ࡱ> u#` 3=bjbj\.\. 7>D>D36666^^^ [[[8[|v\Z"v]@````?f>}ff +------$Џh8XQ^fie?fffQ66``f@iiif6`^`+if+iiO0 T^w`j] ^[g$ߊLH3iHw^whffifffffQQifffffffZ"Z"Z"3UZ"Z"Z"Ur6 | 666666  Lesson Summary: Students will discover how to find partial sums of an infinite geometric series, as well as the sum of a convergent infinite geometric series through inquiry activities. Students will be able to determine whether certain series are convergent or divergent. They will also be able to convert repeating decimals to fractions using the sum formula for a convergent infinite geometric series. Key Words: Partial sums, convergent, divergent, infinite series, geometric series, sum of a convergent infinite geometric series NCTM Standards Addressed: Standards: Patterns, Functions, and Algebra Grade 12, Indicators 1 & 2 and Grade 8, Indicator 2 12:1 -- Analyze the behavior of arithmetic and geometric sequences and series as the number of terms increases. 12:2 -- Translate between the numeric and symbolic form of a sequence or series. 8:2 Generalize patterns and sequences by describing how to find the nth term. Benchmarks: Patterns, Functions, and Algebra Grade 8, Benchmark A which state Generalize and explain patterns and sequences in order to find the next term and the nth term. and Patterns, Functions, and Algebra Grade 12, Benchmark A which states Analyze functions by investigating rates of change, intercepts, zeros, asymptotes, and local and global behavior. Process Standards: While all the process standards are addressed to some extent, the ones emphasized in this lesson are Communication, Representation, and Reasoning & Proof. Learning Objectives: Students will be able to Find partial sums of an infinite geometric series, Find the sum of an infinite geometric series, Determine whether an infinite series, particularly a geometric infinite series, is convergent or divergent, Apply the sum formula for an infinite geometric series to different problem situations, including repeating decimals and word problems. Prior Knowledge: Students will be required to Know how to identify arithmetic and geometric series, Find the nth term and sum of a finite geometric series, Recognize finite and infinite series, Know how to use the table and function features on a graphing calculator. Necessary Materials: Ruler with centimeters, graphing calculator Plan: Day 1 (Part 1 for Block Scheduling) Get students into groups, and have them begin on the inquiry activity (Part 1) General Time Frame for Worksheet (all approximate): Debrief yesterdays lesson/homework: 10 minutes #1 7: 7 minutes #8 10: 4 minutes #11 14 & Bonus: 8 minutes #15 17 & Properties, etc.: 7 minutes #18 & 19: 14 minutes or finish at home. Hints or suggestions: For #1 7 (especially #2): Be sure the groups are noticing the pattern and working through the construction properly. For #8 & 15: Be sure the groups are completing the Write the Partial Series Here column correctly it should be an addition problem For #12: Groups might have trouble using their function and table features on their calculators Be sure to debrief students on properties and definitions, have them write new definitions in their notebooks Day 2 (Part 2 for Block Scheduling) Get students into groups, and have them begin on the inquiry activity (Part 1 & 2) General Time Frame for Activity (times are all approximate): Debrief Part 1, cover Homework: 10 minutes Begin Part 2 Activity, #1 4: 12 minutes #5(a) & (b): 6 minutes Extensions: 22 minutes Hints or suggestions: For #1 5, be sure they get the correct series and are using the formula correctly For Extension 1, an alternate proof for this is: if  QUOTE  , then according to the Density Property of Real Numbers there should be a number between them. But there is not. So,  QUOTE  . For Extension 2(d), remember that the initial drop is included in total distance covered as well as two of each distance after each bounce. This is the case because the ball bounces up and covers the same distance as it goes back down. Assessment: Group Participation Individual completion of Inquiry Based Activities Homework from the textbook with complete answers for all problems and correct answers for a few selected problems Questions on the next quiz, with similar difficulty level as the ones included in the activity worksheets   A B 1. What is the length of the entire segment AB? (It will be a whole number of centimeters long) 2. (a) Find the midpoint of  QUOTE  , label it M. Write the length of  QUOTE   in the space above it. (b) Find the midpoint of  QUOTE  , label it N. Write the length of  QUOTE   in the space above it. (c) Find the midpoint of  QUOTE  , label it P. Write the length of  QUOTE   in the space above it. (d) Find the midpoint of  QUOTE  , label it Q. Write the length of  QUOTE   in the space above it. (e) Find the midpoint of  QUOTE  , label it R. Write the length of  QUOTE   in the space above it. (f) Find the midpoint of  QUOTE  , label it S. Write the length of  QUOTE   in the space above it. 3. Write the lengths found in number 2 as a sequence. 4. Predict the next 3 terms of this sequence. 5. Is the sequence arithmetic, geometric, or neither? Justify your conclusion. 6. Write a rule for the nth term of the sequence. 7. Ignoring physical limitations, could this sequence continue infinitely? In other words, is this the beginning of an infinite sequence? Explain your answer. Remember a series is the sum of the terms of a sequence. A partial sum, Sn, of an infinite series is the sum of its first n terms. Now, lets treat the sequence developed in #1 7 as a series. 8. Find the following partial sums of our sequence. nWrite the Partial Series HereSn 1  2  3  4  5  6  7  8  9  9. What do you notice about the partial sums as more and more terms are added? And will the partial sums increase without limit? 10. Using the formula for the sum of a geometric series, show that the sum of the first 20 terms is approximately 15.9999847. Explain why this supports or fails to support your conclusion from #9. This geometric series, although infinite, has a finite sum. Consider the following questions to determine how to calculate that sum. 11. What is r, the common ratio, for the series? 12. As n (  EMBED Equation.3 , what does rn approach for this series? Use the table feature on your graphing calculator to support your conclusion. On the TI nspire, write a function in the Graphs & Geometry page for rn. Then from the Menu, choose 2:View, then 8:Add Function Table. From here, select Menu, then 3:Edit Function Table Settings, then change the Independent variable to Ask. Another way is to insert values for n into the function from the Calculator screen just type f1(x value) and enter. 13. As n (  EMBED Equation.3 , the sum formula,  EMBED Equation.3  will change. Write and simplify the new formula, based on the results of #12. This will be the sum formula for an infinite geometric series. 14. Using this new formula, determine the sum of all the terms in this infinite series. Maybe you find it troubling that an infinite series has a finite sum. If you do, then you are not alone. An ancient Greek mathematician, Zeno of Elea, was also troubled by such apparent contradictions. So much so that he is famous for his eponymous paradoxes, Zenos Paradoxes. To find out more about Zeno, visit the website HYPERLINK "http://www-history.mcs.st-andrews.ac.uk/Biographies/Zeno_of_Elea.html"www-history.mcs.st-andrews.ac.uk/Biographies/Zeno_of_Elea.html Think back to the original line segment in this worksheet. Does it not have a definite length? Yet you can divide it in half infinitely many times, but that does not change its length. And all those half line segments add up to the total length. BONUS: What theorem from geometry supports the idea that all the infinite amount of segments will combine to make the total segment length? Lets now consider the infinite series,  15. Find the 1st 5 partial sums of this series and record in the table below. nWrite the Partial Series HereSn12345 16. What do you notice about the partial sums as more and more terms added? 17. Will this series have a finite sum? Justify your conclusion by looking at the rule for this series, as well as the table of partial sums. Property. An infinite geometric series will have a sum, if |r| < 1. And it will not have a sum if |r| > 1. Definitions. A convergent infinite series is an infinite series with a finite sum. A divergent infinite series is an infinite series that does not have a finite sum. Formula for the Sum of an Infinite Geometric Series. Just in case you struggled with #13 and 14, here is the formula for the sum of a convergent infinite geometric series.  EMBED Equation.3  Notice two things about this formula. (1) It is easier to calculate the sum of an infinite amount of terms than a finite number of terms; (2) there should be no subscript on S because there is an infinite number of terms. 18. Practice Problems. Find the sum, if it exists, for the following series. The first term of an infinite geometric sequence is 3, and the common ratio is  EMBED Equation.3 .  EMBED Equation.3   EMBED Equation.3   EMBED Equation.3  19. More Practice. Use what you know about a geometric series, and the sum formula of an infinite geometric series to find the following information regarding different infinite geometric series. The sum of an infinite geometric series is 81 and its common ratio is  EMBED Equation.3 . Find the first three terms of the series. The sum of an infinite geometric series is 125 and its 7th and 8th terms are  EMBED Equation.3  and  EMBED Equation.3 , respectively. Find the first three terms of the series The first term of an infinite geometric series is 8, and its sum is  EMBED Equation.3 . Find the first four terms of the series. An infinite geometric series can be used to model a repeating decimal. For example,  EMBED Equation.3  1. Write the series above in summation notation. Identify  EMBED Equation.3 and  EMBED Equation.3 . 2. Find the sum of the series referred to by # 1, as a fraction in lowest terms. The result will be the repeating decimals fraction equivalent. Check your answer and explain how you checked your answer. 3. Try this procedure with the well known repeating decimal  EMBED Equation.3  to find its fraction equivalent. 4. Now use this procedure to convert the less familiar decimal  EMBED Equation.3 . Notice  EMBED Equation.3  is always the first set of digits that repeat. And  EMBED Equation.3 is always 10 to the negative amount of repeating places. For example, in the repeating decimal EMBED Equation.3 ,  EMBED Equation.3 and  EMBED Equation.3  -- since five places repeat. 5. Convert  EMBED Equation.3  to a fraction. Consider the next example, in which not every place of the decimal repeats. Convert  EMBED Equation.3  to a fraction. First consider the series that models this decimal, it is  EMBED Equation.3  EMBED Equation.3 . 0.5 is not part of the repeating pattern so it is not part of the infinite geometric series used to covert that decimal. The first term of that series is 0.043, and since 2 places repeat, r = 0.01.  EMBED Equation.3   EMBED Equation.3  6. Try these examples. Convert each of these decimals to a fraction. (a)  EMBED Equation.3  (b)  EMBED Equation.3  Extension. Using the infinite geometric sum formula, prove  EMBED Equation.3 . Extension. A ball is dropped from a height of 10 feet. Each time it strikes the ground, it bounces up to 80% of the previous height. What height will the ball bounce to after it strikes the ground for the third time? How high will it bounce after it strikes the ground for the nth time? How many times does the ball need to strike the ground before its bounce is less than one inch? What total distance does the ball travel before it stops bouncing (This may be more difficult than it appears, so be careful)? Extension. Consider the series 8 + 4 + 2 + 1 + developed in Part 1 of this activity. Recall that the sum was determined to be 16. Now consider the sequence of partial sums for this series: 8, 12, 14, 15, 15.5, 15.75, Write a rule for the sequence of partial sums. Graph the series on your graphing calculator on the window [0,20] X [0,17]. Your graph should look like the one shown here from the TI nspire.  Does there appear to be an asymptote for this series? If so, what is it? Considering the result of part (c), explain why an infinite geometric series has a finite sum, not approaches a sum, which is the apparent conclusion from part (c). Remember what series you have just graphed and analyzed. Try to summarize the results in everyday language. Review. Identify and write all properties, definitions, and formulas learned in this activity (both parts 1 & 2).      Project AMP Dr. Antonio R. Quesada Director, Project AMP Lesson Plan for Infinite Geometric Series Andrew Stephens and Janice Stebner The Infinite Geometric Series PART 1 The Infinite Geometric Series PART 2  $   2 3 4 > @ `   [ ^ _ i    [ \ d i t u " % 7 ӻȳׯ ha56 ha5haha6 haha ha6hahFKhFK6 hFK6hihFK5 hFKhFKhphFK hFK5 hFK5>*HhRfhZ-5>*jhFKUmHnHtHu6  4 _  u $ % dgda d`gda d@&gd5} dgdFK^`gdFK `gdFK@&gd5}dgdFK d@&gd5};<2= 8fZh$X  & FdgdFK  & FdgdFK  & Fdgda  & FdgdFKdgdFK  & FdgdFK d@&gd5} hd^hgda d`gda YZilgh{}"56XY`abc஥xjhyhyEHU hFKPJj hyhyEHUjhyhyEHUhyhyPJjhyhyPJU h7hFK hFK>*hah|hFK>* hFK6h|hFK6hFK hFK5 hFK5>* hahFKhaha5*//#v6LgT  & FdgdFK  & FdgdFK d@&^gd5} d^gdFK  & FdgdFK  & FdgdFKcdefgSTU_b$,-456789\]defgļwj]jfOhyhyEHUj"ChyhyEHUj6hyhyEHU hyhyjhyhyUhth5}6jh5}UmHnHujh5}UmHnHtHuh5}hahFKhFK5>*PJ hFEmhFK hHhFK hFKPJjhyhyPJUj;)hyhyEHU"TUabw  ^gd5} L]L^gd5}h^hgd5}gd5}  & Fdgd5}  & FdgdFK d@&^gd5} d^gdFKghi !DELMNOPQܵܛ܁tgjhyhyEHUjhyhyEHUjfhyhyEHUjhyhyEHUjhyhyEHUj'hyhyEHUjhyhyEHUjthyhyEHUjjhhyhyEHU hyhyh5}jhyhyUj[hyhyEHU(ijQR./01_`^gd5} ,-456789pqxyz{|}ܵܛ܁tgjEhyhyEHUj9hyhyEHUjz-hyhyEHUj6!hyhyEHUjhyhyEHUjhyhyEHUjphyhyEHUjGhyhyEHUjhyhyEHU hyhyh5}jhyhyUj hyhyEHU(\^|} s!t!!!!"""""""" # #Ž㓆 h~ 0h5}jdh~ 0h5}EHU%jCEL h5}CJOJQJUVaJjh5}U jh5}h$h5}6h>h5}H*h>h5}6 h5}H* h5}5>* h5}H* h5}6h5}jhyhyUjQhyhyEHU/'(\^|Kkd]$$IflF$x t06    44 layt7R$$If^a$gd7R @&^gd5}^gd5}Ykd^$$IflF$x t06    44 layt7R$d$If^a$gd7R YkdR_$$IflF$x t06    44 layt7R$d$If^a$gd7RnYYYYY$d$If^a$gd7Rkd`$$IflF$x t06    44 layt7RnYYYYY$d$If^a$gd7Rkd`$$IflF$x t06    44 layt7RnYYYYY$d$If^a$gd7Rkd\a$$IflF$x t06    44 layt7RnYYYYY$d$If^a$gd7Rkd b$$IflF$x t06    44 layt7RnYYYYY$d$If^a$gd7Rkdb$$IflF$x t06    44 layt7RnYYYYY$d$If^a$gd7Rkdfc$$IflF$x t06    44 layt7RDEFG  neeeeeeeeee^gd5}kdd$$IflF$x t06    44 layt7R """"######$$%$&$'$($)$&&&'''' (^gd5} # # # #!#4#5#6#7######0%@%r%s%%%%&&' '''''' ((-(.(溳梜{jbZZh>h5}6hj*ph5}H* jilhUhyUmHnHuh5}OJQJ h5}5'jTkhRNh5}>*B*Uph h5}0Jjh5}0JU h5}5>* h~ 0h5} h$h5} h5}>*jhhy h5}EHU%j-L h5}CJOJQJUVaJh5}jh5}Ujfh~ 0h5}EHU! ((-(0(1(3(4(5(akdq$$IflF $x x x t06    44 layt7R$$If^a$gd7R.(0(1(.)9):))))))))G*{*~*** + + + ++++++,,,,,,,,,,,,,,,엊wjjyyhu'h5}EHU%jKL h5}CJOJQJUVaJjgwhu'h5}EHU%jiKL h5}CJOJQJUVaJhm h5}6juhh5}EHU%jmIL h5}CJOJQJUVaJjh5}U h5}>* h5}5 h5}5>*h5} h7gh5}h>h5}H*)5(6(8(9(:(qaaa$$If^a$gd7RkdEr$$IflF $x x x t06    44 layt7R:(;(=(>(?(qaaa$$If^a$gd7Rkdr$$IflF $x x x t06    44 layt7R?(@(B(C(D(qaaa$$If^a$gd7Rkd_s$$IflF $x x x t06    44 layt7RD(E(G(H(I(qaaa$$If^a$gd7Rkds$$IflF $x x x t06    44 layt7RI(J(K((((((-).)/)0)1)qhhhhhhhhhhh^gd5}kdyt$$IflF $x x x t06    44 layt7R 1)))G*H** ++++=,>,,,,,,,,,,,,,,h^hgd5} & F gd5} $^a$gd5}^gd5} @&^gd5},,,,,,,,,,,,-....................reR%j OL h5}CJOJQJUVaJjՃh 5h5}EHU%jNL h5}CJOJQJUVaJh 5h5}H*jāh 5h5}EHU%jML h5}CJOJQJUVaJ h5}5>*jhu'h5}EHU%jLL h5}CJOJQJUVaJjh5}Uj|hu'h5}EHU%jLLL h5}CJOJQJUVaJh5} ,--G.H.I.J./////////0t0u0v0w0F1G1H1gd5}dgd5}gd5} & F gd5}^gd5}...M/N/a/b/c/d/////////0000@0A0T0U0V0W0[0\0o0p0q0r0w0朏sdWjhDh5}EHUjjXL h5}CJUVaJjhDh5}EHUjUXL h5}CJUVaJjAhXh5}EHUjUL h5}CJUVaJjhY?UmHnHtHuh/R* hu'h5}jh 5h5}EHU%j PL h5}CJOJQJUVaJh5}jh5}Ujh 5h5}EHU!w0{000000E1F1H1J1L111111111222222*2+2>2?2@2A2v2w222222233ŸqjFYL h5}CJUVaJj%hDh5}EHUjjXL h5}CJUVaJjhDh5}EHUjfXL h5}CJUVaJjhDh5}EHUjL h5}CJUVaJjhDh5}EHUjWL h5}CJUVaJjh5}Uh5}hb)H1I1J1K11111112 2!2"2#2U3V33333333333J4gd5} ^`gd5}333333333 3!343536373U3W3b3c3v3w3x3y333333333J4K4^4_4滮曎rcj#]L h5}CJUVaJj hDh5}EHUj[L h5}CJUVaJjhDh5}EHUj'ZL h5}CJUVaJhbjhDh5}EHUjYL h5}CJUVaJj8hDh5}EHUjdYL h5}CJUVaJh5}jh5}UjhDh5}EHU"_4`4b4u4v4w4x45 58595A5B5C5D5W5X5Y5Z5[5_5`5s5t5u5v5w5x5555555555毢{l_jhDh5}EHUj5]L h5}CJUVaJhbjh!yhbEHUj2L hbCJUVaJ h!yh5}jhXh5}EHUj \L h5}CJUVaJ hh4h5} h5}6jhh4h5}EHUj]L h5}CJUVaJh5}jh5}Uj+hh4h5}EHU$J4B5C5w55555556666666]6^6_6`6a6b6c6d6e6f6g6h66gd5}5555666B6C6V6W6X6Y6h6q6t677|888:: :!:::::;;;;;;;;;׽̫צ̫צו׍צ̫׆~lhhY?#jhY?B*UmHnHphuh*hbh5}jh5}Uj9hDh5}EHUj]L h5}CJUVaJ%6C7D7E7F7G7H7777777777777w8x8y8z8{8|8^9gd5}^gd5} & F dgd5}^99999 :":l:m:n:o:;;;;;;;;;;<< dgdFKh^hgdK^gd5}gdb^gdb^gd5} & F dgd5};;;<<<<<< < < <<<<<<<<<===(=+=-=.=1=2=3=ùh)phY?B*phhY?B*phhY?hY?CJ aJ hmh5}h5}CJ aJ hFKhHhO&hHhO&hFKCJ aJ hFKCJ aJ hK^Hh.҆hK^h7RhI^h/R*h>8jh>8U<<<<< < < <<<<<<<===)=*=gd5}DC$EƀO&$a$gdI^ dgdFK*=+=.=/=0=1=2=3=h^hgdK^gdY?5 01h:pFK/ =!"#$%  Dd ,o   3 A"1 + 120.9≠1b qh/v /Dnqh/v /PNG  IHDR1BsRGB pHYs+qIDATHKU;r0r34̤ KkNm& ܀6}4 kIh5Ifb"RSn+CY,ubey??lW]ʫid7 g w[*@<-U[D@% B !1TNEA/лs/Eaj],*|s/Æ;u4󴜏 !ӗ_/;p8f3ӳʽYܵA6MS>O]McH\ލzpn:0IENDB` Dd ,o   3 A"1 + 120.9≠1b qh/v /nqh/v /PNG  IHDR1BsRGB pHYs+qIDATHKU;r0r34̤ KkNm& ܀6}4 kIh5Ifb"RSn+CY,ubey??lW]ʫid7 g w[*@<-U[D@% B !1TNEA/лs/Eaj],*|s/Æ;u4󴜏 !ӗ_/;p8f3ӳʽYܵA6MS>O]McH\ލzpn:0IENDB` Dd ,m   3 A"/ ) 120.9=1b Q\n Q\PNG  IHDR1BsRGB pHYs+JIDATHKU;0 ƂCPx =# lh8Cn` Q a$}cʅOy$9uz'TDhȪdU#P׎U)!i#\5|`nOQ.2$.W|ҮnLIw^z"71)a!i/ctdN0O=Y%qIy7Նvo8X>}i [?3b^p?ǣ<׽M 朆D%'pܵ 2ckAjt^Nbty ԧYLjq p&F-p)c^N"/k?IENDB` Dd ,m   3 A"/ ) 120.9=1b Q\)n Q\PNG  IHDR1BsRGB pHYs+JIDATHKU;0 ƂCPx =# lh8Cn` Q a$}cʅOy$9uz'TDhȪdU#P׎U)!i#\5|`nOQ.2$.W|ҮnLIw^z"71)a!i/ctdN0O=Y%qIy7Նvo8X>}i [?3b^p?ǣ<׽M 朆D%'pܵ 2ckAjt^Nbty ԧYLjq p&F-p)c^N"/k?IENDB`D Dd ,`   3 A""  12ABbkˍ'P3{l"7ndkˍ'P3{PNG  IHDR7#sRGB pHYs+IDAT8OS 0ęD!"1JbeHd:{ 7q66PDV+w" !hD = m"kZ[7+ɩk2R#DGsq\R7ډ( S3][|w\ʫfeP]],ıP(+M2 9*$2{\Mi}R]e$);ܨZ;ƷNlw [_ i %VRIENDB`D Dd ,`   3 A""  12ABbkˍ'P3{lfCndkˍ'P3{PNG  IHDR7#sRGB pHYs+IDAT8OS 0ęD!"1JbeHd:{ 7q66PDV+w" !hD = m"kZ[7+ɩk2R#DGsq\R7ډ( S3][|w\ʫfeP]],ıP(+M2 9*$2{\Mi}R]e$);ܨZ;ƷNlw [_ i %VRIENDB` Dd J,`   3 A""  12AMb$U @/1 }GuOn$U @/1 }GuPNG  IHDRZgsRGB pHYs+6IDAT8O͓1n0 ED >, Rt3;^ M]) EɢgYkaeX۫ulu +uKF qx0H+@%eL]$z&0gLJ<4'E1_-d[!1(v_m,cu.5#Qڻ[A~v$/yυPt^1OGKPյ$n#nI}B!~G c^) D\ _/e,.|"㟾go?qqs0v@6IENDB` Dd J,`   3 A""  12AMb$U @/1 }Gu,\n$U @/1 }GuPNG  IHDRZgsRGB pHYs+6IDAT8O͓1n0 ED >, Rt3;^ M]) EɢgYkaeX۫ulu +uKF qx0H+@%eL]$z&0gLJ<4'E1_-d[!1(v_m,cu.5#Qڻ[A~v$/yυPt^1OGKPյ$n#nI}B!~G c^) D\ _/e,.|"㟾go?qqs0v@6IENDB` Dd Y,`    3 A""  12MBb}')&f}fu#hn}')&f}fu#PNG  IHDR1YsRGB pHYs+GIDAT8OS;0$Pp4rAi ҧFKCPР&^?.b 12MBb}')&f}fu#Aun}')&f}fu#PNG  IHDR1YsRGB pHYs+GIDAT8OS;0$Pp4rAi ҧFKCPР&^?.b 12MN bu#Q;l{fWԁnu#Q;l{fWPNG  IHDRjsRGB pHYs+KIDAT8O͓10E=  QZnU(gXۅFAnP|g6즊\T3dHRL"(K-Ebxl3[;xWٚ}龘6 ߰`lԗgy$|C?zySŃCQ3>(o?}sa\kY[^E$9VE B$پe D6@op y'L_q6[٩;j̷nArSߜ+6/X75Ne<6w8a"8:s>~[벊f3ZӯSo%KDŁIENDB` Dd h,`   3 A""  12MNbu#Q;l{fWknu#Q;l{fWPNG  IHDRjsRGB pHYs+KIDAT8O͓10E=  QZnU(gXۅFAnP|g6즊\T3dHRL"(K-Ebxl3[;xWٚ}龘6 ߰`lԗgy$|C?zySŃCQ3>(o?}sa\kY[^E$9VE B$پe D6@op y'L_q6[٩;j̷nArSߜ+6/X75Ne<6w8a"8:s>~[벊f3ZӯSo%KDŁIENDB`T Dd ;,`    3 A""  12NB bMeWeA-p|ntMeWeA-pPNG  IHDR)dsRGB pHYs+IDAT8OS;0 5=I*BT]sJ=k%"7qS U=ac'$˲@LpI!BB EcC I}c$0[7dZݠICǪ)49ȺpHsi*Qǣ:)D3=G*ʎ` 9-ޜec ᇮ|E-^bDp[Գet~5jxþ7i"0`~t;eI+;IENDB`T Dd ;,`   3 A""  12NBbMeWeA-p|VntMeWeA-pPNG  IHDR)dsRGB pHYs+IDAT8OS;0 5=I*BT]sJ=k%"7qS U=ac'$˲@LpI!BB EcC I}c$0[7dZݠICǪ)49ȺpHsi*Qǣ:)D3=G*ʎ` 9-ޜec ᇮ|E-^bDp[Գet~5jxþ7i"0`~t;eI+;IENDB`G Dd ,,`   3 A""  12NPbw/0{ongw/0{PNG  IHDRZsRGB pHYs+IDAT8OS 0=2 M Dc-zdFD)hxr"5|glgv7 ;|:@ #7͆4*ƈ̒qv\FcQe7t~`ONnq/ vzsY|:XbЊQ Jrpt/2dKA1^Z4;&4mL"Z5eRϧlIv po\\hCzݿ}a) eSύIENDB`G Dd ,,`   3 A""  12NPbw/0{ongw/0{PNG  IHDRZsRGB pHYs+IDAT8OS 0=2 M Dc-zdFD)hxr"5|glgv7 ;|:@ #7͆4*ƈ̒qv\FcQe7t~`ONnq/ vzsY|:XbЊQ Jrpt/2dKA1^Z4;&4mL"Z5eRϧlIv po\\hCzݿ}a) eSύIENDB` Dd ,`   3 A ""  12PBbalLž~گ5v=8n5lLž~گ5vPNG  IHDR7#sRGB pHYs+IDAT8OR 0=2 R mF8hK&ϝ!(W{~YktLM{yi jD;5GDzZidIa15qa4o&#꯷HNwX,>30xλ2*|bRjM9ޟZ+Zr}<__vM8dIENDB` Dd ,`   3 A""  12PBbalLž~گ5v=Mn5lLž~گ5vPNG  IHDR7#sRGB pHYs+IDAT8OR 0=2 R mF8hK&ϝ!(W{~YktLM{yi jD;5GDzZidIa15qa4o&#꯷HNwX,>30xλ2*|bRjM9ޟZ+Zr}<__vM8dIENDB`) Dd ,`   3 A ""  12PQbur "9P؏@xvQbnIr "9P؏@xvPNG  IHDR7#sRGB pHYs+IDAT8OS L2c{KH m` 7w><==pk- 9Fc 12PQbur "9P؏@xvQnIr "9P؏@xvPNG  IHDR7#sRGB pHYs+IDAT8OS L2c{KH m` 7w><==pk- 9Fc 12QBbE ̾*w~3 finaE ̾*w~3 fPNG  IHDRZsRGB pHYs+IDAT8OS0 u: qz6c2B<wt4\"GpA-]Zl]\ZFZUG7n)HX@`Fcn&gBĺT*eva6Jo'8S;mJc L²ߴlX ̞4:YqalI-EX勈3_6Hd^vB ٓ fOMIE~D/~]0DIENDB`A Dd ,,`    3 A ""  12QBbE ̾*w~3 finaE ̾*w~3 fPNG  IHDRZsRGB pHYs+IDAT8OS0 u: qz6c2B<wt4\"GpA-]Zl]\ZFZUG7n)HX@`Fcn&gBĺT*eva6Jo'8S;mJc L²ߴlX ̞4:YqalI-EX勈3_6Hd^vB ٓ fOMIE~D/~]0DIENDB`D Dd ,,`   3 A ""  12QRb(TxatFAdhJBl6nd(TxatFAdhJBPNG  IHDRZsRGB pHYs+IDAT8OS10 ly +@bIw-+R<5?1ILIsξK s///ql۪1i^aS_VPxcPz] f"8@c0T̗Ɂ9;ܩvqI䝘'hKNXwwzE!s9&5<Ә0e;~\UBT8B!/ϮMBbKh2I~*}3Y _a=YIENDB`D Dd ,,`    3 A ""  12QR b(TxatFAdhJBlz!nd(TxatFAdhJBPNG  IHDRZsRGB pHYs+IDAT8OS10 ly +@bIw-+R<5?1ILIsξK s///ql۪1i^aS_VPxcPz] f"8@c0T̗Ɂ9;ܩvqI䝘'hKNXwwzE!s9&5<Ә0e;~\UBT8B!/ϮMBbKh2I~*}3Y _a=YIENDB`+ Dd ,`   3 A ""  12RBbwBhCgS-nKBhCgPNG  IHDR7#sRGB pHYs+IDAT8OR1 tHY: eSxF'tR营 ?&A㜃rnU̦zjN_{jZ(zv\NrX'gEA[>]5I!_3F?)؁ 9(^{8JdI&9·ϻPfDAxm_.F]/! 12RB bwBhCgS9nKBhCgPNG  IHDR7#sRGB pHYs+IDAT8OR1 tHY: eSxF'tR营 ?&A㜃rnU̦zjN_{jZ(zv\NrX'gEA[>]5I!_3F?)؁ 9(^{8JdI&9·ϻPfDAxm_.F]/! 12RSb_6Jb7řݯKsg;Fn36Jb7řݯKsgPNG  IHDRAsRGB pHYs+IDAT8Oc?%$a$&+s"x *ُd?X 0{ywgܽe)S A4;P nC O0$v-P3pGBvd = 0(=  Ђ-&] rxl"F%L;9it0"<6IENDB` Dd ,`    3 A ""  12RS b_6Jb7řݯKsg;'Rn36Jb7řݯKsgPNG  IHDRAsRGB pHYs+IDAT8Oc?%$a$&+s"x *ُd?X 0{ywgܽe)S A4;P nC O0$v-P3pGBvd = 0(=  Ђ-&] rxl"F%L;9it0"<6IENDB`$$If!vh555x #v#v#vx :V l t06555x yt7R$$If!vh555x #v#v#vx :V l t06555x yt7R$$If!vh555x #v#v#vx :V l t06555x yt7R$$If!vh555x #v#v#vx :V l t06555x yt7R$$If!vh555x #v#v#vx :V l t06555x yt7R$$If!vh555x #v#v#vx :V l t06555x yt7R$$If!vh555x #v#v#vx :V l t06555x yt7R$$If!vh555x #v#v#vx :V l t06555x yt7R$$If!vh555x #v#v#vx :V l t06555x yt7R$$If!vh555x #v#v#vx :V l t06555x yt7RDd b   c $A ? ?3"`? 2=/?18>F/_\9e`!/?18>F/_\9:@Rxcdd`` @c112BYL%b  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~B3      "!#%$&(')+*,-.0/14256798:;<=>@?AsCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrtwxyz{|}~Root Entry Fp^/Data NWordDocument7ObjectPool,^p^_1275217219F^^Ole CompObjfObjInfo !"%(+0369<ADEHMRW\adgjmpsvy~ FMicrosoft Equation 3.0 DS Equation Equation.39q (P " FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native )_1275473168 F^^Ole CompObj fObjInfo Equation Native  _1275218285F^^Ole  Ad& S n =a 1 "1"r n 1"r FMicrosoft Equation 3.0 DS Equation Equation.39q8xN S=a 1CompObj fObjInfoEquation Native T_1275218793F^^ 1"r FMicrosoft Equation 3.0 DS Equation Equation.39qxN 25 FMicrosoft Equation 3.0 DS EqOle CompObjfObjInfoEquation Native 6_1275218886"F^^Ole CompObjfObjInfouation Equation.39q_ J "7(0.23) i"1 i=1" " FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native {_1275219020F^^Ole CompObj fObjInfo!Equation Native  _1275219185'$F^^Ole #ЇK  25+15+ 210+110+ " " "  FMicrosoft Equation 3.0 DS Equation Equation.39qc# 854CompObj#%$fObjInfo&&Equation Native '_1275219429)F^^() i"1 i=1" " FMicrosoft Equation 3.0 DS Equation Equation.39q EN  23 FMicrosoft Equation 3.0 DS EqOle )CompObj(**fObjInfo+,Equation Native -7_1275219707^.F^^Ole .CompObj-//fObjInfo01uation Equation.39q+ EN  192625 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 2G_12752197213F^^Ole 4CompObj245fObjInfo57Equation Native 8K_12752199781;8F^^Ole :/@I  3843125 FMicrosoft Equation 3.0 DS Equation Equation.39q#EN  "643CompObj79;fObjInfo:=Equation Native >?_1275221459J=F^^Ole ?CompObj<>@fObjInfo?BEquation Native C FMicrosoft Equation 3.0 DS Equation Equation.39q`N 0.72=0.72+0.0072+0.000072+ " " "  FMicrosoft Equation 3.0 DS Eq_12752221016EBF^^Ole FCompObjACGfObjInfoDIuation Equation.39qvH a 1 FMicrosoft Equation 3.0 DS Equation Equation.39q h4F/_\9f`!/?18>F/_\9:@Rxcdd`` @c112BYL%bpunk/` -2->Jnz@W U8#EٯܧO' Q?͌>o|o}=ɷGn.c]s)p/ht:zG.+uhLՍ 3zκ6ZR]XXLJ! h3pᱴ|O|Z\\Ul9'&\__ۧ,Jt1/yh*=UI斶nF?fZ*!#DPA`i4WkPmkJ HRq..//RԚ %h Kw,2=TlkG@dM%FVaCքH܅ct9Wi͕!AU׳ԙG<nxjK:,vwm9#mZ~TY"=]0<+mk٤9@.SG=?AGs}16N"╆ÈP|ss3[[[x ݛv0h﬇].~VQW,Gf`K~vr%,SǯSh0)j~֔ZŮZjk!BvFș+Mfɫ1W#hE<j{/Gy ;C^ʈsxr!JڐC;O- !%Z+ϥc,O2EĠV1 !{AJ M3k'ܿj%D3YX'hqԶ..r*ΟP@penR~C9+19`{t}` n&&Psg.0@$82@``#RpeqIj.6 @ ]` bg!t?0wDd b " c $A? ?3"`?!2\ x A|-)8w`!0 x A|-)v Ƚhxcdd``$d@9`,&FF(`TIQRcgbR  7$# ( (,@1[ɃI?DFz&br<B >)O`M; 1l /Hi%7䂺 P;=`321)W20gPdk,i=ADd pb # c $A? ?3"`?"2 kEmlcy`! kEmlc `xcdd``~ @c112BYL%bpuyu\Mcd1ge-\BUb/#0dsQ47$37X/\!(?718賊kw; bE1?$b 00_Ο c ܍Gah8~31H{8 rAS=8gb;+KRsePdk > 1~fDd 8 lb $ c $A? ?3"`?#2<dOE3J)镐o<Z|`!dOE3J)镐o<xuS=hZQ>\Sƈ)XDk,Jd:Q ^@q3R2!ٜBF(,8w(NMJr}Dž9|wl!ȂQ҈=亮Db~^lHqb.B\ I]N|`ˉËJZj:}p/ 1B|ZU*ϵxxfbexJHhk4v< i2}MkWswS k -=7LsQĝݓ8EK[w ú _wC,V QzB+wlX?c>~O=%V>#ANF_!/WU`޾谾Ns a1|˯a[z{ |1rdCQéAZx8QAO fϘI#Dd pb % c $A? ?3"`?$2,̥=,A4e7L`!,̥=,A4e7 xڥSKBQ| 6D4XC? !!UBj !\]l,^Woq\ww%м>0ly!! m[(P{^G:m ͺ0 6CClLUd՝g@YŒQ$}~bK*Ado k7ʻ%j6W xӗ5St-= K;^zoI 5N'{jITpQfR?%W|%uGG/ACr7l.2Kd-":f%b«bO[̩yB(n T<B|7ߵKѝ/*_2b~5 2-cyV܂]{IgVj}ULñ(K3hDd b  c $A? ?3"`?2[:m;V7`!/:m;Vv@xcdd``$d@9`,&FF(`Ti A?d-sC0&dT200pEe9 u!f0u0:Y@#;3)V ZZǠQ`#i3vq0ł`\ 1BF\Pr}6j;oF&&\ @ ]` `v38:UDd @b  c $A? ?3"`?2cIp Vϼ (g?`!7Ip Vϼ (gz x=OJA}311 xA,N ;E وM"IcbE@Gz ?B~b:;:0ofߛGhWȁ-K1Q@ZE 6aKAOKt*8pOS4-MX#?{DѺgrz#) 3̆7)[Y3?cQ3͏4Dᗑ:{jމygM6UW_4=xDd b  c $A? ?3"`?2c9 ?2`!79 zhxcdd``$d@9`,&FF(`TiS A?d-bZW 憪aM,,He`(`r0@ 2Ba`t, &;3)V ZZQ`#彬i3A>f0a blhd acPĔ J.OV0@``Ĥ\Y\C sg!_` =ddbR ,.Ie82C Dx|bb0@$JDd `Tb * c $A? ?3"`?)2$ReV;*̍`!$ReV;*̍ #XJxuR=KP6HZmik;%Eg-b3KBcJ,n.:C&N KR# seD|Ei#dC ]fo@Ba:Kh>Yp2h T,iRQoΑ`@~t^dv8FTLͱw jL{[wqo(k2Ul7/%/;g*Zc|ʽ A +0/E8_PZz[M~-@мJ:FȠ\.'yٲ &4ǻ"QTÎtC2BpS%z͛#M̚ 7`b:bږ C~@98.gn@3 Dd Tb + c $A? ?3"`?*2VrEj`2'`!*rEj` XJxcdd``> @c112BYL%bpu)WaM+aF\?1VBk3$@ V`s+L=0adbR ,.Ie(ԡ`n FDd b , c $A? ?3"`?+2?}ӀR$ Cs83`!}ӀR$ Cs8: @Ƚxcdd`` @c112BYL%bpu(`!6bpsX9ݿri`@ |XJxcdd``>$d@9`,&FF(`TIɁIRcgbR ցx@瀆qC0&dT200pE1At 2Babc wfjQ9A $37X/\!(?71Gʳr f22:Y%׃M|J.[q;LLJ% :@:| L @ Dd DTb . c $A? ?3"`?-2g'Oe׶7ۮ_ " JbC@`!;'Oe׶7ۮ_ " Jb XJ x=P=KA}3Gr xDAΰJ~)L^ũʟ`mog¿ƅfxo>, `LqUUƺs]3~ra+kFbτ.ZQI>Noѐ7=Kko}R.ltdzF:*82;)ke.WuMҍq蘜21 -gI9!)RZj?A{x @;Bx0:杸!8t@ Dd Tb 4 c $A? ?3"`?2V5B(€Rq]A2]`!*5B(€Rq]A XJxcdd``> @c112BYL%bpu)OdMaF\?1VBk3$@ V`s+L=0adbR ,.Ieԡ > 1,FDd b 5 c $A? ?3"`?2?}ӀR$ Cs8i`!}ӀR$ Cs8: @Ƚxcdd`` @c112BYL%bpu$d@9`,&FF(`TIɁURcgbR A UXRY`,@1[)>DFz&br)dMk0ڀ40252N7 , l% `pX021)W20dPdk\Y7&0f~(?IDd (Tb 7 c $A? ?3"`?27VL\ZYw巚o|`!g7VL\ZYw巚f@  XJ5xcdd``6fd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMc(s||ִ,@u@\@ڈъc #Ss`[ ,`|)0bdd >`2_P 27)?[6 pb.#/q`a.#Eؽ\8!3#RpeqIj.IPWdhB ~` nhDd D@b 8 c $A? ?3"`?2C*LGx(ۆŝ`!C*LGx(ۆ  TxڝRMK@}IZ 9x<ٲ{PA[<!bқg/h/,,z;`?;3˛7ovP5.'rDګJ~Lpe86 XE`*~Q@S(2'ǔqt.Ea VðQpgM[U8 WQh[m;aHjX"U8~*ƌmdO]ee4bGMF/:#a?0ע2^[L7_,Wز_י?227w 'Ӣ;E="!6v'g^u>{0tO҄"Dd Tb 9 c $A? ?3"`?2l7hư|)H-`!@7hư|)ۊ  XJxcdd``>$d@9`,&FF(`TI A?d@e瀆qC0&dT200pE1At 2Babc wfjQ9A $37X/\!(?71GCҴ!f22pi#l@!T 8=#70₺ 3 w0y{aĤ\Y\C sg!ߘ{I@d Dd XTb 5 c $A%? ?3"`?42jX7SuEFO`!>X7SuE XJ x=P=KA}3<,N ;aP .ʼn)Nt)  (xnn`v[ޛ% 9 m^"&򈸮kE}oap•6CmňW%xbtp<^fH.?6V$9zlѦ[cS>Q6.Iru1G\/uj:*8XLw=l,7|<~@p3EXSB̻g4/s=YwoL~BGDd 4Tb 6 c $A&? ?3"`?52 9GF^Pv+o`!9GF^Pv+r  %-XJxuK@]+I5 hE,:N B kKqqprO.Ђ]]IT㽻$4b/\xr5a/02"J8d851h&2 pP I]]߱djSjTL_T8p؞#"N7 C1JH>96Hٓ,k@SR:mMux+9 5taWm{ , W(Q/u_Ҙb֯ciAT 򳄼__b}vkՆVmZy ="mݦtL7=.W)./˶lOsz#|,K>oƸrpP:Ѵ-K| >ls6-ŝNO0?R眄(>bѬ֠g 1g܀λ__Dd ` b 7 c $A'? ?3"`?62 `j5u=&m}/`!`j5u=&m}@@xcdd`` @c112BYL%bpu 1D\ _˗0Usi#LY@ZVBSH⶗~Bڲ~G}6>m0wM}c{> A@>Af܇O>e>cN^]Dd W b 9 c $A)? ?3"`?824)T/6̿`!{4)T/6̿@IxSAhA3iv74Mzz𢆐dK#IMĕ&4.,=zYAAIHE^瞤R`dfg `d8~HWgL[cZ`4y.<3 c,h}ĹLjp;ۍcp߰HAy laGkPX` Y_IPazScEREJMJY=fe79Q{J N*3㗡(h6BW_Իlg">+`wHvk^$b ƚ/i U-[r& %'`-:-P,5Q!U W*@F[xQ'l{Og?U.ovHeuP [=Al}[f;O{[1ǽ.|cUm&ez%]u֩Zzk|k|'< IQ8T﯅ tka D;6z ] Dd XTb : c $A*? ?3"`?92jW_Ey JVF]`!>W_Ey JV XJ x=PJA=pY-D,V;$_)t++>XXҥ~ vߢhzd/ܙsscmBlƢd爉<"ZQ[:pebAK+@mňW%xbtp4gH,6$^S0[*9xzF](er|S q#<|.gKyev\M^_s ݆(O -=LZʞ_yd2`C[Wu>c'.AhDd Tb ; c $A+? ?3"`?:2i@7PQH¸E}`!=@7PQH¸ XJ xcdd``>$d@9`,&FF(`TIYRcgbR s@øjx|K2B* R 8 :@u!f0E11X@6&;35V ZZǠQ`#i3vq`ci~51zpoRؗ` n``ÅI)$5d?P"CXHg!?`|@DDd @b < c $A,? ?3"`?;2,+WOt#w=j`!b,+WOt#w= 0xcdd``$d@9`,&FF(`TERcgbR 6 aP5< %!  @_L T̠1[)!Ԙ@r#X=@Hfnj_jBP~nbCĪ@`g'`0.ci5~0zp oP~+ssqs(~&> cJ.hpC-] `px321)W2|ԡ"b> 1  VDdj&&n ; JA?Picture 135"7ZG@sDM[@= ZG@sDM[F`/*#xM%GFf _L?''?V9M}5sܻ_i7/xA A! @皾G V~:!'d%% F@*3ϲ[L; McI& 2JMGuCLM@Th:eh/@Q'G(@e.x!:9@.s tQ7t ^D%N!P&\B *'jZG'*+@R+gJѪ9۫Iچm6usymkkNmym߬5v+W۪TUۄ=g#5f3?Y*Cgkf3m?Y[wqBMHeҴiM&  P#MӪ7{j@h=2S[ sښ&0 0$UV= 9^&U:N]çQ Ԯ?5ZOΖ.KvՋ~9jY__|bO8-_FY+\zb4#0}s޶1 0Za1G35>e+c $:2@` hza DMs 04=<h;I7xux7!%Ύ!P"KTA .4wvT4]q 鸳r|KMǝCDM@\h:%hD@qgG(@%* ;;*@.Qi%NCsOԴH ί @M0DZ# L @M0DZ# L @M0DZ# L @M0DZ# L @M0DZ# L @M0DZ# L @M0DZ# L @M0DZ# L @M0lB8JM%5*耀.Ç [QVȻ. zcnjc]a:a=ޮg2փk$ؕiл'+a*|T;]%Kx{'F``D@WT<_[AH'+_]wT<[خNֻW0Jqe&Ja33^0g&崼 Z^e0Vp< D`g/@ е0WVg g` ހzhΦ뤶@gDtd9Τ阵S|ʮ |dt%@H K'!@NM C #3 ,!>@ʇ@FMg@XB 84|΀@pOԴN!/'jZt7F!G$}@ @EM5O@`,hzy 4wc@c͓n kt4XXi"ǚ'@Ms 04=<h;I7@E Uxzƚ@($bK됒{V?wTa*b=+rso#0LųHluF:I79V$ S[џNhv.UB@` x Aд t<4i`C >4tOM{OMǟ!@@Ӟ6@gHд t<4i`C >4tOM{OMǟ!@@Ӟ6@gHF״KoЅgꌦuik9] ›o]*rwńsCob N F@7T<~[ѨN8#m-盜g#e7VgtHsk%-D@T<[%:*9! iO 3xh@|h: 4!g( ?Q::dO[m33̙l%l*oΨK'`NSs2fsxҶ:.pFڃ9}0CtMu3ω3$C'A64 :{>%O"F{hhz횶=鉅@hz'-bd`+1lA`]*M|l+`12t)5^6sJaI؍N@T<_ [љN8#mo9M[ɨ0c 3¶cyI6-*4j{ctOo$KTK}ɡ7[5g}_mz?dg_+}YL2jmtJۄ=gk~6mH1< }10O`#-a Jfo LE6Kb*4uY:@ He;5ʇ+[ %' )U4k:Zp}nr k:}gkn;(kZ;)~'m,d}$6 P$ N8ܢivԴ#ݝGMǖx^5-~ŅѴ I!l @`# ߑm0@F๚UhEM"IAi@ T}:b+ @`,hzy J#f6 3"LMC@M@`h:(h#pwV ~jV+2$V(d][dڵw93J,2eX#dԾM[$x˰ f5ҴTL5mt Y<5ζm=5;eKrwNwkں󽜯pItG1wAݎaaY~NȬ6UI|ecGg~mϲo>mU{aM'ծ]!0bMok.=vb,2d"m666666666666666666666666666666666666666666666666hH666666666666666666666666666666666666666666666666666666666666666666J@J FKNormal dCJ_HaJmH sH tH DA@D Default Paragraph FontRi@R 0 Table Normal4 l4a (k( 0No List R@R FK0 Balloon Text dCJOJQJ^JaJBB FK0 Char Char4CJOJQJ^JaJ>@> FK0Header H$d.O!. FK0 Char Char3> @2> FK0Footer H$d.A. FK0 Char Char2DORD FKList Paragraph ^m$2Bb2 FK0 Body Textx>q> FK0 Char Char1OJPJQJ^J6U@6 m Hyperlink >*B*ph<< m0Placeholder TextB*RYR 5}0 Document Map dCJOJQJ^JaJDD 5}0 Char CharCJOJPJQJ^JaJDD5}0RevisionCJ_HaJmH sH tH Nu352Nu35 !z!z!z!z!z!z!z!z! z! z! z! z`#'#*w-h.|035O+NV2G 4 _u$%8fZh$ X  / / # v   6 L gTUabw  ijQR./01_`'(\^|DEFG$%&'()  - 0 1 3 4 5 6 8 9 : ; = > ? @ B C D E G H I J K -!.!/!0!1!!!G"H"" ####=$>$$$$$$$$$$$$$$%%G&H&I&J&''''''''(t(u(v(w(F)G)H)I)J)K)))))))* *!*"*#*U+V+++++++++++J,B-C-w-------.......].^._.`.a.b.c.d.e.f.g.h..C/D/E/F/G/H/////////////w0x0y0z0{0|0^11111 2"2l2m2n2o233333334 4 444455*5+5/50545$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$/$/$$$$$$$$$$$$$/$$$$$$$$$$$$$/$/$$$$$$$$$/$$$lj$$$$$$$$$/$/$TQ$lA$($$$$$$$$L$$L$$L$$L$$L$$L$$$$$$$$$$$$$$$$$$ $$ $$$$((( (($$$($ $l$$$($ $l$$$($ $l$$$($ $l$$$($ $l$$$($ $l$$$($ $l$$$($ $l$$$($ $l$$ $$$$ $$ $$$$$$P$$$$ $$$$$$$$$$$$@ $$$0$$ $ $ ( ( (( ( ( (( ( ( (( ( ( (( ( ( (( ( ( (($$$$$$$ $$$$$$$ $$ $$0$$$$$D$$$$$$`$$$$$$$ $$s$$$$s$$$$s$$$$($`$`$($($($8$($($($($($`$($($($($($`$($($($($/ $($`$($($($($($($($($($p$$($"$($`$($($($($($($($($($($($m$($($($($($($($($($($($8$$$($($($($($$$($($($($($$$($($($($($$$($($($($($H $$$($($$$($G%$$$($($($$$($($($($8$($($$$$$$^J(B^JB(^Jc((^J^J4 _u$%8fZh$ X  / / # v   6 L gTUabw  ijQR./01_`'(\^|DEFG$%&'()  - 0 1 3 4 5 6 8 9 : ; = > ? @ B C D E G H I J K -!.!/!0!1!!!G"H"" ####=$>$$$$$$$$$$$$$$%%G&H&I&J&'''''''''(t(u(v(w(F)G)H)I)J)K)))))))* *!*"*#*U+V+++++++++++J,B-C-w-------.......].^._.`.a.b.c.d.e.f.g.h..C/D/E/F/G/H/////////////w0x0y0z0{0|0^11111 2"2l2m2n2o23333333333444444 4 4 4444444555)5*5+5.5/5051545000000004040404040000000%0%0 0 0 0 00 0 0 0 000 0 0 0$  0$  0$  0$  0$  0$  0 0  0  0  0 00 0  0  0v  0v  0v  0v  0  06  06  06 0 00U 0U 0U 0U 0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0U0000000000 0 0 0 000 0 0 0 000 0 0 0 000 0 0 0 000 0 0 0 000 0 0 0 000 0 0 0 000 0 0 0 000 0 0 0 000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000001!01!01!01!01!01!01!01!01!01! 01!01!01! 01!01!01! 01!01!01! 01!01!01!01!01!01! 01!01!01!01! 01!01!01!01! 01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01!01! 01!01!01!01!01!01! 01!01!01!01!01!01! 01!01!01!01!01!01! 01!01!01!01!01!01!01! 01!01!01! 01!01!01! 01!01!01!01! 01!01!01!01!01!01!01!0000000000000000@00000000000000 1 5 6 : ; ? @ D E I J 3333 44444*5+5.5/545h00h00h%O0  h00%O0 h00%O0,h00&O0h0 0 H&O0h0 0 HO0D,Yh0 00nO0ap p ̺h00pO0y3h00pO0 wh00wO$$̺_ h000xO3tf88h00hxOh00 m30h00Xm30h00m30h00 r30CXh0!"ܙh0!h0!00h00hV0h00,h00h00h00\Vh00,V0h00oV0;  cg #.(,.w03_45;3=#%')*68?ABDEGJ T (5(:(?(D(I(1),H1J46^9<*=3= "$&(+,-./01234579:;<=>@CFHIKL2=! Xbd,68\fh DNP,68pz|   46r" # #$$$$$$$$$$$$&&&&&&&&&M'a'c''((@(T(V([(o(q()))*****>*@*v****+++++ +4+6+b+v+x++++J,^,`,a,u,w,C-W-Y-_-s-u-------B.V.X.35##############:::X::::::::::::::::::::::::::::8@j(    `B#CDEFjJ#@#" ?VB  C D"?  ZBCYDEFY@C"?  C  "6`?? z  # s"*??   3 "0?? b 2 3 #" `? B S  ?'3358G: toyytc$=d$tc$tLt+t2 !#t _Hlt201502039 _Hlt20150204045@@45|~sy- / 2233344445bu<D VXmp 1!:!!!H"|"##$$/%6%&&&&J'M'W([()****T+--..<.B.h.r.|00S1[1113333445::::::::::::::::::::::::::::::::::::::::::3333333333444444 444444444551545lRT\"`Rj@8ȵ{"~xF02vz:*2t3e4>Αk9E>4yLTU.H^~}_Z:o a(.WhxAli΄8Lsn2v^`o(() ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.h^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hH^`o(() ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.hh^h`o(.h^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hH^`o(()  ^ `hH.  L^ `LhH. x^x`hH. H^H`hH. L^`LhH. ^`hH. ^`hH. L^`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(() ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.hh^h`.^`o(() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.88^8`o(() ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.^`o(()  ^ `hH.  L^ `LhH. x^x`hH. H^H`hH. L^`LhH. ^`hH. ^`hH. L^`LhH.^`o(() ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.hh^h`o(.3e4.Whz:*2Rj.H^F0Lsn~}_o aLT~xk9ElilR~J                          V                 Mz                 \l        ,:        <                |        7R"F/R*Y?I^K^UmhpFK!"ma>8xZ-ymb5}(\^|  - 0 1 3 4 5 6 8 9 : ; = > ? @ B C D E G H I J 3345ccc <@332c3335@Unknownrhonda Rhonda RenkerGz Times New Roman5Symbol3& z Arial;WingdingsA BCambria Math7&{ @Calibri5& zaTahoma?5 z Courier New"qh-Ʀ1҆ ^:, ^:, ^!n>4d333qHX $P)FK2 Mobile Lab Rhonda RenkerH          CompObjq