioms in code comments. Use more inclusive language. #3809

• #include <iostream> was removed from the pybind11/stl.h header. Your project may break if it has a
transitive dependency on this include. The fix is to “Include What You Use”. #3928

• Avoid setup.py <command> usage in internal tests. #3734
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1.10 Version 2.9.2 (Mar 29, 2022)

Changes:

• Enum now has an __index__ method on Python <3.8 too. #3700

• Local internals are now cleared after finalizing the interpreter. #3744

Bug fixes:

• Better support for Python 3.11 alphas. #3694

• PYBIND11_TYPE_CASTER now uses fully qualified symbols, so it can be used outside of pybind11::detail.
#3758

• Some fixes for PyPy 3.9. #3768

• Fixed a potential memleak in PyPy in get_type_override. #3774

• Fix usage of VISIBILITY_INLINES_HIDDEN. #3721

Build system improvements:

• Uses sysconfig module to determine installation locations on Python >= 3.10, instead of distutils which
has been deprecated. #3764

• Support Catch 2.13.5+ (supporting GLIBC 2.34+). #3679

• Fix test failures with numpy 1.22 by ignoring whitespace when comparing str() of dtypes. #3682

Backend and tidying up:

• clang-tidy: added readability-qualified-auto, readability-braces-around-statements,
cppcoreguidelines-prefer-member-initializer, clang-analyzer-optin.
performance.Padding, cppcoreguidelines-pro-type-static-cast-downcast, and
readability-inconsistent-declaration-parameter-name. #3702, #3699, #3716, #3709

• clang-format was added to the pre-commit actions, and the entire code base automatically reformatted (after
several iterations preparing for this leap). #3713

1.11 Version 2.9.1 (Feb 2, 2022)

Changes:

• If possible, attach Python exception with py::raise_from to TypeError when casting from C++ to Python.
This will give additional info if Python exceptions occur in the caster. Adds a test case of trying to convert a set
from C++ to Python when the hash function is not defined in Python. #3605

• Add a mapping of C++11 nested exceptions to their Python exception equivalent using py::raise_from. This
attaches the nested exceptions in Python using the __cause__ field. #3608

• Propagate Python exception traceback using raise_from if a pybind11 function runs out of overloads. #3671

• py::multiple_inheritance is now only needed when C++ bases are hidden from pybind11. #3650 and
#3659

Bug fixes:

• Remove a boolean cast in numpy.h that causes MSVC C4800 warnings when compiling against Python 3.10 or
newer. #3669

• Render py::bool_ and py::float_ as bool and float respectively. #3622
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Build system improvements:

• Fix CMake extension suffix computation on Python 3.10+. #3663

• Allow CMAKE_ARGS to override CMake args in pybind11’s own setup.py. #3577

• Remove a few deprecated c-headers. #3610

• More uniform handling of test targets. #3590

• Add clang-tidy readability check to catch potentially swapped function args. #3611

1.12 Version 2.9.0 (Dec 28, 2021)

This is the last version to support Python 2.7 and 3.5.

New Features:

• Allow py::args to be followed by other arguments; the remaining arguments are implicitly keyword-only, as if
a py::kw_only{} annotation had been used. #3402

Changes:

• Make str/bytes/memoryview more interoperable with std::string_view. #3521

• Replace _ with const_name in internals, avoid defining pybind::_ if _ defined as macro (common gettext
usage) #3423

Bug fixes:

• Fix a rare warning about extra copy in an Eigen constructor. #3486

• Fix caching of the C++ overrides. #3465

• Add missing std::forward calls to some cpp_function overloads. #3443

• Support PyPy 7.3.7 and the PyPy3.8 beta. Test python-3.11 on PRs with the python dev label. #3419

• Replace usage of deprecated Eigen::MappedSparseMatrix with Eigen::Map<Eigen::SparseMatrix<..
.>> for Eigen 3.3+. #3499

• Tweaks to support Microsoft Visual Studio 2022. #3497

Build system improvements:

• Nicer CMake printout and IDE organisation for pybind11’s own tests. #3479

• CMake: report version type as part of the version string to avoid a spurious space in the package status message.
#3472

• Flags starting with -g in $CFLAGS and $CPPFLAGS are no longer overridden by .Pybind11Extension. #3436

• Ensure ThreadPool is closed in setup_helpers. #3548

• Avoid LTS on mips64 and ppc64le (reported broken). #3557
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1.13 v2.8.1 (Oct 27, 2021)

Changes and additions:

• The simple namespace creation shortcut added in 2.8.0 was deprecated due to usage of CPython internal API,
and will be removed soon. Use py::module_::import("types").attr("SimpleNamespace"). #3374

• Add C++ Exception type to throw and catch AttributeError. Useful for defining custom __setattr__ and
__getattr__ methods. #3387

Fixes:

• Fixed the potential for dangling references when using properties with std::optional types. #3376

• Modernize usage of PyCodeObject on Python 3.9+ (moving toward support for Python 3.11a1) #3368

• A long-standing bug in eigen.h was fixed (originally PR #3343). The bug was unmasked by newly added
static_assert’s in the Eigen 3.4.0 release. #3352

• Support multiple raw inclusion of CMake helper files (Conan.io does this for multi-config generators). #3420

• Fix harmless warning on upcoming CMake 3.22. #3368

• Fix 2.8.0 regression with MSVC 2017 + C++17 mode + Python 3. #3407

• Fix 2.8.0 regression that caused undefined behavior (typically segfaults) in
make_key_iterator/make_value_iterator if dereferencing the iterator returned a temporary value
instead of a reference. #3348

1.14 v2.8.0 (Oct 4, 2021)

New features:

• Added py::raise_from to enable chaining exceptions. #3215

• Allow exception translators to be optionally registered local to a module instead of applying globally
across all pybind11 modules. Use register_local_exception_translator(ExceptionTranslator&&
translator) instead of register_exception_translator(ExceptionTranslator&& translator) to
keep your exception remapping code local to the module. #2650

• Add make_simple_namespace function for instantiating Python SimpleNamespace objects. Deprecated in
2.8.1. #2840

• pybind11::scoped_interpreter and initialize_interpreter have new arguments to allow sys.argv
initialization. #2341

• Allow Python builtins to be used as callbacks in CPython. #1413

• Added view to view arrays with a different datatype. #987

• Implemented reshape on arrays. #984

• Enable defining custom __new__ methods on classes by fixing bug preventing overriding methods if they have
non-pybind11 siblings. #3265

• Add make_value_iterator(), and fix make_key_iterator() to return references instead of copies. #3293

• Improve the classes generated by bind_map: #3310

– Change .items from an iterator to a dictionary view.

– Add .keys and .values (both dictionary views).
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– Allow __contains__ to take any object.

• pybind11::custom_type_setup was added, for customizing the PyHeapTypeObject corresponding to a
class, which may be useful for enabling garbage collection support, among other things. #3287

Changes:

• Set __file__ constant when running eval_file in an embedded interpreter. #3233

• Python objects and (C++17) std::optional now accepted in py::slice constructor. #1101

• The pybind11 proxy types str, bytes, bytearray, tuple, list now consistently support passing ssize_t
values for sizes and indexes. Previously, only size_t was accepted in several interfaces. #3219

• Avoid evaluating PYBIND11_TLS_REPLACE_VALUE arguments more than once. #3290

Fixes:

• Bug fix: enum value’s __int__ returning non-int when underlying type is bool or of char type. #1334

• Fixes bug in setting error state in Capsule’s pointer methods. #3261

• A long-standing memory leak in py::cpp_function::initialize was fixed. #3229

• Fixes thread safety for some pybind11::type_caster which require lifetime extension, such as for
std::string_view. #3237

• Restore compatibility with gcc 4.8.4 as distributed by ubuntu-trusty, linuxmint-17. #3270

Build system improvements:

• Fix regression in CMake Python package config: improper use of absolute path. #3144

• Cached Python version information could become stale when CMake was re-run with a different Python version.
The build system now detects this and updates this information. #3299

• Specified UTF8-encoding in setup.py calls of open(). #3137

• Fix a harmless warning from CMake 3.21 with the classic Python discovery. #3220

• Eigen repo and version can now be specified as cmake options. #3324

Backend and tidying up:

• Reduced thread-local storage required for keeping alive temporary data for type conversion to one key per ABI
version, rather than one key per extension module. This makes the total thread-local storage required by pybind11
2 keys per ABI version. #3275

• Optimize NumPy array construction with additional moves. #3183

• Conversion to std::string and std::string_view now avoids making an extra copy of the data on Python
>= 3.3. #3257

• Remove const modifier from certain C++ methods on Python collections (list, set, dict) such as (clear(),
append(), insert(), etc. . . ) and annotated them with py-non-const.

• Enable readability clang-tidy-const-return and remove useless consts. #3254 #3194

• The clang-tidy google-explicit-constructor option was enabled. #3250

• Mark a pytype move constructor as noexcept (perf). #3236

• Enable clang-tidy check to guard against inheritance slicing. #3210

• Legacy warning suppression pragma were removed from eigen.h. On Unix platforms, please use -isystem for
Eigen include directories, to suppress compiler warnings originating from Eigen headers. Note that CMake does
this by default. No adjustments are needed for Windows. #3198
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• Format pybind11 with isort consistent ordering of imports #3195

• The warnings-suppression “pragma clamp” at the top/bottom of pybind11 was removed, clearing the path to
refactoring and IWYU cleanup. #3186

• Enable most bugprone checks in clang-tidy and fix the found potential bugs and poor coding styles. #3166

• Add clang-tidy-readability rules to make boolean casts explicit improving code readability. Also enabled
other misc and readability clang-tidy checks. #3148

• Move object in .pop() for list. #3116

1.15 v2.7.1 (Aug 3, 2021)

Minor missing functionality added:

• Allow Python builtins to be used as callbacks in CPython. #1413

Bug fixes:

• Fix regression in CMake Python package config: improper use of absolute path. #3144

• Fix Mingw64 and add to the CI testing matrix. #3132

• Specified UTF8-encoding in setup.py calls of open(). #3137

• Add clang-tidy-readability rules to make boolean casts explicit improving code readability. Also enabled other
misc and readability clang-tidy checks. #3148

• Move object in .pop() for list. #3116

Backend and tidying up:

• Removed and fixed warning suppressions. #3127 #3129 #3135 #3141 #3142 #3150 #3152 #3160 #3161

1.16 v2.7.0 (Jul 16, 2021)

New features:

• Enable py::implicitly_convertible<py::none, ...> for py::class_-wrapped types. #3059

• Allow function pointer extraction from overloaded functions. #2944

• NumPy: added .char_() to type which gives the NumPy public char result, which also distinguishes types by
bit length (unlike .kind()). #2864

• Add pybind11::bytearray to manipulate bytearray similar to bytes. #2799

• pybind11/stl/filesystem.h registers a type caster that, on C++17/Python 3.6+, converts
std::filesystem::path to pathlib.Path and any os.PathLike to std::filesystem::path. #2730

• A PYBIND11_VERSION_HEX define was added, similar to PY_VERSION_HEX. #3120

Changes:

• py::str changed to exclusively hold PyUnicodeObject. Previously py::str could also hold bytes, which
is probably surprising, was never documented, and can mask bugs (e.g. accidental use of py::str instead of
py::bytes). #2409

• Add a safety guard to ensure that the Python GIL is held when C++ calls back into Python via
object_api<>::operator() (e.g. py::function __call__). (This feature is available for Python 3.6+
only.) #2919
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• Catch a missing self argument in calls to __init__(). #2914

• Use std::string_view if available to avoid a copy when passing an object to a std::ostream. #3042

• An important warning about thread safety was added to the iostream.h documentation; attempts to make
py::scoped_ostream_redirect thread safe have been removed, as it was only partially effective. #2995

Fixes:

• Performance: avoid unnecessary strlen calls. #3058

• Fix auto-generated documentation string when using const T in pyarray_t. #3020

• Unify error messages thrown by simple_collector/unpacking_collector. #3013

• pybind11::builtin_exception is now explicitly exported, which means the types included/defined in differ-
ent modules are identical, and exceptions raised in different modules can be caught correctly. The documentation
was updated to explain that custom exceptions that are used across module boundaries need to be explicitly ex-
ported as well. #2999

• Fixed exception when printing UTF-8 to a scoped_ostream_redirect. #2982

• Pickle support enhancement: setstate implementation will attempt to setattr __dict__ only if the unpick-
led dict object is not empty, to not force use of py::dynamic_attr() unnecessarily. #2972

• Allow negative timedelta values to roundtrip. #2870

• Fix unchecked errors could potentially swallow signals/other exceptions. #2863

• Add null pointer check with std::localtime. #2846

• Fix the weakref constructor from py::object to create a new weakref on conversion. #2832

• Avoid relying on exceptions in C++17 when getting a shared_ptr holder from a shared_from_this class.
#2819

• Allow the codec’s exception to be raised instead of RuntimeError when casting from py::str to
std::string. #2903

Build system improvements:

• In setup_helpers.py, test for platforms that have some multiprocessing features but lack semaphores, which
ParallelCompile requires. #3043

• Fix pybind11_INCLUDE_DIR in case CMAKE_INSTALL_INCLUDEDIR is absolute. #3005

• Fix bug not respecting WITH_SOABI or WITHOUT_SOABI to CMake. #2938

• Fix the default Pybind11Extension compilation flags with a Mingw64 python. #2921

• Clang on Windows: do not pass /MP (ignored flag). #2824

• pybind11.setup_helpers.intree_extensions can be used to generate Pybind11Extension instances
from cpp files placed in the Python package source tree. #2831

Backend and tidying up:

• Enable clang-tidy performance, readability, and modernization checks throughout the codebase to enforce best
coding practices. #3046, #3049, #3051, #3052, #3080, and #3094

• Checks for common misspellings were added to the pre-commit hooks. #3076

• Changed Werror to stricter Werror-all for Intel compiler and fixed minor issues. #2948

• Fixed compilation with GCC < 5 when the user defines _GLIBCXX_USE_CXX11_ABI. #2956

• Added nox support for easier local testing and linting of contributions. #3101 and #3121
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• Avoid RTD style issue with docutils 0.17+. #3119

• Support pipx run, such as pipx run pybind11 --include for a quick compile. #3117

1.17 v2.6.2 (Jan 26, 2021)

Minor missing functionality added:

• enum: add missing Enum.value property. #2739

• Allow thread termination to be avoided during shutdown for CPython 3.7+ via .disarm for
gil_scoped_acquire/gil_scoped_release. #2657

Fixed or improved behavior in a few special cases:

• Fix bug where the constructor of object subclasses would not throw on being passed a Python object of the
wrong type. #2701

• The type_caster for integers does not convert Python objects with __int__ anymore with noconvert or
during the first round of trying overloads. #2698

• When casting to a C++ integer, __index__ is always called and not considered as conversion, consistent with
Python 3.8+. #2801

Build improvements:

• Setup helpers: extra_compile_args and extra_link_args automatically set by Pybind11Extension are now
prepended, which allows them to be overridden by user-set extra_compile_args and extra_link_args.
#2808

• Setup helpers: Don’t trigger unused parameter warning. #2735

• CMake: Support running with --warn-uninitialized active. #2806

• CMake: Avoid error if included from two submodule directories. #2804

• CMake: Fix STATIC / SHARED being ignored in FindPython mode. #2796

• CMake: Respect the setting for CMAKE_CXX_VISIBILITY_PRESET if defined. #2793

• CMake: Fix issue with FindPython2/FindPython3 not working with pybind11::embed. #2662

• CMake: mixing local and installed pybind11’s would prioritize the installed one over the local one (regression
in 2.6.0). #2716

Bug fixes:

• Fixed segfault in multithreaded environments when using scoped_ostream_redirect. #2675

• Leave docstring unset when all docstring-related options are disabled, rather than set an empty string. #2745

• The module key in builtins that pybind11 uses to store its internals changed from std::string to a python str type
(more natural on Python 2, no change on Python 3). #2814

• Fixed assertion error related to unhandled (later overwritten) exception in CPython 3.8 and 3.9 debug builds.
#2685

• Fix py::gil_scoped_acquire assert with CPython 3.9 debug build. #2683

• Fix issue with a test failing on pytest 6.2. #2741

Warning fixes:

• Fix warning modifying constructor parameter ‘flag’ that shadows a field of ‘set_flag’
[-Wshadow-field-in-constructor-modified]. #2780
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• Suppressed some deprecation warnings about old-style __init__/__setstate__ in the tests. #2759

Valgrind work:

• Fix invalid access when calling a pybind11 __init__ on a non-pybind11 class instance. #2755

• Fixed various minor memory leaks in pybind11’s test suite. #2758

• Resolved memory leak in cpp_function initialization when exceptions occurred. #2756

• Added a Valgrind build, checking for leaks and memory-related UB, to CI. #2746

Compiler support:

• Intel compiler was not activating C++14 support due to a broken define. #2679

• Support ICC and NVIDIA HPC SDK in C++17 mode. #2729

• Support Intel OneAPI compiler (ICC 20.2) and add to CI. #2573

1.18 v2.6.1 (Nov 11, 2020)

• py::exec, py::eval, and py::eval_file now add the builtins module as "__builtins__" to their globals
argument, better matching exec and eval in pure Python. #2616

• setup_helpers will no longer set a minimum macOS version higher than the current version. #2622

• Allow deleting static properties. #2629

• Seal a leak in def_buffer, cleaning up the capture object after the class_ object goes out of scope. #2634

• pybind11_INCLUDE_DIRS was incorrect, potentially causing a regression if it was expected to include
PYTHON_INCLUDE_DIRS (please use targets instead). #2636

• Added parameter names to the py::enum_ constructor and methods, avoiding arg0 in the generated docstrings.
#2637

• Added needs_recompile optional function to the ParallelCompiler helper, to allow a recompile to be
skipped based on a user-defined function. #2643

1.19 v2.6.0 (Oct 21, 2020)

See v2.6 for help upgrading to the new version.

New features:

• Keyword-only arguments supported in Python 2 or 3 with py::kw_only(). #2100

• Positional-only arguments supported in Python 2 or 3 with py::pos_only(). #2459

• py::is_final() class modifier to block subclassing (CPython only). #2151

• Added py::prepend(), allowing a function to be placed at the beginning of the overload chain. #1131

• Access to the type object now provided with py::type::of<T>() and py::type::of(h). #2364

• Perfect forwarding support for methods. #2048

• Added py::error_already_set::discard_as_unraisable(). #2372

• py::hash is now public. #2217
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• py::class_<union_type> is now supported. Note that writing to one data member of the union and reading
another (type punning) is UB in C++. Thus pybind11-bound enums should never be used for such conversions.
#2320.

• Classes now check local scope when registering members, allowing a subclass to have a member with the same
name as a parent (such as an enum). #2335

Code correctness features:

• Error now thrown when __init__ is forgotten on subclasses. #2152

• Throw error if conversion to a pybind11 type if the Python object isn’t a valid instance of that type, such as
py::bytes(o) when py::object o isn’t a bytes instance. #2349

• Throw if conversion to str fails. #2477

API changes:

• py::module was renamed py::module_ to avoid issues with C++20 when used unqualified, but an alias
py::module is provided for backward compatibility. #2489

• Public constructors for py::module_ have been deprecated; please use
pybind11::module_::create_extension_module if you were using the public constructor (fairly
rare after PYBIND11_MODULE was introduced). #2552

• PYBIND11_OVERLOAD* macros and get_overload function replaced by correctly-named
PYBIND11_OVERRIDE* and get_override, fixing inconsistencies in the presence of a closing ; in these
macros. get_type_overload is deprecated. #2325

Packaging / building improvements:

• The Python package was reworked to be more powerful and useful. #2433

– Building with setuptools is easier thanks to a new pybind11.setup_helpers module, which provides
utilities to use setuptools with pybind11. It can be used via PEP 518, setup_requires, or by directly
importing or copying setup_helpers.py into your project.

– CMake configuration files are now included in the Python package. Use pybind11.get_cmake_dir() or
python -m pybind11 --cmakedir to get the directory with the CMake configuration files, or include
the site-packages location in your CMAKE_MODULE_PATH. Or you can use the new pybind11[global]
extra when you install pybind11, which installs the CMake files and headers into your base environment
in the standard location.

– pybind11-config is another way to write python -m pybind11 if you have your PATH set up.

– Added external typing support to the helper module, code from import pybind11 can now be type
checked. #2588

• Minimum CMake required increased to 3.4. #2338 and #2370

– Full integration with CMake’s C++ standard system and compile features replaces
PYBIND11_CPP_STANDARD.

– Generated config file is now portable to different Python/compiler/CMake versions.

– Virtual environments prioritized if PYTHON_EXECUTABLE is not set (venv, virtualenv, and conda) (sim-
ilar to the new FindPython mode).

– Other CMake features now natively supported, like CMAKE_INTERPROCEDURAL_OPTIMIZATION,
set(CMAKE_CXX_VISIBILITY_PRESET hidden).

– CUDA as a language is now supported.

– Helper functions pybind11_strip, pybind11_extension, pybind11_find_import added, see CMake
helpers.
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– Optional FindPython mode and Advanced: NOPYTHON mode with CMake. #2370

• Uninstall target added. #2265 and #2346

• pybind11_add_module() now accepts an optional OPT_SIZE flag that switches the binding target to size-based
optimization if the global build type can not always be fixed to MinSizeRel (except in debug mode, where
optimizations remain disabled). MinSizeRel or this flag reduces binary size quite substantially (~25% on some
platforms). #2463

Smaller or developer focused features and fixes:

• Moved mkdoc.py to a new repo, pybind11-mkdoc. There are no longer submodules in the main repo.

• py::memoryview segfault fix and update, with new py::memoryview::from_memory in Python 3, and docu-
mentation. #2223

• Fix for buffer_info on Python 2. #2503

• If __eq__ defined but not __hash__, __hash__ is now set to None. #2291

• py::ellipsis now also works on Python 2. #2360

• Pointer to std::tuple & std::pair supported in cast. #2334

• Small fixes in NumPy support. py::array now uses py::ssize_t as first argument type. #2293

• Added missing signature for py::array. #2363

• unchecked_mutable_reference has access to operator () and [] when const. #2514

• py::vectorize is now supported on functions that return void. #1969

• py::capsule supports get_pointer and set_pointer. #1131

• Fix crash when different instances share the same pointer of the same type. #2252

• Fix for py::len not clearing Python’s error state when it fails and throws. #2575

• Bugfixes related to more extensive testing, new GitHub Actions CI. #2321

• Bug in timezone issue in Eastern hemisphere midnight fixed. #2438

• std::chrono::time_point now works when the resolution is not the same as the system. #2481

• Bug fixed where py::array_t could accept arrays that did not match the requested ordering. #2484

• Avoid a segfault on some compilers when types are removed in Python. #2564

• py::arg::none() is now also respected when passing keyword arguments. #2611

• PyPy fixes, PyPy 7.3.x now supported, including PyPy3. (Known issue with PyPy2 and Windows #2596). #2146

• CPython 3.9.0 workaround for undefined behavior (macOS segfault). #2576

• CPython 3.9 warning fixes. #2253

• Improved C++20 support, now tested in CI. #2489 #2599

• Improved but still incomplete debug Python interpreter support. #2025

• NVCC (CUDA 11) now supported and tested in CI. #2461

• NVIDIA PGI compilers now supported and tested in CI. #2475

• At least Intel 18 now explicitly required when compiling with Intel. #2577

• Extensive style checking in CI, with pre-commit support. Code modernization, checked by clang-tidy.

• Expanded docs, including new main page, new installing section, and CMake helpers page, along with over a
dozen new sections on existing pages.
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• In GitHub, new docs for contributing and new issue templates.

1.20 v2.5.0 (Mar 31, 2020)

• Use C++17 fold expressions in type casters, if available. This can improve performance during overload resolu-
tion when functions have multiple arguments. #2043.

• Changed include directory resolution in pybind11/__init__.py and installation in setup.py. This fixes a
number of open issues where pybind11 headers could not be found in certain environments. #1995.

• C++20 char8_t and u8string support. #2026.

• CMake: search for Python 3.9. bb9c91.

• Fixes for MSYS-based build environments. #2087, #2053.

• STL bindings for std::vector<...>::clear. #2074.

• Read-only flag for py::buffer. #1466.

• Exception handling during module initialization. bf2b031.

• Support linking against a CPython debug build. #2025.

• Fixed issues involving the availability and use of aligned new and delete. #1988, 759221.

• Fixed a resource leak upon interpreter shutdown. #2020.

• Fixed error handling in the boolean caster. #1976.

1.21 v2.4.3 (Oct 15, 2019)

• Adapt pybind11 to a C API convention change in Python 3.8. #1950.

1.22 v2.4.2 (Sep 21, 2019)

• Replaced usage of a C++14 only construct. #1929.

• Made an ifdef future-proof for Python >= 4. f3109d.

1.23 v2.4.1 (Sep 20, 2019)

• Fixed a problem involving implicit conversion from enumerations to integers on Python 3.8. #1780.
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1.24 v2.4.0 (Sep 19, 2019)

• Try harder to keep pybind11-internal data structures separate when there are potential ABI incompatibilities.
Fixes crashes that occurred when loading multiple pybind11 extensions that were e.g. compiled by GCC (lib-
stdc++) and Clang (libc++). #1588 and c9f5a.

• Added support for __await__, __aiter__, and __anext__ protocols. #1842.

• pybind11_add_module(): don’t strip symbols when compiling in RelWithDebInfo mode. #1980.

• enum_: Reproduce Python behavior when comparing against invalid values (e.g. None, strings, etc.). Add back
support for __invert__(). #1912, #1907.

• List insertion operation for py::list. Added .empty() to all collection types. Added py::set::contains()
and py::dict::contains(). #1887, #1884, #1888.

• py::details::overload_cast_impl is available in C++11 mode, can be used like overload_cast with an
additional set of parentheses. #1581.

• Fixed get_include() on Conda. #1877.

• stl_bind.h: negative indexing support. #1882.

• Minor CMake fix to add MinGW compatibility. #1851.

• GIL-related fixes. #1836, 8b90b.

• Other very minor/subtle fixes and improvements. #1329, #1910, #1863, #1847, #1890, #1860, #1848, #1821,
#1837, #1833, #1748, #1852.

1.25 v2.3.0 (June 11, 2019)

• Significantly reduced module binary size (10-20%) when compiled in C++11 mode with GCC/Clang, or in any
mode with MSVC. Function signatures are now always precomputed at compile time (this was previously only
available in C++14 mode for non-MSVC compilers). #934.

• Add basic support for tag-based static polymorphism, where classes provide a method to returns the desired type
of an instance. #1326.

• Python type wrappers (py::handle, py::object, etc.) now support map Python’s number protocol onto C++
arithmetic operators such as operator+, operator/=, etc. #1511.

• A number of improvements related to enumerations:

1. The enum_ implementation was rewritten from scratch to reduce code bloat. Rather than instantiating a
full implementation for each enumeration, most code is now contained in a generic base class. #1511.

2. The value() method of py::enum_ now accepts an optional docstring that will be shown in the docu-
mentation of the associated enumeration. #1160.

3. check for already existing enum value and throw an error if present. #1453.

• Support for over-aligned type allocation via C++17’s aligned new statement. #1582.

• Added py::ellipsis() method for slicing of multidimensional NumPy arrays #1502.

• Numerous Improvements to the mkdoc.py script for extracting documentation from C++ header files. #1788.

• pybind11_add_module(): allow including Python as a SYSTEM include path. #1416.

• pybind11/stl.h does not convert strings to vector<string> anymore. #1258.

• Mark static methods as such to fix auto-generated Sphinx documentation. #1732.
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• Re-throw forced unwind exceptions (e.g. during pthread termination). #1208.

• Added __contains__ method to the bindings of maps (std::map, std::unordered_map). #1767.

• Improvements to gil_scoped_acquire. #1211.

• Type caster support for std::deque<T>. #1609.

• Support for std::unique_ptr holders, whose deleters differ between a base and derived class. #1353.

• Construction of STL array/vector-like data structures from iterators. Added an extend() operation. #1709,

• CMake build system improvements for projects that include non-C++ files (e.g. plain C, CUDA) in
pybind11_add_module et al. #1678.

• Fixed asynchronous invocation and deallocation of Python functions wrapped in std::function. #1595.

• Fixes regarding return value policy propagation in STL type casters. #1603.

• Fixed scoped enum comparisons. #1571.

• Fixed iostream redirection for code that releases the GIL. #1368,

• A number of CI-related fixes. #1757, #1744, #1670.

1.26 v2.2.4 (September 11, 2018)

• Use new Python 3.7 Thread Specific Storage (TSS) implementation if available. #1454, #1517.

• Fixes for newer MSVC versions and C++17 mode. #1347, #1462.

• Propagate return value policies to type-specific casters when casting STL containers. #1455.

• Allow ostream-redirection of more than 1024 characters. #1479.

• Set Py_DEBUG define when compiling against a debug Python build. #1438.

• Untangle integer logic in number type caster to work for custom types that may only be castable to a restricted
set of builtin types. #1442.

• CMake build system: Remember Python version in cache file. #1434.

• Fix for custom smart pointers: use std::addressof to obtain holder address instead of operator&. #1435.

• Properly report exceptions thrown during module initialization. #1362.

• Fixed a segmentation fault when creating empty-shaped NumPy array. #1371.

• The version of Intel C++ compiler must be >= 2017, and this is now checked by the header files. #1363.

• A few minor typo fixes and improvements to the test suite, and patches that silence compiler warnings.

• Vectors now support construction from generators, as well as extend() from a list or generator. #1496.
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1.27 v2.2.3 (April 29, 2018)

• The pybind11 header location detection was replaced by a new implementation that no longer depends on pip
internals (the recently released pip 10 has restricted access to this API). #1190.

• Small adjustment to an implementation detail to work around a compiler segmentation fault in Clang 3.3/3.4.
#1350.

• The minimal supported version of the Intel compiler was >= 17.0 since pybind11 v2.1. This check is now explicit,
and a compile-time error is raised if the compiler meet the requirement. #1363.

• Fixed an endianness-related fault in the test suite. #1287.

1.28 v2.2.2 (February 7, 2018)

• Fixed a segfault when combining embedded interpreter shutdown/reinitialization with external loaded pybind11
modules. #1092.

• Eigen support: fixed a bug where Nx1/1xN numpy inputs couldn’t be passed as arguments to Eigen vectors
(which for Eigen are simply compile-time fixed Nx1/1xN matrices). #1106.

• Clarified to license by moving the licensing of contributions from LICENSE into CONTRIBUTING.md: the licens-
ing of contributions is not actually part of the software license as distributed. This isn’t meant to be a substantial
change in the licensing of the project, but addresses concerns that the clause made the license non-standard.
#1109.

• Fixed a regression introduced in 2.1 that broke binding functions with lvalue character literal arguments. #1128.

• MSVC: fix for compilation failures under /permissive-, and added the flag to the appveyor test suite. #1155.

• Fixed __qualname__ generation, and in turn, fixes how class names (especially nested class names) are shown
in generated docstrings. #1171.

• Updated the FAQ with a suggested project citation reference. #1189.

• Added fixes for deprecation warnings when compiled under C++17 with -Wdeprecated turned on, and add
-Wdeprecated to the test suite compilation flags. #1191.

• Fixed outdated PyPI URLs in setup.py. #1213.

• Fixed a refcount leak for arguments that end up in a py::args argument for functions with both fixed positional
and py::args arguments. #1216.

• Fixed a potential segfault resulting from possible premature destruction of py::args/py::kwargs arguments
with overloaded functions. #1223.

• Fixed del map[item] for a stl_bind.h bound stl map. #1229.

• Fixed a regression from v2.1.x where the aggregate initialization could unintentionally end up at a constructor
taking a templated std::initializer_list<T> argument. #1249.

• Fixed an issue where calling a function with a keep_alive policy on the same nurse/patient pair would cause the
internal patient storage to needlessly grow (unboundedly, if the nurse is long-lived). #1251.

• Various other minor fixes.
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1.29 v2.2.1 (September 14, 2017)

• Added py::module_::reload() member function for reloading a module. #1040.

• Fixed a reference leak in the number converter. #1078.

• Fixed compilation with Clang on host GCC < 5 (old libstdc++ which isn’t fully C++11 compliant). #1062.

• Fixed a regression where the automatic std::vector<bool> caster would fail to compile. The same fix also
applies to any container which returns element proxies instead of references. #1053.

• Fixed a regression where the py::keep_alive policy could not be applied to constructors. #1065.

• Fixed a nullptr dereference when loading a py::module_local type that’s only registered in an external module.
#1058.

• Fixed implicit conversion of accessors to types derived from py::object. #1076.

• The name in PYBIND11_MODULE(name, variable) can now be a macro. #1082.

• Relaxed overly strict py::pickle() check for matching get and set types. #1064.

• Conversion errors now try to be more informative when it’s likely that a missing header is the cause (e.g. forget-
ting <pybind11/stl.h>). #1077.

1.30 v2.2.0 (August 31, 2017)

• Support for embedding the Python interpreter. See the documentation page for a full overview of the new features.
#774, #889, #892, #920.

#include <pybind11/embed.h>
namespace py = pybind11;

int main() {
py::scoped_interpreter guard{}; // start the interpreter and keep it alive

py::print("Hello, World!"); // use the Python API
}

• Support for inheriting from multiple C++ bases in Python. #693.

from cpp_module import CppBase1, CppBase2

class PyDerived(CppBase1, CppBase2):
def __init__(self):

CppBase1.__init__(self) # C++ bases must be initialized explicitly
CppBase2.__init__(self)

• PYBIND11_MODULE is now the preferred way to create module entry points. PYBIND11_PLUGIN is deprecated.
See Macros for details. #879.

// new
PYBIND11_MODULE(example, m) {

m.def("add", [](int a, int b) { return a + b; });
}

(continues on next page)
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(continued from previous page)

// old
PYBIND11_PLUGIN(example) {

py::module m("example");
m.def("add", [](int a, int b) { return a + b; });
return m.ptr();

}

• pybind11’s headers and build system now more strictly enforce hidden symbol visibility for extension modules.
This should be seamless for most users, but see the Upgrade guide if you use a custom build system. #995.

• Support for py::module_local types which allow multiple modules to export the same C++ types without
conflicts. This is useful for opaque types like std::vector<int>. py::bind_vector and py::bind_map
now default to py::module_local if their elements are builtins or local types. See Module-local class bindings
for details. #949, #981, #995, #997.

• Custom constructors can now be added very easily using lambdas or factory functions which return a class
instance by value, pointer or holder. This supersedes the old placement-new __init__ technique. See Custom
constructors for details. #805, #1014.

struct Example {
Example(std::string);

};

py::class_<Example>(m, "Example")
.def(py::init<std::string>()) // existing constructor
.def(py::init([](int n) { // custom constructor

return std::make_unique<Example>(std::to_string(n));
}));

• Similarly to custom constructors, pickling support functions are now bound using the py::pickle() adaptor
which improves type safety. See the Upgrade guide and Pickling support for details. #1038.

• Builtin support for converting C++17 standard library types and general conversion improvements:

1. C++17 std::variant is supported right out of the box. C++11/14 equivalents (e.g. boost::variant)
can also be added with a simple user-defined specialization. See C++17 library containers for details.
#811, #845, #989.

2. Out-of-the-box support for C++17 std::string_view. #906.

3. Improved compatibility of the builtin optional converter. #874.

4. The bool converter now accepts numpy.bool_ and types which define __bool__ (Python 3.x) or
__nonzero__ (Python 2.7). #925.

5. C++-to-Python casters are now more efficient and move elements out of rvalue containers whenever possi-
ble. #851, #936, #938.

6. Fixed bytes to std::string/char* conversion on Python 3. #817.

7. Fixed lifetime of temporary C++ objects created in Python-to-C++ conversions. #924.

• Scope guard call policy for RAII types, e.g. py::call_guard<py::gil_scoped_release>(),
py::call_guard<py::scoped_ostream_redirect>(). See Additional call policies for details. #740.

• Utility for redirecting C++ streams to Python (e.g. std::cout -> sys.stdout). Scope guard
py::scoped_ostream_redirect in C++ and a context manager in Python. See Capturing standard output
from ostream. #1009.
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• Improved handling of types and exceptions across module boundaries. #915, #951, #995.

• Fixed destruction order of py::keep_alive nurse/patient objects in reference cycles. #856.

• NumPy and buffer protocol related improvements:

1. Support for negative strides in Python buffer objects/numpy arrays. This required changing integers from
unsigned to signed for the related C++ APIs. Note: If you have compiler warnings enabled, you may notice
some new conversion warnings after upgrading. These can be resolved with static_cast. #782.

2. Support std::complex and arrays inside PYBIND11_NUMPY_DTYPE. #831, #832.

3. Support for constructing py::buffer_info and py::arrays using arbitrary containers or iterators in-
stead of requiring a std::vector. #788, #822, #860.

4. Explicitly check numpy version and require >= 1.7.0. #819.

• Support for allowing/prohibiting None for specific arguments and improved None overload resolution order. See
Allow/Prohibiting None arguments for details. #843. #859.

• Added py::exec() as a shortcut for py::eval<py::eval_statements>() and support for C++11 raw string
literals as input. See Evaluating Python expressions from strings and files. #766, #827.

• py::vectorize() ignores non-vectorizable arguments and supports member functions. #762.

• Support for bound methods as callbacks (pybind11/functional.h). #815.

• Allow aliasing pybind11 methods: cls.attr("foo") = cls.attr("bar"). #802.

• Don’t allow mixed static/non-static overloads. #804.

• Fixed overriding static properties in derived classes. #784.

• Added support for write only properties. #1144.

• Improved deduction of member functions of a derived class when its bases aren’t registered with pybind11. #855.

struct Base {
int foo() { return 42; }

}

struct Derived : Base {}

// Now works, but previously required also binding `Base`
py::class_<Derived>(m, "Derived")

.def("foo", &Derived::foo); // function is actually from `Base`

• The implementation of py::init<> now uses C++11 brace initialization syntax to construct instances, which
permits binding implicit constructors of aggregate types. #1015.

struct Aggregate {
int a;
std::string b;

};

py::class_<Aggregate>(m, "Aggregate")
.def(py::init<int, const std::string &>());

• Fixed issues with multiple inheritance with offset base/derived pointers. #812, #866, #960.

• Fixed reference leak of type objects. #1030.

• Improved support for the /std:c++14 and /std:c++latest modes on MSVC 2017. #841, #999.
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• Fixed detection of private operator new on MSVC. #893, #918.

• Intel C++ compiler compatibility fixes. #937.

• Fixed implicit conversion of py::enum_ to integer types on Python 2.7. #821.

• Added py::hash to fetch the hash value of Python objects, and .def(hash(py::self)) to provide the C++
std::hash as the Python __hash__ method. #1034.

• Fixed __truediv__ on Python 2 and __itruediv__ on Python 3. #867.

• py::capsule objects now support the name attribute. This is useful for interfacing with scipy.
LowLevelCallable. #902.

• Fixed py::make_iterator’s __next__() for past-the-end calls. #897.

• Added error_already_set::matches() for checking Python exceptions. #772.

• Deprecated py::error_already_set::clear(). It’s no longer needed following a simplification of the
py::error_already_set class. #954.

• Deprecated py::handle::operator==() in favor of py::handle::is() #825.

• Deprecated py::object::borrowed/py::object::stolen. Use py::object::borrowed_t{}/py::object::stolen_t{}
instead. #771.

• Changed internal data structure versioning to avoid conflicts between modules compiled with different revisions
of pybind11. #1012.

• Additional compile-time and run-time error checking and more informative messages. #786, #794, #803.

• Various minor improvements and fixes. #764, #791, #795, #840, #844, #846, #849, #858, #862, #871, #872,
#881, #888, #899, #928, #931, #944, #950, #952, #962, #965, #970, #978, #979, #986, #1020, #1027, #1037.

• Testing improvements. #798, #882, #898, #900, #921, #923, #963.

1.31 v2.1.1 (April 7, 2017)

• Fixed minimum version requirement for MSVC 2015u3 #773.

1.32 v2.1.0 (March 22, 2017)

• pybind11 now performs function overload resolution in two phases. The first phase only considers exact type
matches, while the second allows for implicit conversions to take place. A special noconvert() syntax can be
used to completely disable implicit conversions for specific arguments. #643, #634, #650.

• Fixed a regression where static properties no longer worked with classes using multiple inheritance. The
py::metaclass attribute is no longer necessary (and deprecated as of this release) when binding classes with
static properties. #679,

• Classes bound using pybind11 can now use custom metaclasses. #679,

• py::args and py::kwargs can now be mixed with other positional arguments when binding functions using
pybind11. #611.

• Improved support for C++11 unicode string and character types; added extensive documentation regarding py-
bind11’s string conversion behavior. #624, #636, #715.

• pybind11 can now avoid expensive copies when converting Eigen arrays to NumPy arrays (and vice versa). #610.
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• The “fast path” in py::vectorize now works for any full-size group of C or F-contiguous arrays. The non-fast
path is also faster since it no longer performs copies of the input arguments (except when type conversions are
necessary). #610.

• Added fast, unchecked access to NumPy arrays via a proxy object. #746.

• Transparent support for class-specific operator new and operator delete implementations. #755.

• Slimmer and more efficient STL-compatible iterator interface for sequence types. #662.

• Improved custom holder type support. #607.

• nullptr to None conversion fixed in various builtin type casters. #732.

• enum_ now exposes its members via a special __members__ attribute. #666.

• std::vector bindings created using stl_bind.h can now optionally implement the buffer protocol. #488.

• Automated C++ reference documentation using doxygen and breathe. #598.

• Added minimum compiler version assertions. #727.

• Improved compatibility with C++1z. #677.

• Improved py::capsule API. Can be used to implement cleanup callbacks that are involved at module destruc-
tion time. #752.

• Various minor improvements and fixes. #595, #588, #589, #603, #619, #648, #695, #720, #723, #729, #724,
#742, #753.

1.33 v2.0.1 (Jan 4, 2017)

• Fix pointer to reference error in type_caster on MSVC #583.

• Fixed a segmentation in the test suite due to a typo cd7eac.

1.34 v2.0.0 (Jan 1, 2017)

• Fixed a reference counting regression affecting types with custom metaclasses (introduced in v2.0.0-rc1). #571.

• Quenched a CMake policy warning. #570.

1.35 v2.0.0-rc1 (Dec 23, 2016)

The pybind11 developers are excited to issue a release candidate of pybind11 with a subsequent v2.0.0 release planned
in early January next year.

An incredible amount of effort by went into pybind11 over the last ~5 months, leading to a release that is jam-packed
with exciting new features and numerous usability improvements. The following list links PRs or individual commits
whenever applicable.

Happy Christmas!

• Support for binding C++ class hierarchies that make use of multiple inheritance. #410.
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• PyPy support: pybind11 now supports nightly builds of PyPy and will interoperate with the future 5.7 release.
No code changes are necessary, everything “just” works as usual. Note that we only target the Python 2.7 branch
for now; support for 3.x will be added once its cpyext extension support catches up. A few minor features
remain unsupported for the time being (notably dynamic attributes in custom types). #527.

• Significant work on the documentation – in particular, the monolithic advanced.rst file was restructured into
a easier to read hierarchical organization. #448.

• Many NumPy-related improvements:

1. Object-oriented API to access and modify NumPy ndarray instances, replicating much of the correspond-
ing NumPy C API functionality. #402.

2. NumPy array dtype array descriptors are now first-class citizens and are exposed via a new class
py::dtype.

3. Structured dtypes can be registered using the PYBIND11_NUMPY_DTYPE()macro. Special array construc-
tors accepting dtype objects were also added.

One potential caveat involving this change: format descriptor strings should now be accessed
via format_descriptor::format() (however, for compatibility purposes, the old syntax
format_descriptor::value will still work for non-structured data types). #308.

4. Further improvements to support structured dtypes throughout the system. #472, #474, #459, #453, #452,
and #505.

5. Fast access operators. #497.

6. Constructors for arrays whose storage is owned by another object. #440.

7. Added constructors for array and array_t explicitly accepting shape and strides; if strides are not pro-
vided, they are deduced assuming C-contiguity. Also added simplified constructors for 1-dimensional case.

8. Added buffer/NumPy support for char[N] and std::array<char, N> types.

9. Added memoryview wrapper type which is constructible from buffer_info.

• Eigen: many additional conversions and support for non-contiguous arrays/slices. #427, #315, #316, #312, and
#267

• Incompatible changes in class_<...>::class_():

1. Declarations of types that provide access via the buffer protocol must now include the
py::buffer_protocol() annotation as an argument to the class_ constructor.

2. Declarations of types that require a custom metaclass (i.e. all classes which include static properties via
commands such as def_readwrite_static()) must now include the py::metaclass() annotation as
an argument to the class_ constructor.

These two changes were necessary to make type definitions in pybind11 future-proof, and to support PyPy
via its cpyext mechanism. #527.

3. This version of pybind11 uses a redesigned mechanism for instantiating trampoline classes that are used to
override virtual methods from within Python. This led to the following user-visible syntax change: instead
of

py::class_<TrampolineClass>("MyClass")
.alias<MyClass>()
....

write
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py::class_<MyClass, TrampolineClass>("MyClass")
....

Importantly, both the original and the trampoline class are now specified as an arguments (in arbitrary order)
to the py::class_ template, and the alias<..>() call is gone. The new scheme has zero overhead in
cases when Python doesn’t override any functions of the underlying C++ class. rev. 86d825.

• Added eval and eval_file functions for evaluating expressions and statements from a string or file. rev.
0d3fc3.

• pybind11 can now create types with a modifiable dictionary. #437 and #444.

• Support for translation of arbitrary C++ exceptions to Python counterparts. #296 and #273.

• Report full backtraces through mixed C++/Python code, better reporting for import errors, fixed GIL management
in exception processing. #537, #494, rev. e72d95, and rev. 099d6e.

• Support for bit-level operations, comparisons, and serialization of C++ enumerations. #503, #508, #380, #309.
#311.

• The class_ constructor now accepts its template arguments in any order. #385.

• Attribute and item accessors now have a more complete interface which makes it possible to chain attributes as
in obj.attr("a")[key].attr("b").attr("method")(1, 2, 3). #425.

• Major redesign of the default and conversion constructors in pytypes.h. #464.

• Added built-in support for std::shared_ptr holder type. It is no longer necessary to to include a declaration of
the form PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>) (though continuing to do so won’t
cause an error). #454.

• New py::overload_cast casting operator to select among multiple possible overloads of a function. An ex-
ample:

py::class_<Pet>(m, "Pet")
.def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
.def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the␣

→˓pet's name");

This feature only works on C++14-capable compilers. #541.

• C++ types are automatically cast to Python types, e.g. when assigning them as an attribute. For instance, the
following is now legal:

py::module m = /* ... */
m.attr("constant") = 123;

(Previously, a py::cast call was necessary to avoid a compilation error.) #551.

• Redesigned pytest-based test suite. #321.

• Instance tracking to detect reference leaks in test suite. #324

• pybind11 can now distinguish between multiple different instances that are located at the same memory address,
but which have different types. #329.

• Improved logic in move return value policy. #510, #297.

• Generalized unpacking API to permit calling Python functions from C++ using notation such as foo(a1, a2,
*args, "ka"_a=1, "kb"_a=2, **kwargs). #372.

• py::print() function whose behavior matches that of the native Python print() function. #372.
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• Added py::dict keyword constructor:auto d = dict("number"_a=42, "name"_a="World");. #372.

• Added py::str::format() method and _s literal: py::str s = "1 + 2 = {}"_s.format(3);. #372.

• Added py::repr() function which is equivalent to Python’s builtin repr(). #333.

• Improved construction and destruction logic for holder types. It is now possible to reference instances with smart
pointer holder types without constructing the holder if desired. The PYBIND11_DECLARE_HOLDER_TYPE macro
now accepts an optional second parameter to indicate whether the holder type uses intrusive reference counting.
#533 and #561.

• Mapping a stateless C++ function to Python and back is now “for free” (i.e. no extra indirections or argument
conversion overheads). rev. 954b79.

• Bindings for std::valarray<T>. #545.

• Improved support for C++17 capable compilers. #562.

• Bindings for std::optional<t>. #475, #476, #479, #499, and #501.

• stl_bind.h: general improvements and support for std::map and std::unordered_map. #490, #282, #235.

• The std::tuple, std::pair, std::list, and std::vector type casters now accept any Python sequence
type as input. rev. 107285.

• Improved CMake Python detection on multi-architecture Linux. #532.

• Infrastructure to selectively disable or enable parts of the automatically generated docstrings. #486.

• reference and reference_internal are now the default return value properties for static and non-static
properties, respectively. #473. (the previous defaults were automatic). #473.

• Support for std::unique_ptr with non-default deleters or no deleter at all (py::nodelete). #384.

• Deprecated handle::call() method. The new syntax to call Python functions is simply handle(). It can also
be invoked explicitly via handle::operator<X>(), where X is an optional return value policy.

• Print more informative error messages when make_tuple() or cast() fail. #262.

• Creation of holder types for classes deriving from std::enable_shared_from_this<> now also works for
const values. #260.

• make_iterator() improvements for better compatibility with various types (now uses prefix increment oper-
ator); it now also accepts iterators with different begin/end types as long as they are equality comparable. #247.

• arg() now accepts a wider range of argument types for default values. #244.

• Support keep_alive where the nurse object may be None. #341.

• Added constructors for str and bytes from zero-terminated char pointers, and from char pointers and length.
Added constructors for str from bytes and for bytes from str, which will perform UTF-8 decoding/encoding
as required.

• Many other improvements of library internals without user-visible changes
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1.36 1.8.1 (July 12, 2016)

• Fixed a rare but potentially very severe issue when the garbage collector ran during pybind11 type creation.

1.37 1.8.0 (June 14, 2016)

• Redesigned CMake build system which exports a convenient pybind11_add_module function to parent
projects.

• std::vector<> type bindings analogous to Boost.Python’s indexing_suite

• Transparent conversion of sparse and dense Eigen matrices and vectors (eigen.h)

• Added an ExtraFlags template argument to the NumPy array_t<> wrapper to disable an enforced cast that
may lose precision, e.g. to create overloads for different precisions and complex vs real-valued matrices.

• Prevent implicit conversion of floating point values to integral types in function arguments

• Fixed incorrect default return value policy for functions returning a shared pointer

• Don’t allow registering a type via class_ twice

• Don’t allow casting a None value into a C++ lvalue reference

• Fixed a crash in enum_::operator== that was triggered by the help() command

• Improved detection of whether or not custom C++ types can be copy/move-constructed

• Extended str type to also work with bytes instances

• Added a "name"_a user defined string literal that is equivalent to py::arg("name").

• When specifying function arguments via py::arg, the test that verifies the number of arguments now runs at
compile time.

• Added [[noreturn]] attribute to pybind11_fail() to quench some compiler warnings

• List function arguments in exception text when the dispatch code cannot find a matching overload

• Added PYBIND11_OVERLOAD_NAME and PYBIND11_OVERLOAD_PURE_NAME macros which can be used to over-
ride virtual methods whose name differs in C++ and Python (e.g. __call__ and operator())

• Various minor iterator and make_iterator() improvements

• Transparently support __bool__ on Python 2.x and Python 3.x

• Fixed issue with destructor of unpickled object not being called

• Minor CMake build system improvements on Windows

• New pybind11::args and pybind11::kwargs types to create functions which take an arbitrary number of
arguments and keyword arguments

• New syntax to call a Python function from C++ using *args and *kwargs

• The functions def_property_* now correctly process docstring arguments (these formerly caused a segmen-
tation fault)

• Many mkdoc.py improvements (enumerations, template arguments, DOC() macro accepts more arguments)

• Cygwin support

• Documentation improvements (pickling support, keep_alive, macro usage)
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1.38 1.7 (April 30, 2016)

• Added a new move return value policy that triggers C++11 move semantics. The automatic return value policy
falls back to this case whenever a rvalue reference is encountered

• Significantly more general GIL state routines that are used instead of Python’s troublesome
PyGILState_Ensure and PyGILState_Release API

• Redesign of opaque types that drastically simplifies their usage

• Extended ability to pass values of type [const] void *

• keep_alive fix: don’t fail when there is no patient

• functional.h: acquire the GIL before calling a Python function

• Added Python RAII type wrappers none and iterable

• Added *args and *kwargs pass-through parameters to pybind11.get_include() function

• Iterator improvements and fixes

• Documentation on return value policies and opaque types improved

1.39 1.6 (April 30, 2016)

• Skipped due to upload to PyPI gone wrong and inability to recover (https://github.com/pypa/
packaging-problems/issues/74)

1.40 1.5 (April 21, 2016)

• For polymorphic types, use RTTI to try to return the closest type registered with pybind11

• Pickling support for serializing and unserializing C++ instances to a byte stream in Python

• Added a convenience routine make_iterator() which turns a range indicated by a pair of C++ iterators into a
iterable Python object

• Added len() and a variadic make_tuple() function

• Addressed a rare issue that could confuse the current virtual function dispatcher and another that could lead to
crashes in multi-threaded applications

• Added a get_include() function to the Python module that returns the path of the directory containing the
installed pybind11 header files

• Documentation improvements: import issues, symbol visibility, pickling, limitations

• Added casting support for std::reference_wrapper<>
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1.41 1.4 (April 7, 2016)

• Transparent type conversion for std::wstring and wchar_t

• Allow passing nullptr-valued strings

• Transparent passing of void * pointers using capsules

• Transparent support for returning values wrapped in std::unique_ptr<>

• Improved docstring generation for compatibility with Sphinx

• Nicer debug error message when default parameter construction fails

• Support for “opaque” types that bypass the transparent conversion layer for STL containers

• Redesigned type casting interface to avoid ambiguities that could occasionally cause compiler errors

• Redesigned property implementation; fixes crashes due to an unfortunate default return value policy

• Anaconda package generation support

1.42 1.3 (March 8, 2016)

• Added support for the Intel C++ compiler (v15+)

• Added support for the STL unordered set/map data structures

• Added support for the STL linked list data structure

• NumPy-style broadcasting support in pybind11::vectorize

• pybind11 now displays more verbose error messages when arg::operator=() fails

• pybind11 internal data structures now live in a version-dependent namespace to avoid ABI issues

• Many, many bugfixes involving corner cases and advanced usage

1.43 1.2 (February 7, 2016)

• Optional: efficient generation of function signatures at compile time using C++14

• Switched to a simpler and more general way of dealing with function default arguments. Unused keyword argu-
ments in function calls are now detected and cause errors as expected

• New keep_alive call policy analogous to Boost.Python’s with_custodian_and_ward

• New pybind11::base<> attribute to indicate a subclass relationship

• Improved interface for RAII type wrappers in pytypes.h

• Use RAII type wrappers consistently within pybind11 itself. This fixes various potential refcount leaks when
exceptions occur

• Added new bytes RAII type wrapper (maps to string in Python 2.7)

• Made handle and related RAII classes const correct, using them more consistently everywhere now

• Got rid of the ugly __pybind11__ attributes on the Python side—they are now stored in a C++ hash table that
is not visible in Python

• Fixed refcount leaks involving NumPy arrays and bound functions
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• Vastly improved handling of shared/smart pointers

• Removed an unnecessary copy operation in pybind11::vectorize

• Fixed naming clashes when both pybind11 and NumPy headers are included

• Added conversions for additional exception types

• Documentation improvements (using multiple extension modules, smart pointers, other minor clarifications)

• unified infrastructure for parsing variadic arguments in class_ and cpp_function

• Fixed license text (was: ZLIB, should have been: 3-clause BSD)

• Python 3.2 compatibility

• Fixed remaining issues when accessing types in another plugin module

• Added enum comparison and casting methods

• Improved SFINAE-based detection of whether types are copy-constructible

• Eliminated many warnings about unused variables and the use of offsetof()

• Support for std::array<> conversions

1.44 1.1 (December 7, 2015)

• Documentation improvements (GIL, wrapping functions, casting, fixed many typos)

• Generalized conversion of integer types

• Improved support for casting function objects

• Improved support for std::shared_ptr<> conversions

• Initial support for std::set<> conversions

• Fixed type resolution issue for types defined in a separate plugin module

• CMake build system improvements

• Factored out generic functionality to non-templated code (smaller code size)

• Added a code size / compile time benchmark vs Boost.Python

• Added an appveyor CI script

1.45 1.0 (October 15, 2015)

• Initial release

1.44. 1.1 (December 7, 2015) 36



CHAPTER

TWO

UPGRADE GUIDE

This is a companion guide to the Changelog. While the changelog briefly lists all of the new features, improvements
and bug fixes, this upgrade guide focuses only the subset which directly impacts your experience when upgrading to
a new version. But it goes into more detail. This includes things like deprecated APIs and their replacements, build
system changes, general code modernization and other useful information.

2.1 v2.12

NumPy support has been upgraded to support the 2.x series too. The two relevant changes are that:

• dtype.flags() is now a uint64 and dtype.alignment() an ssize_t (and NumPy may return an larger
than integer value for itemsize() in NumPy 2.x).

• The long deprecated NumPy function PyArray_GetArrayParamsFromObject function is not available any-
more.

Due to NumPy changes, you may experience difficulties updating to NumPy 2. Please see the [NumPy 2 migration
guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html) for details. For example, a more direct change
could be that the default integer "int_" (and "uint") is now ssize_t and not long (affects 64bit windows).

If you want to only support NumPy 1.x for now and are having problems due to the two internal changes listed above, you
can define PYBIND11_NUMPY_1_ONLY to disable the new support for now. Make sure you define this on all pybind11
compile units, since it could be a source of ODR violations if used inconsistently. This option will be removed in the
future, so adapting your code is highly recommended.

2.2 v2.11

• The minimum version of CMake is now 3.5. A future version will likely move to requiring something like CMake
3.15. Note that CMake 3.27 is removing the long-deprecated support for FindPythonInterp if you set 3.27 as
the minimum or maximum supported version. To prepare for that future, CMake 3.15+ using FindPython or
setting PYBIND11_FINDPYTHON is highly recommended, otherwise pybind11 will automatically switch to using
FindPython if FindPythonInterp is not available.
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2.3 v2.9

• Any usage of the recently added py::make_simple_namespace should be converted to using
py::module_::import("types").attr("SimpleNamespace") instead.

• The use of _ in custom type casters can now be replaced with the more readable const_name instead. The old
_ shortcut has been retained unless it is being used as a macro (like for gettext).

2.4 v2.7

Before v2.7, py::str can hold PyUnicodeObject or PyBytesObject, and py::isinstance<str>() is true
for both py::str and py::bytes. Starting with v2.7, py::str exclusively holds PyUnicodeObject (#2409),
and py::isinstance<str>() is true only for py::str. To help in the transition of user code, the
PYBIND11_STR_LEGACY_PERMISSIVE macro is provided as an escape hatch to go back to the legacy behavior. This
macro will be removed in future releases. Two types of required fixes are expected to be common:

• Accidental use of py::str instead of py::bytes, masked by the legacy behavior. These are probably very easy
to fix, by changing from py::str to py::bytes.

• Reliance on py::isinstance<str>(obj) being true for py::bytes. This is likely to be easy to fix in most cases
by adding || py::isinstance<bytes>(obj), but a fix may be more involved, e.g. if py::isinstance<T>
appears in a template. Such situations will require careful review and custom fixes.

2.5 v2.6

Usage of the PYBIND11_OVERLOAD* macros and get_overload function should be replaced by
PYBIND11_OVERRIDE* and get_override. In the future, the old macros may be deprecated and removed.

py::module has been renamed py::module_, but a backward compatible typedef has been included. This change
was to avoid a language change in C++20 that requires unqualified module not be placed at the start of a logical line.
Qualified usage is unaffected and the typedef will remain unless the C++ language rules change again.

The public constructors of py::module_ have been deprecated. Use PYBIND11_MODULE or
module_::create_extension_module instead.

An error is now thrown when __init__ is forgotten on subclasses. This was incorrect before, but was not checked.
Add a call to __init__ if it is missing.

A py::type_error is now thrown when casting to a subclass (like py::bytes from py::object) if the conversion
is not valid. Make a valid conversion instead.

The undocumented h.get_type() method has been deprecated and replaced by py::type::of(h).

Enums now have a __str__ method pre-defined; if you want to override it, the simplest fix is to add the new
py::prepend() tag when defining "__str__".

If __eq__ defined but not __hash__, __hash__ is now set to None, as in normal CPython. You should add __hash__
if you intended the class to be hashable, possibly using the new py::hash shortcut.

The constructors for py::array now always take signed integers for size, for consistency. This may lead to compiler
warnings on some systems. Cast to py::ssize_t instead of std::size_t.

The tools/clang submodule and tools/mkdoc.py have been moved to a standalone package, pybind11-mkdoc. If
you were using those tools, please use them via a pip install from the new location.
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The pybind11 package on PyPI no longer fills the wheel “headers” slot - if you were using the headers from this slot,
they are available by requesting the global extra, that is, pip install "pybind11[global]". (Most users will be
unaffected, as the pybind11/include location is reported by python -m pybind11 --includes and pybind11.
get_include() is still correct and has not changed since 2.5).

2.5.1 CMake support:

The minimum required version of CMake is now 3.4. Several details of the CMake support have been deprecated;
warnings will be shown if you need to change something. The changes are:

• PYBIND11_CPP_STANDARD=<platform-flag> is deprecated, please use CMAKE_CXX_STANDARD=<number>
instead, or any other valid CMake CXX or CUDA standard selection method, like target_compile_features.

• If you do not request a standard, pybind11 targets will compile with the compiler default, but not less than C++11,
instead of forcing C++14 always. If you depend on the old behavior, please use set(CMAKE_CXX_STANDARD 14
CACHE STRING "") instead.

• Direct pybind11::module usage should always be accompanied by at least
set(CMAKE_CXX_VISIBILITY_PRESET hidden) or similar - it used to try to manually force this com-
piler flag (but not correctly on all compilers or with CUDA).

• pybind11_add_module’s SYSTEM argument is deprecated and does nothing; linking now behaves like other
imported libraries consistently in both config and submodule mode, and behaves like a SYSTEM library by default.

• If PYTHON_EXECUTABLE is not set, virtual environments (venv, virtualenv, and conda) are prioritized over
the standard search (similar to the new FindPython mode).

In addition, the following changes may be of interest:

• CMAKE_INTERPROCEDURAL_OPTIMIZATION will be respected by pybind11_add_module if set instead of link-
ing to pybind11::lto or pybind11::thin_lto.

• Using find_package(Python COMPONENTS Interpreter Development) before pybind11 will cause py-
bind11 to use the new Python mechanisms instead of its own custom search, based on a patched version of
classic FindPythonInterp / FindPythonLibs. In the future, this may become the default. A recent (3.15+ or
3.18.2+) version of CMake is recommended.

2.6 v2.5

The Python package now includes the headers as data in the package itself, as well as in the “headers” wheel slot.
pybind11 --includes and pybind11.get_include() report the new location, which is always correct regardless
of how pybind11 was installed, making the old user= argument meaningless. If you are not using the function to get
the location already, you are encouraged to switch to the package location.

2.7 v2.2

2.7.1 Deprecation of the PYBIND11_PLUGIN macro

PYBIND11_MODULE is now the preferred way to create module entry points. The old macro emits a compile-time
deprecation warning.
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// old
PYBIND11_PLUGIN(example) {

py::module m("example", "documentation string");

m.def("add", [](int a, int b) { return a + b; });

return m.ptr();
}

// new
PYBIND11_MODULE(example, m) {

m.doc() = "documentation string"; // optional

m.def("add", [](int a, int b) { return a + b; });
}

2.7.2 New API for defining custom constructors and pickling functions

The old placement-new custom constructors have been deprecated. The new approach uses py::init() and factory
functions to greatly improve type safety.

Placement-new can be called accidentally with an incompatible type (without any compiler errors or warnings), or it
can initialize the same object multiple times if not careful with the Python-side __init__ calls. The new-style custom
constructors prevent such mistakes. See Custom constructors for details.

// old -- deprecated (runtime warning shown only in debug mode)
py::class<Foo>(m, "Foo")

.def("__init__", [](Foo &self, ...) {
new (&self) Foo(...); // uses placement-new

});

// new
py::class<Foo>(m, "Foo")

.def(py::init([](...) { // Note: no `self` argument
return new Foo(...); // return by raw pointer
// or: return std::make_unique<Foo>(...); // return by holder
// or: return Foo(...); // return by value (move constructor)

}));

Mirroring the custom constructor changes, py::pickle() is now the preferred way to get and set object state. See
Pickling support for details.

// old -- deprecated (runtime warning shown only in debug mode)
py::class<Foo>(m, "Foo")

...

.def("__getstate__", [](const Foo &self) {
return py::make_tuple(self.value1(), self.value2(), ...);

})
.def("__setstate__", [](Foo &self, py::tuple t) {

new (&self) Foo(t[0].cast<std::string>(), ...);
});

(continues on next page)
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(continued from previous page)

// new
py::class<Foo>(m, "Foo")

...

.def(py::pickle(
[](const Foo &self) { // __getstate__

return py::make_tuple(self.value1(), self.value2(), ...); // unchanged
},
[](py::tuple t) { // __setstate__, note: no `self` argument

return new Foo(t[0].cast<std::string>(), ...);
// or: return std::make_unique<Foo>(...); // return by holder
// or: return Foo(...); // return by value (move constructor)

}
));

For both the constructors and pickling, warnings are shown at module initialization time (on import, not when the
functions are called). They’re only visible when compiled in debug mode. Sample warning:

pybind11-bound class 'mymodule.Foo' is using an old-style placement-new '__init__'
which has been deprecated. See the upgrade guide in pybind11's docs.

2.7.3 Stricter enforcement of hidden symbol visibility for pybind11 modules

pybind11 now tries to actively enforce hidden symbol visibility for modules. If you’re using either one of pybind11’s
CMake or Python build systems (the two example repositories) and you haven’t been exporting any symbols, there’s
nothing to be concerned about. All the changes have been done transparently in the background. If you were building
manually or relied on specific default visibility, read on.

Setting default symbol visibility to hidden has always been recommended for pybind11 (see How can I create smaller
binaries?). On Linux and macOS, hidden symbol visibility (in conjunction with the strip utility) yields much smaller
module binaries. CPython’s extension docs also recommend hiding symbols by default, with the goal of avoiding
symbol name clashes between modules. Starting with v2.2, pybind11 enforces this more strictly: (1) by declaring all
symbols inside the pybind11 namespace as hidden and (2) by including the -fvisibility=hidden flag on Linux
and macOS (only for extension modules, not for embedding the interpreter).

The namespace-scope hidden visibility is done automatically in pybind11’s headers and it’s generally transparent to
users. It ensures that:

• Modules compiled with different pybind11 versions don’t clash with each other.

• Some new features, like py::module_local bindings, can work as intended.

The -fvisibility=hidden flag applies the same visibility to user bindings outside of the pybind11 namespace. It’s
now set automatic by pybind11’s CMake and Python build systems, but this needs to be done manually by users of
other build systems. Adding this flag:

• Minimizes the chances of symbol conflicts between modules. E.g. if two unrelated modules were statically
linked to different (ABI-incompatible) versions of the same third-party library, a symbol clash would be likely
(and would end with unpredictable results).

• Produces smaller binaries on Linux and macOS, as pointed out previously.

Within pybind11’s CMake build system, pybind11_add_module has always been setting the -fvisibility=hidden
flag in release mode. From now on, it’s being applied unconditionally, even in debug mode and it can no longer be
opted out of with the NO_EXTRAS option. The pybind11::module target now also adds this flag to its interface. The
pybind11::embed target is unchanged.
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The most significant change here is for the pybind11::module target. If you were previously relying on default
visibility, i.e. if your Python module was doubling as a shared library with dependents, you’ll need to either export
symbols manually (recommended for cross-platform libraries) or factor out the shared library (and have the Python
module link to it like the other dependents). As a temporary workaround, you can also restore default visibility using
the CMake code below, but this is not recommended in the long run:

target_link_libraries(mymodule PRIVATE pybind11::module)

add_library(restore_default_visibility INTERFACE)
target_compile_options(restore_default_visibility INTERFACE -fvisibility=default)
target_link_libraries(mymodule PRIVATE restore_default_visibility)

2.7.4 Local STL container bindings

Previous pybind11 versions could only bind types globally – all pybind11 modules, even unrelated ones, would have
access to the same exported types. However, this would also result in a conflict if two modules exported the same C++
type, which is especially problematic for very common types, e.g. std::vector<int>. Module-local class bindings
were added to resolve this (see that section for a complete usage guide).

py::class_ still defaults to global bindings (because these types are usually unique across modules), however in
order to avoid clashes of opaque types, py::bind_vector and py::bind_map will now bind STL containers as
py::module_local if their elements are: builtins (int, float, etc.), not bound using py::class_, or bound as
py::module_local. For example, this change allows multiple modules to bind std::vector<int> without causing
conflicts. See Binding STL containers for more details.

When upgrading to this version, if you have multiple modules which depend on a single global binding of an STL
container, note that all modules can still accept foreign py::module_local types in the direction of Python-to-C++.
The locality only affects the C++-to-Python direction. If this is needed in multiple modules, you’ll need to either:

• Add a copy of the same STL binding to all of the modules which need it.

• Restore the global status of that single binding by marking it py::module_local(false).

The latter is an easy workaround, but in the long run it would be best to localize all common type bindings in order to
avoid conflicts with third-party modules.

2.7.5 Negative strides for Python buffer objects and numpy arrays

Support for negative strides required changing the integer type from unsigned to signed in the interfaces of
py::buffer_info and py::array. If you have compiler warnings enabled, you may notice some new conversion
warnings after upgrading. These can be resolved using static_cast.

2.7.6 Deprecation of some py::object APIs

To compare py::object instances by pointer, you should now use obj1.is(obj2) which is equivalent to obj1 is
obj2 in Python. Previously, pybind11 used operator== for this (obj1 == obj2), but that could be confusing and is
now deprecated (so that it can eventually be replaced with proper rich object comparison in a future release).

For classes which inherit from py::object, borrowed and stolenwere previously available as protected constructor
tags. Now the types should be used directly instead: borrowed_t{} and stolen_t{} (#771).
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2.7.7 Stricter compile-time error checking

Some error checks have been moved from run time to compile time. Notably, automatic conversion
of std::shared_ptr<T> is not possible when T is not directly registered with py::class_<T> (e.g.
std::shared_ptr<int> or std::shared_ptr<std::vector<T>> are not automatically convertible). Attempting
to bind a function with such arguments now results in a compile-time error instead of waiting to fail at run time.

py::init<...>() constructor definitions are also stricter and now prevent bindings which could cause unexpected
behavior:

struct Example {
Example(int &);

};

py::class_<Example>(m, "Example")
.def(py::init<int &>()); // OK, exact match
// .def(py::init<int>()); // compile-time error, mismatch

A non-const lvalue reference is not allowed to bind to an rvalue. However, note that a constructor taking const T &
can still be registered using py::init<T>() because a const lvalue reference can bind to an rvalue.

2.8 v2.1

2.8.1 Minimum compiler versions are enforced at compile time

The minimums also apply to v2.0 but the check is now explicit and a compile-time error is raised if the compiler does
not meet the requirements:

• GCC >= 4.8

• clang >= 3.3 (appleclang >= 5.0)

• MSVC >= 2015u3

• Intel C++ >= 15.0

2.8.2 The py::metaclass attribute is not required for static properties

Binding classes with static properties is now possible by default. The zero-parameter version of py::metaclass() is
deprecated. However, a new one-parameter py::metaclass(python_type) version was added for rare cases when
a custom metaclass is needed to override pybind11’s default.

// old -- emits a deprecation warning
py::class_<Foo>(m, "Foo", py::metaclass())

.def_property_readonly_static("foo", ...);

// new -- static properties work without the attribute
py::class_<Foo>(m, "Foo")

.def_property_readonly_static("foo", ...);

// new -- advanced feature, override pybind11's default metaclass
py::class_<Bar>(m, "Bar", py::metaclass(custom_python_type))

...
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2.9 v2.0

2.9.1 Breaking changes in py::class_

These changes were necessary to make type definitions in pybind11 future-proof, to support PyPy via its cpyext
mechanism (#527), and to improve efficiency (rev. 86d825).

1. Declarations of types that provide access via the buffer protocol must now include the py::buffer_protocol()
annotation as an argument to the py::class_ constructor.

py::class_<Matrix>("Matrix", py::buffer_protocol())
.def(py::init<...>())
.def_buffer(...);

2. Classes which include static properties (e.g. def_readwrite_static()) must now include the
py::metaclass() attribute. Note: this requirement has since been removed in v2.1. If you’re upgrading from
1.x, it’s recommended to skip directly to v2.1 or newer.

3. This version of pybind11 uses a redesigned mechanism for instantiating trampoline classes that are used to over-
ride virtual methods from within Python. This led to the following user-visible syntax change:

// old v1.x syntax
py::class_<TrampolineClass>("MyClass")

.alias<MyClass>()

...

// new v2.x syntax
py::class_<MyClass, TrampolineClass>("MyClass")

...

Importantly, both the original and the trampoline class are now specified as arguments to the py::class_ tem-
plate, and the alias<..>() call is gone. The new scheme has zero overhead in cases when Python doesn’t
override any functions of the underlying C++ class. rev. 86d825.

The class type must be the first template argument given to py::class_ while the trampoline can be mixed in
arbitrary order with other arguments (see the following section).

2.9.2 Deprecation of the py::base<T>() attribute

py::base<T>() was deprecated in favor of specifying T as a template argument to py::class_. This new syn-
tax also supports multiple inheritance. Note that, while the type being exported must be the first argument in the
py::class_<Class, ...> template, the order of the following types (bases, holder and/or trampoline) is not impor-
tant.

// old v1.x
py::class_<Derived>("Derived", py::base<Base>());

// new v2.x
py::class_<Derived, Base>("Derived");

// new -- multiple inheritance
py::class_<Derived, Base1, Base2>("Derived");

(continues on next page)
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// new -- apart from `Derived` the argument order can be arbitrary
py::class_<Derived, Base1, Holder, Base2, Trampoline>("Derived");

2.9.3 Out-of-the-box support for std::shared_ptr

The relevant type caster is now built in, so it’s no longer necessary to include a declaration of the form:

PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>)

Continuing to do so won’t cause an error or even a deprecation warning, but it’s completely redundant.

2.9.4 Deprecation of a few py::object APIs

All of the old-style calls emit deprecation warnings.

Old syntax New syntax
obj.call(args...) obj(args...)
obj.str() py::str(obj)
auto l = py::list(obj); l.check() py::isinstance<py::list>(obj)
py::object(ptr, true) py::reinterpret_borrow<py::object>(ptr)
py::object(ptr, false) py::reinterpret_steal<py::object>(ptr)
if (obj.attr("foo")) if (py::hasattr(obj, "foo"))
if (obj["bar"]) if (obj.contains("bar"))
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CHAPTER

THREE

INSTALLING THE LIBRARY

There are several ways to get the pybind11 source, which lives at pybind/pybind11 on GitHub. The pybind11 developers
recommend one of the first three ways listed here, submodule, PyPI, or conda-forge, for obtaining pybind11.

3.1 Include as a submodule

When you are working on a project in Git, you can use the pybind11 repository as a submodule. From your git repository,
use:

git submodule add -b stable ../../pybind/pybind11 extern/pybind11
git submodule update --init

This assumes you are placing your dependencies in extern/, and that you are using GitHub; if you are not using
GitHub, use the full https or ssh URL instead of the relative URL ../../pybind/pybind11 above. Some other
servers also require the .git extension (GitHub does not).

From here, you can now include extern/pybind11/include, or you can use the various integration tools (see Build
systems) pybind11 provides directly from the local folder.

3.2 Include with PyPI

You can download the sources and CMake files as a Python package from PyPI using Pip. Just use:

pip install pybind11

This will provide pybind11 in a standard Python package format. If you want pybind11 available directly in your
environment root, you can use:

pip install "pybind11[global]"

This is not recommended if you are installing with your system Python, as it will add files to /usr/local/include/
pybind11 and /usr/local/share/cmake/pybind11, so unless that is what you want, it is recommended only for
use in virtual environments or your pyproject.toml file (see Build systems).
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3.3 Include with conda-forge

You can use pybind11 with conda packaging via conda-forge:

conda install -c conda-forge pybind11

3.4 Include with vcpkg

You can download and install pybind11 using the Microsoft vcpkg dependency manager:

git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
vcpkg install pybind11

The pybind11 port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version
is out of date, please create an issue or pull request on the vcpkg repository.

3.5 Global install with brew

The brew package manager (Homebrew on macOS, or Linuxbrew on Linux) has a pybind11 package. To install:

brew install pybind11

3.6 Other options

Other locations you can find pybind11 are listed here; these are maintained by various packagers and the community.
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FOUR

FIRST STEPS

This sections demonstrates the basic features of pybind11. Before getting started, make sure that development envi-
ronment is set up to compile the included set of test cases.

4.1 Compiling the test cases

4.1.1 Linux/macOS

On Linux you’ll need to install the python-dev or python3-dev packages as well as cmake. On macOS, the included
python version works out of the box, but cmake must still be installed.

After installing the prerequisites, run

mkdir build
cd build
cmake ..
make check -j 4

The last line will both compile and run the tests.

4.1.2 Windows

On Windows, only Visual Studio 2017 and newer are supported.

Note: To use the C++17 in Visual Studio 2017 (MSVC 14.1), pybind11 requires the flag /permissive- to be passed
to the compiler to enforce standard conformance. When building with Visual Studio 2019, this is not strictly necessary,
but still advised.

To compile and run the tests:

mkdir build
cd build
cmake ..
cmake --build . --config Release --target check

This will create a Visual Studio project, compile and run the target, all from the command line.
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Note: If all tests fail, make sure that the Python binary and the testcases are compiled for the same processor type and
bitness (i.e. either i386 or x86_64). You can specify x86_64 as the target architecture for the generated Visual Studio
project using cmake -A x64 ...

See also:

Advanced users who are already familiar with Boost.Python may want to skip the tutorial and look at the test cases in
the tests directory, which exercise all features of pybind11.

4.2 Header and namespace conventions

For brevity, all code examples assume that the following two lines are present:

#include <pybind11/pybind11.h>

namespace py = pybind11;

Some features may require additional headers, but those will be specified as needed.

4.3 Creating bindings for a simple function

Let’s start by creating Python bindings for an extremely simple function, which adds two numbers and returns their
result:

int add(int i, int j) {
return i + j;

}

For simplicity1, we’ll put both this function and the binding code into a file named example.cpp with the following
contents:

#include <pybind11/pybind11.h>

int add(int i, int j) {
return i + j;

}

PYBIND11_MODULE(example, m) {
m.doc() = "pybind11 example plugin"; // optional module docstring

m.def("add", &add, "A function that adds two numbers");
}

The PYBIND11_MODULE()macro creates a function that will be called when an import statement is issued from within
Python. The module name (example) is given as the first macro argument (it should not be in quotes). The second
argument (m) defines a variable of type py::module_ which is the main interface for creating bindings. The method
module_::def() generates binding code that exposes the add() function to Python.

1 In practice, implementation and binding code will generally be located in separate files.
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Note: Notice how little code was needed to expose our function to Python: all details regarding the function’s param-
eters and return value were automatically inferred using template metaprogramming. This overall approach and the
used syntax are borrowed from Boost.Python, though the underlying implementation is very different.

pybind11 is a header-only library, hence it is not necessary to link against any special libraries and there are no inter-
mediate (magic) translation steps. On Linux, the above example can be compiled using the following command:

$ c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) example.cpp -
→˓o example$(python3-config --extension-suffix)

Note: If you used Include as a submodule to get the pybind11 source, then use $(python3-config --includes)
-Iextern/pybind11/include instead of $(python3 -m pybind11 --includes) in the above compilation, as
explained in Building manually.

For more details on the required compiler flags on Linux and macOS, see Building manually. For complete cross-
platform compilation instructions, refer to the Build systems page.

The python_example and cmake_example repositories are also a good place to start. They are both complete project
examples with cross-platform build systems. The only difference between the two is that python_example uses Python’s
setuptools to build the module, while cmake_example uses CMake (which may be preferable for existing C++
projects).

Building the above C++ code will produce a binary module file that can be imported to Python. Assuming that the
compiled module is located in the current directory, the following interactive Python session shows how to load and
execute the example:

$ python
Python 3.9.10 (main, Jan 15 2022, 11:48:04)
[Clang 13.0.0 (clang-1300.0.29.3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import example
>>> example.add(1, 2)
3
>>>

4.4 Keyword arguments

With a simple code modification, it is possible to inform Python about the names of the arguments (“i” and “j” in this
case).

m.def("add", &add, "A function which adds two numbers",
py::arg("i"), py::arg("j"));

arg is one of several special tag classes which can be used to pass metadata into module_::def(). With this modified
binding code, we can now call the function using keyword arguments, which is a more readable alternative particularly
for functions taking many parameters:

>>> import example
>>> example.add(i=1, j=2)
3L
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The keyword names also appear in the function signatures within the documentation.

>>> help(example)

....

FUNCTIONS
add(...)

Signature : (i: int, j: int) -> int

A function which adds two numbers

A shorter notation for named arguments is also available:

// regular notation
m.def("add1", &add, py::arg("i"), py::arg("j"));
// shorthand
using namespace pybind11::literals;
m.def("add2", &add, "i"_a, "j"_a);

The _a suffix forms a C++11 literal which is equivalent to arg. Note that the literal operator must first be made
visible with the directive using namespace pybind11::literals. This does not bring in anything else from the
pybind11 namespace except for literals.

4.5 Default arguments

Suppose now that the function to be bound has default arguments, e.g.:

int add(int i = 1, int j = 2) {
return i + j;

}

Unfortunately, pybind11 cannot automatically extract these parameters, since they are not part of the function’s type
information. However, they are simple to specify using an extension of arg:

m.def("add", &add, "A function which adds two numbers",
py::arg("i") = 1, py::arg("j") = 2);

The default values also appear within the documentation.

>>> help(example)

....

FUNCTIONS
add(...)

Signature : (i: int = 1, j: int = 2) -> int

A function which adds two numbers

The shorthand notation is also available for default arguments:
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// regular notation
m.def("add1", &add, py::arg("i") = 1, py::arg("j") = 2);
// shorthand
m.def("add2", &add, "i"_a=1, "j"_a=2);

4.6 Exporting variables

To expose a value from C++, use the attr function to register it in a module as shown below. Built-in types and general
objects (more on that later) are automatically converted when assigned as attributes, and can be explicitly converted
using the function py::cast.

PYBIND11_MODULE(example, m) {
m.attr("the_answer") = 42;
py::object world = py::cast("World");
m.attr("what") = world;

}

These are then accessible from Python:

>>> import example
>>> example.the_answer
42
>>> example.what
'World'

4.7 Supported data types

A large number of data types are supported out of the box and can be used seamlessly as functions arguments, return
values or with py::cast in general. For a full overview, see the Type conversions section.
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5.1 Creating bindings for a custom type

Let’s now look at a more complex example where we’ll create bindings for a custom C++ data structure named Pet.
Its definition is given below:

struct Pet {
Pet(const std::string &name) : name(name) { }
void setName(const std::string &name_) { name = name_; }
const std::string &getName() const { return name; }

std::string name;
};

The binding code for Pet looks as follows:

#include <pybind11/pybind11.h>

namespace py = pybind11;

PYBIND11_MODULE(example, m) {
py::class_<Pet>(m, "Pet")

.def(py::init<const std::string &>())

.def("setName", &Pet::setName)

.def("getName", &Pet::getName);
}

class_ creates bindings for a C++ class or struct-style data structure. init() is a convenience function that takes the
types of a constructor’s parameters as template arguments and wraps the corresponding constructor (see the Custom
constructors section for details). An interactive Python session demonstrating this example is shown below:

% python
>>> import example
>>> p = example.Pet("Molly")
>>> print(p)
<example.Pet object at 0x10cd98060>
>>> p.getName()
'Molly'
>>> p.setName("Charly")
>>> p.getName()
'Charly'
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See also:

Static member functions can be bound in the same way using class_::def_static().

Note: Binding C++ types in unnamed namespaces (also known as anonymous namespaces) works reliably on many
platforms, but not all. The XFAIL_CONDITION in tests/test_unnamed_namespace_a.py encodes the currently known
conditions. For background see #4319. If portability is a concern, it is therefore not recommended to bind C++ types
in unnamed namespaces. It will be safest to manually pick unique namespace names.

5.2 Keyword and default arguments

It is possible to specify keyword and default arguments using the syntax discussed in the previous chapter. Refer to the
sections Keyword arguments and Default arguments for details.

5.3 Binding lambda functions

Note how print(p) produced a rather useless summary of our data structure in the example above:

>>> print(p)
<example.Pet object at 0x10cd98060>

To address this, we could bind a utility function that returns a human-readable summary to the special method slot
named __repr__. Unfortunately, there is no suitable functionality in the Pet data structure, and it would be nice if we
did not have to change it. This can easily be accomplished by binding a Lambda function instead:

py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &>())
.def("setName", &Pet::setName)
.def("getName", &Pet::getName)
.def("__repr__",

[](const Pet &a) {
return "<example.Pet named '" + a.name + "'>";

}
);

Both stateless1 and stateful lambda closures are supported by pybind11. With the above change, the same Python code
now produces the following output:

>>> print(p)
<example.Pet named 'Molly'>

1 Stateless closures are those with an empty pair of brackets [] as the capture object.
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5.4 Instance and static fields

We can also directly expose the name field using the class_::def_readwrite() method. A similar
class_::def_readonly() method also exists for const fields.

py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &>())
.def_readwrite("name", &Pet::name)
// ... remainder ...

This makes it possible to write

>>> p = example.Pet("Molly")
>>> p.name
'Molly'
>>> p.name = "Charly"
>>> p.name
'Charly'

Now suppose that Pet::name was a private internal variable that can only be accessed via setters and getters.

class Pet {
public:

Pet(const std::string &name) : name(name) { }
void setName(const std::string &name_) { name = name_; }
const std::string &getName() const { return name; }

private:
std::string name;

};

In this case, the method class_::def_property() (class_::def_property_readonly() for read-only data) can
be used to provide a field-like interface within Python that will transparently call the setter and getter functions:

py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &>())
.def_property("name", &Pet::getName, &Pet::setName)
// ... remainder ...

Write only properties can be defined by passing nullptr as the input for the read function.

See also:

Similar functions class_::def_readwrite_static(), class_::def_readonly_static()
class_::def_property_static(), and class_::def_property_readonly_static() are provided for
binding static variables and properties. Please also see the section on Static properties in the advanced part of the
documentation.
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5.5 Dynamic attributes

Native Python classes can pick up new attributes dynamically:

>>> class Pet:
... name = "Molly"
...
>>> p = Pet()
>>> p.name = "Charly" # overwrite existing
>>> p.age = 2 # dynamically add a new attribute

By default, classes exported from C++ do not support this and the only writable attributes are the ones explicitly defined
using class_::def_readwrite() or class_::def_property().

py::class_<Pet>(m, "Pet")
.def(py::init<>())
.def_readwrite("name", &Pet::name);

Trying to set any other attribute results in an error:

>>> p = example.Pet()
>>> p.name = "Charly" # OK, attribute defined in C++
>>> p.age = 2 # fail
AttributeError: 'Pet' object has no attribute 'age'

To enable dynamic attributes for C++ classes, the py::dynamic_attr tag must be added to the py::class_ con-
structor:

py::class_<Pet>(m, "Pet", py::dynamic_attr())
.def(py::init<>())
.def_readwrite("name", &Pet::name);

Now everything works as expected:

>>> p = example.Pet()
>>> p.name = "Charly" # OK, overwrite value in C++
>>> p.age = 2 # OK, dynamically add a new attribute
>>> p.__dict__ # just like a native Python class
{'age': 2}

Note that there is a small runtime cost for a class with dynamic attributes. Not only because of the addition of a
__dict__, but also because of more expensive garbage collection tracking which must be activated to resolve possible
circular references. Native Python classes incur this same cost by default, so this is not anything to worry about. By
default, pybind11 classes are more efficient than native Python classes. Enabling dynamic attributes just brings them
on par.
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5.6 Inheritance and automatic downcasting

Suppose now that the example consists of two data structures with an inheritance relationship:

struct Pet {
Pet(const std::string &name) : name(name) { }
std::string name;

};

struct Dog : Pet {
Dog(const std::string &name) : Pet(name) { }
std::string bark() const { return "woof!"; }

};

There are two different ways of indicating a hierarchical relationship to pybind11: the first specifies the C++ base class
as an extra template parameter of the class_:

py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &>())
.def_readwrite("name", &Pet::name);

// Method 1: template parameter:
py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")

.def(py::init<const std::string &>())

.def("bark", &Dog::bark);

Alternatively, we can also assign a name to the previously bound Pet class_ object and reference it when binding the
Dog class:

py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())

.def_readwrite("name", &Pet::name);

// Method 2: pass parent class_ object:
py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)

.def(py::init<const std::string &>())

.def("bark", &Dog::bark);

Functionality-wise, both approaches are equivalent. Afterwards, instances will expose fields and methods of both types:

>>> p = example.Dog("Molly")
>>> p.name
'Molly'
>>> p.bark()
'woof!'

The C++ classes defined above are regular non-polymorphic types with an inheritance relationship. This is reflected
in Python:

// Return a base pointer to a derived instance
m.def("pet_store", []() { return std::unique_ptr<Pet>(new Dog("Molly")); });
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>>> p = example.pet_store()
>>> type(p) # `Dog` instance behind `Pet` pointer
Pet # no pointer downcasting for regular non-polymorphic types
>>> p.bark()
AttributeError: 'Pet' object has no attribute 'bark'

The function returned a Dog instance, but because it’s a non-polymorphic type behind a base pointer, Python only
sees a Pet. In C++, a type is only considered polymorphic if it has at least one virtual function and pybind11 will
automatically recognize this:

struct PolymorphicPet {
virtual ~PolymorphicPet() = default;

};

struct PolymorphicDog : PolymorphicPet {
std::string bark() const { return "woof!"; }

};

// Same binding code
py::class_<PolymorphicPet>(m, "PolymorphicPet");
py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")

.def(py::init<>())

.def("bark", &PolymorphicDog::bark);

// Again, return a base pointer to a derived instance
m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); }
→˓);

>>> p = example.pet_store2()
>>> type(p)
PolymorphicDog # automatically downcast
>>> p.bark()
'woof!'

Given a pointer to a polymorphic base, pybind11 performs automatic downcasting to the actual derived type. Note that
this goes beyond the usual situation in C++: we don’t just get access to the virtual functions of the base, we get the
concrete derived type including functions and attributes that the base type may not even be aware of.

See also:

For more information about polymorphic behavior see Overriding virtual functions in Python.

5.7 Overloaded methods

Sometimes there are several overloaded C++ methods with the same name taking different kinds of input arguments:

struct Pet {
Pet(const std::string &name, int age) : name(name), age(age) { }

void set(int age_) { age = age_; }
void set(const std::string &name_) { name = name_; }

(continues on next page)
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(continued from previous page)

std::string name;
int age;

};

Attempting to bind Pet::set will cause an error since the compiler does not know which method the user intended
to select. We can disambiguate by casting them to function pointers. Binding multiple functions to the same Python
name automatically creates a chain of function overloads that will be tried in sequence.

py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &, int>())
.def("set", static_cast<void (Pet::*)(int)>(&Pet::set), "Set the pet's age")
.def("set", static_cast<void (Pet::*)(const std::string &)>(&Pet::set), "Set the pet

→˓'s name");

The overload signatures are also visible in the method’s docstring:

>>> help(example.Pet)

class Pet(__builtin__.object)
| Methods defined here:
|
| __init__(...)
| Signature : (Pet, str, int) -> NoneType
|
| set(...)
| 1. Signature : (Pet, int) -> NoneType
|
| Set the pet's age
|
| 2. Signature : (Pet, str) -> NoneType
|
| Set the pet's name

If you have a C++14 compatible compiler2, you can use an alternative syntax to cast the overloaded function:

py::class_<Pet>(m, "Pet")
.def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
.def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");

Here, py::overload_cast only requires the parameter types to be specified. The return type and class are deduced.
This avoids the additional noise of void (Pet::*)() as seen in the raw cast. If a function is overloaded based on
constness, the py::const_ tag should be used:

struct Widget {
int foo(int x, float y);
int foo(int x, float y) const;

};

py::class_<Widget>(m, "Widget")
.def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
.def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_));

2 A compiler which supports the -std=c++14 flag.
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If you prefer the py::overload_cast syntax but have a C++11 compatible compiler only, you can use
py::detail::overload_cast_impl with an additional set of parentheses:

template <typename... Args>
using overload_cast_ = pybind11::detail::overload_cast_impl<Args...>;

py::class_<Pet>(m, "Pet")
.def("set", overload_cast_<int>()(&Pet::set), "Set the pet's age")
.def("set", overload_cast_<const std::string &>()(&Pet::set), "Set the pet's name");

Note: To define multiple overloaded constructors, simply declare one after the other using the .def(py::init<...
>()) syntax. The existing machinery for specifying keyword and default arguments also works.

5.8 Enumerations and internal types

Let’s now suppose that the example class contains internal types like enumerations, e.g.:

struct Pet {
enum Kind {

Dog = 0,
Cat

};

struct Attributes {
float age = 0;

};

Pet(const std::string &name, Kind type) : name(name), type(type) { }

std::string name;
Kind type;
Attributes attr;

};

The binding code for this example looks as follows:

py::class_<Pet> pet(m, "Pet");

pet.def(py::init<const std::string &, Pet::Kind>())
.def_readwrite("name", &Pet::name)
.def_readwrite("type", &Pet::type)
.def_readwrite("attr", &Pet::attr);

py::enum_<Pet::Kind>(pet, "Kind")
.value("Dog", Pet::Kind::Dog)
.value("Cat", Pet::Kind::Cat)
.export_values();

py::class_<Pet::Attributes>(pet, "Attributes")
(continues on next page)
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.def(py::init<>())

.def_readwrite("age", &Pet::Attributes::age);

To ensure that the nested types Kind and Attributes are created within the scope of Pet, the pet class_ instance
must be supplied to the enum_ and class_ constructor. The enum_::export_values() function exports the enum
entries into the parent scope, which should be skipped for newer C++11-style strongly typed enums.

>>> p = Pet("Lucy", Pet.Cat)
>>> p.type
Kind.Cat
>>> int(p.type)
1L

The entries defined by the enumeration type are exposed in the __members__ property:

>>> Pet.Kind.__members__
{'Dog': Kind.Dog, 'Cat': Kind.Cat}

The name property returns the name of the enum value as a unicode string.

Note: It is also possible to use str(enum), however these accomplish different goals. The following shows how these
two approaches differ.

>>> p = Pet("Lucy", Pet.Cat)
>>> pet_type = p.type
>>> pet_type
Pet.Cat
>>> str(pet_type)
'Pet.Cat'
>>> pet_type.name
'Cat'

Note: When the special tag py::arithmetic() is specified to the enum_ constructor, pybind11 creates an enu-
meration that also supports rudimentary arithmetic and bit-level operations like comparisons, and, or, xor, negation,
etc.

py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
...

By default, these are omitted to conserve space.

Warning: Contrary to Python customs, enum values from the wrappers should not be compared using is, but
with == (see #1177 for background).
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6.1 Building with setuptools

For projects on PyPI, building with setuptools is the way to go. Sylvain Corlay has kindly provided an example project
which shows how to set up everything, including automatic generation of documentation using Sphinx. Please refer to
the [python_example] repository.

A helper file is provided with pybind11 that can simplify usage with setuptools.

To use pybind11 inside your setup.py, you have to have some system to ensure that pybind11 is installed when you
build your package. There are four possible ways to do this, and pybind11 supports all four: You can ask all users to
install pybind11 beforehand (bad), you can use PEP 518 requirements (Pip 10+ required) (good, but very new and
requires Pip 10), Classic setup_requires (discouraged by Python packagers now that PEP 518 is available, but it still
works everywhere), or you can Copy manually (always works but you have to manually sync your copy to get updates).

An example of a setup.py using pybind11’s helpers:

from glob import glob
from setuptools import setup
from pybind11.setup_helpers import Pybind11Extension

ext_modules = [
Pybind11Extension(

"python_example",
sorted(glob("src/*.cpp")), # Sort source files for reproducibility

),
]

setup(..., ext_modules=ext_modules)

If you want to do an automatic search for the highest supported C++ standard, that is supported via a build_ext
command override; it will only affect Pybind11Extensions:

from glob import glob
from setuptools import setup
from pybind11.setup_helpers import Pybind11Extension, build_ext

ext_modules = [
Pybind11Extension(

"python_example",
sorted(glob("src/*.cpp")),

),
(continues on next page)
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]

setup(..., cmdclass={"build_ext": build_ext}, ext_modules=ext_modules)

If you have single-file extension modules that are directly stored in the Python source tree (foo.cpp in the
same directory as where a foo.py would be located), you can also generate Pybind11Extensions using
setup_helpers.intree_extensions: intree_extensions(["path/to/foo.cpp", ...]) returns a list of
Pybind11Extensions which can be passed to ext_modules, possibly after further customizing their attributes
(libraries, include_dirs, etc.). By doing so, a foo.*.so extension module will be generated and made available
upon installation.

intree_extension will automatically detect if you are using a src-style layout (as long as no namespace packages
are involved), but you can also explicitly pass package_dir to it (as in setuptools.setup).

Since pybind11 does not require NumPy when building, a light-weight replacement for NumPy’s parallel compilation
distutils tool is included. Use it like this:

from pybind11.setup_helpers import ParallelCompile

# Optional multithreaded build
ParallelCompile("NPY_NUM_BUILD_JOBS").install()

setup(...)

The argument is the name of an environment variable to control the number of threads, such as NPY_NUM_BUILD_JOBS
(as used by NumPy), though you can set something different if you want; CMAKE_BUILD_PARALLEL_LEVEL is another
choice a user might expect. You can also pass default=N to set the default number of threads (0 will take the number
of threads available) and max=N, the maximum number of threads; if you have a large extension you may want set this
to a memory dependent number.

If you are developing rapidly and have a lot of C++ files, you may want to avoid rebuilding files that have not changed.
For simple cases were you are using pip install -e . and do not have local headers, you can skip the rebuild if an
object file is newer than its source (headers are not checked!) with the following:

from pybind11.setup_helpers import ParallelCompile, naive_recompile

ParallelCompile("NPY_NUM_BUILD_JOBS", needs_recompile=naive_recompile).install()

If you have a more complex build, you can implement a smarter function and pass it to needs_recompile, or you can
use [Ccache] instead. CXX="cache g++" pip install -e . would be the way to use it with GCC, for example.
Unlike the simple solution, this even works even when not compiling in editable mode, but it does require Ccache to
be installed.

Keep in mind that Pip will not even attempt to rebuild if it thinks it has already built a copy of your code, which it
deduces from the version number. One way to avoid this is to use [setuptools_scm], which will generate a version
number that includes the number of commits since your last tag and a hash for a dirty directory. Another way to force
a rebuild is purge your cache or use Pip’s --no-cache-dir option.
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6.1.1 PEP 518 requirements (Pip 10+ required)

If you use PEP 518’s pyproject.toml file, you can ensure that pybind11 is available during the compilation of
your project. When this file exists, Pip will make a new virtual environment, download just the packages listed here
in requires=, and build a wheel (binary Python package). It will then throw away the environment, and install your
wheel.

Your pyproject.toml file will likely look something like this:

[build-system]
requires = ["setuptools>=42", "pybind11>=2.6.1"]
build-backend = "setuptools.build_meta"

Note: The main drawback to this method is that a PEP 517 compliant build tool, such as Pip 10+, is required for
this approach to work; older versions of Pip completely ignore this file. If you distribute binaries (called wheels in
Python) using something like cibuildwheel, remember that setup.py and pyproject.toml are not even contained
in the wheel, so this high Pip requirement is only for source builds, and will not affect users of your binary wheels. If
you are building SDists and wheels, then pypa-build is the recommended official tool.

6.1.2 Classic setup_requires

If you want to support old versions of Pip with the classic setup_requires=["pybind11"] keyword argument to
setup, which triggers a two-phase setup.py run, then you will need to use something like this to ensure the first pass
works (which has not yet installed the setup_requires packages, since it can’t install something it does not know
about):

try:
from pybind11.setup_helpers import Pybind11Extension

except ImportError:
from setuptools import Extension as Pybind11Extension

It doesn’t matter that the Extension class is not the enhanced subclass for the first pass run; and the second pass will
have the setup_requires requirements.

This is obviously more of a hack than the PEP 518 method, but it supports ancient versions of Pip.

6.1.3 Copy manually

You can also copy setup_helpers.py directly to your project; it was designed to be usable standalone, like the old
example setup.py. You can set include_pybind11=False to skip including the pybind11 package headers, so you
can use it with git submodules and a specific git version. If you use this, you will need to import from a local file in
setup.py and ensure the helper file is part of your MANIFEST.

Closely related, if you include pybind11 as a subproject, you can run the setup_helpers.py inplace. If loaded
correctly, this should even pick up the correct include for pybind11, though you can turn it off as shown above if you
want to input it manually.

Suggested usage if you have pybind11 as a submodule in extern/pybind11:

DIR = os.path.abspath(os.path.dirname(__file__))

sys.path.append(os.path.join(DIR, "extern", "pybind11"))
(continues on next page)
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from pybind11.setup_helpers import Pybind11Extension # noqa: E402

del sys.path[-1]

Changed in version 2.6: Added setup_helpers file.

6.2 Building with cppimport

[cppimport] is a small Python import hook that determines whether there is a C++ source file whose name matches the
requested module. If there is, the file is compiled as a Python extension using pybind11 and placed in the same folder
as the C++ source file. Python is then able to find the module and load it.

6.3 Building with CMake

For C++ codebases that have an existing CMake-based build system, a Python extension module can be created with
just a few lines of code:

cmake_minimum_required(VERSION 3.5...3.27)
project(example LANGUAGES CXX)

add_subdirectory(pybind11)
pybind11_add_module(example example.cpp)

This assumes that the pybind11 repository is located in a subdirectory named pybind11 and that the code is located
in a file named example.cpp. The CMake command add_subdirectory will import the pybind11 project which
provides the pybind11_add_module function. It will take care of all the details needed to build a Python extension
module on any platform.

A working sample project, including a way to invoke CMake from setup.py for PyPI integration, can be found in the
[cmake_example] repository.

Changed in version 2.6: CMake 3.4+ is required.

Changed in version 2.11: CMake 3.5+ is required.

Further information can be found at CMake helpers.

6.3.1 pybind11_add_module

To ease the creation of Python extension modules, pybind11 provides a CMake function with the following signature:

pybind11_add_module(<name> [MODULE | SHARED] [EXCLUDE_FROM_ALL]
[NO_EXTRAS] [THIN_LTO] [OPT_SIZE] source1 [source2 ...])

This function behaves very much like CMake’s builtin add_library (in fact, it’s a wrapper function around that
command). It will add a library target called <name> to be built from the listed source files. In addition, it will take
care of all the Python-specific compiler and linker flags as well as the OS- and Python-version-specific file extension.
The produced target <name> can be further manipulated with regular CMake commands.

MODULE or SHARED may be given to specify the type of library. If no type is given, MODULE is used by default which
ensures the creation of a Python-exclusive module. Specifying SHARED will create a more traditional dynamic library
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which can also be linked from elsewhere. EXCLUDE_FROM_ALL removes this target from the default build (see CMake
docs for details).

Since pybind11 is a template library, pybind11_add_module adds compiler flags to ensure high quality code genera-
tion without bloat arising from long symbol names and duplication of code in different translation units. It sets default
visibility to hidden, which is required for some pybind11 features and functionality when attempting to load multiple
pybind11 modules compiled under different pybind11 versions. It also adds additional flags enabling LTO (Link Time
Optimization) and strip unneeded symbols. See the FAQ entry for a more detailed explanation. These latter optimiza-
tions are never applied in Debug mode. If NO_EXTRAS is given, they will always be disabled, even in Release mode.
However, this will result in code bloat and is generally not recommended.

As stated above, LTO is enabled by default. Some newer compilers also support different flavors of LTO such as
ThinLTO. Setting THIN_LTO will cause the function to prefer this flavor if available. The function falls back to regular
LTO if -flto=thin is not available. If CMAKE_INTERPROCEDURAL_OPTIMIZATION is set (either ON or OFF), then
that will be respected instead of the built-in flag search.

Note: If you want to set the property form on targets or the CMAKE_INTERPROCEDURAL_OPTIMIZATION_<CONFIG>
versions of this, you should still use set(CMAKE_INTERPROCEDURAL_OPTIMIZATION OFF) (otherwise a no-op) to
disable pybind11’s ipo flags.

The OPT_SIZE flag enables size-based optimization equivalent to the standard /Os or -Os compiler flags and the
MinSizeRel build type, which avoid optimizations that that can substantially increase the size of the resulting binary.
This flag is particularly useful in projects that are split into performance-critical parts and associated bindings. In this
case, we can compile the project in release mode (and hence, optimize performance globally), and specify OPT_SIZE
for the binding target, where size might be the main concern as performance is often less critical here. A ~25% size
reduction has been observed in practice. This flag only changes the optimization behavior at a per-target level and
takes precedence over the global CMake build type (Release, RelWithDebInfo) except for Debug builds, where
optimizations remain disabled.

6.3.2 Configuration variables

By default, pybind11 will compile modules with the compiler default or the minimum standard required by pybind11,
whichever is higher. You can set the standard explicitly with CMAKE_CXX_STANDARD:

set(CMAKE_CXX_STANDARD 14 CACHE STRING "C++ version selection") # or 11, 14, 17, 20
set(CMAKE_CXX_STANDARD_REQUIRED ON) # optional, ensure standard is supported
set(CMAKE_CXX_EXTENSIONS OFF) # optional, keep compiler extensions off

The variables can also be set when calling CMake from the command line using the -D<variable>=<value> flag.
You can also manually set CXX_STANDARD on a target or use target_compile_features on your targets - anything
that CMake supports.

Classic Python support: The target Python version can be selected by setting PYBIND11_PYTHON_VERSION or an exact
Python installation can be specified with PYTHON_EXECUTABLE. For example:

cmake -DPYBIND11_PYTHON_VERSION=3.6 ..

# Another method:
cmake -DPYTHON_EXECUTABLE=/path/to/python ..

# This often is a good way to get the current Python, works in environments:
cmake -DPYTHON_EXECUTABLE=$(python3 -c "import sys; print(sys.executable)") ..
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6.3.3 find_package vs. add_subdirectory

For CMake-based projects that don’t include the pybind11 repository internally, an external installation can be detected
through find_package(pybind11). See the Config file docstring for details of relevant CMake variables.

cmake_minimum_required(VERSION 3.4...3.18)
project(example LANGUAGES CXX)

find_package(pybind11 REQUIRED)
pybind11_add_module(example example.cpp)

Note that find_package(pybind11) will only work correctly if pybind11 has been correctly installed on the system,
e. g. after downloading or cloning the pybind11 repository :

# Classic CMake
cd pybind11
mkdir build
cd build
cmake ..
make install

# CMake 3.15+
cd pybind11
cmake -S . -B build
cmake --build build -j 2 # Build on 2 cores
cmake --install build

Once detected, the aforementioned pybind11_add_module can be employed as before. The function usage and con-
figuration variables are identical no matter if pybind11 is added as a subdirectory or found as an installed package. You
can refer to the same [cmake_example] repository for a full sample project – just swap out add_subdirectory for
find_package.

6.3.4 FindPython mode

CMake 3.12+ (3.15+ recommended, 3.18.2+ ideal) added a new module called FindPython that had a highly improved
search algorithm and modern targets and tools. If you use FindPython, pybind11 will detect this and use the existing
targets instead:

cmake_minimum_required(VERSION 3.15...3.22)
project(example LANGUAGES CXX)

find_package(Python 3.6 COMPONENTS Interpreter Development REQUIRED)
find_package(pybind11 CONFIG REQUIRED)
# or add_subdirectory(pybind11)

pybind11_add_module(example example.cpp)

You can also use the targets (as listed below) with FindPython. If you define PYBIND11_FINDPYTHON, pybind11 will
perform the FindPython step for you (mostly useful when building pybind11’s own tests, or as a way to change search
algorithms from the CMake invocation, with -DPYBIND11_FINDPYTHON=ON.
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Warning: If you use FindPython to multi-target Python versions, use the individual targets listed below, and avoid
targets that directly include Python parts.

There are many ways to hint or force a discovery of a specific Python installation), setting Python_ROOT_DIR may be
the most common one (though with virtualenv/venv support, and Conda support, this tends to find the correct Python
version more often than the old system did).

Warning: When the Python libraries (i.e. libpythonXX.a and libpythonXX.so on Unix) are not available, as is
the case on a manylinux image, the Development component will not be resolved by FindPython. When not using
the embedding functionality, CMake 3.18+ allows you to specify Development.Module instead of Development
to resolve this issue.

New in version 2.6.

6.3.5 Advanced: interface library targets

Pybind11 supports modern CMake usage patterns with a set of interface targets, available in all modes. The targets
provided are:

pybind11::headers
Just the pybind11 headers and minimum compile requirements

pybind11::pybind11
Python headers + pybind11::headers

pybind11::python_link_helper
Just the “linking” part of pybind11:module

pybind11::module
Everything for extension modules - pybind11::pybind11 + Python::Module (FindPython
CMake 3.15+) or pybind11::python_link_helper

pybind11::embed
Everything for embedding the Python interpreter - pybind11::pybind11 + Python::Python
(FindPython) or Python libs

pybind11::lto / pybind11::thin_lto
An alternative to INTERPROCEDURAL_OPTIMIZATION for adding link-time optimization.

pybind11::windows_extras
/bigobj and /mp for MSVC.

pybind11::opt_size
/Os for MSVC, -Os for other compilers. Does nothing for debug builds.

Two helper functions are also provided:

pybind11_strip(target)
Strips a target (uses CMAKE_STRIP after the target is built)

pybind11_extension(target)
Sets the correct extension (with SOABI) for a target.

You can use these targets to build complex applications. For example, the add_python_module function is identical
to:
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cmake_minimum_required(VERSION 3.5...3.27)
project(example LANGUAGES CXX)

find_package(pybind11 REQUIRED) # or add_subdirectory(pybind11)

add_library(example MODULE main.cpp)

target_link_libraries(example PRIVATE pybind11::module pybind11::lto pybind11::windows_
→˓extras)

pybind11_extension(example)
if(NOT MSVC AND NOT ${CMAKE_BUILD_TYPE} MATCHES Debug|RelWithDebInfo)

# Strip unnecessary sections of the binary on Linux/macOS
pybind11_strip(example)

endif()

set_target_properties(example PROPERTIES CXX_VISIBILITY_PRESET "hidden"
CUDA_VISIBILITY_PRESET "hidden")

Instead of setting properties, you can set CMAKE_* variables to initialize these correctly.

Warning: Since pybind11 is a metatemplate library, it is crucial that certain compiler flags are provided to ensure
high quality code generation. In contrast to the pybind11_add_module() command, the CMake interface provides
a composable set of targets to ensure that you retain flexibility. It can be especially important to provide or set these
properties; the FAQ contains an explanation on why these are needed.

New in version 2.6.

6.3.6 Advanced: NOPYTHON mode

If you want complete control, you can set PYBIND11_NOPYTHON to completely disable Python integration (this also
happens if you run FindPython2 and FindPython3 without running FindPython). This gives you complete free-
dom to integrate into an existing system (like Scikit-Build’s PythonExtensions). pybind11_add_module and
pybind11_extension will be unavailable, and the targets will be missing any Python specific behavior.

New in version 2.6.

6.3.7 Embedding the Python interpreter

In addition to extension modules, pybind11 also supports embedding Python into a C++ executable or library. In
CMake, simply link with the pybind11::embed target. It provides everything needed to get the interpreter running.
The Python headers and libraries are attached to the target. Unlike pybind11::module, there is no need to manually
set any additional properties here. For more information about usage in C++, see Embedding the interpreter.

cmake_minimum_required(VERSION 3.5...3.27)
project(example LANGUAGES CXX)

find_package(pybind11 REQUIRED) # or add_subdirectory(pybind11)

add_executable(example main.cpp)
target_link_libraries(example PRIVATE pybind11::embed)
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6.4 Building manually

pybind11 is a header-only library, hence it is not necessary to link against any special libraries and there are no inter-
mediate (magic) translation steps.

On Linux, you can compile an example such as the one given in Creating bindings for a simple function using the
following command:

$ c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) example.cpp -
→˓o example$(python3-config --extension-suffix)

The python3 -m pybind11 --includes command fetches the include paths for both pybind11 and Python headers.
This assumes that pybind11 has been installed using pip or conda. If it hasn’t, you can also manually specify -I
<path-to-pybind11>/include together with the Python includes path python3-config --includes.

On macOS: the build command is almost the same but it also requires passing the -undefined dynamic_lookup
flag so as to ignore missing symbols when building the module:

$ c++ -O3 -Wall -shared -std=c++11 -undefined dynamic_lookup $(python3 -m pybind11 --
→˓includes) example.cpp -o example$(python3-config --extension-suffix)

In general, it is advisable to include several additional build parameters that can considerably reduce the size of the
created binary. Refer to section Building with CMake for a detailed example of a suitable cross-platform CMake-based
build system that works on all platforms including Windows.

Note: On Linux and macOS, it’s better to (intentionally) not link against libpython. The symbols will be resolved
when the extension library is loaded into a Python binary. This is preferable because you might have several different
installations of a given Python version (e.g. the system-provided Python, and one that ships with a piece of commercial
software). In this way, the plugin will work with both versions, instead of possibly importing a second Python library
into a process that already contains one (which will lead to a segfault).

6.5 Building with Bazel

You can build with the Bazel build system using the pybind11_bazel repository.

6.6 Generating binding code automatically

The Binder project is a tool for automatic generation of pybind11 binding code by introspecting existing C++ codebases
using LLVM/Clang. See the [binder] documentation for details.

[AutoWIG] is a Python library that wraps automatically compiled libraries into high-level languages. It parses C++
code using LLVM/Clang technologies and generates the wrappers using the Mako templating engine. The approach is
automatic, extensible, and applies to very complex C++ libraries, composed of thousands of classes or incorporating
modern meta-programming constructs.

[robotpy-build] is a is a pure python, cross platform build tool that aims to simplify creation of python wheels for
pybind11 projects, and provide cross-project dependency management. Additionally, it is able to autogenerate cus-
tomizable pybind11-based wrappers by parsing C++ header files.

[litgen] is an automatic python bindings generator with a focus on generating documented and discoverable bindings:
bindings will nicely reproduce the documentation found in headers. It is is based on srcML (srcml.org), a highly
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scalable, multi-language parsing tool with a developer centric approach. The API that you want to expose to python
must be C++14 compatible (but your implementation can use more modern constructs).
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CHAPTER

SEVEN

FUNCTIONS

Before proceeding with this section, make sure that you are already familiar with the basics of binding functions and
classes, as explained in First steps and Object-oriented code. The following guide is applicable to both free and member
functions, i.e. methods in Python.

7.1 Return value policies

Python and C++ use fundamentally different ways of managing the memory and lifetime of objects managed by
them. This can lead to issues when creating bindings for functions that return a non-trivial type. Just by looking
at the type information, it is not clear whether Python should take charge of the returned value and eventually free
its resources, or if this is handled on the C++ side. For this reason, pybind11 provides several return value pol-
icy annotations that can be passed to the module_::def() and class_::def() functions. The default policy is
return_value_policy::automatic.

Return value policies are tricky, and it’s very important to get them right. Just to illustrate what can go wrong, consider
the following simple example:

/* Function declaration */
Data *get_data() { return _data; /* (pointer to a static data structure) */ }
...

/* Binding code */
m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python

What’s going on here? When get_data() is called from Python, the return value (a native C++ type) must be wrapped
to turn it into a usable Python type. In this case, the default return value policy (return_value_policy::automatic)
causes pybind11 to assume ownership of the static _data instance.

When Python’s garbage collector eventually deletes the Python wrapper, pybind11 will also attempt to delete the C++
instance (via operator delete()) due to the implied ownership. At this point, the entire application will come
crashing down, though errors could also be more subtle and involve silent data corruption.

In the above example, the policy return_value_policy::reference should have been specified so that the global
data instance is only referenced without any implied transfer of ownership, i.e.:

m.def("get_data", &get_data, py::return_value_policy::reference);

On the other hand, this is not the right policy for many other situations, where ignoring ownership could lead to resource
leaks. As a developer using pybind11, it’s important to be familiar with the different return value policies, including
which situation calls for which one of them. The following table provides an overview of available policies:
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Return value policy Description
return_value_policy::take_ownership Reference an existing object (i.e. do not create a new

copy) and take ownership. Python will call the de-
structor and delete operator when the object’s refer-
ence count reaches zero. Undefined behavior ensues
when the C++ side does the same, or when the data
was not dynamically allocated.

return_value_policy::copy Create a new copy of the returned object, which will
be owned by Python. This policy is comparably safe
because the lifetimes of the two instances are decou-
pled.

return_value_policy::move Use std::move to move the return value contents
into a new instance that will be owned by Python.
This policy is comparably safe because the lifetimes
of the two instances (move source and destination) are
decoupled.

return_value_policy::reference Reference an existing object, but do not take own-
ership. The C++ side is responsible for managing
the object’s lifetime and deallocating it when it is no
longer used. Warning: undefined behavior will ensue
when the C++ side deletes an object that is still refer-
enced and used by Python.

return_value_policy::reference_internal Indicates that the lifetime of the return value is tied
to the lifetime of a parent object, namely the im-
plicit this, or self argument of the called method
or property. Internally, this policy works just like
return_value_policy::reference but addition-
ally applies a keep_alive<0, 1> call policy (de-
scribed in the next section) that prevents the par-
ent object from being garbage collected as long as
the return value is referenced by Python. This is
the default policy for property getters created via
def_property, def_readwrite, etc.

return_value_policy::automatic This policy falls back to the policy
return_value_policy::take_ownership
when the return value is a pointer. Other-
wise, it uses return_value_policy::move or
return_value_policy::copy for rvalue and
lvalue references, respectively. See above for a
description of what all of these different policies do.
This is the default policy for py::class_-wrapped
types.

return_value_policy::automatic_reference As above, but use policy
return_value_policy::reference when
the return value is a pointer. This is the default
conversion policy for function arguments when
calling Python functions manually from C++ code
(i.e. via handle::operator()) and the casters in
pybind11/stl.h. You probably won’t need to use
this explicitly.

Return value policies can also be applied to properties:
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class_<MyClass>(m, "MyClass")
.def_property("data", &MyClass::getData, &MyClass::setData,

py::return_value_policy::copy);

Technically, the code above applies the policy to both the getter and the setter function, however, the setter doesn’t
really care about return value policies which makes this a convenient terse syntax. Alternatively, targeted arguments
can be passed through the cpp_function constructor:

class_<MyClass>(m, "MyClass")
.def_property("data",

py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
py::cpp_function(&MyClass::setData)

);

Warning: Code with invalid return value policies might access uninitialized memory or free data structures mul-
tiple times, which can lead to hard-to-debug non-determinism and segmentation faults, hence it is worth spending
the time to understand all the different options in the table above.

Note: One important aspect of the above policies is that they only apply to instances which pybind11 has not seen
before, in which case the policy clarifies essential questions about the return value’s lifetime and ownership. When
pybind11 knows the instance already (as identified by its type and address in memory), it will return the existing
Python object wrapper rather than creating a new copy.

Note: The next section on Additional call policies discusses call policies that can be specified in addition to a return
value policy from the list above. Call policies indicate reference relationships that can involve both return values and
parameters of functions.

Note: As an alternative to elaborate call policies and lifetime management logic, consider using smart pointers (see
the section on Custom smart pointers for details). Smart pointers can tell whether an object is still referenced from
C++ or Python, which generally eliminates the kinds of inconsistencies that can lead to crashes or undefined behavior.
For functions returning smart pointers, it is not necessary to specify a return value policy.
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7.2 Additional call policies

In addition to the above return value policies, further call policies can be specified to indicate dependencies between
parameters or ensure a certain state for the function call.

7.2.1 Keep alive

In general, this policy is required when the C++ object is any kind of container and another object is being added to the
container. keep_alive<Nurse, Patient> indicates that the argument with index Patient should be kept alive at
least until the argument with index Nurse is freed by the garbage collector. Argument indices start at one, while zero
refers to the return value. For methods, index 1 refers to the implicit this pointer, while regular arguments begin at
index 2. Arbitrarily many call policies can be specified. When a Nurse with value None is detected at runtime, the
call policy does nothing.

When the nurse is not a pybind11-registered type, the implementation internally relies on the ability to create a weak
reference to the nurse object. When the nurse object is not a pybind11-registered type and does not support weak
references, an exception will be thrown.

If you use an incorrect argument index, you will get a RuntimeError saying Could not activate keep_alive!.
You should review the indices you’re using.

Consider the following example: here, the binding code for a list append operation ties the lifetime of the newly added
element to the underlying container:

py::class_<List>(m, "List")
.def("append", &List::append, py::keep_alive<1, 2>());

For consistency, the argument indexing is identical for constructors. Index 1 still refers to the implicit this pointer, i.e.
the object which is being constructed. Index 0 refers to the return type which is presumed to be voidwhen a constructor
is viewed like a function. The following example ties the lifetime of the constructor element to the constructed object:

py::class_<Nurse>(m, "Nurse")
.def(py::init<Patient &>(), py::keep_alive<1, 2>());

Note: keep_alive is analogous to the with_custodian_and_ward (if Nurse, Patient != 0) and
with_custodian_and_ward_postcall (if Nurse/Patient == 0) policies from Boost.Python.

7.2.2 Call guard

The call_guard<T> policy allows any scope guard type T to be placed around the function call. For example, this
definition:

m.def("foo", foo, py::call_guard<T>());

is equivalent to the following pseudocode:

m.def("foo", [](args...) {
T scope_guard;
return foo(args...); // forwarded arguments

});
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The only requirement is that T is default-constructible, but otherwise any scope guard will work. This is very useful in
combination with gil_scoped_release. See Global Interpreter Lock (GIL).

Multiple guards can also be specified as py::call_guard<T1, T2, T3...>. The constructor order is left to right
and destruction happens in reverse.

See also:

The file tests/test_call_policies.cpp contains a complete example that demonstrates using keep_alive and
call_guard in more detail.

7.3 Python objects as arguments

pybind11 exposes all major Python types using thin C++ wrapper classes. These wrapper classes can also be used as
parameters of functions in bindings, which makes it possible to directly work with native Python types on the C++ side.
For instance, the following statement iterates over a Python dict:

void print_dict(const py::dict& dict) {
/* Easily interact with Python types */
for (auto item : dict)

std::cout << "key=" << std::string(py::str(item.first)) << ", "
<< "value=" << std::string(py::str(item.second)) << std::endl;

}

It can be exported:

m.def("print_dict", &print_dict);

And used in Python as usual:

>>> print_dict({"foo": 123, "bar": "hello"})
key=foo, value=123
key=bar, value=hello

For more information on using Python objects in C++, see Python C++ interface.

7.4 Accepting *args and **kwargs

Python provides a useful mechanism to define functions that accept arbitrary numbers of arguments and keyword
arguments:

def generic(*args, **kwargs):
... # do something with args and kwargs

Such functions can also be created using pybind11:

void generic(py::args args, const py::kwargs& kwargs) {
/// .. do something with args
if (kwargs)

/// .. do something with kwargs
}

(continues on next page)
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(continued from previous page)

/// Binding code
m.def("generic", &generic);

The class py::args derives from py::tuple and py::kwargs derives from py::dict.

You may also use just one or the other, and may combine these with other arguments. Note, however, that py::kwargs
must always be the last argument of the function, and py::args implies that any further arguments are keyword-only
(see Keyword-only arguments).

Please refer to the other examples for details on how to iterate over these, and on how to cast their entries into C++
objects. A demonstration is also available in tests/test_kwargs_and_defaults.cpp.

Note: When combining *args or **kwargs with Keyword arguments you should not include py::arg tags for the
py::args and py::kwargs arguments.

7.5 Default arguments revisited

The section on Default arguments previously discussed basic usage of default arguments using pybind11. One note-
worthy aspect of their implementation is that default arguments are converted to Python objects right at declaration
time. Consider the following example:

py::class_<MyClass>("MyClass")
.def("myFunction", py::arg("arg") = SomeType(123));

In this case, pybind11 must already be set up to deal with values of the type SomeType (via a prior instantiation of
py::class_<SomeType>), or an exception will be thrown.

Another aspect worth highlighting is that the “preview” of the default argument in the function signature is generated
using the object’s __repr__ method. If not available, the signature may not be very helpful, e.g.:

FUNCTIONS
...
| myFunction(...)
| Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) ->␣
→˓NoneType
...

The first way of addressing this is by defining SomeType.__repr__. Alternatively, it is possible to specify the human-
readable preview of the default argument manually using the arg_v notation:

py::class_<MyClass>("MyClass")
.def("myFunction", py::arg_v("arg", SomeType(123), "SomeType(123)"));

Sometimes it may be necessary to pass a null pointer value as a default argument. In this case, remember to cast it to
the underlying type in question, like so:

py::class_<MyClass>("MyClass")
.def("myFunction", py::arg("arg") = static_cast<SomeType *>(nullptr));
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7.6 Keyword-only arguments

Python implements keyword-only arguments by specifying an unnamed * argument in a function definition:

def f(a, *, b): # a can be positional or via keyword; b must be via keyword
pass

f(a=1, b=2) # good
f(b=2, a=1) # good
f(1, b=2) # good
f(1, 2) # TypeError: f() takes 1 positional argument but 2 were given

Pybind11 provides a py::kw_only object that allows you to implement the same behaviour by specifying the object
between positional and keyword-only argument annotations when registering the function:

m.def("f", [](int a, int b) { /* ... */ },
py::arg("a"), py::kw_only(), py::arg("b"));

New in version 2.6.

A py::args argument implies that any following arguments are keyword-only, as if py::kw_only() had been speci-
fied in the same relative location of the argument list as the py::args argument. The py::kw_only()may be included
to be explicit about this, but is not required.

Changed in version 2.9: This can now be combined with py::args. Before, py::args could only occur at the end of
the argument list, or immediately before a py::kwargs argument at the end.

7.7 Positional-only arguments

Python 3.8 introduced a new positional-only argument syntax, using / in the function definition (note that this has been
a convention for CPython positional arguments, such as in pow(), since Python 2). You can do the same thing in any
version of Python using py::pos_only():

m.def("f", [](int a, int b) { /* ... */ },
py::arg("a"), py::pos_only(), py::arg("b"));

You now cannot give argument a by keyword. This can be combined with keyword-only arguments, as well.

New in version 2.6.

7.8 Non-converting arguments

Certain argument types may support conversion from one type to another. Some examples of conversions are:

• Implicit conversions declared using py::implicitly_convertible<A,B>()

• Calling a method accepting a double with an integer argument

• Calling a std::complex<float> argument with a non-complex python type (for example, with a float). (Re-
quires the optional pybind11/complex.h header).

• Calling a function taking an Eigen matrix reference with a numpy array of the wrong type or of an incompatible
data layout. (Requires the optional pybind11/eigen.h header).
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This behaviour is sometimes undesirable: the binding code may prefer to raise an error rather than convert the argument.
This behaviour can be obtained through py::arg by calling the .noconvert() method of the py::arg object, such
as:

m.def("floats_only", [](double f) { return 0.5 * f; }, py::arg("f").noconvert());
m.def("floats_preferred", [](double f) { return 0.5 * f; }, py::arg("f"));

Attempting the call the second function (the one without .noconvert()) with an integer will succeed, but attempting
to call the .noconvert() version will fail with a TypeError:

>>> floats_preferred(4)
2.0
>>> floats_only(4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: floats_only(): incompatible function arguments. The following argument types␣
→˓are supported:

1. (f: float) -> float

Invoked with: 4

You may, of course, combine this with the _a shorthand notation (see Keyword arguments) and/or Default arguments.
It is also permitted to omit the argument name by using the py::arg() constructor without an argument name, i.e. by
specifying py::arg().noconvert().

Note: When specifying py::arg options it is necessary to provide the same number of options as the bound function
has arguments. Thus if you want to enable no-convert behaviour for just one of several arguments, you will need to spec-
ify a py::arg() annotation for each argument with the no-convert argument modified to py::arg().noconvert().

7.9 Allow/Prohibiting None arguments

When a C++ type registered with py::class_ is passed as an argument to a function taking the instance as pointer or
shared holder (e.g. shared_ptr or a custom, copyable holder as described in Custom smart pointers), pybind allows
None to be passed from Python which results in calling the C++ function with nullptr (or an empty holder) for the
argument.

To explicitly enable or disable this behaviour, using the .none method of the py::arg object:

py::class_<Dog>(m, "Dog").def(py::init<>());
py::class_<Cat>(m, "Cat").def(py::init<>());
m.def("bark", [](Dog *dog) -> std::string {

if (dog) return "woof!"; /* Called with a Dog instance */
else return "(no dog)"; /* Called with None, dog == nullptr */

}, py::arg("dog").none(true));
m.def("meow", [](Cat *cat) -> std::string {

// Can't be called with None argument
return "meow";

}, py::arg("cat").none(false));

With the above, the Python call bark(None) will return the string "(no dog)", while attempting to call meow(None)
will raise a TypeError:

7.9. Allow/Prohibiting None arguments 79



pybind11 Documentation

>>> from animals import Dog, Cat, bark, meow
>>> bark(Dog())
'woof!'
>>> meow(Cat())
'meow'
>>> bark(None)
'(no dog)'
>>> meow(None)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: meow(): incompatible function arguments. The following argument types are␣
→˓supported:

1. (cat: animals.Cat) -> str

Invoked with: None

The default behaviour when the tag is unspecified is to allow None.

Note: Even when .none(true) is specified for an argument, None will be converted to a nullptr only for custom
and opaque types. Pointers to built-in types (double *, int *, . . . ) and STL types (std::vector<T> *, . . . ; if
pybind11/stl.h is included) are copied when converted to C++ (see Overview) and will not allow None as argument.
To pass optional argument of these copied types consider using std::optional<T>

7.10 Overload resolution order

When a function or method with multiple overloads is called from Python, pybind11 determines which overload to call
in two passes. The first pass attempts to call each overload without allowing argument conversion (as if every argument
had been specified as py::arg().noconvert() as described above).

If no overload succeeds in the no-conversion first pass, a second pass is attempted in which argument conversion is
allowed (except where prohibited via an explicit py::arg().noconvert() attribute in the function definition).

If the second pass also fails a TypeError is raised.

Within each pass, overloads are tried in the order they were registered with pybind11. If the py::prepend() tag
is added to the definition, a function can be placed at the beginning of the overload sequence instead, allowing user
overloads to proceed built in functions.

What this means in practice is that pybind11 will prefer any overload that does not require conversion of arguments to
an overload that does, but otherwise prefers earlier-defined overloads to later-defined ones.

Note: pybind11 does not further prioritize based on the number/pattern of overloaded arguments. That is, pybind11
does not prioritize a function requiring one conversion over one requiring three, but only prioritizes overloads requiring
no conversion at all to overloads that require conversion of at least one argument.

New in version 2.6: The py::prepend() tag.
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7.11 Binding functions with template parameters

You can bind functions that have template parameters. Here’s a function:

template <typename T>
void set(T t);

C++ templates cannot be instantiated at runtime, so you cannot bind the non-instantiated function:

// BROKEN (this will not compile)
m.def("set", &set);

You must bind each instantiated function template separately. You may bind each instantiation with the same name,
which will be treated the same as an overloaded function:

m.def("set", &set<int>);
m.def("set", &set<std::string>);

Sometimes it’s more clear to bind them with separate names, which is also an option:

m.def("setInt", &set<int>);
m.def("setString", &set<std::string>);
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This section presents advanced binding code for classes and it is assumed that you are already familiar with the basics
from Object-oriented code.

8.1 Overriding virtual functions in Python

Suppose that a C++ class or interface has a virtual function that we’d like to override from within Python (we’ll focus
on the class Animal; Dog is given as a specific example of how one would do this with traditional C++ code).

class Animal {
public:

virtual ~Animal() { }
virtual std::string go(int n_times) = 0;

};

class Dog : public Animal {
public:

std::string go(int n_times) override {
std::string result;
for (int i=0; i<n_times; ++i)

result += "woof! ";
return result;

}
};

Let’s also suppose that we are given a plain function which calls the function go() on an arbitrary Animal instance.

std::string call_go(Animal *animal) {
return animal->go(3);

}

Normally, the binding code for these classes would look as follows:

PYBIND11_MODULE(example, m) {
py::class_<Animal>(m, "Animal")

.def("go", &Animal::go);

py::class_<Dog, Animal>(m, "Dog")
.def(py::init<>());

(continues on next page)
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m.def("call_go", &call_go);
}

However, these bindings are impossible to extend: Animal is not constructible, and we clearly require some kind of
“trampoline” that redirects virtual calls back to Python.

Defining a new type of Animal from within Python is possible but requires a helper class that is defined as follows:

class PyAnimal : public Animal {
public:

/* Inherit the constructors */
using Animal::Animal;

/* Trampoline (need one for each virtual function) */
std::string go(int n_times) override {

PYBIND11_OVERRIDE_PURE(
std::string, /* Return type */
Animal, /* Parent class */
go, /* Name of function in C++ (must match Python name) */
n_times /* Argument(s) */

);
}

};

The macro PYBIND11_OVERRIDE_PURE should be used for pure virtual functions, and PYBIND11_OVERRIDE
should be used for functions which have a default implementation. There are also two alternate macros
PYBIND11_OVERRIDE_PURE_NAME and PYBIND11_OVERRIDE_NAME which take a string-valued name argument be-
tween the Parent class and Name of the function slots, which defines the name of function in Python. This is required
when the C++ and Python versions of the function have different names, e.g. operator() vs __call__.

The binding code also needs a few minor adaptations (highlighted):

PYBIND11_MODULE(example, m) {
py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")

.def(py::init<>())

.def("go", &Animal::go);

py::class_<Dog, Animal>(m, "Dog")
.def(py::init<>());

m.def("call_go", &call_go);
}

Importantly, pybind11 is made aware of the trampoline helper class by specifying it as an extra template argument to
class_. (This can also be combined with other template arguments such as a custom holder type; the order of template
types does not matter). Following this, we are able to define a constructor as usual.

Bindings should be made against the actual class, not the trampoline helper class.

py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal");
.def(py::init<>())
.def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */

Note, however, that the above is sufficient for allowing python classes to extend Animal, but not Dog: see Combining
virtual functions and inheritance for the necessary steps required to providing proper overriding support for inherited
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classes.

The Python session below shows how to override Animal::go and invoke it via a virtual method call.

>>> from example import *
>>> d = Dog()
>>> call_go(d)
'woof! woof! woof! '
>>> class Cat(Animal):
... def go(self, n_times):
... return "meow! " * n_times
...
>>> c = Cat()
>>> call_go(c)
'meow! meow! meow! '

If you are defining a custom constructor in a derived Python class, you must ensure that you explicitly call the bound
C++ constructor using __init__, regardless of whether it is a default constructor or not. Otherwise, the memory for
the C++ portion of the instance will be left uninitialized, which will generally leave the C++ instance in an invalid state
and cause undefined behavior if the C++ instance is subsequently used.

Changed in version 2.6: The default pybind11 metaclass will throw a TypeError when it detects that __init__ was
not called by a derived class.

Here is an example:

class Dachshund(Dog):
def __init__(self, name):

Dog.__init__(self) # Without this, a TypeError is raised.
self.name = name

def bark(self):
return "yap!"

Note that a direct __init__ constructor should be called, and super() should not be used. For simple cases of linear
inheritance, super() may work, but once you begin mixing Python and C++ multiple inheritance, things will fall apart
due to differences between Python’s MRO and C++’s mechanisms.

Please take a look at the General notes regarding convenience macros before using this feature.

Note: When the overridden type returns a reference or pointer to a type that pybind11 converts from Python (for
example, numeric values, std::string, and other built-in value-converting types), there are some limitations to be aware
of:

• because in these cases there is no C++ variable to reference (the value is stored in the referenced Python variable),
pybind11 provides one in the PYBIND11_OVERRIDE macros (when needed) with static storage duration. Note
that this means that invoking the overridden method on any instance will change the referenced value stored in
all instances of that type.

• Attempts to modify a non-const reference will not have the desired effect: it will change only the static cache
variable, but this change will not propagate to underlying Python instance, and the change will be replaced the
next time the override is invoked.

Warning: The PYBIND11_OVERRIDE and accompanying macros used to be called PYBIND11_OVERLOAD up until
pybind11 v2.5.0, and get_override() used to be called get_overload. This naming was corrected and the

8.1. Overriding virtual functions in Python 84



pybind11 Documentation

older macro and function names may soon be deprecated, in order to reduce confusion with overloaded functions
and methods and py::overload_cast (see Object-oriented code).

See also:

The file tests/test_virtual_functions.cpp contains a complete example that demonstrates how to override
virtual functions using pybind11 in more detail.

8.2 Combining virtual functions and inheritance

When combining virtual methods with inheritance, you need to be sure to provide an override for each method for
which you want to allow overrides from derived python classes. For example, suppose we extend the above Animal/Dog
example as follows:

class Animal {
public:

virtual std::string go(int n_times) = 0;
virtual std::string name() { return "unknown"; }

};
class Dog : public Animal {
public:

std::string go(int n_times) override {
std::string result;
for (int i=0; i<n_times; ++i)

result += bark() + " ";
return result;

}
virtual std::string bark() { return "woof!"; }

};

then the trampoline class for Animal must, as described in the previous section, override go() and name(), but in
order to allow python code to inherit properly from Dog, we also need a trampoline class for Dog that overrides both the
added bark() method and the go() and name() methods inherited from Animal (even though Dog doesn’t directly
override the name() method):

class PyAnimal : public Animal {
public:

using Animal::Animal; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Animal,␣

→˓go, n_times); }
std::string name() override { PYBIND11_OVERRIDE(std::string, Animal, name, ); }

};
class PyDog : public Dog {
public:

using Dog::Dog; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, Dog, go, n_

→˓times); }
std::string name() override { PYBIND11_OVERRIDE(std::string, Dog, name, ); }
std::string bark() override { PYBIND11_OVERRIDE(std::string, Dog, bark, ); }

};
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Note: Note the trailing commas in the PYBIND11_OVERRIDE calls to name() and bark(). These are needed to
portably implement a trampoline for a function that does not take any arguments. For functions that take a nonzero
number of arguments, the trailing comma must be omitted.

A registered class derived from a pybind11-registered class with virtual methods requires a similar trampoline class,
even if it doesn’t explicitly declare or override any virtual methods itself:

class Husky : public Dog {};
class PyHusky : public Husky {
public:

using Husky::Husky; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Husky, go,

→˓ n_times); }
std::string name() override { PYBIND11_OVERRIDE(std::string, Husky, name, ); }
std::string bark() override { PYBIND11_OVERRIDE(std::string, Husky, bark, ); }

};

There is, however, a technique that can be used to avoid this duplication (which can be especially helpful for a base
class with several virtual methods). The technique involves using template trampoline classes, as follows:

template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
public:

using AnimalBase::AnimalBase; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string,␣

→˓AnimalBase, go, n_times); }
std::string name() override { PYBIND11_OVERRIDE(std::string, AnimalBase, name, ); }

};
template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
public:

using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
// Override PyAnimal's pure virtual go() with a non-pure one:
std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, DogBase, go, n_

→˓times); }
std::string bark() override { PYBIND11_OVERRIDE(std::string, DogBase, bark, ); }

};

This technique has the advantage of requiring just one trampoline method to be declared per virtual method and pure
virtual method override. It does, however, require the compiler to generate at least as many methods (and possibly
more, if both pure virtual and overridden pure virtual methods are exposed, as above).

The classes are then registered with pybind11 using:

py::class_<Animal, PyAnimal<>> animal(m, "Animal");
py::class_<Dog, Animal, PyDog<>> dog(m, "Dog");
py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky");
// ... add animal, dog, husky definitions

Note that Husky did not require a dedicated trampoline template class at all, since it neither declares any new virtual
methods nor provides any pure virtual method implementations.

With either the repeated-virtuals or templated trampoline methods in place, you can now create a python class that
inherits from Dog:
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class ShihTzu(Dog):
def bark(self):

return "yip!"

See also:

See the file tests/test_virtual_functions.cpp for complete examples using both the duplication and templated
trampoline approaches.

8.3 Extended trampoline class functionality

8.3.1 Forced trampoline class initialisation

The trampoline classes described in the previous sections are, by default, only initialized when needed. More specif-
ically, they are initialized when a python class actually inherits from a registered type (instead of merely creating an
instance of the registered type), or when a registered constructor is only valid for the trampoline class but not the reg-
istered class. This is primarily for performance reasons: when the trampoline class is not needed for anything except
virtual method dispatching, not initializing the trampoline class improves performance by avoiding needing to do a
run-time check to see if the inheriting python instance has an overridden method.

Sometimes, however, it is useful to always initialize a trampoline class as an intermediate class that does more than just
handle virtual method dispatching. For example, such a class might perform extra class initialization, extra destruction
operations, and might define new members and methods to enable a more python-like interface to a class.

In order to tell pybind11 that it should always initialize the trampoline class when creating new instances of a type, the
class constructors should be declared using py::init_alias<Args, ...>() instead of the usual py::init<Args,
...>(). This forces construction via the trampoline class, ensuring member initialization and (eventual) destruction.

See also:

See the file tests/test_virtual_functions.cpp for complete examples showing both normal and forced tram-
poline instantiation.

8.3.2 Different method signatures

The macro’s introduced in Overriding virtual functions in Python cover most of the standard use cases when exposing
C++ classes to Python. Sometimes it is hard or unwieldy to create a direct one-on-one mapping between the arguments
and method return type.

An example would be when the C++ signature contains output arguments using references (See also Limitations in-
volving reference arguments). Another way of solving this is to use the method body of the trampoline class to do
conversions to the input and return of the Python method.

The main building block to do so is the get_override(), this function allows retrieving a method implemented in
Python from within the trampoline’s methods. Consider for example a C++ method which has the signature bool
myMethod(int32_t& value), where the return indicates whether something should be done with the value. This
can be made convenient on the Python side by allowing the Python function to return None or an int:

bool MyClass::myMethod(int32_t& value)
{

pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope.
// Try to look up the overridden method on the Python side.
pybind11::function override = pybind11::get_override(this, "myMethod");

(continues on next page)

8.3. Extended trampoline class functionality 87



pybind11 Documentation

(continued from previous page)

if (override) { // method is found
auto obj = override(value); // Call the Python function.
if (py::isinstance<py::int_>(obj)) { // check if it returned a Python integer␣

→˓type
value = obj.cast<int32_t>(); // Cast it and assign it to the value.
return true; // Return true; value should be used.

} else {
return false; // Python returned none, return false.

}
}
return false; // Alternatively return MyClass::myMethod(value);

}

8.4 Custom constructors

The syntax for binding constructors was previously introduced, but it only works when a constructor of the appropriate
arguments actually exists on the C++ side. To extend this to more general cases, pybind11 makes it possible to bind
factory functions as constructors. For example, suppose you have a class like this:

class Example {
private:

Example(int); // private constructor
public:

// Factory function:
static Example create(int a) { return Example(a); }

};

py::class_<Example>(m, "Example")
.def(py::init(&Example::create));

While it is possible to create a straightforward binding of the static create method, it may sometimes be preferable to
expose it as a constructor on the Python side. This can be accomplished by calling .def(py::init(...)) with the
function reference returning the new instance passed as an argument. It is also possible to use this approach to bind a
function returning a new instance by raw pointer or by the holder (e.g. std::unique_ptr).

The following example shows the different approaches:

class Example {
private:

Example(int); // private constructor
public:

// Factory function - returned by value:
static Example create(int a) { return Example(a); }

// These constructors are publicly callable:
Example(double);
Example(int, int);
Example(std::string);

};

py::class_<Example>(m, "Example")
(continues on next page)
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// Bind the factory function as a constructor:
.def(py::init(&Example::create))
// Bind a lambda function returning a pointer wrapped in a holder:
.def(py::init([](std::string arg) {

return std::unique_ptr<Example>(new Example(arg));
}))
// Return a raw pointer:
.def(py::init([](int a, int b) { return new Example(a, b); }))
// You can mix the above with regular C++ constructor bindings as well:
.def(py::init<double>())
;

When the constructor is invoked from Python, pybind11 will call the factory function and store the resulting C++
instance in the Python instance.

When combining factory functions constructors with virtual function trampolines there are two approaches. The first
is to add a constructor to the alias class that takes a base value by rvalue-reference. If such a constructor is available,
it will be used to construct an alias instance from the value returned by the factory function. The second option is to
provide two factory functions to py::init(): the first will be invoked when no alias class is required (i.e. when the
class is being used but not inherited from in Python), and the second will be invoked when an alias is required.

You can also specify a single factory function that always returns an alias instance: this will result in behaviour similar
to py::init_alias<...>(), as described in the extended trampoline class documentation.

The following example shows the different factory approaches for a class with an alias:

#include <pybind11/factory.h>
class Example {
public:

// ...
virtual ~Example() = default;

};
class PyExample : public Example {
public:

using Example::Example;
PyExample(Example &&base) : Example(std::move(base)) {}

};
py::class_<Example, PyExample>(m, "Example")

// Returns an Example pointer. If a PyExample is needed, the Example
// instance will be moved via the extra constructor in PyExample, above.
.def(py::init([]() { return new Example(); }))
// Two callbacks:
.def(py::init([]() { return new Example(); } /* no alias needed */,

[]() { return new PyExample(); } /* alias needed */))
// *Always* returns an alias instance (like py::init_alias<>())
.def(py::init([]() { return new PyExample(); }))
;
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8.4.1 Brace initialization

pybind11::init<> internally uses C++11 brace initialization to call the constructor of the target class. This means
that it can be used to bind implicit constructors as well:

struct Aggregate {
int a;
std::string b;

};

py::class_<Aggregate>(m, "Aggregate")
.def(py::init<int, const std::string &>());

Note: Note that brace initialization preferentially invokes constructor overloads taking a std::initializer_list.
In the rare event that this causes an issue, you can work around it by using py::init(...) with a lambda function
that constructs the new object as desired.

8.5 Non-public destructors

If a class has a private or protected destructor (as might e.g. be the case in a singleton pattern), a compile error will
occur when creating bindings via pybind11. The underlying issue is that the std::unique_ptr holder type that is
responsible for managing the lifetime of instances will reference the destructor even if no deallocations ever take place.
In order to expose classes with private or protected destructors, it is possible to override the holder type via a holder
type argument to class_. Pybind11 provides a helper class py::nodelete that disables any destructor invocations.
In this case, it is crucial that instances are deallocated on the C++ side to avoid memory leaks.

/* ... definition ... */

class MyClass {
private:

~MyClass() { }
};

/* ... binding code ... */

py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
.def(py::init<>())

8.6 Destructors that call Python

If a Python function is invoked from a C++ destructor, an exception may be thrown of type error_already_set.
If this error is thrown out of a class destructor, std::terminate() will be called, terminating the process.
Class destructors must catch all exceptions of type error_already_set to discard the Python exception using
error_already_set::discard_as_unraisable().

Every Python function should be treated as possibly throwing. When a Python generator stops yielding items, Python
will throw a StopIteration exception, which can pass though C++ destructors if the generator’s stack frame holds
the last reference to C++ objects.

For more information, see the documentation on exceptions.
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class MyClass {
public:

~MyClass() {
try {

py::print("Even printing is dangerous in a destructor");
py::exec("raise ValueError('This is an unraisable exception')");

} catch (py::error_already_set &e) {
// error_context should be information about where/why the occurred,
// e.g. use __func__ to get the name of the current function
e.discard_as_unraisable(__func__);

}
}

};

Note: pybind11 does not support C++ destructors marked noexcept(false).

New in version 2.6.

8.7 Implicit conversions

Suppose that instances of two types A and B are used in a project, and that an A can easily be converted into an instance
of type B (examples of this could be a fixed and an arbitrary precision number type).

py::class_<A>(m, "A")
/// ... members ...

py::class_<B>(m, "B")
.def(py::init<A>())
/// ... members ...

m.def("func",
[](const B &) { /* .... */ }

);

To invoke the function func using a variable a containing an A instance, we’d have to write func(B(a)) in Python.
On the other hand, C++ will automatically apply an implicit type conversion, which makes it possible to directly write
func(a).

In this situation (i.e. where B has a constructor that converts from A), the following statement enables similar implicit
conversions on the Python side:

py::implicitly_convertible<A, B>();

Note: Implicit conversions from A to B only work when B is a custom data type that is exposed to Python via pybind11.

To prevent runaway recursion, implicit conversions are non-reentrant: an implicit conversion invoked as part of another
implicit conversion of the same type (i.e. from A to B) will fail.
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8.8 Static properties

The section on Instance and static fields discussed the creation of instance properties that are implemented in terms of
C++ getters and setters.

Static properties can also be created in a similar way to expose getters and setters of static class attributes. Note that the
implicit self argument also exists in this case and is used to pass the Python type subclass instance. This parameter
will often not be needed by the C++ side, and the following example illustrates how to instantiate a lambda getter
function that ignores it:

py::class_<Foo>(m, "Foo")
.def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });

8.9 Operator overloading

Suppose that we’re given the following Vector2 class with a vector addition and scalar multiplication operation, all
implemented using overloaded operators in C++.

class Vector2 {
public:

Vector2(float x, float y) : x(x), y(y) { }

Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
Vector2& operator*=(float v) { x *= v; y *= v; return *this; }

friend Vector2 operator*(float f, const Vector2 &v) {
return Vector2(f * v.x, f * v.y);

}

std::string toString() const {
return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";

}
private:

float x, y;
};

The following snippet shows how the above operators can be conveniently exposed to Python.

#include <pybind11/operators.h>

PYBIND11_MODULE(example, m) {
py::class_<Vector2>(m, "Vector2")

.def(py::init<float, float>())

.def(py::self + py::self)

.def(py::self += py::self)

.def(py::self *= float())

.def(float() * py::self)

.def(py::self * float())

.def(-py::self)
(continues on next page)
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.def("__repr__", &Vector2::toString);
}

Note that a line like

.def(py::self * float())

is really just short hand notation for

.def("__mul__", [](const Vector2 &a, float b) {
return a * b;

}, py::is_operator())

This can be useful for exposing additional operators that don’t exist on the C++ side, or to perform other types of
customization. The py::is_operator flag marker is needed to inform pybind11 that this is an operator, which returns
NotImplemented when invoked with incompatible arguments rather than throwing a type error.

Note: To use the more convenient py::self notation, the additional header file pybind11/operators.h must be
included.

See also:

The file tests/test_operator_overloading.cpp contains a complete example that demonstrates how to work
with overloaded operators in more detail.

8.10 Pickling support

Python’s pickle module provides a powerful facility to serialize and de-serialize a Python object graph into a bi-
nary data stream. To pickle and unpickle C++ classes using pybind11, a py::pickle() definition must be provided.
Suppose the class in question has the following signature:

class Pickleable {
public:

Pickleable(const std::string &value) : m_value(value) { }
const std::string &value() const { return m_value; }

void setExtra(int extra) { m_extra = extra; }
int extra() const { return m_extra; }

private:
std::string m_value;
int m_extra = 0;

};

Pickling support in Python is enabled by defining the __setstate__ and __getstate__ methods1. For pybind11
classes, use py::pickle() to bind these two functions:

py::class_<Pickleable>(m, "Pickleable")
.def(py::init<std::string>())
.def("value", &Pickleable::value)

(continues on next page)

1 http://docs.python.org/3/library/pickle.html#pickling-class-instances
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.def("extra", &Pickleable::extra)

.def("setExtra", &Pickleable::setExtra)

.def(py::pickle(
[](const Pickleable &p) { // __getstate__

/* Return a tuple that fully encodes the state of the object */
return py::make_tuple(p.value(), p.extra());

},
[](py::tuple t) { // __setstate__

if (t.size() != 2)
throw std::runtime_error("Invalid state!");

/* Create a new C++ instance */
Pickleable p(t[0].cast<std::string>());

/* Assign any additional state */
p.setExtra(t[1].cast<int>());

return p;
}

));

The __setstate__ part of the py::pickle() definition follows the same rules as the single-argument version of
py::init(). The return type can be a value, pointer or holder type. See Custom constructors for details.

An instance can now be pickled as follows:

import pickle

p = Pickleable("test_value")
p.setExtra(15)
data = pickle.dumps(p)

Note: If given, the second argument to dumps must be 2 or larger - 0 and 1 are not supported. Newer versions are
also fine; for instance, specify -1 to always use the latest available version. Beware: failure to follow these instructions
will cause important pybind11 memory allocation routines to be skipped during unpickling, which will likely lead to
memory corruption and/or segmentation faults. Python defaults to version 3 (Python 3-3.7) and version 4 for Python
3.8+.

See also:

The file tests/test_pickling.cpp contains a complete example that demonstrates how to pickle and unpickle types
using pybind11 in more detail.
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8.11 Deepcopy support

Python normally uses references in assignments. Sometimes a real copy is needed to prevent changing all copies. The
copy module2 provides these capabilities.

A class with pickle support is automatically also (deep)copy compatible. However, performance can be improved by
adding custom __copy__ and __deepcopy__ methods.

For simple classes (deep)copy can be enabled by using the copy constructor, which should look as follows:

py::class_<Copyable>(m, "Copyable")
.def("__copy__", [](const Copyable &self) {

return Copyable(self);
})
.def("__deepcopy__", [](const Copyable &self, py::dict) {

return Copyable(self);
}, "memo"_a);

Note: Dynamic attributes will not be copied in this example.

8.12 Multiple Inheritance

pybind11 can create bindings for types that derive from multiple base types (aka. multiple inheritance). To do so,
specify all bases in the template arguments of the class_ declaration:

py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
...

The base types can be specified in arbitrary order, and they can even be interspersed with alias types and holder types
(discussed earlier in this document)—pybind11 will automatically find out which is which. The only requirement is
that the first template argument is the type to be declared.

It is also permitted to inherit multiply from exported C++ classes in Python, as well as inheriting from multiple Python
and/or pybind11-exported classes.

There is one caveat regarding the implementation of this feature:

When only one base type is specified for a C++ type that actually has multiple bases, pybind11 will assume that
it does not participate in multiple inheritance, which can lead to undefined behavior. In such cases, add the tag
multiple_inheritance to the class constructor:

py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());

The tag is redundant and does not need to be specified when multiple base types are listed.
2 https://docs.python.org/3/library/copy.html
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8.13 Module-local class bindings

When creating a binding for a class, pybind11 by default makes that binding “global” across modules. What this means
is that a type defined in one module can be returned from any module resulting in the same Python type. For example,
this allows the following:

// In the module1.cpp binding code for module1:
py::class_<Pet>(m, "Pet")

.def(py::init<std::string>())

.def_readonly("name", &Pet::name);

// In the module2.cpp binding code for module2:
m.def("create_pet", [](std::string name) { return new Pet(name); });

>>> from module1 import Pet
>>> from module2 import create_pet
>>> pet1 = Pet("Kitty")
>>> pet2 = create_pet("Doggy")
>>> pet2.name()
'Doggy'

When writing binding code for a library, this is usually desirable: this allows, for example, splitting up a complex
library into multiple Python modules.

In some cases, however, this can cause conflicts. For example, suppose two unrelated modules make use of an external
C++ library and each provide custom bindings for one of that library’s classes. This will result in an error when a Python
program attempts to import both modules (directly or indirectly) because of conflicting definitions on the external type:

// dogs.cpp

// Binding for external library class:
py::class<pets::Pet>(m, "Pet")

.def("name", &pets::Pet::name);

// Binding for local extension class:
py::class<Dog, pets::Pet>(m, "Dog")

.def(py::init<std::string>());

// cats.cpp, in a completely separate project from the above dogs.cpp.

// Binding for external library class:
py::class<pets::Pet>(m, "Pet")

.def("get_name", &pets::Pet::name);

// Binding for local extending class:
py::class<Cat, pets::Pet>(m, "Cat")

.def(py::init<std::string>());

>>> import cats
>>> import dogs
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: generic_type: type "Pet" is already registered!
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To get around this, you can tell pybind11 to keep the external class binding localized to the module by passing the
py::module_local() attribute into the py::class_ constructor:

// Pet binding in dogs.cpp:
py::class<pets::Pet>(m, "Pet", py::module_local())

.def("name", &pets::Pet::name);

// Pet binding in cats.cpp:
py::class<pets::Pet>(m, "Pet", py::module_local())

.def("get_name", &pets::Pet::name);

This makes the Python-side dogs.Pet and cats.Pet into distinct classes, avoiding the conflict and allowing both
modules to be loaded. C++ code in the dogs module that casts or returns a Pet instance will result in a dogs.Pet
Python instance, while C++ code in the cats module will result in a cats.Pet Python instance.

This does come with two caveats, however: First, external modules cannot return or cast a Pet instance to Python (unless
they also provide their own local bindings). Second, from the Python point of view they are two distinct classes.

Note that the locality only applies in the C++ -> Python direction. When passing such a py::module_local type into
a C++ function, the module-local classes are still considered. This means that if the following function is added to any
module (including but not limited to the cats and dogs modules above) it will be callable with either a dogs.Pet or
cats.Pet argument:

m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });

For example, suppose the above function is added to each of cats.cpp, dogs.cpp and frogs.cpp (where frogs.cpp
is some other module that does not bind Pets at all).

>>> import cats, dogs, frogs # No error because of the added py::module_local()
>>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
>>> (cats.pet_name(mycat), dogs.pet_name(mydog))
('Fluffy', 'Rover')
>>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
('Rover', 'Fluffy', 'Fluffy')

It is possible to use py::module_local() registrations in one module even if another module registers the same type
globally: within the module with the module-local definition, all C++ instances will be cast to the associated bound
Python type. In other modules any such values are converted to the global Python type created elsewhere.

Note: STL bindings (as provided via the optional pybind11/stl_bind.h header) apply py::module_local by
default when the bound type might conflict with other modules; see Binding STL containers for details.

Note: The localization of the bound types is actually tied to the shared object or binary generated by the compiler/linker.
For typical modules created with PYBIND11_MODULE(), this distinction is not significant. It is possible, however, when
Embedding the interpreter to embed multiple modules in the same binary (see Adding embedded modules). In such a
case, the localization will apply across all embedded modules within the same binary.

See also:

The file tests/test_local_bindings.cpp contains additional examples that demonstrate how
py::module_local() works.
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8.14 Binding protected member functions

It’s normally not possible to expose protected member functions to Python:

class A {
protected:

int foo() const { return 42; }
};

py::class_<A>(m, "A")
.def("foo", &A::foo); // error: 'foo' is a protected member of 'A'

On one hand, this is good because non-public members aren’t meant to be accessed from the outside. But we may
want to make use of protected functions in derived Python classes.

The following pattern makes this possible:

class A {
protected:

int foo() const { return 42; }
};

class Publicist : public A { // helper type for exposing protected functions
public:

using A::foo; // inherited with different access modifier
};

py::class_<A>(m, "A") // bind the primary class
.def("foo", &Publicist::foo); // expose protected methods via the publicist

This works because &Publicist::foo is exactly the same function as &A::foo (same signature and address), just
with a different access modifier. The only purpose of the Publicist helper class is to make the function name public.

If the intent is to expose protected virtual functions which can be overridden in Python, the publicist pattern can
be combined with the previously described trampoline:

class A {
public:

virtual ~A() = default;

protected:
virtual int foo() const { return 42; }

};

class Trampoline : public A {
public:

int foo() const override { PYBIND11_OVERRIDE(int, A, foo, ); }
};

class Publicist : public A {
public:

using A::foo;
};

(continues on next page)
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py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
.def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!

8.15 Binding final classes

Some classes may not be appropriate to inherit from. In C++11, classes can use the final specifier to ensure that a
class cannot be inherited from. The py::is_final attribute can be used to ensure that Python classes cannot inherit
from a specified type. The underlying C++ type does not need to be declared final.

class IsFinal final {};

py::class_<IsFinal>(m, "IsFinal", py::is_final());

When you try to inherit from such a class in Python, you will now get this error:

>>> class PyFinalChild(IsFinal):
... pass
...
TypeError: type 'IsFinal' is not an acceptable base type

Note: This attribute is currently ignored on PyPy

New in version 2.6.

8.16 Binding classes with template parameters

pybind11 can also wrap classes that have template parameters. Consider these classes:

struct Cat {};
struct Dog {};

template <typename PetType>
struct Cage {

Cage(PetType& pet);
PetType& get();

};

C++ templates may only be instantiated at compile time, so pybind11 can only wrap instantiated templated classes.
You cannot wrap a non-instantiated template:

// BROKEN (this will not compile)
py::class_<Cage>(m, "Cage");

.def("get", &Cage::get);

You must explicitly specify each template/type combination that you want to wrap separately.
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// ok
py::class_<Cage<Cat>>(m, "CatCage")

.def("get", &Cage<Cat>::get);

// ok
py::class_<Cage<Dog>>(m, "DogCage")

.def("get", &Cage<Dog>::get);

If your class methods have template parameters you can wrap those as well, but once again each instantiation must be
explicitly specified:

typename <typename T>
struct MyClass {

template <typename V>
T fn(V v);

};

py::class<MyClass<int>>(m, "MyClassT")
.def("fn", &MyClass<int>::fn<std::string>);

8.17 Custom automatic downcasters

As explained in Inheritance and automatic downcasting, pybind11 comes with built-in understanding of the dynamic
type of polymorphic objects in C++; that is, returning a Pet to Python produces a Python object that knows it’s wrapping
a Dog, if Pet has virtual methods and pybind11 knows about Dog and this Pet is in fact a Dog. Sometimes, you might
want to provide this automatic downcasting behavior when creating bindings for a class hierarchy that does not use
standard C++ polymorphism, such as LLVM3. As long as there’s some way to determine at runtime whether a downcast
is safe, you can proceed by specializing the pybind11::polymorphic_type_hook template:

enum class PetKind { Cat, Dog, Zebra };
struct Pet { // Not polymorphic: has no virtual methods

const PetKind kind;
int age = 0;

protected:
Pet(PetKind _kind) : kind(_kind) {}

};
struct Dog : Pet {

Dog() : Pet(PetKind::Dog) {}
std::string sound = "woof!";
std::string bark() const { return sound; }

};

namespace PYBIND11_NAMESPACE {
template<> struct polymorphic_type_hook<Pet> {

static const void *get(const Pet *src, const std::type_info*& type) {
// note that src may be nullptr
if (src && src->kind == PetKind::Dog) {

type = &typeid(Dog);
return static_cast<const Dog*>(src);

(continues on next page)

3 https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
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}
return src;

}
};

} // namespace PYBIND11_NAMESPACE

When pybind11 wants to convert a C++ pointer of type Base* to a Python object, it calls
polymorphic_type_hook<Base>::get() to determine if a downcast is possible. The get() function should
use whatever runtime information is available to determine if its src parameter is in fact an instance of some class
Derived that inherits from Base. If it finds such a Derived, it sets type = &typeid(Derived) and returns a
pointer to the Derived object that contains src. Otherwise, it just returns src, leaving type at its default value of
nullptr. If you set type to a type that pybind11 doesn’t know about, no downcasting will occur, and the original src
pointer will be used with its static type Base*.

It is critical that the returned pointer and type argument of get() agree with each other: if type is set to something
non-null, the returned pointer must point to the start of an object whose type is type. If the hierarchy being exposed
uses only single inheritance, a simple return src;will achieve this just fine, but in the general case, you must cast src
to the appropriate derived-class pointer (e.g. using static_cast<Derived>(src)) before allowing it to be returned
as a void*.

Note: pybind11’s standard support for downcasting objects whose types have virtual methods is implemented using
polymorphic_type_hook too, using the standard C++ ability to determine the most-derived type of a polymorphic
object using typeid() and to cast a base pointer to that most-derived type (even if you don’t know what it is) using
dynamic_cast<void*>.

See also:

The file tests/test_tagbased_polymorphic.cpp contains a more complete example, including a demonstration
of how to provide automatic downcasting for an entire class hierarchy without writing one get() function for each class.

8.18 Accessing the type object

You can get the type object from a C++ class that has already been registered using:

py::type T_py = py::type::of<T>();

You can directly use py::type::of(ob) to get the type object from any python object, just like type(ob) in Python.

Note: Other types, like py::type::of<int>(), do not work, see Type conversions.

New in version 2.6.
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8.19 Custom type setup

For advanced use cases, such as enabling garbage collection support, you may wish to directly manipulate the
PyHeapTypeObject corresponding to a py::class_ definition.

You can do that using py::custom_type_setup:

struct OwnsPythonObjects {
py::object value = py::none();

};
py::class_<OwnsPythonObjects> cls(

m, "OwnsPythonObjects", py::custom_type_setup([](PyHeapTypeObject *heap_type) {
auto *type = &heap_type->ht_type;
type->tp_flags |= Py_TPFLAGS_HAVE_GC;
type->tp_traverse = [](PyObject *self_base, visitproc visit, void *arg) {

auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
Py_VISIT(self.value.ptr());
return 0;

};
type->tp_clear = [](PyObject *self_base) {

auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
self.value = py::none();
return 0;

};
}));

cls.def(py::init<>());
cls.def_readwrite("value", &OwnsPythonObjects::value);

New in version 2.8.
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CHAPTER

NINE

EXCEPTIONS

9.1 Built-in C++ to Python exception translation

When Python calls C++ code through pybind11, pybind11 provides a C++ exception handler that will trap C++ excep-
tions, translate them to the corresponding Python exception, and raise them so that Python code can handle them.

pybind11 defines translations for std::exception and its standard subclasses, and several special exception classes
that translate to specific Python exceptions. Note that these are not actually Python exceptions, so they cannot be
examined using the Python C API. Instead, they are pure C++ objects that pybind11 will translate the corresponding
Python exception when they arrive at its exception handler.

Exception thrown by C++ Translated to Python exception type
std::exception RuntimeError
std::bad_alloc MemoryError
std::domain_error ValueError
std::invalid_argument ValueError
std::length_error ValueError
std::out_of_range IndexError
std::range_error ValueError
std::overflow_error OverflowError
pybind11::stop_iteration StopIteration (used to implement custom itera-

tors)
pybind11::index_error IndexError (used to indicate out of bounds access

in __getitem__, __setitem__, etc.)
pybind11::key_error KeyError (used to indicate out of bounds access

in __getitem__, __setitem__ in dict-like objects,
etc.)

pybind11::value_error ValueError (used to indicate wrong value passed in
container.remove(...))

pybind11::type_error TypeError
pybind11::buffer_error BufferError
pybind11::import_error ImportError
pybind11::attribute_error AttributeError
Any other exception RuntimeError

Exception translation is not bidirectional. That is, catching the C++ exceptions defined above will not trap exceptions
that originate from Python. For that, catch pybind11::error_already_set. See below for further details.

There is also a special exception cast_error that is thrown by handle::call() when the input arguments cannot
be converted to Python objects.
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9.2 Registering custom translators

If the default exception conversion policy described above is insufficient, pybind11 also provides support for registering
custom exception translators. Similar to pybind11 classes, exception translators can be local to the module they are
defined in or global to the entire python session. To register a simple exception conversion that translates a C++
exception into a new Python exception using the C++ exception’s what() method, a helper function is available:

py::register_exception<CppExp>(module, "PyExp");

This call creates a Python exception class with the name PyExp in the given module and automatically converts any
encountered exceptions of type CppExp into Python exceptions of type PyExp.

A matching function is available for registering a local exception translator:

py::register_local_exception<CppExp>(module, "PyExp");

It is possible to specify base class for the exception using the third parameter, a handle:

py::register_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
py::register_local_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);

Then PyExp can be caught both as PyExp and RuntimeError.

The class objects of the built-in Python exceptions are listed in the Python documentation on Standard Exceptions. The
default base class is PyExc_Exception.

When more advanced exception translation is needed, the functions py::register_exception_translator(translator)
and py::register_local_exception_translator(translator) can be used to register functions that can
translate arbitrary exception types (and which may include additional logic to do so). The functions takes a
stateless callable (e.g. a function pointer or a lambda function without captured variables) with the call signature
void(std::exception_ptr).

When a C++ exception is thrown, the registered exception translators are tried in reverse order of registration (i.e. the
last registered translator gets the first shot at handling the exception). All local translators will be tried before a global
translator is tried.

Inside the translator, std::rethrow_exception should be used within a try block to re-throw the exception. One or
more catch clauses to catch the appropriate exceptions should then be used with each clause using py::set_error()
(see below).

To declare a custom Python exception type, declare a py::exception variable and use this in the associated exception
translator (note: it is often useful to make this a static declaration when using it inside a lambda expression without
requiring capturing).

The following example demonstrates this for a hypothetical exception classes MyCustomException and
OtherException: the first is translated to a custom python exception MyCustomError, while the second is trans-
lated to a standard python RuntimeError:

PYBIND11_CONSTINIT static py::gil_safe_call_once_and_store<py::object> exc_storage;
exc_storage.call_once_and_store_result(

[&]() { return py::exception<MyCustomException>(m, "MyCustomError"); });
py::register_exception_translator([](std::exception_ptr p) {

try {
if (p) std::rethrow_exception(p);

} catch (const MyCustomException &e) {
py::set_error(exc_storage.get_stored(), e.what());

} catch (const OtherException &e) {
(continues on next page)
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py::set_error(PyExc_RuntimeError, e.what());
}

});

Multiple exceptions can be handled by a single translator, as shown in the example above. If the exception is not caught
by the current translator, the previously registered one gets a chance.

If none of the registered exception translators is able to handle the exception, it is handled by the default converter as
described in the previous section.

See also:

The file tests/test_exceptions.cpp contains examples of various custom exception translators and custom ex-
ception types.

Note: Call py::set_error() for every exception caught in a custom exception translator. Failure to do so will cause
Python to crash with SystemError: error return without exception set.

Exceptions that you do not plan to handle should simply not be caught, or may be explicitly (re-)thrown to delegate it
to the other, previously-declared existing exception translators.

Note that libc++ and libstdc++ behave differently under macOS with -fvisibility=hidden. Therefore excep-
tions that are used across ABI boundaries need to be explicitly exported, as exercised in tests/test_exceptions.h.
See also: “Problems with C++ exceptions” under GCC Wiki.

9.3 Local vs Global Exception Translators

When a global exception translator is registered, it will be applied across all modules in the reverse order of registration.
This can create behavior where the order of module import influences how exceptions are translated.

If module1 has the following translator:

py::register_exception_translator([](std::exception_ptr p) {
try {

if (p) std::rethrow_exception(p);
} catch (const std::invalid_argument &e) {

py::set_error(PyExc_ArgumentError, "module1 handled this");
}

}

and module2 has the following similar translator:

py::register_exception_translator([](std::exception_ptr p) {
try {

if (p) std::rethrow_exception(p);
} catch (const std::invalid_argument &e) {

py::set_error(PyExc_ArgumentError, "module2 handled this");
}

}

then which translator handles the invalid_argument will be determined by the order that module1 and module2 are
imported. Since exception translators are applied in the reverse order of registration, which ever module was imported
last will “win” and that translator will be applied.
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If there are multiple pybind11 modules that share exception types (either standard built-in or custom) loaded into a
single python instance and consistent error handling behavior is needed, then local translators should be used.

Changing the previous example to use register_local_exception_translator would mean that when in-
valid_argument is thrown in the module2 code, the module2 translator will always handle it, while in module1, the
module1 translator will do the same.

9.4 Handling exceptions from Python in C++

When C++ calls Python functions, such as in a callback function or when manipulating Python objects,
and Python raises an Exception, pybind11 converts the Python exception into a C++ exception of type
pybind11::error_already_set whose payload contains a C++ string textual summary and the actual Python ex-
ception. error_already_set is used to propagate Python exception back to Python (or possibly, handle them in
C++).

Exception raised in Python Thrown as C++ exception type
Any Python Exception pybind11::error_already_set

For example:

try {
// open("missing.txt", "r")
auto file = py::module_::import("io").attr("open")("missing.txt", "r");
auto text = file.attr("read")();
file.attr("close")();

} catch (py::error_already_set &e) {
if (e.matches(PyExc_FileNotFoundError)) {

py::print("missing.txt not found");
} else if (e.matches(PyExc_PermissionError)) {

py::print("missing.txt found but not accessible");
} else {

throw;
}

}

Note that C++ to Python exception translation does not apply here, since that is a method for translating C++ exceptions
to Python, not vice versa. The error raised from Python is always error_already_set.

This example illustrates this behavior:

try {
py::eval("raise ValueError('The Ring')");

} catch (py::value_error &boromir) {
// Boromir never gets the ring
assert(false);

} catch (py::error_already_set &frodo) {
// Frodo gets the ring
py::print("I will take the ring");

}

try {
// py::value_error is a request for pybind11 to raise a Python exception

(continues on next page)
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throw py::value_error("The ball");
} catch (py::error_already_set &cat) {

// cat won't catch the ball since
// py::value_error is not a Python exception
assert(false);

} catch (py::value_error &dog) {
// dog will catch the ball
py::print("Run Spot run");
throw; // Throw it again (pybind11 will raise ValueError)

}

9.5 Handling errors from the Python C API

Where possible, use pybind11 wrappers instead of calling the Python C API directly. When calling the Python C API
directly, in addition to manually managing reference counts, one must follow the pybind11 error protocol, which is
outlined here.

After calling the Python C API, if Python returns an error, throw py::error_already_set();, which allows py-
bind11 to deal with the exception and pass it back to the Python interpreter. This includes calls to the error setting
functions such as py::set_error().

py::set_error(PyExc_TypeError, "C API type error demo");
throw py::error_already_set();

// But it would be easier to simply...
throw py::type_error("pybind11 wrapper type error");

Alternately, to ignore the error, call PyErr_Clear.

Any Python error must be thrown or cleared, or Python/pybind11 will be left in an invalid state.

9.6 Chaining exceptions (‘raise from’)

Python has a mechanism for indicating that exceptions were caused by other exceptions:

try:
print(1 / 0)

except Exception as exc:
raise RuntimeError("could not divide by zero") from exc

To do a similar thing in pybind11, you can use the py::raise_from function. It sets the current python error indicator,
so to continue propagating the exception you should throw py::error_already_set().

try {
py::eval("print(1 / 0"));

} catch (py::error_already_set &e) {
py::raise_from(e, PyExc_RuntimeError, "could not divide by zero");
throw py::error_already_set();

}

New in version 2.8.

9.5. Handling errors from the Python C API 107

https://docs.python.org/3/c-api/exceptions.html#c.PyErr_Clear


pybind11 Documentation

9.7 Handling unraisable exceptions

If a Python function invoked from a C++ destructor or any function marked noexcept(true) (collectively, “noexcept
functions”) throws an exception, there is no way to propagate the exception, as such functions may not throw. Should
they throw or fail to catch any exceptions in their call graph, the C++ runtime calls std::terminate() to abort
immediately.

Similarly, Python exceptions raised in a class’s __del__ method do not propagate, but are logged by Python as an
unraisable error. In Python 3.8+, a system hook is triggered and an auditing event is logged.

Any noexcept function should have a try-catch block that traps class:error_already_set (or any other exception
that can occur). Note that pybind11 wrappers around Python exceptions such as pybind11::value_error are not
Python exceptions; they are C++ exceptions that pybind11 catches and converts to Python exceptions. Noexcept func-
tions cannot propagate these exceptions either. A useful approach is to convert them to Python exceptions and then
discard_as_unraisable as shown below.

void nonthrowing_func() noexcept(true) {
try {

// ...
} catch (py::error_already_set &eas) {

// Discard the Python error using Python APIs, using the C++ magic
// variable __func__. Python already knows the type and value and of the
// exception object.
eas.discard_as_unraisable(__func__);

} catch (const std::exception &e) {
// Log and discard C++ exceptions.
third_party::log(e);

}
}

New in version 2.6.
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TEN

SMART POINTERS

10.1 std::unique_ptr

Given a class Example with Python bindings, it’s possible to return instances wrapped in C++11 unique pointers, like
so

std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new␣
→˓Example()); }

m.def("create_example", &create_example);

In other words, there is nothing special that needs to be done. While returning unique pointers in this way is allowed,
it is illegal to use them as function arguments. For instance, the following function signature cannot be processed by
pybind11.

void do_something_with_example(std::unique_ptr<Example> ex) { ... }

The above signature would imply that Python needs to give up ownership of an object that is passed to this function,
which is generally not possible (for instance, the object might be referenced elsewhere).

10.2 std::shared_ptr

The binding generator for classes, class_, can be passed a template type that denotes a special holder type that is used
to manage references to the object. If no such holder type template argument is given, the default for a type named
Type is std::unique_ptr<Type>, which means that the object is deallocated when Python’s reference count goes to
zero.

It is possible to switch to other types of reference counting wrappers or smart pointers, which is useful in codebases
that rely on them. For instance, the following snippet causes std::shared_ptr to be used instead.

py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");

Note that any particular class can only be associated with a single holder type.

One potential stumbling block when using holder types is that they need to be applied consistently. Can you guess
what’s broken about the following binding code?

class Child { };

class Parent {
(continues on next page)
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public:
Parent() : child(std::make_shared<Child>()) { }
Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */

private:
std::shared_ptr<Child> child;

};

PYBIND11_MODULE(example, m) {
py::class_<Child, std::shared_ptr<Child>>(m, "Child");

py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
.def(py::init<>())
.def("get_child", &Parent::get_child);

}

The following Python code will cause undefined behavior (and likely a segmentation fault).

from example import Parent

print(Parent().get_child())

The problem is that Parent::get_child() returns a pointer to an instance of Child, but the fact that this instance
is already managed by std::shared_ptr<...> is lost when passing raw pointers. In this case, pybind11 will create
a second independent std::shared_ptr<...> that also claims ownership of the pointer. In the end, the object will
be freed twice since these shared pointers have no way of knowing about each other.

There are two ways to resolve this issue:

1. For types that are managed by a smart pointer class, never use raw pointers in function arguments or re-
turn values. In other words: always consistently wrap pointers into their designated holder types (such as
std::shared_ptr<...>). In this case, the signature of get_child() should be modified as follows:

std::shared_ptr<Child> get_child() { return child; }

2. Adjust the definition of Child by specifying std::enable_shared_from_this<T> (see cppreference for de-
tails) as a base class. This adds a small bit of information to Child that allows pybind11 to realize that there is
already an existing std::shared_ptr<...> and communicate with it. In this case, the declaration of Child
should look as follows:

class Child : public std::enable_shared_from_this<Child> { };

10.3 Custom smart pointers

pybind11 supports std::unique_ptr and std::shared_ptr right out of the box. For any other custom smart
pointer, transparent conversions can be enabled using a macro invocation similar to the following. It must be declared
at the top namespace level before any binding code:

PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);

The first argument of PYBIND11_DECLARE_HOLDER_TYPE() should be a placeholder name that is used as a template
parameter of the second argument. Thus, feel free to use any identifier, but use it consistently on both sides; also, don’t
use the name of a type that already exists in your codebase.
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The macro also accepts a third optional boolean parameter that is set to false by default. Specify

PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>, true);

if SmartPtr<T> can always be initialized from a T* pointer without the risk of inconsistencies (such as multiple
independent SmartPtr instances believing that they are the sole owner of the T* pointer). A common situation where
true should be passed is when the T instances use intrusive reference counting.

Please take a look at the General notes regarding convenience macros before using this feature.

By default, pybind11 assumes that your custom smart pointer has a standard interface, i.e. provides a .get() member
function to access the underlying raw pointer. If this is not the case, pybind11’s holder_helper must be specialized:

// Always needed for custom holder types
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);

// Only needed if the type's `.get()` goes by another name
namespace PYBIND11_NAMESPACE { namespace detail {

template <typename T>
struct holder_helper<SmartPtr<T>> { // <-- specialization

static const T *get(const SmartPtr<T> &p) { return p.getPointer(); }
};

}}

The above specialization informs pybind11 that the custom SmartPtr class provides .get() functionality via .
getPointer().

See also:

The file tests/test_smart_ptr.cpp contains a complete example that demonstrates how to work with custom
reference-counting holder types in more detail.

10.3. Custom smart pointers 111



CHAPTER

ELEVEN

TYPE CONVERSIONS

Apart from enabling cross-language function calls, a fundamental problem that a binding tool like pybind11 must
address is to provide access to native Python types in C++ and vice versa. There are three fundamentally different ways
to do this—which approach is preferable for a particular type depends on the situation at hand.

1. Use a native C++ type everywhere. In this case, the type must be wrapped using pybind11-generated bindings
so that Python can interact with it.

2. Use a native Python type everywhere. It will need to be wrapped so that C++ functions can interact with it.

3. Use a native C++ type on the C++ side and a native Python type on the Python side. pybind11 refers to this as a
type conversion.

Type conversions are the most “natural” option in the sense that native (non-wrapped) types are used everywhere.
The main downside is that a copy of the data must be made on every Python � C++ transition: this is needed
since the C++ and Python versions of the same type generally won’t have the same memory layout.

pybind11 can perform many kinds of conversions automatically. An overview is provided in the table “List of all
builtin conversions”.

The following subsections discuss the differences between these options in more detail. The main focus in this section
is on type conversions, which represent the last case of the above list.

11.1 Overview

1. Native type in C++, wrapper in Python

Exposing a custom C++ type using py::class_ was covered in detail in the Object-oriented code section. There, the
underlying data structure is always the original C++ class while the py::class_ wrapper provides a Python interface.
Internally, when an object like this is sent from C++ to Python, pybind11 will just add the outer wrapper layer over the
native C++ object. Getting it back from Python is just a matter of peeling off the wrapper.

2. Wrapper in C++, native type in Python

This is the exact opposite situation. Now, we have a type which is native to Python, like a tuple or a list. One way
to get this data into C++ is with the py::object family of wrappers. These are explained in more detail in the Python
types section. We’ll just give a quick example here:

void print_list(py::list my_list) {
for (auto item : my_list)

std::cout << item << " ";
}
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>>> print_list([1, 2, 3])
1 2 3

The Python list is not converted in any way – it’s just wrapped in a C++ py::list class. At its core it’s still a Python
object. Copying a py::list will do the usual reference-counting like in Python. Returning the object to Python will
just remove the thin wrapper.

3. Converting between native C++ and Python types

In the previous two cases we had a native type in one language and a wrapper in the other. Now, we have native types
on both sides and we convert between them.

void print_vector(const std::vector<int> &v) {
for (auto item : v)

std::cout << item << "\n";
}

>>> print_vector([1, 2, 3])
1 2 3

In this case, pybind11 will construct a new std::vector<int> and copy each element from the Python list. The
newly constructed object will be passed to print_vector. The same thing happens in the other direction: a new list
is made to match the value returned from C++.

Lots of these conversions are supported out of the box, as shown in the table below. They are very convenient, but keep
in mind that these conversions are fundamentally based on copying data. This is perfectly fine for small immutable
types but it may become quite expensive for large data structures. This can be avoided by overriding the automatic
conversion with a custom wrapper (i.e. the above-mentioned approach 1). This requires some manual effort and more
details are available in the Making opaque types section.

11.1.1 List of all builtin conversions

The following basic data types are supported out of the box (some may require an additional extension header to be
included). To pass other data structures as arguments and return values, refer to the section on binding Object-oriented
code.

Data type Description Header file
int8_t, uint8_t 8-bit integers pybind11/pybind11.h
int16_t, uint16_t 16-bit integers pybind11/pybind11.h
int32_t, uint32_t 32-bit integers pybind11/pybind11.h
int64_t, uint64_t 64-bit integers pybind11/pybind11.h
ssize_t, size_t Platform-dependent size pybind11/pybind11.h
float, double Floating point types pybind11/pybind11.h
bool Two-state Boolean type pybind11/pybind11.h
char Character literal pybind11/pybind11.h
char16_t UTF-16 character literal pybind11/pybind11.h
char32_t UTF-32 character literal pybind11/pybind11.h
wchar_t Wide character literal pybind11/pybind11.h
const char * UTF-8 string literal pybind11/pybind11.h
const char16_t * UTF-16 string literal pybind11/pybind11.h

continues on next page
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Table 1 – continued from previous page
Data type Description Header file
const char32_t * UTF-32 string literal pybind11/pybind11.h
const wchar_t * Wide string literal pybind11/pybind11.h
std::string STL dynamic UTF-8 string pybind11/pybind11.h
std::u16string STL dynamic UTF-16 string pybind11/pybind11.h
std::u32string STL dynamic UTF-32 string pybind11/pybind11.h
std::wstring STL dynamic wide string pybind11/pybind11.h
std::string_view,
std::u16string_view, etc.

STL C++17 string views pybind11/pybind11.h

std::pair<T1, T2> Pair of two custom types pybind11/pybind11.h
std::tuple<...> Arbitrary tuple of types pybind11/pybind11.h
std::reference_wrapper<...> Reference type wrapper pybind11/pybind11.h
std::complex<T> Complex numbers pybind11/complex.h
std::array<T, Size> STL static array pybind11/stl.h
std::vector<T> STL dynamic array pybind11/stl.h
std::deque<T> STL double-ended queue pybind11/stl.h
std::valarray<T> STL value array pybind11/stl.h
std::list<T> STL linked list pybind11/stl.h
std::map<T1, T2> STL ordered map pybind11/stl.h
std::unordered_map<T1, T2> STL unordered map pybind11/stl.h
std::set<T> STL ordered set pybind11/stl.h
std::unordered_set<T> STL unordered set pybind11/stl.h
std::optional<T> STL optional type (C++17) pybind11/stl.h
std::experimental::optional<T>STL optional type (exp.) pybind11/stl.h
std::variant<...> Type-safe union (C++17) pybind11/stl.h
std::filesystem::path<T> STL path (C++17)1 pybind11/stl/filesystem.h
std::function<...> STL polymorphic function pybind11/functional.h
std::chrono::duration<...> STL time duration pybind11/chrono.h
std::chrono::time_point<...
>

STL date/time pybind11/chrono.h

Eigen::Matrix<...> Eigen: dense matrix pybind11/eigen.h
Eigen::Map<...> Eigen: mapped memory pybind11/eigen.h
Eigen::SparseMatrix<...> Eigen: sparse matrix pybind11/eigen.h

11.2 Strings, bytes and Unicode conversions

11.2.1 Passing Python strings to C++

When a Python str is passed from Python to a C++ function that accepts std::string or char * as arguments,
pybind11 will encode the Python string to UTF-8. All Python str can be encoded in UTF-8, so this operation does
not fail.

The C++ language is encoding agnostic. It is the responsibility of the programmer to track encodings. It’s often easiest
to simply use UTF-8 everywhere.

m.def("utf8_test",
[](const std::string &s) {

cout << "utf-8 is icing on the cake.\n";
(continues on next page)

1 std::filesystem::path is converted to pathlib.Path and os.PathLike is converted to std::filesystem::path.
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cout << s;
}

);
m.def("utf8_charptr",

[](const char *s) {
cout << "My favorite food is\n";
cout << s;

}
);

>>> utf8_test("�")
utf-8 is icing on the cake.
�

>>> utf8_charptr("è")
My favorite food is
è

Note: Some terminal emulators do not support UTF-8 or emoji fonts and may not display the example above correctly.

The results are the same whether the C++ function accepts arguments by value or reference, and whether or not const
is used.

Passing bytes to C++

A Python bytes object will be passed to C++ functions that accept std::string or char* without conversion. In
order to make a function only accept bytes (and not str), declare it as taking a py::bytes argument.

11.2.2 Returning C++ strings to Python

When a C++ function returns a std::string or char* to a Python caller, pybind11 will assume that the string
is valid UTF-8 and will decode it to a native Python str, using the same API as Python uses to perform bytes.
decode('utf-8'). If this implicit conversion fails, pybind11 will raise a UnicodeDecodeError.

m.def("std_string_return",
[]() {

return std::string("This string needs to be UTF-8 encoded");
}

);

>>> isinstance(example.std_string_return(), str)
True

Because UTF-8 is inclusive of pure ASCII, there is never any issue with returning a pure ASCII string to Python. If
there is any possibility that the string is not pure ASCII, it is necessary to ensure the encoding is valid UTF-8.

Warning: Implicit conversion assumes that a returned char * is null-terminated. If there is no null terminator a
buffer overrun will occur.
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Explicit conversions

If some C++ code constructs a std::string that is not a UTF-8 string, one can perform a explicit conversion and
return a py::str object. Explicit conversion has the same overhead as implicit conversion.

// This uses the Python C API to convert Latin-1 to Unicode
m.def("str_output",

[]() {
std::string s = "Send your r\xe9sum\xe9 to Alice in HR"; // Latin-1
py::handle py_s = PyUnicode_DecodeLatin1(s.data(), s.length(), nullptr);
if (!py_s) {

throw py::error_already_set();
}
return py::reinterpret_steal<py::str>(py_s);

}
);

>>> str_output()
'Send your résumé to Alice in HR'

The Python C API provides several built-in codecs. Note that these all return new references, so use
reinterpret_steal() when converting them to a str.

One could also use a third party encoding library such as libiconv to transcode to UTF-8.

Return C++ strings without conversion

If the data in a C++ std::string does not represent text and should be returned to Python as bytes, then one can
return the data as a py::bytes object.

m.def("return_bytes",
[]() {

std::string s("\xba\xd0\xba\xd0"); // Not valid UTF-8
return py::bytes(s); // Return the data without transcoding

}
);

>>> example.return_bytes()
b'\xba\xd0\xba\xd0'

Note the asymmetry: pybind11 will convert bytes to std::string without encoding, but cannot convert
std::string back to bytes implicitly.

m.def("asymmetry",
[](std::string s) { // Accepts str or bytes from Python

return s; // Looks harmless, but implicitly converts to str
}

);

>>> isinstance(example.asymmetry(b"have some bytes"), str)
True

(continues on next page)
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>>> example.asymmetry(b"\xba\xd0\xba\xd0") # invalid utf-8 as bytes
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xba in position 0: invalid start␣
→˓byte

11.2.3 Wide character strings

When a Python str is passed to a C++ function expecting std::wstring, wchar_t*, std::u16string or
std::u32string, the str will be encoded to UTF-16 or UTF-32 depending on how the C++ compiler implements
each type, in the platform’s native endianness. When strings of these types are returned, they are assumed to contain
valid UTF-16 or UTF-32, and will be decoded to Python str.

#define UNICODE
#include <windows.h>

m.def("set_window_text",
[](HWND hwnd, std::wstring s) {

// Call SetWindowText with null-terminated UTF-16 string
::SetWindowText(hwnd, s.c_str());

}
);
m.def("get_window_text",

[](HWND hwnd) {
const int buffer_size = ::GetWindowTextLength(hwnd) + 1;
auto buffer = std::make_unique< wchar_t[] >(buffer_size);

::GetWindowText(hwnd, buffer.data(), buffer_size);

std::wstring text(buffer.get());

// wstring will be converted to Python str
return text;

}
);

Strings in multibyte encodings such as Shift-JIS must transcoded to a UTF-8/16/32 before being returned to Python.

11.2.4 Character literals

C++ functions that accept character literals as input will receive the first character of a Python str as their input. If the
string is longer than one Unicode character, trailing characters will be ignored.

When a character literal is returned from C++ (such as a char or a wchar_t), it will be converted to a str that
represents the single character.

m.def("pass_char", [](char c) { return c; });
m.def("pass_wchar", [](wchar_t w) { return w; });

>>> example.pass_char("A")
'A'
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While C++ will cast integers to character types (char c = 0x65;), pybind11 does not convert Python integers to
characters implicitly. The Python function chr() can be used to convert integers to characters.

>>> example.pass_char(0x65)
TypeError

>>> example.pass_char(chr(0x65))
'A'

If the desire is to work with an 8-bit integer, use int8_t or uint8_t as the argument type.

Grapheme clusters

A single grapheme may be represented by two or more Unicode characters. For example ‘é’ is usually represented
as U+00E9 but can also be expressed as the combining character sequence U+0065 U+0301 (that is, the letter ‘e’
followed by a combining acute accent). The combining character will be lost if the two-character sequence is passed
as an argument, even though it renders as a single grapheme.

>>> example.pass_wchar("é")
'é'

>>> combining_e_acute = "e" + "\u0301"

>>> combining_e_acute
'e’'

>>> combining_e_acute == "é"
False

>>> example.pass_wchar(combining_e_acute)
'e'

Normalizing combining characters before passing the character literal to C++ may resolve some of these issues:

>>> example.pass_wchar(unicodedata.normalize("NFC", combining_e_acute))
'é'

In some languages (Thai for example), there are graphemes that cannot be expressed as a single Unicode code point,
so there is no way to capture them in a C++ character type.

11.2.5 C++17 string views

C++17 string views are automatically supported when compiling in C++17 mode. They follow the same rules for
encoding and decoding as the corresponding STL string type (for example, a std::u16string_view argument will
be passed UTF-16-encoded data, and a returned std::string_view will be decoded as UTF-8).
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11.2.6 References

• The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Char-
acter Sets (No Excuses!)

• C++ - Using STL Strings at Win32 API Boundaries

11.3 STL containers

11.3.1 Automatic conversion

When including the additional header file pybind11/stl.h, conversions be-
tween std::vector<>/std::deque<>/std::list<>/std::array<>/std::valarray<>,
std::set<>/std::unordered_set<>, and std::map<>/std::unordered_map<> and the Python list, set and
dict data structures are automatically enabled. The types std::pair<> and std::tuple<> are already supported
out of the box with just the core pybind11/pybind11.h header.

The major downside of these implicit conversions is that containers must be converted (i.e. copied) on every Python-
>C++ and C++->Python transition, which can have implications on the program semantics and performance. Please
read the next sections for more details and alternative approaches that avoid this.

Note: Arbitrary nesting of any of these types is possible.

See also:

The file tests/test_stl.cpp contains a complete example that demonstrates how to pass STL data types in more
detail.

11.3.2 C++17 library containers

The pybind11/stl.h header also includes support for std::optional<> and std::variant<>. These require a
C++17 compiler and standard library. In C++14 mode, std::experimental::optional<> is supported if available.

Various versions of these containers also exist for C++11 (e.g. in Boost). pybind11 provides an easy way to specialize
the type_caster for such types:

// `boost::optional` as an example -- can be any `std::optional`-like container
namespace PYBIND11_NAMESPACE { namespace detail {

template <typename T>
struct type_caster<boost::optional<T>> : optional_caster<boost::optional<T>> {};

}}

The above should be placed in a header file and included in all translation units where automatic conversion is needed.
Similarly, a specialization can be provided for custom variant types:

// `boost::variant` as an example -- can be any `std::variant`-like container
namespace PYBIND11_NAMESPACE { namespace detail {

template <typename... Ts>
struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};

// Specifies the function used to visit the variant -- `apply_visitor` instead of␣
→˓`visit`

(continues on next page)
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template <>
struct visit_helper<boost::variant> {

template <typename... Args>
static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) {

return boost::apply_visitor(args...);
}

};
}} // namespace PYBIND11_NAMESPACE::detail

The visit_helper specialization is not required if your name::variant provides a name::visit() function. For
any other function name, the specialization must be included to tell pybind11 how to visit the variant.

Warning: When converting a variant type, pybind11 follows the same rules as when determining which function
overload to call (Overload resolution order), and so the same caveats hold. In particular, the order in which the
variant’s alternatives are listed is important, since pybind11 will try conversions in this order. This means that,
for example, when converting variant<int, bool>, the bool variant will never be selected, as any Python bool
is already an int and is convertible to a C++ int. Changing the order of alternatives (and using variant<bool,
int>, in this example) provides a solution.

Note: pybind11 only supports the modern implementation of boost::variant which makes use of variadic tem-
plates. This requires Boost 1.56 or newer.

11.3.3 Making opaque types

pybind11 heavily relies on a template matching mechanism to convert parameters and return values that are constructed
from STL data types such as vectors, linked lists, hash tables, etc. This even works in a recursive manner, for instance
to deal with lists of hash maps of pairs of elementary and custom types, etc.

However, a fundamental limitation of this approach is that internal conversions between Python and C++ types involve
a copy operation that prevents pass-by-reference semantics. What does this mean?

Suppose we bind the following function

void append_1(std::vector<int> &v) {
v.push_back(1);

}

and call it from Python, the following happens:

>>> v = [5, 6]
>>> append_1(v)
>>> print(v)
[5, 6]

As you can see, when passing STL data structures by reference, modifications are not propagated back the Python side.
A similar situation arises when exposing STL data structures using the def_readwrite or def_readonly functions:

/* ... definition ... */

(continues on next page)
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class MyClass {
std::vector<int> contents;

};

/* ... binding code ... */

py::class_<MyClass>(m, "MyClass")
.def(py::init<>())
.def_readwrite("contents", &MyClass::contents);

In this case, properties can be read and written in their entirety. However, an append operation involving such a list
type has no effect:

>>> m = MyClass()
>>> m.contents = [5, 6]
>>> print(m.contents)
[5, 6]
>>> m.contents.append(7)
>>> print(m.contents)
[5, 6]

Finally, the involved copy operations can be costly when dealing with very large lists. To deal with all of the above sit-
uations, pybind11 provides a macro named PYBIND11_MAKE_OPAQUE(T) that disables the template-based conversion
machinery of types, thus rendering them opaque. The contents of opaque objects are never inspected or extracted, hence
they can be passed by reference. For instance, to turn std::vector<int> into an opaque type, add the declaration

PYBIND11_MAKE_OPAQUE(std::vector<int>);

before any binding code (e.g. invocations to class_::def(), etc.). This macro must be specified at the top level
(and outside of any namespaces), since it adds a template instantiation of type_caster. If your binding code consists
of multiple compilation units, it must be present in every file (typically via a common header) preceding any usage
of std::vector<int>. Opaque types must also have a corresponding class_ declaration to associate them with a
name in Python, and to define a set of available operations, e.g.:

py::class_<std::vector<int>>(m, "IntVector")
.def(py::init<>())
.def("clear", &std::vector<int>::clear)
.def("pop_back", &std::vector<int>::pop_back)
.def("__len__", [](const std::vector<int> &v) { return v.size(); })
.def("__iter__", [](std::vector<int> &v) {
return py::make_iterator(v.begin(), v.end());

}, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
// ....

See also:

The file tests/test_opaque_types.cpp contains a complete example that demonstrates how to create and expose
opaque types using pybind11 in more detail.
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11.3.4 Binding STL containers

The ability to expose STL containers as native Python objects is a fairly common request, hence pybind11 also provides
an optional header file named pybind11/stl_bind.h that does exactly this. The mapped containers try to match the
behavior of their native Python counterparts as much as possible.

The following example showcases usage of pybind11/stl_bind.h:

// Don't forget this
#include <pybind11/stl_bind.h>

PYBIND11_MAKE_OPAQUE(std::vector<int>);
PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);

// ...

// later in binding code:
py::bind_vector<std::vector<int>>(m, "VectorInt");
py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");

When binding STL containers pybind11 considers the types of the container’s elements to decide whether the container
should be confined to the local module (via the Module-local class bindings feature). If the container element types
are anything other than already-bound custom types bound without py::module_local() the container binding will
have py::module_local() applied. This includes converting types such as numeric types, strings, Eigen types; and
types that have not yet been bound at the time of the stl container binding. This module-local binding is designed to
avoid potential conflicts between module bindings (for example, from two separate modules each attempting to bind
std::vector<int> as a python type).

It is possible to override this behavior to force a definition to be either module-local or global. To do so, you can pass
the attributes py::module_local() (to make the binding module-local) or py::module_local(false) (to make
the binding global) into the py::bind_vector or py::bind_map arguments:

py::bind_vector<std::vector<int>>(m, "VectorInt", py::module_local(false));

Note, however, that such a global binding would make it impossible to load this module at the same time as any other
pybind module that also attempts to bind the same container type (std::vector<int> in the above example).

See Module-local class bindings for more details on module-local bindings.

See also:

The file tests/test_stl_binders.cpp shows how to use the convenience STL container wrappers.

11.4 Functional

The following features must be enabled by including pybind11/functional.h.
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11.4.1 Callbacks and passing anonymous functions

The C++11 standard brought lambda functions and the generic polymorphic function wrapper std::function<> to
the C++ programming language, which enable powerful new ways of working with functions. Lambda functions come
in two flavors: stateless lambda function resemble classic function pointers that link to an anonymous piece of code,
while stateful lambda functions additionally depend on captured variables that are stored in an anonymous lambda
closure object.

Here is a simple example of a C++ function that takes an arbitrary function (stateful or stateless) with signature int
-> int as an argument and runs it with the value 10.

int func_arg(const std::function<int(int)> &f) {
return f(10);

}

The example below is more involved: it takes a function of signature int -> int and returns another function of the
same kind. The return value is a stateful lambda function, which stores the value f in the capture object and adds 1 to
its return value upon execution.

std::function<int(int)> func_ret(const std::function<int(int)> &f) {
return [f](int i) {

return f(i) + 1;
};

}

This example demonstrates using python named parameters in C++ callbacks which requires using
py::cpp_function as a wrapper. Usage is similar to defining methods of classes:

py::cpp_function func_cpp() {
return py::cpp_function([](int i) { return i+1; },

py::arg("number"));
}

After including the extra header file pybind11/functional.h, it is almost trivial to generate binding code for all of
these functions.

#include <pybind11/functional.h>

PYBIND11_MODULE(example, m) {
m.def("func_arg", &func_arg);
m.def("func_ret", &func_ret);
m.def("func_cpp", &func_cpp);

}

The following interactive session shows how to call them from Python.

$ python
>>> import example
>>> def square(i):
... return i * i
...
>>> example.func_arg(square)
100L
>>> square_plus_1 = example.func_ret(square)
>>> square_plus_1(4)

(continues on next page)
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(continued from previous page)

17L
>>> plus_1 = func_cpp()
>>> plus_1(number=43)
44L

Warning: Keep in mind that passing a function from C++ to Python (or vice versa) will instantiate a piece of
wrapper code that translates function invocations between the two languages. Naturally, this translation increases
the computational cost of each function call somewhat. A problematic situation can arise when a function is copied
back and forth between Python and C++ many times in a row, in which case the underlying wrappers will accumulate
correspondingly. The resulting long sequence of C++ -> Python -> C++ -> . . . roundtrips can significantly decrease
performance.

There is one exception: pybind11 detects case where a stateless function (i.e. a function pointer or a lambda function
without captured variables) is passed as an argument to another C++ function exposed in Python. In this case, there
is no overhead. Pybind11 will extract the underlying C++ function pointer from the wrapped function to sidestep a
potential C++ -> Python -> C++ roundtrip. This is demonstrated in tests/test_callbacks.cpp.

Note: This functionality is very useful when generating bindings for callbacks in C++ libraries (e.g. GUI libraries,
asynchronous networking libraries, etc.).

The file tests/test_callbacks.cpp contains a complete example that demonstrates how to work with callbacks
and anonymous functions in more detail.

11.5 Chrono

When including the additional header file pybind11/chrono.h conversions from C++11 chrono datatypes to python
datetime objects are automatically enabled. This header also enables conversions of python floats (often from sources
such as time.monotonic(), time.perf_counter() and time.process_time()) into durations.

11.5.1 An overview of clocks in C++11

A point of confusion when using these conversions is the differences between clocks provided in C++11. There are
three clock types defined by the C++11 standard and users can define their own if needed. Each of these clocks have
different properties and when converting to and from python will give different results.

The first clock defined by the standard is std::chrono::system_clock. This clock measures the current date and
time. However, this clock changes with to updates to the operating system time. For example, if your time is synchro-
nised with a time server this clock will change. This makes this clock a poor choice for timing purposes but good for
measuring the wall time.

The second clock defined in the standard is std::chrono::steady_clock. This clock ticks at a steady rate and is
never adjusted. This makes it excellent for timing purposes, however the value in this clock does not correspond to the
current date and time. Often this clock will be the amount of time your system has been on, although it does not have
to be. This clock will never be the same clock as the system clock as the system clock can change but steady clocks
cannot.

The third clock defined in the standard is std::chrono::high_resolution_clock. This clock is the clock that has
the highest resolution out of the clocks in the system. It is normally a typedef to either the system clock or the steady
clock but can be its own independent clock. This is important as when using these conversions as the types you get in
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python for this clock might be different depending on the system. If it is a typedef of the system clock, python will get
datetime objects, but if it is a different clock they will be timedelta objects.

11.5.2 Provided conversions

C++ to Python

• std::chrono::system_clock::time_point→ datetime.datetime
System clock times are converted to python datetime instances. They are in the local timezone, but do not
have any timezone information attached to them (they are naive datetime objects).

• std::chrono::duration→ datetime.timedelta
Durations are converted to timedeltas, any precision in the duration greater than microseconds is lost by
rounding towards zero.

• std::chrono::[other_clocks]::time_point→ datetime.timedelta
Any clock time that is not the system clock is converted to a time delta. This timedelta measures the time
from the clocks epoch to now.

Python to C++

• datetime.datetime or datetime.date or datetime.time→
std::chrono::system_clock::time_point

Date/time objects are converted into system clock timepoints. Any timezone information is ignored and
the type is treated as a naive object.

• datetime.timedelta→ std::chrono::duration
Time delta are converted into durations with microsecond precision.

• datetime.timedelta→ std::chrono::[other_clocks]::time_point
Time deltas that are converted into clock timepoints are treated as the amount of time from the start of the
clocks epoch.

• float→ std::chrono::duration
Floats that are passed to C++ as durations be interpreted as a number of seconds. These will be converted
to the duration using duration_cast from the float.

• float→ std::chrono::[other_clocks]::time_point
Floats that are passed to C++ as time points will be interpreted as the number of seconds from the start of
the clocks epoch.

11.6 Eigen

Eigen is C++ header-based library for dense and sparse linear algebra. Due to its popularity and widespread adoption,
pybind11 provides transparent conversion and limited mapping support between Eigen and Scientific Python linear
algebra data types.

To enable the built-in Eigen support you must include the optional header file pybind11/eigen.h.
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11.6.1 Pass-by-value

When binding a function with ordinary Eigen dense object arguments (for example, Eigen::MatrixXd), pybind11
will accept any input value that is already (or convertible to) a numpy.ndarray with dimensions compatible with the
Eigen type, copy its values into a temporary Eigen variable of the appropriate type, then call the function with this
temporary variable.

Sparse matrices are similarly copied to or from scipy.sparse.csr_matrix/scipy.sparse.csc_matrix objects.

11.6.2 Pass-by-reference

One major limitation of the above is that every data conversion implicitly involves a copy, which can be both expensive
(for large matrices) and disallows binding functions that change their (Matrix) arguments. Pybind11 allows you to work
around this by using Eigen’s Eigen::Ref<MatrixType> class much as you would when writing a function taking a
generic type in Eigen itself (subject to some limitations discussed below).

When calling a bound function accepting a Eigen::Ref<const MatrixType> type, pybind11 will attempt to avoid
copying by using an Eigen::Map object that maps into the source numpy.ndarray data: this requires both that the
data types are the same (e.g. dtype='float64' and MatrixType::Scalar is double); and that the storage is layout
compatible. The latter limitation is discussed in detail in the section below, and requires careful consideration: by
default, numpy matrices and Eigen matrices are not storage compatible.

If the numpy matrix cannot be used as is (either because its types differ, e.g. passing an array of integers to an Eigen
parameter requiring doubles, or because the storage is incompatible), pybind11 makes a temporary copy and passes the
copy instead.

When a bound function parameter is instead Eigen::Ref<MatrixType> (note the lack of const), pybind11 will only
allow the function to be called if it can be mapped and if the numpy array is writeable (that is a.flags.writeable
is true). Any access (including modification) made to the passed variable will be transparently carried out directly on
the numpy.ndarray.

This means you can write code such as the following and have it work as expected:

void scale_by_2(Eigen::Ref<Eigen::VectorXd> v) {
v *= 2;

}

Note, however, that you will likely run into limitations due to numpy and Eigen’s difference default storage order for
data; see the below section on Storage orders for details on how to bind code that won’t run into such limitations.

Note: Passing by reference is not supported for sparse types.

11.6.3 Returning values to Python

When returning an ordinary dense Eigen matrix type to numpy (e.g. Eigen::MatrixXd or Eigen::RowVectorXf)
pybind11 keeps the matrix and returns a numpy array that directly references the Eigen matrix: no copy of the data is
performed. The numpy array will have array.flags.owndata set to False to indicate that it does not own the data,
and the lifetime of the stored Eigen matrix will be tied to the returned array.

If you bind a function with a non-reference, const return type (e.g. const Eigen::MatrixXd), the same thing
happens except that pybind11 also sets the numpy array’s writeable flag to false.

If you return an lvalue reference or pointer, the usual pybind11 rules apply, as dictated by the binding function’s return
value policy (see the documentation on Return value policies for full details). That means, without an explicit return
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value policy, lvalue references will be copied and pointers will be managed by pybind11. In order to avoid copying,
you should explicitly specify an appropriate return value policy, as in the following example:

class MyClass {
Eigen::MatrixXd big_mat = Eigen::MatrixXd::Zero(10000, 10000);

public:
Eigen::MatrixXd &getMatrix() { return big_mat; }
const Eigen::MatrixXd &viewMatrix() { return big_mat; }

};

// Later, in binding code:
py::class_<MyClass>(m, "MyClass")

.def(py::init<>())

.def("copy_matrix", &MyClass::getMatrix) // Makes a copy!

.def("get_matrix", &MyClass::getMatrix, py::return_value_policy::reference_internal)

.def("view_matrix", &MyClass::viewMatrix, py::return_value_policy::reference_
→˓internal)

;

a = MyClass()
m = a.get_matrix() # flags.writeable = True, flags.owndata = False
v = a.view_matrix() # flags.writeable = False, flags.owndata = False
c = a.copy_matrix() # flags.writeable = True, flags.owndata = True
# m[5,6] and v[5,6] refer to the same element, c[5,6] does not.

Note in this example that py::return_value_policy::reference_internal is used to tie the life of the MyClass
object to the life of the returned arrays.

You may also return an Eigen::Ref, Eigen::Map or other map-like Eigen object (for example, the return value of
matrix.block() and related methods) that map into a dense Eigen type. When doing so, the default behaviour of
pybind11 is to simply reference the returned data: you must take care to ensure that this data remains valid! You may ask
pybind11 to explicitly copy such a return value by using the py::return_value_policy::copy policy when binding
the function. You may also use py::return_value_policy::reference_internal or a py::keep_alive to
ensure the data stays valid as long as the returned numpy array does.

When returning such a reference of map, pybind11 additionally respects the readonly-status of the returned value,
marking the numpy array as non-writeable if the reference or map was itself read-only.

Note: Sparse types are always copied when returned.

11.6.4 Storage orders

Passing arguments via Eigen::Ref has some limitations that you must be aware of in order to effectively pass matrices
by reference. First and foremost is that the default Eigen::Ref<MatrixType> class requires contiguous storage along
columns (for column-major types, the default in Eigen) or rows if MatrixType is specifically an Eigen::RowMajor
storage type. The former, Eigen’s default, is incompatible with numpy’s default row-major storage, and so you will not
be able to pass numpy arrays to Eigen by reference without making one of two changes.

(Note that this does not apply to vectors (or column or row matrices): for such types the “row-major” and “column-
major” distinction is meaningless).

The first approach is to change the use of Eigen::Ref<MatrixType> to the more general Eigen::Ref<MatrixType,
0, Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>> (or similar type with a fully dynamic stride type in the
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third template argument). Since this is a rather cumbersome type, pybind11 provides a py::EigenDRef<MatrixType>
type alias for your convenience (along with EigenDMap for the equivalent Map, and EigenDStride for just the stride
type).

This type allows Eigen to map into any arbitrary storage order. This is not the default in Eigen for performance reasons:
contiguous storage allows vectorization that cannot be done when storage is not known to be contiguous at compile
time. The default Eigen::Ref stride type allows non-contiguous storage along the outer dimension (that is, the rows
of a column-major matrix or columns of a row-major matrix), but not along the inner dimension.

This type, however, has the added benefit of also being able to map numpy array slices. For example, the following
(contrived) example uses Eigen with a numpy slice to multiply by 2 all coefficients that are both on even rows (0, 2, 4,
. . . ) and in columns 2, 5, or 8:

m.def("scale", [](py::EigenDRef<Eigen::MatrixXd> m, double c) { m *= c; });

# a = np.array(...)
scale_by_2(myarray[0::2, 2:9:3])

The second approach to avoid copying is more intrusive: rearranging the underlying data types to not run into the
non-contiguous storage problem in the first place. In particular, that means using matrices with Eigen::RowMajor
storage, where appropriate, such as:

using RowMatrixXd = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic,␣
→˓Eigen::RowMajor>;
// Use RowMatrixXd instead of MatrixXd

Now bound functions accepting Eigen::Ref<RowMatrixXd> arguments will be callable with numpy’s (default) arrays
without involving a copying.

You can, alternatively, change the storage order that numpy arrays use by adding the order='F' option when creating
an array:

myarray = np.array(source, order="F")

Such an object will be passable to a bound function accepting an Eigen::Ref<MatrixXd> (or similar column-major
Eigen type).

One major caveat with this approach, however, is that it is not entirely as easy as simply flipping all Eigen or numpy
usage from one to the other: some operations may alter the storage order of a numpy array. For example, a2 = array.
transpose() results in a2 being a view of array that references the same data, but in the opposite storage order!

While this approach allows fully optimized vectorized calculations in Eigen, it cannot be used with array slices, unlike
the first approach.

When returning a matrix to Python (either a regular matrix, a reference via Eigen::Ref<>, or a map/block into a
matrix), no special storage consideration is required: the created numpy array will have the required stride that allows
numpy to properly interpret the array, whatever its storage order.
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11.6.5 Failing rather than copying

The default behaviour when binding Eigen::Ref<const MatrixType> Eigen references is to copy matrix values
when passed a numpy array that does not conform to the element type of MatrixType or does not have a compatible
stride layout. If you want to explicitly avoid copying in such a case, you should bind arguments using the py::arg().
noconvert() annotation (as described in the Non-converting arguments documentation).

The following example shows an example of arguments that don’t allow data copying to take place:

// The method and function to be bound:
class MyClass {

// ...
double some_method(const Eigen::Ref<const MatrixXd> &matrix) { /* ... */ }

};
float some_function(const Eigen::Ref<const MatrixXf> &big,

const Eigen::Ref<const MatrixXf> &small) {
// ...

}

// The associated binding code:
using namespace pybind11::literals; // for "arg"_a
py::class_<MyClass>(m, "MyClass")

// ... other class definitions
.def("some_method", &MyClass::some_method, py::arg().noconvert());

m.def("some_function", &some_function,
"big"_a.noconvert(), // <- Don't allow copying for this arg
"small"_a // <- This one can be copied if needed

);

With the above binding code, attempting to call the the some_method(m) method on a MyClass object, or attempting
to call some_function(m, m2) will raise a RuntimeError rather than making a temporary copy of the array. It will,
however, allow the m2 argument to be copied into a temporary if necessary.

Note that explicitly specifying .noconvert() is not required for mutable Eigen references (e.g.
Eigen::Ref<MatrixXd> without const on the MatrixXd): mutable references will never be called with a
temporary copy.

11.6.6 Vectors versus column/row matrices

Eigen and numpy have fundamentally different notions of a vector. In Eigen, a vector is simply a matrix with the number
of columns or rows set to 1 at compile time (for a column vector or row vector, respectively). NumPy, in contrast, has
comparable 2-dimensional 1xN and Nx1 arrays, but also has 1-dimensional arrays of size N.

When passing a 2-dimensional 1xN or Nx1 array to Eigen, the Eigen type must have matching dimensions: That is,
you cannot pass a 2-dimensional Nx1 numpy array to an Eigen value expecting a row vector, or a 1xN numpy array as
a column vector argument.

On the other hand, pybind11 allows you to pass 1-dimensional arrays of length N as Eigen parameters. If the Eigen type
can hold a column vector of length N it will be passed as such a column vector. If not, but the Eigen type constraints will
accept a row vector, it will be passed as a row vector. (The column vector takes precedence when both are supported,
for example, when passing a 1D numpy array to a MatrixXd argument). Note that the type need not be explicitly a
vector: it is permitted to pass a 1D numpy array of size 5 to an Eigen Matrix<double, Dynamic, 5>: you would
end up with a 1x5 Eigen matrix. Passing the same to an Eigen::MatrixXd would result in a 5x1 Eigen matrix.
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When returning an Eigen vector to numpy, the conversion is ambiguous: a row vector of length 4 could be returned as
either a 1D array of length 4, or as a 2D array of size 1x4. When encountering such a situation, pybind11 compromises
by considering the returned Eigen type: if it is a compile-time vector–that is, the type has either the number of rows or
columns set to 1 at compile time–pybind11 converts to a 1D numpy array when returning the value. For instances that
are a vector only at run-time (e.g. MatrixXd, Matrix<float, Dynamic, 4>), pybind11 returns the vector as a 2D
array to numpy. If this isn’t want you want, you can use array.reshape(...) to get a view of the same data in the
desired dimensions.

See also:

The file tests/test_eigen.cpp contains a complete example that shows how to pass Eigen sparse and dense data
types in more detail.

11.7 Custom type casters

In very rare cases, applications may require custom type casters that cannot be expressed using the abstractions provided
by pybind11, thus requiring raw Python C API calls. This is fairly advanced usage and should only be pursued by experts
who are familiar with the intricacies of Python reference counting.

The following snippets demonstrate how this works for a very simple inty type that that should be convertible from
Python types that provide a __int__(self) method.

struct inty { long long_value; };

void print(inty s) {
std::cout << s.long_value << std::endl;

}

The following Python snippet demonstrates the intended usage from the Python side:

class A:
def __int__(self):

return 123

from example import print

print(A())

To register the necessary conversion routines, it is necessary to add an instantiation of the
pybind11::detail::type_caster<T> template. Although this is an implementation detail, adding an instantiation
of this type is explicitly allowed.

namespace PYBIND11_NAMESPACE { namespace detail {
template <> struct type_caster<inty> {
public:

/**
* This macro establishes the name 'inty' in
* function signatures and declares a local variable
* 'value' of type inty
*/
PYBIND11_TYPE_CASTER(inty, const_name("inty"));

/**
(continues on next page)
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(continued from previous page)

* Conversion part 1 (Python->C++): convert a PyObject into a inty
* instance or return false upon failure. The second argument
* indicates whether implicit conversions should be applied.
*/
bool load(handle src, bool) {

/* Extract PyObject from handle */
PyObject *source = src.ptr();
/* Try converting into a Python integer value */
PyObject *tmp = PyNumber_Long(source);
if (!tmp)

return false;
/* Now try to convert into a C++ int */
value.long_value = PyLong_AsLong(tmp);
Py_DECREF(tmp);
/* Ensure return code was OK (to avoid out-of-range errors etc) */
return !(value.long_value == -1 && !PyErr_Occurred());

}

/**
* Conversion part 2 (C++ -> Python): convert an inty instance into
* a Python object. The second and third arguments are used to
* indicate the return value policy and parent object (for
* ``return_value_policy::reference_internal``) and are generally
* ignored by implicit casters.
*/
static handle cast(inty src, return_value_policy /* policy */, handle /* parent␣

→˓*/) {
return PyLong_FromLong(src.long_value);

}
};

}} // namespace PYBIND11_NAMESPACE::detail

Note: A type_caster<T> defined with PYBIND11_TYPE_CASTER(T, ...) requires that T is default-constructible
(value is first default constructed and then load() assigns to it).

Warning: When using custom type casters, it’s important to declare them consistently in every compilation unit
of the Python extension module. Otherwise, undefined behavior can ensue.
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CHAPTER

TWELVE

PYTHON C++ INTERFACE

pybind11 exposes Python types and functions using thin C++ wrappers, which makes it possible to conveniently call
Python code from C++ without resorting to Python’s C API.

12.1 Python types

12.1.1 Available wrappers

All major Python types are available as thin C++ wrapper classes. These can also be used as function parameters – see
Python objects as arguments.

Available types include handle, object, bool_, int_, float_, str, bytes, tuple, list, dict, slice, none,
capsule, iterable, iterator, function, buffer, array, and array_t.

Warning: Be sure to review the Gotchas before using this heavily in your C++ API.

12.1.2 Instantiating compound Python types from C++

Dictionaries can be initialized in the dict constructor:

using namespace pybind11::literals; // to bring in the `_a` literal
py::dict d("spam"_a=py::none(), "eggs"_a=42);

A tuple of python objects can be instantiated using py::make_tuple():

py::tuple tup = py::make_tuple(42, py::none(), "spam");

Each element is converted to a supported Python type.

A simple namespace can be instantiated using

using namespace pybind11::literals; // to bring in the `_a` literal
py::object SimpleNamespace = py::module_::import("types").attr("SimpleNamespace");
py::object ns = SimpleNamespace("spam"_a=py::none(), "eggs"_a=42);

Attributes on a namespace can be modified with the py::delattr(), py::getattr(), and py::setattr() func-
tions. Simple namespaces can be useful as lightweight stand-ins for class instances.
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12.1.3 Casting back and forth

In this kind of mixed code, it is often necessary to convert arbitrary C++ types to Python, which can be done using
py::cast():

MyClass *cls = ...;
py::object obj = py::cast(cls);

The reverse direction uses the following syntax:

py::object obj = ...;
MyClass *cls = obj.cast<MyClass *>();

When conversion fails, both directions throw the exception cast_error.

12.1.4 Accessing Python libraries from C++

It is also possible to import objects defined in the Python standard library or available in the current Python environment
(sys.path) and work with these in C++.

This example obtains a reference to the Python Decimal class.

// Equivalent to "from decimal import Decimal"
py::object Decimal = py::module_::import("decimal").attr("Decimal");

// Try to import scipy
py::object scipy = py::module_::import("scipy");
return scipy.attr("__version__");

12.1.5 Calling Python functions

It is also possible to call Python classes, functions and methods via operator().

// Construct a Python object of class Decimal
py::object pi = Decimal("3.14159");

// Use Python to make our directories
py::object os = py::module_::import("os");
py::object makedirs = os.attr("makedirs");
makedirs("/tmp/path/to/somewhere");

One can convert the result obtained from Python to a pure C++ version if a py::class_ or type conversion is defined.

py::function f = <...>;
py::object result_py = f(1234, "hello", some_instance);
MyClass &result = result_py.cast<MyClass>();
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12.1.6 Calling Python methods

To call an object’s method, one can again use .attr to obtain access to the Python method.

// Calculate e^π in decimal
py::object exp_pi = pi.attr("exp")();
py::print(py::str(exp_pi));

In the example above pi.attr("exp") is a bound method: it will always call the method for that same instance of
the class. Alternately one can create an unbound method via the Python class (instead of instance) and pass the self
object explicitly, followed by other arguments.

py::object decimal_exp = Decimal.attr("exp");

// Compute the e^n for n=0..4
for (int n = 0; n < 5; n++) {

py::print(decimal_exp(Decimal(n));
}

12.1.7 Keyword arguments

Keyword arguments are also supported. In Python, there is the usual call syntax:

def f(number, say, to):
... # function code

f(1234, say="hello", to=some_instance) # keyword call in Python

In C++, the same call can be made using:

using namespace pybind11::literals; // to bring in the `_a` literal
f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++

12.1.8 Unpacking arguments

Unpacking of *args and **kwargs is also possible and can be mixed with other arguments:

// * unpacking
py::tuple args = py::make_tuple(1234, "hello", some_instance);
f(*args);

// ** unpacking
py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
f(**kwargs);

// mixed keywords, * and ** unpacking
py::tuple args = py::make_tuple(1234);
py::dict kwargs = py::dict("to"_a=some_instance);
f(*args, "say"_a="hello", **kwargs);

Generalized unpacking according to PEP448 is also supported:
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py::dict kwargs1 = py::dict("number"_a=1234);
py::dict kwargs2 = py::dict("to"_a=some_instance);
f(**kwargs1, "say"_a="hello", **kwargs2);

See also:

The file tests/test_pytypes.cpp contains a complete example that demonstrates passing native Python types in
more detail. The file tests/test_callbacks.cpp presents a few examples of calling Python functions from C++,
including keywords arguments and unpacking.

12.1.9 Implicit casting

When using the C++ interface for Python types, or calling Python functions, objects of type object are returned. It
is possible to invoke implicit conversions to subclasses like dict. The same holds for the proxy objects returned by
operator[] or obj.attr(). Casting to subtypes improves code readability and allows values to be passed to C++
functions that require a specific subtype rather than a generic object.

#include <pybind11/numpy.h>
using namespace pybind11::literals;

py::module_ os = py::module_::import("os");
py::module_ path = py::module_::import("os.path"); // like 'import os.path as path'
py::module_ np = py::module_::import("numpy"); // like 'import numpy as np'

py::str curdir_abs = path.attr("abspath")(path.attr("curdir"));
py::print(py::str("Current directory: ") + curdir_abs);
py::dict environ = os.attr("environ");
py::print(environ["HOME"]);
py::array_t<float> arr = np.attr("ones")(3, "dtype"_a="float32");
py::print(py::repr(arr + py::int_(1)));

These implicit conversions are available for subclasses of object; there is no need to call obj.cast() explicitly as
for custom classes, see Casting back and forth.

Note: If a trivial conversion via move constructor is not possible, both implicit and explicit casting (calling obj.
cast()) will attempt a “rich” conversion. For instance, py::list env = os.attr("environ"); will succeed and
is equivalent to the Python code env = list(os.environ) that produces a list of the dict keys.

12.1.10 Handling exceptions

Python exceptions from wrapper classes will be thrown as a py::error_already_set. See Handling exceptions
from Python in C++ for more information on handling exceptions raised when calling C++ wrapper classes.
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12.1.11 Gotchas

Default-Constructed Wrappers

When a wrapper type is default-constructed, it is not a valid Python object (i.e. it is not py::none()). It is simply the
same as PyObject* null pointer. To check for this, use static_cast<bool>(my_wrapper).

Assigning py::none() to wrappers

You may be tempted to use types like py::str and py::dict in C++ signatures (either pure C++, or in bound signa-
tures), and assign them default values of py::none(). However, in a best case scenario, it will fail fast because None
is not convertible to that type (e.g. py::dict), or in a worse case scenario, it will silently work but corrupt the types
you want to work with (e.g. py::str(py::none()) will yield "None" in Python).

12.2 NumPy

12.2.1 Buffer protocol

Python supports an extremely general and convenient approach for exchanging data between plugin libraries. Types
can expose a buffer view1, which provides fast direct access to the raw internal data representation. Suppose we want
to bind the following simplistic Matrix class:

class Matrix {
public:

Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
m_data = new float[rows*cols];

}
float *data() { return m_data; }
size_t rows() const { return m_rows; }
size_t cols() const { return m_cols; }

private:
size_t m_rows, m_cols;
float *m_data;

};

The following binding code exposes the Matrix contents as a buffer object, making it possible to cast Matrices
into NumPy arrays. It is even possible to completely avoid copy operations with Python expressions like np.
array(matrix_instance, copy = False).

py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
.def_buffer([](Matrix &m) -> py::buffer_info {

return py::buffer_info(
m.data(), /* Pointer to buffer */
sizeof(float), /* Size of one scalar */
py::format_descriptor<float>::format(), /* Python struct-style format␣

→˓descriptor */
2, /* Number of dimensions */
{ m.rows(), m.cols() }, /* Buffer dimensions */
{ sizeof(float) * m.cols(), /* Strides (in bytes) for each index␣

→˓*/
(continues on next page)

1 http://docs.python.org/3/c-api/buffer.html
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(continued from previous page)

sizeof(float) }
);

});

Supporting the buffer protocol in a new type involves specifying the special py::buffer_protocol() tag
in the py::class_ constructor and calling the def_buffer() method with a lambda function that creates
a py::buffer_info description record on demand describing a given matrix instance. The contents of
py::buffer_info mirror the Python buffer protocol specification.

struct buffer_info {
void *ptr;
py::ssize_t itemsize;
std::string format;
py::ssize_t ndim;
std::vector<py::ssize_t> shape;
std::vector<py::ssize_t> strides;

};

To create a C++ function that can take a Python buffer object as an argument, simply use the type py::buffer as one
of its arguments. Buffers can exist in a great variety of configurations, hence some safety checks are usually necessary
in the function body. Below, you can see a basic example on how to define a custom constructor for the Eigen double
precision matrix (Eigen::MatrixXd) type, which supports initialization from compatible buffer objects (e.g. a NumPy
matrix).

/* Bind MatrixXd (or some other Eigen type) to Python */
typedef Eigen::MatrixXd Matrix;

typedef Matrix::Scalar Scalar;
constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;

py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
.def(py::init([](py::buffer b) {

typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;

/* Request a buffer descriptor from Python */
py::buffer_info info = b.request();

/* Some basic validation checks ... */
if (info.format != py::format_descriptor<Scalar>::format())

throw std::runtime_error("Incompatible format: expected a double array!");

if (info.ndim != 2)
throw std::runtime_error("Incompatible buffer dimension!");

auto strides = Strides(
info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar),
info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar));

auto map = Eigen::Map<Matrix, 0, Strides>(
static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);

return Matrix(map);
}));
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For reference, the def_buffer() call for this Eigen data type should look as follows:

.def_buffer([](Matrix &m) -> py::buffer_info {
return py::buffer_info(

m.data(), /* Pointer to buffer */
sizeof(Scalar), /* Size of one scalar */
py::format_descriptor<Scalar>::format(), /* Python struct-style format␣

→˓descriptor */
2, /* Number of dimensions */
{ m.rows(), m.cols() }, /* Buffer dimensions */
{ sizeof(Scalar) * (rowMajor ? m.cols() : 1),
sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }

/* Strides (in bytes) for each index */
);

})

For a much easier approach of binding Eigen types (although with some limitations), refer to the section on Eigen.

See also:

The file tests/test_buffers.cpp contains a complete example that demonstrates using the buffer protocol with
pybind11 in more detail.

12.2.2 Arrays

By exchanging py::buffer with py::array in the above snippet, we can restrict the function so that it only accepts
NumPy arrays (rather than any type of Python object satisfying the buffer protocol).

In many situations, we want to define a function which only accepts a NumPy array of a certain data type. This is
possible via the py::array_t<T> template. For instance, the following function requires the argument to be a NumPy
array containing double precision values.

void f(py::array_t<double> array);

When it is invoked with a different type (e.g. an integer or a list of integers), the binding code will attempt to cast the
input into a NumPy array of the requested type. This feature requires the pybind11/numpy.h header to be included.
Note that pybind11/numpy.h does not depend on the NumPy headers, and thus can be used without declaring a
build-time dependency on NumPy; NumPy>=1.7.0 is a runtime dependency.

Data in NumPy arrays is not guaranteed to packed in a dense manner; furthermore, entries can be separated by arbitrary
column and row strides. Sometimes, it can be useful to require a function to only accept dense arrays using either the
C (row-major) or Fortran (column-major) ordering. This can be accomplished via a second template argument with
values py::array::c_style or py::array::f_style.

void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);

The py::array::forcecast argument is the default value of the second template parameter, and it ensures that
non-conforming arguments are converted into an array satisfying the specified requirements instead of trying the next
function overload.

There are several methods on arrays; the methods listed below under references work, as well as the following functions
based on the NumPy API:

• .dtype() returns the type of the contained values.

• .strides() returns a pointer to the strides of the array (optionally pass an integer axis to get a number).

• .flags() returns the flag settings. .writable() and .owndata() are directly available.
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• .offset_at() returns the offset (optionally pass indices).

• .squeeze() returns a view with length-1 axes removed.

• .view(dtype) returns a view of the array with a different dtype.

• .reshape({i, j, ...}) returns a view of the array with a different shape. .resize({...}) is also available.

• .index_at(i, j, ...) gets the count from the beginning to a given index.

There are also several methods for getting references (described below).

12.2.3 Structured types

In order for py::array_t to work with structured (record) types, we first need to register the memory layout of the
type. This can be done via PYBIND11_NUMPY_DTYPE macro, called in the plugin definition code, which expects the
type followed by field names:

struct A {
int x;
double y;

};

struct B {
int z;
A a;

};

// ...
PYBIND11_MODULE(test, m) {

// ...

PYBIND11_NUMPY_DTYPE(A, x, y);
PYBIND11_NUMPY_DTYPE(B, z, a);
/* now both A and B can be used as template arguments to py::array_t */

}

The structure should consist of fundamental arithmetic types, std::complex, previously registered substructures, and
arrays of any of the above. Both C++ arrays and std::array are supported. While there is a static assertion to prevent
many types of unsupported structures, it is still the user’s responsibility to use only “plain” structures that can be safely
manipulated as raw memory without violating invariants.

12.2.4 Vectorizing functions

Suppose we want to bind a function with the following signature to Python so that it can process arbitrary NumPy array
arguments (vectors, matrices, general N-D arrays) in addition to its normal arguments:

double my_func(int x, float y, double z);

After including the pybind11/numpy.h header, this is extremely simple:

m.def("vectorized_func", py::vectorize(my_func));

Invoking the function like below causes 4 calls to be made to my_func with each of the array elements. The significant
advantage of this compared to solutions like numpy.vectorize() is that the loop over the elements runs entirely on
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the C++ side and can be crunched down into a tight, optimized loop by the compiler. The result is returned as a NumPy
array of type numpy.dtype.float64.

>>> x = np.array([[1, 3], [5, 7]])
>>> y = np.array([[2, 4], [6, 8]])
>>> z = 3
>>> result = vectorized_func(x, y, z)

The scalar argument z is transparently replicated 4 times. The input arrays x and y are automatically converted into the
right types (they are of type numpy.dtype.int64 but need to be numpy.dtype.int32 and numpy.dtype.float32,
respectively).

Note: Only arithmetic, complex, and POD types passed by value or by const & reference are vectorized; all other
arguments are passed through as-is. Functions taking rvalue reference arguments cannot be vectorized.

In cases where the computation is too complicated to be reduced to vectorize, it will be necessary to create and
access the buffer contents manually. The following snippet contains a complete example that shows how this works
(the code is somewhat contrived, since it could have been done more simply using vectorize).

#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>

namespace py = pybind11;

py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
py::buffer_info buf1 = input1.request(), buf2 = input2.request();

if (buf1.ndim != 1 || buf2.ndim != 1)
throw std::runtime_error("Number of dimensions must be one");

if (buf1.size != buf2.size)
throw std::runtime_error("Input shapes must match");

/* No pointer is passed, so NumPy will allocate the buffer */
auto result = py::array_t<double>(buf1.size);

py::buffer_info buf3 = result.request();

double *ptr1 = static_cast<double *>(buf1.ptr);
double *ptr2 = static_cast<double *>(buf2.ptr);
double *ptr3 = static_cast<double *>(buf3.ptr);

for (size_t idx = 0; idx < buf1.shape[0]; idx++)
ptr3[idx] = ptr1[idx] + ptr2[idx];

return result;
}

PYBIND11_MODULE(test, m) {
m.def("add_arrays", &add_arrays, "Add two NumPy arrays");

}
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See also:

The file tests/test_numpy_vectorize.cpp contains a complete example that demonstrates using vectorize()
in more detail.

12.2.5 Direct access

For performance reasons, particularly when dealing with very large arrays, it is often desirable to directly access array
elements without internal checking of dimensions and bounds on every access when indices are known to be already
valid. To avoid such checks, the array class and array_t<T> template class offer an unchecked proxy object that can
be used for this unchecked access through the unchecked<N> and mutable_unchecked<N> methods, where N gives
the required dimensionality of the array:

m.def("sum_3d", [](py::array_t<double> x) {
auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable
double sum = 0;
for (py::ssize_t i = 0; i < r.shape(0); i++)

for (py::ssize_t j = 0; j < r.shape(1); j++)
for (py::ssize_t k = 0; k < r.shape(2); k++)

sum += r(i, j, k);
return sum;

});
m.def("increment_3d", [](py::array_t<double> x) {

auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is␣
→˓false
for (py::ssize_t i = 0; i < r.shape(0); i++)

for (py::ssize_t j = 0; j < r.shape(1); j++)
for (py::ssize_t k = 0; k < r.shape(2); k++)

r(i, j, k) += 1.0;
}, py::arg().noconvert());

To obtain the proxy from an array object, you must specify both the data type and number of dimensions as template
arguments, such as auto r = myarray.mutable_unchecked<float, 2>().

If the number of dimensions is not known at compile time, you can omit the dimensions template parameter (i.e. calling
arr_t.unchecked() or arr.unchecked<T>(). This will give you a proxy object that works in the same way, but
results in less optimizable code and thus a small efficiency loss in tight loops.

Note that the returned proxy object directly references the array’s data, and only reads its shape, strides, and writeable
flag when constructed. You must take care to ensure that the referenced array is not destroyed or reshaped for the
duration of the returned object, typically by limiting the scope of the returned instance.

The returned proxy object supports some of the same methods as py::array so that it can be used as a drop-in
replacement for some existing, index-checked uses of py::array:

• .ndim() returns the number of dimensions

• .data(1, 2, ...) and r.mutable_data(1, 2, ...)` returns a pointer to the const T or T data, respec-
tively, at the given indices. The latter is only available to proxies obtained via a.mutable_unchecked().

• .itemsize() returns the size of an item in bytes, i.e. sizeof(T).

• .ndim() returns the number of dimensions.

• .shape(n) returns the size of dimension n

• .size() returns the total number of elements (i.e. the product of the shapes).

• .nbytes() returns the number of bytes used by the referenced elements (i.e. itemsize() times size()).
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See also:

The file tests/test_numpy_array.cpp contains additional examples demonstrating the use of this feature.

12.2.6 Ellipsis

Python provides a convenient ... ellipsis notation that is often used to slice multidimensional arrays. For instance, the
following snippet extracts the middle dimensions of a tensor with the first and last index set to zero.

a = ... # a NumPy array
b = a[0, ..., 0]

The function py::ellipsis() function can be used to perform the same operation on the C++ side:

py::array a = /* A NumPy array */;
py::array b = a[py::make_tuple(0, py::ellipsis(), 0)];

12.2.7 Memory view

For a case when we simply want to provide a direct accessor to C/C++ buffer without a concrete class object, we can
return a memoryview object. Suppose we wish to expose a memoryview for 2x4 uint8_t array, we can do the following:

const uint8_t buffer[] = {
0, 1, 2, 3,
4, 5, 6, 7

};
m.def("get_memoryview2d", []() {

return py::memoryview::from_buffer(
buffer, // buffer pointer
{ 2, 4 }, // shape (rows, cols)
{ sizeof(uint8_t) * 4, sizeof(uint8_t) } // strides in bytes

);
});

This approach is meant for providing a memoryview for a C/C++ buffer not managed by Python. The user is responsible
for managing the lifetime of the buffer. Using a memoryview created in this way after deleting the buffer in C++ side
results in undefined behavior.

We can also use memoryview::from_memory for a simple 1D contiguous buffer:

m.def("get_memoryview1d", []() {
return py::memoryview::from_memory(

buffer, // buffer pointer
sizeof(uint8_t) * 8 // buffer size

);
});

Changed in version 2.6: memoryview::from_memory added.
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12.3 Utilities

12.3.1 Using Python’s print function in C++

The usual way to write output in C++ is using std::cout while in Python one would use print. Since these methods
use different buffers, mixing them can lead to output order issues. To resolve this, pybind11 modules can use the
py::print() function which writes to Python’s sys.stdout for consistency.

Python’s print function is replicated in the C++ API including optional keyword arguments sep, end, file, flush.
Everything works as expected in Python:

py::print(1, 2.0, "three"); // 1 2.0 three
py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three

auto args = py::make_tuple("unpacked", true);
py::print("->", *args, "end"_a="<-"); // -> unpacked True <-

12.3.2 Capturing standard output from ostream

Often, a library will use the streams std::cout and std::cerr to print, but this does not play well with Python’s
standard sys.stdout and sys.stderr redirection. Replacing a library’s printing with py::print <print> may
not be feasible. This can be fixed using a guard around the library function that redirects output to the corresponding
Python streams:

#include <pybind11/iostream.h>

...

// Add a scoped redirect for your noisy code
m.def("noisy_func", []() {

py::scoped_ostream_redirect stream(
std::cout, // std::ostream&
py::module_::import("sys").attr("stdout") // Python output

);
call_noisy_func();

});

Warning: The implementation in pybind11/iostream.h is NOT thread safe. Multiple threads writing to a
redirected ostream concurrently cause data races and potentially buffer overflows. Therefore it is currently a re-
quirement that all (possibly) concurrent redirected ostream writes are protected by a mutex. #HelpAppreciated:
Work on iostream.h thread safety. For more background see the discussions under PR #2982 and PR #2995.

This method respects flushes on the output streams and will flush if needed when the scoped guard is destroyed.
This allows the output to be redirected in real time, such as to a Jupyter notebook. The two arguments, the
C++ stream and the Python output, are optional, and default to standard output if not given. An extra type,
py::scoped_estream_redirect <scoped_estream_redirect>, is identical except for defaulting to std::cerr
and sys.stderr; this can be useful with py::call_guard, which allows multiple items, but uses the default con-
structor:
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// Alternative: Call single function using call guard
m.def("noisy_func", &call_noisy_function,

py::call_guard<py::scoped_ostream_redirect,
py::scoped_estream_redirect>());

The redirection can also be done in Python with the addition of a context manager, using the
py::add_ostream_redirect() <add_ostream_redirect> function:

py::add_ostream_redirect(m, "ostream_redirect");

The name in Python defaults to ostream_redirect if no name is passed. This creates the following context manager
in Python:

with ostream_redirect(stdout=True, stderr=True):
noisy_function()

It defaults to redirecting both streams, though you can use the keyword arguments to disable one of the streams if
needed.

Note: The above methods will not redirect C-level output to file descriptors, such as fprintf. For those cases, you’ll
need to redirect the file descriptors either directly in C or with Python’s os.dup2 function in an operating-system
dependent way.

12.3.3 Evaluating Python expressions from strings and files

pybind11 provides the eval, exec and eval_file functions to evaluate Python expressions and statements. The
following example illustrates how they can be used.

// At beginning of file
#include <pybind11/eval.h>

...

// Evaluate in scope of main module
py::object scope = py::module_::import("__main__").attr("__dict__");

// Evaluate an isolated expression
int result = py::eval("my_variable + 10", scope).cast<int>();

// Evaluate a sequence of statements
py::exec(

"print('Hello')\n"
"print('world!');",
scope);

// Evaluate the statements in an separate Python file on disk
py::eval_file("script.py", scope);

C++11 raw string literals are also supported and quite handy for this purpose. The only requirement is that the first
statement must be on a new line following the raw string delimiter R"(, ensuring all lines have common leading indent:
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py::exec(R"(
x = get_answer()
if x == 42:

print('Hello World!')
else:

print('Bye!')
)", scope

);

Note: eval and eval_file accept a template parameter that describes how the string/file should be interpreted.
Possible choices include eval_expr (isolated expression), eval_single_statement (a single statement, return value
is always none), and eval_statements (sequence of statements, return value is always none). eval defaults to
eval_expr, eval_file defaults to eval_statements and exec is just a shortcut for eval<eval_statements>.
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CHAPTER

THIRTEEN

EMBEDDING THE INTERPRETER

While pybind11 is mainly focused on extending Python using C++, it’s also possible to do the reverse: embed the
Python interpreter into a C++ program. All of the other documentation pages still apply here, so refer to them for
general pybind11 usage. This section will cover a few extra things required for embedding.

13.1 Getting started

A basic executable with an embedded interpreter can be created with just a few lines of CMake and the
pybind11::embed target, as shown below. For more information, see Build systems.

cmake_minimum_required(VERSION 3.5...3.27)
project(example)

find_package(pybind11 REQUIRED) # or `add_subdirectory(pybind11)`

add_executable(example main.cpp)
target_link_libraries(example PRIVATE pybind11::embed)

The essential structure of the main.cpp file looks like this:

#include <pybind11/embed.h> // everything needed for embedding
namespace py = pybind11;

int main() {
py::scoped_interpreter guard{}; // start the interpreter and keep it alive

py::print("Hello, World!"); // use the Python API
}

The interpreter must be initialized before using any Python API, which includes all the functions and classes in py-
bind11. The RAII guard class scoped_interpreter takes care of the interpreter lifetime. After the guard is destroyed,
the interpreter shuts down and clears its memory. No Python functions can be called after this.
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13.2 Executing Python code

There are a few different ways to run Python code. One option is to use eval, exec or eval_file, as explained in
Evaluating Python expressions from strings and files. Here is a quick example in the context of an executable with an
embedded interpreter:

#include <pybind11/embed.h>
namespace py = pybind11;

int main() {
py::scoped_interpreter guard{};

py::exec(R"(
kwargs = dict(name="World", number=42)
message = "Hello, {name}! The answer is {number}".format(**kwargs)
print(message)

)");
}

Alternatively, similar results can be achieved using pybind11’s API (see Python C++ interface for more details).

#include <pybind11/embed.h>
namespace py = pybind11;
using namespace py::literals;

int main() {
py::scoped_interpreter guard{};

auto kwargs = py::dict("name"_a="World", "number"_a=42);
auto message = "Hello, {name}! The answer is {number}"_s.format(**kwargs);
py::print(message);

}

The two approaches can also be combined:

#include <pybind11/embed.h>
#include <iostream>

namespace py = pybind11;
using namespace py::literals;

int main() {
py::scoped_interpreter guard{};

auto locals = py::dict("name"_a="World", "number"_a=42);
py::exec(R"(

message = "Hello, {name}! The answer is {number}".format(**locals())
)", py::globals(), locals);

auto message = locals["message"].cast<std::string>();
std::cout << message;

}
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13.3 Importing modules

Python modules can be imported using module_::import():

py::module_ sys = py::module_::import("sys");
py::print(sys.attr("path"));

For convenience, the current working directory is included in sys.path when embedding the interpreter. This makes
it easy to import local Python files:

"""calc.py located in the working directory"""

def add(i, j):
return i + j

py::module_ calc = py::module_::import("calc");
py::object result = calc.attr("add")(1, 2);
int n = result.cast<int>();
assert(n == 3);

Modules can be reloaded using module_::reload() if the source is modified e.g. by an external process. This can
be useful in scenarios where the application imports a user defined data processing script which needs to be updated
after changes by the user. Note that this function does not reload modules recursively.

13.4 Adding embedded modules

Embedded binary modules can be added using the PYBIND11_EMBEDDED_MODULEmacro. Note that the definition must
be placed at global scope. They can be imported like any other module.

#include <pybind11/embed.h>
namespace py = pybind11;

PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
// `m` is a `py::module_` which is used to bind functions and classes
m.def("add", [](int i, int j) {

return i + j;
});

}

int main() {
py::scoped_interpreter guard{};

auto fast_calc = py::module_::import("fast_calc");
auto result = fast_calc.attr("add")(1, 2).cast<int>();
assert(result == 3);

}

Unlike extension modules where only a single binary module can be created, on the embedded side an unlimited number
of modules can be added using multiple PYBIND11_EMBEDDED_MODULE definitions (as long as they have unique names).

These modules are added to Python’s list of builtins, so they can also be imported in pure Python files loaded by the
interpreter. Everything interacts naturally:
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"""py_module.py located in the working directory"""
import cpp_module

a = cpp_module.a
b = a + 1

#include <pybind11/embed.h>
namespace py = pybind11;

PYBIND11_EMBEDDED_MODULE(cpp_module, m) {
m.attr("a") = 1;

}

int main() {
py::scoped_interpreter guard{};

auto py_module = py::module_::import("py_module");

auto locals = py::dict("fmt"_a="{} + {} = {}", **py_module.attr("__dict__"));
assert(locals["a"].cast<int>() == 1);
assert(locals["b"].cast<int>() == 2);

py::exec(R"(
c = a + b
message = fmt.format(a, b, c)

)", py::globals(), locals);

assert(locals["c"].cast<int>() == 3);
assert(locals["message"].cast<std::string>() == "1 + 2 = 3");

}

13.5 Interpreter lifetime

The Python interpreter shuts down when scoped_interpreter is destroyed. After this, creating a new instance will
restart the interpreter. Alternatively, the initialize_interpreter / finalize_interpreter pair of functions can
be used to directly set the state at any time.

Modules created with pybind11 can be safely re-initialized after the interpreter has been restarted. However, this may
not apply to third-party extension modules. The issue is that Python itself cannot completely unload extension modules
and there are several caveats with regard to interpreter restarting. In short, not all memory may be freed, either due to
Python reference cycles or user-created global data. All the details can be found in the CPython documentation.

Warning: Creating two concurrent scoped_interpreter guards is a fatal error. So is calling
initialize_interpreter for a second time after the interpreter has already been initialized.

Do not use the raw CPython API functions Py_Initialize and Py_Finalize as these do not properly handle the
lifetime of pybind11’s internal data.
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13.6 Sub-interpreter support

Creating multiple copies of scoped_interpreter is not possible because it represents the main Python interpreter.
Sub-interpreters are something different and they do permit the existence of multiple interpreters. This is an advanced
feature of the CPython API and should be handled with care. pybind11 does not currently offer a C++ interface for
sub-interpreters, so refer to the CPython documentation for all the details regarding this feature.

We’ll just mention a couple of caveats the sub-interpreters support in pybind11:

1. Sub-interpreters will not receive independent copies of embedded modules. Instead, these are shared and modi-
fications in one interpreter may be reflected in another.

2. Managing multiple threads, multiple interpreters and the GIL can be challenging and there are several caveats
here, even within the pure CPython API (please refer to the Python docs for details). As for pybind11, keep in
mind that gil_scoped_release and gil_scoped_acquire do not take sub-interpreters into account.
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14.1 General notes regarding convenience macros

pybind11 provides a few convenience macros such as PYBIND11_DECLARE_HOLDER_TYPE() and
PYBIND11_OVERRIDE_*. Since these are “just” macros that are evaluated in the preprocessor (which has no
concept of types), they will get confused by commas in a template argument; for example, consider:

PYBIND11_OVERRIDE(MyReturnType<T1, T2>, Class<T3, T4>, func)

The limitation of the C preprocessor interprets this as five arguments (with new arguments beginning after each comma)
rather than three. To get around this, there are two alternatives: you can use a type alias, or you can wrap the type using
the PYBIND11_TYPE macro:

// Version 1: using a type alias
using ReturnType = MyReturnType<T1, T2>;
using ClassType = Class<T3, T4>;
PYBIND11_OVERRIDE(ReturnType, ClassType, func);

// Version 2: using the PYBIND11_TYPE macro:
PYBIND11_OVERRIDE(PYBIND11_TYPE(MyReturnType<T1, T2>),

PYBIND11_TYPE(Class<T3, T4>), func)

The PYBIND11_MAKE_OPAQUE macro does not require the above workarounds.

14.2 Global Interpreter Lock (GIL)

The Python C API dictates that the Global Interpreter Lock (GIL) must always be held by the current thread to safely
access Python objects. As a result, when Python calls into C++ via pybind11 the GIL must be held, and pybind11 will
never implicitly release the GIL.

void my_function() {
/* GIL is held when this function is called from Python */

}

PYBIND11_MODULE(example, m) {
m.def("my_function", &my_function);

}

pybind11 will ensure that the GIL is held when it knows that it is calling Python code. For example, if a Python callback
is passed to C++ code via std::function, when C++ code calls the function the built-in wrapper will acquire the
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GIL before calling the Python callback. Similarly, the PYBIND11_OVERRIDE family of macros will acquire the GIL
before calling back into Python.

When writing C++ code that is called from other C++ code, if that code accesses Python state, it must explicitly acquire
and release the GIL.

The classes gil_scoped_release and gil_scoped_acquire can be used to acquire and release the global inter-
preter lock in the body of a C++ function call. In this way, long-running C++ code can be parallelized using multiple
Python threads, but great care must be taken when any gil_scoped_release appear: if there is any way that the
C++ code can access Python objects, gil_scoped_acquire should be used to reacquire the GIL. Taking Overriding
virtual functions in Python as an example, this could be realized as follows (important changes highlighted):

class PyAnimal : public Animal {
public:

/* Inherit the constructors */
using Animal::Animal;

/* Trampoline (need one for each virtual function) */
std::string go(int n_times) {

/* PYBIND11_OVERRIDE_PURE will acquire the GIL before accessing Python state */
PYBIND11_OVERRIDE_PURE(

std::string, /* Return type */
Animal, /* Parent class */
go, /* Name of function */
n_times /* Argument(s) */

);
}

};

PYBIND11_MODULE(example, m) {
py::class_<Animal, PyAnimal> animal(m, "Animal");
animal

.def(py::init<>())

.def("go", &Animal::go);

py::class_<Dog>(m, "Dog", animal)
.def(py::init<>());

m.def("call_go", [](Animal *animal) -> std::string {
// GIL is held when called from Python code. Release GIL before
// calling into (potentially long-running) C++ code
py::gil_scoped_release release;
return call_go(animal);

});
}

The call_go wrapper can also be simplified using the call_guard policy (see Additional call policies) which yields
the same result:

m.def("call_go", &call_go, py::call_guard<py::gil_scoped_release>());
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14.3 Common Sources Of Global Interpreter Lock Errors

Failing to properly hold the Global Interpreter Lock (GIL) is one of the more common sources of bugs within code that
uses pybind11. If you are running into GIL related errors, we highly recommend you consult the following checklist.

• Do you have any global variables that are pybind11 objects or invoke pybind11 functions in either their construc-
tor or destructor? You are generally not allowed to invoke any Python function in a global static context. We
recommend using lazy initialization and then intentionally leaking at the end of the program.

• Do you have any pybind11 objects that are members of other C++ structures? One commonly overlooked re-
quirement is that pybind11 objects have to increase their reference count whenever their copy constructor is
called. Thus, you need to be holding the GIL to invoke the copy constructor of any C++ class that has a pybind11
member. This can sometimes be very tricky to track for complicated programs Think carefully when you make
a pybind11 object a member in another struct.

• C++ destructors that invoke Python functions can be particularly troublesome as destructors can sometimes get
invoked in weird and unexpected circumstances as a result of exceptions.

• You should try running your code in a debug build. That will enable additional assertions within pybind11 that
will throw exceptions on certain GIL handling errors (reference counting operations).

14.4 Binding sequence data types, iterators, the slicing protocol, etc.

Please refer to the supplemental example for details.

See also:

The file tests/test_sequences_and_iterators.cpp contains a complete example that shows how to bind a se-
quence data type, including length queries (__len__), iterators (__iter__), the slicing protocol and other kinds of
useful operations.

14.5 Partitioning code over multiple extension modules

It’s straightforward to split binding code over multiple extension modules, while referencing types that are declared
elsewhere. Everything “just” works without any special precautions. One exception to this rule occurs when extend-
ing a type declared in another extension module. Recall the basic example from Section Inheritance and automatic
downcasting.

py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())

.def_readwrite("name", &Pet::name);

py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
.def(py::init<const std::string &>())
.def("bark", &Dog::bark);

Suppose now that Pet bindings are defined in a module named basic, whereas the Dog bindings are defined somewhere
else. The challenge is of course that the variable pet is not available anymore though it is needed to indicate the
inheritance relationship to the constructor of class_<Dog>. However, it can be acquired as follows:

py::object pet = (py::object) py::module_::import("basic").attr("Pet");

py::class_<Dog>(m, "Dog", pet)
(continues on next page)

14.3. Common Sources Of Global Interpreter Lock Errors 153



pybind11 Documentation

(continued from previous page)

.def(py::init<const std::string &>())

.def("bark", &Dog::bark);

Alternatively, you can specify the base class as a template parameter option to class_, which performs an automated
lookup of the corresponding Python type. Like the above code, however, this also requires invoking the import function
once to ensure that the pybind11 binding code of the module basic has been executed:

py::module_::import("basic");

py::class_<Dog, Pet>(m, "Dog")
.def(py::init<const std::string &>())
.def("bark", &Dog::bark);

Naturally, both methods will fail when there are cyclic dependencies.

Note that pybind11 code compiled with hidden-by-default symbol visibility (e.g. via the command line flag
-fvisibility=hidden on GCC/Clang), which is required for proper pybind11 functionality, can interfere with the
ability to access types defined in another extension module. Working around this requires manually exporting types
that are accessed by multiple extension modules; pybind11 provides a macro to do just this:

class PYBIND11_EXPORT Dog : public Animal {
...

};

Note also that it is possible (although would rarely be required) to share arbitrary C++ objects between extension mod-
ules at runtime. Internal library data is shared between modules using capsule machinery1 which can be also utilized
for storing, modifying and accessing user-defined data. Note that an extension module will “see” other extensions’ data
if and only if they were built with the same pybind11 version. Consider the following example:

auto data = reinterpret_cast<MyData *>(py::get_shared_data("mydata"));
if (!data)

data = static_cast<MyData *>(py::set_shared_data("mydata", new MyData(42)));

If the above snippet was used in several separately compiled extension modules, the first one to be imported would
create a MyData instance and associate a "mydata" key with a pointer to it. Extensions that are imported later would
be then able to access the data behind the same pointer.

14.6 Module Destructors

pybind11 does not provide an explicit mechanism to invoke cleanup code at module destruction time. In rare cases
where such functionality is required, it is possible to emulate it using Python capsules or weak references with a
destruction callback.

auto cleanup_callback = []() {
// perform cleanup here -- this function is called with the GIL held

};

m.add_object("_cleanup", py::capsule(cleanup_callback));

This approach has the potential downside that instances of classes exposed within the module may still be alive when
the cleanup callback is invoked (whether this is acceptable will generally depend on the application).

1 https://docs.python.org/3/extending/extending.html#using-capsules
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Alternatively, the capsule may also be stashed within a type object, which ensures that it not called before all instances
of that type have been collected:

auto cleanup_callback = []() { /* ... */ };
m.attr("BaseClass").attr("_cleanup") = py::capsule(cleanup_callback);

Both approaches also expose a potentially dangerous _cleanup attribute in Python, which may be undesirable from
an API standpoint (a premature explicit call from Python might lead to undefined behavior). Yet another approach that
avoids this issue involves weak reference with a cleanup callback:

// Register a callback function that is invoked when the BaseClass object is collected
py::cpp_function cleanup_callback(

[](py::handle weakref) {
// perform cleanup here -- this function is called with the GIL held

weakref.dec_ref(); // release weak reference
}

);

// Create a weak reference with a cleanup callback and initially leak it
(void) py::weakref(m.attr("BaseClass"), cleanup_callback).release();

Note: PyPy does not garbage collect objects when the interpreter exits. An alternative approach (which also works
on CPython) is to use the atexit module2, for example:

auto atexit = py::module_::import("atexit");
atexit.attr("register")(py::cpp_function([]() {

// perform cleanup here -- this function is called with the GIL held
}));

14.7 Generating documentation using Sphinx

Sphinx3 has the ability to inspect the signatures and documentation strings in pybind11-based extension modules to
automatically generate beautiful documentation in a variety formats. The python_example repository4 contains a simple
example repository which uses this approach.

There are two potential gotchas when using this approach: first, make sure that the resulting strings do not contain any
TAB characters, which break the docstring parsing routines. You may want to use C++11 raw string literals, which are
convenient for multi-line comments. Conveniently, any excess indentation will be automatically be removed by Sphinx.
However, for this to work, it is important that all lines are indented consistently, i.e.:

// ok
m.def("foo", &foo, R"mydelimiter(

The foo function

Parameters
----------

(continues on next page)

2 https://docs.python.org/3/library/atexit.html
3 http://www.sphinx-doc.org
4 http://github.com/pybind/python_example
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)mydelimiter");

// *not ok*
m.def("foo", &foo, R"mydelimiter(The foo function

Parameters
----------

)mydelimiter");

By default, pybind11 automatically generates and prepends a signature to the docstring of a function registered with
module_::def() and class_::def(). Sometimes this behavior is not desirable, because you want to provide your
own signature or remove the docstring completely to exclude the function from the Sphinx documentation. The class
options allows you to selectively suppress auto-generated signatures:

PYBIND11_MODULE(example, m) {
py::options options;
options.disable_function_signatures();

m.def("add", [](int a, int b) { return a + b; }, "A function which adds two numbers
→˓");
}

pybind11 also appends all members of an enum to the resulting enum docstring. This default behavior can be disabled
by using the disable_enum_members_docstring() function of the options class.

With disable_user_defined_docstrings() all user defined docstrings of module_::def(), class_::def()
and enum_() are disabled, but the function signatures and enum members are included in the docstring, unless they
are disabled separately.

Note that changes to the settings affect only function bindings created during the lifetime of the options instance.
When it goes out of scope at the end of the module’s init function, the default settings are restored to prevent unwanted
side effects.

14.8 Avoiding C++ types in docstrings

Docstrings are generated at the time of the declaration, e.g. when .def(...) is called. At this point parameter and
return types should be known to pybind11. If a custom type is not exposed yet through a py::class_ constructor or
a custom type caster, its C++ type name will be used instead to generate the signature in the docstring:

| __init__(...)
| __init__(self: example.Foo, arg0: ns::Bar) -> None

^^^^^^^

This limitation can be circumvented by ensuring that C++ classes are registered with pybind11 before they are used as
a parameter or return type of a function:

PYBIND11_MODULE(example, m) {

auto pyFoo = py::class_<ns::Foo>(m, "Foo");
auto pyBar = py::class_<ns::Bar>(m, "Bar");

pyFoo.def(py::init<const ns::Bar&>());
(continues on next page)

14.8. Avoiding C++ types in docstrings 156



pybind11 Documentation

(continued from previous page)

pyBar.def(py::init<const ns::Foo&>());
}

14.9 Setting inner type hints in docstrings

When you use pybind11 wrappers for list, dict, and other generic python types, the docstring will just display the
generic type. You can convey the inner types in the docstring by using a special ‘typed’ version of the generic type.

PYBIND11_MODULE(example, m) {
m.def("pass_list_of_str", [](py::typing::List<py::str> arg) {

// arg can be used just like py::list
));

}

The resulting docstring will be pass_list_of_str(arg0: list[str]) -> None.

The following special types are available in pybind11/typing.h:

• py::Tuple<Args...>

• py::Dict<K, V>

• py::List<V>

• py::Set<V>

• py::Callable<Signature>

Warning: Just like in python, these are merely hints. They don’t actually enforce the types of their contents at
runtime or compile time.
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FREQUENTLY ASKED QUESTIONS

15.1 “ImportError: dynamic module does not define init function”

1. Make sure that the name specified in PYBIND11_MODULE is identical to the filename of the extension library
(without suffixes such as .so).

2. If the above did not fix the issue, you are likely using an incompatible version of Python that does not match what
you compiled with.

15.2 “Symbol not found: __Py_ZeroStruct / _PyInstanceMethod_Type”

See the first answer.

15.3 “SystemError: dynamic module not initialized properly”

See the first answer.

15.4 The Python interpreter immediately crashes when importing my
module

See the first answer.

15.5 Limitations involving reference arguments

In C++, it’s fairly common to pass arguments using mutable references or mutable pointers, which allows both read and
write access to the value supplied by the caller. This is sometimes done for efficiency reasons, or to realize functions
that have multiple return values. Here are two very basic examples:

void increment(int &i) { i++; }
void increment_ptr(int *i) { (*i)++; }

In Python, all arguments are passed by reference, so there is no general issue in binding such code from Python.
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However, certain basic Python types (like str, int, bool, float, etc.) are immutable. This means that the following
attempt to port the function to Python doesn’t have the same effect on the value provided by the caller – in fact, it does
nothing at all.

def increment(i):
i += 1 # nope..

pybind11 is also affected by such language-level conventions, which means that binding increment or
increment_ptr will also create Python functions that don’t modify their arguments.

Although inconvenient, one workaround is to encapsulate the immutable types in a custom type that does allow modi-
fications.

An other alternative involves binding a small wrapper lambda function that returns a tuple with all output arguments
(see the remainder of the documentation for examples on binding lambda functions). An example:

int foo(int &i) { i++; return 123; }

and the binding code

m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); });

15.6 How can I reduce the build time?

It’s good practice to split binding code over multiple files, as in the following example:

example.cpp:

void init_ex1(py::module_ &);
void init_ex2(py::module_ &);
/* ... */

PYBIND11_MODULE(example, m) {
init_ex1(m);
init_ex2(m);
/* ... */

}

ex1.cpp:

void init_ex1(py::module_ &m) {
m.def("add", [](int a, int b) { return a + b; });

}

ex2.cpp:

void init_ex2(py::module_ &m) {
m.def("sub", [](int a, int b) { return a - b; });

}

python:

>>> import example
>>> example.add(1, 2)

(continues on next page)
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3
>>> example.sub(1, 1)
0

As shown above, the various init_ex functions should be contained in separate files that can be compiled indepen-
dently from one another, and then linked together into the same final shared object. Following this approach will:

1. reduce memory requirements per compilation unit.

2. enable parallel builds (if desired).

3. allow for faster incremental builds. For instance, when a single class definition is changed, only a subset of the
binding code will generally need to be recompiled.

15.7 “recursive template instantiation exceeded maximum depth of
256”

If you receive an error about excessive recursive template evaluation, try specifying a larger value, e.g.
-ftemplate-depth=1024 on GCC/Clang. The culprit is generally the generation of function signatures at compile
time using C++14 template metaprogramming.

15.8 “‘SomeClass’ declared with greater visibility than the type of its
field ‘SomeClass::member’ [-Wattributes]”

This error typically indicates that you are compiling without the required -fvisibility flag. pybind11 code internally
forces hidden visibility on all internal code, but if non-hidden (and thus exported) code attempts to include a pybind
type (for example, py::object or py::list) you can run into this warning.

To avoid it, make sure you are specifying -fvisibility=hidden when compiling pybind code.

As to why -fvisibility=hidden is necessary, because pybind modules could have been compiled under different
versions of pybind itself, it is also important that the symbols defined in one module do not clash with the potentially-
incompatible symbols defined in another. While Python extension modules are usually loaded with localized symbols
(under POSIX systems typically using dlopen with the RTLD_LOCAL flag), this Python default can be changed, but
even if it isn’t it is not always enough to guarantee complete independence of the symbols involved when not using
-fvisibility=hidden.

Additionally, -fvisibility=hidden can deliver considerably binary size savings. (See the following section for
more details.)

15.9 How can I create smaller binaries?

To do its job, pybind11 extensively relies on a programming technique known as template metaprogramming, which
is a way of performing computation at compile time using type information. Template metaprogramming usually
instantiates code involving significant numbers of deeply nested types that are either completely removed or reduced to
just a few instructions during the compiler’s optimization phase. However, due to the nested nature of these types, the
resulting symbol names in the compiled extension library can be extremely long. For instance, the included test suite
contains the following symbol:
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__ZN8pybind1112cpp_functionC1Iv8Example2JRNSt3__16vectorINS3_12basic_stringIwNS3_11char_
→˓traitsIwEENS3_9allocatorIwEEEENS8_ISA_EEEEEJNS_4nameENS_7siblingENS_9is_methodEA28_
→˓cEEEMT0_FT_DpT1_EDpRKT2_

which is the mangled form of the following function type:

pybind11::cpp_function::cpp_function<void, Example2, std::__1::vector<std::__1::basic_
→˓string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__
→˓1::allocator<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__
→˓1::allocator<wchar_t> > > >&, pybind11::name, pybind11::sibling, pybind11::is_method,␣
→˓char [28]>(void (Example2::*)(std::__1::vector<std::__1::basic_string<wchar_t, std::__
→˓1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__1::allocator<std::__
→˓1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >
→˓ > >&), pybind11::name const&, pybind11::sibling const&, pybind11::is_method const&,␣
→˓char const (&) [28])

The memory needed to store just the mangled name of this function (196 bytes) is larger than the actual piece of code
(111 bytes) it represents! On the other hand, it’s silly to even give this function a name – after all, it’s just a tiny cog in
a bigger piece of machinery that is not exposed to the outside world. So we’ll generally only want to export symbols
for those functions which are actually called from the outside.

This can be achieved by specifying the parameter -fvisibility=hidden to GCC and Clang, which sets the default
symbol visibility to hidden, which has a tremendous impact on the final binary size of the resulting extension library.
(On Visual Studio, symbols are already hidden by default, so nothing needs to be done there.)

In addition to decreasing binary size, -fvisibility=hidden also avoids potential serious issues when loading mul-
tiple modules and is required for proper pybind operation. See the previous FAQ entry for more details.

15.10 How can I properly handle Ctrl-C in long-running functions?

Ctrl-C is received by the Python interpreter, and holds it until the GIL is released, so a long-running function won’t be
interrupted.

To interrupt from inside your function, you can use the PyErr_CheckSignals() function, that will tell if a signal has
been raised on the Python side. This function merely checks a flag, so its impact is negligible. When a signal has been
received, you must either explicitly interrupt execution by throwing py::error_already_set (which will propagate
the existing KeyboardInterrupt), or clear the error (which you usually will not want):

PYBIND11_MODULE(example, m)
{

m.def("long running_func", []()
{

for (;;) {
if (PyErr_CheckSignals() != 0)

throw py::error_already_set();
// Long running iteration

}
});

}
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15.11 CMake doesn’t detect the right Python version

The CMake-based build system will try to automatically detect the installed version of Python and link against that.
When this fails, or when there are multiple versions of Python and it finds the wrong one, delete CMakeCache.txt and
then add -DPYTHON_EXECUTABLE=$(which python) to your CMake configure line. (Replace $(which python)
with a path to python if your prefer.)

You can alternatively try -DPYBIND11_FINDPYTHON=ON, which will activate the new CMake FindPython support
instead of pybind11’s custom search. Requires CMake 3.12+, and 3.15+ or 3.18.2+ are even better. You can set this in
your CMakeLists.txt before adding or finding pybind11, as well.

15.12 Inconsistent detection of Python version in CMake and py-
bind11

The functions find_package(PythonInterp) and find_package(PythonLibs) provided by CMake for Python
version detection are modified by pybind11 due to unreliability and limitations that make them unsuitable for pybind11’s
needs. Instead pybind11 provides its own, more reliable Python detection CMake code. Conflicts can arise, however,
when using pybind11 in a project that also uses the CMake Python detection in a system with several Python versions
installed.

This difference may cause inconsistencies and errors if both mechanisms are used in the same project.

There are three possible solutions:

1. Avoid using find_package(PythonInterp) and find_package(PythonLibs) from CMake and rely on
pybind11 in detecting Python version. If this is not possible, the CMake machinery should be called before
including pybind11.

2. Set PYBIND11_FINDPYTHON to True or use find_package(Python COMPONENTS Interpreter
Development) on modern CMake (3.12+, 3.15+ better, 3.18.2+ best). Pybind11 in these cases uses the
new CMake FindPython instead of the old, deprecated search tools, and these modules are much better at finding
the correct Python. If FindPythonLibs/Interp are not available (CMake 3.27+), then this will be ignored and
FindPython will be used.

3. Set PYBIND11_NOPYTHON to TRUE. Pybind11 will not search for Python. However, you will have to use the
target-based system, and do more setup yourself, because it does not know about or include things that depend
on Python, like pybind11_add_module. This might be ideal for integrating into an existing system, like scikit-
build’s Python helpers.

15.13 How to cite this project?

We suggest the following BibTeX template to cite pybind11 in scientific discourse:

@misc{pybind11,
author = {Wenzel Jakob and Jason Rhinelander and Dean Moldovan},
year = {2017},
note = {https://github.com/pybind/pybind11},
title = {pybind11 -- Seamless operability between C++11 and Python}

}
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SIXTEEN

BENCHMARK

The following is the result of a synthetic benchmark comparing both compilation time and module size of pybind11
against Boost.Python. A detailed report about a Boost.Python to pybind11 conversion of a real project is available
here:1.

16.1 Setup

A python script (see the docs/benchmark.py file) was used to generate a set of files with dummy classes whose count
increases for each successive benchmark (between 1 and 2048 classes in powers of two). Each class has four methods
with a randomly generated signature with a return value and four arguments. (There was no particular reason for this
setup other than the desire to generate many unique function signatures whose count could be controlled in a simple
way.)

Here is an example of the binding code for one class:

...
class cl034 {
public:

cl279 *fn_000(cl084 *, cl057 *, cl065 *, cl042 *);
cl025 *fn_001(cl098 *, cl262 *, cl414 *, cl121 *);
cl085 *fn_002(cl445 *, cl297 *, cl145 *, cl421 *);
cl470 *fn_003(cl200 *, cl323 *, cl332 *, cl492 *);

};
...

PYBIND11_MODULE(example, m) {
...
py::class_<cl034>(m, "cl034")

.def("fn_000", &cl034::fn_000)

.def("fn_001", &cl034::fn_001)

.def("fn_002", &cl034::fn_002)

.def("fn_003", &cl034::fn_003)
...

}

The Boost.Python version looks almost identical except that a return value policy had to be specified as an argument
to def(). For both libraries, compilation was done with

Apple LLVM version 7.0.2 (clang-700.1.81)

1 http://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf
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and the following compilation flags

g++ -Os -shared -rdynamic -undefined dynamic_lookup -fvisibility=hidden -std=c++14

16.2 Compilation time

The following log-log plot shows how the compilation time grows for an increasing number of class and function decla-
rations. pybind11 includes many fewer headers, which initially leads to shorter compilation times, but the performance
is ultimately fairly similar (pybind11 is 19.8 seconds faster for the largest largest file with 2048 classes and a total of
8192 methods – a modest 1.2x speedup relative to Boost.Python, which required 116.35 seconds).

16.3 Module size

Differences between the two libraries become much more pronounced when considering the file size of the generated
Python plugin: for the largest file, the binary generated by Boost.Python required 16.8 MiB, which was 2.17 times / 9.1
megabytes larger than the output generated by pybind11. For very small inputs, Boost.Python has an edge in the plot
below – however, note that it stores many definitions in an external library, whose size was not included here, hence
the comparison is slightly shifted in Boost.Python’s favor.
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CHAPTER

SEVENTEEN

LIMITATIONS

17.1 Design choices

pybind11 strives to be a general solution to binding generation, but it also has certain limitations:

• pybind11 casts away const-ness in function arguments and return values. This is in line with the Python lan-
guage, which has no concept of const values. This means that some additional care is needed to avoid bugs that
would be caught by the type checker in a traditional C++ program.

• The NumPy interface pybind11::array greatly simplifies accessing numerical data from C++ (and vice versa),
but it’s not a full-blown array class like Eigen::Array or boost.multi_array. Eigen objects are directly
supported, however, with pybind11/eigen.h.

Large but useful features could be implemented in pybind11 but would lead to a significant increase in complexity.
Pybind11 strives to be simple and compact. Users who require large new features are encouraged to write an extension
to pybind11; see pybind11_json for an example.

17.2 Known bugs

These are issues that hopefully will one day be fixed, but currently are unsolved. If you know how to help with one of
these issues, contributions are welcome!

• Intel 20.2 is currently having an issue with the test suite. #2573

• Debug mode Python does not support 1-5 tests in the test suite currently. #2422

• PyPy3 7.3.1 and 7.3.2 have issues with several tests on 32-bit Windows.

17.3 Known limitations

These are issues that are probably solvable, but have not been fixed yet. A clean, well written patch would likely be
accepted to solve them.

• Type casters are not kept alive recursively. #2527 One consequence is that containers of char * are currently
not supported. #2245

• The cpptest does not run on Windows with Python 3.8 or newer, due to DLL loader changes. User code that is
correctly installed should not be affected. #2560
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17.4 Python 3.9.0 warning

Combining older versions of pybind11 (< 2.6.0) with Python on exactly 3.9.0 will trigger undefined behavior that
typically manifests as crashes during interpreter shutdown (but could also destroy your data. You have been warned).

This issue was fixed in Python. As a mitigation for this bug, pybind11 2.6.0 or newer includes a workaround specifically
when Python 3.9.0 is detected at runtime, leaking about 50 bytes of memory when a callback function is garbage
collected. For reference, the pybind11 test suite has about 2,000 such callbacks, but only 49 are garbage collected
before the end-of-process. Wheels (even if built with Python 3.9.0) will correctly avoid the leak when run in Python
3.9.1, and this does not affect other 3.X versions.

Warning: Please be advised that the reference documentation discussing pybind11 internals is currently incom-
plete. Please refer to the previous sections and the pybind11 header files for the nitty gritty details.

17.4. Python 3.9.0 warning 167

https://github.com/python/cpython/pull/22670


CHAPTER

EIGHTEEN

REFERENCE

18.1 Macros

PYBIND11_MODULE(name, variable)

This macro creates the entry point that will be invoked when the Python interpreter imports an extension module.
The module name is given as the first argument and it should not be in quotes. The second macro argument defines
a variable of type py::module_ which can be used to initialize the module.

The entry point is marked as “maybe unused” to aid dead-code detection analysis: since the entry point is typically
only looked up at runtime and not referenced during translation, it would otherwise appear as unused (“dead”)
code.

PYBIND11_MODULE(example, m) {
m.doc() = "pybind11 example module";

// Add bindings here
m.def("foo", []() {

return "Hello, World!";
});

}

18.2 Convenience classes for arbitrary Python types

18.2.1 Common member functions

template<typename Derived>

class object_api : public pyobject_tag

A mixin class which adds common functions to handle, object and various accessors. The only requirement
for Derived is to implement PyObject *Derived::ptr() const.
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Public Functions

iterator begin() const

Return an iterator equivalent to calling iter() in Python. The object must be a collection which supports
the iteration protocol.

iterator end() const
Return a sentinel which ends iteration.

item_accessor operator[](handle key) const

Return an internal functor to invoke the object’s sequence protocol. Casting the returned
detail::item_accessor instance to a handle or object subclass causes a corresponding call to
__getitem__. Assigning a handle or object subclass causes a call to __setitem__.

item_accessor operator[](object &&key) const
See above (the only difference is that the key’s reference is stolen)

item_accessor operator[](const char *key) const
See above (the only difference is that the key is provided as a string literal)

obj_attr_accessor attr(handle key) const

Return an internal functor to access the object’s attributes. Casting the returned
detail::obj_attr_accessor instance to a handle or object subclass causes a corresponding
call to getattr. Assigning a handle or object subclass causes a call to setattr.

obj_attr_accessor attr(object &&key) const
See above (the only difference is that the key’s reference is stolen)

str_attr_accessor attr(const char *key) const
See above (the only difference is that the key is provided as a string literal)

args_proxy operator*() const

Matches * unpacking in Python, e.g. to unpack arguments out of a tuple or list for a function call.
Applying another * to the result yields ** unpacking, e.g. to unpack a dict as function keyword arguments.
See Calling Python functions.

template<typename T>
bool contains(T &&item) const

Check if the given item is contained within this object, i.e. item in obj.

template<return_value_policy policy = return_value_policy::automatic_reference, typename ...Args>
object operator()(Args&&... args) const

Assuming the Python object is a function or implements the __call__ protocol, operator() invokes the
underlying function, passing an arbitrary set of parameters. The result is returned as a object and may
need to be converted back into a Python object using handle::cast().

When some of the arguments cannot be converted to Python objects, the function will throw a cast_error
exception. When the Python function call fails, a error_already_set exception is thrown.

inline bool is(object_api const &other) const
Equivalent to obj is other in Python.
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inline bool is_none() const
Equivalent to obj is None in Python.

inline bool equal(object_api const &other) const
Equivalent to obj == other in Python.

str_attr_accessor doc() const
Get or set the object’s docstring, i.e. obj.__doc__.

inline int ref_count() const
Return the object’s current reference count.

18.2.2 Without reference counting

class handle : public detail::object_api<handle>

Holds a reference to a Python object (no reference counting)

The handle class is a thin wrapper around an arbitrary Python object (i.e. a PyObject * in Python’s C API). It
does not perform any automatic reference counting and merely provides a basic C++ interface to various Python
API functions.

See also:

The object class inherits from handle and adds automatic reference counting features.

Subclassed by args_proxy, kwargs_proxy, object

Public Functions

handle() = default
The default constructor creates a handle with a nullptr-valued pointer.

template<typename T, detail::enable_if_t<detail::is_pyobj_ptr_or_nullptr_t<T>::value, int> = 0>
inline handle(T ptr)

Enable implicit conversion from PyObject * and nullptr. Not using handle(PyObject *ptr) to
avoid implicit conversion from 0.

template<typename T, detail::enable_if_t<detail::all_of<detail::none_of<std::is_base_of<handle, T>,
detail::is_pyobj_ptr_or_nullptr_t<T>>, std::is_convertible<T , PyObject*>>::value, int> = 0>
inline handle(T &obj)

Enable implicit conversion through T::operator PyObject *().

inline PyObject *ptr() const
Return the underlying PyObject * pointer.

inline const handle &inc_ref() const &

Manually increase the reference count of the Python object. Usually, it is preferable to use the object
class which derives from handle and calls this function automatically. Returns a reference to itself.
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inline const handle &dec_ref() const &

Manually decrease the reference count of the Python object. Usually, it is preferable to use the object
class which derives from handle and calls this function automatically. Returns a reference to itself.

template<typename T>
T cast() const

Attempt to cast the Python object into the given C++ type. A cast_error will be throw upon failure.

inline explicit operator bool() const
Return true when the handle wraps a valid Python object.

inline bool operator==(const handle &h) const

Deprecated: Check that the underlying pointers are the same. Equivalent to obj1 is obj2 in Python.

18.2.3 With reference counting

class object : public handle

Holds a reference to a Python object (with reference counting)

Like handle, the object class is a thin wrapper around an arbitrary Python object (i.e. a PyObject * in
Python’s C API). In contrast to handle, it optionally increases the object’s reference count upon construction,
and it always decreases the reference count when the object instance goes out of scope and is destructed. When
using object instances consistently, it is much easier to get reference counting right at the first attempt.

Subclassed by anyset, bool_, buffer, bytearray, bytes, capsule, dict, dtype, ellipsis, exception< type >, float_,
function, generic_type, int_, iterable, iterator, list, memoryview, module_, none, sequence, slice, staticmethod,
str, tuple, type, weakref

Public Functions

inline object(const object &o)
Copy constructor; always increases the reference count.

inline object(object &&other) noexcept
Move constructor; steals the object from other and preserves its reference count.

inline ~object()
Destructor; automatically calls handle::dec_ref()

inline handle release()

Resets the internal pointer to nullptrwithout decreasing the object’s reference count. The function returns
a raw handle to the original Python object.

template<typename T>
T reinterpret_borrow(handle h)

Declare that a handle or PyObject * is a certain type and borrow the reference. The target type T must be
object or one of its derived classes. The function doesn’t do any conversions or checks. It’s up to the user to
make sure that the target type is correct.
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PyObject *p = PyList_GetItem(obj, index);
py::object o = reinterpret_borrow<py::object>(p);
// or
py::tuple t = reinterpret_borrow<py::tuple>(p); // <-- `p` must be already be a␣
→˓`tuple`

template<typename T>
T reinterpret_steal(handle h)

Like reinterpret_borrow(), but steals the reference.

PyObject *p = PyObject_Str(obj);
py::str s = reinterpret_steal<py::str>(p); // <-- `p` must be already be a␣
→˓`str`

18.3 Convenience classes for specific Python types

class module_ : public object
Wrapper for Python extension modules.

Public Functions

inline explicit module_(const char *name, const char *doc = nullptr)
Create a new top-level Python module with the given name and docstring.

template<typename Func, typename ...Extra>
inline module_ &def(const char *name_, Func &&f, const Extra&... extra)

Create Python binding for a new function within the module scope. Func can be a plain C++ function,
a function pointer, or a lambda function. For details on the Extra&& ... extra argument, see section
Passing extra arguments to def or class_.

inline module_ def_submodule(const char *name, const char *doc = nullptr)

Create and return a new Python submodule with the given name and docstring. This also works recursively,
i.e.

py::module_ m("example", "pybind11 example plugin");
py::module_ m2 = m.def_submodule("sub", "A submodule of 'example'");
py::module_ m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'");

inline void reload()
Reload the module or throws error_already_set.

inline void add_object(const char *name, handle obj, bool overwrite = false)

Adds an object to the module using the given name. Throws if an object with the given name already exists.
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overwrite should almost always be false: attempting to overwrite objects that pybind11 has established
will, in most cases, break things.

Public Static Functions

static inline module_ import(const char *name)
Import and return a module or throws error_already_set.

static inline module_ create_extension_module(const char *name, const char *doc, module_def *def)

Create a new top-level module that can be used as the main module of a C extension.

def should point to a statically allocated module_def.

group pytypes

Functions

template<typename Unsigned>
Unsigned as_unsigned(PyObject *o)

template<typename ...Args>
constexpr bool args_are_all_keyword_or_ds()

class iterator : public object
#include <pytypes.h>

Wraps a Python iterator so that it can also be used as a C++ input iterator

Caveat: copying an iterator does not (and cannot) clone the internal state of the Python iterable. This also
applies to the post-increment operator. This iterator should only be used to retrieve the current value using
operator*().

Subclassed by Iterator< T >

Public Static Functions

static inline iterator sentinel()

The value which marks the end of the iteration. it == iterator::sentinel() is equivalent to
catching StopIteration in Python.

void foo(py::iterator it) {
while (it != py::iterator::sentinel()) {
// use `*it`
++it;

}
}
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class type : public object

Public Static Functions

static inline handle handle_of(handle h)
Return a type handle from a handle or an object.

static inline type of(handle h)
Return a type object from a handle or an object.

template<typename T>
static handle handle_of()

Convert C++ type to handle if previously registered. Does not convert standard types, like int, float.
etc. yet. See https://github.com/pybind/pybind11/issues/2486

template<typename T>
static inline type of()

Convert C++ type to type if previously registered. Does not convert standard types, like int, float. etc.
yet. See https://github.com/pybind/pybind11/issues/2486

class iterable : public object
Subclassed by Iterable< T >

class str : public object

Public Functions

inline explicit str(handle h)

Return a string representation of the object. This is analogous to the str() function in Python.

class bytes : public object

class bytearray : public object

class none : public object

class ellipsis : public object

class bool_ : public object

class int_ : public object

class float_ : public object

class weakref : public object
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class slice : public object

class capsule : public object

class tuple : public object
Subclassed by Tuple< type_caster< Ts >. . . >, Tuple< Types >, args

class dict : public object
Subclassed by Dict< K, V >, kwargs

class sequence : public object

class list : public object
Subclassed by List< T >

class args : public tuple

class kwargs : public dict

class anyset : public object
Subclassed by frozenset, set

class set : public anyset
Subclassed by Set< T >

class frozenset : public anyset

class function : public object
Subclassed by Callable< Return(Args. . . )>, cpp_function

class staticmethod : public object

class buffer : public object
Subclassed by array

class memoryview : public object
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Public Functions

inline explicit memoryview(const buffer_info &info)

Creates memoryview from buffer_info.

buffer_info must be created from buffer::request(). Otherwise throws an exception.

For creating a memoryview from objects that support buffer protocol, use memoryview(const
object& obj) instead of this constructor.

Public Static Functions

static memoryview from_buffer(void *ptr, ssize_t itemsize, const char *format,
detail::any_container<ssize_t> shape, detail::any_container<ssize_t>
strides, bool readonly = false)

Creates memoryview from static buffer.

This method is meant for providing a memoryview for C/C++ buffer not managed by Python. The caller
is responsible for managing the lifetime of ptr and format, which MUST outlive the memoryview
constructed here.

See also: Python C API documentation for PyMemoryView_FromBuffer.

Parameters
• ptr – Pointer to the buffer.
• itemsize – Byte size of an element.
• format – Pointer to the null-terminated format string. For homogeneous Buffers, this

should be set to format_descriptor<T>::value.
• shape – Shape of the tensor (1 entry per dimension).
• strides – Number of bytes between adjacent entries (for each per dimension).
• readonly – Flag to indicate if the underlying storage may be written to.

static inline memoryview from_memory(void *mem, ssize_t size, bool readonly = false)

Creates memoryview from static memory.

This method is meant for providing a memoryview for C/C++ buffer not managed by Python. The caller
is responsible for managing the lifetime of mem, which MUST outlive the memoryview constructed
here.

See also: Python C API documentation for PyMemoryView_FromBuffer.
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18.4 Convenience functions converting to Python types

template<return_value_policy policy = return_value_policy::automatic_reference, typename ...Args>
tuple make_tuple(Args&&... args_)

template<return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename
Sentinel, typename ValueType = typename detail::iterator_access<Iterator>::result_type, typename ...Extra>
typing::Iterator<ValueType> make_iterator(Iterator first, Sentinel last, Extra&&... extra)

Makes a python iterator from a first and past-the-end C++ InputIterator.

Warning: doxygenfunction: Unable to resolve function “make_iterator” with arguments (Type&, Extra&&. . . ) in
doxygen xml output for project “pybind11” from directory: .build/doxygenxml/. Potential matches:

- template<return_value_policy Policy = return_value_policy::reference_internal,␣
→˓typename Iterator, typename Sentinel, typename ValueType = typename␣
→˓detail::iterator_access<Iterator>::result_type, typename ...Extra> typing::Iterator
→˓<ValueType> make_iterator(Iterator first, Sentinel last, Extra&&... extra)
- template<return_value_policy Policy = return_value_policy::reference_internal,␣
→˓typename Type, typename ValueType = typename detail::iterator_access
→˓<decltype(std::begin(std::declval<Type&>()))>::result_type, typename ...Extra>␣
→˓typing::Iterator<ValueType> make_iterator(Type &value, Extra&&... extra)

template<return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename
Sentinel, typename KeyType = typename detail::iterator_key_access<Iterator>::result_type, typename ...Extra>
typing::Iterator<KeyType> make_key_iterator(Iterator first, Sentinel last, Extra&&... extra)

Makes a python iterator over the keys (.first) of a iterator over pairs from a first and past-the-end InputIterator.

Warning: doxygenfunction: Unable to resolve function “make_key_iterator” with arguments (Type&, Ex-
tra&&. . . ) in doxygen xml output for project “pybind11” from directory: .build/doxygenxml/. Potential matches:

- template<return_value_policy Policy = return_value_policy::reference_internal,␣
→˓typename Iterator, typename Sentinel, typename KeyType = typename detail::iterator_
→˓key_access<Iterator>::result_type, typename ...Extra> typing::Iterator<KeyType>␣
→˓make_key_iterator(Iterator first, Sentinel last, Extra&&... extra)
- template<return_value_policy Policy = return_value_policy::reference_internal,␣
→˓typename Type, typename KeyType = typename detail::iterator_key_access
→˓<decltype(std::begin(std::declval<Type&>()))>::result_type, typename ...Extra>␣
→˓typing::Iterator<KeyType> make_key_iterator(Type &value, Extra&&... extra)

template<return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename
Sentinel, typename ValueType = typename detail::iterator_value_access<Iterator>::result_type, typename
...Extra>
typing::Iterator<ValueType> make_value_iterator(Iterator first, Sentinel last, Extra&&... extra)

Makes a python iterator over the values (.second) of a iterator over pairs from a first and past-the-end InputIt-
erator.

Warning: doxygenfunction: Unable to resolve function “make_value_iterator” with arguments (Type&, Ex-
tra&&. . . ) in doxygen xml output for project “pybind11” from directory: .build/doxygenxml/. Potential matches:
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- template<return_value_policy Policy = return_value_policy::reference_internal,␣
→˓typename Iterator, typename Sentinel, typename ValueType = typename␣
→˓detail::iterator_value_access<Iterator>::result_type, typename ...Extra>␣
→˓typing::Iterator<ValueType> make_value_iterator(Iterator first, Sentinel last,␣
→˓Extra&&... extra)
- template<return_value_policy Policy = return_value_policy::reference_internal,␣
→˓typename Type, typename ValueType = typename detail::iterator_value_access
→˓<decltype(std::begin(std::declval<Type&>()))>::result_type, typename ...Extra>␣
→˓typing::Iterator<ValueType> make_value_iterator(Type &value, Extra&&... extra)

18.5 Passing extra arguments to def or class_

group annotations

struct is_method
#include <attr.h> Annotation for methods.

struct is_setter
#include <attr.h> Annotation for setters.

struct is_operator
#include <attr.h> Annotation for operators.

struct is_final
#include <attr.h> Annotation for classes that cannot be subclassed.

struct scope
#include <attr.h> Annotation for parent scope.

struct doc
#include <attr.h> Annotation for documentation.

struct name
#include <attr.h> Annotation for function names.

struct sibling
#include <attr.h> Annotation indicating that a function is an overload associated with a given “sibling”.

template<typename T>

struct base
#include <attr.h> Annotation indicating that a class derives from another given type.

template<size_t Nurse, size_t Patient>
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struct keep_alive
#include <attr.h> Keep patient alive while nurse lives.

struct multiple_inheritance
#include <attr.h> Annotation indicating that a class is involved in a multiple inheritance relationship.

struct dynamic_attr
#include <attr.h> Annotation which enables dynamic attributes, i.e. adds __dict__ to a class.

struct buffer_protocol
#include <attr.h> Annotation which enables the buffer protocol for a type.

struct metaclass
#include <attr.h> Annotation which requests that a special metaclass is created for a type.

Public Functions

inline explicit metaclass(handle value)
Override pybind11’s default metaclass.

struct custom_type_setup
#include <attr.h> Specifies a custom callback with signature void (PyHeapTypeObject*) that may be
used to customize the Python type.

The callback is invoked immediately before PyType_Ready.

Note: This is an advanced interface, and uses of it may require changes to work with later versions of py-
bind11. You may wish to consult the implementation of make_new_python_type in detail/classes.h
to understand the context in which the callback will be run.

struct module_local
#include <attr.h> Annotation that marks a class as local to the module:

struct arithmetic
#include <attr.h> Annotation to mark enums as an arithmetic type.

struct prepend
#include <attr.h> Mark a function for addition at the beginning of the existing overload chain instead of
the end.

template<typename ...Ts>

struct call_guard

A call policy which places one or more guard variables (Ts...) around the function call.

For example, this definition:
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m.def("foo", foo, py::call_guard<T>());

is equivalent to the following pseudocode:

m.def("foo", [](args...) {
T scope_guard;
return foo(args...); // forwarded arguments

});

template<>

struct call_guard<>

template<typename T>

struct call_guard<T>

template<typename T, typename ...Ts>

struct call_guard<T , Ts...>

struct type

struct arg
#include <cast.h> Annotation for arguments

Subclassed by arg_v

Public Functions

inline explicit constexpr arg(const char *name = nullptr)
Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.

template<typename T>
arg_v operator=(T &&value) const

Assign a value to this argument.

inline arg &noconvert(bool flag = true)
Indicate that the type should not be converted in the type caster.

inline arg &none(bool flag = true)
Indicates that the argument should/shouldn’t allow None (e.g. for nullable pointer args)

Public Members

const char *name
If non-null, this is a named kwargs argument.

bool flag_noconvert
If set, do not allow conversion (requires a supporting type caster!)
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bool flag_none
If set (the default), allow None to be passed to this argument.

struct arg_v : public arg
#include <cast.h> Annotation for arguments with values

Public Functions

template<typename T>
inline arg_v(const char *name, T &&x, const char *descr = nullptr)

Direct construction with name, default, and description.

template<typename T>
inline arg_v(const arg &base, T &&x, const char *descr = nullptr)

Called internally when invoking py::arg("a") = value

inline arg_v &noconvert(bool flag = true)
Same as arg::noconvert(), but returns *this as arg_v&, not arg&.

inline arg_v &none(bool flag = true)
Same as arg::nonone(), but returns *this as arg_v&, not arg&.

Public Members

object value
The default value.

const char *descr
The (optional) description of the default value.

std::string type
The C++ type name of the default value (only available when compiled in debug mode)

struct kw_only
#include <cast.h> Annotation indicating that all following arguments are keyword-only; the is the equiva-
lent of an unnamed ‘*’ argument

struct pos_only
#include <cast.h> Annotation indicating that all previous arguments are positional-only; the is the equiv-
alent of an unnamed ‘/’ argument (in Python 3.8)
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18.6 Embedding the interpreter

PYBIND11_EMBEDDED_MODULE(name, variable)

Add a new module to the table of builtins for the interpreter. Must be defined in global scope. The first macro
parameter is the name of the module (without quotes). The second parameter is the variable which will be used
as the interface to add functions and classes to the module.

PYBIND11_EMBEDDED_MODULE(example, m) {
// ... initialize functions and classes here
m.def("foo", []() {

return "Hello, World!";
});

}

inline void initialize_interpreter(bool init_signal_handlers = true, int argc = 0, const char *const *argv =
nullptr, bool add_program_dir_to_path = true)

Initialize the Python interpreter. No other pybind11 or CPython API functions can be called before this is done;
with the exception of PYBIND11_EMBEDDED_MODULE. The optional init_signal_handlers parameter can be
used to skip the registration of signal handlers (see the Python documentation for details). Calling this function
again after the interpreter has already been initialized is a fatal error.

If initializing the Python interpreter fails, then the program is terminated. (This is controlled by the CPython
runtime and is an exception to pybind11’s normal behavior of throwing exceptions on errors.)

The remaining optional parameters, argc, argv, and add_program_dir_to_path are used to populate sys.
argv and sys.path. See the PySys_SetArgvEx documentation for details.

inline void finalize_interpreter()

Shut down the Python interpreter. No pybind11 or CPython API functions can be called after this. In addition,
pybind11 objects must not outlive the interpreter:

{ // BAD
py::initialize_interpreter();
auto hello = py::str("Hello, World!");
py::finalize_interpreter();

} // <-- BOOM, hello's destructor is called after interpreter shutdown

{ // GOOD
py::initialize_interpreter();
{ // scoped

auto hello = py::str("Hello, World!");
} // <-- OK, hello is cleaned up properly
py::finalize_interpreter();

}

{ // BETTER
py::scoped_interpreter guard{};

(continues on next page)
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auto hello = py::str("Hello, World!");
}

Warning: The interpreter can be restarted by calling initialize_interpreter() again. Modules cre-
ated using pybind11 can be safely re-initialized. However, Python itself cannot completely unload binary
extension modules and there are several caveats with regard to interpreter restarting. All the details can
be found in the CPython documentation. In short, not all interpreter memory may be freed, either due to
reference cycles or user-created global data.

class scoped_interpreter

Scope guard version of initialize_interpreter() and finalize_interpreter(). This a move-only
guard and only a single instance can exist.

See initialize_interpreter() for a discussion of its constructor arguments.

#include <pybind11/embed.h>

int main() {
py::scoped_interpreter guard{};
py::print(Hello, World!);

} // <-- interpreter shutdown

18.7 Redirecting C++ streams

class scoped_ostream_redirect

This a move-only guard that redirects output.

#include <pybind11/iostream.h>

...

{
py::scoped_ostream_redirect output;
std::cout << "Hello, World!"; // Python stdout

} // <-- return std::cout to normal

You can explicitly pass the c++ stream and the python object, for example to guard stderr instead.

{
py::scoped_ostream_redirect output{

std::cerr, py::module::import("sys").attr("stderr")};
std::cout << "Hello, World!";

}

18.7. Redirecting C++ streams 183



pybind11 Documentation

Subclassed by scoped_estream_redirect

class scoped_estream_redirect : public scoped_ostream_redirect

Like scoped_ostream_redirect, but redirects cerr by default. This class is provided primary to make
py::call_guard easier to make.

m.def("noisy_func", &noisy_func,
py::call_guard<scoped_ostream_redirect,

scoped_estream_redirect>());

inline class_<detail::OstreamRedirect> add_ostream_redirect(module_ m, const std::string &name =
"ostream_redirect")

This is a helper function to add a C++ redirect context manager to Python instead of using a C++ guard. To use
it, add the following to your binding code:

#include <pybind11/iostream.h>

...

py::add_ostream_redirect(m, "ostream_redirect");

You now have a Python context manager that redirects your output:

with m.ostream_redirect():
m.print_to_cout_function()

This manager can optionally be told which streams to operate on:

with m.ostream_redirect(stdout=true, stderr=true):
m.noisy_function_with_error_printing()

18.8 Python built-in functions

group python_builtins
Unless stated otherwise, the following C++ functions behave the same as their Python counterparts.

Functions

inline dict globals()
Return a dictionary representing the global variables in the current execution frame, or __main__.
__dict__ if there is no frame (usually when the interpreter is embedded).

template<typename T, detail::enable_if_t<std::is_base_of<object, T>::value, int> = 0>
bool isinstance(handle obj)

Return true if obj is an instance of T. Type T must be a subclass of object or a class which was exposed
to Python as py::class_<T>.

18.8. Python built-in functions 184



pybind11 Documentation

inline bool isinstance(handle obj, handle type)
Return true if obj is an instance of the type.

inline bool hasattr(handle obj, handle name)

inline bool hasattr(handle obj, const char *name)

inline void delattr(handle obj, handle name)

inline void delattr(handle obj, const char *name)

inline object getattr(handle obj, handle name)

inline object getattr(handle obj, const char *name)

inline object getattr(handle obj, handle name, handle default_)

inline object getattr(handle obj, const char *name, handle default_)

inline void setattr(handle obj, handle name, handle value)

inline void setattr(handle obj, const char *name, handle value)

inline ssize_t hash(handle obj)

inline size_t len(handle h)
Get the length of a Python object.

inline size_t len_hint(handle h)
Get the length hint of a Python object. Returns 0 when this cannot be determined.

inline str repr(handle h)

inline iterator iter(handle obj)

18.9 Inheritance

See Object-oriented code and Classes for more detail.

PYBIND11_OVERRIDE(ret_type, cname, fn, ...)

Macro to populate the virtual method in the trampoline class. This macro tries to look up the method from
the Python side, deals with the Global Interpreter Lock (GIL) and necessary argument conversions to call this
method and return the appropriate type. This macro should be used if the method name in C and in Python are
identical. See Overriding virtual functions in Python for more information.

class PyAnimal : public Animal {
public:

// Inherit the constructors
using Animal::Animal;

// Trampoline (need one for each virtual function)
std::string go(int n_times) override {

PYBIND11_OVERRIDE_PURE(
std::string, // Return type (ret_type)

(continues on next page)

18.9. Inheritance 185



pybind11 Documentation

(continued from previous page)

Animal, // Parent class (cname)
go, // Name of function in C++ (must match Python name) (fn)
n_times // Argument(s) (...)

);
}

};

PYBIND11_OVERRIDE_PURE(ret_type, cname, fn, ...)

Macro for pure virtual functions, this function is identical to PYBIND11_OVERRIDE, except that it throws if no
override can be found.

PYBIND11_OVERRIDE_NAME(ret_type, cname, name, fn, ...)

Macro to populate the virtual method in the trampoline class. This macro tries to look up a method named ‘fn’
from the Python side, deals with the Global Interpreter Lock (GIL) and necessary argument conversions to call
this method and return the appropriate type. See Overriding virtual functions in Python for more information.
This macro should be used when the method name in C is not the same as the method name in Python. For
example with __str__.

std::string toString() override {
PYBIND11_OVERRIDE_NAME(

std::string, // Return type (ret_type)
Animal, // Parent class (cname)
"__str__", // Name of method in Python (name)
toString, // Name of function in C++ (fn)

);
}

PYBIND11_OVERRIDE_PURE_NAME(ret_type, cname, name, fn, ...)

Macro for pure virtual functions, this function is identical to PYBIND11_OVERRIDE_NAME, except that it throws
if no override can be found.

template<class T>
function get_override(const T *this_ptr, const char *name)

Try to retrieve a python method by the provided name from the instance pointed to by the this_ptr.

This_ptr
The pointer to the object the overridden method should be retrieved for. This should be the first
non-trampoline class encountered in the inheritance chain.

Name
The name of the overridden Python method to retrieve.

Returns
The Python method by this name from the object or an empty function wrapper.
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18.10 Exceptions

class error_already_set : public std::exception
Fetch and hold an error which was already set in Python. An instance of this is typically thrown to propagate
python-side errors back through C++ which can either be caught manually or else falls back to the function
dispatcher (which then raises the captured error back to python).

Public Functions

inline error_already_set()
Fetches the current Python exception (using PyErr_Fetch()), which will clear the current Python error in-
dicator.

inline const char *what() const noexcept override
The what() result is built lazily on demand. WARNING: This member function needs to acquire the Python
GIL. This can lead to crashes (undefined behavior) if the Python interpreter is finalizing.

inline void restore()
Restores the currently-held Python error (which will clear the Python error indicator first if already set).
NOTE: This member function will always restore the normalized exception, which may or may not be the
original Python exception. WARNING: The GIL must be held when this member function is called!

inline void discard_as_unraisable(object err_context)
If it is impossible to raise the currently-held error, such as in a destructor, we can write it out using Python’s
unraisable hook (sys.unraisablehook). The error context should be some object whose repr() helps
identify the location of the error. Python already knows the type and value of the error, so there is no need
to repeat that.

inline void discard_as_unraisable(const char *err_context)
An alternate version of discard_as_unraisable(), where a string provides information on the location
of the error. For example, __func__ could be helpful. WARNING: The GIL must be held when this
member function is called!

inline bool matches(handle exc) const
Check if the currently trapped error type matches the given Python exception class (or a subclass thereof).
May also be passed a tuple to search for any exception class matches in the given tuple.

class builtin_exception : public std::runtime_error
C++ bindings of builtin Python exceptions.

Subclassed by attribute_error, buffer_error, cast_error, import_error, index_error, key_error, refer-
ence_cast_error, stop_iteration, type_error, value_error
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Public Functions

virtual void set_error() const = 0
Set the error using the Python C API.

18.11 Literals

namespace literals

18.11. Literals 188



CHAPTER

NINETEEN

CMAKE HELPERS

Pybind11 can be used with add_subdirectory(extern/pybind11), or from an install with
find_package(pybind11 CONFIG). The interface provided in either case is functionally identical.

19.1 pybind11Config.cmake

19.1.1 Exported variables

This module sets the following variables in your project:

pybind11_FOUND
true if pybind11 and all required components found on the system

pybind11_VERSION
pybind11 version in format Major.Minor.Release

pybind11_VERSION_TYPE
pybind11 version type (dev* or empty for a release)

pybind11_INCLUDE_DIRS
Directories where pybind11 and python headers are located.

pybind11_INCLUDE_DIR
Directory where pybind11 headers are located.

pybind11_DEFINITIONS
Definitions necessary to use pybind11, namely USING_pybind11.

pybind11_LIBRARIES
Compile flags and python libraries (as needed) to link against.

pybind11_LIBRARY
Empty.

Available components: None
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19.1.2 Exported targets

If pybind11 is found, this module defines the following IMPORTED interface library targets:

pybind11::module
for extension modules.

pybind11::embed
for embedding the Python interpreter.

Python headers, libraries (as needed by platform), and the C++ standard are attached to the target.

Advanced targets are also supplied - these are primary for users building complex applications, and they are available
in all modes:

pybind11::headers
Just the pybind11 headers and minimum compile requirements.

pybind11::pybind11
Python headers too.

pybind11::python_link_helper
Just the “linking” part of pybind11:module, for CMake < 3.15.

pybind11::thin_lto
An alternative to INTERPROCEDURAL_OPTIMIZATION.

pybind11::lto
An alternative to INTERPROCEDURAL_OPTIMIZATION (also avoids thin LTO on clang).

pybind11::windows_extras
Adds bigobj and mp for MSVC.

19.1.3 Modes

There are two modes provided; classic, which is built on the old Python discovery packages in CMake, or the new
FindPython mode, which uses FindPython from 3.12+ forward (3.15+ _highly_ recommended). If you set the minimum
or maximum version of CMake to 3.27+, then FindPython is the default (since FindPythonInterp/FindPythonLibs has
been removed via policy CMP0148).

New FindPython mode

To activate this mode, either call find_package(Python COMPONENTS Interpreter Development) before find-
ing this package, or set the PYBIND11_FINDPYTHON variable to ON. In this mode, you can either use the basic targets,
or use the FindPython tools:

find_package(Python COMPONENTS Interpreter Development)
find_package(pybind11 CONFIG)

# pybind11 method:
pybind11_add_module(MyModule1 src1.cpp)

# Python method:
Python_add_library(MyModule2 src2.cpp)
target_link_libraries(MyModule2 pybind11::headers)
set_target_properties(MyModule2 PROPERTIES

INTERPROCEDURAL_OPTIMIZATION ON
(continues on next page)
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CXX_VISIBILITY_PRESET ON
VISIBILITY_INLINES_HIDDEN ON)

If you build targets yourself, you may be interested in stripping the output for reduced size; this is the one other feature
that the helper function gives you.

Classic mode

Set PythonLibsNew variables to influence python detection and CMAKE_CXX_STANDARD to influence standard
setting.

find_package(pybind11 CONFIG REQUIRED)

# Create an extension module
add_library(mylib MODULE main.cpp)
target_link_libraries(mylib PUBLIC pybind11::module)

# Or embed the Python interpreter into an executable
add_executable(myexe main.cpp)
target_link_libraries(myexe PUBLIC pybind11::embed)

19.1.4 Hints

The following variables can be set to guide the search for this package:

pybind11_DIR
CMake variable, set to directory containing this Config file.

CMAKE_PREFIX_PATH
CMake variable, set to root directory of this package.

PATH
Environment variable, set to bin directory of this package.

CMAKE_DISABLE_FIND_PACKAGE_pybind11
CMake variable, disables find_package(pybind11) when not REQUIRED, perhaps to force internal build.

19.1.5 Commands

pybind11_add_module

This module defines the following commands to assist with creating Python modules:

pybind11_add_module(<target>
[STATIC|SHARED|MODULE]
[THIN_LTO] [OPT_SIZE] [NO_EXTRAS] [WITHOUT_SOABI]
<files>...
)

Add a module and setup all helpers. You can select the type of the library; the default is MODULE. There are several
options:
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OPT_SIZE
Optimize for size, even if the CMAKE_BUILD_TYPE is not MinSizeRel.

THIN_LTO
Use thin LTO instead of regular if there’s a choice (pybind11’s selection is disabled if
CMAKE_INTERPROCEDURAL_OPTIMIZATIONS is set).

WITHOUT_SOABI
Disable the SOABI component (PYBIND11_NEWPYTHON mode only).

NO_EXTRAS
Disable all extras, exit immediately after making the module.

pybind11_strip

pybind11_strip(<target>)

Strip a target after building it (linux/macOS), called by pybind11_add_module.

pybind11_extension

pybind11_extension(<target>)

Sets the Python extension name correctly for Python on your platform, called by pybind11_add_module.

pybind11_find_import(module)

pybind11_find_import(<module> [VERSION <number>] [REQUIRED] [QUIET])

See if a module is installed. Use the registered name (the one on PyPI). You can specify a VERSION, and you can specify
REQUIRED or QUIET. Only available if NOPYTHON mode is not active. Sets module_VERSION and module_FOUND.
Caches the result once a valid install is found.

19.1.6 Suggested usage

Using find_package with version info is not recommended except for release versions.

find_package(pybind11 CONFIG)
find_package(pybind11 2.9 EXACT CONFIG REQUIRED)
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