ࡱ> q`0bjbjqPqP::P&+6664jhb>j(^" gggk]m]m]m]m]m]m]$`h|b4]Q6+ '@g+ + ] ]...+ R 6 k].+ k]..H"6KK H s$ILl]0(^Ic*Xc4KKKK8c6K|gz.5ggg]]1.jggg(^+ + + + jdAG QdRHjGQjjj  Evaluation of natural diatomaceous earth deposits from South Eastern Europe for stored-grain protection: The effect of particle size Bill J. Vayias1,*, Christos G. Athanassiou1, Zlatko Korunic2 and Vlatka Rozman3 1Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 75 Iera Odos str., 11855, Athens, Greece 2 Diatom Research and Consulting Inc., 14 Greenwich Dr., Guelph, ON, N1H 8B8, Canada 3Department for Plant Protection, University of Josip Juraj Strossmayer in Osijek, 3 Trg Sv. Trojstva, 31100 Osijek, Croatia *Author for correspondence: bvayias@gmail.com Abstract BACKGROUND: The use of Diatomaceous Earths (DEs) provides a promising alternative to the use of contact insecticides in stored product IPM. Geographical origin and the physical properties of a given DE may affect its insecticidal activity. In our study, DE samples were collected from different locations of south-eastern Europe and their efficacy was evaluated in the laboratory against Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujiidae), Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). In addition, three fractions comprising particles of different size were obtained from each DE sample and assessed with regards their effectiveness against the above stored-product insect pests. RESULTS: DE from the Greek region of Elassona was the most effective against C. ferrugineus and S. oryzae, whereas the DE Kolubara 518, mined in the Serbian region of Kolubara, was the most effective against R. dominica. Smaller particles were more effective than the larger particles against the three tested species, although significant differences in the efficacy of the fractions containing particles of 0-150 microns and particles with sizes <45 microns were not always recorded. CONCLUSIONS: Deposits from south-eastern Europe appeared to be very effective against the tested species and, therefore, this region should be further evaluated as a source of development of commercial products. Moreover, particle size is a physical property that should always be taken into account during the DE manufacturing process as it can strongly influence the insecticidal action of a given product. Key words: diatomaceous earth, particle size, effectiveness, insects, grain protectants 1. Introduction Over recent years, there has been an increased interest for the use of diatomaceous earths (DEs) for the protection of stored-grain against arthropod pests.1 Several DE formulations are now commercially available in many parts of the word, and are used with success in stored-products protection.2 DEs are composed of the fossils of phytoplankton (diatoms) that exists in aquatic ecosystems1. Due to the natural origin and the safety of DEs1 the detection of new, natural deposits, has received significant attention. DE efficacy against insects is affected by biotic and abiotic factors such as temperature, relative humidity, commodity type, and insect species and therefore, these factors need to be taken into account when evaluating DE as a grain protectant. 2-7 Although the main drawback of the use of DEs as grain protectants is that they reduce bulk density (test weight) of the grain, it may be possible to mitigate the negative impact on grain properties as long as the most efficacious DEs are selected and applied when factors that enhance DE efficacy are prevailing in the storage environment. 1, 2, 8-10 The physical and chemical properties of DE such as the percentage of amorphous silicon dioxide, pH value, active surface, sorption capacity, particle size distribution, adherence DE particles to kernel are the critical factors affecting their insecticidal action.1 Although, the geographical origin has a great effect on physical and chemical properties of DEs11, mapping the DE sources according to our knowledge can not be used to predict the insecticidal activity of DE against insects. DEs collected from the same locality but taken from different layers are often different in their insecticidal activity since DE itself is heterogeneous rock, which is consisted of different diatom species that grew under different conditions during millions of year1. In a previous report, Korunic,11 conducted experiments with several DEs from different countries (USA, Mexico, Australia, Japan, China, Canada, former Yugoslavia), and noted significant variations among the tested DEs with respect to their insecticidal activity. In this work, the author noted that one of the best DEs was derived from the Former Yugoslav Republic of Macedonia. Until present this is the only published paper concerning the insecticidal activity of DE from South Eastern Europe. Hence, it was indicated that this area is likely to contain other, equally or more effective, natural DE deposits that should be further evaluated. The author also suggested that the size of DE particles may be playing important role in the insecticidal value of a given DE and this finding was the agreement with previous results of Chiu12 and McLaughlin.13 The objective of the present study was to determine the effectiveness of DEs obtained from multiple locations in South Eastern Europe as stored-grain protectants, against three major stored-product beetle species, the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujiidae), the rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae), and the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). In this work, the effect of particle size on the insecticidal efficacy of the tested DEs was also examined. 2. Materials and Methods 2.1 DE deposits used A total of 14 DEs was examined, obtained from several locations in Greece, Serbia and Slovenia, during autumn 2007 (Table 1). For comparative purposes, Silicosec (Biofa GmbH, Munchigen, Germany), which is a commercially available DE formulation, was used in the experiments. Silicosec is a DE of fresh water origin and contains 91.2% SiO2. 2.2 Preparation of the samples All DE samples were dried to about 6% moisture content, at 40 oC for 24h 11 and sieved (dry sieving) with U.S.A. standard testing laboratory sieves with meshes of 150 and 45 microns. The experiments were conducted with a base DE with particles sized between 0-150 microns and 2 fractions; 45 to 150 microns and <45 microns fraction. To obtain the base DE, each DE sample was sieved using a sieve with openings of 150 microns. The particles with diameters above 150 microns were not used in bioassays because this fraction usually contains sands, rocks and only a few very large diatoms. The base DE was again sieved using a sieve with openings of 45 microns to prepare the additional two fractions of 45-150 microns and <45 microns. The weight of each fraction was measured and its proportion to the base DE sample was assessed (Table 1). 2.3 Insect species and Commodity tested Seven to 21d old mixed-sex adults of C. ferrugineus, S. oryzae, and R. dominica were used in the bioassays. All three species were laboratory cultured at 27 1 oC and 70 5% r.h. and held in continuous darkness. Cryptolestes ferrugineus was reared in wheat flour while S. oryzae and R. dominica were reared on whole wheat. The tested commodity was untreated hard wheat (var. Mexa) with very little dockage (<0.8%). Prior to the start of the experiments, the moisture content of the grain, as determined by a Dickey John moisture meter (Dickey-John Multigrain CAC II, Dickey-John Co, Lawrence, KS, USA), was approx. 12.2 0.3 %. 2.4 Bioassays The various fractions of DE were added to the grain held in jars (15 cm in diameter and 35 cm in height) containing 300 grams of wheat at a rate of 600 ppm. The jars were tightly sealed with lids and thoroughly shaken by hand for one minute, to achieve the equal distribution of the DE in the grain mass. Subsequently, the grain from the treatment jars was divided into a further three glass vials (3 sub-replicates) each containing 100 g of treated wheat. The dimension of the glass vials was 7.5 cm in diameter and 12.5 cm in height. In addition, three glass vials containing 100g of untreated grain served as controls. Vials were subsequently infested with 50 adults of either S. oryzae, R. dominica or C. ferrugineus. Adults were sieved out the treated grain after 24h and 6 days of exposure and dead individuals were counted at each exposure interval. Bioassays were carried out at 30 oC and 70 % r.h. The whole procedure was repeated three times and r.h was maintained using saturated salt solutions throughout the experimental period as recommended by Greenspan.14 2.5 Data analysis Although control mortality did not exceed 4% in any experiment, insect mortality was corrected using Abbotts15 formula. For each insect species, data were initially analysed according to the GLM procedure of SAS14 with corrected mortality as the response variable and exposure interval, tested DE and particle size as the main effects. Then, for a specific exposure x insect species combination, data were subjected to one-way analysis of variance (ANOVA) according to the GLM Procedure of SAS.16 Means were separated using the Tukey - Kramer (HSD) test at P= 0.05.17 To evaluate if differences in mortality caused by the complete DE fraction (0-150 microns) were correlated with the proportion of complete fraction made up of particles <45 microns, the Correlation Procedure of SAS16 was used. The above procedure was used for each species x exposure combination (P<0.05; Ho: = 0). 3. Results 3.1 General results All main effects and associated interactions for mortality levels of C. ferrugineus were significant (DE: F13,755= 263.4, P<0.001; particle size: F2,755= 311.7, P<0.001; exposure interval: F1,755= 5387.2, P<0.001; DE x particle size: F26,755= 11.8, P<0.001; DE x exposure interval: F13,755= 78.3, P<0.001; particle size x exposure interval: F2,755= 46.3, P<0.001) at P<0.05 level. This was also the case with mortality levels of S. oryzae (DE: F13,755= 732.1, P<0.001; particle size: F2,755= 330.2, P<0.001; exposure interval: F1,755= 27841.3, P<0.001; DE x particle size: F26,755= 5.3, P<0.001; DE x exposure interval: F13,755= 519.6, P<0.001; particle size x exposure interval: F2,755= 200.9, P<0.001) as well as with mortality levels of R. dominica (DE: F13,755= 921.6, P<0.001; particle size: F2,755= 276.1, P<0.001; exposure interval: F1,755= 3098.1, P<0.001; DE x particle size: F26,755= 16.4, P<0.001; DE x exposure interval: F13,755= 484.3, P<0.001; particle size x exposure interval: F2,755= 186.7, P<0.001) at the same P level. 3.2 C. ferrugineus In the case of C. ferrugineus, efficacy of all 3 fractions of Silicosec was extremely high (>99%) even after the shortest exposure period (24h). Over this exposure interval and with the exceptions of (a) the small particles of Elassona 1 and Kriti and (b) the particles sized 0-150 microns of Elassona 1, which produced very high mortality (>90%) against this species, Silicosec was significantly the most effective among the tested DEs (Table 2). Six days post treatment, with the exception of Begora, Kolubara 516, Serbia lower and Vranje, which were significantly less effective than Silicosec, all the remaining DEs were equally effective to Silicosec (Table 2). Over the same exposure period and in more than 60% of the tested DEs, the smallest particles were significantly more effective compared to the largest particles of the same DE, against adults of this species (Table 2). For both exposure periods a significant positive relation between the DE efficacy against rusty grain beetle and the proportion of small particles (<45 microns) of the base DE was observed (r = 0.4514, and 0.3427 for 24h, and 6d respectively; P < 0.0001; n = 122; Fig.1) although significant differences between the fractions <45 microns and 0-150 microns were not always recorded (e.g Serbia lower and Vranje) (Table 2) 3.3 S. oryzae Twenty four hours post treatment of wheat with the tested DEs, only Silicosec gave significant mortality, which ranged between 21.8% and 22.4%, against rice weevils. Over the same exposure interval, survival of this species on wheat treated with the remainder DEs was generally high (>92%). The fraction of Silicosec with the largest particles was the least effective whereas the fraction with the smallest particles (<45 microns) was the most effective. However, significant differences in weevil mortality were not noted between the fractions <45 microns and 0-150 microns (Table 3). Six days post treatment of wheat with the DEs, effectiveness of DE fractions with small particles was significantly higher than that of fractions with the largest particles except for the fractions of Silicosec, which were 100% efficacious against S. oryzae (Table 3). At the same exposure interval, the lowest mortality levels were noted in wheat treated with Begora, where less than 20% of weevils were killed, even with the fraction containing the smaller particles. Of the fractions containing the large particles (45-150 microns) the most effective belonged to Kolubara 518, where rice weevil mortality reached 89.6%. By contrast, the most effective of the non-commercial DEs with particles <45 microns was Kolubara middle (98.2%) followed by Kolubara 518 (97.6%) and as a result, significant differences between those DEs and Silicosec were not recorded (Table 3). This was the only case that significant differences in efficacy of non-commercial DEs and Silicosec were not recorded against S. oryzae, since the remaining DEs were consistently less effective than Silicosec against this species. For the rice weevil, DE efficacy and the content of each DE in particles less than 45 microns were positively correlated, for both exposure intervals (r = 0.5715, and 0.4080 for 24h and 6d respectively; P < 0.0001; n = 122; Fig.1). 3.4 R. dominica After 24h of exposure, the efficacy of all fractions of the non commercial DEs was very low (<2.5%) and only the fractions of Silicosec gave mortality, which was also low and did not exceed 19% (Table 4). Five days later, significantly more beetles were dead on wheat that was previously treated with the small-particles of a specific non commercial DE compared to large particles of the same DE (Table 4). Over the same exposure period, mortality of the lesser grain borer reached 63.8% on wheat treated with the smaller particles of Elassona 1, whereas it did not exceed 11% on wheat treated with the largest particles of Begora, Elassona 2, Kolubara 516, Kolubara 517, Kriti, Serbia lower or Vranje (Table 4). All tested non commercial DEs were significantly less effective than Silicosec against adults of R. dominica, and this was noted for both exposure periods that were tested here. DE efficacy against lesser grain borer and the proportion of each DE in particles less than 45 microns were positively related. Moreover, this fact was noted for both exposure intervals that were tested (r = 0.5126 and 0.5863 for 24h and 6d respectively; P < 0.0001; n = 122; Fig.1). 4. Discussion Korunic11, when assessing the impact of several DE characteristics on the insecticidal value of DEs, stated that DE particles between 1 and 30 microns could be positively related with high DE efficacy. Results indicated that although particle size distribution in a certain range (median particle size from about two to 30 microns) was cited in references as a very important DE property affecting insecticidal activity11-13, this property alone could not be used to predict the insecticidal value of different DEs. According to the author's11 findings, some DE formulations with smaller particles (diameter in microns), gave significantly higher efficacy against the same species of insect than larger particles (e.g.,Celite 209") but in the case of a DE originating from the Former Yugoslav Republic of Macedonia, different fractions (four fractions and the normal formulation) with particles between 0 -192 microns gave similar insecticidal efficacy. In the present study, although significant differences between the efficacy of the tested DEs and their fractions with the smallest particles (<45 microns) were not always recorded, our results indicate that particle size is a DE property that can affect their insecticidal action. In light of our findings, DE particles of <45 microns had stronger insecticidal properties in comparison with larger particles. This was also supported by the fact that a significantly positive relationship between the efficacy of the tested DEs and their contents of small-particles was always recorded in our experiments. DEs with smaller particles have greater surface to volume ratio in comparison with DEs containing larger particles. Hence, the higher the content in small particles in a given DE quantity, the larger the surface it covers and the greater the toxicity it produces since the contact area between insects body and the particles increases.2, 18 Unfortunately, the most active DE formulations against stored grain insects, such as enhanced Protect-It"!, Dryacide, Insecto, Celite 209, Dicalite, and DiaFil, also had the greatest effect on the reduction of bulk density.19,20 Based on our findings, Silicosec, which had the greatest content (90%) of small particles, gave the highest mortality ratio in all of the cases that were tested here. Nevertheless, as we mentioned already 11, particle size alone cannot be used to predict the insecticidal value of a certain DE and our results support this statement. According to our findings, Kolubara 518 and Serbia-upper had the greatest content (75% and 70% respectively) of small particles of the non commercial DEs that were tested here. However, these DEs were not always the most effective against the tested species. For instance, in the case of R. dominica after 6d exposure, the Elassona 1 (50% of particles sized less than 45 microns), was significantly more effective than Serbia-upper. Similar results were also obtained in the case of S. oryzae after a 3d exposure period. In the latter case, DE from Slovenia was much more effective than Serbia-upper. It is noteworthy that DE from Slovenia had the smallest content in particles <45 microns (30%) of the DEs that were tested here. These contradictory results obtained from our experiments can be attributed to the fact that besides particle size, there are also other DE properties that could affect their insecticidal value such as active surface and oil adsorption, the diameter of inner pores of particles, moisture content of dust, SiO2 content, and tapped density. 1,11,18,21-24 DE is prepared for commercial use by quarrying, drying and milling. Practically, the only change to DE during this process is the reduction in the moisture content and mean aggregate particle size. The result of this process is a fine, talc-like dust, with the mean particle size distribution from 0 to more than 100 microns with the majority from 10 to 50 microns.1 A similar procedure was also followed in our experiments with the aim to obtain the samples of the non commercial DEs and the different fractions from each sample. However, DE performance was not equal among the DEs, showing that DE origin, even in the case of adjacent geographical locations, is also a very important factor that affects DE efficacy. In light of our findings, Elassona 1 and Kolubara 518 originating from Greece and Serbia, respectively, seemed to be very promising DEs that can be further assessed as potential DE formulations. These DEs also had very effective large particles (45-150 microns) which were in some cases more effective than the smallest particles of the other DEs. Hence, it is possible to use even the larger particles (45-150 microns) of these DEs, if the process of the production of particles <45 microns is proves expensive. However, large particles (>150 microns) that usually contain rocks, sand and very large diatoms should be removed during the formulation process as they can reduce DE performance. 1,11 To obtain a satisfactory level of efficacy, the current DE formulations should be applied at doses between 400 and 1000 ppm.5 Nevertheless, at this rate DE application may reduce grain bulk density (volume/weight ratio) and the commercial value accordingly. Therefore, the looking for DEs which are effective at low doses is of great importance. Also, DEs perform better with increasing temperatures, so their combined use with high temperatures have been shown to be very promising for the control of stored product pests. 2-7 In our experiments, we evaluated all DEs at a moderate dose (600 ppm) and at 30 oC. Our results were promising for C. ferrugineus and S. oryzae (only after 6d exposure) but not for R. dominica. Hence, to control this species with the tested non commercial DEs, doses higher than 600 ppm or temperatures higher than 30 oC are required. Several DEs, mined out from natural deposits in areas rich to silacaceous rocks, have been demonstrated to be very effective against stored grain pests and are now commercially available.2 Although the area of Former Yugoslavia is rich in silicaceous rocks, DE samples from this broader location have been evaluated only in one location with respect to their insecticidal value to date. The results of the present study indicate that the DE deposits from this region should be further evaluated as sources for commercially exploitable DEs. However, the physical properties of these DE deposits should be further investigated with the view to produce DE formulations that could be effective at low doses and by this means, minimize their negative effect on grain quality. Acknowledgements This study was supported by the Multilateral Research Project Development of a non-toxic, ecologically compatible, natural resource based insecticide from diatomaceous earth deposits of South Eastern Europe to control stored-product insect pests (SEE-ERA.NET; Ref. Nr 06-1000031-9902). References Korunic Z, Diatomaceous earths, a group of natural insecticides (Review article). J Stored Prod Res 34: 87-97 (1998). Subramanyam Bh and Roesli, R, Inert dusts, in Alternatives to Pesticides in Stored-Product IPM, ed by Subramanyam Bh and Hagstrum DW, Kluwer Academic Publishers, Dordrecht, 321-373 (2000). Dowdy AK, Mortality of red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae) exposed to high temperature and diatomaceous earth combinations. J Stored Prod Res 35: 175-182 (1999). Arthur FH, Impact of food source on survival of red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae) exposed to diatomaceous earth. J Econ Entomol 93: 1347-1356 (2000). Fields P and Korunic Z, The effect of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored-product beetles. J Stored Prod Res 36: 13-21 (2000). Vayias BJ and Athanassiou CG, Factors affecting efficacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused beetle Tribolium confusum Du Val (Coleoptera: Tenebrionidae). Crop Protect 23: 565-573 (2004). Athanassiou CG, Vayias BJ, Dimizas CB, Kavallieratos NG, Papagregoriou AS and Buchelos CTh, Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) on stored wheat: influence of dose rate, temperature and exposure interval. J Stored Prod Res 41: 47-55 (2005). Korunic Z, Fields PG, Kovacs MIP, Noll JS, Lukow OM, Demianyk CJ and Shibley KJ, The effect of diatomaceous earth on grain quality. Postharvrst Biol Techn 9: 373-387 (1996). Arthur FH, Optimization of inert dusts used as grain protectants and residual surface treatments. In Proceedings of the 8th International Conference on Stored-Product Protection, July 2226 2002, York ed. by Credland PF, Armitage DM, Bell CH, Cogan PM, Highley E. Wallingford, Oxon: CAB International. pp 629634 (2003). Athanassiou CG, Kavallieratos NG, Vayias BJ and Stephou VK, Evaluation of a new enhanced diatomaceous earth formulation for use against Rhyzopertha dominica (Coleoptera: Bostrychidae). Int J Pest Manag 54: 43-49 (2008). Korunic Z, Rapid assessment of the insecticidal value of diatomaceous earths without conducting bioassays. J Stored Prod Res 33: 219-229 (1997) Chiu SF, Toxicity study of so-called inert materials with the bean weevil Acathoscelides obtectus (Say). J Econ Entomol 31: 810-821 (1939) McLaughlin A, Laboratory trials on desiccant dust insecticides, pp. 638-645. In E. Highley, E.J. Wright, J.H. Banks, and B.R. Champ (eds.), Proc. 6th Working Conf. Stored-Prod. Prot., CAB International, Wallingford, Oxon, United Kingdom (1994). Greenspan L, Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand. A. Phys. Chem. 81: 89-96 (1997). Abbott WS, A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265-267 (1925). SAS Institute, SAS users guide: statistics. SAS Institute. Gary, NC (1996). Sokal RR and Rohlf FJ, Biometry (3rd Edition). Freedman and Company, New York (1995). Chiu SF, Toxicity studies of so called inert materials with the rice weevil and the granary weevil. J Econ Entomol 32: 810-821 (1939). Desmarchilier JM and Dines JC, Dryacide treatment of stored wheat: its efficacy against insects, and after processing. Aust J. Exptl Agric 27: 309-312 (1987). Korunic Z, Cenkovski S, and Fields P, Grain bulk density as affected by diatomaceous earth and application method. Postharvrst Biol Techn 13: 8189 (1988). Alexander P, Kitchener JA and Briscoe HVA, Inert dust insecticides. Ann. App Biol 31: 143-159 (1944). David WAL and Gardiner BOC, Factors influencing the action of dust insecticides. Bull Entomol Res 41: 1-61 (1950). Ebeling W, Physicochemical mechanisms for the removal of insect wax by means of finely divided powders. Hilgardia 30: 531-564 (1961). Ebeling W, Sorptive dust for pest control. Ann Rev Entomol 16: 123-158 (1971). Table 1. Tested DEs and the weight (%, w/w) of 3 fractions of DE particles. Origin (geographic location) of each DE is mentioned inside parenthesis. DE Sample<45 microns (%)45-150 microns (%)0-150 microns (%)Elassona 1. (Greece)5050100.0Elassona 2 (Greece)5545100.0Kriti (Greece)6040100.0Begora (Greece)5050100.0Kolubara 516 (Serbia)4060100.0Kolubara 517 (Serbia)6040100.0Kolubara 518 (Serbia)7525100.0Vranje 3112107 (Serbia)4060100.0Vranje (Serbia)4060100.0Serbia lower (Serbia)6040100.0Kolubara middle (Serbia)6535100.0Serbia upper (Serbia)7030100.0Slovenia (Slovenia)3070100.0SilicoSec>90<10100.0 Table 2. Mean (SE) mortality, corrected by Abbotts formula, of C. ferrugineus adults previously exposed for 24h and 6d to wheat treated with different fractions of DEs at 600 ppm. Within each exposure interval, means in the same column followed by the same uppercase letter are not significantly different at P<0.05; Within each exposure interval, means in the same row followed by the same lowercase letter are not significantly different at P<0.05; Uppercase letters show differences between the tested DEs; Lowercase letters show differences between the different fractions of a specific DE; For the tested DEs, df= 13,125; For the tested particle sizes df=2, 26. Exposure interval24h6dDE sample0-45 microns45-150 microns0-150 microns0-45 microns45-150 microns0-150 micronsBegora37.1 2.1 Fa16.9 1.8 EFb34.4 0.8 EFa91.7 1.9 BCa75.3 1.6 Bb86.2 2.1 BaElassona 198.7 0.6 Aa67.3 4.1 Bb 90.7 2.7 Aa100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 AaElassona 249.1 1.1 Ea7.6 0.9 FGc38.9 1.7 EFb100.0 0.0 Aa45.6 2.5 Db100.0 0.0 AaKolubara 51612.4 1.5 GHa3.3 0.5 Gb13.6 1.9 HIa70.2 1.8 Da 42.2 2.0 Db63.1 3.5 DaKolubara 51721.3 1.1 Gab17.6 1.1 EFb22.4 1.1 FGHa100.0 0.0 Aa97.3 1.9 Aa100.0 0.0 AaKolubara 51874.0 3.2 Ca28.7 3.1 DEb69.1 3.9 BCDa100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 AaKolubara middle52.7 4.4 DEa49.3 5.7 Ca47.8 4.4 CDa100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 AaKriti90.7 1.1 ABa28.7 1.3 DEb87.6 1.9 Ba100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 AaSerbia lower6.9 1.1 Ha1.1 0.6 Gb7.11 0.7 Ia86.2 3.5 Ca47.1 2.6 Dc72.9 4.0 CbSerbia upper61.6 1.8 Da17.1 1.9 EFc47.6 1.5 DEb100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 AaSlovenia82.9 2.2 BCa30.0 3.9 Dc65.1 3.8 BCb100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 AaVranje16.1 1.1 GHa10.9 1.8 FGa11.8 1.7 GHIa94.2 0.8 Ba68.0 2.6 Cb74.0 1.6 CbVranje311210754.2 2.5 DEa 4.4 0.7 Gc20.2 2.5 FGb100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 AaSilicosec100.0 0.0 Aa 99.6 0.3 Aa100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 Aa Table 3. Mean (SE) mortality, corrected by Abbotts formula, of S. oryzae adults previously exposed for 24h and 6d to wheat treated with different fractions of DEs at 600 ppm. Within each exposure interval, means in the same column followed by the same uppercase letter are not significantly different at P<0.05; Within each exposure interval, means in the same row followed by the same lowercase letter are not significantly different at P<0.05; Uppercase letters show differences between the tested DEs; Lowercase letters show differences between the different fractions of a specific DE; For the tested DEs, df= 13,125; For the tested particle sizes df=2, 26. Exposure interval24h6dDE sample0-45 microns45-150 microns0-150 microns0-45 microns45-150 microns0-150 micronsBegora0.0 0.0 Ea0.0 0.0 Ca0.0 0.0 Ga19.6 2.1 Ha4.6 1.0 Gc12.4 1.4 IbElassona 18.0 1.1 Ba4.7 0.5 Bb4.9 0.7 Bb89.8 1.9 Ba72.0 3.3 Cb80.0 2.3 CDbElassona 24.0 0.6 CDa0.0 0.0 Cc2.0 0.5 DEFb28.2 2.0 Ga18.9 1.5 Fb24.7 2.2 HabKolubara 5161.8 0.5 DEab0.7 0.3 Cb2.7 0.3 EFGa41.8 0.7 Fa19.1 1.4 Fc24.4 1.4 GHbKolubara 5175.3 0.8 BCa1.9 0.7 BCb4.2 0.8 BCDab66.1 1.2 Da45.4 1.2 Ec5.3 1.8 FbKolubara 5184.2 0.4 CDa 2.2 1.2 BCa4.0 0.3 CDEa97.6 0.4 Aa89.6 1.3 Bb94.7 1.5 ABaKolubara middle2.4 0.3 CDEa0.0 0.0 Cb0.0 0.0 Gb98.2 0.6 Aa 74.0 1.6 Cb93.6 1.8 BCaKriti5.1 0.7 BCab3.8 0.2 Bb6.9 1.0 BCa 42.4 0.7 Fa22.2 1.0 Fc29.3 1.9 GHbSerbia lower2.4 0.3 CDEa0.0 0.0 Cb1.8 0.8 FGa51.1 1.5 Ea14.2 1.8 Fc44.0 2.3 GbSerbia upper4.4 0.6 CDa2.7 0.8 BCa3.6 0.7 FGa76.2 2.1 Ca56.4 3.1 Db67.6 2.5 EaSlovenia1.3 0.5 DEb0.0 0.0 Cc2.9 0.4 FGa86.7 1.5 Ba62.0 2.3 Dc78.4 2.1 DEbVranje0.0 0.0 Ea0.0 0.0 Ca0.0 0.0 Ga41.6 1.9 Fa20.7 1.5 Fc30.7 1.7 GHbVranje31121074.2 0.4 CDa1.8 0.7 BCb4.9 0.4 CDEa87.3 1.5 Ba75.6 1.5 Cb81.8 1.8 CDaSilicosec21.8 1.5 Aa16.9 1.5 Ab22.4 1.5 Aa100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 Aa Table 4. Mean (SE) mortality, corrected by Abbotts formula, of R. dominica adults previously exposed for 24h and 6d to wheat treated with different fractions of DEs at 600 ppm. Within each exposure interval, means in the same column followed by the same uppercase letter are not significantly different at P<0.05; Within each exposure interval, means in the same row followed by the same lowercase letter are not significantly different at P<0.05; Uppercase letters show differences between the tested DEs; Lowercase letters show differences between the different fractions of a specific DE; For the tested DEs, df= 13,125; For the tested particle sizes df=2, 26. Exposure interval24h6dDE sample0-45 microns45-150 microns0-150 microns0-45 microns45-150 microns0-150 micronsBegora0.0 0.0 Ca0.0 0.0 Ba0.0 0.0 Ca30.0 2.2 Ea8.4 2.1 EFGHb11.3 1.1 DEbElassona 12.2 0.2 BCa0.0 0.0 Bc1.3 0.3 BCb63.8 3.3 Ba12.4 2.3 CDEFb57.1 3.9 BaElassona 20.0 0.0 Ca0.0 0.0 Ba0.0 0.0 Ca11.1 2.1 GHa0.9 0.4 Hb8.9 1.4 EFaKolubara 5160.0 0.0 Ca0.0 0.0 Ba0.0 0.0 Ca16.7 0.8 FGa10.4 1.9 DEFGb14.0 2.0 DEFabKolubara 5170.0 0.0 Ca0.0 0.0 Ba0.0 0.0 Ca22.0 1.2 EFa9.3 1.5 DEFGHb14.2 1.7 DEbKolubara 5182.4 0.3 BCa0.0 0.0 Ba0.0 0.0 Ca54.0 2.3 CDa31.1 3.1 Bc41.3 2.5 BbKolubara middle0.0 0.0 Ca0.0 0.0 Ba0.0 0.0 Ca60.2 3.2 BCa28.2 2.5 Bb54.2 1.6 BaKriti0.0 0.0 Ca0.0 0.0 Ba0.0 0.0 Ca26.2 1.5 Ea3.3 0.9 GHb21.3 2.0 DEaSerbia lower0.0 0.0 Ca0.0 0.0 Ba0.0 0.0 Ca4.4 1.0 Ha0.9 0.5 Hb4.4 1.6 FaSerbia upper3.1 0.4 Ba0.0 0.0 Bb0.0 0.0 Cb44.9 2.8 Da16.2 1.9 CDEb23.3 2.3 CbSlovenia3.1 0.5 Ba0.0 0.0 Bb2.7 0.3 Ba47.1 0.5 Da17.3 2.3 CDc26.4 2.1 CbVranje0.0 0.0 Ca0.0 0.0 Ba0.0 0.0 Ca14.0 1.2 FGa6.0 0.8 FGHc9[ \ ]       % 0 1 ȸȸȸȸ|l]]]]]lhnhmH nHsH tHhnhH*mH nHsH tHhnhH*mH sH hnhmH nHsH tHhnh@\hnh@H*\hnhmH sH hnhCJH*aJmH sH hnhCJaJmH sH hnh5mH sH hnh5CJ aJ mH sH hk'h5mH sH k[ \ / 0 ^ h [ A dh1$gd $da$gd$dh7$8$H$a$gd$ dh*$a$gd $dh@&a$gd $dha$gdޡ/1 J ^ h  * ; a u +6 3DklmnVԼԈ}qqԈ}qfZhnhEH*mH sH hnhEmH sH hnhH*mH sH hnh smH sH hnhmH sH hnh5CJmH sH 5hnh6KHOJPJ\]aJmH nHsH tH/hnhKHOJPJ\aJmH nHsH tHhnh5mH sH hnhmH nHsH tHhnh>*mH nHsH tH#3DK";P##7#%%dhgd dh`gddhgd hdh`hgd dh@&gd dh`gd$dh`a$gd dh@&gd $dh@&a$gdVfAD    0:;A"PȼꯡuhnhCJH*mH sH hnh5CJmH sH hnh6CJ]mH sH hnh6CJmH sH hnhCJmH sH hnhsH*mH sH hnhO%mH sH hnh,imH sH hnhH*mH sH hnhmH sH hnh smH sH .mn    c"f"#7#\#u#{###### $&$F$P$T$`$%%%ɞ{iZhnhOJaJmH sH #hnhH*OJPJaJmH sH  hnh sOJPJaJmH sH #hnh6OJPJaJmH sH  hnhOJPJaJmH sH hnh sCJmH sH hnhXCJmH sH hnh5CJmH sH hnhCJH*mH sH hnhCJH*mH sH hnhCJmH sH !%%))*..&.N.:3;3N36n8o8 dh`gd hdh`hgd hdh`hgd7J~ $dha$gd$$ ) p@ P !dhx@&a$gd$hdh`ha$gd dh@&gd dh`gd dh@&gd%%&'&Q'T']'^'h(i((((((;)<)))))*"*%*q*s***++2,༬uj_jSjSjSjhnhH*mH sH hnhGpmH sH hnhmH sH hnh5CJmH sH hnhn5CJmH sH hnhCJH*mH sH hnh]CJmH sH hnh6CJ]mH sH hnh6CJmH sH hnhXCJmH sH hnhCJhnhCJmH sH #hnh5OJPJaJmH sH 2,3,:,<,--f-h-o-p-...N...$/*/0/4/://B/D/t/x/~///////////////0000000 0!0B0D0E0H0J0L0M0N0ŸŸŸŸŸhnhUmH sH hnhUH*mH sH hnh5mH sH hnhmHsHhnhH*mH sH hnh6]mH sH hnhH*mH sH hnhmH sH hnh6mH sH :N0P0Q0}0~00000000000000000000 111171<1G1H1e1k1r1s111111111111111111 2222#2%2(2)2*2,2-2E2J2L2O2P2Q2ƺƺƺƺƯƯƺƯƺƯƯƺƯƯhnhmH sH hnhU6mH sH hnhUmH sH hnhH*mH sH hnhUH*mH sH hnh6mH sH hnhmH sH EQ2S2T2p2u2w2{2|2}22222222222222222 333333333,3.3435363:3;3?3N3ǻǯo"hnh56OJPJmH sH hnh5OJPJmH sH "hnh6>*OJPJmH sH hnh>*mH sH hnhH*mH sH hnh6mH sH hnhmH sH hnhmH sH hnhUH*mH sH hnhU6mH sH hnhUmH sH *N3]3k3m335555>55556.6/606L6Z6i6t6y66666666666666=7޷ފފpިeZehnh&OJPJhnhOJPJhnh:)OJPJmH sH hnhs~COJPJhnh7J~OJPJmH sH hnh@OJPJmH sH hnhs~COJPJmH sH hnhoqOJPJmH sH hnh&OJPJmH sH hnh&OJhnhOJPJmH sH hnh6OJhnhOJ#=7K7m7u7777777777c8d8e8l8m8o8s8}8::;;;;*>+>>>??????????·ꢖzqqzzffhnhihOJPJhnhZ6OJhnh6OJhnhihOJhnhOJhnh56OJhnh5OJhnhxOJPJhnh@OJPJhnh@OJPJmH sH hnh&OJPJhnh6OJPJ]hnhOJPJhnhbuOJPJ(o8}8???@CDDDNS$Y\___$dh7$8$H$`a$gd,i$dh7$8$H$a$gd $dha$gd$dh`a$gd $dh@&a$gd dh`gddhgd hdh`hgd dh@&gd??????@@@@@@AAAAAAABBBB8CCC\CaCqCCCCCCC,D0DUDȾȩȩȩȩȗȗȍȄȄynynycyhnhxOJaJhnhbuOJaJhnhOJaJhnhOJhnh6OJhnhGOJhnhAOJhnhZ6OJhnh56OJhnh5OJhnhOJhnhxOJPJhnhbuOJPJhnh6OJPJ]hnhOJPJ$UDVDWDaDpDtDDDDDDDDDDDEZF_FFFFHGHsHtHDLPLlLnLLɼ~wowowhw`~~QhnhmH nH sH tH hnh5 hnhGhnhH* hnhhnhH*mH sH hnh5mH sH hnhmH sH hnh5OJaJmH sH hnhOJaJhnhxOJPJaJhnhbuOJPJaJhnhOJPJaJhnh6OJPJ]aJhnhOJPJaJL M6M8MJMLMNNNNN}PP@QIQkSlSvSzSSSSSUU+W,WY"YYY2[6[[[[[[[[[t\u\C]D]_ǻǯǯǣǘǻNJǻǻǻǻǻǯǯǯǻǻhnhwQmH sH hnh5>*mH sH hnh:-mH sH hnhH*mH sH hnh6mH sH hnhH*mH sH hnhmH sH hnhH*mH nH sH tH hnhmH nH sH tH hnhGmH nH sH tH -_______________``````#`$`)`*`5`6`:`;`G`H`M`N`V`W`Y`Z`_```g`h`n`o`q`r`y`z``````````````````````޾hnh5>*mH sH hnhr5>*mH sH hnhrmH sH  hnhrhnhrmH sH hnhr5mH sH hnhT'mH sH C__```DaEabbbbuWu & F hXdh1$7$8$H$^X`gd hXdh1$7$8$H$^X`gd & F hX^X`gd$ hXdh7$8$H$^X`a$gd$ & F hXdh7$8$H$^X`a$gd$dh7$8$@&H$a$gd$dh7$8$H$a$gd ``aa1a4aCasaabb-b@bbbbb^cmcncqc?dPdQdTdddde5eAeBeEebeceeegemeõyyyky^y^yhnhOJmHsHhnh5OJmH sH hnhOJmH sH hnh5OJhnh6OJ]mH sH hnh6OJ]hnhOJhnh6]mH sH hnhmH sH hnh5hnh6]mH sH hnh6] hnhhnhmH sH $bcccdddVeWeff~gghhii0j1jjj & F hX^X`gd hX^X`gd hXdh1$7$8$H$^X`gd & F hXdh1$7$8$H$^X`gdmeoeqeseze{e}eeeeeeeeeeeeeeeef1ffffffffffffffffffffffgggg ggggggg!gTgZgȺ毨hnh6]mH sH  hnhhnhmH sH hnh5OJmH sH hnhOJ]mH sH hnh6OJ]mH sH hnhOJmH sH hnhOJmHsH:Zg[g\g_gjgkglgwg|gggGhhhhhhhhhhhhhhhhhhIi]iziiiiiiiٯ}}}}}}}}mm_}hnh5OJmH sH hnh6OJ]mH sH hnhOJmHsHhnhOJmH sH /hnh6KHOJPJaJmHnHsHtH,hnhKHOJPJaJmHnHsHtH hnhhnh5mH sH hnhmH sH hnh6]mH sH hnh6]mH sH %iii jjj j/j1j:j}jjjjjjjjjjRkTkkkk(l)l,lllllllll걡sib hnhhnh5OJhnhH*OJaJmH sH hnh5OJaJmH sH hnh6OJmH sH hnh6OJaJmH sH hnhOJaJmH sH hnh5OJmH sH hnh6OJ]hnh6OJ]mH sH hnhOJmH sH hnhOJ#jkk;lo걡vk_RhnhOJmH sH hnh5OJaJhnhmH sH hnh6OJ]mH sH hnhOJaJhnh5OJaJmH sH hnh6OJaJmH sH hnhOJaJmH sH hnh5OJhnhOJ]hnh6OJ]hnh6OJhnhOJhnhOJmHsH Kmmmunvnooyozoootpuppp\q $dha$gd dh1$7$8$H$gd & F hX dh1$7$8$@&H$^X` gd hX dh1$7$8$H$^X` gd & F hX dh1$7$8$H$^X` gd>oWodoeohoooooVp`pcppppppp]qqqqqqqq rrr/r;r*mH sH hnh5mHsHhnhmHsHhnh6mH sH hnh>*mH sH hnhmH sH hnhmH sH hnh5mH sH hnhOJQJ^Jhnh6OJ]hnh5OJhnh6OJhnhOJ*\q]qgqwqqqqq$dh$Ifa$gd dh$IfgddhgdqqqqqqZN???$dh$Ifa$gd dh$Ifgdkd$$IfTl"\ " t0#44 laTqqqqqq\PAAA$dh$Ifa$gd dh$Ifgdkd$$IfTl\ " t0#44 laTqqqqqq\PAAA$dh$Ifa$gd dh$Ifgdkdr$$IfTl\ " t0#44 laTqq rrrr\PAAA$dh$Ifa$gd dh$Ifgdkd$$IfTl\ " t0#44 laTrr/r2r5r;r\PAAA$dh$Ifa$gd dh$Ifgdkd$$IfTl\ " t0#44 laT;r*mH sH  s s#s&s)s/s\PAAA$dh$Ifa$gd dh$Ifgdkdc$$IfTl\ " t0#44 laT/s0sDsGsJsPs\PAAA$dh$Ifa$gd dh$Ifgdkd $$IfTl\ " t0#44 laTPsQs[s_scsis\PAAA$dh$Ifa$gd dh$Ifgdkd$$IfTl\ " t0#44 laTisjsksls v v\MDD8 dh$Ifgd dh1$gd$dh`a$gdkd^ $$IfTl\ " t0#44 laTuuvv v vv v%v&vvvvvwNwhwvwwwwxxCxxxxxyRySywyyyyz?z{z|zz{>{?{{{{ ||||źźźŤźŤźźŤŤźźźЌ/hnh}f5KHOJPJaJmH nHsH tHhnhiLmHsHhnh}fmH sH hnhiLmH sH hnhiLmH sH ,hnhKHOJPJaJmH nHsH tH/hnh6KHOJPJaJmH nHsH tH1 vvv v$v%v(v$dh$Ifa$gdiL dh$IfgdTkd $$Ifl40Jx<`.4<644 la$dh$Ifa$gd(v)v3v@vOv]v^vkvzvyjjj[LL$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gd dh$Ifgdzkd $$Ifl4w\J !x< Zhl<644 lazvvvv+ dh$Ifgdkd_ $$Ifl,ִJx4 !|)1x<.phpp <6    44 la$dh$Ifa$gdvvvvvvvv$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdvvvw:.$dh$Ifa$gd dh$Ifgdkd $$IflYִJx4 !|)1x<.phpp <6    44 laww w!w0w?wNw$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdNwOwZwhw:.$dh$Ifa$gd dh$Ifgdkd $$IflYִJx4 !|)1x<.phpp <6    44 lahwvwwwwww$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdwwww:.$dh$Ifa$gd dh$Ifgdkd$$IflYִJx4 !|)1x<.phpp <6    44 lawwwww xx$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdxx%x4x:.$dh$Ifa$gd dh$Ifgdkd$$IflYִJx4 !|)1x<.phpp <6    44 la4xCxSxTxcxpxx$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdxxxx:.$dh$Ifa$gd dh$Ifgdkd$$IflYִJx4 !|)1x<.phpp <6    44 laxxxxxxx$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdxxxy:.$dh$Ifa$gd dh$Ifgdkd$$IflYִJx4 !|)1x<.phpp <6    44 layy$y%y4yCyRy$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdRySyYyhy:.$dh$Ifa$gd dh$Ifgdkd*$$IflYִJx4 !|)1x<.phpp <6    44 lahywyyyyyy$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdyyyy:.$dh$Ifa$gd dh$IfgdkdC$$IflYִJx4 !|)1x<.phpp <6    44 layyyyyzz$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdzz"z0z:.$dh$Ifa$gd dh$Ifgdkd\$$IflYִJx4 !|)1x<.phpp <6    44 la0z?zMzNz]zlz{z$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gd{z|zzz:.$dh$Ifa$gd dh$Ifgdkdu$$IflYִJx4 !|)1x<.phpp <6    44 lazzzzzzz$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gdzzzz:.$dh$Ifa$gd dh$Ifgdkd$$IflYִJx4 !|)1x<.phpp <6    44 laz{{{"{0{>{$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gd>{?{M{]{:.$dh$Ifa$gd dh$Ifgdkd$$IflYִJx4 !|)1x<.phpp <6    44 la]{j{y{z{{{{$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gd{{{{:.$dh$Ifa$gd dh$Ifgdkd$$IflYִJx4 !|)1x<.phpp <6    44 la{{{{{{ |$dh$Ifa$gd$dh$Ifa$gdiL$dh$Ifa$gd ||~~:1% dh$Ifgdu dh1$gd}fkd$$IflYִJx4 !|)1x<.phpp <6    44 la|S|]|D}J}}}w~y~~~~~~~)0WXAyz߀4BCQՁցkly˂̂*T:Hvwƻƻƻưƻưưưƻƻưƻƻưƻưƻƻƻƻhnh}fmHsHhnh}fmH sH hnh}fmH sH /hnh}f6KHOJPJaJmH nHsH tH,hnh}fKHOJPJaJmH nHsH tH=~~~~~~~ dh$IfgduTkd$$Ifl40Jx<`.4<644 la$dh$Ifa$gdu~~~~~~~ (yjjjjjjj$dh$Ifa$gdu dh$Ifgduzkds$$Ifl4w\J !x< Zhl<644 la ()0=:.$dh$Ifa$gdu dh$IfgdukdJ$$Ifl,ִJx4 !|)1x<.phpp <6    44 la=JWXfs$dh$Ifa$gdu:.$dh$Ifa$gdu dh$Ifgdukd$$IflYִJx4 !|)1x<.phpp <6    44 la$dh$Ifa$gdu:.$dh$Ifa$gdu dh$Ifgdukd$$IflYִJx4 !|)1x<.phpp <6    44 la$2A$dh$Ifa$gduABO^:.$dh$Ifa$gdu dh$Ifgdukd $$IflYִJx4 !|)1x<.phpp <6    44 la^jyz$dh$Ifa$gdu:.$dh$Ifa$gdu dh$Ifgdukd!$$IflYִJx4 !|)1x<.phpp <6    44 laπ߀ $dh$Ifa$gdu &:.$dh$Ifa$gdu dh$Ifgdukd"$$IflYִJx4 !|)1x<.phpp <6    44 la&4BCQ_n$dh$Ifa$gduno:.$dh$Ifa$gdu dh$Ifgdukd#$$IflYִJx4 !|)1x<.phpp <6    44 laƁՁ$dh$Ifa$gduՁց܁:.$dh$Ifa$gdu dh$Ifgdukd%$$IflYִJx4 !|)1x<.phpp <6    44 la$3$dh$Ifa$gdu34AP:.$dh$Ifa$gdu dh$Ifgdukd.&$$IflYִJx4 !|)1x<.phpp <6    44 laP]kly$dh$Ifa$gdu:.$dh$Ifa$gdu dh$IfgdukdG'$$IflYִJx4 !|)1x<.phpp <6    44 la˂̂ڂ$dh$Ifa$gdu:.$dh$Ifa$gdu dh$Ifgdukd`($$IflYִJx4 !|)1x<.phpp <6    44 la)*8FT$dh$Ifa$gduTU\i:.$dh$Ifa$gdu dh$Ifgdukdy)$$IflYִJx4 !|)1x<.phpp <6    44 laiv$dh$Ifa$gdũ:.$dh$Ifa$gdu dh$Ifgdukd*$$IflYִJx4 !|)1x<.phpp <6    44 lãڃ$dh$Ifa$gdu,:.$dh$Ifa$gdu dh$Ifgdukd+$$IflYִJx4 !|)1x<.phpp <6    44 la,:HIXgv$dh$Ifa$gduvw:1% dh$Ifgdu dh1$gd}fkd,$$IflYִJx4 !|)1x<.phpp <6    44 lawxyDŽ4: )*‡#$#JKи~s~sh~sh~s~s~h~sh~h~sh~sh~hnh}fmHsHhnh}fmH sH hnh}fmH sH /hnh}f6KHOJPJaJmH nHsH tH,hnh}fKHOJPJaJmH nHsH tH/hnh}f5KHOJPJaJmH nHsH tH,hnhgKHOJPJaJmHnHsHtH/hnh5KHOJPJaJmH nHsH tH(()*./2 dh$IfgduTkd-$$Ifl40Jx<`.4<644 la$dh$Ifa$gdu23=JYghuyjjjjjjj$dh$Ifa$gdu dh$Ifgduzkd^.$$Ifl4w\J !x< Zhl<644 la :.$dh$Ifa$gdu dh$Ifgdukd5/$$Ifl,ִJx4 !|)1x<.phpp <6    44 la‡Ї$dh$Ifa$gdu:.$dh$Ifa$gdu dh$Ifgdukdj0$$IflYִJx4 !|)1x<.phpp <6    44 la#$2BP$dh$Ifa$gduPQ\i:.$dh$Ifa$gdu dh$Ifgdukd1$$IflYִJx4 !|)1x<.phpp <6    44 laiv$dh$Ifa$gduɈ:.$dh$Ifa$gdu dh$Ifgdukd2$$IflYִJx4 !|)1x<.phpp <6    44 laɈֈ$dh$Ifa$gdu#0:.$dh$Ifa$gdu dh$Ifgdukd3$$IflYִJx4 !|)1x<.phpp <6    44 la0=JKZjx$dh$Ifa$gduxy:.$dh$Ifa$gdu dh$Ifgdukd4$$IflYִJx4 !|)1x<.phpp <6    44 lảډ$dh$Ifa$gduډۉ:.$dh$Ifa$gdu dh$Ifgdukd5$$IflYִJx4 !|)1x<.phpp <6    44 la"0=$dh$Ifa$gdu>Dkl̊͊ڊ)*W` )CpŠՠ֠ݠ  5@BCay־|e|e|,hnh]KHOJPJaJmH nHsH tH&h]2KHOJPJaJmH nHsH tH,hnh}:KHOJPJaJmH nHsH tH,hnh3|KHOJPJaJmH nHsH tH/hnh3|5KHOJPJaJmH nHsH tH hnhrUhnh}fmHsHhnh}fmH sH hnh}fmH sH #=>DQ:.$dh$Ifa$gdu dh$Ifgdukd7$$IflYִJx4 !|)1x<.phpp <6    44 laQ^klz$dh$Ifa$gdu:.$dh$Ifa$gdu dh$Ifgdukd8$$IflYִJx4 !|)1x<.phpp <6    44 lå͊ڊ$dh$Ifa$gdu:.$dh$Ifa$gdu dh$Ifgdukd29$$IflYִJx4 !|)1x<.phpp <6    44 la)*8HV$dh$Ifa$gduVW`m:.$dh$Ifa$gdu dh$IfgdukdK:$$IflYִJx4 !|)1x<.phpp <6    44 lamy$dh$Ifa$gduƋ:.$dh$Ifa$gdu dh$Ifgdukdd;$$IflYִJx4 !|)1x<.phpp <6    44 laƋӋ $dh$Ifa$gdu.6 0.8 EFbVranje31121070.0 0.0 Ca0.0 0.0 Ba0.0 0.0 Ca28.9 1.9 Ea19.3 1.3 Cb22.2 3.0 CDabSilicosec18.1 2.1 Aa11.1 1.3 Ab16.0 0.9 Aab100.0 0.0 Aa100.0 0.0 Aa100.0 0.0 Aa Fig.1. Correlation (Pearsons coefficient) between the efficacy of the base-DE samples and the proportion in small particles (<45 microns) of the base-DE samples, against adults of C. ferrugineus, S. oryzae and R. dominica at two exposure intervals.       PAGE  PAGE 17 Exposure interval Pearson's coefficient ):.$dh$Ifa$gdu dh$Ifgdukd}<$$IflYִJx4 !|)1x<.phpp <6    44 la)6CDR`p$dh$Ifa$gdupq{:.$dh$Ifa$gdu dh$Ifgdukd=$$IflYִJx4 !|)1x<.phpp <6    44 laŠԠ$dh$Ifa$gduԠՠ֠Сѡҡ:1111 dh1$gd?Rkd>$$IflYִJx4 !|)1x<.phpp <6    44 laΡϡСѡҡӡԡڡۡܡѺѣtibM8b-& h7hj?hnh7U(jhnh3|UmHnHsHtHu(jhnhrUmHnHsHtHu hnh3|hnh3|mH sH /hnh3|5KHOJPJaJmH nHsH tH,hnh3|KHOJPJaJmH nHsH tH,hnhJCKHOJPJaJmH nHsH tH,hnh}:KHOJPJaJmH nHsH tH/hnh}:6KHOJPJaJmH nHsH tH,hnhrKHOJPJaJmH nHsH tHҡܡݡޡ-./0$a$gd3|gd3|h]h&`#$ dh1$gd?Rܡݡޡߡ./0huh]20JmHnHuh7 h70Jjh70JUh/jh/Uh}:h}:mH sH h}:,/R . A!"#6$% 50/R :pgA .!5"#7$% 2/R :pr. A!"5#5$% $$If!vh5555#v#v:V l" t0#,55/ T$$If!vh5555#v#v:V l t0#,55/ T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh5555#v#v:V l t0#,55T$$If!vh55.4#v#v.4:V l4<6+55.4/ / $$If!vh55Z5h5l#v#vZ#vh#vl:V l4w<6+55Z5h5l/ / / / / 3$$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V l,<655.55p5h5p5 /  / / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 /  / / / / $$If!vh55.4#v#v.4:V l4<6+55.4/ / $$If!vh55Z5h5l#v#vZ#vh#vl:V l4w<6+55Z5h5l/ / / / / 3$$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V l,<655.55p5h5p5 /  / / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 /  / / / / $$If!vh55.4#v#v.4:V l4<6+55.4/ / $$If!vh55Z5h5l#v#vZ#vh#vl:V l4w<6+55Z5h5l/ / / / / 3$$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V l,<655.55p5h5p5 /  / / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 / / / / / $$If!vh55.55p5h5p5p5 #v#v.#v#vp#vh#vp#v :V lY<655.55p5h5p5 /  / / / / i Dd X0  # A" aEGTT {B  @:@= aEGTT {BH3)1\GH+ xݛL^.J 3-ZèKhN8W&UDP-hQQ e4&5.K5Ym]LZR.v&jCys{8.Jv'ys{_yA !@b ~Ȑ"~W q9M9k_BO Ǩ@qhbxАO]%l)}.$jng &g{l==SPzzvZVcւꏱ>66&YmA:nU,Beǜ^Oѯ_[^:돠 RHq).'5MߨMF~N3Ze?}AD4e2CAگ#PNS7~^"oɛ"/va"!鏧EQ>wItk^Nt)umMwBG"rۡl2=OV !;/G?Twr2]hc~\o8?zcT쨶ܨU׽E>9.mo}{mOyzۓMmZRSޣץe~-n]$xN'T+ewm/駷ե 7ICuR~st9w>\wBΣΩ3.?hW]]:И]QZa)$_5R3$IFXQ/Ho#7c^OG3C|ǸEo/aw~ǼpnF;k=ɾL6#4 E4uj_5 rßdHf>4}H#s]TڱTRc rb YȹaI5j;*6Fcf]H-n#%kػ8Fb2#i+">ߒVvl>*c%HۙU$nCocLƪvڣZ#VFkJ>x^ V΁64#*,d:ˌ /3,r/A^Ǝ2?Xݐ29!ٱ\SX̸y^+/F&رT&Oc݁Bcad %d v=c_9g5ƌ2pF5dv,Ƣ3| K F)ڸgZ{ZČgd` `C/cLʒbe1c Y`%R{X*4v4V3^uk.TBgR U,ǯ̠qֻb0*d5zXcclw.06n7iy⯘Oϧ#^hBxmթv1-;liX?0<:yBH{]yBe{T=."Яxϫ&{+)>)y 3YY=K2OV쳰Wg͔D%guܔY~l9؂Y|oya6ySg*'s\"~,]7L~xs7?3Lor_}60?߁!LC3?#L~f 01FH%Aσx|= ]b罙`e_W LAq9SE[tVV_;ӷ; X+G{\R z}fg[ՠiz`Z V 4V 8mB VdV˒^AVRfgr3}#?@zeiAz9oC`as5K1cb(\.D({aU {4qzYiL׸c~rW4RX>é3| ~{6I?~>¶baV:N%Ǎ>c9n/y0lnHsxvB;70O$ҿ;K 1.iO5.K1&:r x7b4=_؛jrLcV1[FL\pןanfa-=T>N߸~oD{%֪S$[sF?x895"#}bQMUӻ[u,D&bN%gCo{ox\,"վ,F]犹HYB}ۄ:@@@ CJ_HaJmHsHtHNA@N  \i@\  4 l4a 0k@0  \C@\    $dh`a$`B@`    $1$a$ KHOJPJaJmH nHsH tHjP@j   2$dx1$a$CJKHPJmH nHsH tH: @":    9r 6)@16  `YB`  -D M CJOJQJ^JaJ**-hH.ek[\/0^h[A3 D K ";P7!"y%z%%%)));-...5o6p669;;);C IQT1V=VVVuWvW7X8XXXYYZZA\B\\\2^3^____0`1`&a'aaabbebfbbbGcHcccdddd_e`eee7f8fffffff ggg$g'g*g0g1gEgHgKgQgRgagdgggmgng~gggggggggggggggggggg hhhhh)h,h/h5h6hLhOhRhXhYhrhuhxh~hhhhhhhhhhhhhhhhhh}k~kkkkkkkkklll.l>lLlZlfltllllllllllmm$m2mAmNm]mmm{mmmmmmmmmm nn+n;nJnYnjnynnnnnnnnnnoo%o3o@oMo[ojoxoooooooooopp!p1p@pOpWpfpupppppppppp qq$q4qBqQqaqpqqtt0tEtRtatot}ttttttttttt uu&u4uBuQu]ukuxuuuuuuuuuuvv%v3vAvQv`vnv{vvvvvvvvvw ww*w8wGwNw]wjwywwwwwwwwwwxx!x/x=xLxZxhxrxxxxxxxxxxxyy!y0y>yLy[yiyvyyyyyyyyy|||||||||} }}&}3}B}R}`}l}z}}}}}}}}}}~~ ~.~;~H~U~e~v~~~~~~~~~~ 0>L]jw $1>LYftȀҀ߀#+8ERbqāҁ (7FPefgst@0@0 @0@0k@0k@0k@0k@0k@0k@0k@0k@0k@0k@0k@0k @0@0^@0^@0^ @0 @0 @0@01 @01 @01 @01  @0 @0@0@0 @0@0@0 @0@0@0 @0@0( @0@0#@0# @0@0K'@0K' @0 @0@0y+@0y+@0y+ @0@01@01@01 @0@0;@0;@0; @0@0C@0C@0C@0C@0C @0@ 0]@0]@ 0]@0]@0]@0]@0]@0]@0]@0]@0]@0]@0]@0]@ 0]@0]@ 0]@0]@ 0]@0]@0]@0]@0]@0] 0] 0]@ 0]@0]@ 0]@0] @ 0 @0 @ 0 @0@0o@0o 0o 0o 0o 0o@ 0 o@0o@ 0 o@0o@ 0 o@0o @ 0 @0@0@0@0 @0 @0@0 @0@0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0@0@0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0@0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0@0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0  00$K00$KK00K00@0@0 00%k[\/0^h[A3 D K ";P7!"y%z%%%)));-...5o6p66);C IQT1V=VVVuW7X8XXXYYZZA\B\\\2^3^@0@0 @0@0k@0k@0k@0k@0k@0k@0k@0k@0k@0k@0k@0k @0@0^@0^@0^ @0 @0 @0@01 @01 @01 @01  @0 @0@0@0 @0@0@0 @0@0@0 @0@0+ @0@0#@0# @0@0N'@0N' @0 @0@0|+@0|+@0|+ @0@0,1@0,1@0,1 @0 @0@0?@0?@0?@0?@0? @0@ 0Z@0Z@ 0Z@ 0Z@0Z@ 0Z@0Z@ 0Z@0Z@ 0Z@0Z@ 0 Z@0Z@ 0Z@0Z@ 0Z@0Z0k[\/0^h[A3 D K ";P7!!"y%z%%%)));-...5o6p669;;);C INQTTUU1V2V=VVVuWvW7X8XXXYYZZA\B\\\2^3^____0`1`&a'aaabbebfbbbGcHcccdddd_e`eee7f8fffffff ggg$g'g*g0g1gEgHgKgQgRgagdgggmgng~gggggggggggggggggggg hhhhh)h,h/h5h6hLhOhRhXhYhrhuhxh~hhhhhhhhhhhhhhhhhhh}k~kkkkkkkkkkkkkkkkklll.l/l>lLlZl[lfltlllllllllllllmm$m%m2mAmNm]m^mmm{mmmmmmmmmmmmm nn+n,n;nJnYnZnjnynnnnnnnnnnnnnoo%o&o3o@oMo[o\ojoxooooooooooooopp!p"p1p@pOpPpWpfpuppppppppppppp qqq$q4qBqQqRqaqpqqqtt0t1t2t6t7t:t;tEtRtatotpt}tttttttttttttt uu&u'u4uBuQuRu]ukuxuuuuuuuuuuuuuvvv%v3vAvQvRv`vnv{v|vvvvvvvvvvvw www*w8wGwHwNw]wjwywzwwwwwwwwwwwwxxx!x/x=x>xLxZxhxixrxxxxxxxxxxxxxxyy!y"y0y>yLy[y\yiyvyyyyyyyyyyyy||||||||||||||||}} }}&}3}4}B}R}`}a}l}z}}}}}}}}}}}}}~~ ~!~.~;~H~U~V~e~v~~~~~~~~~~~~~ !0>LM]jw $1>?LYfgtȀɀҀ߀#$+8ERSbqāҁ (7FGHBCDNOPRSUVXY[\efgstuv0000k0k0k0k0k0k0k0k0k0k0k0k00^0^0^00003 03 03 03 03 000;0;00000000000!0!00z%0z%000)0)0)00.0.0.00p60p6000;0;0;0;0;0;0;0;0;00 02V02V 02V02V 02V02V 02V02V 02V02V 02V02V 02V02V 02V02V 02V02V 0 2V02V 0 2V02V 0 2V02V 0 2V02V 0 2V02V 02V02V 00 00 0b0b 0b0b 0b0b 0b0b 0b0b 0b0b 00000 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00b00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 @0b000000@0I00@0I00@0I00@0I00@0@0@0@0@0@0I0000P00I00k[\/0^h[A3 D K ";P7!"y%z%%%)));-...5o6p669;;);C IQT1V=VVVuWvW7X8XXXYYZZA\B\\\2^3^____0`1`&a'aaabbebfbbbGcHcccdddd_e`eee7f8fffffff ggg$g'g*g0g1gEgHgKgQgRgagdgggmgng~gggggggggggggggggggg hhhhh)h,h/h5h6hLhOhRhXhYhrhuhxh~hhhhhhhhhhhhhhhhhhh}k~kkkkkkkkklll.l>lLlZlfltllllllllllmm$m2mAmNm]mmm{mmmmmmmmmm nn+n;nJnYnjnynnnnnnnnnnoo%o3o@oMo[ojoxoooooooooopp!p1p@pOpWpfpupppppppppp qq$q4qBqQqaqpqqqtt0tEtRtatot}tttttttttttttt uu&u'u4uBuQuRu]ukuxuuuuuuuuuuuuuvvv%v3vAvQvRv`vnv{v|vvvvvvvvvvvw www*w8wGwHwNw]wjwywzwwwwwwwwwwwwxxx!x/x=x>xLxZxhxixrxxxxxxxxxxxxxxyy!y"y0y>yLy[y\yiyvyyyyyyyyyyyy|||||||||}} }}&}3}4}B}R}`}a}l}z}}}}}}}}}}}}}~~ ~!~.~;~H~U~V~e~v~~~~~~~~~~~~~ !0>LM]jw $1>?LYfgtȀɀҀ߀#$+8ERSbqāҁ (7FGHBCDNO@0@0 @0@0k@0k@0k@0k@0k@0k@0k@0k@0k@0k@0k@0k @0@0^@0^@0^ @0 @0 @0@01 @01 @01 @01  @0 @0@0@0 @0@0@0 @0@0@0 @0@0+ @0@0#@0# @0@0N'@0N' @0 @0@0|+@0|+@0|+ @0@01@01@01 @0@0;@0; @0 @0@0C@0C@0C@0C@0C @0@ 0^@0^@ 0^@0^ 0^@0^ 0^@0^ 0^@0^ 0^@0^ 0^@0^@ 0^@0^@ 0^@0^@ 0 ^@0^ 0 ^@0^ 0 ^@0^ 0 ^@0^@ 0 ^@0^@ 0^@0^ @ 0 @0 @ 0 @0@ 0o@0o 0o@0o 0o@0o@ 0o@0o@ 0o@0o@ 0o@0o @ 0@0@0@0@0 @0 @0@0 @0@0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0@0@0@0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 K0.1I@0@0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 K01K@0 @0 @0 K0.1I@0@0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 K01K@0 @0 @0 K0.1I@0@0@0@0K0E2K0E20 %%%%%%%%%%%%%%%(1 V%2,N0Q2N3=7?UDL_`meZgil>oru|wܡ0FIKLNOPQRSUVWXZ\]^`bot%o8_bjKm\qqqqqr;r^rrrrr s/sPsis v(vzvvvwNwhwwwx4xxxxyRyhyyyz0z{zzzz>{]{{{ |~~(=A^ &nՁ3PTĩ,v2PiɈ0xډ=QVmƋ )pԠҡ0GJMTY[_acdefghijklmnpqrsuvwxyz{|}~/H !(!!l,b$(=65K;,J?@((  n  c $"` z  0"` B S  ?DEtL<x tvofft=f ĺ>f>f D>f>f Ļ>f>f D>f>fļ>f D>f>8'mm..j $33v 00~~WW4qv v )++w6w6 9 9'999EEFFFGFGP`Q`QUy`` a aabbgg=g=gYgYgvgvggggg6hDhDhjhjhhhhhhh&o&o9otvvww0z0z E      !"#%$&'()*+,-./0123456789;:<=>?@ABCDEFGHIJLKMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuL%..uu66p "*== 66__=v~ ~ )++66%9-9-999EEFFNGNGPhQhQU`a aaabb"g"gCgCg_g_g|g|ggggg?@ABCDEFGHIJLKMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstu Vv*urn:schemas-microsoft-com:office:smarttagsplacehttp://www.5iantlavalamp.com/hs*urn:schemas-microsoft-com:office:smarttagsCity0http://www.5iamas-microsoft-com:office:smarttags_p*urn:schemas-microsoft-com:office:smarttagscountry-regionhttp://www.5iantlavalamp.com/CI*urn:schemas-microsoft-com:office:smarttagsmetricconverterZn*urn:schemas-microsoft-com:office:smarttags PlaceNamehttp://www.5iantlavalamp.com/Zo*urn:schemas-microsoft-com:office:smarttags PlaceTypehttp://www.5iantlavalamp.com/;u*urn:schemas-microsoft-com:office:smarttagsaddress>q*urn:schemas-microsoft-com:office:smarttags PostalCode:t*urn:schemas-microsoft-com:office:smarttagsStreetir*urn:schemas-microsoft-com:office:smarttagsState0http://www.5iamas-microsoft-com:office:smarttags T* 1.0 Ha1.1 Ha100 g12.5 cm15 cm2.1 Ha3.2 C 300 grams35 cm645. In7 In7.5 cm ProductIDvutsrqponsvspvpvpvvpppppppvvpvpvppvpvspvppvpvI I I I I I pvI vppvvsppvpvvpvpI pvvI svspvrvpvpvpvpvpvppvpvppvppvppvI I svpvpvpvI pv[   %'*45;BLN[almu| .6' 2 n q 5 ? n q { + . ru=@0:;AHRTa ^a dm_jou~ %IOW_X[k q v ~ ;!=!G!J!}!!""##$$%$($%%I'O'(()))))*******1+:+r+u+++++++ ,,),,,G,P,,,......)/,/3/>>>>>>>>@?C?@@DAGAAAC CCCC C&C.C4C:CCCDDeEhEEEEEFFFFGGJJOKRKKKL L_LbLLL2M5MMMOOOOPPPPPPQ)Q1Q7Q`QhQQQQQQQRR8RCRRRTTdUeUUU VVV/V=VDVHVVVVVVVVVVVVVVVVWWW(W)W+W0W8W9W;W=WCWYWbWWWWWWWWWX!X?XAXXXXXXXY YYYYYYYYY5Z>ZpZyZzZZZZZZZZZZZZZZZZ[[[[[ [![$[Z[d[e[k[r[|[~[[[[[[[[[[[[[[+\.\B\I\m\r\w\\\\\\\\\\\\\\\\\U]V]]]]]]])^+^0^3^>^U^[^\^^^_^b^c^j^k^m^^^^^^^^^^^^^_ ________```````````abb\b^bcbfbkbobsbxbyb{bbb*c1cHcUcVcXcccecgcoccccccccc[dfdgdkdldqdddddddddeeBeIeJeMe`egeeeeeeef!fIfLfffgg1g9gRgWgngtgggggggggggh hhh!h'hYhahhh#i.iiiiijjCkFkIkKkskuk~kkkkkkklll*l-l:l=lWlYl[lclqlslllllllmm%m-m=m@mKmMmYm\mxmzmmmmmmmmmnn&n*nZnbnunxnnnnnnnnnnnJoLoXoZouowoooooooooooppppp pPpVpbpepqptpppppppppppppppq#q?qAqqq%r(r0r3rzs}sssssttt&t't/t>tDttttttttttt u u1u3u?uAuMuPuRuZugujuuuuuuuuuuuuuuuuuuuvvvvv v/v2v=v@vKvPvkvmvxvzv|vvvvvvvvvvvvvv w www5w7wCwFwHwMwXw\wgwiwtwwwwwwwwwwwwwwwwwxxx x xxx x+x.x9x|CCEEHI{J|JNNO"OOOPP`QhQVVXX\1^bdb*c5c9fAfBffhhFkKkklmmm#m%m1mmmzm{mmmmmmmmmm;nInJnXnnnnnnnooo$ojowoxoooooooop q qqq#qqqsstt]ujukuwuxuuuuuuuuuuv$v%v2v3v@vAvPvRv_v`vmvnvzv|vvvvvvvvw)w*w7w8wFwHwMwNw\w]wiwwwwxxxx xyyyyyyyy0z8zP|U|} }4}A}B}Q}R}_}~~~~!~-~V~d~e~u~v~~~~~~~~~~~~!/LXYegstǀ &PPRRSSUVXY[\uv3333333333333333333333333333333;);UUV1V2V=VVVX8XXXYYZZ\B\\\^_}__`1``'aqaaab#cHccc[dd=e`eeefBffhhh~kkkkkkkkkkk.l/lZl[lllllll$m%m]m^mmmmmmm+n,nYnZnnnnnnn%o&o[o\ooooooo!p"pOpPpppppppqqQqRqqty|||GLNPPRRSSUVXY[\uvڂPPRRSSUVXY[\uv " K`` tj Y( v-Q 84!<]:N{t[K.cTPfj@aPzU^`o( ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.808^8`0o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. ^`hH. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h^`.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h ^`o(hH.^`OJQJ^Jo(hHopp^p`OJQJo(hH@ @ ^@ `OJQJo(hH^`OJQJ^Jo(hHo^`OJQJo(hH^`OJQJo(hH^`OJQJ^Jo(hHoPP^P`OJQJo(hH Pz@aQ 8<]: Y(" ` -cTP[K                                             jĬ                 3e8?\R)zYXn]gn(t U$%y%T'k':)17,:-]2xF9}:@GA5BJCs~CE3JiLJQ?RP]=?_p`ih,ioqs1Gsbu3|~7J~w7`9;O%rzH Z6`W&k suVG7ir_A,wQtGpU N%/X3[Jkk#x3c}f@?S^`xKLNQTT1V2Vfffffgg$g'g*g0g1gEgHgKgQgRgagdgggmgng~gggggggggggggggggggg hhhhh)h,h/h5h6hLhOhRhXhYhrhuhxh~hhhhhhhhhhhhhhhhhh}k~kkkkkkkkkkkkkkkkklll.l/l>lLlZl[lfltlllllllllllllmm$m%m2mAmNm]m^mmm{mmmmmmmmmmmmm nn+n,n;nJnYnZnjnynnnnnnnnnnnnnoo%o&o3o@oMo[o\ojoxooooooooooooopp!p"p1p@pOpPpWpfpuppppppppppppp qqq$q4qBqQqRqaqpqqqtt0t1t2t6t7t:t;tEtRtatotpt}tttttttttttttt uu&u'u4uBuQuRu]ukuxuuuuuuuuuuuuuvvv%v3vAvQvRv`vnv{v|vvvvvvvvvvvw www*w8wGwHwNw]wjwywzwwwwwwwwwwwwxxx!x/x=x>xLxZxhxixrxxxxxxxxxxxxxxyy!y"y0y>yLy[y\yiyvyyyyyyyyyyyy||||||||||||||||}} }}&}3}4}B}R}`}a}l}z}}}}}}}}}}}}}~~ ~!~.~;~H~U~V~e~v~~~~~~~~~~~~~ !0>LM]jw $1>?LYfgtȀɀҀ߀#$+8ERSbqāҁ (7FGBDMSMSMSMSMS3@߂߂4Mu߂߂Lr%r&rBrCr@@@.@`@@L@@@@@UnknownG:Ax Times New Roman5Symbol3& :Cx Arial;(SimSun[SOG5 |8FangSong_GB23125& :[`)Tahoma?5 :Cx Courier New;Wingdings"1hԦ{Z!nCnCY54 2qHX?2iEvaluation of natural diatomaceous earth deposits from South Eastern Europe for stored-grain protection:   4         Oh+'0(4D \h   lEvaluation of natural diatomaceous earth deposits from South Eastern Europe for stored-grain protection:  Normal 33Microsoft Office Word@ꜽ$@t:@ґrn՜.+,0X hp  6HOMEC  jEvaluation of natural diatomaceous earth deposits from South Eastern Europe for stored-grain protection:   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry FK sData 1K1TablecWordDocumentSummaryInformation(DocumentSummaryInformation8CompObjt  F" Microsoft Office Word MSWordDocWord.Document.89q