ࡱ> Y[X[  bjbj 8ΐΐGhPP8T{L"vKxKxKxKxKxKxK$3NPKK5L<$<$<$BvK<$vK<$<$CI򋯤lG"bKKL0{LGQ4QDIQI<$KKD!{LQP Y:  Tutorial Sheet: 1 (Module I : Electromagnetic Theory) If a vector EMBED Equation.3 , find the magnitude and the direction cosines of this vector. If  EMBED Equation.3  and EMBED Equation.3 , find (a) EMBED Equation.3 , and (b) EMBED Equation.3 . If  EMBED Equation.3  and EMBED Equation.3 , find the angle between  EMBED Equation.3  and EMBED Equation.3 . What do you mean by scalar and vector fields? Define  EMBED Equation.3  operator. Explain the terms (a) gradient, (b) divergence, (c) curl by bringing out their physical significance. Prove that:  EMBED Equation.3 . Prove that: (a)  EMBED Equation.3 , (b)  EMBED Equation.3 , (c)  EMBED Equation.3 . If  EMBED Equation.3 , find (a)  EMBED Equation.3 , (b)  EMBED Equation.3 , If  EMBED Equation.3  is the position vector of a point, then show that EMBED Equation.3 . The potential function in an electric field is represented as  EMBED Equation.3 , where C is an arbitrary constant. Show that the electric field is radial. If  EMBED Equation.3  represents the electrostatic potential at a point, find the electric field intensity at a point (3,2,-2). Prove that the divergence of a vector field which obeys the inverse square law is zero. Tutorial Sheet: 2 (Module I: Electromagnetic Theory) A vector field is given as EMBED Equation.3 , find (a) EMBED Equation.3 , (b) EMBED Equation.3 . If  EMBED Equation.3  is a scalar field and  EMBED Equation.3  is a vector field, prove that EMBED Equation.3 . If  EMBED Equation.3 , find the value of (a)  EMBED Equation.3 , (b)  EMBED Equation.3  at the point (2,2,2). Show that  EMBED Equation.3  represents a conservative field. Prove that: (a)  EMBED Equation.3 , where  EMBED Equation.3  is a unit vector, (b)  EMBED Equation.3 , where  EMBED Equation.3  is the position vector. If EMBED Equation.3 , calculate  EMBED Equation.3  at the point (1,-2,-1). Find EMBED Equation.3 , where  EMBED Equation.3  is the distance of any point  EMBED Equation.3  from the origin. If  EMBED Equation.3 is the position vector of a point, then find EMBED Equation.3 . A vector function has the following components:  EMBED Equation.3 ,  EMBED Equation.3 , and  EMBED Equation.3 , show that  EMBED Equation.3 . If  EMBED Equation.3  is a position vector of a point, show that: (a)  EMBED Equation.3 , (b)  EMBED Equation.3 , (c)  EMBED Equation.3 , (d)  EMBED Equation.3 . Find the constant a for which the vector  EMBED Equation.3  is solenoidal. State and prove (a) Gausss divergence and (b) Stokes theorem. Tutorial Sheet: 3 (Module I: Electromagnetic Theory) What is electric flux? If electric field is given by EMBED Equation.3 , then calculate the electric flux through a surface of area 400 units lying in y-z plane. State and prove Gausss law in electrostatics. Derive Coulombs law from Gausss law. State and prove Amperes circuital law in electromagnetism. Write the Maxwells equations in free space in both integral and differential form. Give the physical significance of each equation. Derive Maxwells equations in differential and integral form. Show that equation of continuity is contained in Maxwells equations. Explain the propagation of plane electromagnetic waves in free space and show that the electromagnetic waves propagate with the speed of light in free space. Also prove that the em waves are transverse in nature. Using Maxwells electromagnetic equations:  EMBED Equation.3  and EMBED Equation.3 , show that (a)  EMBED Equation.3  and (b)  EMBED Equation.3 , where symbols have their usual meaning. Using Maxwells electromagnetic equations:  EMBED Equation.3  and  EMBED Equation.3 , derive: (a) Coulombs law in electrostatics, and (b) Equation of continuity. Deduce an expression for the velocity of propagation of a plane electromagnetic wave in a medium of dielectric constant  and relative permeability . If the amplitude of  EMBED Equation.3  in a plane wave is 1 A/m, calculate the magnitude of  EMBED Equation.3  for plane wave in free space. Tutorial Sheet: 4 (Module II: Wave Optics) (a)What are the conditions for observing interference fringes? (b) What are coherent sources? How they are realized in practice? Explain why two independent sources can never be coherent sources. Describe two methods for the production of coherent sources. In an experiment using sodium light of wavelength 5890 , an interference pattern was obtained in which 20 equally spaced fringes occupied 2.30 cm on the screen. On replacing sodium lamp with another monochromatic source of a different wavelength with no other changes, 30 fringes were found to occupy 2.80 cm on the screen. Calculate the wavelength of light from this source. In a Youngs double slit experiment, the angular width of a fringe formed on a distant screen is 0.10. The wavelength of light used is 6000 . What is the spacing between the slits. Two coherent sources whose intensity ratio is 81:1 produce interference fringes. Deduce the ratio of maximum intensity to minimum intensity in fringe system. White light falls normally upon a soap film whose thickness is 5x10-5 cm and whose index of refraction is 1.33. Which wavelength in the visible region will be reflected most strongly? Two plane glass plates are placed on top of one another and on one side a paper is introduced to form a thin wedge of air. Assuming that a beam of wavelength 600 nm is incident normally, and that there are 100 interference fringes per cm, calculate the wedge angle. In Newtons ring experiment the diameters of 4th and 12th dark rings are 0.4 and 0.7 cm respectively. Calculate the diameter of 20th dark ring. In a Newtons ring experiment, the diameters of 5th and 25th rings are 0.3 cm and 0.8 cm respectively. Find the wavelength of light used. Take Radius of curved surface of lens R = 100 cm. Newtons rings formed by monochromatic light between a flat glass plate and a plano-convex lens are viewed normally. Calculate the order of the dark ring which will have double the diameter of that of 40th dark ring. In a Newtons ring arrangement, light consisting of wavelengths  EMBED Equation.3  and  EMBED Equation.3  incidents normally on a plane convex lens of radius of curvature R resting on a glass plate. If the nth dark ring due to  EMBED Equation.3  coincides with (n+1)th dark ring due to  EMBED Equation.3 , then show that the radius of the nth dark ring of  EMBED Equation.3  is given by EMBED Equation.3 . Tutorial Sheet: 5 (Module II: Wave Optics) (a)Differentiate between interference and diffraction phenomena in light. (b)Explain the difference between Fresnel and Fraunhofer type of diffraction. Show that, for Fraunhofer diffraction at a single slit, the relative intensities of the successive maxima are approximately 1 : 4/9(2 : 4/25(2 : 4/49(2 .. Light of wavelength 5000 is incident normally on a plane transmission grating of width 3 cm and 15000 lines. Calculate the angle of diffraction in first order. Deduce the missing orders for a double slit Fraunhofer diffraction pattern, if the slit widths are 0.16 mm and they are 0.8 mm apart. What is grating element? Show that only first order is possible if the width of the grating element is less than twice the wavelength of light. A diffraction grating is just able to resolve two line of (=5140 and (=5140.85 in the first order. Will it resolve the line ( = 8037.20 and ( = 8037.50 in the second order? The limits of visible spectrum are approximately 400nm and 700nm. Find the angular width of the first order visible spectrum produced by a plane diffraction grating having 15000 lines per inches when the light is incident normally on the grating. What is the ratio of resolving powers of two gratings having 15000 lines in 2 cm and 10,000 lines in 1 cm in first order? Each grating has lines in its 2.5 cm width. How many orders will be visible if the wavelength of incident radiation is 4800 and the number of lines on the grating is 25000 lines per inch. Light is incident normally on a grating of total ruled width 5 X 10-3 m with 2500 lines in all. Calculate the angular separation of two sodium lines in the first order spectrum. Can they be seen distinctly? The wavelengths of sodium D lines are 589.6nm and 589nm. What is the minimum number of lines that a grating must have in order to resolve these lines in the first order spectrum? (a) What do you understand by the term resolving power of a grating? Explain Rayleigh criterion for the limit of resolution. (b) Two plane diffraction gratings A and B have the same width of ruled surface but A has greater number of lines than B. Which has greater intensity of fringes? Tutorial Sheet: 6 (Module II: Wave Optics) Explain the following terms: a. Plain of polarization b. Optic axis of a crystal c. Double refraction d. Quarter and Half wave plates e. Ordinary and Extra ordinary ray 2. Using two Nicol prisms, how would you find whether the given plate is a quarter wave plate or a half wave plate or a simple glass plate? If the plane of vibration of the incident beam makes an angle of  EMBED Equation.3  with the optic axis, compare the intensities of extraordinary and ordinary rays. Light reflected from a glass plate (ng = 1.65) immersed in ethyl alcohol (ne = 1.36) is found to be completely linearly polarized. At what angle will the partially polarized beam be transmitted into the plate? A right circularly polarized beam is incident on a calcite half-wave plate. Show that the emergent beam will be left-circularly polarized. Calculate the thickness of a quarter wave plate of quartz for sodium light of wavelength 5893 . The refractive indices of quartz for E-ray and O-ray are equal to 1.5533 and 1.5442 respectively. A beam of linearly polarized light is changed into circularly polarized light by passing it through a sliced crystal of thickness 0.005 cm. Calculate the difference in refractive indices of the two rays in the crystal assuming this to be of minimum thickness that will produce the effect. The wavelength of light used is  EMBED Equation.3 . A plate of thickness 0.020 mm is cut from calcite with optic axis parallel to the face. Given, o = 1.648 and e = 1.481 (ignoring variations with wavelength), find out those wavelengths in the range 4000 to 7800 for which the plate behaves as a half wave plate and also those for which the plate behaves as a quarter wave plate. A beam of light is passed through a polarizer. If the polarizer is rotated with the beam as an axis, the intensity I of the emergent beam does not vary. What are the possible polarization states and how to ascertain the state of the light beam with an additional quarter wave plate? A /4 plate is rotated between two crossed Polaroids. If an unpolarized beam is incident of the 1st Polaroid, discuss the variation of intensity of the emergent beam as the quarter wave plate in rotated. What will happen if have a /2 plate instead of a /4 plate. A 20 cm long tube containing 60 cc of sugar solution produces an optical rotation of 110 when placed in a polarimeter. Calculate the quantity of sugar contained in the tube. The specific rotation of sugar is 660. Tutorial Sheet: 7 (Module III: Lasers and Fiber Optics) 1. What are the characteristics of laser beams? Describe its important applications. Why two level lasers does not exist. Calculate the number of photons emitted per second by 5 mW lasers assuming that it emits light of wavelength 632.8 nm. A certain ruby laser emits 1.00 J pulses of light whose wavelength is 6943 . What is the minimum number of chromium ions in the ruby? Explain (a) Atomic excitations (b) Transition process (c) Meta stable state and (d) Optical pumping. Find the intensity of laser beam of 15 mW power and having a diameter of 1.25 mm. Assume the intensity to be uniform across the beam. Calculate the energy difference in eV between the energy levels of Ne-atoms of a He-Ne laser, the transition between which results in the emission of a light of wavelength 632.8nm. Find the intensity of a laser beam of 10 mW power and having a diameter of 1.3 m. Assume the intensity to be uniform across the beam. What is population inversion? How it is achieved in Ruby Laser. Describe the construction of Ruby Laser. Explain the operation of a gas Laser with essential components. How stimulated emission takes place with exchange of energy between Helium and Neon atom? What is the difference between the working principle of three level and four level lasers. Give an example of each type. How a four level Laser is superior to a three level Laser. Explain why population inversion is essential for laser action to take place. Tutorial Sheet: 8 (Module III: Lasers and Fiber Optics) What is total internal reflection and explain its importance for optical communication. Explain acceptance angle and acceptance cone of a fiber. What do you mean by numerical aperture of a fiber? Derive expression for them. The refractive indices of core and cladding materials of a step index fiber are 1.48 and 1.45, respectively. Calculate: (i) numerical aperture, (ii) acceptance angle, and (iii) the critical angle at the core-cladding interface and (iv) fractional refractive indices change. Calculate the angle of acceptance of a given optical fiber, if the refractive indices of the core and cladding are 1.563 and 1.498, respectively. What is the carrier frequency for an optical communication system operating at 1.55 m. Determine the numerical aperture of a step index fiber when the core refractive index n1 =1.5 and the cladding refractive index n2 =1.48. Find the maximum angle for entrance of light if the fiber is placed in air. An optical fiber has NA of 0.20 and a cladding refractive index of 1.39. Determine the acceptance angle for the fiber in water which has refractive index of 1.33. Calculate the numerical aperture acceptance angle and critical angle of the fiber from the following data: n1 =1.5 and n2 = 1.45. A step index fiber with a large core diameter compared with the wavelength of the transmitted light has an acceptance angle in air of 220 and a relative index difference of 3%. Determine (1) Numerical aperture of the fiber (2) The critical angle at the core-cladding interface TUTORIAL SHEET: 9 (Module IV: Special Theory of Relativity) What do you mean by Inertial and non Inertial frames of reference? Is earth an inertial frame? Describe the Michelson Morley experiment and discuss the importance of its negative result. Calculate the fringe shift in Michelson-Morley experiment. Given that:  EMBED Equation.3 ,  EMBED Equation.3 ,  EMBED Equation.3 , and  EMBED Equation.3 . State the fundamental postulates of Einstein special theory of relativity and deduce from them the Lorentz Transformation Equations. What is proper length? Explain relativistic length contraction on the basis of special theory of relativity? Give an example to show that time dilation is real effect. What do you mean by proper time interval? Explain relativistic time dilation on the basis of special theory of relativity? A rod has length 100 cm. When the rod is in a satellite moving with velocity 0.9 c relative to the laboratory, what is the length of the rod as measured by an observer (i) in the satellite, and (ii) in the laboratory?. How fast would a rocket ship have to go relative to an observer for its length to be contracted to 99% of its length at rest? A clock keeps correct time. With what speed should it be moved relative to an observer so that it may appear to lose 4 minutes in 24 hours? Prove that x2+y2+z2 = c2t2 is invariant under Lorentz transformation. In the laboratory the life time of a particle moving with speed 2.8x108m/s, is found to be 2.5x10-7 sec. Calculate the proper life time of the particle. At what speed should a clock be moved so that it may appear to loss 1 minute in each hour? Derive relativistic law of addition of velocities and prove that the velocity of light is the same in all inertial frame irrespective of their relative speed. Two particles come towards each other with speed 0.9c with respect to laboratory. Calculate their relative speeds. Rockets A and B are observed from the earth to be traveling with velocities 0.8c and 0.7 c along the same line in the same direction. What is the velocity of B as seen by an observer on A? Deduce an expression for the variation of mass with velocity. Also prove that no material particle can have a velocity equal to or greater than the velocity of light. A proton of rest mass  EMBED Equation.3  is moving with a velocity of 0.9c. Calculate its mass and momentum.   6BCVWXYĹīĹĐ|na|jh]hEHUjݫO h]hUV h]h'jmh]hEHUjO h]hUVjh]hEHUjO h]hUVjh]hU h]hh]hQ=5h]h5 h]hK!h]hK!5h]hDA5h]hZ5 h]5"7 O t 2 8       O $hd^`ha$gd] $da$gd]$hd^ha$gd]$ & F hhd^ha$gd] $da$gd]    ' ( ) * + . / B C D E ^ _ r s t u v y z ҽҢ҇zl_jvh]hEHUjoO h]hUVj* h]hEHUjZO h]hUVj h]hEHUj2O h]hUVjh]hEHUj O h]hUV h]h' h]hjh]hUjh]hEHUjO h]hUV! ! % [ \ o p q r ķҳҝ҂ugZjFh]hEHUj9O h]hUVjh]hEHUj͵O h]hUVj#h]hEHU+j1O h]hUVmH @nH @sH @tH @h}jBh]hEHUjtO h]hUV h]hjh]hUj\h]hEHUjwO h]hUV       - . / 0 5 6 I J K L z ~  ķҩҎsf_ h]h'j$h]hEHUj"O h]hUVj"h]hEHUjO h]hUVj!h]hEHUj׮O h]hUVjh]hEHUj{O h]hUV h]hjh]hUjh]hEHUj O h]hUV ; < O P Q R       + , O g i j } ~ ķүҡҍ҅}xphpaSjaO h]hUV h]h.1h]h;h5h]h5 h]5h]hh,5h]h+c5 h]hFj+h]hEHUjO h]hUVh]h6j@)h]hEHUjO h]hUV h]hjh]hUj&h]hEHUjPO h]hUV~  !%&9:˾ణzmfXjQO h]hUV h]h'jJ6h]hEHUjO h]hUVj[4h]hEHUjۯO h]hUVjh2h]hEHUjO h]hUVjt0h]hEHUjwO h]hUV h]h.1 h]hjh]hUj-h]hEHU!O ><=$ & F hhd^ha$gd] $da$gd]$hd^`ha$gd]$ed^ea$gd]$ & F eed^e`a$gd]:;<ABUVWXpq"#$%-.෪tfYjCh]hEHUjmO h]hUVjAh]hEHUj/O h]hUVj%?h]hEHUjO h]hUVj1=h]hEHUjհO h]hUVj:h]hEHUjO h]hUV h]hjh]hUj08h]hEHU".ABCD[\opqrz{Ÿ{m`Y h]h.1jCNh]hEHUjhO h]hUVjKh]hEHUjRO h]hUV h]h'jIh]hEHUjO h]hUVjvGh]hEHUjO h]hUVjh]hUjEh]hEHUjxO h]hUV h]h!"#6789WXklmn#ķҩҎzl_jWh]hEHUj)O h]hUV h]h'jUh]hEHUjO h]hUVjSh]hEHUj²O h]hUVjRh]hEHUjO h]hUV h]hjh]hUj.Ph]hEHUjO h]hUV#$%&()<=>?EFYZ[\hi|}~ķҩҎsfXjO h]hUVj0bh]hEHUj޳O h]hUVj`h]hEHUjO h]hUVj^h]hEHUjO h]hUVj[h]hEHUjsO h]hUV h]hjh]hUjYh]hEHUjXO h]hUV#$789:OPgh{|}~෪ylhhdhhh)Pjmh]hEHUj*O h]hUVh]h6jjh]hEHUjgO h]hUVjphh]hEHUjBO h]hUVj,fh]hEHUjO h]hUV h]hjh]hUjdh]hEHU$9:MNOPGH[\]^_bcvwxy٬ٗكuhZj-O h]hUVjth]hEHUjO h]hUV h]h5'j@rh]hEHUjO h]hUV h]h Q= h]h^johhEHUjytW h]hUVjh]hU h]hh]h5h]hpl5 h]hQ=h]h+c5=F\2m${$hd^ha$gd]$ & F hhd^ha$gd]$hd^h`a$gd]$hd^h`a$gd]$ & F hhd^ha$gd])*+,12EFGHgu Z\෪voaTjh]hEHUj6O h]hUV h]h"hQh^CJaJ h]h^ h]h)*jL}h]hEHUjO h]hUVj*{h]hEHUjtO h]hUVjyh]hEHUjLO h]hUV h]hjh]hUjvh]hEHU  FHJLUZp#$y  }u}nfffh]hmIH* h]hh]h[ H* h]h[ h]h~!h]hP&H* h]hP& h]hP h]hmIh]h5h]hKD5h]h0\5h]hmI5h]h Q=5>*jh]hEHUjeO h]hUV h]hjh]hU( !^#_####$$c%%%%}&3'*(($ eda$gdY$ ehd^h`a$gd]$ & F ehd^ha$gd]$hd^h`a$gd]$ & F hhd^ha$gd] F H O Q 1!4!!!!!!!""""""""_"`""""""""""""""###Ÿꪝzl_jih]hmIEHUjٮN h]hmIUVj~h]hmIEHUjŮN h]hmIUVh]hmI6jah]hmIEHUjN h]hmIUVjuh]hmIEHUjN h]hmIUVjh]hmIUh]hmIH*h h]hmIh]h ^H* h]h ^%##6#7#8#9#C#E#F#Y#Z#[#\#]#^#_#h#n#|#}#######$ $$$$$$$$$$$${ttjbjbjbh]hmIH* jph]hmI h]h< h]hPh]h R5h]h<5h]ho65h]hmI5 hY5h]h+5>*jqh]hmIEHUj'N h]hmIUV h]h0\jh]hmIUjh]hmIEHUjN h]hmIUV h]hmI%$$$$%%%&%0%b%%%%%&&&&&&& '''' '() )M)N)O)))c+i+++ , ,,+,,,7,9,,,,,,򠛓{{h7  h]h+h]hC3=5 h)P5h]hmI5 hY5h]h 5>* h]h0\ h]h h]hmIH*h]hWPJ h]hWh]hmIPJ jlh]hmI h]hYhYhmI h]hmI h]h=/(d)3**c+ , ,,9,V,u,,,,-$hd^h`a$gd]$ & F heda$gd]$ ehd^h`a$gd]$ ehd^h`a$gd]$ & F ehd^ha$gd],,--------].^.../Y0111111111,2.2J2L2w4x44566667777888^8ʽ砓珈xh]hmIH*h]hmI6 h]hYhmIj/h]hmIEHUjN h]hmIUV h]hW'h]hmIH*jh]hmIEHU#jO h]hmIUVnHtHjh]hmIU h]hmI h]h3|L h]h+hU,--8. //[0114588888888889$8hd^8`ha$gd] $da$gd] $da$gdY$ & F heda$gd]$ hd^h`a$gd]^8_88888888888899 9 999E9K999::<<=7>8>s>>>>ܹwl^h]h`5\mH sH h]5\mH sH hhmH sH hhmH sH h]hg<mH sH h]hOmH sH h]hwOmH sH h]hmH sH h]hZomH sH h]hZo5h]h'5h]hz5h]h?E5hh]hW' h]hW'h]hW'H*!9q99 :::;5<<%==s>>>>R?$ & Fdxx7$8$H$a$gd]$hdxx7$8$H$^h`a$gd]$ & F d7$8$H$^a$gd]$ & F d7$8$H$a$gd]$ hd7$8$H$^ha$gd]>>?????????~AB^C`CCCsDtD=E>EIEJERESETEEEEEFF3F7FiF糡zrf[[h]hB$mH sH h!hH*mH sH h!mH sH h]hYmH sH hmH sH h{EmH sH h]hH*mH sH #h]h56>*\]mH sH *h]hB*mH phsH hs{mH sH h]h+cmH sH hYmH sH himH sH h]hmH sH h]h5\mH sH "R??@AB.DDSETEF3FiFFGbGHHI>I$ & F da$gd] $da$gd]$dxx7$8$H$^a$gd]$dxx7$8$H$a$gdY$ & Fdxx7$8$H$^a$gd]iFsFzF{FFFFFFFFGGGGGGGGGGGGGGGGGGGG H HHHHѸѝтugZjh]hZEHUjQN h]hZUVjeh]hZEHUj2N h]hZUVjDh]hZEHUjN h]hZUVjKh]hZEHUjN h]hZUVjh]hZU h]hZ h]hZoh]h+c5h]hZo5h]h`5h]hZ5#HHEISIII J JKKKKKKKKKK-L.LHLJLMMgOhO{O|O}O~OOOOʐː̐ !#&'()*;D03]^͒Βµ h]h h]hZH* h]h `h]Ujh]hZEHUj먿N h]hZUVjh]hZUh]hZH*h]hZ6 h]hZo h]hZ h]h+c<>IIJKKKLLzMMNQOOcː̐E7T@B$hd^ha$gd] $da$gd `$ & F da$gd]The speed of an electron is doubled from 0.2 c to 0.4 c. By what ratio does its momentum increase? A particle has kinetic energy 20 times its rest energy. Find the speed of the particle in terms of c. State and prove the law of equivalence of mass and energy. Prove the relation E2- p2c2 = m02c4, where p is the momentum. At what speed does the kinetic energy of a particle equal to its rest energy? What should be the speed of an electron so that its mass becomes equal to the mass of proton? Given: mass of electron=9.1x10-31Kg and mass of Proton =1.67x10-27Kg. An electron is moving with a speed 0.9c. Calculate (i) its total energy and (ii) the ratio of Newtonian kinetic energy to relativistic energy. Given:  EMBED Equation.3  and EMBED Equation.3 . (i) Derive a relativistic expression for kinetic energy of a particle in terms of momentum. (ii) Show that the momentum of a particle of rest mass  EMBED Equation.3  and kinetic energy EMBED Equation.3 , is given by EMBED Equation.3 . Calculate the mass and speed of 2MeV electron. A particle of rest mass m0 moves with speed c/"2. Calculate its rest mass, momentum, total energy and kinetic energy.     Amity School of Engineering & Technology, Noida Applied Physics I PAGE  PAGEғӓԓՓBķҩҕ҇zl_Wh]hZH*j1h]hZEHUjN h]hZUVj\h]hZEHUjWN h]hZUV h]hjh]hZEHUjDN h]hZUVj\h]hZEHUjN h]hZUV h]hZjh]hZUjh]hZEHUjƩN h]hZUVBDHJNPTVZޕ h]hZh*0JmHnHuUh h0Jjh0JUh$fhIhI5CJaJh Ljh LUBFHLNRTXZޕ $hd^ha$gd]h]hgdmI &`#$gdmI$a$gdI 1 6&P1F:pmI/ =!"#$% mDd T0  # A2uB.R1O6XD`!uB.R1O6X  XJxڕRJQM&-D,V HXl$IvY]ʠ6>"M>AFx I ̙{fg1 T~41 2B3~/k $#0 }N.xd/lX$ gK^X V&bi{gSj5sCr{pMod-x͍PWN>UTq즙]PsC(} 3^{YCGZQwx%+!.ްKO?B<>NsqqI%vԪ~sS*SHrs#u\k }C\+Jy(|FnO=EP{ : |,=phѫ䂆8dBL F&&\ s:@ĎB ~bTHb"Dd l@0  # A2{mR/e=W6C)_i `!a{mR/e=W6C)_  /xuQJP=U0dq._cl" Ɩ6Q RpsO8 n_3p 瞓{#$6`:UCΐ"!˲d';yrV҈R=9\ЌHw y˟NIeÓ$O;i|WS:/j% j, i:a7f^ W߃rn0᜞S_~Kg+ Q3MhexݧY>_)Z%) =7G)dGDd |0  # A2fn 򲄹ߖ' `!fn 򲄹ߖ` `0excdd``dd``baV d,FYzP1n:N! KA?H1aE @P5< %! `35;aV&br<Xky _9 P.P16:ҙ] WYp~3 G03d?#wcP{rsِYA|#DfT=Ly,bBܤn)s c2BnO CB Qp()Jdm/zx0tù \fh 0y{iI)$5d.P"CDx,ĀGf @LDd @|0  # A2"qNp"۫n `!"qNp"۫ `p0jxcdd``.dd``baV d,FYzP1n:&.! KA?H1cE @P5< %! `35;aV&br<Xky5_7 P.P16:3ef?wc*g ~F?F#Np{42s=PYA|c|736& ;P 27)?蜇B8 NFxx񳃌Іj/(||C\+J=|:^TM \vhZ``#RpeqIj.7\E. Xݏ`څDd @0  # A2b  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOQRSTUVWZ]^_a`bdcegfhjiklmpnoqrstuwvxzy{|}~Root Entry FЖ \vData PWordDocument8ObjectPoolr틯Ж _1341041537F틯틯Ole CompObjfObjInfo !$'*/49<=@CDGJKNQTWZ]`cfknqtux{~ FMicrosoft Equation 3.0 DS Equation Equation.39q7p$ 2A =2i + 2  2k  FMicrosoft Equation 3.0 DS EqEquation Native S_1341041598 F틯틯Ole CompObj fuation Equation.39q1gd 2A =22j +32k  FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo Equation Native  M_1341041629F틯틯Ole  CompObj fObjInfoEquation Native I_1341041652 F틯틯-  2B =2i "22j  FMicrosoft Equation 3.0 DS Equation Equation.39q$ 2A .2B Ole CompObjfObjInfoEquation Native 9_1341041677F틯틯Ole CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q0  2A +2B  FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 9_1341041714"F틯틯Ole CompObj fObjInfo!Equation Native  Y_1341041754$F틯틯Ole "=$ 2A =22i +22j "2k  FMicrosoft Equation 3.0 DS Equation Equation.39qAd 2B =62i "32j +22k CompObj#%#fObjInfo&%Equation Native &]_1341041775@J)F틯틯Ole (CompObj(*)fObjInfo++Equation Native ,- FMicrosoft Equation 3.0 DS Equation Equation.39q  2A  FMicrosoft Equation 3.0 DS Equation Equation.39q_1341041783.F틯틯Ole -CompObj-/.fObjInfo00$ 2B  FMicrosoft Equation 3.0 DS Equation Equation.39q#p "" Equation Native 1-_1341044596E 3F틯틯Ole 2CompObj243fObjInfo55Equation Native 6-_134105579308F틯틯Ole 7CompObj798fObjInfo::Equation Native ;_1341044173=F틯틯 FMicrosoft Equation 3.0 DS Equation Equation.39q}3,3 div(2A 2B )=2B .curl2A "2A .curl2B  FMicrosoft Equation 3.0 DS EqOle >CompObj<>?fObjInfo?AEquation Native Buation Equation.39qy0́ div(2A )=div2A +2A grad FMicrosoft Equation 3.0 DS Equation Equation.39q_1341041465]BF틯틯Ole ECompObjACFfObjInfoDHm$ div(2A +2B )=div2A +div2B  FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native I_1341044256GF틯틯Ole LCompObjFHMfObjInfoIOEquation Native Pg_1341042299YTLF틯틯Ole RKgL divgrad=" 2  FMicrosoft Equation 3.0 DS Equation Equation.39qA0  2r =x2i +y2j +z2k CompObjKMSfObjInfoNUEquation Native V]_1341042391QF틯틯Ole XCompObjPRYfObjInfoS[Equation Native \J FMicrosoft Equation 3.0 DS Equation Equation.39q.$ gradr n FMicrosoft Equation 3.0 DS Eq_1341042425OmVF틯틯Ole ^CompObjUW_fObjInfoXauation Equation.39q35 divr n 2r  FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native bO_1341041954c[F틯틯Ole dCompObjZ\efObjInfo]gEquation Native h-_1341042000`F틯틯Ole i  2r  FMicrosoft Equation 3.0 DS Equation Equation.39qO$ div2r r 3 ()=2CompObj_ajfObjInfoblEquation Native mk_1341042097^heF틯틯Ole oCompObjdfpfObjInfogrEquation Native s FMicrosoft Equation 3.0 DS Equation Equation.39q$ V x,y,z =Cx 2 +y 2 +z 2 () FMicrosoft Equation 3.0 DS Eq_1341042177jF틯XOle vCompObjikwfObjInfolyuation Equation.39qVg5 V=2x 2 "3y 2 +z 2 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native zr_1341042529oFXXOle |CompObjnp}fObjInfoqEquation Native _1341042551'tFXXOle   2F =y2i +(x 2 +y 2 )2j +(yz+zx)2k  FMicrosoft Equation 3.0 DS Equation Equation.39q! div2F CompObjsufObjInfovEquation Native =_1341042567yFXXOle CompObjxzfObjInfo{Equation Native A FMicrosoft Equation 3.0 DS Equation Equation.39q%5 curl2F  FMicrosoft Equation 3.0 DS Eq_1341042651w~FXXOle CompObj}fObjInfouation Equation.39q x  FMicrosoft Equation 3.0 DS Equation Equation.39qXL 2A Equation Native )_1341042672FXXOle CompObjfObjInfoEquation Native -_1341042769|FXXOle  FMicrosoft Equation 3.0 DS Equation Equation.39qǵ curl(2A )=curl2A +(grad)2A CompObjfObjInfoEquation Native _1341042872FXXOle CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39qL 2A =x 2 z2i "2y 3 z 2 2j +xy 2 z2k  FMicrosoft Equation 3.0 DS Eq_1341042901FXXOle CompObjfObjInfouation Equation.39q!L div2A  FMicrosoft Equation 3.0 DS Equation Equation.39q%x́ curl2A Equation Native =_1341042917FXXOle CompObjfObjInfoEquation Native A_1341042991FXXOle  FMicrosoft Equation 3.0 DS Equation Equation.39qqHL 2F =(x+y)2i +(x+z)2j +(y"z)2k CompObjfObjInfoEquation Native _1341043053FXXOle CompObjfObjInfoEquation Native I FMicrosoft Equation 3.0 DS Equation Equation.39q-́ gradr=2n  FMicrosoft Equation 3.0 DS Eq_1341043064FXXOle CompObjfObjInfouation Equation.39qL 2n  FMicrosoft Equation 3.0 DS Equation Equation.39qgg$ gradEquation Native -_1341041925,FXXOle CompObjfObjInfoEquation Native _1341041936FXXOle 1r()="2r r 3 FMicrosoft Equation 3.0 DS Equation Equation.39q0L 2r CompObjfObjInfoEquation Native -_1341043282FXXOle CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39qiL (x,y,z)=3(x 2 y"y 2 x) FMicrosoft Equation 3.0 DS Eq_1341043304FXXOle CompObjfObjInfouation Equation.39q!́ grad FMicrosoft Equation 3.0 DS Equation Equation.39q.xL gradr Equation Native =_1341043358FXXOle CompObjfObjInfoEquation Native J_1341043374FXXOle n FMicrosoft Equation 3.0 DS Equation Equation.39q HL r FMicrosoft Equation 3.0 DS EqCompObjfObjInfoEquation Native )_1341043394FXXOle CompObjfObjInfoEquation Native Auation Equation.39q%ǵ (x,y,z) FMicrosoft Equation 3.0 DS Equation Equation.39q_1341043451;FXXOle CompObjfObjInfoEquation Native -_1341043497FXXOle CompObjfL 2r  FMicrosoft Equation 3.0 DS Equation Equation.39qDL gradlog2r ()ObjInfoEquation Native `_1341043544FXXOle CompObjfObjInfoEquation Native G_1341043571FXX FMicrosoft Equation 3.0 DS Equation Equation.39q+H́ E x =6xy FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjfObjInfoEquation Native j  !$'*-0147:=@CFILORUX[^chmrw|N0L E y =3x 2 "3y 2 FMicrosoft Equation 3.0 DS Equation Equation.39q#L E z =0_1341043588FXXOle CompObjfObjInfoEquation Native ?_1341043614FXXOle CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39q)0́ div2E =0 FMicrosoft Equation 3.0 DS EqObjInfo Equation Native  E_1341043678FXXOle CompObjfObjInfoEquation Native -_1341043705FXXuation Equation.39qxL 2r  FMicrosoft Equation 3.0 DS Equation Equation.39q)gL div2r =Ole CompObjfObjInfoEquation Native E3 FMicrosoft Equation 3.0 DS Equation Equation.39qǴ div(2r /r 3 )=0_1341043732FXXOle CompObjfObjInfoEquation Native c_1341043778FXXOle CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39qdL div(r n 2r )=(3+n)r n FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo"Equation Native #_1341043815FXXOle %CompObj&fObjInfo(Equation Native )p_1341044010FXXTEL div(r 4 2r )=7r 4 FMicrosoft Equation 3.0 DS Equation Equation.39q}gLo 2A =(x+3Ole +CompObj,fObjInfo.Equation Native /y)2i +(y"2z)2j +(x+az)2k  FMicrosoft Equation 3.0 DS Equation Equation.39qAx g 2E =42i +82j +32k _1467223929 FXXOle 2CompObj  3fObjInfo 5Equation Native 6]_1341046252FXXOle 8CompObj9f FMicrosoft Equation 3.0 DS Equation Equation.39qJHLo curl2E =""2B "t FMicrosoft Equation 3.0 DS EqObjInfo;Equation Native <f_13410462911&FXXOle >CompObj?fObjInfoAEquation Native Bn_1341046317FXXuation Equation.39qRHd curl2H =2J +"2D "t FMicrosoft Equation 3.0 DS Equation Equation.39qOle DCompObjEfObjInfoGEquation Native HE)ELo div2B =0 FMicrosoft Equation 3.0 DS Equation Equation.39q)́ div2D =_1341046348!FXXOle JCompObjKfObjInfo MEquation Native NE_1341046388#FXXOle PCompObj"$Qf FMicrosoft Equation 3.0 DS Equation Equation.39q)sd div2D = FMicrosoft Equation 3.0 DS EqObjInfo%SEquation Native TE_13410464016(FXXOle VCompObj')WfObjInfo*YEquation Native Zn_1341046838-FXXuation Equation.39qRX0Lo curl2H =2J +"2D "t FMicrosoft Equation 3.0 DS Equation Equation.39qOle \CompObj,.]fObjInfo/_Equation Native `-H́ 2H  FMicrosoft Equation 3.0 DS Equation Equation.39q#d 2E  FMicrosoft Equation 3.0 DS Eq     5! "$#%&')(*,+-./10243JK6789:;<=>?@ABCDEFGHILNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstu:`!6: @c112BYL%bpudKF&&\ s: `c!!v120e/K3Dd @0   # A 2bωp+('S`r>`!6ωp+('S`rR xcdd``> @c112BYL%bpu$גA9`!19 T>$גA RXJxcdd``> @c112BYL%bpu 1Tz9Ll/{ŸVT T0vt:UrBA*Kr`*VT8<>LG';p 7L&X10Y)e9(W! %E \pDwE~->T~2Ċ^NBNFx,˄8Qbl &AL\\P˃: 2Bn/p> % &}h``S:#RpeqIj.C ^ . 0,Ā&`ϊsDd |0   # A  2X ֋"ډK$`!X ֋"ډK$P` 0xcdd``^ @c112BYL%bpu@d++&ᰏDjℚ[ I/JL2ӱ tagR2:^0UdTX1T:! %E \BZFh(04V kq%X |l2 Ŋ)<"B C)nڙ0V=$a v&pkdrA8}<v0o8E321)W2TaPdk; 1ź[aDd |0   # A  2GϞK_ĚYWK`!GϞK_ĚYWK`0xcdd``nad``baV d,FYzP1n:B@?b 30sC0&dT20 `[YB2sSRs"6~.Ob iXt9 | NPf +%," 1B]+،L +tW j׊DNs p5#w}'닠60tq!JXQe!|lBܤ|\qFx(VqІ;o @KBM=.䂦.p[M1 `pJddbR ,.IeC v<b@33XO)Dd h0  # A 2erﺜ9`hŅ`!yerﺜ9`hŅv @F|Gxcdd``fd``baV d,FYzP1n:&.! KA?H1\ ߁qC0&dT20 [X+ssrsUy(sy"+8|-ȝvZHq-`7c!+"Ad++&0D+Jtw 13 #.ݿ ķ>djn H$(1&b ddpAc ࠂƏ;LLJ% @v1u(2tA4B d/)JDd |0  # A20Vp7Ǜv}`!0Vp7Ǜv} `(0hxcdd``.dd``baV d,FYzP1n:N! KA?H1aE @P5< %! `35;aV&br<Xk"w|:]b mu3WXA,8?̯AL82_[1Ee ɽ ~ړ c +ssx<N{ᵍ d6b,PpLb_׊DnE)`h8rAS8ŀ=4Ĥ\Y\0d.P"CDx,ĀGf oDd h0  # A2]6 ,9^!`!16 ,@8|xcdd`` @c112BYL%bpuf΢Jߋ ̲T ɳDls^&OH \F}vdrAÍ `c&#RpeqIj.C-\E.Bd9Dd 0  # A2_7FzL*l+ ;4%`!37FzL*l+ @xcdd``> @c112BYL%bpuv2/ 04>}"f:5kiXKހ峇=5R =}<Ԭ'o~(z|6)z3 RY3U>/Fbb֓w4_oSɻ7ϑ>Fz;^o}G@oU#T =x|њۮWm0߿!,Je]͜.R`LHv.& Zq!2F`W$pA: _oIE=cyDd 0  # A2ve~pR~V)`!ve~pR~V @Phxcdd`` @c112BYL%bpu1 d6{Q m%4uss8y@Ӷ;g+KRsePdhÀ,^U.Dd h0  # A2Dz/0sam\+`!~Dz/0sam\@ @p|Lxcdd``Ndd``baV d,FYzP1n:&&n! KA?H1q30| UXRY7&,e`abM-VK-WMc<+rUsi#/ ӹ@Z*apb_?cd.`4ca\ an#'Ȅ*="`USA 8__& M /WBDw m=z .m%4)и``#RpeqIj.?^E. X=L2Z0Dd  |0  # A2 5Dچ`"@d+.`!5Dچ`"@d``` 0xڝK@]&-i (Xg:Sl8; N *@]P]@J5r|{/@a E q-BpI.NKR5I 8(qY8CNm`E<8滆(Ųj^UCۂ˷Ɔ:Qߋ!d>6gYTsؔ1DMٲ=Ps,Fߧ# mg9kwʇί~^yy#H \!3RPoAI8:Nܪq#g= Z%Ie}O~~RA>wlϸ0\Q]hv4ßNy?آ"?ntt`51 Mgk poDd D|0  # A2pCNkqiNL0`!DCNkqiN`0xcdd`` @c112BYL%bpuN7R_V>6`!6>N7R_VR xcdd``> @c112BYL%bpu @c112BYL%bpu #n"$ҢR  tWJ׊Dns p%#؜p0OFoa I9 <\eeB #A< 6bXA #4p~+&<w$w;}!|.hZg)ULLJ% @2u(2t5Ä)Dd |0  # A2Ύ~9"ҷ:`!Ύ~9"ҷ`80xڝO@;@c″nBHbMPQ*HN I@L7l8iwrޯ!)`Kѕضͥ9p).L6 1*%Ǣ0 63E%W\0dnެVyrKU%XײŦV1(\5u抲ݖ]鞖-|0}9·3aVrK{^cSpOb\= x_DY7O7ArqZ%Gԡ:Э#7y yys^я3JS__„B̈S02/?ז[Wÿo͔S-iz_ABsfQ4H1w` ߠDd 0|0  # A2pHݪ)VIBa7Lu=`!DHݪ)VIBa7`k0xcdd`` @c112BYL%bpu @c112BYL%bpu%C%ZQ[5^YQpJ&@ 4AQZqJf^?[++ @6-/U=WmX:{K5[}?4IG>|@Lb.B=ݺe i~Ẵ( V8p+j M-sۀ9Mr#^k`iϺ0aiT'8b$)$A _zw[b8D85đS=V$a]? 3Dd 0 # # A#"2_X1`J k|E&L; @c112BYL%bpu|مVͨUTquyIr|'#^cQ}W!\(X/W/ڟd}87)DpR x/} 0ٟϾ<σAIҢ7Tɪ՟@?>Vs7;YS?>O?vSs'miTPd?ޟ PܚSIΨqA7bTk4*G}i>"?rDd @0 % # A%$2gܐ<vCN`!;ܐ<v  xcdd``> @c112BYL%bpu6v0o8T+KRs@&3u(2tA4B 0Clcd`!J5Dd h0 & # A&%2]e%2mА9rP`!1e%2mА@8|xcdd`` @c112BYL%bpurR'B!LҞ,SR`!rR'B!LҞ,: @Ƚxcdd`` @c112BYL%bpu1q5KT`!C^8?Шf>1q58 xcdd`` @c112BYL%bpu @c112BYL%bpudKF&&\[ @ ] @2tgH4Dd T0 * # A*)2h~ *G6_ߔW`!h~ *G6_ߔ  XJRxcdd``gd``baV d,FYzP1n:&v! KA?H1Z ǀqC0&dT201 @2@penR~<7ח3"6~.Obi,@@@ڈUyx^6D@2M DYd++&t'\F `s*9|t@>ZQRzCb}Šd@VN~z 4f6 `pzadbR ,.Ieԡ"v<b@3X?7 Dd h0 + # A+*2SLq>H|:maZ`!YSLq>H|:mR@|'xcdd``dd``baV d,FYzP1n:&B@?b ʞ ㆪaM,,He`H 01d++&1Dl\ _9Nsi#F5**a|7Ig>#؄Jtw3np10f. W&00psy(D{5@FVrAC C`B^SF&&\S s: `c!t?0et0Dd 0 , # A,+2)GBa-!(\`!)GBa-! %hNxcdd``.ed``baV d,FYzP1n:&N! KA?H18́깡jx|K2B* R vfRv ,L ! ~ Ay ?'tJ:]j F\_9@Z*a,>?Yx dq% H? 0Y2n?pZ~ɋb/pcBܤ>.9Vp1\TN9聦 v0o8121)W2TaPdk; 1}8SDd T0 - # A-,2Ωʌ[=X-\X^`!TΩʌ[=X-B@ XJ"xcdd``Vdd``baV d,FYzP1n:&&! KA?H1Z00 UXRY7S?&,e`abM-VK-WMc<s eF\ XcBܤ.n.9pr,$s@FBU3DwBelB{I3ӽn \+pBZCF&&\z @ ] @2oDd |0 . # A.-2%w>vb.p+p\``!h%w>vb.p+T`06xcdd``bd``baV d,FYzP1n:B@?b 8깡jx|K2B* Rvfjv ,L ! ~ Ay ?',@u@@ڈ%VJ,1@penR~C9p? d-$b.#0& P3Y |C\+Jx^2y`2#p@CC_UF&&\ s: `c!t_1eUvDd 0 / # A/.2`l3좑:H9 f3<tb`!4l3좑:H9 f3@xcdd``> @c112BYL%bpuZQR͵xd1$Cl䂆?8 }v0o8V+KRsA2u(2tA4B bzocDDd xh0 1 # A102fM[@~!O pf`!fM[@~!O @ |bxcdd``.cd``baV d,FYzP1n:&B@?b 8 ㆪaM,,He` @201d++&1Dl\ _'󥩰U g0Zxՠ? kA|}8߅ רد<@;05/& Ma`H6NAeo6[ s)rJ Ep9sBV @VJfY*6l Qp()JdNV1<ؔM\h``S#RpeqIj. \E./&E]Dd h0 2 # A212 î1(g}I0h`! î1(g}I0< @|{xcdd`` @c112BYL%bpu#ge60U_wa50e$_{gP ̲T,!I9 1\s kYAFfb3C׊Dnp:G\tNKv0o8121)W2ԡ"v<b@3X?Dd |0 4 # A432\XuC@HbJYm`!\XuC@HbJ`!0xڕKAߌWMBEZv C̸,W&iy5 }.W'Y-U[JZNpP6Zt &9%<6FΈd\o  v;$dCpك\ts@ʏ" G 1l(u\,vZD muќJ.b3|7ߵwd\gd(~U`wtc 0N !?$o v'BH;@ Ma(jx)3 dW2;\m;YP+1a^׊D!| OC8܋*b)d74-0y{iI)$5(ɂ '!p̏`RDd d0 6 # A652T /S!tvr`!T /S!tv ^ dpxcdd``va 2 ĜL0##0KQ* WäCRcgbR vq-fĒʂT$/&`b]F"LLMl 0ro.dabM-VK-WMc<?bK+ˈ s';HgI%1w0}b]+9|Kr] ( Ma`z70l #\2 ׅ=X@|RlokEIQ"5nw0BuG $pA cbqWFm=Ĥ\Y\PC `c!0`kt]Dd |0 7 # A762X6 0͜>)t`!X6 0͜>)` d{xcdd``a 2 ĜL0##0KQ* Wä%d3H1)fYX3PT obIFHeA*P PD.#l&&nKb7S? `01d++&1Dl\ _ˈ :'HgI%&/`: {@|JN(Ңt+ss9<"&9\ vɶRQ ^p߶;@!ZQR͵;`#BEP{Pq>4Nv0o8021)W2ԡRz0z6Dd |0 8 # A872Wc[ղT!;dp3w`!hWc[ղT!;dT`06xcdd``bd``baV d,FYzP1n:B@?b 8깡jx|K2B* Rvfjv ,L ! ~ Ay ?']\i,@u@@ڈ1VJ,1@penR~C7WĜB8cd] 2\F 1nnJN(ߊJ,KM! %E \aئL.hs``cI)$5d.P"CDx,Ā+f kt#Dd |0 9 # A982tJUs`ZQRͥJւm*䂆?8C``cI)$5 d.P"CDx,Ā+f q?\Dd |0 ; # A;:2'pȘۢrm s}`!'pȘۢrm s` dzxcdd``a 2 ĜL0##0KQ* Wä%d3H1)fYX3PT obIFHeA*P PD.#l&&nKb7S? `01d++&1Dl\ _L!f22:ì YR c@ α^p'&ߣ72(EBܤK<\s p؜H.d[)e(L@|m8 o[ Qp()JdF;Ha0PԞ0FF6T~3S.p3mEN)LLJ% {:@ v<b@f~)*tDd @0 <_1341046885+S2FXXOle aCompObj13bfObjInfo4dEquation Native e-_13087330647FXXOle fCompObj68gfuation Equation.39qxQ  1 FMicrosoft Equation 3.0 DS Equation Equation.39q@3l1  2ObjInfo9iEquation Native j6_13087330685?<FXXOle kCompObj;=lfObjInfo>nEquation Native o6_1308733125AFXXOle pCompObj@BqfObjInfoCsEquation Native t6 FMicrosoft Equation 3.0 DS Equation Equation.39q@A  1 FMicrosoft Equation 3.0 DS Equation Equation.39q_1308733145:NFFXXOle uCompObjEGvfObjInfoHxD#  2 FMicrosoft Equation 3.0 DS Equation Equation.39q,(  1Equation Native y6_1308733171KFXXOle zCompObjJL{fObjInfoM}Equation Native ~6_1308733223IXPFXXOle CompObjOQfObjInfoREquation Native _1341049267UFXX FMicrosoft Equation 3.0 DS Equation Equation.39qz?D   1  2 R 1 " 2 ()  FMicrosoft Equation 3.0 DS EqOle CompObjTVfObjInfoWEquation Native :uation Equation.39q,} 30 " FMicrosoft Equation 3.0 DS Equation Equation.39q0@1D  5000'A_1308733843ZFXXOle CompObjY[fObjInfo\Equation Native L_1321182713Dq_FXXOle CompObj^`f 0 FMicrosoft Equation 3.0 DS Equation Equation.39q!ؖԊ l=11m FMicrosoft Equation 3.0 DS EqObjInfoaEquation Native =_1321182742dFXXOle CompObjcefObjInfofEquation Native T_1321182770bliFXXuation Equation.39q8 =6238'A 0 FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjhjfObjInfokEquation Native _C. v=310 6 cm/s FMicrosoft Equation 3.0 DS Equation Equation.39q?Ԋ c=310 8 m/s_1321182801nFXXOle CompObjmofObjInfopEquation Native [_1321183467g{sFXXOle CompObjrtf FMicrosoft Equation 3.0 DS Equation Equation.39qCxs 1.6710 "27 kg FMicrosoft Equation 3.0 DS EqObjInfouEquation Native __1321183686xFXXOle CompObjwyfObjInfozEquation Native u_1321183731v}FX򋯤uation Equation.39qYpe m e =9.1110 "31 kg FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObj|~fObjInfoEquation Native W;[܉ c=310 8 m/s FMicrosoft Equation 3.0 DS Equation Equation.39qh^ m 0_1321183812F򋯤򋯤Ole CompObjfObjInfoEquation Native 6_1321183831F򋯤򋯤Ole CompObjf FMicrosoft Equation 3.0 DS Equation Equation.39q`4 E k FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoEquation Native 6_1321183879F򋯤򋯤Ole CompObjfObjInfoEquation Native 1TableMQvx4 p= E k2 c 2 +2m 0 E kOh+'0 (4 T ` lx4Amity School of Engineering & Technology (NOIDA)physics research labNorm # A<;2c"Wwh/?`!7"Wwh/H xcdd``> @c112BYL%bpuӁ`!6$8H34pjTcR xcdd``> @c112BYL%bpu # A>=2h(͉\8-D`!<(͉\8- XJ xcdd``> @c112BYL%bpu;vv0o8L+KRsA2u(2tA4B 0Cbd`9JqDd Tb ? c $A?? ?3"`?>2g-〆C`!;-〆ᐒ HXJ xcdd``> @c112BYL%bpu 1,B3IDd T0 @ # A@?2g EZ1[C‡`!; EZ1[ XJ xcdd``> @c112BYL%bpu @c112BYL%bpu @c112BYL%bpuPOV}u]:,VР *g/:UbOdr'_UQ7:' ۛ{> g,-gWÔF3!*]< q'zW3%` u<ݢ?ީG@(r/+s3HV,OŸfy~ufsE']n5̍ff4OayT|1< jϓxiν>J~dEQ?V福gu6ϯY-axTyy<)]'H?WaGZ_Zf^(5!ݽ\*/PD?N6Dd |@b D c $AD? ?3"`?C2f@ nݢ{>BW`!:@ nݢ{>`0 xcdd``> @c112BYL%bpu!0~ Hbe \VfXI9 A\\}s f[Lj41 v>4=4Ĥ\Y\˰dP"CDx,Ā'f {&Dd h0 I # AIH2j/Am8SG5~њ`!vj/Am8SG5@ @PV|Dxcdd``dd``baV d,FYzP1n:&&N! KA?H1-47$# !lo`'0L ZZsy"+8|-J;T T0&qtWql ~.o'W@} AFb76ث<{2B0d0@penR~_s f[Lj41 v>4=4Ĥ\Y\pdP"CDx,Ā'f 3|0Dd dh0 J # AJI2|&ҨG`!|&ҨG@^ |Nxcdd``Ned``baV d,FYzP1n:&B@?b 8 ㆪaM,,He` 01d++&1Dl\ _#9 g0Zx ty a1d#7 AVFd ѝs 27`a +|0P 27)? 'ϜBDϝd.6;ns1w ds.hsS8ؠq.%F&&\E s:@ĎB ~`YyDd |b K c $AK? ?3"`?J2/SC$$-nXC'`!/SC$$-nXCB `0excdd``^ @c112BYL%bpu#)lB* $b.#/ 76DܻQd?7X@Vu !1@penR~'vBDo+]lC1w'ns1g2b AL !4qS$8iMNÌLLJ% kA0u(2tA4Ag!t?1ecA(Dd @0 L # ALK2կi8AQ`!xկi8AQ % Fxcdd``dd``baV d,FYzP1n:&&N! KA?H18 ㆪaM,,He`0 01d++&1Dl\ _gr-c*`ĵт7as|?>cdmaG40~ Hbe 4VXܤS\\G<"?& #o[.hqc|h 0y{iI)$5aE. XO`|Dd @h0 M # AML2TEŞRj90ȣ`!(EŞRj9ђ@ |xcdd``> @c112BYL%bpu @c112BYL%bpuU9\$,򁖧wFB4%+eWۂ×JhUպrI3ALtO5S\W?O>MaePpGcvoE{n\=mHXL>Yz.1,yӼ{}"iY.^Cf}.y䗛qMdx-mp0Ԥ8ALT=qSummaryInformation(DocumentSummaryInformation8\CompObjyal sanjeevs22Microsoft Office Word@@n@n  k<՜.+,0, hp  Hewlett-Packard Company$F 1Amity School of Engineering & Technology (NOIDA) Title  F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q^ 2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH @`@ mINormalCJ_HaJmH sH tH DA`D Default Paragraph FontRiR  Table Normal4 l4a (k (No List 4 @4 mIFooter  !.)@. mI Page Number4@4 IHeader  H$6!6 I Header CharCJaJPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] mG OZgggj ~ :.# ##$,^8>iFHB (*+,-.01234578:;<>@BDEKLO =(-9R?>IB )/69=?ACFMBVX  ').BD^rty[oq-/5IK~;OQi}%9;AUWp"$-AC[oqz"68Wkm # % ( < > E Y [ h | ~    # 7 9 g { } 9 M O G[]bvx)+1EGBVX"68EY[$$$(((I:]:_:b:v:x:{::::::BBB0EDEFEKE_EaEE F F!F5F7FEFYF[FmG:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::OVZacj!!8@0(  B S  ?( P R d $$$\%^%))$)&)//u4v455==DDeEfEGGGGGGG G G G GGG:G?GSG[G^GhGkGnGY[>A 9~  -1"\ a ((4455G:I:&D)D8F9FGGGGGG G G G GGGkGnG33333333333333333333333 77!%   9 P gnnssu14^_hn)* ####+#,####### & &((,-X2Y222333333337777]8^8 9 9E9E9@@-C.CGGGGGGG G G G GGSGkGnG 77!%   9 P gu14^_hn)* ####+#,####### & &((,-X2Y222333333337777]8^8 9 9E9E9@@-C.CGGGGGGG G G G GGSGkGnGA+ x$, $4!  Z%ZK5*;9 G0Nc~IQX.] t `Rfrd~,[{pv| BvL*h h^h`hH.h 8^8`hH.h L^`LhH.h  ^ `hH.h  ^ `hH.h xL^x`LhH.h H^H`hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.h ^`hH.h ^`hH.h  L ^ `LhH.h \ \ ^\ `hH.h ,,^,`hH.h L^`LhH.h ^`hH.h ^`hH.h lLl^l`LhH.h ^`hH.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.h ^`hH.h^`. 0 ^ `0o(()h@ @ ^@ `.h^`.hL^`L.h^`.h^`.hPLP^P`L.hh^h`5o(. ^`hH. L^`LhH.   ^ `hH. \ \ ^\ `hH. ,L,^,`LhH. ^`hH. ^`hH. L^`LhH.h ^`hH.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.h ^`5hH. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h hh^h`hH.h ^`hH.h  L ^ `LhH.h \ \ ^\ `hH.h ,,^,`hH.h L^`LhH.h ^`hH.h ^`hH.h lLl^l`LhH. ^`5hH. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h hh^h`hH.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH. ^`56o(. ^`hH. L^`LhH. ^ ^^ `hH. .^.`hH. L^`LhH. ^`hH. ^`hH. nL^n`LhH.^`o(. ^`hH. L^`LhH. ^ ^^ `hH. .^.`hH. L^`LhH. ^`hH. ^`hH. nL^n`LhH.K5$4!]~I$,frdG Z%t `;> +  Bv[{p h^h`OJQJo(hH(!^`OJQJ^Jo(hHoP"p^p`OJQJo(hH#@ ^@ `OJQJo(hH$^`OJQJ^Jo(hHo%^`OJQJo(hH&^`OJQJo(hH('^`OJQJ^Jo(hHoP(P^P`OJQJo(hH                                      ,`       4Z                 Mj[        bD @ @ @ @ @ @ @ @         e         x        ji F R E 7 .1*pl1P&}I{EK!~!B$U&'5')*b*+'k4K5o6C3=4= Q=Q=DAmA$BKD?EmIzXI3|LvOwO)PvPQZ0\ ^J_ `{q`+c$f7|hZUszs{?ihxtMo[ ]BZo-B_/[ %zTMOx')P=WP<U`;h }Y! L8 rh,W'sj^g<"`1GG@)*!+!,56cBcFcGmG@4@2h@6p@B@ @8@UnknownG* Times New Roman5Symbol3. * ArialC PMingLiUe0}fԚ?= * Courier New;WingdingsA BCambria Math"1h'''' k< $ k< $!4FF 2qHX?mI2!xx0Amity School of Engineering & Technology (NOIDA)physics research lab sanjeevs2D