ࡱ> qsjklmnop%` 4bjbj"x"x =@@L!llllt44484~= vĽHnN:NNNNNN   $`hJ=j? ==llNNNNQY~555=lDkNNNN5=55*sD)NNH pMR4 DR0Ľ;~ 5    1*   Ľ====vvvD4vvv44<bllllll   A Level Chemistry UNIT 4 GENERAL PRINCIPLES OF CHEMISTRY 1 NOTES (2009) Written by Mr Sergeant Introduction This unit includes the following. A quantitative study of chemical kinetics. Further study of organic reaction mechanisms. Entropy and equilibrium and their role in determining the direction and extent of chemical change. In the Organic Chemistry section, carbonyl compounds, carboxylic acids and their derivatives will be studied. Knowledge from Units 1 and 2 will be necessary for Unit 4 Assessment The Unit examination will be 1hour 40 minutes. It will carry 90 marks. It will contain three sections, A, B and C. Section A is an objective test Section B short-answer and extended answer questions. Section C will contain data questions, requiring students to extract relevant data from the data booklet. Quality of written communication will also be assessed in either section B or C. KINETICS Rates of reaction Introduction In kinetic studies the rate of chemical reactions is investigated. Some of the factors which can affect the rate of a reaction are: The surface area of the reactants The concentration of the reactants The temperature at which the reaction is carried out The presence of a catalyst Light is important for photochemical reactions Experimental Methods for Following Reactions The rate of a reaction can be determined by following some aspect of the materials which changes as the reaction proceeds. When the effect of concentration on the rate of reaction is being investigated, it is important to keep other factors, such as the temperature, constant during the process. Mass changes Mass changes that take place during a reaction can be followed by placing the reaction vessel on a balance and reading the mass at specific intervals. Volume changes When a gas is given off in a reaction, that reaction can be followed by measuring the volume of gas collected at various times. To do this a reaction flask could be connected to a gas syringe. Pressure changes One useful way of following the reactions of gases if a pressure change takes place is to connect the reaction flask to a pressure meter and measuring the pressure at given intervals. Titration This could be used for following the reactions of an acid or alkali. It can also be used for following reactions involving iodine (using sodium thiosulphate). Pipette samples of the reaction mixture would be removed from the reaction vessel, placed in a flask and the reaction quenched. It can then be titrated to find the concentration of the reaction mixture at a particular time. Polarimetry Suitable for reactions involving optically active substances. Measuring conductivity Suitable for reactions producing or consuming ions. Colorimetric measurement If a reactant or product is coloured the reaction can be followed by using a colorimeter. This measures changes in colour intensity. A narrow beam of light is passed through the solution being investigated.     The filter allows an appropriate colour of light to be selected. The start and finish solutions might be tried with different filters to see which give the largest change in reading. The meter is usually calibrated to measure the amount of light absorbed by the solution. Finding rate The rate of a chemical reaction is measured by how rapidly the concentration of a substance is changing. The substance may be a reactant or a product, and the sign shows whether the substance is disappearing or being formed. The rate is the instantaneous rate of fall in concentration of a reactant, or the instantaneous rate of increase in concentration of a product.        Concentration and Rate It might be thought that the rate of reaction is always directly proportional to the concentration of the reactants, but this is not the case. It is only the substances that are present in the slowest step (the rate determining step) of a reaction that actually affect the rate of the reaction. To provide information about how the rate depends upon the concentration of reactants or catalysts the rate equation is used. The Rate Equation The extent to which concentration determines the rate of a reaction is expressed as the rate equation. These values have to be determined by experiment; they cannot be deduced from a chemical equation (as equilibrium equations are). Suppose that we were investigating the reaction; A + B ( C then we would carry out experiments to see the effect of changing concentration of A and B. Suppose we obtain the following results for A. Concentration of A /moldm-3Initial rate /moldm-3 s-10.10.010.20.020.30.030.40.04  So we can write; Rate [A] The rate is said to be first order with respect to A. If we found the following results for B. Concentration of B /moldm-3Initial rate /moldm-3 s-10.10.010.20.040.30.090.40.16  Rate [B]2 The rate is said to be second order with respect to B These values can be expressed in the same equation;  Rate [A][B]2 or Rate = k[A][B]2 This is called the rate equation Here k is called the rate constant for the reaction. It is constant for all concentrations of A, and B, provided that the temperature and any other conditions not specified do not change. The rate constant and order of reaction are experimentally determined. The power to which the concentration is raised is known as the order of reaction. The general form of the rate equation is written: Rate = k [A]n[B]m. The value n + m is the overall order of the reaction. Units of rate and k. Rate is measured in concentration/time: usually mol dm-3 s-1. Units of k depend on the order of reaction: For a zero order reaction, rate = k; so k also has units of mol dm-3 s-1. For a first order reaction, rate = k[concentration], so k has units of s-1. For a second order reaction, rate = k [concentration]2, so k has units of mol-1 dm3 s-1. Although the preferred unit of time is the second, if data is provided in minutes or hours it may be best to keep to the unit specified. Finding order of reaction from initial rates. You need to know three methods of measuring orders; the initial rate method use of rateconcentration graphs the use of concentration-time graphs plus half-life. The initial rate is the rate at the start of an experiment, when the concentrations are easy to measure since they have not had time to change. It is often not easy to measure the initial rate, but if it is known, the order of reaction is fairly easy to find. If possible, try to compare experiments in which only one concentration changes. Then, for example: Rate = k [A]m If concentration of A doubles but rate does not change, m = 0 (zero order). If concentration of A doubles and rate doubles, m = 1 (first order). If concentration of A doubles and rate quadruples, m = 2 (second order). [If conc. is 1.5, for 1st order rate will be 1.5; for 2nd order 1.52 i.e. 2.25] If the information is presented as a number of moles, or a volume of solution, make sure that you first divide by the total volume to obtain concentrations (or at least check that the total volume is the same in all experiments). Here is an example, which has been chosen to illustrate the use of units and the calculation of the rate constant: The table shows the results of three experiments to establish the orders of reaction with respect to components A and B. Find these orders, and calculate the rate constant for the reaction. Concentrations are all 1.0 mol dm3. ExperimentVolume of A/cm3Volume of B/ cm3Volume of water/ cm3Rate/105 mol dm3s1P1002007002.2Q2002006004.4R30040030026.6 The water is added to make up the volume to a suitable total, in this case 1000cm3 in each case. Calculation: assume rate = k [A]m[B]n Comparing P and Q: concentration of A doubles, and rate also doubles. Therefore reaction is first order in A (m = 1). Note that we cannot find a direct comparison in which only B changes. We must allow for the effect of changing A first. Comparing P and R: concentration of A increases by a factor of three, so this alone would change the rate to 3 2.2 = 6.6. In addition the concentration of B doubles, and rate goes up by a further factor of 4 (i.e. from 6.6 to 26.6). Therefore, reaction is second order in B, (since rate a [2]n, n=2 ). To find the rate constant we can substitute in the rate expression for any of the experiments. Note the heading for Rate in the table: all the figures have been divided by10 5 mol dm 3s 1, so the rate for P is 2.2 105 mol dm3s1: rate = k [A]m[B]n = k [A][B]2 Expt. P: 2.2 105 mol dm3s1 = k  EMBED Equation.3  mol3 dm9 k =  EMBED Equation.3 mol2 dm6s1 RateConcentration graphs: If the rate can be measured at different concentrations (e.g. by the initial rate method), a zero order reaction will show no change (horizontal line), while a first order reaction will increase linearly. For a second order reaction, rate ( [conc]2, so a graph of rate against [conc]2 would be a straight line.     Concentrationtime graphs and half life. The half life of a reactant which is not in excess is the time taken for its concentration to decrease to half its initial value. For a first order reaction, the half-life is always constant:          Here it takes 10 min for the % of reactant remaining to fall from 100 to 50, and another 10 min to fall from 50 to 25 (or from 82 to 41, etc). For a second order reaction successive half-lives double. Note that if the graph of concentration against time is straight, order is zero. If it is curved (as above, or falling more steeply at first) you need to check successive half lives to find if they are constant (order 1) or if they double (order 2). Examples of concentration-rate studies One method of determining rate is to follow the reaction over a period of time. Bromine and methanoic acid react as follows:  Br2(aq) + HCO2H(aq) 2HBr(aq) + CO2(g) The reaction can be followed by calorimeter, measuring the colour intensity of the bromine. A calibration plot of calorimeter readings for known concentrations would be made so that it is possible to convert calorimeter readings to bromine concentration. In this experiment the effect of changing the bromine concentration, a high concentration of methanoic acid is used, so that its concentration changes very little as the concentration of the bromine changes significantly. Readings for such an experiment are shown below; Time /s[Bromine] /moldm-3 00.0100300.0090600.0081900.00731200.00731800.00532400.00443600.00284800.00206000.0013 Plot a graph of bromine concentration against time. Draw tangents at intervals to fill in the table below and find the rate of change of the bromine concentration at these times. Time /s[Br2] /moldm-3Rate of reaction /moldm-3s-1500.00862.92 x 10-51000.00712.40 x 10-51500.00602.04 x 10-5 2000.00501.70 x 10-52500.00421.45 x 10-53000.00351.19 x 10-54000.00250.81 x 10-55000.00180.65 x 10-5 Plot a new graph of the rate values obtained against the bromine concentration. This graph produces a straight line showing the reaction to be first order with respect to bromine concentration. Another method of determining rate is to measure the initial rate (before any significant concentrations changes have occurred) using different starting concentrations. Hydrogen reacts with nitrogen(II) oxide at 800oC as follows:  2H2(g) + 2NO(g) 2H2O(g) + N2(g) Results of an initial rate investigation of this reaction are shown below. ExperimentInitial [NO] / moldm-3Initial [H2] / moldm-3Initial rate of reaction / moldm-3 s-316 x 10-31 x 10-33.0 x 10-326 x 10-32 x 10-36.0 x 10-336 x 10-33 x 10-39.0 x 10-341 x 10-36 x 10-30.5 x 10-352 x 10-36 x 10-32.0 x 10-363 x 10-36 x 10-34.5 x 10-3 Comparing experiments 1, 2 and 3, it can be seen that as the concentration of hydrogen increases, the rate of reaction increases proportionately. This shows that the reaction is first order with respect to the hydrogen. Comparing experiments 4, 5 and 6, it can be seen that as the concentration of nitrogen(II) oxide increases, the rate of reaction increases by the square of the concentration increase. ExperimentInitial [NO] / moldm-3Change in [NO]Initial rate of reaction / moldm-3 s-3Change in rate41 x 10-30.5 x 10-352 x 10-3Expt 4 x 22.0 x 10-3Expt 4 x 463 x 10-3Expt 4 x 34.5 x 10-3Expt 4 x 9 This shows that the reaction is second order with respect to the nitrogen(II) oxide. So the rate equation is Rate = k[H2][NO]2 By substituting in values the value of k can be determined. Using experiment 3 9.0 x 10-3 = k x 3 x 10-3 x (6 x 10-3)2   k = = 8.33 x 10-4   Units of k = = mol-2dm6s-1 Reaction Mechanisms Many reactions actually take place in a number of steps. The way in which atoms, ions or molecules interact, stage by stage, is known as the reaction mechanism. Rate studies can provide useful information about the reaction mechanism. In a reaction which has several stages, the different stages will proceed at different rates. It is the slowest step which will determine how long the reaction takes. This step is called the rate determining step. Since the rate determining step controls how long the reaction takes, then the substances in this step will appear in the rate equation. The rate equation then provides evidence about the substances involved in the rate determining step. The reaction between propanone and bromine is a first order reaction overall. Rate = k [propanone]1[bromine]0 The rate then is proportional to the concentration of propanone, but independent of the concentration of bromine. This suggests that the reaction takes place in a number of stages, and that only the propanone is involved in the rate determining step. e.g. For an SN1 reaction two steps are involved RX ( R+ + X- step 1 slow R+ + OH- ( ROH step 2 fast The rate depends on the slow step 1. rate = k[RX] first order For an SN2 reaction there is a rate determining slow step involving two species. RX + OH- ( HO--RX slow rate = k[RX][OH-] second order Mechanisms and Kinetic data Chemical reactions occur when molecules (or atoms, or free radicals, or ions) collide: at a given temperature a constant proportion of collisions is likely to be successful. If molecules of A and B are in the same vessel, the number of collisions between A and B depends on their concentrations: number of A B collisions a [A] [B] i.e. if we double the number of A molecules in the vessel we will get twice as many AB collisions; if we double both A and B, there will be four times as many collisions. If A and B take part in a simple, one-step reaction, the rate of reaction will depend on the number of AB collisions: rate of reaction a [A] [B] In general, in a one-step reaction, the rate of reaction is proportional to the product of the concentrations of each species colliding. The number of species (atoms, molecules or ions) which collide in a one-step reaction is called its molecularity: e.g. A ( products; rate a [A]; unimolecular A + A ( products rate a [A]2 bimolecular A + B ( products rate a [A][B] bimolecular A + B + M ( products rate a [A][B][M] trimolecular Trimolecular reactions are extremely unusual. The mechanism for a reaction can be proposed with help from kinetic data but some speculation is needed. The rate equation gives us information about what reacts in the rate determining step. Sensible products must be suggested for the rate determining step. If more molecules of reactant remain and more product molecules are still to be formed more steps must be proposed. Write rate equations for the following Overall equation: 2A + B ( C Steps 2A ( D Slow B + D ( C Fast Overall equation: E + G ( J (catalysed by acid) Steps G + H+ ( L Slow L + E ( J Fast Overall equation: C2H5Br + OH- ( C2H5OH + Br - Steps C2H5Br + OH- ( [C2H5-Br-OH-] Slow [C2H5-Br-OH-] ( C2H5OH + Br - Fast Overall equation (CH3)3CBr + OH- ( (CH3)3COH + Br - Steps (CH3)3CBr ( (CH3)3C+ + Br - Slow (CH3)3C+ + OH- ( (CH3)3COH Fast The Transition State Theory The transition state theory says that when molecules collide and react, they move through a state of instability or high potential energy. This state of high potential energy is called the transition state or the activated complex. The energy required to attain the transition state is the activation energy.  An example of this is the hydrolysis of a primary halogenoalkane. R-X + OH- ( [HO-R-X]- ( ROH + X- Transition state In some reactions an intermediate is formed. For example in the hydrolysis of a tertiary halogenoalkane, a carbocation is formed. R-X ( R+ + X- The R+ carbocation is a reactive intermediate. This then reacts with the OH- to produce the alcohol. When a reactive intermediate is formed the reaction goes through two transition states.          The higher the value of the activation energy, the lower the number of effective collisions and so the lower the rate constant. Rate and Reaction Mechanism in Real Systems Results from kinetics studies provide information about reaction mechanism. The rate equations for the hydrolysis of primary and tertiary halogenoalkanes are different. For hydrolysis of primary halogenoalkanes the rate equation is: Rate = k[RX][OH-] For hydrolysis of tertiary halogenoalkanes the rate equation is: Rate = k[RX] The different rate equations arise because the hydrolysis of primary halogenoalkanes takes place by a different mechanism than that for tertiary halogenoalkanes. The reaction mechanism for the hydrolysis of primary halogenoalkanes is as follows:    The reaction mechanism for the hydrolysis of primary halogenoalkanes is as follows:    Iodine reacts with propanone as follows I2 + CH3COCH3 ( CH2ICOCH3 + HI This reaction is catalysed by the presence of an acid. The rate equation for this reaction is Rate = k[CH3COCH3][H+] This tells us that the rate determining step for this reaction involves only the propanone and the hydrogen ions.      Temperature and rate Often an increase in temperature of 10oC can double the rate of reaction. In terms of absolute temperature this means a change of temperature from 395 K to 405 K; so the proportional change in rate vastly outweighs the proportional change in temperature. This cannot be explained in terms of speed of particles, as their speed is determined by the absolute temperature. In topic 2.8, it was seen that activation energy is an important factor for rate of reaction when the temperature is altered. The activation energy was connected with the Boltzmann distribution of energy.  At a higher temperature the proportion of particles with an energy equal to, or greater than, the activation energy increases significantly.   The Arrhenius Equation An important equation linking activation energy, temperature and rate of reaction is the Arrhenius equation. In this equation, k is the rate of reaction, EA the activation energy, R the gas constant and T the temperature in Kelvin. A is the Arrhenius constant connected with the number of collisions and collision orientation. It can be seen from this equation that as the activation energy increases, the rate constant will decrease and that as the temperature increases the rate constant also increases. The table below shows how the rate constant might change with activation energy. Activation energy / kJmol-1Rate constant 40748005013136023.0700.404 The table below shows how the rate constant might change with temperature. This is based on the kinetics for the reaction: 2HI H2 + I2 Temperature /KRate constant2733.33 x 10-264732.12 x 10-106735.45 x 10-47734.99 x 10-28731.62 Taking log to base e in  ln k = ln A + ln e ln k = ln A EA/RT This can be used to find a value of the Activation Energy. A graph of y = a bx, appears as follows       The log version of the Arrhenius equation can be plotted in a similar way y = a bx  ln k = ln A EA/R (1/T) When a graph of ln k is plotted against 1/T, the slope of the line is EA/R       If k is calculated for different values of T then a plot of ln k against 1/T gives a line of gradient = - Ea/R. If k is calculated for different values of T then a plot of log k against 1/T gives a line of gradient = - Ea/2.3R. Determination of the Activation Energy for a reaction Sodium thiosulphate reacts with dilute hydrochloric acid according to the equation: S2O32-(aq) + 2H+(aq) SO2(g) + S(s) + H2O(l) The sulphur forms a suspension and the mixture becomes progressively more cloudy. The acid and the thiosulphate are mixed at a particular temperature and the time taken for the sulphur formed to obscure a mark behind the tube is noted.     The reaction is then carried out at different temperatures. Results are shown below. Temperature /oCTemperature (T) /KTime / s1/T / K-11/time / s-1 (rate)ln 1/time60333120.0030030.083333-2.484915232518.60.0030770.053763-2.9231644.5317.5280.0031500.035714-3.332240313360.0031950.027778-3.5835234.5307.5500.0032520.020000-3.9120228301740.0033220.013514-4.30407212941160.0034010.008621-4.75359 Plot a graph of ln k against 1/T. Find the gradient Use the relationship, Gradient = -EA/R to calculate the activation energy for the reaction given that R = 8.3 JK-1mol-1. Catalysts and rate In Unit 2, it was seen that catalysts work by providing an alternative path for the reaction at a lower activation energy.   The effect of this can be shown diagrammatically in a Maxwell-Boltmann distribution curve.  The effect of lowering the activation energy even by proportionally small amounts is illustrated in the table in the Arrhenius Equation section. Many catalysts alter the activation energy considerably. Entropy Exothermic and Endothermic Reactions Most chemical reactions give out heat energy as they take place, so the products have less energy (and so are more stable) than the reactants. These are exothermic reactions. When ethanoic acid is added to sodium hydrogencarbonate, a reaction takes place and the temperature decreases, so heat energy is being taken in. This is an example of an endothermic reaction in which the products have more energy (are energetically less stable) than the reactants. An endothermic reaction can be compared to a ball spontaneously rolling uphill or a pencil lying down springing upright.     What enables chemical reactions to do what is energetically unfavourable? Energy considerations by themselves are clearly not sufficient to explain why chemical reactions take place. The other factor that is important for chemical reactions is entropy. Essentially materials go to their most likely condition; the most probable situation - that is where there is the maximum freedom. The greater the freedom molecules have, the greater the entropy. As molecules become more randomly distributed their entropy increases. When molecules gain energy they gain freedom of movement and so their entropy increases. The symbol used for entropy is S. Solids have restricted movement for the molecules in them, so they have lower entropies than other states. Perfect crystals at 0 Kelvin have zero entropy. In liquids, the molecules have greater freedom of movement than solids, so liquids have higher entropies than solids. This means that dissolved substances will have higher entropies than the solid. The molecules in gases have much greater freedom of movement and so have comparatively high entropy values. Complex molecules generally have higher entropies than simple molecules as there are more ways they can arrange themselves. The table below gives entropy values of selected substances at 298K. SubstanceState Entropy /JK-1mol-1Aluminium Solid 28.3Silicon dioxideSolid 41.8Water Liquid 70.0Argon Gas 154.7Carbon dioxideGas 213.6 It can be seen from this table that the more ordered the state, the lower the value of entropy. The solids have the lowest values. Liquids have higher values and gases have still higher values. The table below gives entropy values of certain alkanes. Alkane StateEntropy /JK-1mol-1MethaneGas186.2EthaneGas229.5PropaneGas269.9ButaneGas310.1Pentane Liquid261.1 The table of alkanes shows that as the complexity of the gaseous molecules increases so do the entropy values. Pentane has a lower value than butane because it is liquid rather than gas. When a chemical reaction takes place new substances are formed. The products of a reaction will have different entropy values to the reactants, so the entropy of the system changes. The change in entropy can be found using the following equation: SSYSTEM = SPRODUCTS - SREACTANTS For spontaneous change to take place the entropy must increase. Changes that incur an increase in entropy include: Formation of gas molecules Dissolving of a solid Decomposition of a substance (as the resulting components have greater freedom of movement) Gases becoming more randomly distributed (diffusion) When magnesium burns the magnesium atoms combine with oxygen molecules to form a magnesium oxide ionic lattice. 2Mg(s) + O2(g) ( 2MgO(s) In this change a gas is converted to a solid, so the entropy in this change seems to decrease and break our rule about spontaneous change. Indeed, the entropy change is -221.5JK-1mol-1. However as the reaction takes place energy is given out and so the surrounding molecules gain energy and so gain entropy. When considering entropy in changes, it is necessary to consider what happens to the surroundings as well as the system (chemical reaction) itself. STOTAL = SSYSTEM + SSURROUNDINGS Any entropy increase in the surroundings comes from the energy which the system gives out. The increase in entropy depends upon the proportional increase in energy of particles in the surroundings. If for example the surroundings gain 20kJ of energy, the proportional increase is greater if the surroundings originally have low energy. Temperature is a measure of the energy of molecules, so the change in entropy in the surroundings is;  SSURROUNDINGS = It can be seen from this that as the temperature becomes higher, the value of SSURROUNDINGS decreases. A reaction is feasible if is STOTAL positive. This will depend upon the change in entropy of the system and the change in entropy of the surroundings. STOTAL = - H/T + SSYSTEM The table below shows the various possibilities. SSYSTEMSSURROUNDINGSComparative valuesSTOTALFeasibility of reaction+++Yes-+SSYSTEM > SSURROUNDINGS-No-+SSYSTEM < SSURROUNDINGS+Yes+-SSYSTEM > SSURROUNDINGS+Yes+-SSYSTEM < SSURROUNDINGS-No---No For the example of burning magnesium H = -1204kJmol-1 at 298K. So SSURROUNDINGS = -(-1204)/298 = +4.0403kJK-1mol-1  Using STOTAL = SSYSTEM + SSURROUNDINGS Converting +4.0403kJK-1mol-1 to +4,040.3 JK-1mol-1 STOTAL = (-221.1) + (+4,040.3) = 3,818.8 JK-1mol-1 It can now be seen that the overall entropy change is positive, showing that the reaction is feasible. Other examples Combustion of carbon C(s) + O2(g) ( CO2(g) SSURROUNDINGS = -(-393.5)/298 = +1.32047 kJK-1mol-1 (or +1,320.47 JK-1mol-1)  Using STOTAL = SSYSTEM + SSURROUNDINGS STOTAL = (+3.02) + (+1,320.47) = +1,323.49 JK-1mol-1 The positive value shows that this reaction is feasible.  Decomposition of calcium carbonate CaCO3(s) ( CaO(s) + CO2(g) SSURROUNDINGS = -(+178)/298 = -0.597 kJK-1mol-1 (or -597 JK-1mol-1) Using STOTAL = SSYSTEM + SSURROUNDINGS STOTAL = (+165) + (-597) = -432 JK-1mol-1 The negative value shows that this reaction is not feasible at room temperature. Solutions When an ionic substance is placed in water, the water molecules, being highly polar, are attracted to the ions. The oxygen in the water molecule carries a partial negative charge and is attracted to cations. The hydrogen in the water molecule carries a partial positive charge and is attracted to anions. The process of water molecules linking to ions is called hydration of ions. The water molecules are vibrating, so as they bond to the ions they shake the ions free from the lattice. The process of dissolving is shown below.   Some ionic compounds do not dissolve in water because the electrostatic attraction between the ions is too great for the water molecules to overcome. There are two key energy processes taking place as an ionic substance dissolves. The lattice has to be broken apart. This is an endothermic process. As new bonds form between the water molecules and the ions an exothermic process takes place. The energy change that takes place when a solution dissolves is a balance of these two energy changes. This is illustrated in the diagram below.            Definitions for Enthalpy Change in Solution Lattice Enthalpy, The heat energy given out (exothermic enthalpy change), when one mole of a crystal lattice is formed from separate, gaseous ions at an infinite distance apart under standard conditions.  For one mole  Enthalpy of Hydration, The heat energy given out when one mole of gaseous ions dissolve in an excess of water to form an infinitely dilute solution under standard conditions.  For one mole   Enthalpy of Solution, The solution enthalpy is a measure of the amount of heat energy change when one mole of substance is dissolved in excess water.  Lattice Enthalpy The lattice enthalpy is a measure of the strength of an ionic lattice. Some values of lattice enthalpy are given below. CompoundLattice energy/ kJmol-1NaF-923NaCl-776NaBr-742NaI-699KCl-701RbCl-675CsCl-645MgCl2-2493CaCl2-2237MgO-3933CaO-3513 It can be seen that as the size of the anion increases, the value of the lattice energy drops. This is because the sum of the radii increases (distance between the centres of charge increases), and so electrostatic attraction decreases as and the lattice enthalpy decreases a consequence. Increasing size of cation also causes a decrease in the lattice enthalpy. The higher the charge on either or both of the ions, the greater the lattice enthalpy. As the charge on the ion increases the electrostatic attraction also increases, so the lattice energy becomes greater. Hydration Enthalpy The hydration enthalpy is a measure of the attraction between an ion and water molecules. Some values of hydration enthalpy are given below. IonHydration enthalpy/ kJmol-1IonHydration enthalpy/ kJmol-1Li+-499F--457Na+-390Cl--381K+-305Br--351Mg2+-1891I--307Ca2+-1562Al3+-4613 It can be seen that as the size of the cation increases, the value of the hydration enthalpy drops. This is because the distance between the centre of ionic charge and the water molecule increases, and so electrostatic attraction decreases as and the hydration enthalpy decreases a consequence. Increasing size of anion also causes a decrease in the hydration enthalpy fro similar reasons. The higher the charge on the ion, the greater the hydration enthalpy. As the charge on the ion increases the electrostatic attraction also increases, so the hydration enthalpy becomes greater. Enthalpy of Solution The enthalpy of solution is related to the lattice and hydration enthalpies as follows: Hsoln = - Hlatt + Hhyd   Considering sodium chloride       Hsoln = - Hlatt + Hhyd Hsoln(NaCl) = - (-776) + (-390 + -381) = +5kJmol-1 It can be seen that the enthalpy of solution for sodium chloride is endothermic. To understand why the process of dissolving occurs spontaneously it is necessary to look at the entropy changes involved in the process. STOTAL = SSYSTEM + SSURROUNDINGS Although this is an endothermic reaction making SSURROUNDINGS negative, the SSYSTEM has a high positive value because the process of dissolving means that a highly ordered ionic lattice becomes a much less ordered solution of ions. The dissolving of ammonium chloride is even more endothermic with a Hsoln of +16 kJmol-1.          The values of system entropy and enthalpy of solution are shown below.  So SSURROUNDINGS = -(+16)/298 = -0.0537 kJK-1mol-1 (or -53.7 JK-1mol-1) Calculating STOTAL. STOTAL = SSYSTEM + SSURROUNDINGS STOTAL = (+278.5) + (-53.7) = +224.8 JK-1mol-1 The positive value of STOTAL allows us to predict that ammonium chloride will be soluble. Equilibrium Dynamic Equilibrium Equilibrium involves reactions which do not go to completion. These reactions are reversible. If we consider a reaction between A and B to form C and D which is reversible. When A and B are mixed, the molecules will form C and D. However, as soon as molecules of C and D are formed and collide they can also react to become A and B. Such a reaction is written; A + B  EMBED Word.Picture.8  C + D The reaction reaches a point at which the proportion of each chemical becomes constant. This is described as equilibrium.  The forward and backward reactions continue, but in balance, the same number of molecules reacting in each direction, so a dynamic equilibrium exists.  Quantitative Equilibria In this section we deal with the quantitative aspects of equilibria. Quantities of materials involved in equilibrium reactions can be expressed as a concentration in moles per dm3, or for gases as a partial pressure. In a vessel containing a mixture of gases, the partial pressure of one gas is the pressure it would exert if it occupied the vessel alone. The total pressure in a mixture of gases is the sum of all the partial pressures. It follows that: partial pressure of A = mole fraction of A total pressure For example, if one gas makes up 15% by volume of the mixture (or 15% of the molecules) its partial pressure will be 0.15 P, where P is the total pressure. The mole fraction of a gas in a mixture is the fraction of the total number of moles of gas present: mole fraction of A =  EMBED Equation.3  The sum of all the mole fractions must always be 1.0. If nitrogen and hydrogen are mixed in a 1:3 molar ratio, and together they have a partial pressure of 800 MPa, then: partial pressure of nitrogen = 800 = 200 MPa partial pressure of hydrogen = 800 = 600 MPa. Examples 2 moles of nitrogen, 3 moles of oxygen and 1mole of carbon dioxide were placed in a vessel. The total pressure was 5 atmospheres. Calculate the partial pressure of each of the gases in the mixture.  2.8g of carbon monoxide, 8.8g of carbon dioxide and 2.3g of nitrogen dioxide were placed in a vessel. The total pressure was 8atm. Calculate the partial pressure of each of the gases in the mixture.  Equilibrium expression Le Chatelier will give us an idea of the direction of change, but, where concentrations are involved, we can calculate precisely what happens. In general, for a reversible reaction between a moles of substance A, and b moles of substance B etc: a A + b B  EMBED Word.Picture.8  c C + d D when the system has come to equilibrium, the ratio given by Kc will be constant: Kc =  EMBED Equation.3  where [C] means concentration at equilibrium, normally in mol dm3 i.e. equilibrium constant = (product of products) divided by (product of reactants). The main mistakes students make over this are to forget that the right hand side of the equation goes on top, and to forget that concentrations are multiplied together, not added. Kc is called the concentration equilibrium constant. For gases, it is often more convenient to express this constant in terms of partial pressures: Kp =  EMBED Equation.3 where  EMBED Equation.3  is the partial pressure of C at equilibrium Kp is called the pressure equilibrium constant. Note that the both types of equilibrium constant will have units, unless (c + d) = (a + b). They therefore normally have different numerical values, for the same position of equilibrium. The equilibrium constant is only affected by temperature: it does not change if concentrations or pressures are varied, nor in the presence of catalysts. The position of equilibrium, however, is normally affected by changes in concentration. A large value for Kc or Kp usually means there is a high concentration of products (on top in the equations) at equilibrium , and so the theoretical yield is high. Conversely, a small value for Kc or Kp usually means there is a very low theoretical yield possible, when the reaction has come to equilibrium. Units of the Equilibrium constant. The units of the equilibrium constant depend upon the equilibrium expression and must be calculated by substituting in the units of concentration or pressure and cancelling down. Examples Write Kc expressions for the following and give the units 2Fe3+(aq) + 2I-(aq)  EMBED Word.Picture.8  2Fe2+(aq) + I2(aq)  NH3(aq) + H2O(l)  EMBED Word.Picture.8  NH4(aq) + OH-(aq)   Cu2+(aq) + 4NH3(aq)  EMBED Word.Picture.8  Cu(NH3)42+(aq)  CH3CO2H(aq) + C2H5OH(aq)  EMBED Word.Picture.8  CH3CO2C2H5(aq) + H2O(l)   Write Kp values for the following and give units (based on pressure given in atm) N2(g) + 3H2(g)  EMBED Word.Picture.8  2NH3(g)  2SO2(g) + O2(g)  EMBED Word.Picture.8  2SO3(g)  When a reaction contains materials which are all gases or aqueous solutions, the equilibrium is said to be homogeneous. If a reaction contains solid or liquid components, the equilibrium is said to be heterogeneous, and the expressions do not include these components.  CaCO3(s)  EMBED Word.Picture.8  CaO(s) + CO2(g) 3Fe(s) + 4H2O(g)  EMBED Word.Picture.8  Fe3O4(s) + 4H2(g)  PbCl2(s)  EMBED Word.Picture.8  Pb2+(aq) + 2Cl-(aq) Equilibrium Calculations. We will normally find values for Kc and Kp from experimental data. Example 1: Calculate Kc for the esterification of ethanoic acid by ethanol given that for a 1dm3 of this homogeneous liquid equilibrium the amounts present are as shown below. CH3CO2H + C2H5OH  EMBED Word.Picture.8  CH3CO2C2H5 + H2O Equilibrium amount/mol 0.0255 0.0245 0.05840.0457 Kc = [CH3CO2C2H5] [H2O] / [CH3CO2H] [C2H5OH] Kc = 0.0584 x 0.0437/ 0.0255 x 0.0245 = 4.1 (no units for esterification reaction) Example 2; In the reaction given below, 0.1 mol of A is mixed with 0.3 mol of B, dissolved in 0.5 dm3 of water, and allowed to come to equilibrium, when the amount of D is found to be 0.06 mol. Find the equilibrium constant, Kc. A + 2 B  EMBED Word.Picture.8  C + 3 D At start: 0.1 0.3 0 0 At equilibrium, we know: 0.06 therefore: 0.1-0.02 0.3-0.04 0.02 (since 1 A ( 3 D, 0.02 A ( 0.06 D; 0.04 B ( 0.06 D , and 0.02C is formed). Kc =  EMBED Equation.3  =  EMBED Equation.3  =  EMBED Equation.3  = 1.60103 mol dm3 Note that the number of moles is divided by the total volume (0.5) to obtain the concentration. Example 2: If at 55oC the partial pressure of nitrogen dioxide in an equilibrium mixture is 0.67atm and the partial pressure of dinitrogen tetraoxide in the mixture is 0.33atm what is the value of Kp for the reaction at this temperature? N2O4(g)  EMBED Word.Picture.8  2NO2(g) Kp = p2NO2(g)/ pN2O4(g) Kp = 0.67atm2/0.33atm Kp = 1.36atm Example 3: In the dissociation of phosphorus pentachloride, at 180C and 2.00 atm pressure, the phosphorus pentachloride is found to be 40% dissociated. Find Kp. Consider 1 mole of reactant. PCl5(g)  EMBED Word.Picture.8  PCl3(g) + Cl2(g) At start 1.00 0.00 0.00 At equilibrium 0.60 0.40 0.40 total 1.40 mol mole fractions  EMBED Equation.3   EMBED Equation.3  EMBED Equation.3   EMBED Equation.3  partial pressures  EMBED Equation.3 2  EMBED Equation.3 2  EMBED Equation.3 2 0.857atm 0.571atm 0.571atm Kp =  EMBED Equation.3  =  EMBED Equation.3  = 0.380 atm The effect of temperature on Kc and Kp. Kc, Kp and the position of equilibrium are affected by temperature in endothermic and exothermic equilibria. The effects are the same as predicted by Le Chateliers principle. Exothermic reactions: Temperature rise:- position of equilibrium moves to left, Kp and Kc become smaller. Temperature fall:- position of equilibrium moves to right, Kp and Kc become bigger Endothermic reactions: Temperature rise:- position of equilibrium moves to right, Kp and Kc become bigger. Temperature fall:- position of equilibrium moves to left, Kp and Kc become smaller. Equilibrium and Entropy Equilibrium is linked to entropy. For a reaction to be feasible the total entropy change (the sum of change in system entropy and change in surroundings entropy) must be positive. The higher the positive total entropy change, the further an equilibrium is driven in that direction and the greater the equilibrium constant. The link is given by the following equation: S = R ln K Here S is the change in total entropy, ie STOTAL The equation for determining total entropy is STOTAL = SSURROUNDINGS + SSYSTEM Since SSURROUNDINGS = - H/T Then STOTAL = - H/T + SSYSTEM This equation shows us that as the temperature increases the value of - H/T or SSURROUNDINGS decreases, so the effect is less pronounced on STOTAL. In the entropy section, one example looked at was the decomposition of calcium carbonate. Decomposition of calcium carbonate CaCO3(s) ( CaO(s) + CO2(g) SSURROUNDINGS = -(+178)/298 = -0.597 kJK-1mol-1 (or -597 JK-1mol-1) Using STOTAL = SSYSTEM + SSURROUNDINGS STOTAL = (+165) + (-597) = -432 JK-1mol-1 If this calculation is repeated for a temperature of 1000oC, the effect of the reduced SSURROUNDINGS can be seen. SSURROUNDINGS = -(+178)/1273 = -0.140 kJK-1mol-1 (or -140 JK-1mol-1) Using STOTAL = SSYSTEM + SSURROUNDINGS STOTAL = (+165) + (-140) = +25 JK-1mol-1 The value of is now positive, showing that the reaction is now feasible. In general raising the temperature of an endothermic reaction makes it more likely to take place and drives an equilibrium to the right. Application of Rates and Equilibria Factors effecting equilibrium constants The effect of various factors (such as temperature and use of a catalyst) on the position of equilibrium can be found in unit 2. Temperature In Unit 2 it was seen that by Le Chateliers principle, increasing the temperature of a reaction causes a shift towards the endothermic reaction. Decreasing the temperature of a reaction causes a shift towards the exothermic reaction. The explanation for this was seen in the Entropy topic by considering entropy factors in equilibrium reactions. If the forward reaction is exothermic, an increase in temperature favours the reverse reaction, reducing the quantity of product and increasing the quantity of reactant, so the equilibrium constant is reduced. If the forward reaction is endothermic, an increase in temperature favours the forward reaction, reducing the quantity of reactant and increasing the quantity of product, so the equilibrium constant is increased. An increase in temperature always produces an increase in rate. The equilibrium can shift because the proportional increase in rate of the forward and backward reactions will depend upon whether they are endothermic or exothermic. Pressure In Unit 2 it was seen that by Le Chateliers principle, increasing the pressure of a gaseous reaction causes a shift towards the side with fewer molecules. Decreasing the pressure of a gaseous reaction causes a shift towards the side with the larger number of molecules. The effect of changing pressure on the equilibrium constant can be seen using a hypothetical example: A  EMBED Word.Picture.8  D + E If A is 20% dissociated at pressure of 1 atm, the value of Kp can be found. ADEMoles - start100Moles - equilibrium0.80.20.2Partial pressure0.8 / 1.2 x1 = 0.67atm 0.2 / 1.2 x1 = 0.17 atm0.2 / 1.2 x1 = 0.17 atm Kp = PB x PD / PA = 0.17 x 0.17 / 0.67 = 0.0417 atm If the pressure is raised the equilibrium would shift to the left. What will this do to the equilibrium constant? At a pressure of 2 atm the equilibrium shifts to the left so that A is only 14.3% dissociated. ADEMoles - start100Moles - equilibrium0.8570.1430.143Partial pressure0. 857 / 1.143 x 2 = 1.5 atm 0.143/ 1.143 x 2 = 0.25 atm0.143/ 1.143 x 2 = 0.25 atm Kp = PB x PD / PA = 0.25 x 0.25 / 1.5 = 0.0417 atm It can be seen that although the equilibrium has shifted to the left, the equilibrium constant is unchanged. When pressure is increased the molecules are pushed closer together, so effectively the concentration increases. This generally produces an increase in the rate of a reaction. Catalyst The presence of a catalyst increases the rate of a reaction of both forward and backward reactions in proportion. This means that the use of a catalyst does not shift an equilibrium in any particular direction and does not change an equilibrium constant. The table below gives a summary of the effect of changing various conditions on equilibrium. Change in conditionReactionEffect onEquilibrium positionEquilibrium constantTemperature increaseExothermicShifts to leftDecreasesTemperature decreaseExothermicShifts to rightIncreasesTemperature increaseEndothermicShifts to rightIncreasesTemperature decreaseEndothermicShifts to leftDecreasesPressure increaseMolecules on LHS > Molecules on RHSShifts to rightNo changePressure decreaseMolecules on LHS > Molecules on RHSShifts to leftNo changePressure increaseMolecules on LHS < Molecules on RHSShifts to leftNo changePressure decreaseMolecules on LHS < Molecules on RHSShifts to rightNo changeCatalyst addedNo changeNo change Industrial Processes Information on entropy change, enthalpy change and equilibrium constants can be used to select conditions for industrial processes. The reaction between nitrogen and hydrogen to produce ammonia is a reversible reaction. N2 + 3H2  EMBED Word.Picture.8  2NH3 If nitrogen and hydrogen are mixed and heated virtually no ammonia is produced. Since the value of STOTAL is positive it is clear that the reaction is feasible, so the choice of conditions is key to the production of ammonia in this reaction. It is an exothermic reaction, so a low temperature favours the formation of ammonia. There are two molecules of gas on the right hand side and four on the left, so a high pressure favours the formation of ammonia. The problem in the production of ammonia is that at the low temperature required for a good equilibrium position, the rate of reaction is so slow as to be non-existent. A high pressure increases the concentration of the gases, and so increases the rate. The problem with creating a pressure is that it is very expensive in terms of building the plant and in terms of maintenance. Haber devised conditions whereby ammonia could be produced economically. TEMPERATURE High temperature favours good rate Low temperature favours equilibrium PRESSURE High pressure favours good rate and good equilibrium Low pressure is cheaper TYPICAL CONDITIONS Pressure 250 Atm Temperature 450oC Catalyst Iron Under these conditions ammonia can be produced economically. The use of a catalyst means that a good rate can be produced at a moderate temperature which allows about 10 - 15 % ammonia to be produced. Although 10% is not a particularly good yield, the unused gases are recycled, so there is no waste, and a rapid reaction means that good quantities of ammonia are produced. In this process as in other industrial processes, the system never actually attains equilibrium. This is because it is more economical to remove the reaction mixture from the reaction vessel when a certain amount of product has formed, separate out the product and recycle to reactants. Choice of catalyst is very important for the chemical industry. The iron catalyst for the Haber process becomes more effective when small quantities of other materials called promoters are mixed with the iron. The table below shows the effect of promoters on the iron catalyst in the Haber process at a temperature of 400oC and a pressure of 200 atm. CatalystPromoter % ammonia in exit gasesIron None3 5 IronK2O8 9IronK2O + Al2O313 14  A more effective catalyst means that lower temperatures can be used to achieve the same rate, with the result that the equilibrium yield can be increased. Alternatively a lower pressure could be used so making the process less expensive and safer. The chemical industry takes various steps to make reactions more efficient, so saving resources and preventing wastage, thereby making them more sustainable. For example in the Haber process, with an exothermic reaction, the gases emerging form the reactor are cooled. Incoming gases can be used to do this, which saves energy as these gases do not need to be heated using fossil fuels. The Haber process has been used as an example of how conditions can be selected to control the reaction and how the process can be made more efficient. These are applicable to the whole chemical industry. In general the chemical industry chooses conditions for a process which makes that process safe and economically effective. Another way in which the creation of a product can be made more efficient is to choose an alternative reaction with improved atom economy. Acid Base Equilibria Introduction Acids occur in natural systems. Citric acid is produced by a number of plants in their fruit. Early investigations of acids found them to have a sour taste. In the nineteenth century a Swedish chemistry by the name of Arrhenius suggested that acid were substances that dissolved in water forming hydrogen ions, H+. For example in hydrochloric acid, the dissolved hydrogen chloride undergoes the following reaction: HCl ( H+ + Cl- Arrhenius also proposed that strong acid were fully dissociated into ions, but that weak acids were only partially dissociated. As knowledge of atomic structure grew, it was understood that a hydrogen ions was simply a proton, and that it was unlikely that protons would exist independently in solution. Consequently it was proposed that the hydrogen ions join with water molecules in solution to form the hydroxonium ion, H3O+. So the reaction taking place when hydrogen chloride dissolves should be written: HCl + H2O ( H3O+ + Cl- This idea was taken further in the Bronstead Lowry theory of acids. The Bronstead-Lowry Theory When hydrogen bromide is dissolved in water, it forms an acid as the following reaction takes place: HBr + H2O  EMBED Word.Picture.8  H3O+ + Br- In this reaction the hydrogen bromide transfers a proton to a water molecule. The Bronstead-Lowry theory uses this idea to form a more general theory of acids. According to Bronstead-Lowry; An acid is a proton donor and A base is a proton acceptor. So in the reaction between hydrogen bromide and water the HBr donates a proton to the water, so the HBr is the acid and the water is acting as a base. Examples; HNO3 + H2O  EMBED Word.Picture.8  H3O+ + NO3- HCN + H2O  EMBED Word.Picture.8  H3O+ + CN- CH3CO2H + H2O  EMBED Word.Picture.8  H3O+ + CH3CO2- NH3 + H2O  EMBED Word.Picture.8  NH4+ + OH- CO32- + H2O  EMBED Word.Picture.8  HCO3- + OH- These reactions can be regarded as equilibrium. In the reverse reaction the proton moves back in the other direction, so the right hand side of the equation also has a proton donor and a proton acceptor (or acid and base). The proton donor and proton acceptor on the right hand side of the equation are called the conjugate acid and conjugate base. So HBr + H2O  EMBED Word.Picture.8  H3O+ + Br- ACID BASE CONJ CONJ ACID BASE Examples ACID BASE  EMBED Word.Picture.8  Conjugate Conjugate ACID BASE CH3CO2H + H2O  EMBED Word.Picture.8  H3O+ + CH3CO2- H2O + NH3  EMBED Word.Picture.8  NH4+ + OH- H2O + CO32-  EMBED Word.Picture.8  HCO3- + OH- The pH concept Since it is the hydroxonium ion, H3O+, that causes a material to be acidic, the higher the concentration of this ion, the greater the acidity. The concentration of this ion is measured on the pH scale. This is a log scale defined as follows; pH = -log[H+] For a strong acid, it is assumed that all the molecules form H+ ions. Find the pH of 0.1 mol dm-3 HCl -log 0.1 = 1 0.01 mol dm-3 HNO3 -log 0.01 = 2 0.2 mol dm-3 HCl -log 0.2 = 0.7 0.001 mol dm-3 HI -log 0.001 = 3 Note For strong acids a 10 fold ditultion (0.1 mol dm-3 to 0.01 mol dm-3) results in a pH change of 1 unit. Some acids, such as sulphuric are dibasic; this means they can release two hydrogen ions from each molecule. So a 1 mol dm-3 solution of H2SO4 actually has a hydrogen ion concentration of 2 mol dm-3. Find the pH of 0.1 mol dm-3 H2SO4 [H+] = 0.2 mol dm-3 pH = -log 0.2 = 0.7 0.01 mol dm-3 H2SO4 [H+] = 0.02 mol dm-3 pH = -log 0.02 = 1.7 Note Once again a 10 fold ditultion (0.2 mol dm-3 to 0.02 mol dm-3) results in a pH change of 1 unit. Sulphuric acid is therefore a strong acid) As a log scale the pH changes by one unit each time the concentration changes by 10 times. Concentration of H3O+ in moldm-3pH101x10-111x10-221x10-331x10-441x10-551x10-661x10-771x10-881x10-991x10-10101x10-11111x10-12121x10-13131x10-1414 The dissociation constant (ionic product) Kw, for water. Water molecules dissociate H2O + H2O  EMBED Word.Picture.8  H3O+ + OH- and the concentration of H3O+ ions at 25oC is 1 x 10-7 mol dm-3, that is pH 7, and this is taken as neutral. This equilibrium exists in any solution in water. If the material is an acid and increases the H3O+ concentration, the concentration of OH- decreases correspondingly, so that when the H3O+ concentration is multiplied by the OH- concentration the same value is always obtained. In water the concentration of H3O+ and OH- are both 1 x 10-7 mol dm-3. So when the two are multiplied 1 x 10-7 x 1 x 10-7 = 1 x 10-14 mol2 dm-6 This value is always the same for any solution in water. It is called the water dissociation constant, Kw. Kw allows us to find the concentration of H3O+ in alkalis and consequently to calculate their pH. Kw = [H3O+] x [OH-] = 1 x 10-14 mol2 dm-6   And [H3O+] = So for sodium hydroxide solution of concentration 0.01moldm-3   [H3O+] = = 1 x 10-12 pH = -log(1 x 10-12) = 12 Examples For potassium hydroxide solution of concentration 0.2 mol dm-3.  [H3O+] = = 5 x 10-14 pH = -log 5 x 10-14 = 13.3 For sodium hydroxide solution of concentration 0.05 mol dm-3.  [H3O+] = = 2 x 10-13 pH = -log 2 x 10-13 = 12.7 Strong and weak acids and bases The acidity of a solution is measured using the pH scale. If the same concentration of hydrochloric acid and ethanoic acid were taken, they would not have the same pH value. This is because the hydrochloric acid dissociates (splits up) completely into H3O+ and Cl- ions, whereas only a small fraction of ethanoic acid molecules dissociate. When an acid is fully or near fully dissociated, it is said to be a strong acid, but one which is only slightly dissociated is said to be a weak acid. This should not be confused with concentration of the acid. The same idea applies to bases. A strong base is one in which the particles dissociate completely to form hydroxide ions. SolutionConcentration of solution / moldm-3Concentration of H3O+ / moldm-3pHHydrochloric acid0.10.11Ethanoic acid0.10.00132.9Hydrofluoric acid0.10.0241.6Hydrocyanic acid0.10.000024.7 Enthalpy of Neutralisation When an acid is added to an alkali, there is a temperature change. This is due to the energy produced from the reaction; H+ + OH- ( H2O the enthalpy for this reaction is -57.3kJ mol-1. So whenever a strong acid and a strong base are added together this is the enthalpy change for the reaction. With a weak acid or base the enthalpy change for the reaction is less exothermic than this, as some energy is used in dissociating the acid. Standard Molar Enthalpy of Neutralisation (DHn) is the enthalpy change per mole of water formed in the neutralisation of an acid by an alkali, (298K and 1 atm). Examples Reaction Enthalpy change /kJmol-1 Nitric acid + sodium hydroxide -57.3 Hydrochloric acid + ammonia -52.2 Energy used to dissociate NH3 Ethanoic acid + sodium hydroxide -55.2 Energy used to dissociate CH3CO2H Hydrocyanic acid + ammonia -5.4 Energy used to dissociate HCN and NH3 Acid dissociation constant Ka We have seen that a strong acid, such as hydrochloric, is one which is fully dissociated. The greater the dissociation, the stronger the acid. The amount of dissociation, and therefore an indication of the strength of an acid, is measured using the dissociation constant. The dissociation of an acid is an equilibrium process, and the dissociation constant is derived from the equilibrium constant. The equilibrium expression for the dissociation of acid, HA, is: HA + H2O  EMBED Word.Picture.8  H3O+ + A-  The equilibrium constant is  Kc = In a dilute solution the concentration of the water is not going to change significantly during the dissociation process, and so for these reactions it can be taken as constant. So;  This new constant is the acid dissociation constant, Ka Ka =  EMBED Equation.3  The lower of the acid dissociation constant, Ka, the weaker the acid. This equation can then be used to find the pH of a weak acid. Calculating the pH of a weak acid The acid dissociation expression can be rearranged: Ka [HA] = [H3O+] [A-] Since every molecule of HA gives one A- ion and one H3O+ ion, there must be equal numbers of the two ions in any solution, and so [H3O+] is equal to [ A]. Since [H3O+] = [A-], then Ka [HA] = [H3O+]2 So [H3O+] =  EMBED Equation.3  From the [H3O+] the pH can be found;  pH = -log [H3O+] = - log Ka [HA] All these calculations assume that; because it is a weak acid and only partially dissociated, that the [HA] does not change significantly on dissociation. There are no extra H3O+ ions produced from the water in the acid. Examples Find the pH of the following solutions of ethanoic acid. Ethanoic acid has a Ka value of 1.75 x 10-5 mol dm-3 1 mol dm-3 [H3O+] = 1 x 1.75 x 10-5 = 4.18 x 10-3 moldm-3 pH = - log 4.18 x 10-3 = 2.38 2 mol dm-3 [H3O+] = 2 x 1.75 x 10-5 = 5.92 x 10-3 moldm-3 pH = - log 5.92 x 10-3 = 2.23 0.1 mol dm-3 [H3O+] = 0.1 x 1.75 x 10-5 = 1.32 x 10-3 moldm-3 pH = - log 1.32x 10-3 = 2.88 0.2 mol dm-3 [H3O+] = 0.2 x 1.75 x 10-5 = 1.87x 10-3 moldm-3 pH = - log 1.87 x 10-3 = 2.73 It is possible to find the Ka value of an acid by finding the pH of a solution of known concentration. Example Nitrous acid of concentration 0.1 mol dm-3 has a pH of 2.17. Calculate its Ka value. [H3O+] = 10-2.17 = 6.76 x10-3 moldm-3   Bromic(I) acid of concentration 1.0 moldm-3 has a pH of 4.35. Calculate its Ka value. [H3O+] = 10-4.35 = 4.47 x10-5 moldm-3   Hydrofluoric acid of concentration 0.2 moldm-3 has a pH of 1.97. Calculate its Ka value. [H3O+] = 10-1.97 = 0.0107 moldm-3   Dilution of Strong and Weak Acids Since strong acid are fully dissociated, as they are diluted, the hydrogen ions concentration falls in line with the dilution factor. For each dilution of 10x, the pH increases by 1 unit. Weak acids are in equilibrium however, and so as they are diluted, some of the undissociated acid molecules split up, so the pH does not increase as fast as it does with the strong acid. For each dilution of 10x, the pH increases by 0.5 unit, and for each dilution of 100x, the pH increases by 1 unit. The table below shows how pH changes as an acid is diluted. Dilution factorConcentration of acid /moldm-3pH of strong acid (monobasic)pH of weak acid (monobasic)00.112.8810x0.0123.38100x0.00133.881000x0.000144.38 pKa and pKw values Ka and Kw quantities are normally very small inconvenient numbers. e.g. Ka for ethanoic acid is about 10-5 mol dm-3 and Kw is about 10-14 mol2dm-6. pKa and pKw give more convenient numbers in the same way that pH values are easier than hydrogen ion concentrations. pKa = -logKa pKw = -logKw Examples - Find pKa values for; Ethanoic acid pKa = -log 1.75 x 10-5 = 4.76 Nitrous acid pKa = -log4.57 x 10-4 = 3.34 Bromic(I) acid pKa = -log 2.00 x 10-9 = 8.70 The value of pKw at room temperature is 14. Notice that the smaller the pKa value, the larger the Ka value and the stronger the acid Acid-base titrations An acid/base titration is a procedure used in quantitative chemical analysis, in order to determine the concentration of either an acid or a base. Generally, an alkaline solution of unknown concentration, and of known volume, is added to a conical flask, by means of a 25.0 cm3 pipette. An acid of known concentration is then added to the conical flask using a burette, until the equivalence point is reached, i.e. when the stoichiometric amount of acid has been added to the base, this is when all the alkali has been neutralised and there is no excess acid or alkali present in the solution, this is called the equivalence point. Normally, a visual indicator is used in order to help determine the equivalence point by noticing the exact point at which the colour of the solution changes.The point when the colour changes is the end point of the titration. If the indicator is chosen correctly the end point and the equivalence point are the same. A pH meter, or conductimetric method, can also be used to determine the equivalence point in an acid/base titration. pH curves for titrations The characteristic shapes of these curves for the various strong/weak acid/base combinations are shown below, for 10 cm3 of 0.10 mol dm3 acid against 0.10 mol dm3 base.           On the left, for HCl/NaOH, the pH starts at 1, and the curve is almost horizontal up to the endpoint. Then it rises sharply (end-point = middle of vertical section = about 7) and quickly flattens out again, heading towards pH=13. Of the two most common indicators, methyl orange changes colour from about 3.5-5.0 (vertical line to left) and phenolphthalein from about 8.5-10: either is suitable as it changes completely over the vertical section around 10 cm3. On the right, for CH3COOH/NaOH, the curve starts higher at 2.9 since the acid is weak, then over the buffer region it rises slowly. The end-point is around pH=8.5,then the latter part of the curve is similar to the first one. Only phenolphthalein is suitable to detect the endpoint: methyl orange would change very slowly over the buffer region.          On the left, strong acid against weak base can be titrated using methyl orange. While, on the right the weak acid and base give no sharp endpoint and there is no suitable indicator. Summary: using a weak base, like ammonia, phenolphthalein is unsuitable because it doesnt start to change until after the endpoint. using a weak acid, like ethanoic acid, methyl orange is unsuitable because it changes steadily, and change is complete before the endpoint. Determining pKa and Ka from titration curves When a weak acid is titrated with a strong base, the following curve is obtained.       pKa = pH at half neutralization Ka = antilog - pKa e.g. For ethanoic acid pH at half neutralization is 4.8. Ka = antilog -pH = antilog -4.8 = 1.58 x 10-5 mol dm-3 Choice of indicator from pKIn values Sodium ethanoate is the salt formed from ethanoic acid a weak acid, and sodium hydroxide a strong base. When it is placed in water it splits up completely into ions. Some water molecules also are dissociated, so the solution contains Na+, CH3CO2-, H+ and OH-. Ethanoate ions and hydrogen ions tend to join to form undissociated ethanoic acid, leaving an excess of hydroxide ions.     This means that a solution of sodium ethanoate isin fact alkaline. This is the case for any salt made from a weak acid and a strong base. In the same way a salt made from a strong acid and a weak base is acidic in solution. This means that at the point of neutralisation the pH is not 7. When carrying out titrations using weak acid and strong base an appropriate indicator must be selected. TitrationIndicatorStrong acid + strong alkaliBromothymol blue Weak acid + strong alkaliPhenolphthaleinStrong acid + weak alkaliMethyl orange In a titration, when the moles of acid and moles of alkali are exactly the same, it is said to be at the equivalence point. The point at which the indicator changes colour is the end point. It is clearly important that for a particular titration the end point should be the same as the equivalence point. An indicator is in fact a weak acid, HIn. Like other weak acids, it dissociates, so it forms H+ and In- ions. The HIn will be one colour and the In- will be a different colour. HIn  EMBED Word.Picture.8  H+ + In- Colour 1 Colour 2 In an acid solution, the high concentration of H+ will cause the equilibrium to move to the left, and so it will be colour 1. When in alkali solution, the H+ will be removed and the equilibrium will shift to the right and become colour 2. When the amount of Hin and are exactly balanced the colour will be in between the two colours. One drop of acid or alkali, and the equivalence point should be able to change the colour of the indicator. The end point for a particular indicator can be found. As a weak acid, the Ka, or KIn expression can be written  KIn = At the end point, [In-] = [HIn], so [In-] / [HIn] = 1 And [H+] = KIn -log [H+] = -log KIn pH = pKIn So the end point for any indicator takes place at a pH equal to its PkIn value. To choose an indicator the pKIn value must be in the right pH range for the titration being done. e.g. methyl orange pKIn = 5.1 for pH range 4.2 - 6.3 (pKIn + or - one pH unit) Strong acid and strong base - any indicator. Strong acid and weak base - low pH range 3.1- 4.4 e.g. methyl orange. Weak acid and strong base - high pH range 8.3 - 10.0 e.g. phenolphthalein. Weak acid and weak base - narrow pH range, very hard choice. In each case pKIn must be matched to pH at equivalence point of titration. End point = mid way between 2 colours of indicator (a property of the indicator). Equivalence point = when the stoichiometric amounts of acid and alkali have been added. End point and equivalence point must coincide for an effective titration. Colours: Phenolphthalein: colourless from 1 to 8.5, turns pink from 8.5 to 10, remains pink above 10. Methyl orange: red from 1 to 3.5, then changes from red through orange to yellow between 3.5 and 5.0; yellow from 5.0 to 14. Buffer Solutions A buffer solution contains a weak acid or weak base and one of its salts. It resists dramatic changes in pH if small quantities of acid or alkali is added to it. Examples; (i) a weak acid with its sodium salt (or similar) e.g. ethanoic acid and sodium ethanoate, giving high concentrations of CH3COOH molecules and CH3COO ions. (ii) a weak base with one of its salts e.g. ammonia and ammonium chloride, giving high concentrations of NH3 molecules and NH4+ ions. Considering the dissociation of ethanoic acid, in the buffer we have deliberately made the concentrations of CH3COOH molecules and CH3COO ions large, and this determines the concentration of H+ ions, and so the pH. CH3COOH  EMBED Word.Picture.8  H+ + CH3COO When a little additional strong acid is added, most of the H+ ions react with some of the ethanoate to form ethanoic acid: H+ + CH3COO ( CH3COOH Therefore the concentration of H+ in the solution only rises slightly, and there is a very small drop in pH. Although the [CH3COO] decreases, it only does so by a small amount compared to the size of the reservoir of CH3COO in the buffer, so the pH remains relatively constant. Conversely, if some alkali is added, most of the OH ions react with CH3COOH molecules: OH + CH3COOH ( H2O + CH3COO This time the H+ doesnt fall by nearly as much as expected, and the pH remains relatively constant. Although the [CH3COO] increases, it only does so by a small amount compared to the size of the reservoir of CH3COO in the buffer. In the NH3/NH4Cl buffer, the NH3 reacts with H+, and the ammonium ions react with OH: H+ + NH3 ( NH4+ OH + NH4+ ( H2O + NH3 Buffered solutions do change in pH upon addition of H+ or OH- ions. However, the change is much less than that would occur if no buffer were present. Calculating the pH of a buffer solution (i) What is the pH of a buffer solution containing 0.500 mol dm3 sodium ethanoate and 0.800 mol dm3 ethanoic acid (Ka = 1.74 105 mol dm3)? In a buffer made up from a mixture of HA and NaA, it is a very good approximation that all of the acid HA will be undissociated, and all the A will come from the salt: [HA] = conc. of acid; [A] = conc. of salt Then: Ka =  EMBED Equation.3  =  EMBED Equation.3  = 1.74 105 mol dm3 from which [H+] = 2.78 105 mol dm3, and pH = 4.56 In the alternative method, the Henderson-Hasselbach equation is derived as follows from the dissociation constant expression for the weak acid used in the buffer (representing the acid as HA): Ka =  EMBED Equation.3  Taking logs gives log Ka = log[H+] + log  EMBED Equation.3  and so log Ka = log[H+] log  EMBED Equation.3  or pKa = pH log  EMBED Equation.3  from which pH = pKa + log  EMBED Equation.3  Since the acid is weak it is present almost entirely in the form of molecules, and virtually all the A comes from the salt present; so, to a good approximation, [A] is the same as the concentration of the salt and [HA] is the same as the concentration of the acid, giving pH = pKa + log  EMBED Equation.3  from which it is clear that if the concentration of salt is equal to the concentration of acid, the pH of the buffer is equal to pKa for the acid. Examples using pKa: (ii) What is the pH of the solution obtained when 41g of sodium ethanoate is dissolved in 1dm3 of 0.800 mol dm3 ethanoic acid (pKa = 4.76)? Molar mass of CH3COONa = 82 g mol1 Amount of CH3COONa in 41g =  EMBED Equation.3 = 0.500 mol; conc. = 0.500 mol dm3 pH = pKa + log  EMBED Equation.3  = 4.76 + log EMBED Equation.3 = 4.56 (ii) What is the pH of the buffer solution obtained when 100 cm3 of 0.100mol dm3 ethanoic acid is mixed with 20cm3 of 0.300 mol dm3 sodium ethanoate solution? Amount of ethanoic acid =  EMBED Equation.3  0.100 = 0.0100 mol Amount of sodium ethanoate =  EMBED Equation.3  0.300 = 0.0060 mol pH = pKa + log  EMBED Equation.3 = 4.76 + log EMBED Equation.3  = 4.54 Buffering Biological Systems In order to work effectively blood needs to be at a pH of 7.4. This pH is maintained by a number of buffering systems including plasma, proteins, haemoglobin and carbonate/hydrogencarbonate conjugate acid-base pairs. The proteins are able to act as buffers because of the amine and carboxylic acid side chains of the amino acids composing them. The carbonate/hydrogencarbonate conjugate acid-base pairs buffer the blood by the equilibrium: H2CO3(aq)  EMBED Word.Picture.8  HCO3-(aq) + H+(aq) If the pH of the blood drops, as H+ increases, this equilibrium shifts to the left reducing the H+ again and consequently raising the blood pH. On its own this equilibrium would be of limited value as the increasing level of H2CO3 would mean that the movement to the left would stop, but there is a second equilibrium involving the H2CO3: H2CO3(aq)  EMBED Word.Picture.8  CO2(aq) + H2O(l) At the level of H2CO3 increases it produces carbon dioxide which is then removed by gas exchange in the lungs. If the pH of the blood increases, as H+ decreases, the H2CO3(aq)/HCO3-(aq) equilibrium shifts to the right increasing the H+ again and consequently lowering the blood pH. Chirality, Carbonyls and Carboxylic Acids Questions on this unit may include material from UNIT 2 see syllabus Isomerism Structural isomerism. Structural isomerism was dealt with in UNIT 2. All isomers are compounds with the same molecular formula. e.g. C4H10 or C2H6O. Structural isomers have atoms arranged in different orders. They have similar bpt's. e.g. CH3CH2CH2CH3 (butane) and CH3CH(CH3)CH3 (2-methylpropane) CH3CH2OH (ethanol) and CH3OCH3 (methoxymethane) Stereoisomerism. Stereoisomers have the same molecular formula and the same structural formula. The same atoms are arranged in the same order but with different orientations in space. Geometric, cis-trans, or E-Z isomerism - also dealt with in UNIT 2 - is one form of stereoisomerism. Another form is optical isomerism. Chirality Chirality leads to optical isomerism. Optical isomerism occurs when two compounds have the same molecular formula, but are not superimposable on each other. If a compound contains a carbon atom bonded to four different groups or atoms, it can exist in two forms which are mirror images of each other.  Example CH3CH(OH)CO2H CH3CH(OH)CO2H The two isomers affect polarised light by rotating the plane of polarisation of plane polarised monochromatic light in opposite directions; this is where the term "optical" comes from. Optical isomers differ only in the extent to which they rotate the plane of polarised monochromatic light. Optical isomers exist in two forms called enantiomers.The dextrorotatory (+) form rotates light to the right (clockwise) but the laevorotatory (-) rotates light to the left. A sample of an optically active substance may contain both optically active isomers. An equimolar mixture does not rotate light at all as equal and opposite rotations cancel. This optically inactive mixture is called the racemic mixture or racemate. The carbon atom with four different groups around it (the chiral centre) is said to be assymetric. The two mirror image molecules are said to be chiral. Carbonyl Compounds Introduction Carbonyl compounds contain the C=O group. When this group occurs at the end of a carbon chain, the compound is an aldehyde (RCHO), the name ending in al. When group occurs within the carbon chain, the compound is a ketone (RCOR1), the name ending in one.      The carbonyl group in polar because of the electronegative oxygen atom. The geometry around the carbonyl group is planar, with bond angles of about 120o. Physical Properties Carbonyl compounds are much more volatile than the corresponding alcohol because, unlike alcohols, they do not have any hydrogen bonding. They are less volatile than an alkane of similar formula mass because of the polarity of the molecules. CompoundFormulaFormula massBoiling point /oCPropane C3H844-42Ethanal CH3CHO4420Ethanol C2H5OH4678 Although carbonyl compounds do not have a hydrogen which is directly connected to the oxygen, and therefore they have no hydrogen bonding, when placed in water the oxygen in the carbonyl is able to form a hydrogen bond with the hydrogen in the water molecules. This makes the carbonyl compounds, especially those with short carbon chains, very soluble in Water. Chemical Properties Aldehydes and ketones are both attacked by nucleophiles, and can both be reduced to alcohols. However, only aldehydes can be readily oxidised, and this is the basis for tests to distinguish between them. Aldehydes and ketones are obtained by oxidation of primary and secondary alcohols, respectively. The test for a carbonyl group. All carbonyl compounds react with 2,4-dinitrophenylhydrazine (Brady's reagent). When a solution of 2,4-dinitrophenylhydrazine is added to a carbonyl, a reaction takes place at room temperature producing orange crystals. This is used as the test for the presence of the carbonyl group. Ethanal and 2,4-dinitrophenylhydrazine  Propanone and 2,4-dinitrophenylhydrazine  Propanal and 2,4-dinitrophenylhydrazine  Oxidation Aldehydes are reducing compounds and can react with some oxidising agents. Since ketone cannot be oxidised, they do not take part in oxidation reactions. This is used as a test for distinguishing between aldehydes and ketones. Aldehydes will react when heated with ammoniacal silver nitrate solution (Tollen's reagent). This is a reaction in which the aldehyde is oxidised, and the silver ions are reduced to silver. When carried out in a clean test tube it forms a silver mirror. RCHO(aq) + Ag(NH3)2+(aq) + H2O ( RCOOH(aq) + Ag(s) + 2NH4+(aq) Silver mirror Aldehydes will also react with other oxidizing agents. These tests are summarized below; Oxidising agentConditionsResult for aldehydeTollens reagent Heat aldehyde with ammoniacal silver nitrateSilver mirror formsFehlings solutionHeat aldehyde with Fehlings solutionTurns from a blue solution to form a red precipitateDichromate solutionHeat aldehyde with a mixture of potassium dichromate solution and sulphuric acid Turns from an orange solution to a green solution Aldehydes with Fehlings solution (oxidation) Aldehydes (but not ketones) reduce Cu2+ to Cu+ giving a red brown precipitate of copper (I) oxide in this test. Drops of the carbonyl compound are added to equal volumes of Fehling's solutions A and B. The mixture is warmed in a water bath. (oxidation) RCHO(aq) + 2Cu2+(aq) + 2H2O(l) ( RCOOH(aq) + 4H+(aq) +Cu2O(s) Reduction Carbonyl compounds are formed by oxidation of alcohols. The reverse of this process, reduction, converts carbonyls back into alcohols[*]. This reduction can be carried out by reducing agents such as lithium tetrahydridoaluminate(III) (lithium aluminium hydride} with dry ether as a solvent or sodium tetrahydridoborate(III) (sodium borohydride} in water. Note - In equations showing reduction the reducing agent is written as [H]. e.g. The reduction of propanal to propan-1-ol. CH3CH2CHO + 2[H] ( CH3CH2CH2OH The reduction of propanone to propan-2-ol. CH3COCH3 + 2[H] ( CH3CH(OH)CH3 Nucleophilic addition Carbonyl compounds with the C=O group, can undergo addition reactions. In this case the attack is by a nucleophile being drawn to the molecule by the partial positive charge on the carbon. Hydrogen cyanide will add on across the C=O bond. To carry out this reaction, a mixture of potassium cyanide and ethanoic acid is used to avoid use of the very poisonous hydrogen cyanide. These reactions take place at room temperature with the mixture buffered at pH 8. Ethanal and HCN  EMBED Unknown  Propanone and HCN  EMBED Unknown  Reaction mechanism In this reaction the initial attack is by the cyanide ion. The cyanide ion is a nucleophile which is attracted to the partial positive charge on the carbonyl carbon created by the electronegative oxygen. The reaction has to be carried out in slightly basic conditions, so the mixture is buffered at pH8. This is to allow the formation of the cyanide ion from the hydrogen cyanide. HCN  EMBED Word.Picture.8  H+ + CN- If the pH is lower than 8, the dissociation of the HCN lies too far to the left and so the concentration of CN- is too low for the first step to take place.  EMBED Unknown  If the pH is higher than 8, the concentration of H+ ions is too low for the second stage of the mechanism to take place. Reaction of iodine in alkali Iodine in alkali reacts with a specific group, CH3COR to produce a yellow precipitate of CI3H. RCO2 is also formed in this reaction. This is used as a test for the presence of the CH3COR group. (Ethanal, ethanol or any methyl ketone can react in this reaction). The iodine present in the testing reagent can oxidise alcohols, and so CH3CHOHR will initially form CH3COR this will then react to give the yellow crystals. The old name for these crystals of triiodomethane is iodoform, and this reaction is often referred to as the iodoform reaction. The test is carried out by adding aqueous sodium hydroxide to iodine solution until the mixture just turns colourless. The organic material is then added, and the mixture is warmed. CH3COR and CH3CHOHR give a positive iodoform reaction (where R can be a carbon chain or hydrogen). Which of the following will give a positive iodoform reaction?  CH3CH2CHO No CH3CH2COCH3 Yes  CH3CHOHCH3 Yes HCHO No Carboxylic acids Introduction Carboxylic acids are compounds containing the carboxyl group, CO2H, which consists of the C=O group and the OH group on the same carbon. The name carboxyl comes from a combination of the names of these functional groups; Carbonyl + hydroxyl = Carboxyl      Physical Properties The Carboxyl carbon contains two oxygen atoms both of which are electronegative leaving the carbon with a partial positive charge. This allows carboxylic acids to form stronger hydrogen than alcohols, and they therefore have higher boiling pints than alcohols of similar formula mass. CompoundFormulaRFMBoiling point /oCPropanolCH3CH2CH2OH6097Ethanoic acid CH3CO2H60118 The structure of the carboxyl group allows carboxylic acid to form dimers  Ethanoic acid has a melting temperature of 17oC, so if the temperature falls below this it freezes, and the similarity of frozen ethanoic acid to ice has given the pure acid the common name of glacial ethanoic acid. The ability of carboxylic acids to form hydrogen bonds means that the lower members of the homologous series (those with up to 4 carbon atoms) are miscible in all proportions with water. The longer the carbon chain, the less soluble in water the carboxylic acid becomes. Preparation of carboxylic acids Carboxylic acids can be prepared by Oxidation of primary alcohols Oxidation of aldehydes Hydrolysis of nitriles Preparation from primary alcohols When a primary alcohol is heated under reflux with potassium dichromate and sulphuric acid a carboxylic acid is produced. RCH2OH + 2[O] ( RCO2H + H2O Preparation from aldehydes When an aldehyde is heated under reflux with potassium dichromate and sulphuric acid a carboxylic acid is produced. RCHO + [O] ( RCO2H Preparation from nitriles Carboxylic acids can be formed by hydrolysis of nitrile (RCN) compounds. The hydrolysis can be carried out by heating the nitrile with acid or alkali. Hydrolysis using dilute hydrochloric acid. RCN + 2H2O + HCl ( RCO2H + NH4Cl Hydrolysis using aqueous sodium hydroxide produces the salt of the carboxylic acid. RCN + H2O + NaOH ( RCO2Na + NH3 The acid can be obtained from the salt by adding a strong acid. RCO2Na + HCl ( RCO2H + NaCl Chemical Properties Reduction Carboxylic acids are formed by the oxidation of primary alcohols, and can be converted back to these compounds using lithium tetrahydridoaluminate(III) (lithium aluminium hydride} as a reducing agent. The acid is treated with lithium aluminium hydride in ether, followed by the addition of water. e.g. Reduction of propanoic acid. CH3CH2CO2H + 4[H] ( CH3CH2CH2OH + H2O Reduction of methanoic acid. HCO2H + 4[H] ( CH3OH + H2O Reaction with alcohols Carboxylic acids react with alcohols in the presence of concentrated sulphuric acid to form water and an ester. The carboxylic acid is mixed with alcohol and concentrated sulphuric acid is added. The mixture is then warmed. RCOOH + R*OH ( RCOOR* + H2O e.g. Propanoic acid + ethanol CH3CH2CO2H + CH3CH2OH ( CH3CH2COOCH2CH3 + H2O Ethyl propanoate Esters are named from the alkyl group of the alcohol and the oate from the carboxylic acid. The esters formed contain the ester functional group or ester link. This has the structure shown below. RCOOH + R*OH ( RCOOR* + H2O   Esters have characteristic odours, which makes them useful for flavouring. Pear drops and pineapple flavourings are derived from the appropriate ester. Esters are also useful as solvents. Reaction with phosphorus pentachloride The -OH group in the acid will react with halogenating reagents, such as phosphorus pentachloride in the same way as the OH group in alcohols. These reactions occur at room temperature. The organic product of these reactions are acyl chlorides (or acid chlorides). This functional group has the structure shown below.   Ethanoic acid reacts with phosphorus pentachloride to produce ethanoyl chloride. CH3CO2H + PCl5 ( CH3COCl + HCl + POCl3 Ethanoyl chloride Propanoic acid reacts with phosphorus pentachloride to produce propanoyl chloride. CH3CH2CO2H + PCl5 ( CH3CH2COCl + HCl + POCl3 Propanoyl chloride Neutralisation reactions Carboxylic acids react with alkalis, carbonates and hydrogencarbonates to form salts. Reaction with sodium hydroxide RCO2H + NaOH ( RCO2-Na+ + H2O Reaction with sodium carbonate. 2RCO2H + Na2CO3 ( 2RCO2-Na+ + H2O + CO2 Reaction with sodium hydrogencarbonate RCO2H + NaHCO3 ( RCO2-Na+ + H2O + CO2 Such reactions, using titration with a known concentration of alkali and appropriate indicator, can be used to determine the quantity of acid present. For example this technique can be used to find the quantity of citric acid in fruit. Derivatives of Carboxylic acids Organic compounds made from carboxylic acids are called derivatives of carboxylic acids. This includes acyl chlorides and esters. Esters The ester functional group is  Esters can be hydrolysed by boiling with acid or alkali. When hydrolysed by acid, the alcohol and the carboxylic acid are reformed. This is a reversible reaction, so does not go to completion. R1COOR2 + H2O  EMBED Word.Picture.8  R1CO2H + R2OH When hydrolysed by an alkali, the alcohol and the salt of the carboxylic acid are formed. Since the carboxylic acid is not formed, this reaction can go to completion. Such a reaction is called saponification. R1COOR2 + NaOH ( R1CO2-Na+ + R2OH e.g. Acid hydrolysis of CH3CH2CO2CH2CH3 CH3CH2CO2CH2CH3 + H2O  EMBED Word.Picture.8  CH3CH2CO2H + CH3CH2OH Hydrolysis of CH3CH2CO2CH2CH3 by sodium hydroxide solution CH3CH2CO2CH2CH3 + NaOH ( CH3CH2CO2-Na+ + CH3CH2OH Acid hydrolysis of (CH3)3COCOCH3 (CH3)3COCOCH3 + H2O  EMBED Word.Picture.8  CH3CO2H + (CH3)3COH Hydrolysis of (CH3)3COCOCH3 by sodium hydroxide solution (CH3)3COCOCH3 + NaOH ( CH3CO2-Na+ + (CH3)3COH The reaction of natural esters with sodium hydroxide solution is used to make soap. An animal fat is an ester formed from propan-1,2,3-triol and carboxylic acids with long chains.  CH2OCOC17H35 CH2OH  HCOCOC17H35 + 3KOH ( HCOH + 3 C17H35COO-K+ CH2OCOC17H35 CH2OH Animal fat glycerol stearate salt = SOAP The products on saponification are propan-1,2,3-triol and the salt of the carboxylic acid. The structure of the salt of the carboxylic acid is shown below.   The charges on the molecule give the useful properties of soap. The charged section is attracted to the polar water molecules is hydrophilic. The hydrocarbon section is repelled by the water molecules is hydrophobic. The soap molecule can be pictured as like a tadpole with hydrophilic head and hydrophobic tail.     Polyesters The reaction of an alcohol and a carboxylic acid to form an ester can be used to form polymers in which the monomers are joined by an ester link. Such a polymer is called a polyester. This is an example of a condensation polymer in which monomers join by ejecting a small molecule (water in the case of a polyester). nHOCH2CH2OH + nHO2C-C6H4-CO2H ( -(-CH2CH2-O-CO-C6H4-CO-O-)-n + nH2O ethane-1,2-diol benzene-1,4- Terylene dicarboxylic acid Transesterification The burning of diesel oil from petroleum is not an environmentally sustainable method of providing energy. An alternative is to use natural oils from plants that are renewable. Such oils will only partially combust in a normal diesel engine, and will therefore cause clogging of the engine. Engines can be modified to burn this type of fuel. An alternative is to convert the triglyceride in the fat or oil to a methyl ester. The methyl ester is more volatile and can be used in a normal diesel engine. The methyl ester can be formed in a process called transesterification. Most biodiesel is produced by base-catalysed transesterification  EMBED Unknown  Acyl chlorides The acyl chloride functional group is  Acid chlorides are highly reactive compounds. They are readily hydrolysed at room temperature, and will fume in moist air due to this reaction. Important reactions of acyl chlorides are; Hydrolysis (reaction with water) Reaction with alcohols Reaction with concentrated ammonia Reaction with amines Hydrolysis In hydrolysis the acid chloride is converted to the carboxylic acid and HCl is produced. Reaction with water RCOCl + H2O ( RCO2H + HCl Reaction with alcohols They react with alcohols at room temperature to produce the ester. RCOCl + R#OH ( RCOOR# + HCl Reaction with concentrated ammonia They react with concentrated ammonia at room temperature to produce acid amides. RCOCl + NH3 ( RCONH2 + HCl Reaction with amines They react with amines at room temperature to produce secondary substituted amides. An amine is a a carbon chain attached to the NH2 functional group. RCOCl + R#NH2 ( RCO-NH-R# Spectroscopy and Chromatography Introduction Visible light is one very small part of the electromagnetic spectrum. The different properties of the various types of radiation depend upon their wavelength. The diagram below shows a crude illustration of the various types of radiation of relevance to chemists  In the Unit 2 section on Spectroscopy the use of infra red spectroscopy and mass spectroscopy in analysis were looked at. The use of infra red spectroscopy to determine the extent of a reaction involving a change in functional group was also examined. Knowledge and understanding of these aspects are included in this topic of Unit 4. Nuclear Magnetic Resonance Spectroscopy Hydrogen atoms can be detected using this sort of spectrometry. Any spinning charge generates a magnetic field, so the protons in a nucleus have a magnetic field. If there are two protons in a nucleus they will have opposite spins so the magnetic fields cancel. Nay nucleus with an even number of protons will have no overall magnetic field, but a nucleus with an odd number of protons will have a resultant magnetic field. When a nucleus with a resultant magnetic field is placed in a strong magnetic field it will align itself with that field.     If the proton supplied with sufficient energy it can flip to a position opposing the external field. The energy required to do this lies in the radio frequency region of the electromagnetic spectrum.        The actual energy required depends upon the exact environment on the proton. In nuclear magnetic resonance, NMR, spectroscopy a substance is placed in a strong magnetic field and subjected to a range of radio frequencies. The point at which a particular radio frequency is absorbed will depend upon the environments of the protons present in that substance.       The detector will show which radio frequencies are absorbed. The system is calibrated, usually using the compound tetramethylsilane, Si(CH3)4, as the 0 point and then other frequencies compared to this as shift values. Selected shift values are given in the table below. Hydrogen environmentshiftCH3-R0.9R-CH2-R1.3R3CH2.0-C=O-CH3-R2.3R-CH2-OH3.6ROH4.5-CHO9.5 NMR spectra. The number of protons that can be found in each environment are given by area under the line and defined by the integration trace. A simplified nmr for propanal is shown below.   High resolution NMR spectrum give further information about the proton environment.          The effects are shown in the table below; abAlignment Number with this alignment((2 against field1((1 with field 1against field2((1 with field 1against field((2 with field1 This means that when looked at in high resolution the following pattern is seen   If there are three protons on the adjacent carbon abcAlignment Number with this alignment(((3 against the field1(((2 against the field 1 with the field3(((2 against the field 1 with the field(((2 against the field 1 with the field(((1 against the field 2 with the field3(((1 against the field 2 with the field(((1 against the field 2 with the field(((3 with the field1  Uses of NMR Clearly NMR is important for chemical analysis. It also has useful applications in medicine. The principle of nuclear magnetic resonance is used in Magnetic Resonance Imaging, MRI, body scanners which detect the protons in water molecules in the body. This process, unlike the use of X-rays is thought to be completely harmless to patients. Nuclear magnetic resonance can be used to determine the purity of pharmaceutical products. Chromatography Simple paper chromatography can be used to separate a mixture of dyes. The principle on which this works are also useful for more sophisticated techniques. Essentially any form of chromatography used a fixed material (stationary phase) and moving substance (mobile phase). The separation occurs due to the equilibrium between the components in the mixture and the stationary and mobile phases.        The process continues in this way, the rate of movement determined by the equilibrium movement which depends upon the strength of the interaction of the material with the stationary phase and its solubility in the solvent in the mobile phase. Column chromatography  If the component is coloured, it is clear when it emerged from the column. If can be collected and the solvent evaporated to obtain the pure substance. If the substance is colourless, there are other ways of detecting their presence, for example certain materials glow in ultra-violet light. High-Performance Liquid Chromatography The effectiveness of column chromatography can be improved by using a very fine powder as the stationary phase. Under these circumstances however gravitation is insufficient to drive the solvent through the system, so a pressure is used to drive the materials through the column. This process is called high-performance liquid chromatography, HPLC. The HPLC technique is used to separate mixtures and the components can then be analysed. Gas-Liquid Chromatrography In gas-liquid chromatography the mobile phase is an inert gas and the stationary phase a liquid coating on a powdered inert solid. The powder fills a coiled tube which about 2mm in diameter and up to 10m long. The coiled tube is situated in an oven which controls its temperature.          The vaporized sample is injected into the carrier gas which moves through the tube at a constant rate. Volatile components of a mixture are carried through the tube fast, while those that are more soluble in the mobile phase take longer to pass through the tube. The time a component spends going through the tube is called the retention time. The area under each peak from the recorder is a measure of the amount of that component.     PAGE 1  FILENAME \p G:\3. Teaching Resources\1. NEW EdExcel A-LEVEL 2008\2. A2 Resources\End of Topic Notes\UNIT 4 NOTES 2009 [090603].doc -  PAGE 1 EA Catalysed reaction EA Uncatalysed reaction Water bath Reaction mixture + H2O H C C2H5 N NH NO2 NO2 H C2H5 C O H2N NH NO2 NO2 + H2O CH3 C CH3 N NH NO2 NO2 CH3 CH3 C O H2N NH NO2 NO2 + H2O H C CH3 N NH NO2 NO2 H CH3 C O H2N NH NO2 NO2 2-Methylbutanal 3-Methylbutan-2-one H C H H H C H H C H C C H H H O H O H C H H C C H H C H C H H H Pentanal Pentan-3-one H C H H C H H C H H C O C H H H H C H H H C H H C H O C C H H volume of base added/cm3 10 2 4 methyl orange - ok Mark on side of beaker 1/T = ln A ln k Gradient = EA/R x Intercept = a y Gradient = b -EA/RT -EA/RT k = Ae -EA/RT k = Ae T3>T2>T1 T3 Notice that the units of S are in JK-1mol-1. In particular J not kJ Notice that the units of S are in JK-1mol-1. In particular J not kJ Thermostatically controlled oven Carrier gas Column packed with liquid coating on a powdered inert solid Recorder T2 T1 T3>T2>T1 T3 T2 T1 EA EA H + O Syringe containing sample Detector adsorbent Bands of separated components Eluent Sintered glass disc One version of this technique is column chromatography. In this process a column is packed with an adsorbent solid, such as alumina. The mixture is then placed in the top of the column so that it is adsorbed onto the surface of the solid. The solvent (or eluent) is then poured into the top and allowed to trickle through the column. Partition of the solutes between the moving solvent and the stationery phase takes place. The rate at which the solute moves down the column depends upon its partition coefficient. B Stationary phase Mobile phase The liquid carries the dissolved material forward. The low concentration of the material at B causes the material to be adsorbed into the stationary phase.  !#*BDFKLQRSIJq___q_M>hL5CJ8OJQJ^JaJ8#h3hL5CJ8OJQJ^JaJ8#h3he5CJ8OJQJ^JaJ8#h3h5CJ8OJQJ^JaJ8#h3h'D5CJ8OJQJ^JaJ8 *hh5CJHaJHh35CJ`OJQJ^JaJ`#h~h35CJ`OJQJ^JaJ` *heh35CJ0aJ0 *h35CJ0aJ0)jh35CJ0UaJ0mHnHsH u *heh5CJ0aJ0"#EFSTUlmz{ & F]gd3]^`gdza$a$gde$a$gd]gd3 $]a$gd3gdeڪ2STUehiklmz{X Y  ϽϮyjyYH7YHYHY hFhCJOJQJ^JaJ hFh$DCJOJQJ^JaJ hFhNCJOJQJ^JaJh3h$DCJOJQJ^Jh3honCJOJQJ^Jh&h~h35>*CJ OJQJ^JaJ  *hh5CJ8aJ8hza5CJ(OJQJ^JaJ(#h~h35CJ(OJQJ^JaJ(h35CJ(OJQJ^JaJ(#h3h35CJ8OJQJ^JaJ8h35CJ8OJQJ^JaJ8Y        L M ]gd3 ]^gd3 & F]gd3       q } J K M smgQ+h/Xhl5CJ(OJQJ^JaJ(mH sH  h3CJ hJCJh3h'D5CJOJQJ^Jh3h'DCJOJQJ^Jh3hJ5CJOJQJ^Jh3hNCJOJQJ^Jh3hJCJOJQJ^J&h~h35>*CJ OJQJ^JaJ h35>*CJ OJQJ^JaJ h3CJOJQJ^Jh~h3CJOJQJ^J  Y {   K tu) & Fgdlgdlgdl$a$gdl   J K tu)BCDNOų֡ŐłŐŐŐtfUEh3hl5OJQJ\^J!h3hl5>*OJQJ\^Jhl5>*OJQJ\^JhlCJOJQJ^JaJhFCJOJQJ^JaJ h3hlCJOJQJ^JaJ#h3hl5CJOJQJ^JaJ#h3hl>*CJOJQJ^JaJ hFhlCJOJQJ^JaJ&h3hl5>*CJOJQJ^JaJh3hlCJaJh/Xhl5CJBC{mgdl[$\$]gdlgdlOPʹᨗcDcDDcc<jh3hlCJOJQJU^JaJmHnHsH tH u?jh3hl>*CJOJQJU^JaJmHnHsH tH u&h3hl5>*CJOJQJ^JaJ hl5>*CJOJQJ^JaJ h3hlCJOJQJ^JaJ!h3hl5>*OJQJ\^Jh3hlOJQJ^JhlOJQJ^J hFhlCJOJQJ^JaJhFCJOJQJ^JaJ:Gmnqrstwxz{}~Ͼw\w\w\w\w\w\w\wH&hd*hl5>*CJOJQJ^JaJ4jhGphlCJOJQJU^JaJmHnHu hGphlCJOJQJ^JaJ#hFhl5CJOJQJ^JaJ)h.mhl5>*CJOJQJ\^JaJhl>*CJOJQJ^JaJ hFhlCJOJQJ^JaJhlCJOJQJ^JaJ#h3hl>*CJOJQJ^JaJ h3hlCJOJQJ^JaJmnrtx{~FGH[EFw  ;<P]Pgdlgdl$a$gdlFHIS[;UWkmoq0IK_ace®{i{i{i{N{i{i{i{4jhFhFCJOJQJU^JaJmHnHu#hd*hlCJH*OJQJ^JaJ hd*hlCJOJQJ^JaJ& jhFhFCJOJQJ^JaJhFCJOJQJ^JaJ&hd*hl5>*CJOJQJ^JaJ hl5>*CJOJQJ^JaJ hF5>*CJOJQJ^JaJhl>*CJ OJQJ hFhlCJOJQJ^JaJ<Xrsw|okd$$Ifl07+9!04 laytl $$Ifa$gdl|} $$Ifa$gdlokd$$Ifl07+9!04 laytl $$Ifa$gdlokd:$$Ifl07+9!04 laytl $$Ifa$gdlokd$$Ifl07+9!04 laytl/0Lf~~ $$Ifa$gdlgdlokdt$$Ifl07+9!04 laytlfgkp $$Ifa$gdlokd$$Ifl07+9!04 laytlpquz $$Ifa$gdlokd$$Ifl07+9!04 laytlz{ $$Ifa$gdlokdK$$Ifl07+9!04 laytl $$Ifa$gdlokd$$Ifl07+9!04 laytl67tll$a$gdl ^`gdlP]Pgdlgdlokd$$Ifl07+9!04 laytl 78lm+68:<=>q԰԰԰԰ԟzg$hFhlCJEHOJQJ^JaJ&h.mhl5>*CJOJQJ^JaJ hF5>*CJOJQJ^JaJ hd*hlCJOJQJ^JaJ#hFhl5CJOJQJ^JaJ#hFhlCJH*OJQJ^JaJ hFhlCJOJQJ^JaJ4jhFhlCJOJQJU^JaJmHnHu -.`a>?k > &!'!(!V!!! $ & Fa$gdlgdl $ & F a$gdl $h^ha$gdl$a$gdlgdlqu  ) + : ; { ~ &!'!(!U!V!!۷۷ۤ۷۷۷۷۷ۍ{g{&h.mhl5>*CJOJQJ^JaJ#hGphl5CJOJQJ^JaJ,hl5CJOJQJ\^J_H aJnH tH $hFhlCJEHOJQJ^JaJ#hFhlCJH*OJQJ^JaJ#hFhl5CJOJQJ^JaJ hFhlCJOJQJ^JaJ&hFhl5CJOJQJ\^JaJ%!!!!P#Q#y##$Y$$$%% & &&&''''.' $$Ifa$gdl`gdl & FgdlgdFgdl$a$gdl $ & Fa$gdl!!! """c#e#w#x#Y$q$s$$$$$$%% &&&&'ܼܩܕo]I]o&hFhlCJH*OJQJ]^JaJ#hFhlCJOJQJ]^JaJ hGphlCJOJQJ^JaJ)hFhl6CJH*OJQJ]^JaJ&hFhl6CJOJQJ]^JaJ$hFhlCJEHOJQJ^JaJhFCJOJQJ^JaJ#hFhl5CJOJQJ^JaJ hFhlCJOJQJ^JaJ#hFhl6CJOJQJ^JaJ'''','-'5'8'>'@'A'C'E'm'''''''''(( ( (i(t({(|(z)ܹmYmYmm'hFhl5CJEH OJQJ^JaJ#hFhl5CJOJQJ^JaJhFCJOJQJ^JaJ hFhlCJOJQJ^JaJh+pphlH*OJQJ^Jh+pphlOJQJ^JhlCJOJQJ^JaJ(hGphlCJOJQJ^JaJmH sH  hGphlCJOJQJ^JaJ#hGphlCJH*OJQJ^JaJ.'8'D'E'G'K'O'S'W'ikd"$$If(4rSK!,4 (a{f4ytl $$Ifa$gdlW'X'Z'^'b'f'j'uiiiii $$Ifa$gdlkd$$If(4rSK!,4 (a{f4ytlj'k'm'q'u'y'~'uiiiii $$Ifa$gdlkd$$If(4rSK!,4 (a{f4ytl~''''' ( (S((((uppppph[pp hh^h`hgdl & FgdlgdlkdS$$If(4rSK!,4 (a{f4ytl ((z))`*b* +"+,,E,F,,,,,,8-v--...!.".#.gdl hh^h`hgdl^gdl & Fgdlgdlz))*$*L*N*+ +++++++ ,,,,,,, ,.,/,2,3,5,C,E,],_,f,h,i,k,l,q,r,,,۷ۤ۷۷۷ۑ۷۷ۤ۷۷۷۷۷۷|d/j ?> hFhlCJOJQJUV^JaJ)jhFhlCJOJQJU^JaJ$hFhlCJEH OJQJ^JaJ$hFhlCJEHOJQJ^JaJ#hFhlCJH*OJQJ^JaJ#hFhl5CJOJQJ^JaJ hFhlCJOJQJ^JaJ&hFhl6CJOJQJ]^JaJ',,,,,,,,,,,,,,,,,,,,,,°°…n[G°°'hFhl@(CJH*OJQJ^JaJ$hFhl@(CJOJQJ^JaJ-j{ hFhlCJEHOJQJU^JaJ/jW?> hFhlCJOJQJUV^JaJ$hFhlCJEHOJQJ^JaJ#hFhlCJH*OJQJ^JaJ hFhlCJOJQJ^JaJ)jhFhlCJOJQJU^JaJ-j hFhlCJEHOJQJU^JaJ,,,,,,-------.... .#.%.).-.1.ƲzggV;V;V;V;V4jhGphlCJOJQJU^JaJmHnHu hGphlCJOJQJ^JaJ$hFhlCJEHOJQJ^JaJ#hFhlCJOJQJ\^JaJ) jhFhlCJOJQJ\^JaJ hFhlCJOJQJ^JaJ&h+pphl5>*CJOJQJ^JaJ hl5>*CJOJQJ^JaJhF>*CJ OJQJhl>*CJ OJQJ#hFhl5CJOJQJ^JaJ#.&.'.(.).../.0.1.Z..//!/#/$/%/&/)/,/-///3/7/8/A/B///h^hgdlgdl1.Z.^.g.../// /!/"/&/(/)/+/-/.///2/3/6/8/@/B/_/v/E0M0X0\011 1۵ۚun_hF5>*CJOJQJ^J hF>*CJ &hFhl6CJOJQJ]^JaJ hGphlCJOJQJ^JaJ4jhGphlCJOJQJU^JaJmHnHu&hFhl5CJOJQJ\^JaJ#hFhl5CJOJQJ^JaJ hFhlCJOJQJ^JaJ&h+pphl5>*CJOJQJ^JaJ!/ 0 011 1 1111111122334 44 $Ifgdlgdl 111111111111111334444H5T5U5]5_5z5|5}555555555555 66%6'6ݮݮݮݮݮݠݏ}ݏk}}}}}}}}}}#hd*hlCJH*OJQJ^JaJ#hd*hlCJH*OJQJ^JaJ hd*hlCJOJQJ^JaJhFCJOJQJ^JaJ#hFhlCJH*OJQJ^JaJ8jhFhlCJOJQJU^JaJmHnHsH u hFhlCJOJQJ^JaJ"hd*hl5>*CJOJQJ^J*44 4'4{{ $Ifgdl{kd$$Ifl0nJ ] t0644 laytl'4(4+424{{ $Ifgdl{kd$$Ifl0nJ ] t0644 laytl243464=4{{ $Ifgdl{kd>$$Ifl0nJ ] t0644 laytl=4>4A4H4{{ $Ifgdl{kd$$Ifl0nJ ] t0644 laytlH4I4M4T4{{ $Ifgdl{kdn$$Ifl0nJ ] t0644 laytlT4U4Y4`4{{ $Ifgdl{kd$$Ifl0nJ ] t0644 laytl`4a4e4l4{{ $Ifgdl{kd$$Ifl0nJ ] t0644 laytll4m4q4x4{{ $Ifgdl{kd6$$Ifl0nJ ] t0644 laytlx4y4}44{{ $Ifgdl{kd$$Ifl0nJ ] t0644 laytl4444{{ $Ifgdl{kdf$$Ifl0nJ ] t0644 laytl44444H5M5Q5W5`5s55wwnnnnnn $Ifgdl & Fgdlgdl{kd$$Ifl0nJ ] t0644 laytl 55555qhhh $Ifgdlkd$$IflFn  t06    44 laytl55555qhhh $IfgdlkdD$$IflFn  t06    44 laytl55555qhhh $Ifgdlkd$$IflFn  t06    44 laytl55555qhhh $Ifgdlkd$$IflFn  t06    44 laytl55555qhhh $IfgdlkdN$$IflFn  t06    44 laytl55566qhhh $Ifgdlkd$$IflFn  t06    44 laytl6666(6qhhh $Ifgdlkd$$IflFn  t06    44 laytl(6)6-646@6qhhh $IfgdlkdX$$IflFn  t06    44 laytl'6=6?6A67777777888888$8(8,8w8888888888̺̝s]s]s]s]s]sK#hd*hlCJH*OJQJ^JaJ+h@IhlCJH*OJQJ^JaJmHsH(h@IhlCJOJQJ^JaJmHsH(h.hlCJOJQJ^JaJmHsH8jhFhlCJOJQJU^JaJmHnHsH u#hFhlCJH*OJQJ^JaJ hFhlCJOJQJ^JaJ#hd*hlCJH*OJQJ^JaJ hd*hlCJOJQJ^JaJ@6A6B677777)8*8w8qldlllllll & Fgdlgdlkd$$IflFn  t06    44 laytl w8888888888Ukd$$Ifl\3b8# t0"644 laytl $Ifgdl 8888888899 9 999 9"9)9+94969@9B9I9K9T9V9`9b9i9k9t9v99999999/;O;Q;;;;;;;;;;;;;;;;; <<<<<<<<<˹˧˧˧#hFhlCJH*OJQJ^JaJ#hFhlCJH*OJQJ^JaJ hFhlCJOJQJ^JaJ hd*hlCJOJQJ^JaJ#hd*hlCJH*OJQJ^JaJB8889 99^UUUU $Ifgdlkdx$$Ifl\3b8# t0"644 laytl999#9,979^UUUU $Ifgdlkd<$$Ifl\3b8# t0"644 laytl7989:9C9L9W9^UUUU $Ifgdlkd$$Ifl\3b8# t0"644 laytlW9X9Z9c9l9w9^UUUU $Ifgdlkd$$Ifl\3b8# t0"644 laytlw9x9z9999^UUUU $Ifgdlkd$$Ifl\3b8# t0"644 laytl999v:w:/;0;;;R;a;^YYYYYPPP $IfgdlgdlkdL$$Ifl\3b8# t0"644 laytl a;;;;;;;;Bkd $$Iflr,Z X#.._ q t0<"644 laytl $Ifgdl;;;;;;;;Bkd $$Iflr,Z X#.._ q t0<"644 laytl $Ifgdl;;;;;; <KBBBBB $Ifgdlkd!$$Iflr,Z X#.._ q t0<"644 laytl < < <a<b<<<<<KFFFFFFFgdlkdt"$$Iflr,Z X#.._ q t0<"644 laytl<< = =Z=[=]=====>}@~@@@AABBDBBBB?C [$\$gdl ^`gdl$a$gdlgdlgdl<==== = = = =W=Y=[=\=]=^============AAAA B!BDBtfT#hFhlCJH*OJQJ^JaJhlCJOJQJ^JaJ)h`hl5>*CJ OJQJ\^JaJ hl>*CJ #hd*hl>*CJOJQJ^JaJ;jhFhl>*CJOJQJU^JaJmHnHsH u8jhFhlCJOJQJU^JaJmHnHsH u#hFhlCJH*OJQJ^JaJ hFhlCJOJQJ^JaJ DBGBHBJBKBOBVBcBhBiBnBoBpBqBBBBBBBBBB?CFCGCHCICRCVCCCCCCIJ{m\ hl5>*CJOJQJ^JaJhGphl5OJQJ^J#hFhlCJH*OJQJ^JaJ&hFhl5CJOJQJ\^JaJ hFhlCJOJQJ^JaJ#hFhlCJOJQJ\^JaJ&hFhl5CJH*OJQJ^JaJ) jhFhl5CJOJQJ^JaJ#hFhl5CJOJQJ^JaJ"?CCCCDDFFFFHHJJ$KK L7LLL:MMMgdl & F [$\$^gdlgdl [$\$gdl[$\$`gdlCCCEEEEFF*GIGHHHHIJJjJlJJJJJKKBKDKjKlKKKKKMƸƩƸƸƩƛƆrƩrƩ`rƩrƩ#hFhlCJH*OJQJ^JaJ& jhFhlCJOJQJ^JaJ)hFhl5CJOJQJ\]^JaJhFCJOJQJ^JaJhFhlCJOJQJaJhFCJOJQJ^JaJ hFhlCJOJQJ^JaJ)h`hl5>*CJOJQJ\^JaJ&h`hl5>*CJOJQJ^JaJ#MMMMMNNNNNNN)N3N=N?N@NANKNlN{N|N}NNNNNNNNNNNNNNNN O O O OOOOO"O&O'O(O)O2O4OEOOOROSOTOUO^O_OdOͿͿͿͿͿͿͿ᭿#hFhlCJH*OJQJ^JaJ#hFhlCJH*OJQJ^JaJhFCJOJQJ^JaJ& jhFhFCJOJQJ^JaJ hFhlCJOJQJ^JaJhlCJOJQJ^JaJ=MMMMM$N%NSNTNUNNNNNNNN5O6OOOOOOO"P#PuPvPPgdldOeOfOkOoOpOqOrOxOyOOOOOOOOOOOOOOOOOOOOOOOOOPPPP PPPPPP P@PEPHPIPJPKPOPTPUPVP\P]P^P_P`PaPhPjPPPPP#hFhlCJH*OJQJ^JaJ#hFhlCJH*OJQJ^JaJhFCJOJQJ^JaJ& jhFhFCJOJQJ^JaJ hFhlCJOJQJ^JaJBPPPPPPPPPPPPPPPPPPPPP#R$R﷩|jK<jh4ShlCJOJQJU^JaJmHnHsH tH u#h4Shl5CJOJQJ^JaJ&h4Shl5>*CJOJQJ^JaJhl>*CJOJQJ^JaJhlCJOJQJhFCJOJQJ^JaJ& jhFhFCJOJQJ^JaJ#hFhlCJH*OJQJ^JaJ#hFhlCJH*OJQJ^JaJ hFhlCJOJQJ^JaJPPP#R%R&R'R(R)R*R+R,R-R.R/R0R1R2R3RuRRRRLSdSS"T$T p^p`gdlgdl$R1R3RRRRRRRRRRRRRRRRRRUSVS[S\SbScSiSjSSS"T#T$TоМаоМоЇsооооT<jh4ShlCJOJQJU^JaJmHnHsH tH u& jhFhlCJOJQJ^JaJ(hFhlCJOJQJ^JaJmH sH & jhFhFCJOJQJ^JaJhFCJOJQJ^JaJ#hFhlCJH*OJQJ^JaJ hFhlCJOJQJ^JaJhlCJOJQJ^JaJ h4ShlCJOJQJ^JaJ $T%T&T(T)T*T,T.T/T0T3T4T5T6T8T9TWCWFWGWHWп{\NNhlCJOJQJ^JaJ<jhFhlCJOJQJU^JaJmHnHsH tH u#hFhlCJH*OJQJ^JaJ hIuhlCJOJQJ^JaJ#hIuhl>*CJOJQJ^JaJhF>*CJOJQJ^JaJ hFhlCJOJQJ^JaJ h4ShlCJOJQJ^JaJ<jh4ShlCJOJQJU^JaJmHnHsH tH u$T&T)T+T,T/T1T2T3T5T7T8T:T;T*CJOJQJ^JaJ hFhlCJOJQJ^JaJhlCJOJQJ^JaJ h4ShlCJOJQJ^JaJ<jh4ShlCJOJQJU^JaJmHnHsH tH u!WWWXXGXKXXXXXYYYY Y Y Y Y YYYYYYYYYY`gdlgdlXXXXXYYYYYYY)Y*Y?YeYfY[[[[\\ \*\+\/\0\G\ܽuܽgܬXhl>*CJOJQJ^JaJhFCJOJQJ^JaJ#hFhlCJH*OJQJ^JaJ&hgHhl5>*CJOJQJ^JaJ hF5>*CJOJQJ^JaJ h4ShlCJOJQJ^JaJ<jh4ShlCJOJQJU^JaJmHnHsH tH u hFhlCJOJQJ^JaJ#hFhl>*CJOJQJ^JaJYYYYYYYYYY Y!Y"Y#Y$Y%Y&Y'Y(Y)Y?YZ[[[[[[[[gdl[[[[[[[[[\\!\"\#\$\%\&\'\(\)\*\,\-\.\/\G\\\\\gdlG\I\\\\\\]]P^Q^^^^^^t_u_____________пПппЎ|]KK|||#h4ShlCJH*OJQJ^JaJ<jh4ShlCJOJQJU^JaJmHnHsH tH u#h>(hlCJH*OJQJ^JaJ h>(hlCJOJQJ^JaJ#hFhlCJH*OJQJ^JaJhlCJOJQJ^JaJ h4ShlCJOJQJ^JaJ hFhlCJOJQJ^JaJ<jhFhlCJOJQJU^JaJmHnHsH tH u\\\\]]=]]]P^Q^^^^ $Ifgdl $$Ifa$gdlp^pgdl^gdl ^`gdlgdl ^^^^xo $Ifgdl $$Ifa$gdl{kd@#$$Ifl0n)P t0644 laytl^^^^xo $Ifgdl $$Ifa$gdl{kd#$$Ifl0n)P t0644 laytl^^^^xo $Ifgdl $$Ifa$gdl{kdv$$$Ifl0n)P t0644 laytl^^^^xo $Ifgdl $$Ifa$gdl{kd%$$Ifl0n)P t0644 laytl^^^D_t____wnn $Ifgdl$a$gdlgdl{kd%$$Ifl0n)P t0644 laytl____{{ $Ifgdl{kdP&$$Ifl0n)P t0644 laytl____{{ $Ifgdl{kd&$$Ifl0n)P t0644 laytl____{{ $Ifgdl{kd'$$Ifl0n)P t0644 laytl____{{ $Ifgdl{kd($$Ifl0n)P t0644 laytl___````G`H`M`N``````````````aa0a4aLaMaWaaaaaaaaaaaaˬˬ˚ˌ{ˬˬˬˬˬ{ˬ˚{i{ˬˬˬˬ#hFhlCJH*OJQJ^JaJ hFhlCJOJQJ^JaJhlCJOJQJ^JaJ#h4ShlCJH*OJQJ^JaJ<jh4ShlCJOJQJU^JaJmHnHsH tH u h4ShlCJOJQJ^JaJ h>(hlCJOJQJ^JaJ#h>(hlCJH*OJQJ^JaJ)____{{ $Ifgdl{kd($$Ifl0n)P t0644 laytl___``4`5`L`M``````rrr ^`gdlgdl{kdH)$$Ifl0n)P t0644 laytl ```````````````a0a5aVaWaaaaaaaaagdl ^`gdlaaaaaahbmbbbbbbbb.c0c1c2c3c5c■ykZHH6#h4ShlCJH*OJQJ^JaJ#h4ShlCJH*OJQJ^JaJ hSzhlCJOJQJ^JaJhlCJOJQJ^JaJ&h,hl5>*CJOJQJ^JaJ hF5>*CJOJQJ^JaJhl>*CJOJQJ^JaJ#hFhl5CJOJQJ^JaJ hFhlCJOJQJ^JaJ<jh4ShlCJOJQJU^JaJmHnHsH tH u h4ShlCJOJQJ^JaJaaaaaaaaab*b+b,b{bbbbb.crcc`dbdddhdmdndgdl`gdlgdlgdl5c9c@cAcEcYc]cccfclcmcncocpcrc`dadbdcdddgdhdldndoddddxxxxjY h>(hlCJOJQJ^JaJhlCJOJQJ^JaJ#h4Shl>*CJOJQJ^JaJ?jh4Shl>*CJOJQJU^JaJmHnHsH tH u hSzhlCJOJQJ^JaJhSzCJH*OJQJ^JaJ#h4ShlCJH*OJQJ^JaJ h4ShlCJOJQJ^JaJ#h4ShlCJH*OJQJ^JaJndoddddddddeee $Ifgdlgdlgdl dddde eeeee0fffffffffrgtgug}ggggggghhܽwZZZνT h4SCJ8jh4ShlCJOJQJU^JaJmHnHsH u&h,hl5>*CJOJQJ^JaJhl>*CJOJQJ^JaJ h4ShlCJOJQJ^JaJ#hSzhlCJH*OJQJ^JaJ hSzhlCJOJQJ^JaJhlCJOJQJ^JaJ h>(hlCJOJQJ^JaJ#h>(hlCJH*OJQJ^JaJeee#e&e8,,, $$Ifa$gdlkd)$$Iflֈs N%poIFLL t0644 laytl&e/e8eAeBe,kd*$$Iflֈs N%poIFLL t0644 laytl $$Ifa$gdlBeEeIeNeWe`eie $$Ifa$gdliejeoeuexe8,,, $$Ifa$gdlkd+$$Iflֈs N%poIFLL t0644 laytlxeeeee,kd,$$Iflֈs N%poIFLL t0644 laytl $$Ifa$gdleeeeeee $$Ifa$gdleeeee8,,, $$Ifa$gdlkdf-$$Iflֈs N%poIFLL t0644 laytleeeee,kdI.$$Iflֈs N%poIFLL t0644 laytl $$Ifa$gdleeeeeef $$Ifa$gdlf f fff8,,, $$Ifa$gdlkd,/$$Iflֈs N%poIFLL t0644 laytlff&f/f0f,kd0$$Iflֈs N%poIFLL t0644 laytl $$Ifa$gdl0f1fSfTfffgffffrgug~gggggggggggggggggdlh^hgdl & Fgdlgdlgggggggggggghhhhiijj;k=k>k@kAkBkCkDkgd$a$gdlgdlhhhhhiiiiiijj:k;kk?kDkEkFkGkò~~pSBSBSBS hlh8CJOJQJ^JaJ8jhlhlCJOJQJU^JaJmHnHsH uhlCJOJQJ^JaJ hlhlDCJOJQJ^JaJ#hlh85CJOJQJ^JaJ hlhCJOJQJ^JaJ hlh8CJOJQJ^JaJ&hlh85>*CJOJQJ^JaJ hl>*CJhlhl>*CJ.hlhl5>*CJ(OJQJ^JaJ(mH sH DkFkHkIkkllllmmmtnn>ooo)p*pppzppp $IfgdgdGkHkIkkkll@lGlllllfmgmmmmmmBnпЮziXiG6GX hlh;9CJOJQJ^JaJ hlh>CJOJQJ^JaJ hlhdCJOJQJ^JaJ hlhcpBCJOJQJ^JaJ hlhQCJOJQJ^JaJ#hlhct5CJOJQJ^JaJ hlhctCJOJQJ^JaJ hlhlDCJOJQJ^JaJ hlhlCJOJQJ^JaJ hlhUCJOJQJ^JaJ hlhlCJOJQJ^JaJh8CJOJQJ^JaJBnsntnnnn=o>ooo*p+ppppppppppppppppqqqqqqrͿͮ}i}i}XXXXXXX hlhSGCJOJQJ^JaJ&hSzh 45CJH*OJQJ^JaJ#hSzh 45CJOJQJ^JaJhlCJOJQJ^JaJ hlh 4CJOJQJ^JaJ hlh 4CJOJQJ^JaJhSzCJOJQJ^JaJ hlhdCJOJQJ^JaJ hlhlCJOJQJ^JaJ hlhh CJOJQJ^JaJ pppppqhhh $Ifgdkd0$$IflF@ u{  t06    44 la1yt>(pppppqhhh $Ifgdkd1$$IflF@ u{  t06    44 la1yt>(pppppqhhh $IfgdkdN2$$IflF@ u{  t06    44 la1yt>(pppppqhhh $IfgdEkd2$$IflF@ u{  t06    44 la1yt>(ppqq qqhhh $IfgdEkd3$$IflF@ u{  t06    44 la1yt>( q qqqqrrr/rqllllccc $IfgdEgdkdX4$$IflF@ u{  t06    44 la1yt>(r'r)r,r.r/rrr@ttttttttttttnupuvȺȩȘrrraP?P hlhlCJOJQJ^JaJ hlhdCJOJQJ^JaJ hlhSGCJOJQJ^JaJ&hlh>5CJH*OJQJ^JaJ#hlh>5CJOJQJ^JaJ hlh>CJOJQJ^JaJ hlh>CJOJQJ^JaJhlCJOJQJ^JaJ hlhSGCJOJQJ^JaJ&hSzhSG5CJH*OJQJ^JaJ#hSzhSG5CJOJQJ^JaJ/r0r8r(BrCrJrNrTrqhhh $IfgdEkd5$$IflF@ u{  t06    44 la1yt>(TrUr]rargrqhhh $IfgdEkdb6$$IflF@ u{  t06    44 la1yt>(grhrorsryrqhhh $IfgdEkd7$$IflF@ u{  t06    44 la1yt>(yrzrrrrqhhh $IfgdEkd7$$IflF@ u{  t06    44 la1yt>(rrrPsQsttttpuuvqllllllllld & FgdVtgdkdl8$$IflF@ u{  t06    44 la1yt>( vvyvvvwFwGwwx~xxyyNzPz}}}}~~:<`gdi{gd & FgdVtvxvyvvvvw www$w'w-w1w7w8w=wBwEwGwwwwwwwxxxixJziWWz#hlhaCJH*OJQJ^JaJ hlh;9CJOJQJ^JaJhlCJOJQJ^JaJhSzCJOJQJ^JaJ& jhSzhSzCJOJQJ^JaJ#hlhaCJH*OJQJ^JaJ hlhaCJOJQJ^JaJ hlhh CJOJQJ^JaJ hlhdCJOJQJ^JaJ hlhh CJOJQJ^JaJixxxx yyzzzz&z4zLzNzPzVzXzzz||}}}}}■ЈЈЈwZH#hlhmc5CJOJQJ^JaJ8jhlhmcCJOJQJU^JaJmHnHsH u hlhh CJOJQJ^JaJ hlhFUCJOJQJ^JaJ&hlhFU5CJH*OJQJ^JaJ#hlhFU5CJOJQJ^JaJ hlhFUCJOJQJ^JaJ hlhmcCJOJQJ^JaJhlCJOJQJ^JaJ hlhVtCJOJQJ^JaJ}}}}~~~~ (4:<Ѐʹʹp_N@kd9$$IflrK y(&3. & t0&44 layt>( $$Ifa$gd>(:BDFRZ^jtԁց؁ ".6:FPhjlv~Ȃ܂ܹ#hSzhaCJH*OJQJ^JaJ hSzh!CJOJQJ^JaJ hSzhW2yCJOJQJ^JaJ hSzhaCJOJQJ^JaJ#hlh35CJOJQJ^JaJ hlh3CJOJQJ^JaJ#hlh3CJH*OJQJ^JaJ0>BDHPRVZ@kd9$$IflrK y(&3. & t0&44 layt>( $$Ifa$gd>(Zց@kd:$$IflrK y(&3. & t0&44 layt>( $$Ifa$gd>(ցځ $@kd;$$IflrK y(&3. & t0&44 layt>( $$Ifa$gd>($,.26jnt@kdb<$$IflrK y(&3. & t0&44 layt>( $$Ifa$gd>(tvz~L@@@@@ $$Ifa$gd>(kd4=$$IflrK y(&3. & t0&44 layt>(LGGGGGGGgdkd>$$IflrK y(&3. & t0&44 layt>($<`btx~̃ &*HLRVXbl„ͻͪ͘͘{ͻͻͻͪiiiiͻXi hSzh!CJOJQJ^JaJ#hSzhW2yCJH*OJQJ^JaJ8jhSzhSzCJOJQJU^JaJmHnHsH u#hSzhaCJH*OJQJ^JaJ hSzhW2yCJOJQJ^JaJ#hSzhaCJH*OJQJ^JaJ hSzhaCJOJQJ^JaJ hSzh3CJOJQJ^JaJ hSzhCJOJQJ^JaJ"XZ΄Є…,.0̆І06(*,0vˆL`gd$ygd$ygd!`gd!gd„Ȅ̄΄Є…ą "*,̻ﭛ~m[m[Mm9Mm[m& jhSzhSzCJOJQJ^JaJhSzCJOJQJ^JaJ#hlhW2yCJH*OJQJ^JaJ hlhW2yCJOJQJ^JaJ8jhSzh!CJOJQJU^JaJmHnHsH u#hSzhW2y5CJOJQJ^JaJhSzCJOJQJ^JaJ hSzh$yCJOJQJ^JaJ hSzhaCJOJQJ^JaJ#hSzhW2yCJH*OJQJ^JaJ hSzhW2yCJOJQJ^JaJ,.04LĆȆ̆Ά,>H&(оЬЬЬЬЏоооо~ЬЬm~_~mhSzCJOJQJ^JaJ hSzhW2yCJOJQJ^JaJ hSzh$yCJOJQJ^JaJ8jhSzhCJOJQJU^JaJmHnHsH u#hSzh!CJH*OJQJ^JaJ#hSzh!CJH*OJQJ^JaJ hSzh!CJOJQJ^JaJ hlhSzCJOJQJ^JaJhW2yCJOJQJ^JaJ!(*,.0ƈވ":>DHblxƉ \]䶤䶐䶤~~~~~~m hlhW2yCJOJQJ^JaJ#hSzh$yCJH*OJQJ^JaJ& jhSzhSzCJOJQJ^JaJ#hSzh$yCJH*OJQJ^JaJ hSzh$yCJOJQJ^JaJ8jhSzhSzCJOJQJU^JaJmHnHsH uhSzCJOJQJ^JaJh$yCJOJQJ^JaJ&LN \]gPQ|~ gdSzgd~gd^gdSzgd$y]fg׊7PQR|}Sʼʼʫqq`O> hlhbCJOJQJ^JaJ hSzhbCJOJQJ^JaJ hSzhCJOJQJ^JaJ8jhlhSzCJOJQJU^JaJmHnHsH u8jhSzhSzCJOJQJU^JaJmHnHsH u hlh~CJOJQJ^JaJhSzCJOJQJ^JaJ hSzh~CJOJQJ^JaJ#hlh3>*CJOJQJ^JaJ#hlh~>*CJOJQJ^JaJÎĎƎʎΎЎӎԎՎ֎׎ЏgdIgd,cgdgdgd~ŽÎĎƧƅtttWtF hlhdCJOJQJ^JaJ8jhlhSzCJOJQJU^JaJmHnHsH u hlh3CJOJQJ^JaJ hlhCJOJQJ^JaJ hlhbCJOJQJ^JaJ<jhlhbCJOJQJU^JaJmHnHsH tH u8jhlhbCJOJQJU^JaJmHnHsH u8jhlh CJOJQJU^JaJmHnHsH uĎŎƎǎȎɎʎ͎̎ΎώЎҎՎ׎гᢓo^M< hSzhICJOJQJ^JaJ hlh,cCJOJQJ^JaJ hlh;`gCJOJQJ^JaJ#hlh>*CJOJQJ^JaJ#hlh,c>*CJOJQJ^JaJhSz>*CJOJQJ^JaJ hlhCJOJQJ^JaJ8jhlhSzCJOJQJU^JaJmHnHsH u hlhkSCJOJQJ^JaJ<jhlhSzCJOJQJU^JaJmHnHsH tH uS_Џяӏ○~mN=, hlhlcCJOJQJ^JaJ hSzh;`gCJOJQJ^JaJ<jhSzh=UCJOJQJU^JaJmHnHsH tH u hlhICJOJQJ^JaJ hlhCJOJQJ^JaJ<jhlhSzCJOJQJU^JaJmHnHsH tH u hlh,cCJOJQJ^JaJ<jhlh=UCJOJQJU^JaJmHnHsH tH u hSzhICJOJQJ^JaJ hSzh,cCJOJQJ^JaJ>@ABCDVϑؑ $$Ifa$gd3:gdIgd;`g=>?CDEVϑпsbSA/#hlh;`g5CJOJQJ^JaJ#hlh;`g>*CJOJQJ^JaJhSz>*CJOJQJ^JaJ hSzhSzCJOJQJ^JaJhSzCJOJQJ^JaJ<jhlhSzCJOJQJU^JaJmHnHsH tH uh;`gCJOJQJ^JaJ hSzh;`gCJOJQJ^JaJ hlh;`gCJOJQJ^JaJ hlhSzCJOJQJ^JaJh;`gCJOJQJ^JaJ hlhlcCJOJQJ^JaJ  56?@LMl,-ٓړ)2ɸɸɸɧɕɕɄsbQ?bs#hlh&>*CJOJQJ^JaJ hlh&CJOJQJ^JaJ hSzhlcCJOJQJ^JaJ hSzh&CJOJQJ^JaJ hSzh;`gCJOJQJ^JaJ#hlh;`gCJH*OJQJ^JaJ hlhaCJOJQJ^JaJ hlh 8KCJOJQJ^JaJ hlh;`gCJOJQJ^JaJ#hlh;`g5CJOJQJ^JaJ&hlh;`g5CJH*OJQJ^JaJ $$Ifa$gd3:qkd>$$Ifl0n / 04 la $$Ifa$gd3:qkdo?$$Ifl0n / 04 la  $$Ifa$gd3:qkd@$$Ifl0n / 04 la $$Ifa$gd3:qkd@$$Ifl0n / 04 la$ $$Ifa$gd3:qkd4A$$Ifl0n / 04 la$%*/ $$Ifa$gd3:qkdA$$Ifl0n / 04 la/05: $$Ifa$gd3:qkdbB$$Ifl0n / 04 la:;AG $$Ifa$gd3:qkdB$$Ifl0n / 04 laGHNT $$Ifa$gd3:qkdC$$Ifl0n / 04 laTUY_ $$Ifa$gd3:qkd'D$$Ifl0n / 04 la_`dj $$Ifa$gd3:qkdD$$Ifl0n / 04 lajklٓړMNRnrwwww $$Ifa$gd3:gd&gd;`gqkdUE$$Ifl0n / 04 la 2MNkmĕŕƕȕʕ̸̸̣oooooooooooo hlhlcCJOJQJ^JaJ#hlh&CJH*OJQJ^JaJ hlh&CJOJQJ^JaJ(hlhlcCJOJQJ^JaJnH tH &hlhlc5CJH*OJQJ^JaJ#hlhlc5CJOJQJ^JaJ hlh;`gCJOJQJ^JaJ hSzhlcCJOJQJ^JaJ+g[[[[ $$Ifa$gd3:kdE$$Ifl\3F]$ / 04 lag[[[[ $$Ifa$gd3:kdF$$Ifl\3F]$ / 04 laŕg[[[[ $$Ifa$gd3:kdrG$$Ifl\3F]$ / 04 laŕƕ˕ѕԕٕg[[[[ $$Ifa$gd3:kd5H$$Ifl\3F]$ / 04 laʕ˕Еѕҕӕԕٕؕڕܕޕߕ﷦sdR#hlh3:>*CJOJQJ^JaJhSz>*CJOJQJ^JaJ hlh3:CJOJQJ^JaJ hSzh;`gCJOJQJ^JaJ hSzh&CJOJQJ^JaJ hlh;`gCJOJQJ^JaJ(hlhlcCJOJQJ^JaJnH tH #hlh&CJH*OJQJ^JaJ hlh&CJOJQJ^JaJ hlhlcCJOJQJ^JaJٕڕߕg[[[[ $$Ifa$gd3:kdH$$Ifl\3F]$ / 04 lag[[[[ $$Ifa$gd3:kdI$$Ifl\3F]$ / 04 lafgb]b]]X]]bgd3:gd&gd;`gkd~J$$Ifl\3F]$ / 04 la ltșΙԙᆳ}l[J hSzh;`gCJOJQJ^JaJ hSzh=UCJOJQJ^JaJ hSzhGCJOJQJ^JaJ hlh3:CJOJQJ^JaJ<jhlhq8CJOJQJU^JaJmHnHsH tH u hlh;`gCJOJQJ^JaJ<jhlhGCJOJQJU^JaJmHnHsH tH u#hSzh3:CJH*OJQJ^JaJ hSzh3:CJOJQJ^JaJ LNxƜȜX^fj`gdG ^`gdgdgd;`gбdG2d(hlh'htCJOJQJ^JaJnH tH (hlhCJOJQJ^JaJnH tH 8jhlhGCJOJQJU^JaJmHnHsH u8jhlhq8CJOJQJU^JaJmHnHsH u hlhCJOJQJ^JaJ<jhlhGCJOJQJU^JaJmHnHsH tH u<jhlhq8CJOJQJU^JaJmHnHsH tH u hlh;`gCJOJQJ^JaJ<jhlh~JCJOJQJU^JaJmHnHsH tH u  08DJNRZxzq_q_q_q_qNqN*CJOJQJ^JaJ(h]5>*CJ(OJQJ^JaJ(mH sH .hlh]5>*CJ(OJQJ^JaJ(mH sH  hLCJ hq8CJh~JCJOJQJ^JaJ#h~JhnCJH*OJQJ^JaJ h~Jhq8CJOJQJ^JaJ h~JhnCJOJQJ^JaJ#h~JhnCJH*OJQJ^JaJ%456789:;<=>?@ABCDEFGHIJKLMNO[$a$gd][\pqТޣ&()*+,-E ST $ a$gd7o p^p`gdLgdL[\pqޣ&'-E Oͼͼ~ͼ~ۼl^M h7oh7oCJOJQJ^JaJhLCJOJQJ^JaJ#h]hLCJH*OJQJ^JaJ4jh]hLCJOJQJU^JaJmHnHujA> h]UVmH sH h]mH sH jh]UmH sH  h]hLCJOJQJ^JaJh]CJOJQJ^JaJ&h]hL5>*CJOJQJ^JaJ h]5>*CJOJQJ^JaJO_+-/RST_vw9:ȴȴٴ٦ٴٴyb٦٦P#h7ohL5CJOJQJ^JaJ-jAKh7oh7oCJEHOJQJU^JaJ/j!A> h7oh7oCJOJQJUV^JaJ)jh7oh7oCJOJQJU^JaJh7oCJOJQJ^JaJ&h7oh7o5CJOJQJ\^JaJ h7o5CJOJQJ\^JaJ h7oh7oCJOJQJ^JaJ)h7oh7o5CJOJQJ\]^JaJTXĨŨ:;q6z|}~KMNOgdL $ a$gd7o6yz{|KLVm*+FGbcӶtcOcOc7.h7oh7o5CJOJQJ\^JaJmH sH &h7oh7o5CJOJQJ\^JaJ h7oh7oCJOJQJ^JaJ&h7ohL5>*CJOJQJ^JaJ8jh]hLCJOJQJU^JaJmHnHsH u h]h7oCJOJQJ^JaJ8jh]h7oCJOJQJU^JaJmHnHsH uhLCJOJQJ^JaJh7oCJOJQJ^JaJ h]hLCJOJQJ^JaJOPQRSTUVmbOYZa $da$gd7ogd7o $ a$gd7o $ a$gd7o$a$gd7o [$\$gd7ogdLcklpq׬ج 랺{{fN7-jMh7oh7oCJEHOJQJU^JaJ/jX+A> h7oh7oCJOJQJUV^JaJ)jh7oh7oCJOJQJU^JaJ#h7oh7oCJH*OJQJ^JaJ h7oh7oCJOJQJ^JaJ7jA> h7oh7oCJOJQJUV^JaJmH sH 1jh7oh7oCJOJQJU^JaJmH sH .h7oh7o5CJOJQJ\^JaJmH sH (h7oh7oCJOJQJ^JaJmH sH  LN&9CL[\k/ٵٵُ{ُcL-jOh7oh7oCJEHOJQJU^JaJ/j'A> h7oh7oCJOJQJUV^JaJ&h7oh7o5CJOJQJ\^JaJ#h7oh7oCJH*OJQJ^JaJ&h7oh7o56CJOJQJ^JaJ#h7oh7o6CJOJQJ^JaJ#h7oh7oCJH*OJQJ^JaJ h7oh7oCJOJQJ^JaJ)jh7oh7oCJOJQJU^JaJ/012bcrRFQWX]^лp^^J h7oh7oCJOJQJUV^JaJMNCDyzQR[CGgdL$a$gd7o $ a$gd7o $da$gd7o yzR[Ͻϯ~mP>#h]hLCJH*OJQJ^JaJ8jh]hLCJOJQJU^JaJmHnHsH u h]hJ CJOJQJ^JaJhLCJOJQJ^JaJ h]hLCJOJQJ^JaJ#hJ hL5CJOJQJ^JaJhJ CJOJQJ^JaJ#h7oh7o5CJOJQJ^JaJh7oCJOJQJ^JaJ#h7oh7oCJH*OJQJ^JaJ h7oh7oCJOJQJ^JaJʳ̳ͳѳֳسܳܣrU7ܼ;jh]hLCJH*OJQJU^JaJmHnHsH u8jh]hLCJOJQJU^JaJmHnHsH u7jA> h7ohJ CJOJQJUV^JaJmH sH (h7ohJ CJOJQJ^JaJmH sH 1jh7ohJ CJOJQJU^JaJmH sH hJ CJOJQJ^JaJ#h]hLCJH*OJQJ^JaJ h]hLCJOJQJ^JaJ#h]hLCJH*OJQJ^JaJ #%&*/468=>BCFIҧvhV#h]hLCJH*OJQJ^JaJhJ CJOJQJ^JaJ7jA> h7ohJ CJOJQJUV^JaJmH sH (h7ohJ CJOJQJ^JaJmH sH 1jh7ohJ CJOJQJU^JaJmH sH #h]hLCJH*OJQJ^JaJ h]hLCJOJQJ^JaJ8jh]hLCJOJQJU^JaJmHnHsH uGHIK g HIJgdLIJKMOQU]bcef}ոէjU9jէ7jA> h7ohJ CJOJQJUV^JaJmH sH (h7ohJ CJOJQJ^JaJmH sH 1jh7ohJ CJOJQJU^JaJmH sH #h]hLCJH*OJQJ^JaJ#h]hLCJH*OJQJ^JaJ h]hLCJOJQJ^JaJ8jh]hLCJOJQJU^JaJmHnHsH uhJ CJOJQJ^JaJ8jh]hJ CJOJQJU^JaJmHnHsH uôĴŴƴȴ̴δϴ gҲҲҲҲҲҲҙhҲҲҲҲҲҲ7jA> h7ohJ CJOJQJUV^JaJmH sH (h7ohJ CJOJQJ^JaJmH sH 1jh7ohJ CJOJQJU^JaJmH sH #h]hLCJH*OJQJ^JaJhJ CJOJQJ^JaJ h]hLCJOJQJ^JaJ8jh]hLCJOJQJU^JaJmHnHsH u(gjkovzĵƵȵɵ ҙhҙhҲ7jA> h7ohJ CJOJQJUV^JaJmH sH (h7ohJ CJOJQJ^JaJmH sH 1jh7ohJ CJOJQJU^JaJmH sH hJ CJOJQJ^JaJ#h]hLCJH*OJQJ^JaJ h]hLCJOJQJ^JaJ8jh]hLCJOJQJU^JaJmHnHsH u(.0139<CGJKLNQTZ[\_bcd{}~εgJε8jh]hLCJOJQJU^JaJmHnHsH u8jh]hJ CJOJQJU^JaJmHnHsH u7jA> h7ohJ CJOJQJUV^JaJmH sH (h7ohJ CJOJQJ^JaJmH sH 1jh7ohJ CJOJQJU^JaJmH sH  h]hLCJOJQJ^JaJhJ CJOJQJ^JaJ#h]hLCJH*OJQJ^JaJJKGH]۹/0 $^a$gdJ $a$gdJ $a$gdJ gdhgdL~ķƷǷɷηзԷ޷߷ᲡsWEE#h]hLCJH*OJQJ^JaJ7jA> h7ohJ CJOJQJUV^JaJmH sH (h7ohJ CJOJQJ^JaJmH sH 1jh7ohJ CJOJQJU^JaJmH sH  h]hJ CJOJQJ^JaJ8jh]hLCJOJQJU^JaJmHnHsH u#h]hLCJH*OJQJ^JaJ h]hLCJOJQJ^JaJhJ CJOJQJ^JaJ߷&'-.H!"˶sdRCR/R/&hJ hJ 5CJH*OJQJ^JaJhJ 5CJOJQJ^JaJ#hJ hJ 5CJOJQJ^JaJhJ 6CJOJQJ^JaJ#hJ hJ 6CJOJQJ^JaJ#hJ hJ CJH*OJQJ^JaJ hJ hJ CJOJQJ^JaJhJ CJOJQJ^JaJ(hJ hJ CJOJQJ^JaJmH sH  h]hhCJOJQJ^JaJ h]hLCJOJQJ^JaJ#h]hLCJH*OJQJ^JaJ"'()*,/0GIJKMNPQRSTUYZ\]tu~¹ijij퉳{{{iiiiii#hJ hJ CJH*OJQJ^JaJhJ CJOJQJ^JaJ#hJ hJ 6CJOJQJ^JaJ/jA> hJ hJ CJOJQJUV^JaJ hJ hJ CJOJQJ^JaJ)jhJ hJ CJOJQJU^JaJ&hJ hJ 5CJH*OJQJ^JaJ#hJ hJ 5CJOJQJ^JaJ)¹ʹ˹͹ιӹԹչֹڹ۹ݹ޹0:;+,CEFػٻゥhTTT& jhJ hJ CJOJQJ^JaJ/jA> hJ hJ CJOJQJUV^JaJ)jhJ hJ CJOJQJU^JaJ&hJ hJ 6CJH*OJQJ^JaJ&hJ hJ 6CJH*OJQJ^JaJ#hJ hJ 6CJOJQJ^JaJhJ CJOJQJ^JaJ#hJ hJ CJH*OJQJ^JaJ hJ hJ CJOJQJ^JaJ Wwy̻ͻڽB $^a$gd x`gd x$a$gd x$a$gd x$p^p`a$gdJ $a$gdJ $ a$gdJ $ a$gdJ $ p@ ,Pa$gdJ "#6789=>QRSTWZ[noܯ܀i[C/j-A> hJ hJ CJOJQJUV^JaJhJ CJOJQJ^JaJ-jVhJ hJ CJEHOJQJU^JaJ/j,A> hJ hJ CJOJQJUV^JaJ-j#ThJ hJ CJEHOJQJU^JaJ/j,A> hJ hJ CJOJQJUV^JaJ)jhJ hJ CJOJQJU^JaJ hJ hJ CJOJQJ^JaJ$hJ hJ CJEHOJQJ^JaJopq|~ٽڽ۽ܽݽ޽°°žvgQ9Q9Q.h@IhJ 5CJH*OJQJ^JaJmHsH+h@IhJ 5CJOJQJ^JaJmHsHh x6CJOJQJ^JaJ&hJ hJ 6CJH*OJQJ^JaJ&hJ hJ 6CJH*OJQJ^JaJ#hJ hJ 6CJOJQJ^JaJ#hJ hJ CJH*OJQJ^JaJ hJ hJ CJOJQJ^JaJ)jhJ hJ CJOJQJU^JaJ-jXhJ hJ CJEHOJQJU^JaJ ӹӡӋvaKa5a5a5a+h@IhJ CJH*OJQJ^JaJmHsH+h@IhJ CJH*OJQJ^JaJmHsH(h@IhJ CJOJQJ^JaJmHsH(h@Ih xCJOJQJ^JaJmHsH+h@Ih x5CJOJQJ^JaJmHsH.h@IhJ 5CJH*OJQJ^JaJmHsH2jA> hJ hJ 5CJOJQJUV^JaJ+h@IhJ 5CJOJQJ^JaJmHsH,jhJ hJ 5CJOJQJU^JaJ+,45CDNO )ǵǧǙnVD/)jhJ hJ CJOJQJU^JaJ#hJ hJ CJH*OJQJ^JaJ/hJ hJ 6CJEHOJQJ^JaJmH sH (hJ hJ CJOJQJ^JaJmH sH +hJ hJ 6CJOJQJ^JaJmH sH hJ CJOJQJ^JaJh xCJOJQJ^JaJ#hJ hJ CJH*OJQJ^JaJ hJ hJ CJOJQJ^JaJ h.hJ CJOJQJ^JaJ+h@IhJ 6CJOJQJ^JaJmHsHBCDFbc pqst [$\$gdJ $ a$gdJ <gdJ $a$gdJ $a$gdJ )+,23ABĿſؿٿڿܿhQ9/j0A> hJ hJ CJOJQJUV^JaJ-jJ]hJ hJ CJEHOJQJU^JaJ/j81A> hJ hJ CJOJQJUV^JaJ-j=[hJ hJ CJEHOJQJU^JaJ/j#1A> hJ hJ CJOJQJUV^JaJ#hJ hJ CJH*OJQJ^JaJ hJ hJ CJOJQJ^JaJ)jhJ hJ CJOJQJU^JaJ/jA> hJ hJ CJOJQJUV^JaJ  3456;<OPQRª{dL5-jdhJ hJ CJEHOJQJU^JaJ/jP1A> hJ hJ CJOJQJUV^JaJ-jbhJ hJ CJEHOJQJU^JaJ/j#1A> hJ hJ CJOJQJUV^JaJ-j`hJ hJ CJEHOJQJU^JaJ/jE1A> hJ hJ CJOJQJUV^JaJ hJ hJ CJOJQJ^JaJ)jhJ hJ CJOJQJU^JaJ-jT_hJ hJ CJEHOJQJU^JaJRVWjklm«jR;-j^khJ hJ CJEHOJQJU^JaJ/j]2A> hJ hJ CJOJQJUV^JaJ-jhhJ hJ CJEHOJQJU^JaJ/j3A> hJ hJ CJOJQJUV^JaJ#hJ hJ CJH*OJQJ^JaJ-jfhJ hJ CJEHOJQJU^JaJ/jW1A> hJ hJ CJOJQJUV^JaJ)jhJ hJ CJOJQJU^JaJ hJ hJ CJOJQJ^JaJ abhiy!"()9:;<T̻s_&hJ h 35>*CJOJQJ^JaJhJ >*CJOJQJ^JaJ(hJ hJ CJOJQJ^JaJmH sH #hJ hJ 5CJOJQJ^JaJ#hJ hJ CJH*OJQJ^JaJ hJ hJ CJOJQJ^JaJhJ hJ 5OJQJ\^J hJ 5CJOJQJ\^JaJ#hJ hJ >*CJOJQJ^JaJ #xy;T ^`FHgdigdJ gdL$a$gdJ gd 3 [$\$gdJ [$\$^gdJ T lpt~zfzfz^zfzM h]hiCJOJQJ^JaJhJ hi5&hJ hi5CJH*OJQJ^JaJ#hJ hi5CJOJQJ^JaJ hJ hJ CJOJQJ^JaJ hJ hiCJOJQJ^JaJ#h]h 3CJH*OJQJ^JaJhJ CJOJQJ^JaJhJ 5CJOJQJ^JaJ#hJ h 35CJOJQJ^JaJ h]h 3CJOJQJ^JaJ (LX^HJ˺܆iU& jhJ hJ CJOJQJ^JaJ8jh]hiCJOJQJU^JaJmHnHsH uhJ CJOJQJ^JaJ&hJ hi5CJH*OJQJ^JaJ#hJ hi5CJOJQJ^JaJ hJ hJ CJOJQJ^JaJ hJ hiCJOJQJ^JaJ h]hiCJOJQJ^JaJ#h]hiCJH*OJQJ^JaJln68 tvgd6`gd6gdL`gdigdi48>BZ^dh&*04$<tx~оЬЬЬЬооооЬЬЛwfw h]h 3CJOJQJ^JaJ#h]h6CJH*OJQJ^JaJ#h]h6CJH*OJQJ^JaJ h]h6CJOJQJ^JaJ#h]hiCJH*OJQJ^JaJ#h]hiCJH*OJQJ^JaJ h]hiCJOJQJ^JaJ h]hJ CJOJQJ^JaJhiCJOJQJ^JaJ( &dhnrtvܹܫܡte[G&hjhL5>*CJOJQJ^JaJhjCJOJQJhj>*CJOJQJ^JaJ.hlhj5>*CJ(OJQJ^JaJ(mH sH (hj5>*CJ(OJQJ^JaJ(mH sH h6CJOJQJhJ CJOJQJ^JaJ h]h 3CJOJQJ^JaJ#h]h6CJH*OJQJ^JaJ h]h6CJOJQJ^JaJ#h]h6CJH*OJQJ^JaJdeq\s[\ew^_ace $IfgdY>[ $Ifgd{bgd6gd{gdgd$a$gdjgdLeqjs[\ewxͫͫhͫZI hjhjCJOJQJ^JaJh{bCJOJQJ^JaJ2jA> hJ hj5CJOJQJUV^JaJ#hJ hj5CJOJQJ^JaJ,jhJ hj5CJOJQJU^JaJ hjh{bCJOJQJ^JaJ hjh)CJOJQJ^JaJhjCJOJQJ^JaJ&hjh5>*CJOJQJ^JaJ hjhCJOJQJ^JaJeftvxz^ULLL $IfgdY>[ $Ifgd{bkdm$$Ifl\ I%  t0644 layt>(z{^UUUU $Ifgd{bkd:n$$Ifl\ I%  t0644 layt>( }~ޛޛޛފފveT hjhCJOJQJ^JaJ hjh5bCJOJQJ^JaJ&hjh65>*CJOJQJ^JaJ hjhCJOJQJ^JaJ#hjh)CJH*OJQJ^JaJhjCJOJQJ^JaJ hjh6CJOJQJ^JaJ#hjh{CJH*OJQJ^JaJ hjh)CJOJQJ^JaJ hjh{CJOJQJ^JaJ ^UUUUULL $Ifgd{ $Ifgd{bkdn$$Ifl\ I%  t0644 layt>(/0^YYPKYKgdj`gd{bgd{kdo$$Ifl\ I%  t0644 layt>(  UkdMp$$Ifl\ I%  t0644 layt>( $IfgdY>[ !5;AG^UUUU $IfgdY>[kdp$$Ifl\ I%  t0644 layt>(GHYmx^UUUUULL $Ifgd) $IfgdY>[kdq$$Ifl\ I%  t0644 layt>(T^YYTTTTOTgd6gdgd)kd`r$$Ifl\ I%  t0644 layt>( pq^kds$$Ifl4Fn5&``W t0&6    44 layt>( $$Ifa$gd>(gdL Pkds$$Ifl4\n5&  Wcd t0&644 layt>( $$Ifa$gd>( 0:^RRRR $$Ifa$gd>(kdt$$Ifl\n5&Wcd t0&644 layt>(:;P\lv^RRRR $$Ifa$gd>(kdRu$$Ifl\n5&Wcd t0&644 layt>(vw^RRRR $$Ifa$gd>(kdv$$Ifl\n5&Wcd t0&644 layt>(^RIRR $Ifgdh $$Ifa$gd>(kdv$$Ifl\n5&Wcd t0&644 layt>(HQow12$&46>@Ϳucucu#hjhd?CJH*OJQJ^JaJ hjhd?CJOJQJ^JaJ hjhKACJOJQJ^JaJ&hjh5>*CJOJQJ^JaJ&hjhKA5>*CJOJQJ^JaJhjCJOJQJ^JaJ hjhCJOJQJ^JaJ hjhCJOJQJ^JaJ hjhhCJOJQJ^JaJ9HR^RIRR $Ifgdh $$Ifa$gd>(kdw$$Ifl\n5&Wcd t0&644 layt>(RSe^RIRR $Ifgdh $$Ifa$gd>(kdNx$$Ifl\n5&Wcd t0&644 layt>(^RIRR $Ifgdh $$Ifa$gd>(kd y$$Ifl\n5&Wcd t0&644 layt>(^RRRR $$Ifa$gd>(kdy$$Ifl\n5&Wcd t0&644 layt>(2^YYYQYYLgdd?$a$gdjgdLkdz$$Ifl\n5&Wcd t0&644 layt>(@Bptv24^h? 3׽鯞{{i{XF7Fhj5CJOJQJ^JaJ#hjhd?5CJOJQJ^JaJ hjhjCJOJQJ^JaJ#hjhKACJH*OJQJ^JaJ hjhKACJOJQJ^JaJ#hjhd?CJH*OJQJ^JaJ hjhd?CJOJQJ^JaJhjCJOJQJ^JaJ2jA> hJ hj5CJOJQJUV^JaJ#hJ hj5CJOJQJ^JaJ,jhJ hj5CJOJQJU^JaJ4>?23r p^p`gdj ^`gdj & Fgdj & Fgdd?gdLgdd?3;=qrcg?BXZ-.=>EFGHSUQ޼ͼͪ͜͜ͼͼxxxxggg hjhbCJOJQJ^JaJ#hjh>CJH*OJQJ^JaJ#hjh>CJH*OJQJ^JaJhjCJOJQJ^JaJ#hjhd?CJH*OJQJ^JaJ hjh>CJOJQJ^JaJ hjhd?CJOJQJ^JaJhj5CJOJQJ^JaJ#hjhd?5CJOJQJ^JaJ(bcXY $Ifgdd?gdd? &qhhh $Ifgdd?kdJ{$$IflF@  {  t06    44 la1yt>(&',06qhhh $Ifgdd?kd{$$IflF@  {  t06    44 la1yt>(67<IRqhhh $Ifgdd?kd|$$IflF@  {  t06    44 la1yt>(RSUPQ#qlggggggggggdLgdd?kdT}$$IflF@  {  t06    44 la1yt>( ޼ޫqYqJ@hpCJOJQJhp>*CJOJQJ^JaJ.hlhp5>*CJ(OJQJ^JaJ(mH sH (hp5>*CJ(OJQJ^JaJ(mH sH hjCJOJQJh1CJOJQJ hjh1CJOJQJ^JaJ hjhLCJOJQJ^JaJ hjhMZCJOJQJ^JaJ hjhKACJOJQJ^JaJ hjhbCJOJQJ^JaJ hjh>CJOJQJ^JaJ#$}!fgdJ^$a$gdpgdL04BCDEGʸʪssʙʙʪaʸʙۙO#hphCJH*OJQJ^JaJ#hph+bCJH*OJQJ^JaJ#hphCJH*OJQJ^JaJ& jhphpCJOJQJ^JaJ hphCJOJQJ^JaJhpCJOJQJ^JaJ#hph+bCJH*OJQJ^JaJ hph+bCJOJQJ^JaJ hph1CJOJQJ^JaJ&hph15>*CJOJQJ^JaJ!ͻͩͩ͘vbQ?2jhDhp5U#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJ&hphJ^5>*CJOJQJ^JaJ hphLCJOJQJ^JaJ hph CJOJQJ^JaJ hph1CJOJQJ^JaJ#hphCJH*OJQJ^JaJ#hphCJH*OJQJ^JaJ hphCJOJQJ^JaJhpCJOJQJ^JaJ& jhphpCJOJQJ^JaJehiq̻̆xfWfWfB(h@IhJ^CJOJQJ^JaJmHsHhp5CJOJQJ^JaJ#hphp5CJOJQJ^JaJhJ^CJOJQJ^JaJ hphpCJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJhpCJOJQJ^JaJjhDhp5Uj?A> hDhp5UVhDhp5hi01no^bgdp ^`gdJ^gdJ^^gdp ^`gdpqsvw}~볧ց볧ցցp hphJ^CJOJQJ^JaJ+h@IhJ^CJH*OJQJ^JaJmHsHj?A> hDhp5UVh@Ihp5mHsHjhDhp5U+h@IhJ^CJH*OJQJ^JaJmHsH(h@IhJ^CJOJQJ^JaJmHsH(h@IhpCJOJQJ^JaJmHsH& !"#$*+-./2578>?ABCZ\]acdelmpqstv|}~ܗܗܗ#hphJ^CJH*OJQJ^JaJj?A> hDhp5UVhDhp5jhDhp5UhpCJOJQJ^JaJ hphJ^CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ;  !'(?ABILMNO\]^h򺤺{fPPf+h@IhJ^CJH*OJQJ^JaJmHsH(h@IhpCJOJQJ^JaJmHsHj?A> hDhp5UVh@Ihp5mHsHjhDhp5U+h@IhJ^CJH*OJQJ^JaJmHsH(h@IhJ^CJOJQJ^JaJmHsH#hphJ^5CJOJQJ^JaJ hphJ^CJOJQJ^JaJhpCJOJQJ^JaJ%&=?@UVa  "#$&ûККККވވވûވvވވv#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphpCJOJQJ^JaJj?A> hDhp5UVhDhp5jhDhp5UhpCJOJQJ^JaJ hphJ^CJOJQJ^JaJ hphMZCJOJQJ^JaJ.%& !ghx & Fgd5U`gdJ^ ^`gdpgdJ^&./017:<>?GH_abgkmnoqtwϾuufU hph5UCJOJQJ^JaJhJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJj?A> hDhp5UVhDhp5jhDhp5U hphJ^CJOJQJ^JaJ#hphpCJH*OJQJ^JaJ hphpCJOJQJ^JaJhpCJOJQJ^JaJ򾬚up򾚾^#hphMZ>*CJOJQJ^JaJ h5U5j?A> hDh5U5UVhDh5U5jhDh5U5U#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJ#hph5UCJH*OJQJ^JaJ hph5UCJOJQJ^JaJh5UCJOJQJ^JaJ _`{|ǵǣǕǕLJvdPdǣǕǕǣǕ&h5UhJ^5CJH*OJQJ^JaJ#h5UhJ^5CJOJQJ^JaJ hph5UCJOJQJ^JaJhJ^CJOJQJ^JaJh5UCJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJ&h5Uh5U5>*CJOJQJ^JaJ&h5UhJ^5>*CJOJQJ^JaJ 69:<ʼʪʘvʼʪʼʼʪʼۼdvv#h5Uh5U5CJOJQJ^JaJ hph5UCJOJQJ^JaJ h5U6CJOJQJ]^JaJ#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJh5UCJOJQJ^JaJ hphJ^CJOJQJ^JaJ h5UhJ^CJOJQJ^JaJ&h5UhJ^6CJOJQJ]^JaJ$st>?Oab $$Ifa$gd(5gd5UX^Xgd5U & Fgd5UgdJ^<>?BJKMOrst78:<>ппЮНygSgНy&h5UhJ^5CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ#h5UhJ^5CJOJQJ^JaJ hphJ^CJOJQJ^JaJ h5Uh5UCJOJQJ^JaJ hph5UCJOJQJ^JaJh5UCJOJQJ^JaJh5UCJH*OJQJ^JaJ#hph5UCJH*OJQJ^JaJ>?RSVWY[]^`abdepqsuwx޾ެެИrraPP h5UhJ^CJOJQJ^JaJ h5Uh5UCJOJQJ^JaJ h5U6CJOJQJ]^JaJ)h5UhJ^6CJH*OJQJ]^JaJ&h5UhJ^6CJOJQJ]^JaJ#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJh5UCJOJQJ^JaJ hphJ^CJOJQJ^JaJ hphMZCJOJQJ^JaJܶ܂pbQbQ?#hph5UCJH*OJQJ^JaJ hph5UCJOJQJ^JaJh5UCJOJQJ^JaJ#h5Uh5U5CJOJQJ^JaJhMZCJOJQJ^JaJ h5U6CJOJQJ]^JaJ)h5UhJ^6CJH*OJQJ]^JaJ&h5UhJ^6CJOJQJ]^JaJ#h5UhJ^CJH*OJQJ^JaJ h5UhJ^CJOJQJ^JaJ#h5UhJ^CJH*OJQJ^JaJ `abѿѝ}i}U}U}A&hphJ^6CJOJQJ]^JaJ&hphJ^5CJH*OJQJ^JaJ&hphJ^5CJH*OJQJ^JaJ#hphJ^5CJOJQJ^JaJhJ^CJOJQJ^JaJ hphJ^CJOJQJ^JaJ h5Uh5UCJOJQJ^JaJ#hph5UCJH*OJQJ^JaJ hph5UCJOJQJ^JaJh5UCJOJQJ^JaJh5UCJH*OJQJ^JaJ $$Ifa$gd(5lkd~$$Ifl0z>~04 lah $$Ifa$gd(5lkd~$$Ifl0z>~04 lah !#$&+-.0578:?ABDILMPUXY\adehmpqty|}ܺ&h_.*h_.*5>*CJOJQJ^JaJh5UCJOJQJ^JaJhJ^CJOJQJ^JaJ&hphJ^6CJOJQJ]^JaJ hphJ^CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ; $$Ifa$gd(5lkd0$$Ifl0z>~04 lah $$Ifa$gd(5lkd$$Ifl0z>~04 lah  $$Ifa$gd(5lkd^$$Ifl0z>~04 lah $$Ifa$gd(5lkd$$Ifl0z>~04 lah$& $$Ifa$gd(5lkd$$Ifl0z>~04 lah&'.0 $$Ifa$gd(5lkd#$$Ifl0z>~04 lah018: $$Ifa$gd(5lkd$$Ifl0z>~04 lah:;BD $$Ifa$gd(5lkdQ$$Ifl0z>~04 lahDEMP $$Ifa$gd(5lkd$$Ifl0z>~04 lahPQY\ $$Ifa$gd(5lkd$$Ifl0z>~04 lah\]eh $$Ifa$gd(5lkd$$Ifl0z>~04 lahhiqt $$Ifa$gd(5lkd$$Ifl0z>~04 lahtu} $$Ifa$gd(5lkdD$$Ifl0z>~04 lah+KLgdJ^lkdۆ$$Ifl0z>~04 lah ()+E}mWWF hphJ^CJOJQJ^JaJ+h@IhJ^CJH*OJQJ^JaJmHsHj?A> hDh5U5UVh@Ih5U5mHsHjhDh5U5U+h@IhJ^CJH*OJQJ^JaJmHsH(h@Ih5UCJOJQJ^JaJmHsH(h@IhJ^CJOJQJ^JaJmHsH&h_.*h_.*5>*CJOJQJ^JaJ)h_.*h_.*5>*CJH*OJQJ^JaJEFGHST_aefhj$%STUW|}!#.0=@ADEܼܮܼܼܼܼʼ#hph_.*CJH*OJQJ^JaJ hph_.*CJOJQJ^JaJh5UCJOJQJ^JaJh_.*CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ4EFHJKL Ƶp^^L#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ&h_.*hJ^5CJH*OJQJ^JaJ#h_.*hJ^5CJOJQJ^JaJh_.*CJOJQJ^JaJ hphJ^CJOJQJ^JaJ hphUCJOJQJ^JaJ h_.*hJ^#hph_.*CJH*OJQJ^JaJ hph_.*CJOJQJ^JaJh_.*CJH*OJQJ^JaJLOQrst^` ^`gd_.* ^`gdJ^ & F gdJ^gdJ^ !")*+,-034>AEFGIKLNOPQR鹋vaFvF4jhphJ^CJOJQJU^JaJmHnHu(h@Ih_.*CJOJQJ^JaJmHsH(h@IhJ^CJOJQJ^JaJmHsH.h@Ih_.*5CJH*OJQJ^JaJmHsH+h@Ih_.*5CJOJQJ^JaJmHsH.h@IhJ^5CJH*OJQJ^JaJmHsH.h@IhJ^5CJH*OJQJ^JaJmHsH+h@IhJ^5CJOJQJ^JaJmHsHR_ghijSTWXZ\^_`޺޺ޟޟ޺ޑ޺޺}ޑ޺}`}8jhphJ^CJOJQJU^JaJmHnHsH u&hphJ^6CJOJQJ]^JaJh_.*CJOJQJ^JaJ4jhphJ^CJOJQJU^JaJmHnHu#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJ h.hJ^CJOJQJ^JaJ`acdefgmt̷̢̢̑q\̢K̑̑ h_.*hJ^CJOJQJ^JaJ)hph_.*6CJH*OJQJ]^JaJ#hJ^6CJH*OJQJ]^JaJh_.*CJOJQJ^JaJ hphJ^CJOJQJ^JaJ)hphJ^6CJH*OJQJ]^JaJ)hphJ^6CJH*OJQJ]^JaJ&hphJ^6CJOJQJ]^JaJ>jhphJ^6CJOJQJU]^JaJmHnHsH u #),-ȫًvaSaA#hJ^6CJH*OJQJ]^JaJh_.*CJOJQJ^JaJ)hphJ^6CJH*OJQJ]^JaJ)hphJ^6CJH*OJQJ]^JaJ>jhphJ^6CJOJQJU]^JaJmHnHsH u8jhphJ^CJOJQJU^JaJmHnHsH u hphJ^CJOJQJ^JaJ&hphJ^6CJOJQJ]^JaJ#hphJ^CJH*OJQJ^JaJ-./KLlDfi $$Ifa$gd(5 $Ifgd(5gdJ^ ^`gdJ^-./?BJLklCN[elmnowxzhhhVDDzh#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ#h_.*hJ^5CJOJQJ^JaJh_.*CJOJQJ^JaJ&h/ih/i5>*CJOJQJ^JaJ&h_.*hJ^5>*CJOJQJ^JaJ hphJ^CJOJQJ^JaJ&hphJ^6CJOJQJ]^JaJ)hphJ^6CJH*OJQJ]^JaJ)hph_.*6CJH*OJQJ]^JaJACVWXYceiSTݵmmYKh/iCJOJQJ^JaJ& jh_.*h_.*CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJh_.*CJOJQJ^JaJ&h/ih_.*5>*CJOJQJ^JaJ&h_.*hJ^5>*CJOJQJ^JaJ&hphJ^5CJH*OJQJ^JaJ&hphJ^5CJH*OJQJ^JaJ#hphJ^5CJOJQJ^JaJ hphJ^CJOJQJ^JaJij|lcWWW $$Ifa$gd(5 $Ifgd(5kdr$$Ifl\ 9!5&  04 lalcWWW $$Ifa$gd(5 $Ifgd(5kd5$$Ifl\ 9!5&  04 lalcWWW $$Ifa$gd(5 $Ifgd(5kd$$Ifl\ 9!5&  04 lalcWWW $$Ifa$gd(5 $Ifgd(5kd$$Ifl\ 9!5&  04 laT ! 8 : | ~   lgggggggggggdJ^kd~$$Ifl\ 9!5&  04 la      !   8 :       | ~     ܼܮܮܠ|hTCܼܮ h_.*h_.*CJOJQJ^JaJ&h_.*h_.*5CJOJQJ\^JaJ&h_.*h_.*5CJH*OJQJ^JaJ#h_.*h_.*5CJOJQJ^JaJ#h_.*h_.*5CJOJQJ^JaJhJ^CJOJQJ^JaJh/iCJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJh_.*CJOJQJ^JaJ hphJ^CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ _  %     AB  QR @ ^@ `gd/igdJ^      " # $ c d           AB߿ήߚq_RJhDh/i5jhDh/i5U#hphJ^CJH*OJQJ^JaJ)h/ih/i5>*CJH*OJQJ^JaJ&h/ih/i5>*CJOJQJ^JaJ&h/ihJ^5>*CJOJQJ^JaJ h/ih/iCJOJQJ^JaJh/iCJH*OJQJ^JaJ hphJ^CJOJQJ^JaJh/iCJOJQJ^JaJ#h/ih/iCJH*OJQJ^JaJIJĠĠăraD0&hphJ^6CJOJQJ]^JaJ8jhphJ^CJOJQJU^JaJmHnHsH u hph/iCJOJQJ^JaJ hphMZCJOJQJ^JaJ8jhph/iCJOJQJU^JaJmHnHsH u#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJh/iCJOJQJ^JaJjhDh/i5Uj?A> hDh/i5UVŨŚŚňygSgB5j *h/ih/iU h/ih/iCJOJQJ^JaJ& *h/ih/iCJH*OJQJ^JaJ# *h/ih/iCJOJQJ^JaJhJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJh/iCJOJQJ^JaJ8jhph/iCJOJQJU^JaJmHnHsH u hphJ^CJOJQJ^JaJ&hphJ^6CJOJQJ]^JaJ)hphJ^6CJH*OJQJ]^JaJ   69:QR˺xjVH7 hph*NCJOJQJ^JaJhJ^CJOJQJ^JaJ&h*NhJ^5>*CJOJQJ^JaJhMZCJOJQJ^JaJ#h/ih/iCJH*OJQJ^JaJ hphJ^CJOJQJ^JaJ hph-'CJOJQJ^JaJh/iCJOJQJ^JaJ hph/iCJOJQJ^JaJj *h/ih/iUjA *h/ih/iEHUjM  *h/ih/iUV *h/ih/i01VX~]^_h & F7^7`gd*N ^`gdJ^^gd*NgdJ^ "-./0<=>?@AͻͭͻͩwfTfB#hph*NCJH*OJQJ^JaJ#hph*NCJH*OJQJ^JaJ hph*NCJOJQJ^JaJh*NCJH*OJQJ^JaJ#h*Nh*NCJH*OJQJ^JaJ h*Nh*NCJOJQJ^JaJh*Nh*NCJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJh*NCJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ˺xfxTxTxFxfhJ^CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJ h*NhJ^CJOJQJ^JaJh*NCJOJQJ^JaJ#h*Nh*NCJH*OJQJ^JaJ h*Nh*NCJOJQJ^JaJ#hph*NCJH*OJQJ^JaJ#hph*NCJH*OJQJ^JaJ hph*NCJOJQJ^JaJ  ,-./߻߻߭sk^kN?^j *h*Nh*NEHUjM  *h*Nh*NUVj *h*Nh*NU *h*Nh*N& *h*Nh*NCJH*OJQJ^JaJ& *h*Nh*NCJH*OJQJ^JaJ# *h*Nh*NCJOJQJ^JaJh*NCJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJh*NCJH*OJQJ^JaJ/019:;<=>?ATUVWXdefg~°žiPi7i1h@IhJ^6CJH*OJQJ]^JaJmHsH1h@IhJ^6CJH*OJQJ]^JaJmHsH.h@IhJ^6CJOJQJ]^JaJmHsH8jhphJ^CJOJQJU^JaJmHnHsH u#hphJ^CJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJh*NCJOJQJ^JaJ hphMZCJOJQJ^JaJhJ^CJOJQJ^JaJ~-./0123AFJO\]^_ھ̭x̭̭̭gVV hphJ^CJOJQJ^JaJ hphMZCJOJQJ^JaJ#hph*NCJH*OJQJ^JaJ#hph*NCJH*OJQJ^JaJ hph*NCJOJQJ^JaJ h*Nh*NCJOJQJ^JaJh-'CJOJQJ^JaJh*NCJOJQJ^JaJ hph-'CJOJQJ^JaJ(h@Ih-'CJOJQJ^JaJmHsHʻraD66h*NCJOJQJ^JaJ8jhphJ^CJOJQJU^JaJmHnHsH u hph*NCJOJQJ^JaJhJ^CJH*OJQJ^JaJ)hph*N6CJH*OJQJ]^JaJ h*N6CJOJQJ]^JaJ&hph*N6CJOJQJ]^JaJh*NCJH*OJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ!"CDP+hi ^`gdJ^ & FgdJ^gdJ^!"%9;CDEJ趡wbwQ4Q8jhph*NCJOJQJU^JaJmHnHsH u hphJ^CJOJQJ^JaJ)hphJ^6CJH*OJQJ]^JaJ&hphJ^6CJOJQJ]^JaJ+h@IhJ^CJH*OJQJ^JaJmHsH(h@IhJ^CJOJQJ^JaJmHsH1h@IhJ^6CJH*OJQJ]^JaJmHsH1h@IhJ^6CJH*OJQJ]^JaJmHsH.h@IhJ^6CJOJQJ]^JaJmHsHJKMOPRSTUlnᷞpZF1)hphJ^6CJH*OJQJ]^JaJ&hphJ^6CJOJQJ]^JaJ+h@IhJ^CJH*OJQJ^JaJmHsH(h@IhJ^CJOJQJ^JaJmHsH1h@IhJ^6CJH*OJQJ]^JaJmHsH1h@IhJ^6CJH*OJQJ]^JaJmHsH.h@IhJ^6CJOJQJ]^JaJmHsH#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJh*NCJOJQJ^JaJ۾۰۰۞ۆmTTTT?(h@IhJ^CJOJQJ^JaJmHsH1h@IhJ^6CJH*OJQJ]^JaJmHsH1h@IhJ^6CJH*OJQJ]^JaJmHsH.h@IhJ^6CJOJQJ]^JaJmHsH#hphJ^CJH*OJQJ^JaJh*NCJOJQJ^JaJ8jhphJ^CJOJQJU^JaJmHnHsH u hphJ^CJOJQJ^JaJ&hphJ^6CJOJQJ]^JaJ!"%&(*+-./կssaI0I1h@IhJ^6CJH*OJQJ]^JaJmHsH.h@IhJ^6CJOJQJ]^JaJmHsH#hphJ^CJH*OJQJ^JaJh*NCJOJQJ^JaJ hphJ^CJOJQJ^JaJ8jhphJ^CJOJQJU^JaJmHnHsH u hphMZCJOJQJ^JaJ)hphJ^6CJH*OJQJ]^JaJ&hphJ^6CJOJQJ]^JaJ+h@IhJ^CJH*OJQJ^JaJmHsH/0IK]_ehil!"$湣ziXiFi8ih*NCJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hph-'CJOJQJ^JaJ hphJ^CJOJQJ^JaJ)hphJ^6CJH*OJQJ]^JaJ&hphJ^6CJOJQJ]^JaJ+h@IhJ^CJH*OJQJ^JaJmHsH(h@IhJ^CJOJQJ^JaJmHsH.h@IhJ^6CJOJQJ]^JaJmHsH1h@IhJ^6CJH*OJQJ]^JaJmHsH$(;<KMTVWXY`eprxz{~ܼܨ~~~~aaPܼܨ hphUCJOJQJ^JaJ8jhphJ^CJOJQJU^JaJmHnHsH u)hphJ^6CJH*OJQJ]^JaJ)hphJ^6CJH*OJQJ]^JaJ&hphJ^6CJOJQJ]^JaJ#hphJ^CJH*OJQJ^JaJh*NCJOJQJ^JaJ hphJ^CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ<T{ WoX^XgdCX^Xgd*NgdJ^ ^`gdJ^ ^`gd*N & FgdJ^  ?CVWfveSEhCCJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphUCJOJQJ^JaJ8jhphUCJOJQJU^JaJmHnHsH u8jhphJ^CJOJQJU^JaJmHnHsH u hphJ^CJOJQJ^JaJ)hphJ^6CJH*OJQJ]^JaJ&hphJ^6CJOJQJ]^JaJ)hphJ^6CJH*OJQJ]^JaJfgoqrst{IȳȞȞȞ܁܁o[G6 hphx[CJOJQJ^JaJ&hChC5>*CJOJQJ^JaJ&hChx[5>*CJOJQJ^JaJ#hph-'>*CJOJQJ^JaJ8jhphJ^CJOJQJU^JaJmHnHsH u)hphJ^6CJH*OJQJ]^JaJ)hphJ^6CJH*OJQJ]^JaJ&hphJ^6CJOJQJ]^JaJ hphJ^CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ=:V $IfgdJ^gdJ^ I~<=&(./;>BCEGNOVWܼܪss΅saasaaass#hChCCJH*OJQJ^JaJ#hChCCJH*OJQJ^JaJ hChCCJOJQJ^JaJ&hChJ^5>*CJOJQJ^JaJ#hph-'>*CJOJQJ^JaJ#hphx[CJH*OJQJ^JaJhCCJOJQJ^JaJ hphx[CJOJQJ^JaJ#hChx[5CJOJQJ^JaJ#VWY]_d^UUUU $IfgdJ^kdK$$Ifl\BF$   t0644 layt>(deinpu^UUUU $IfgdJ^kd$$Ifl\BF$   t0644 layt>(uv{^UUUU $IfgdJ^kd$$Ifl\BF$   t0644 layt>(^UUUU $IfgdJ^kdm$$Ifl\BF$   t0644 layt>(KL^YYYMMMM [$\$gdCgdJ^kd#$$Ifl\BF$   t0644 layt>( #%-ٺ˩˩ˉxdOd:d)hChJ^6CJH*OJQJ]^JaJ)hChJ^6CJH*OJQJ]^JaJ&hChJ^6CJOJQJ]^JaJ hphCCJOJQJ^JaJhJ^CJOJQJ^JaJ#hphJ^CJH*OJQJ^JaJ hphJ^CJOJQJ^JaJ hChCCJOJQJ^JaJhCCJOJQJ^JaJ&hChC5CJH*OJQJ^JaJ#hChC5CJOJQJ^JaJ./[\,  [$\$gdC$[$\$a$gdC & FgdCgdJ^[$\$^gdC-.;=?@PRZ[jlnoммsaބsL)hChJ^56CJOJQJ]^JaJ#hphJ^CJH*OJQJ^JaJ hphCCJOJQJ^JaJhJ^CJOJQJ^JaJ)hChJ^6CJH*OJQJ]^JaJ)hChJ^6CJH*OJQJ]^JaJ&hChJ^6CJOJQJ]^JaJhCCJOJQJ^JaJ hphJ^CJOJQJ^JaJ hChJ^CJOJQJ^JaJ +,AB`     ñ{jXjJ8Jj#hChC5CJOJQJ^JaJhCCJOJQJ^JaJ#hChCCJH*OJQJ^JaJ hChCCJOJQJ^JaJ#hC5>*CJ OJQJ\^JaJ )hChC5>*CJ OJQJ\^JaJ hC>*CJOJQJ^JaJ#hph-'>*CJOJQJ^JaJ hphJ^CJOJQJ^JaJ)hChJ^56CJOJQJ]^JaJ,hChJ^56>*CJOJQJ]^JaJ  !!!_"`"y"$#(#)#+#0#6#9#<#@#B#C#E#G#H#I# $ a$gdC HgdC gdC [$\$gdC  &!E!n!w!`"y"""####$#'#)#*#+#/#0#5#6#8#9#;#<#?#@#A#C#D#E#F#H#T$a$$$%%-%.%m#hChCCJH*OJQJ^JaJ4jhChCCJOJQJU^JaJmHnHu#hChCCJH*OJQJ^JaJ)hChC5>*CJOJQJ\^JaJ#hChC5CJOJQJ^JaJhCCJOJQJ^JaJ hChCCJOJQJ^JaJhZmCJOJQJ^JaJ*I##1$%%%%u&z&{&}&&&&&&&&&&&&Q'R'$ & F a$gdC $ a$gdC $ Ha$gdC$ & F Ha$gdC.%~%%&&v&y&{&|&}&&&&&&&&&&&&&&&&&&&&&&&b(c(d(p(nZ&hZmhC5>*CJOJQJ^JaJ hZmhZmCJOJQJ^JaJhZmCJOJQJ^JaJ#hZmhC5CJOJQJ^JaJhCCJOJQJ^JaJ4jhChCCJOJQJU^JaJmHnHu#hChC5CJOJQJ^JaJ)hChC56CJOJQJ]^JaJ hChCCJOJQJ^JaJ#R'[''c(d((((((((((((((((((())gdZm$ ^a$gdZm$ & F a$gdC $ a$gdCp(x((((((((((((((())5)))ǪǪǪǪǪ|jYG#hChC5CJOJQJ^JaJ hChCCJOJQJ^JaJ#hChCCJOJQJ\^JaJ hChZmCJOJQJ^JaJhZmCJOJQJ^JaJhZm>*CJOJQJ^JaJ8jhphZmCJOJQJU^JaJmHnHsH u hphZmCJOJQJ^JaJ&hZmhC5>*CJOJQJ^JaJ&hZmhZm5>*CJOJQJ^JaJ)!)")5)r))))**T+W+\+_+`+d+e+f+g+h+++N,gdZmh[$\$^hgdC [$\$gdZm [$\$gdC & F[$\$gdC))))))))))*************T+ȷq_qMqM_q_q_q?qhZmCJOJQJ^JaJ#hphZmCJH*OJQJ^JaJ#hphZmCJH*OJQJ^JaJ hphZmCJOJQJ^JaJ!hZmhZm5>*OJQJ\^J$hZmhC5>*H*OJQJ\^J!hZmhC5>*OJQJ\^J hChCCJOJQJ^JaJ#hChCCJH*OJQJ^JaJ#hChC5CJOJQJ^JaJ&hChC5CJH*OJQJ^JaJT+V+W+[+\+^+`+c+++++M,N,, -(-8---- .D.M.P.Q.$/%/,/-/Z/[/x/~//////////ԴԢԢԐԐԐԃ{kԐj?A> hDhZm5UVhDhZm5jhDhZm5U#hphZmCJH*OJQJ^JaJ#hZmhZm5CJOJQJ^JaJ#hphZm5CJOJQJ^JaJhZmCJOJQJ^JaJ hphZmCJOJQJ^JaJ4jhphZmCJOJQJU^JaJmHnHu*N,,,,- - -(-:-okdٓ$$Ifl0z 2 04 laMytZm $IfgdZmgdZm:-;-U-e- $IfgdZmokdv$$Ifl0z 2 04 laMytZme-f--- $IfgdZmokd$$Ifl0z 2 04 laMytZm---Q...x// 0 0000112;2gdZmokd$$Ifl0z 2 04 laMytZm/////0 0 0;0<0000011111222 2;2<2A2C2^2_2v2w22222222222333%3ܮܮܓܮܮܮܮ܂shfCJH*OJQJ^JaJ hphfCJOJQJ^JaJ4jhphZmCJOJQJU^JaJmHnHu#hphZmCJH*OJQJ^JaJhfCJOJQJ^JaJhZmCJOJQJ^JaJ hphZmCJOJQJ^JaJ#hphZmCJH*OJQJ^JaJ,;2=2G2H2I222222222%3&3333 4P4444'5{555 & F[$\$gdC [$\$gdCgdZm%3C3E3333344&5'5(515z5{5|55!6(6*6966677777d7e77777yhhWW hfhJ^CJOJQJ^JaJ hphJ^CJOJQJ^JaJ&hfhJ^5>*CJOJQJ^JaJhf>*CJOJQJ^JaJhZm>*CJOJQJ^JaJ#hfhC5CJOJQJ^JaJ#hChC5CJOJQJ^JaJhfCJOJQJ^JaJ#hChCCJH*OJQJ^JaJ hChCCJOJQJ^JaJ!5 6!6*6677777e7777g8h888899 $ Ha$gdf$a$gdf $<^<a$gdfgdJ^$ & F ^a$gdf $ a$gdC [$\$gdC7E8F8[8\8_8`8f8g88888888`9a9v9w9z9{9999999999999˽oUo2jC> hfhf5CJOJQJUV^JaJ,jhfhf5CJOJQJU^JaJ&hfhf5CJH*OJQJ^JaJ#hfhf5CJOJQJ^JaJ hf6CJOJQJ]^JaJhfCJOJQJ^JaJ#hfhfCJH*OJQJ^JaJ#hfhfCJH*OJQJ^JaJ hfhfCJOJQJ^JaJ!999999:<:=:{:|:}::::::::::::;;;;;;u;w;x;{;|;;;;;ٴzlllzhfCJOJQJ^JaJ#hfhfCJH*OJQJ^JaJ) jhfhf5CJOJQJ^JaJ$hfhfCJEHOJQJ^JaJ hfhfCJOJQJ^JaJ&hfhf5CJH*OJQJ^JaJ&hfhf5CJH*OJQJ^JaJ#hfhf5CJOJQJ^JaJ%9:{:::;; <6<7< =!=x===== $ Ha$gdf $ a$gdf$ & F a$gdf$ ^a$gdf $ a$gdf$ & F a$gdf $ a$gdf;; <<<<< <!<&<'<0<1<4<6<7<F<G<<<<<<<<< = = ==== =*=ʶʢʍʢʢʶ{mmʢʶmʢʶm[#hfhfCJOJQJ\^JaJhfCJOJQJ^JaJ#hfhfCJH*OJQJ^JaJ) jhfhf5CJOJQJ^JaJ&hfhf5CJH*OJQJ^JaJ&hfhf5CJH*OJQJ^JaJ#hfhf5CJOJQJ^JaJ hfhfCJOJQJ^JaJ#hfhfCJH*OJQJ^JaJ!*=+=.=/=@=A=O=P=u=v=x=y=z============ڲq]H])h@Ihf5CJH*OJQJ\^JaJ&h@Ihf5CJOJQJ\^JaJ, jhfhf5CJOJQJ\^JaJ)hfhf5CJH*OJQJ\^JaJ)hfhf5CJH*OJQJ\^JaJ&hfhf5CJOJQJ\^JaJ&hfhfCJH*OJQJ\^JaJ#hfhfCJOJQJ\^JaJ&hfhfCJH*OJQJ\^JaJ================>T>V>~>>uugXD6h:SCJOJQJ^JaJ&hfhJ^5>*CJOJQJ^JaJhf>*CJOJQJ^JaJhfCJOJQJ^JaJ#hfhfCJH*OJQJ^JaJ hfhfCJOJQJ^JaJ#h@Ihf5CJOJQJ^JaJ, jhfhf5CJOJQJ\^JaJ&h@Ihf5CJOJQJ\^JaJ)h@Ihf5CJH*OJQJ\^JaJ)h@Ihf5CJH*OJQJ\^JaJ=>T>U>~>>??????H@I@@@@GAfAAAA$ p a$gd:S$ H]a$gd:S $ Ha$gd:S $ a$gd:SgdJ^ [$\$gdf>>>>>>>> ? ???????????????@ŴٌzzlZE)jh:Sh:SCJOJQJU^JaJ#h:Sh:SCJH*OJQJ^JaJh:SCJOJQJ^JaJ#h:Sh:SCJH*OJQJ^JaJ'h:Sh:S6CJEHOJQJ^JaJ'h:Sh:S6CJEHOJQJ^JaJ h:Sh:SCJOJQJ^JaJ'h:Sh:S6CJEH OJQJ^JaJ&h:Sh:S6CJH*OJQJ^JaJ#h:Sh:S6CJOJQJ^JaJ@@@@@@,@-@.@/@3@<@>@?@E@H@Y@Z@h@j@q@s@~@л{iUAiUiUiUiUi'h:Sh:SCJEHOJQJ]^JaJ&h:Sh:SCJH*OJQJ]^JaJ#h:Sh:SCJOJQJ]^JaJ-jh:Sh:SCJEHOJQJU^JaJ/j!B h:Sh:SCJOJQJUV^JaJ h:Sh:SCJOJQJ^JaJ)jh:Sh:SCJOJQJU^JaJ-jMh:Sh:SCJEHOJQJU^JaJ/j~C> h:Sh:SCJOJQJUV^JaJ~@@@@JAKANAOAbAcAdAeA}A~AAAAAAAٵ٠وqٵ_٠G/j_C> h:Sh:SCJOJQJUV^JaJ#h:Sh:SCJH*OJQJ^JaJ-j!h:Sh:SCJEHOJQJU^JaJ/j~C> h:Sh:SCJOJQJUV^JaJ)jh:Sh:SCJOJQJU^JaJ#h:Sh:SCJH*OJQJ^JaJ#h:Sh:S5CJOJQJ^JaJ h:Sh:SCJOJQJ^JaJ)h:Sh:S5CJOJQJ\]^JaJAAAAAAAAAAAAAAAAAB B"B#B6BŴ~ӣfOӣӣ-jh:Sh:SCJEHOJQJU^JaJ/jjC> h:Sh:SCJOJQJUV^JaJ$h:Sh:SCJEH OJQJ^JaJ#h:Sh:SCJH*OJQJ^JaJ h:Sh:SCJOJQJ^JaJ h:Sh:SCJOJQJ^JaJh:SCJOJQJ^JaJ)jh:Sh:SCJOJQJU^JaJ-jh:Sh:SCJEHOJQJU^JaJAA:B;B~BBCCCCUDVDnDDD&EEEEEFF$ da$gd:S $ a$gd:S $ a$gd:S $ Ha$gd:S$ p a$gd:S6B7B8B9B:B;BWBXBfBgBzB{B|B}B~BBBB$CлoXJ8#h:Sh:SCJH*OJQJ^JaJh:SCJOJQJ^JaJ-jh:Sh:SCJEHOJQJU^JaJ/jC> h:Sh:SCJOJQJUV^JaJ#h:Sh:SCJH*OJQJ^JaJ h:Sh:SCJOJQJ^JaJ h:Sh:SCJOJQJ^JaJ)jh:Sh:SCJOJQJU^JaJ-jh:Sh:SCJEHOJQJU^JaJ/jqC> h:Sh:SCJOJQJUV^JaJ$C%CCCCCCCCCCCCCCCDDDʶʉw]D1$h:Sh:SCJEHOJQJ^JaJ0jT *h:Sh:SCJEHOJQJU^JaJ2jC>  *h:Sh:SCJOJQJUV^JaJ# *h:Sh:SCJOJQJ^JaJ,j *h:Sh:SCJOJQJU^JaJ* *h:Sh:S5CJEHOJQJ^JaJ& *h:Sh:S5CJOJQJ^JaJ#h:Sh:S5CJOJQJ^JaJ h:Sh:SCJOJQJ^JaJ$h:Sh:SCJEH OJQJ^JaJDDEDVDWDhDiDmDnDDDDDDDDDDDEE#E˷ܐ||ܐhYG5#h:Sh:SCJH*OJQJ^JaJ#h:Sh:S6CJOJQJ^JaJh:S6CJOJQJ^JaJ'h:Sh:S6CJEHOJQJ^JaJ'h:Sh:S6CJEH OJQJ^JaJ#h:Sh:S6CJOJQJ^JaJ)h:Sh:S56CJH*OJQJ^JaJ&h:Sh:S56CJOJQJ^JaJ h:S56CJOJQJ^JaJ h:Sh:SCJOJQJ^JaJ$h:Sh:SCJEHOJQJ^JaJ#E&E3E4ECEDEWEXEYEZE|E~EEEEEEEEEEEEEܵܝܵnWܵ?/jC> h:Sh:SCJOJQJUV^JaJ-jŪh:Sh:SCJEHOJQJU^JaJ/jC> h:Sh:SCJOJQJUV^JaJ-jh:Sh:SCJEHOJQJU^JaJ/j+@ h:Sh:SCJOJQJUV^JaJ)jh:Sh:SCJOJQJU^JaJ#h:Sh:SCJH*OJQJ^JaJ h:Sh:SCJOJQJ^JaJ#h:Sh:SCJH*OJQJ^JaJEEEEEEEF F0F2FSFTFdFeFFFFFFFFFFF°{{{{cL-jh:Sh:SCJEHOJQJU^JaJ/jAC> h:Sh:SCJOJQJUV^JaJ&h:Sh:S6CJH*OJQJ^JaJ#h:Sh:S6CJOJQJ^JaJh:S5CJOJQJ^JaJ#h:Sh:S5CJOJQJ^JaJ h:Sh:SCJOJQJ^JaJ)jh:Sh:SCJOJQJU^JaJ-jh:Sh:SCJEHOJQJU^JaJFFFG'G(G2G3GFGGGHGIGZG[GnGoGpGqGuGлhP9-jh:Sh:SCJEHOJQJU^JaJ/jC> h:Sh:SCJOJQJUV^JaJ-jh:Sh:SCJEHOJQJU^JaJ/jC> h:Sh:SCJOJQJUV^JaJ$h:Sh:SCJEHOJQJ^JaJ h:Sh:SCJOJQJ^JaJ)jh:Sh:SCJOJQJU^JaJ-jh:Sh:SCJEHOJQJU^JaJ/jlC> h:Sh:SCJOJQJUV^JaJFGzG{G|GGuHHHVIIIJ2K3KKKRLSL~LLLLLgdK1gdK1$[$\$a$gdK1gd:Sgd_$a$gd:S $ a$gd:SuGzG|GGGSITIXIYI[I`IdIeIfI}IIIIII˺ߩo]Coߩ2jC> hfh:S5CJOJQJUV^JaJ#hfh:S5CJOJQJ^JaJ,jhfh:S5CJOJQJU^JaJ#hphCJH*OJQJ^JaJ hph-CJOJQJ^JaJ hphCJOJQJ^JaJ hph_CJOJQJ^JaJ&h:Sh_5>*CJOJQJ^JaJh:SCJOJQJ^JaJ#h:Sh:S5CJOJQJ^JaJIIIIIIIIIIIIIII*J+J,J~JJJJJJJJJJJJJJJJJʹʹʹvvvvʹvv_,jhfh:S5CJOJQJU^JaJ#hph-CJH*OJQJ^JaJh:SCJOJQJ^JaJ#hph/RCJH*OJQJ^JaJ hph/RCJOJQJ^JaJ hph-CJOJQJ^JaJ hphCJOJQJ^JaJ#hphCJH*OJQJ^JaJ#hphCJH*OJQJ^JaJ"JKKKK!K&K,K-K.K1K2K3KDKEKGKHKKKKKKKKKKKӼziWiiE#hph/RCJH*OJQJ^JaJ#hph-CJH*OJQJ^JaJ hph/RCJOJQJ^JaJ hphLCJOJQJ^JaJ#hph-CJH*OJQJ^JaJ hph-CJOJQJ^JaJh:SCJOJQJ^JaJ,jhfh:S5CJOJQJU^JaJ2jC> hfh:S5CJOJQJUV^JaJ#hfh:S5CJOJQJ^JaJKKKKKKKLLLL L8L@LRLSLTL~LLLLLLMﺰn]I]&hK1hK15CJOJQJ\^JaJ hK1hK1CJOJQJ^JaJ&hK1hK15>*CJOJQJ^JaJhK1>*CJOJQJ^JaJhK1(hK15>*CJ(OJQJ^JaJ(mH sH  hK1CJhLCJOJQJ hph-CJOJQJ^JaJ#hph/RCJH*OJQJ^JaJ#hph/RCJH*OJQJ^JaJ hph/RCJOJQJ^JaJLLMiMMN9N:NKNNN]OOOO+PPPPPPPPPP$[$\$a$gdK1[$\$`gdK1 [$\$gdK1gdK1MMXMYMZM\MaMbMcMdMhMiMMMMMMMMMMMMMMMMMMMMMN N N N"N#N&N'N:NKNNNNNNNNN\O]OmOtOO#hK1hK15CJOJQJ^JaJhK15CJOJQJ^JaJ&hK1hK15CJOJQJ\^JaJ#hK1hK1CJH*OJQJ^JaJ hK1hK1CJOJQJ^JaJhK1CJOJQJ^JaJ6OOOO*P+PPPPPPPPPPPPPPPQuQQRRۮۜۜۈss_N@hicgCJOJQJ^JaJ hK1hicgCJOJQJ^JaJ&hK1hK15>*CJOJQJ^JaJ)hK1hK16CJH*OJQJ]^JaJ&hK1hK16CJOJQJ]^JaJ#hK1hK1CJH*OJQJ^JaJ<jhK1hK1CJOJQJU^JaJmHnHsH tH uhK1CJOJQJ^JaJ hK1hK1CJOJQJ^JaJ&hK1hK15>*CJOJQJ^JaJPPPPPQRSSSYTZTmTnT{TT}UUUUUUUUUU$a$gdicg$a$gdicggdicg [$\$gdicggdK1R:RERSSSSSSSSSTTT!T"TPTVTZTmTnT{TTT?U`UaUbUcUgU}U﬽˽vbP#hicghicgCJH*OJQJ^JaJ&hicghicg5>*CJOJQJ^JaJ&hicghK15>*CJ$OJQJ^JaJ$hK1CJOJQJ^JaJ&hK1hK15>*CJOJQJ^JaJ hK1hK1CJOJQJ^JaJhicgCJOJQJ^JaJ#hicghicg5CJOJQJ^JaJ#hK1hicg5CJOJQJ^JaJ hK1hicgCJOJQJ^JaJ}UUUUUUUUUUUUU-V.V1V2V3VGVgWhWuWvWwWxWWWWб|kYkGkGkGk#hK1hK1CJH*OJQJ^JaJ#hK1hK1CJH*OJQJ^JaJ hK1hK1CJOJQJ^JaJ&hicghK15>*CJOJQJ^JaJhK1CJOJQJ^JaJ$hicghicgCJEH OJQJ^JaJ hicghicgCJOJQJ^JaJhicgCJOJQJ^JaJ hK1hicgCJOJQJ^JaJ<jhK1hicgCJOJQJU^JaJmHnHsH tH uUUUUUUUUUU1V2V3VGV:WCWKWXWjW $IfgdtIgdK1$a$gdicggdicgjWkWtWyW|WW^UUUU $IfgdtIkd$$Ifl\@ b"_"2N t0644 laMyttIWWWWWW^UUUU $IfgdtIkdԷ$$Ifl\@ b"_"2N t0644 laMyttIWWWWWW^UUUU $IfgdtIkd$$Ifl\@ b"_"2N t0644 laMyttIWWWWYY2Y_ZaZ~ZZZZZ_[`[[[[[[[\\/\0\8\9\˷tܘܘWܘWܘWIhK1CJOJQJ^JaJ8jhK1hK1CJOJQJU^JaJmHnHsH u#hicghicg5CJOJQJ^JaJ#hicghK15CJOJQJ^JaJhicgCJOJQJ^JaJ hicghicgCJOJQJ^JaJ&hicghK15>*CJOJQJ^JaJ hicg5>*CJOJQJ^JaJ hK1hK1CJOJQJ^JaJ#hK1hK1CJH*OJQJ^JaJWWWYYY2YY_Z`Z^YYYYYTTYgdicggdK1kd\$$Ifl\@ b"_"2N t0644 laMyttI `ZaZZZ`[[[[[[[[[[[[[[\\\\\\\\/\1\2\3\gdK13\4\5\6\7\8\9\:\;\E\\\,]/]]0^1^w^^^^^ __ $$Ifa$gdj}$[$\$a$gdmgdK19\:\;\E\r\\\\\\y]]]]2^B^C^D^E^F^N^O^Q^R^S^޼ޮޮޜޮފvvbvS>) jh#,hm5CJOJQJ^JaJhm5CJOJQJ^JaJ&h#,hm5CJH*OJQJ^JaJ&h#,hm5CJH*OJQJ^JaJ#h#,hm5CJOJQJ^JaJ#hj}hK15CJOJQJ^JaJhj}CJOJQJ^JaJhicgCJOJQJ^JaJ&hicghK15>*CJOJQJ^JaJ hK1hK1CJOJQJ^JaJ hK1hicgCJOJQJ^JaJS^^^_^a^b^i^k^n^o^p^t^w^^^^^^^__1_ʶxjYGx5#hj}hK15CJOJQJ^JaJ#hj}hK15CJOJQJ^JaJ hK1hj}CJOJQJ^JaJhK1CJOJQJ^JaJ hK1hK1CJOJQJ^JaJhj}CJOJQJ^JaJhmCJOJQJ^JaJ h#,hmCJOJQJ^JaJ&h#,hm5CJH*OJQJ^JaJ&h#,hm5CJH*OJQJ^JaJhm5CJOJQJ^JaJ#h#,hm5CJOJQJ^JaJ__1_^_r_qhhh $IfgdtIkd $$IflF % e t06    44 layttIr_s____qhhh $IfgdtIkdκ$$IflF % e t06    44 layttI1_s____{`|````````waxaaaaā̻̄vhWE#h#,h#,5CJOJQJ^JaJ h#,hmCJOJQJ^JaJh#,CJOJQJ^JaJhmCJOJQJ^JaJ#h#,h#,CJH*OJQJ^JaJ hmh#,CJOJQJ^JaJ&h#,h#,5CJOJQJ\^JaJ hm5CJOJQJ\^JaJ h#,h#,CJOJQJ^JaJ#hj}hK15CJOJQJ^JaJ hK1hK1CJOJQJ^JaJ___H`z`qhhh $IfgdtIkd|$$IflF % e t06    44 layttIz`{``axaaaqeVVGG$[$\$a$gd#,$[$\$a$gdm [$\$gdmkd*$$IflF % e t06    44 layttIaaaaaaaaaaaaaaa/b0bbbbbccڱڝ~jYKYKY9Y9#hj}hK15CJOJQJ^JaJhj}CJOJQJ^JaJ hK1hK1CJOJQJ^JaJ&hj}hK15>*CJOJQJ^JaJ hK1hmCJOJQJ^JaJhK1CJOJQJ^JaJ&h#,h#,5CJOJQJ\^JaJ) jh#,h#,5CJOJQJ^JaJ&h#,h#,5CJH*OJQJ^JaJ#h#,h#,5CJOJQJ^JaJ&h#,h#,5CJH*OJQJ^JaJaaaaa0bb]ccccdVdWdXdnddbeceBfCfSfhfifjfkf$a$gd@Igdj}gdK1$[$\$a$gd#,cRcSc\c]cacccccccccccccccccccccd,d.d/d3dᜇv_vNᜇ hj}hK1CJOJQJ^JaJ, jhj}hj}6CJOJQJ]^JaJ hj}6CJOJQJ]^JaJ)hK1hK16CJH*OJQJ]^JaJ&hK1hK16CJOJQJ]^JaJ hK1hj}CJOJQJ^JaJ#hj}hj}5CJOJQJ^JaJhK1CJOJQJ^JaJhj}CJOJQJ^JaJ hK1hK1CJOJQJ^JaJ3d4d6d?dBdCdDdIdJdRdSdUdVdXdndddddddee ff.f>fSfTfdf֮֝xfXffffPLh@Ijh@IUhj}CJOJQJ^JaJ#hj}hK15CJOJQJ^JaJ&hj}hK15>*CJOJQJ^JaJ hK1hK1CJOJQJ^JaJ hj}hK1CJOJQJ^JaJ, jhj}hj}6CJOJQJ]^JaJ hj}6CJOJQJ]^JaJ&hK1hK16CJOJQJ]^JaJ)hK1hK16CJH*OJQJ]^JaJdfefffgfhfjflffffffffff&h'h(h1h2h´䰥‰{m\E,jhfhj}5CJOJQJU^JaJ hK1hj}CJOJQJ^JaJhK1CJOJQJ^JaJhj}CJOJQJ^JaJ&hj}hK15>*CJOJQJ^JaJjh@IUjM h@IUVh@IhmCJOJQJ^JaJ hK1hK1CJOJQJ^JaJ hK1h@ICJOJQJ^JaJjh@IUjؼh@IUjM h@IUVkflf~fffftgug'h(h]h^hhiiiiii4jrjjjklll [$\$gdj}$a$gd@IgdK12hIhKhLhOhRhShZh[h\h]h^hhhhhhiiiiӼ}lZlRNC;Rjh@IUjM h@IUVh@Ijh@IU#hK1hj}CJH*OJQJ^JaJ hK1hj}CJOJQJ^JaJhK1CJOJQJ^JaJ#hK1hK1CJH*OJQJ^JaJ hK1hK1CJOJQJ^JaJhj}CJOJQJ^JaJ,jhfhj}5CJOJQJU^JaJ2jC> hfhj}5CJOJQJUV^JaJ#hfhj}5CJOJQJ^JaJiiEiFiiiiijjjj3j4jejfjsjjjjjjjjjkkk k/lNlllllmm0mᩛxxjh)ECJOJQJ^JaJ#hj}hj}5CJOJQJ^JaJ hj}hj}CJOJQJ^JaJhj}CJOJQJ^JaJ#hK1hK1CJH*OJQJ^JaJ&hj}hK15>*CJOJQJ^JaJ#hK1hK1CJH*OJQJ^JaJ hK1hK1CJOJQJ^JaJh@ICJOJQJ^JaJ%l0m2mRmTmummmm ntnnnnnnnnnnnnnnnnngd\gd(5$[$\$a$gdq6gdK10m1m2m4m5m7m8mm@mBmDmEmGmHmLmMmNmQmRmSmVmWm]m^m`mcmlmpmrmtmumvmmIJIJ՞IJIJIJ՞pIJIJ՞՞lX&hq6h(55>*CJ$OJQJ^JaJ$h:S8jhK1hK1CJOJQJU^JaJmHnHsH u h)EhK1CJOJQJ^JaJ&hK1hK16CJOJQJ]^JaJ#hK1hK1CJH*OJQJ^JaJ hK1hK1CJOJQJ^JaJh)ECJOJQJ^JaJ8jhK1h)ECJOJQJU^JaJmHnHsH u!mmmmmmn nunznnnnnnnnnȷfG9h\CJOJQJ^JaJ<jhq6hq6CJOJQJU^JaJmHnHsH tH u<jhq6h)CJOJQJU^JaJmHnHsH tH u#hq6h\>*CJOJQJ^JaJhq6CJOJQJ^JaJ#hq6h\CJH*OJQJ^JaJ hq6h\CJOJQJ^JaJ&hq6h\5>*CJOJQJ^JaJ hq6h(5CJOJQJ^JaJ#hq6h(55CJ$OJQJ^JaJ$nnnnnnnnnnnooooooo p p pп{{j{jXIX5X&hq6h\5CJH*OJQJ^JaJhq65CJOJQJ^JaJ#hq6h\5CJOJQJ^JaJ hq6hN!CJOJQJ^JaJ hq6h,CJOJQJ^JaJ&hq6h\5>*CJOJQJ^JaJ<jhq6hq6CJOJQJU^JaJmHnHsH tH u hq6h\CJOJQJ^JaJ<jhq6h)CJOJQJU^JaJmHnHsH tH u hq6hq6CJOJQJ^JaJnnnnnooooo p $Ifgd #hgd\ p pp"p%p(p^UUUU $Ifgd #hkd$$Ifl\@ }"_=N t0644 laMyt>( p ppppppppp!p"p$p%p'p)p6p:p;pp?p@pBpCpFpHpIppppppp嗢jX#hq6hN!CJH*OJQJ^JaJ<jhq6hN!CJOJQJU^JaJmHnHsH tH uhq6CJOJQJ^JaJ#hq6hN!CJH*OJQJ^JaJ#hq6h\CJH*OJQJ^JaJ hq6hN!CJOJQJ^JaJ#hq6h,CJH*OJQJ^JaJ hq6h,CJOJQJ^JaJ hq6h\CJOJQJ^JaJ"(p)p8p@pCpGp^UUUU $Ifgd #hkdF$$Ifl\@ }"_=N t0644 laMyt>(GpHpIppppppppp^YYYYYYYYYgd\kd $$Ifl\@ }"_=N t0644 laMyt>( p\qdqqqsqtqUrWrrrrrrrrs:sssssssss˺v˺dS?S& jhq6hq6CJOJQJ^JaJ hq6hn&CJOJQJ^JaJ#hq6h5CCJH*OJQJ^JaJ hq65>*CJOJQJ^JaJ&hq6h5C5>*CJOJQJ^JaJ hq6h\CJOJQJ^JaJhq6CJOJQJ^JaJ hq6h5CCJOJQJ^JaJ#hq6h5C5CJOJQJ^JaJ#hq6hN!5CJOJQJ^JaJ hq6hN!CJOJQJ^JaJpsqtqrrrrrrsss:sssssntttttCunuuuugdn&gd5C & F gd5Cgd\sssssssnt}ttttttttttttBuCunuyuzuu˹ܫܗ˹ܫweSwAw#hq6hh7CJH*OJQJ^JaJ#hq6hh75CJOJQJ^JaJ#hq6h5C5CJOJQJ^JaJ hq6hh7CJOJQJ^JaJhq65CJOJQJ^JaJ& jhq6hq6CJOJQJ^JaJhq6CJOJQJ^JaJ#hq6hn&5CJOJQJ^JaJ hq6h5CCJOJQJ^JaJ hq6hn&CJOJQJ^JaJ#hq6hn&CJH*OJQJ^JaJuuuuuuuuuuuu v vvvvv v!v"vbvcvhvkvͻͻͩͻͻͻudO(hq6hh7CJOJQJ^JaJmHsH h.hq6CJOJQJ^JaJ h.hh7CJOJQJ^JaJ hq6h5CCJOJQJ^JaJ#hq6h5C5CJOJQJ^JaJ#hq6hh75CJOJQJ^JaJ#hq6hh7CJH*OJQJ^JaJ hq6hh7CJOJQJ^JaJhq6CJOJQJ^JaJ& jhq6hq6CJOJQJ^JaJu"vbvvvvvvvww3x4xxxxyyyz;z*CJOJQJ^JaJ&hq6hh75>*CJOJQJ^JaJ.hq6h\5>*CJOJQJ^JaJmHsH(hq6hq6CJOJQJ^JaJmHsH"hh7CJOJQJ^JaJmHsH. jhq6hq6CJOJQJ^JaJmHsH"hq6CJOJQJ^JaJmHsH(hq6hh7CJOJQJ^JaJmHsH+hq6hh7CJH*OJQJ^JaJmHsH`wwwxxxxx x xxxx!x"x$x%x'x(x0x1x2x3xcxfxgxsxuxvx{xxxxxxxxx͸͸͸͡͸͸͸͸͸͡͸͸k&hq6hH5>*CJOJQJ^JaJ hq6hh7CJOJQJ^JaJ hq66CJOJQJ]^JaJ, jhq6hq66CJOJQJ]^JaJ)hq6h(56CJH*OJQJ]^JaJ&hq6h(56CJOJQJ]^JaJ hq6h(5CJOJQJ^JaJhq6CJOJQJ^JaJ%xxxyyyyyyyyyyyyyyyyyyyyyyzzzzzz z zz͹͓ۧ~~~~~mVm~~, jhq6hq66CJOJQJ]^JaJ hq66CJOJQJ]^JaJ)hq6h(56CJH*OJQJ]^JaJ&hq6h(56CJOJQJ]^JaJ#hq6h(5CJH*OJQJ^JaJ& jhq6hq6CJOJQJ^JaJhq6CJOJQJ^JaJ hq6h(5CJOJQJ^JaJ&hq6h(55>*CJOJQJ^JaJ!zzzzzzzz*z:z;z?@ڳڟ|kZI hq6hOCJOJQJ^JaJ hq6h(5CJOJQJ^JaJ hq6hS2CJOJQJ^JaJhS2CJOJQJ^JaJ)hq6h(56CJH*OJQJ]^JaJ&hq6h(56CJOJQJ]^JaJ) jhS2hS2CJOJQJ]^JaJ#hS2hS2CJOJQJ]^JaJ#hS2h(5CJOJQJ]^JaJ&hS2h(5CJH*OJQJ]^JaJ@XYǶǤo]Ho7 hS2CJH*OJQJ]^JaJ) jhS2hS2CJOJQJ]^JaJ#hS2hS2CJOJQJ]^JaJ&hS2hHCJH*OJQJ]^JaJ#hS2hHCJOJQJ]^JaJhS25CJOJQJ^JaJ#hS2hH5CJOJQJ^JaJ hq6h(5CJOJQJ^JaJ hq6hHCJOJQJ^JaJ&hS2h(55>*CJOJQJ^JaJ&hS2hH5>*CJOJQJ^JaJ@Y\]΁ρ(QRYwyz{|}~$a$gdS2`gd(5gdS2gd(5%*./78:;>?ƲڲڠnZnZnZKnhS2CJOJQJ]^JaJ&hS2h(5CJH*OJQJ]^JaJ#hS2h(5CJOJQJ]^JaJhS25CJOJQJ^JaJ hq6h(5CJOJQJ^JaJ#hS2hH5CJOJQJ^JaJ&hS2hS2CJH*OJQJ]^JaJ&hS2hHCJH*OJQJ]^JaJ#hS2hHCJOJQJ]^JaJ&hS2hS2CJH*OJQJ]^JaJ?@BDFGHJKLQRZ[\]ɷ{{iUC.)hS2hH56CJOJQJ]^JaJ#hS2hH5CJOJQJ^JaJ&hq6h(56CJOJQJ]^JaJ#hS2h(55CJOJQJ^JaJ&hS2h(5CJH*OJQJ]^JaJ&hS2hS2CJH*OJQJ]^JaJ&hS2hS2CJH*OJQJ]^JaJ#hS2hS2CJOJQJ]^JaJ#hS2h(5CJOJQJ]^JaJhS2CJOJQJ]^JaJ) jhS2hS2CJOJQJ]^JaJɵɵnZFnFnɵɵ&hS2hS2CJH*OJQJ]^JaJ&hS2hS2CJH*OJQJ]^JaJ#hS2hS2CJOJQJ]^JaJ) jhS2hS2CJOJQJ]^JaJhS2CJOJQJ]^JaJ hS2CJH*OJQJ]^JaJ&hS2h(5CJH*OJQJ]^JaJ#hS2h(5CJOJQJ]^JaJ hS26CJOJQJ]^JaJ&hq6h(56CJOJQJ]^JaJW΁ρ6DIOQRYwxz{}~ᆰ͊͊yeT5TyT<jhq6hCJOJQJU^JaJmHnHsH tH u hq6hOCJOJQJ^JaJ&hS2h(55>*CJOJQJ^JaJ hq6hCJOJQJ^JaJ#hS2h<5CJOJQJ^JaJhS2CJOJQJ^JaJ&hS2h<5>*CJ$OJQJ^JaJ$hS2>*CJOJQJ^JaJ hq6h<CJOJQJ^JaJ hq6hHCJOJQJ^JaJ hq6h(5CJOJQJ^JaJ~BDEIJPQWXoqruyz|}1ϻϻϧϐ~dUϻϧϻhS2CJOJQJ]^JaJ2jC> hfhS25CJOJQJUV^JaJ#hfhS25CJOJQJ^JaJ,jhfhS25CJOJQJU^JaJ&hS2h(5CJH*OJQJ]^JaJ&hS2hS2CJH*OJQJ]^JaJ#hS2h(5CJOJQJ]^JaJhS2CJOJQJ^JaJ hq6h(5CJOJQJ^JaJB4^_QTJKl$a$gd#,gd#,`gd(5gd(5134N\]^_`abfgipstuyvveSDS/D) jhS2hS2CJOJQJ]^JaJhS2CJOJQJ]^JaJ#hS2h(5CJOJQJ]^JaJ hS2CJH*OJQJ]^JaJ&hS2hS2CJH*OJQJ]^JaJ#hS2hS2CJOJQJ]^JaJ&hq6h(56CJOJQJ]^JaJ hq6hS2CJOJQJ^JaJh(5CJOJQJ^JaJ#hS2h)d5CJOJQJ^JaJhS2CJOJQJ^JaJ hq6h)dCJOJQJ^JaJy|}~ͻͻtbbbbbP#h#,h(5CJOJQJ]^JaJ#hq6h(5CJH*OJQJ^JaJh#,CJOJQJ^JaJ hq6h(5CJOJQJ^JaJ&hS2h#,CJH*OJQJ]^JaJ&hS2h#,CJH*OJQJ]^JaJ#hS2h#,CJOJQJ]^JaJh#,CJOJQJ]^JaJ hS2CJH*OJQJ]^JaJ#hS2h(5CJOJQJ]^JaJÄĄƄɄʄ΄τքׄ  ڱsbbbQ hq6h(5CJOJQJ^JaJ h#,h(5CJOJQJ^JaJ#h#,h#,CJOJQJ]^JaJ2jC> h#,h#,5CJOJQJUV^JaJ#h#,h#,5CJOJQJ^JaJ,jh#,h#,5CJOJQJU^JaJ#h#,h(5CJH*OJQJ^JaJ#h#,h(5CJOJQJ]^JaJ&h#,h(5CJH*OJQJ]^JaJ&')*,-/023QSTVWYZ\]_bcjnopsvwyz{|Ὡsa#hS2h#,CJOJQJ]^JaJ) jh#,h#,CJOJQJ]^JaJh#,CJOJQJ]^JaJ#h#,h(5CJH*OJQJ^JaJ&h#,h(5CJH*OJQJ]^JaJ#h#,h(5CJOJQJ]^JaJ#hq6h(5CJH*OJQJ^JaJ hq6h(5CJOJQJ^JaJh#,CJOJQJ^JaJ"|}~ąطƥqcqQqQqQq#hq6h(5CJH*OJQJ^JaJh#,CJOJQJ^JaJ hq6h(5CJOJQJ^JaJ#h#,h(5CJH*OJQJ^JaJ h#,h(5CJOJQJ^JaJ#h#,h(5CJOJQJ]^JaJh#,CJOJQJ]^JaJ#hS2h#,CJOJQJ]^JaJ&hS2h#,CJH*OJQJ]^JaJ&hS2h#,CJH*OJQJ]^JaJąŅƅDžͅЅхՅօ݅ޅ   ڱvveeT hq6h(5CJOJQJ^JaJ h#,h(5CJOJQJ^JaJh#,CJOJQJ]^JaJ2jC> h#,h#,5CJOJQJUV^JaJ#h#,h#,5CJOJQJ^JaJ,jh#,h#,5CJOJQJU^JaJ#h#,h(5CJH*OJQJ^JaJ#h#,h(5CJOJQJ]^JaJ&h#,h(5CJH*OJQJ]^JaJ,-./56TZ]^_`fijqsuv|}~saM&h#,h#,CJH*OJQJ]^JaJ#h#,h#,CJOJQJ]^JaJ) jh#,h#,CJOJQJ]^JaJ#h#,h(5CJH*OJQJ^JaJ&h#,h(5CJH*OJQJ]^JaJ#h#,h(5CJOJQJ]^JaJh#,CJOJQJ]^JaJ#hq6h(5CJH*OJQJ^JaJ hq6h(5CJOJQJ^JaJh#,CJOJQJ^JaJ'JKMPQȷȣȣȷp_D_2#h#,h#,CJH*OJQJ^JaJ4jh#,h#,CJOJQJU^JaJmHnHu h#,h#,CJOJQJ^JaJ hq6hz~CJOJQJ^JaJ hq6hCJOJQJ^JaJ hq6h(5CJOJQJ^JaJ&h#,h(5CJH*OJQJ]^JaJ h#,h(5CJOJQJ^JaJ#h#,h(5CJOJQJ]^JaJ#h#,h#,CJOJQJ]^JaJ&h#,h#,CJH*OJQJ]^JaJQXZ[]ghlnstÇćˇ͇·Їڇۇއ߇u{zii hq6h)dCJOJQJ^JaJ&h#,h#,6CJOJQJ]^JaJ#h#,h#,CJH*OJQJ^JaJ& jh#,h#,CJOJQJ^JaJh#,CJOJQJ^JaJ4jh#,h#,CJOJQJU^JaJmHnHu#h#,h#,CJH*OJQJ^JaJ h#,h#,CJOJQJ^JaJ(l߇vwxyz{Èʈˈ̈ !"#.gd(5$a$gd#,ÈɈˈ̈OZ` !#.῱ПЎ|]]]]I&hmhr:5>*CJOJQJ^JaJ<jhq6h@mCJOJQJU^JaJmHnHsH tH u#h#,h@m5CJOJQJ^JaJ hq6h@mCJOJQJ^JaJ#h#,h)d5CJOJQJ^JaJh#,CJOJQJ^JaJ hq6h`bCJOJQJ^JaJ hq6h)dCJOJQJ^JaJ<jhq6h)dCJOJQJU^JaJmHnHsH tH u.NJ܊notuwx﬚qbP#hmhmCJOJQJ]^JaJhmCJOJQJ]^JaJ) jhmhmCJOJQJ]^JaJ&hmhFCJH*OJQJ]^JaJ#hmhFCJOJQJ]^JaJ hm6CJOJQJ]^JaJ#hmhF5CJOJQJ^JaJ#hmhm5CJOJQJ^JaJhmCJOJQJ^JaJ hq6hFCJOJQJ^JaJ.noFZn"ȍ ?ABCDEFGwڏݏgd+Fgd(5$a$gd.gdmgdF΋Ћً4Zmn!"Jhȹڹڹȥk&hmh5CJOJQJ]^JaJ#hq6hCJOJQJ]^JaJ&hmhF5CJOJQJ]^JaJ&hmh5CJOJQJ]^JaJhmCJOJQJ]^JaJ#hmhFCJOJQJ]^JaJ#hmhmCJOJQJ]^JaJ&hmhmCJH*OJQJ]^JaJ$Ў  ?@Fǿr^M.M<jhq6h+FCJOJQJU^JaJmHnHsH tH u hq6h+FCJOJQJ^JaJ&hmh@m5>*CJOJQJ^JaJ&hmh+F5>*CJOJQJ^JaJ h.5>*CJOJQJ^JaJ hq6h^lCJOJQJ^JaJjh.UjM h.UVh.jh.U#hq6hCJOJQJ]^JaJ&hmhW<5CJOJQJ]^JaJ#hq6hW<CJOJQJ]^JaJFGvw'()y̐ϐސߐоygVgB&hmh+FCJH*OJQJ]^JaJ hmh+FCJOJQJ^JaJ#hmh+FCJOJQJ]^JaJ#hmhr:CJOJQJ]^JaJ#hmh+F5CJOJQJ^JaJhm5CJOJQJ^JaJ#hmhm5CJOJQJ^JaJ#hmhr:5CJOJQJ^JaJ hq6hr:CJOJQJ^JaJ hq6h+FCJOJQJ^JaJhmCJOJQJ^JaJ)@cxyߐ1t‘<=Rgd(5gdr:gd+F & F&gdm   1;rswz{ɷޑހo]Lo>o>hmCJOJQJ^JaJ hq6hr:CJOJQJ^JaJ#hmhr:5CJOJQJ^JaJ hq6h+FCJOJQJ^JaJ hmh+FCJOJQJ^JaJ&hmh+FCJH*OJQJ]^JaJ#hmhr:CJOJQJ]^JaJ#hmhmCJOJQJ]^JaJ) jhmhmCJOJQJ]^JaJ#hmh+FCJOJQJ]^JaJhmCJOJQJ]^JaJ‘̑͑ߑ#˶ˤ˓p__M??hmCJOJQJ^JaJ#hmh+F5CJOJQJ^JaJ hq6hr:CJOJQJ^JaJ#hmhr:5CJOJQJ^JaJ hq6h+FCJOJQJ^JaJ hmh+FCJOJQJ^JaJ#hmhr:CJOJQJ]^JaJ) jhmhmCJOJQJ]^JaJ#hmh+FCJOJQJ]^JaJhmCJOJQJ]^JaJ&hmhr:CJH*OJQJ]^JaJ#$()*+-.23;<=QRbג˶ˤ˒o]LL>LhmCJOJQJ^JaJ hq6hr:CJOJQJ^JaJ#hmh+F5CJOJQJ^JaJ#hmhr:5CJOJQJ^JaJ hq6h+FCJOJQJ^JaJ#hmh+FCJH*OJQJ^JaJ#hmhr:CJOJQJ]^JaJ) jhmhmCJOJQJ]^JaJ#hmh+FCJOJQJ]^JaJhmCJOJQJ]^JaJ&hmh+FCJH*OJQJ]^JaJגؒ  ˽qbM< hmh+FCJOJQJ^JaJ) jhmhmCJOJQJ]^JaJhmCJOJQJ]^JaJ&hmh+FCJH*OJQJ]^JaJ&hmhr:CJH*OJQJ]^JaJ#hmh+FCJOJQJ]^JaJ#hmhr:CJOJQJ]^JaJhmCJOJQJ^JaJ hq6h+FCJOJQJ^JaJ hq6hr:CJOJQJ^JaJ#hmhr:CJH*OJQJ^JaJ345BhߓIJUXҕ̻~~a~OO;&h2hFz 5>*CJOJQJ^JaJ#h2hFz 5CJOJQJ^JaJ8jh hFz CJOJQJU^JaJmHnHsH uhFz CJOJQJ^JaJ h hFz CJOJQJ^JaJ&h hFz 5>*CJOJQJ^JaJhFz CJOJQJ hq6hFz CJOJQJ^JaJ(hFz 5>*CJ(OJQJ^JaJ(mH sH h.CJOJQJ^JaJ hq6h(5CJOJQJ^JaJ45BIKLMNOPQRSTUVWXҕ [$\$gdFz gdFz gdFz $a$gdFz ҕ  ؘ٘ۘݘޘ$CFcfabcdeopqʭʟʭʭʭʟʟʟʟuʭʭʭʭ#h2hFz 5CJOJQJ^JaJ"jhFz CJUmHnHsH u hFz CJhFz CJOJQJ^JaJ8jh hFz CJOJQJU^JaJmHnHsH u h hFz CJOJQJ^JaJ&h2hFz 5CJOJQJ\^JaJ h2hFz CJOJQJ^JaJ.   ؘژۘޘacepgdFz prstuvxz{|Y $$Ifa$gd $IfgdgdFz qvwxy  XY›Ûěśћқӛޛߛﲞxxxxxg hFz 5>*CJOJQJ^JaJ#h hFz CJH*OJQJ^JaJ&h hFz 5>*CJOJQJ^JaJ&h2hFz 5CJH*OJQJ^JaJ#h2hFz 5CJOJQJ^JaJhFz CJOJQJ^JaJ8jh hFz CJOJQJU^JaJmHnHsH u h hFz CJOJQJ^JaJ$u $$Ifa$gd $Ifgdtkd7/$$Ifl0>  04 lahytu $$Ifa$gd $Ifgdtkd/$$Ifl0>  04 lahytƛʛu $$Ifa$gd $IfgdtkdU0$$Ifl0>  04 lahytʛ˛֛ڛu $$Ifa$gd $Ifgdtkd0$$Ifl0>  04 lahytڛۛu $$Ifa$gd $Ifgdtkds1$$Ifl0>  04 lahytu $$Ifa$gd $Ifgdtkd2$$Ifl0>  04 lahytu $$Ifa$gd $Ifgdtkd2$$Ifl0>  04 lahyt œÜĜƜǜȜɜʜ˜gdFz tkd 3$$Ifl0>  04 lahyt ĜŜΜ'()+,-.01235789:<>jklҝӝԝ՝۰۰۰۰۰۰۰۰۰۰۰ۛkk. jh hFz CJOJQJ^JaJmH sH . jh hFz CJOJQJ^JaJmH sH (h hFz CJOJQJ^JaJmH sH 8jh hFz CJOJQJU^JaJmHnHsH uhFz CJOJQJ^JaJ h hFz CJOJQJ^JaJ&h2hFz 5>*CJOJQJ^JaJ*˜̜ϜМќ'),.13679;<?@ABlnp|$>&`#$/IfgdgdFz TBBBB$>&`#$/Ifgdkd3$$Ifl\+>((G  t 6`>0644 laytϝѝTBBBB$>&`#$/Ifgdkds4$$Ifl\+>((G  t 6`>0644 laytѝҝԝ֝SAAAA$>&`#$/Ifgdkd75$$Ifl4\+>((G ` t 6`>0644 laytSAAAA$>&`#$/Ifgdkd6$$Ifl4\+>((G  t 6`>0644 layt՝`abcijɞ˞̞͞ΞϞОCDEFGH´——´´ƒƒƒƒƒooƒƒƒoƒ& jh hFz CJOJQJ^JaJ& jh hFz CJOJQJ^JaJ8jh hFz CJOJQJU^JaJmHnHsH uhFz CJOJQJ^JaJ h hFz CJOJQJ^JaJ. jh hFz CJOJQJ^JaJmH sH (h hFz CJOJQJ^JaJmH sH +     TOOOOOOOOgdFz kd6$$Ifl\+>((G  t 6`>0644 layt `bdefghiʞ $IfgdgdFz ʞ˞͞ϞўKBBBBB $Ifgdkd7$$Iflr3j f$777a t0!644 la1ytKBBBBB $IfgdkdQ8$$Iflr3j f$777a t0!644 la1ytABI@@@@@ $Ifgdkd9$$Ifl4r3j f$777a` t0!644 la1ytBCEGInoI@@@@@ $Ifgdkd9$$Ifl4r3j f$777a  t0!644 la1ytoprtvI@@@@@ $Ifgdkd:$$Ifl4r3j f$777a  t0!644 la1ytHpqrstu˟̟͟ΟϟП*5ye&hR6"hFz 5>*CJ OJQJ^JaJ hFz >*CJOJQJ^JaJhFz CJOJQJ^JaJ&hR6"hFz 5>*CJOJQJ^JaJ8jh hFz CJOJQJU^JaJmHnHsH u& jh hFz CJOJQJ^JaJ& jh hFz CJOJQJ^JaJ h hFz CJOJQJ^JaJ'ɟʟI@@@@@ $Ifgdkda;$$Ifl4r3j f$777a` t0!644 la1ytʟ˟͟ϟџI@@@@@ $Ifgdkd'<$$Ifl4r3j f$777a  t0!644 la1ytI@@@@@ $Ifgdkd<$$Ifl4r3j f$777a  t0!644 la1ytKFFFFFFFgdFz kd=$$Iflr3j f$777a t0!644 la1yt*ߡ@$a$gdFz gdFz ?@[{ ĤǤЧ   m{٪#hR6"hFz 5CJOJQJ^JaJhFz >*CJOJQJ^JaJ&hR6"hFz 5>*CJOJQJ^JaJ8jh hFz CJOJQJU^JaJmHnHsH uhFz CJOJQJ^JaJ h hFz CJOJQJ^JaJ3¤äĤŤƤgdFz vϧЧ  !"#~تڪܪݪߪgdFz ٪ڪ۪ݪުxy|},-ļļļļ㞎ĞpĞphhZmCJaJmH sH hs"hZmCJaJmH sH h%7hZmCJH*aJmH sH hZmCJaJmH sH hzamHnHuhZmmHnHujhZmUhZmhZm0JmHnHu hZm0JjhZm0JUhjhU hFz h2dCJOJQJ^JaJ,«ëīūƫǫȫgdl&`#$ȫɫʫ˫̫ͫΫϫЫѫҫӫԫի֫׫ث٫ګ۫ܫݫޫ߫     -./012345678gdl89:;<=>?@ABCDEFGHIJKLMNOPQRSTUUVWXYZ[\]^_`abcdefghijklmnopqrrstuvwxyz{|}~$a$gdK1gdK1ɬʬˬͬάϬЬҬӬԬլ٬ڬ۬ܬݬ߬ͭhhK1CJH*mH sH  h'hK1hK1CJH*mH sH hplhK1CJH*mH sH h"hK1mH sH hZmh^^ThK1H*mH sH h'hK1CJH*mH sH hK1CJmH sH >ʬˬϬЬԬլܬݬgdK1$a$gdK1    #$%'()*,-./3456789:;<=?@ABCOPQSTUVXh^^ThK1H*mH sH hhK1CJH*mH sH  h'hK1h'hK1CJH*mH sH h"hK1mH sH hK1CJmH sH hZm hplhK1F  $%)*./679:<=ABCPQUVZ[gdK1$a$gdK1XYZ[\]^`abcklmnowxy{|}~­ĭŭǭȭɭʭ˭ͭέЭѭҭӭԭ֭׭ح٭ڭ⾯⾯⾕⾕⾕⾕hChicgCJaJmH sH hM;hicgCJaJh0LhicgCJaJmH sH hicgCJaJmH sH h'hK1CJH*mH sH hK1CJmH sH hZmh"hK1mH sH hhK1CJH*mH sH :[]^bclmxy}~gdicggdK1$a$gdK1­ĭŭǭȭʭ˭ͭέЭѭӭԭ֭׭٭ڭܭݭ߭gdicgڭۭܭݭ߭    "#$12356789;<>?@ABDEGHh0LhicgCJaJmH sH h rthicgCJaJmH sH hM;hicgCJaJhZmhChicgCJaJmH sH hicgCJaJmH sH H߭ gdicg    #$235689;<>?ABDEGgdicgGHJKMNPQSTVWYZ\]_`bcefhiklnoqgdicgHIJKMNPQRSTUVWXYZ\]_`bcefghiklnoqrstuwxz{|}~ hZmCJ hZmH*h;hicgCJaJmH sH h rthicgCJaJmH sH hM;hicgCJaJhZmhChicgCJaJmH sH hicgCJaJmH sH Bqrtuwxz{}~gdCgdicgǮȮ߮()0189: 0^`0gdlgdlgdCƮǮȮޮ߮%'()+,01348<CEFῳǜǜhZmCJ aJ mH sH h^NGhZmCJaJmH sH h_hZmH*mH sH hXhZmmH sH h_hZmCJH*aJhZmCJaJh_hZmmH sH hhZmCJaJmH sH hZmCJaJmH sH hZmhZm5H*\ hZm5\-:;<CDELMTU^_bcdefghijklmnopqrgdlFGHLMQSTU]^_abϯЯѯ:;<HI\ݶݶݘݘ|mm|gm|m hFz CJh<ghFz CJaJmH sH hFz CJaJmH sH hhZmCJH*aJmH sH hhZmCJaJmH sH hgahZmCJaJmH sH hZmCJaJmH sH hZmCJ(aJ(mH sH h^NGhZmCJ(aJ(mH sH hZmh^NGhZmCJ H*aJ mH sH h^NGhZmCJ aJ mH sH (rstuvwxyz{|}~Яѯgdѯ;<HIgdlgdFz ذٰڰ }}ujuhhFz mH sH hFz mH sH h<ghFz CJaJmH sH hFz CJaJmH sH hChZmCJaJmH sH h}hZm5CJ$aJ$mH sH hM;hZmCJaJh%7hZmCJaJmH sH h%7hZmCJH*aJmH sH hZmhgahZmCJaJmH sH hZmCJaJmH sH )ٰڰ *+|34578IJgdFz gdl  )*+-3345678BIJWX\]jku|}2ucuauuuU"hFz CJOJQJ^JaJmH sH (hR6"hFz CJOJQJ^JaJmH sH h9m&hFz CJaJmH sH hFz CJaJmH sH h {^hFz 5CJaJmH sH hFz 5CJaJmH sH hFz #hR6"hFz 5CJOJQJ^JaJ hR6"hFz CJOJQJ^JaJhFz mH sH hZmhhFz mH sH &JWX\]jk|}235689;<>?gdFz The low concentration of the material in the liquid (at A) causes the material to dissolve Mobile phase Stationary phase A A quadruplet at ratio 1:3:3:1 indicates that there are three protons on the adjacent carbon A triplet at ratio 1:2:1 indicates that there are two protons on the adjacent carbon H b C C These protons can affect the field at H* according to whether they are aligned with the field or against it. The field experienced by this proton will be affected by the two protons on the adjacent carbon. H* H a The peak at 9.9 shows -CHO The peak at 2.3 shows -C=O-CH3-R The peak at 0.9 shows CH3-R 3 2 1 11 10 9 8 7 6 5 4 33 2 1 0 Radio frequency generator Externalmagnetic field Cl C O R The hydrophilic head is attracted into the water and the hydrophobic tail is repelled by water so the molecules arrange themselves as shown here. This breaks down the surface tension of the water and allows it to wet a surface. - Water + O O C Na H O C O Butanoic acid H O C O C C H H C C H C H H H H 10 8 + O H H C C R* O H C H H H Carbocation intermediate The stability of a tertiary carbocation means that the breaking of the R-X bond can occur without the necessity of the hydroxide ion. Hence only the RX features in the rate equation. It is designated SN1 because there is only species involved in the RDS. - HO R R R C + R R X R C The rate determining step in which the R-X bond breaks involves the halogenoalkane and the hydroxide ion. Hence both these feature in the rate equation. It is designated SN2 because there are two species involved in the RDS. Propanoic acid H C H H R H O H O O C O C H H H 2-Methylbutanoic acid O C O H C H H C H H C H C H H H 3-Methylbutanoic acid H C H H C H H C H C H H H O C O R Ester group Sample Radio frequency detector In a low energy position the magnetic field of the proton is aligned with the external magnetic field. Energy The energy required to flip the proton lies in the radio frequency region. In a high energy position the magnetic field of the proton is opposed to the external magnetic field. External field Proton field Spinning proton Radio waves Micro-waves Ultra violet Infra red Visible light Wavelength decreasing Frequency increasing Energy increasing R* Cl O C Acyl chloride group R O O R C O H C H H C H R H C H H H 12 10 SSYSTEM+165 JK-1mol-1H+178 kJmol-1 8 6 6 4 H OH HO2C H C CH3 HO CO2H H C H3C Half way to the end point Ka = = = [H3O+] In the reaction: HA + OH- ( A- + H2O At half way to the end point, [HA] = [A-] [H3O+] [A-] [H3O+] [1] [HA] [1] Taking logs log Ka = -log [H3O+] So pKa = pH (@ half neutralization) [H+][In-] [HIn ] H+ OH-. OH-. Na+ CH3CO2- Na+ CH3CO2H [HA] Ka = [H3O+]2 (0.0107)2 0.1 = 5.74 x 10-4 moldm-3 [HA] Ka = [H3O+]2 (4.47 x10-5)2 1.0 = 2.00 x 10-9 moldm-3 [HA] Ka = [H3O+]2 (6.76 x10-3)2 0.1 = 4.57 x 10-4 moldm-3 CH3COOH/NaOH weak acid/ strong base 2 4 [HA] Kc [H2O] = [H3O+ ] [A-] [HA] [H2O] [H3O+ ] [A-] 1 x 10-14 0.05 1 x 10-14 0.2 1 x 10-14 0.01 Dynamic equilibrium is when a reaction has a constant concentration of reactants and products exist as the forward and backward reactions takes place in both directions at equal rates. Equilibrium is when a reaction has a constant concentration of reactants and products. Kw [OH-] 14 Kp = [Pb2+] [Cl-]2 Mol3dm-9 pH volume of base added/cm3 10 PH2O4 Kp = No units PH24 Atm Kp = PCO2 HCl/NaOH strong acid/ strong base 12 phenolphthalein - ok 14 PSO22 PO2 Atm-1 Kp = PSO32 phenolphthalein - ok 10 8 pH PH23 PN2 Kp = PNH32 Atm-2 [CH3CO2H] [C2H5OH] No units [CH3CO2C2H5] [H2O] Kc = [Cu2+] [NH3] 4 Kc = dm12mol-4 [Cu(NH3)42+] [NH3] [H2O] No units Kc = [NH4] [OH-] methyl orange - ok 4 6 methyl orange - no [Fe3+]2 [I-]2 dm3mol-1 Kc = [Fe2+]2 [I2] CH3COOH/NH3 weak acid/ weak base volume of base added/cm3 10 2 Moles CO = 2.8 / 28 = 0.1 mol, Moles CO2 = 8.8 / 44 = 0.2 mol, Moles NO2 = 2.3 / 46 = 0.05 mol, Total moles = 0.1 + 0.2 + 0.05 = 0.35mol PCO = 0.1 / 0.35 x 8 = 2.29atm PCO2 = 0.2 / 0.35 x 8 = 4.57atm PNO2 = 0.05 / 0.35 x 8 = 1.14atm Total moles = 2 + 3 + 1 = 6 PN2 = 2 / 6 x 5 = 1.67atm PO2 = 3 / 6 x 5 = 2.5atm PCO2 = 1 / 6 x 5 = 0.83atm 2 SSYSTEM+278.5 JK-1mol-1Hsoln+16 kJmol-1 Enthalpy HSoln = +16 kJmol-1 HHyd NH4+ (aq) + Cl- (aq) HLat NH4+ (g) + Cl-(g) NH4Cl(s) SSYSTEM+165 JK-1mol-1H+178 kJmol-1 SSYSTEM+3.02 JK-1mol-1H-393.5 kJmol-1 methyl orange (no 6 8 10 pH phenolphthalein - no 12 phenol- phthalein - no 14 HCl/NH3 strong acid/ weak base pH volume of base added/cm3 10 14 12 Transition state - HO H H X H C - HO H H X H C Reaction coordinate Energy Reactive intermediate Transition state 2 Transition state 1 Transition state Reaction coordinate Energy EA moldm-3 s-3 moldm-3 s-3 x (moldm-3 s-3)2 9.0 x 10-3 3 x 10-3 x (6 x 10-3)2 10 20 30 time/min 12.5 25 50 first order % of reactant remaining 100 concentration concentration zero order rate of reaction rate of reaction second order first order Q Q conc. of product conc. of reactant Rate at point Q = gradient of tangent Filter Solution under test Meter Beam of light Photocell -23456789;<>?/5789:PV\]k]khFz CJOJQJ^JaJ&hR6"hFz 5>*CJOJQJ^JaJ hR6"hFz CJOJQJ^JaJ"hFz CJOJQJ^JaJmH sH h2dhFz CJaJmH sH (hR6"hFz CJOJQJ^JaJmH sH h2dhFz CJ(aJ(mH sH hFz CJ(aJ(mH sH hVhFz CJHaJHmH sH hFz CJHaJHmH sH hZm":;abgdFz ]^`aw~ιܓܹxixiixZxZxZxZxZh& hFz CJaJmH sH hrm^hFz CJaJmH sH hFz CJaJmH sH hZmhVhFz mH sH &hR6"hFz 5>*CJOJQJ^JaJ"hFz CJOJQJ^JaJmH sH (hR6"hFz CJOJQJ^JaJmH sH hFz CJOJQJ^JaJ hR6"hFz CJOJQJ^JaJ#hR6"hFz CJH*OJQJ^JaJ#gd+FgdFz ƷƨƙƨwhZm5CJaJmH sH (h#,hZmCJOJQJ^JaJmH sH h rthZmCJaJmH sH hChZmCJaJmH sH h)hZmCJaJmH sH hZmCJaJmH sH h \hFz CJaJmH sH hZmh& hFz CJaJmH sH hFz CJaJmH sH )gd)d !013456789:вУЉzeЉ(hq6hZmCJOJQJ^JaJmH sH h rthZmCJaJmH sH h)hZmCJaJmH sH hM;hZmCJaJh)dhZmCJaJmH sH h;hZmCJaJmH sH hChZmCJaJmH sH hZmCJaJmH sH h@mhZmCJaJmH sH hZmh)dhZm5CJaJmH sH '      !0134gd)4679:<=?@BCEFHIKLNOQRTUWXZ[]gdlgdgdOgd):;<=>?@ABCEFHIJKLMNOQRSTUWXZ[]^`adeghjklmnpqstuvwxyz|}~h}hZm5CJ$aJ$mH sH  hZmCJhM;hZmCJaJhChZmCJaJmH sH hZmh rthZmCJaJmH sH hZmCJaJmH sH D]^`adeghjkmnpqstvwyz}~gdgdCgdl1gdltuk給皋皋皋皋s皋皋皋皋皋h}hZm5CJ$aJ$mH sH hZmCJaJh{rbhZmCJ(aJ(mH sH hZmCJ(aJ(mH sH h0hZmCJ aJ mH sH hZmCJ aJ mH sH h}hZm5CJ(aJ(mH sH +hIuhZmCJH*OJQJ^JaJmH sH hZm(hIuhZmCJOJQJ^JaJmH sH )lgdN!gdgd\gd)gdlkl~ٿuuufh rthZmCJaJmH sH h)hZmCJaJmH sH hChZmCJaJmH sH hZmCJaJmH sH hM;hZmCJaJ(hq6hZmCJOJQJ^JaJmH sH hZm+hIuhZmCJH*OJQJ^JaJmH sH (hIuhZmCJOJQJ^JaJmH sH "hZmCJOJQJ^JaJmH sH ( gd)gd\gdN!  "#$%&()+,-./1234578:;=>UVY[\]^_abdfвУввввܚвh)hZmaJh rthZmCJaJmH sH hChZmCJaJmH sH h)hZmCJaJmH sH hZmCJaJmH sH (hq6hZmCJOJQJ^JaJmH sH hM;hZmCJaJhZm< "#%&()+,./124578:;=>UVWgd)WXY[\^_abdefhiklnoqrtuwxz{}~gd\fghiklnopqrtuvwxz{}~+,ᗈᗈs(h2hFz CJOJQJ^JaJmH sH h \hFz CJaJmH sH hFz CJaJmH sH (hS2hZmCJOJQJ^JaJmH sH h rthZmCJaJmH sH h;hZmCJaJmH sH hM;hZmCJaJhZmhChZmCJaJmH sH hZmCJaJmH sH ++,45gdFz gdgdN!gdO,45$%&123?@AJKLZ[ 編編編編眍~眍眍h)hZmCJaJmH sH hChZmCJaJmH sH hZmCJaJmH sH h hFz CJaJmH sH hFz CJaJmH sH h$xhFz CJaJmH sH (h2hFz CJOJQJ^JaJmH sH hZm(h2hFz CJOJQJ^JaJmH sH *%&23@AKLZ[qgdFz  248:>@DFJLPRVX\^bdgd\gdN!gdgdO 2468:<>@BDFHJLNPRTVX\^`bdhjnprtvz|~۽ۮۮh>(hZmCJ hZmCJhM;hZmCJaJh rthZmCJaJmH sH h;hZmCJaJmH sH hChZmCJaJmH sH hZmCJaJmH sH hZm(hS2hZmCJOJQJ^JaJmH sH 5dhjnptvz|gdCgd)gdN!gd\ |{kdq>$$Ifl06 t0644 layt>($If     ѶѥюѥюѶѥюhOkhK1CJH*hOkhK1CJ hOkhK1 hK1CJH* hK1CJhOkhK1mH sH hK1CJmH sH hM;hicgCJaJ hZmCJhZmh>(hZmCJH*h>(hZmCJh>(hZmCJaJh>(hZmCJH*aJ4   "$&}}}}}}}}}}}}gdi{kd?$$Ifl06 t0644 layt>(&(*,.02468:<>@BDFHJLNPRTVXZ\^``bdfhjlnprtvxz|~gdC   gdK1gdicg "<=>?Anopqrsuvn`L`& jhZmhZmCJOJQJ^JaJhZmCJOJQJ^JaJ#hZmhZmCJH*OJQJ^JaJ hZmhZmCJOJQJ^JaJhUhZmCJH*hUhZmCJ$hZmCJaJhUhZmCJaJhUhZmCJH*hUhZmCJ"h jhZm6CJ]aJmH sH hOkhK1CJH*hOkhK1CJ hOkhK1 hK1CJhZm !"<=uvFG}~dhgdZm^gdZm ^`gdZmgdZmABCDWd|}~ܵ{plf_f_flf hZmCJH* hZmCJhZmhUhZmCJaJhZmCJOJQJ^JaJ+h@IhZmCJH*OJQJ^JaJmHsH+h@IhZmCJH*OJQJ^JaJmHsH(h@IhZmCJOJQJ^JaJmHsH#hZmhZmCJH*OJQJ^JaJ hZmhZmCJOJQJ^JaJ#hZmhZmCJH*OJQJ^JaJ%õًٚvhZm6CJ]hZm6CJH*]aJhTZrhZm6CJH*]aJhTZrhZm6CJH*]aJhhZm6CJ$]hhZm6CJ]aJhZm6CJH*]hhZm6CJ]hTZrhZm6CJ]aJ hZmCJH* hZmCJhZm hZmCJH*-  #gdJ^gdZm   ˽ݖ|pf|W|H|hTZrhZm6CJH*]aJhTZrhZm6CJH*]aJhZm6CJH*]hhZm6CJ]hTZrhZm6CJ]aJhhZm6CJ$]hPLYhZm6CJH*]h/(hZm6CJH*]aJhZm6CJ]aJhhZm6CJ]aJhZmh/(hZm6CJ]aJhZm6CJ]h/(hZm6CJ]h/(hZm6CJH*] !"#-./0;=>CEFGLMNOQSTUWXYاᙎ؁ui_uPhTZrhZm6CJH*]aJhZm6CJH*]hhZm6CJ]hhZm6CJ$]hPLYhZm6CJH*]hZm6CJ]aJhhZm6CJ]aJh/(hZm6CJ]aJh/(hZm6CJ]h/(hZm6CJH*]hZm6CJH*]hZm6CJ]hZmhTZrhZm6CJ]aJhZm6CJH*]aJ#./FGLMTU]^lwxgdCgdJ^YZ[\]^gijklvwxyɼɯɕ҇|m`TOJD hZmCJ hZmH* hZmH*hhZm6CJ$]hPLYhZm6CJH*]h/(hZm6CJH*]aJhZm6CJ]aJhhZm6CJ]aJh/(hZm6CJ]aJh/(hZm6CJ]h/(hZm6CJH*]hTZrhZm6CJH*]hZm6CJ]hZmhZm6CJH*]aJhTZrhZm6CJ]aJhTZrhZm6CJH*]aJ  #͸ hZmCJhhZm6]hZm6CJ]hhZm6CJH*]hhZm6CJ])h/ihZm6CJH*OJQJ]^JaJ)h/ihZm6CJH*OJQJ]^JaJ&h/ihZm6CJOJQJ]^JaJ hZmCJhZm2  )01DEKQRUVW]^gdLgdCgdLdhgdJ^gdJ^#&/1DEIJNOPRUVWY]^_acdefhijklmpqsuvyzŽ~yy hZmH*h])hZmCJaJmH sH hZmCJH*aJmH sH hZmCJaJmH sH hf~hZmCJ$H* hZmCJ$H* hZmCJ$hZmCJaJhJzhZmCJaJ hZmCJ hZmCJH* h]hZmCJOJQJ^JaJhZm hZmCJ hZmCJH*+^lmvwz{gdCgdL               ӴӴӔӎӇӎӴhZm5H*\ hZm5\ hZmCJ hZmH*hZyhZmCJH*aJh])hZmCJaJmH sH hZmCJaJmH sH hZmCJaJhJzhZmCJaJhZmhhZmCJH*aJhZmCJH*aJhZmCJH*aJhhZmCJaJ/        ! ' ( / 0 E F I J L M P Q Z [ \ b c gdLgdC    ! # ' ( ) , - . / ? D E F I J L O P Q R T U V W Y Z [ \ ^ b c d g h i j k n p ߜߎߎ߉̸}mhZyhZmCJH*aJmH sH hZmCJaJmH sH  hZmH* hZmCJhZm5H*\ hZm5\hhZmCJH*aJhZmCJH*aJhZmCJH*aJhhZmCJaJhZmCJaJhJzhZmCJaJhZmh])hZmCJaJmH sH hZmCJH*aJmH sH *c j k q r                         gdLp q r s u v x y z { | } ~                                               穠ǓhZmCJH*aJmH sH hZmCJH*aJhhZmCJH*aJ hZmCJH*hJzhZmCJaJhZmCJaJmH sH  hZmCJ$H* hZmCJH* hZmCJ hZmCJ$hZmh])hZmCJaJmH sH :                                            " 3 5 6 7 8 : < = Ӽٵߩߞٵߗ߉߉ߗ hZmCJhZm5H*\ hZm5\hJzhZmCJaJhZmCJaJmH sH  hZmCJ$H*hhZmCJ$ hZmCJH* hZmCJH* hZmCJ hZmCJ$hZmh])hZmCJaJmH sH hZmCJH*aJmH sH 4        " # 6 7 E F O P Q W X e f r }       gdCgdL= > ? @ A B C D E F H I L N O P W X Y [ ] ^ _ ` a b c e h i p r           ɹɹ՟ՓՓՎՎՈՈw h7ohZmCJOJQJ^JaJ hZmCJ hZmH* hZmH* hZmCJH*hJzhZmCJaJh])hZmCJaJmH sH h])hZmCJH*aJmH sH hZmCJaJmH sH hZm hZmCJH* hZmCJ hZmCJ$ hZmCJ$H*hJzhZmCJH*aJ)      ; Z z           " & ( : \ $IfgdLgdLgdC    ; < > [ ^ z { ~            " & ( , 8 F L P V Z \ ^ b j t ~   DZDZܤܤzppzfzpzh>(hZmCJH*h>(hZmCJH*h>(hZmCJaJh>(hZmCJH*aJh>(hZmCJ hZmCJhZmhGGYhZmCJOJQJ+h@IhZmCJH*OJQJ^JaJmHsH(h@IhZmCJOJQJ^JaJmHsH h7ohZmCJOJQJ^JaJ#h7ohZmCJH*OJQJ^JaJ(\ ^ l  ~~$If{kd?$$Ifl06 t0644 layt>(              }x}x}x}x}x}gdGgdq8{kd*@$$Ifl06 t0644 layt>(                                   $ & 4 6 : < > @ D F J P ĽԶᦖԆԆvᦖԆԆh hZmCJH*aJmH sH hbhZmCJH*aJmH sH hGhZmCJH*aJmH sH hGhZmCJH*aJmH sH  h hZm hq8hZmh 8KhZmCJH* hZmCJhZmCJH*aJmH sH hZmCJaJmH sH hbhZmCJaJmH sH hZm. > @ R T f     w{kd@$$Ifl06 t0644 layt>($IfgdG P R T X d n t x ~                      !$%5:;<?QVWX[bdz{~ hZmH* hZmH* hZmCJhZm5H*\ hZm5\ j hZmh>(hZmCJH*h>(hZmCJaJh>(hZmCJH*aJh>(hZmCJhZmhbhZmCJaJmH sH >      }ww$Ifgd$y{kdPA$$Ifl06 t0644 layt>(   ~~$If{kdA$$Ifl06 t0644 layt>(!"%&;}}}}}}gdC{kdvB$$Ifl06 t0644 layt>(;<?@HWX[\dq{|gdlgdCŶhZmCJaJmH sH h5bhZmCJ(aJ(mH sH h{rbhZmCJ(aJ(mH sH hZmCJ(aJ(mH sH h0hZmCJ aJ mH sH hZmCJ aJ mH sH h}hZm5CJ(aJ(mH sH (hIuhZmCJOJQJ^JaJmH sH hZm hZmCJ0gdl)*+,-=>?@AQSTghiqrstuv{}²ΙΙΙΙΙΙΈyhehZmCJaJmH sH hehZmCJH* hZmCJH*h$hZmCJH*h%7hZmCJaJmH sH h%7hZmCJH*aJmH sH hZmCJaJmH sH  hZmCJhghZmCJaJmH sH hZmCJmH sH hZmhhZmCJaJmH sH /,-@ASThiqruv$a$gdlgdl3>cpq}~  ˷˷ˢyyyyymkUhZmCJaJmH sH (h3hZmCJOJQJ^JaJmH sH &h.mhZm5CJOJQJ\^JaJ) *h.mhZm5CJOJQJ\^JaJh.mhZmOJQJ^J hZm5\hZmhehZmCJaJmH sH h~|hZmCJH* hZmCJ hZmCJH*hpchZmCJH**#$23>?GPQYbcjp$a$gdlgdlpqw}~  gdl$a$gdl  $&*,0268<>BDHJNPTgdgdmcH T - - - - - - - + + + + + + + - + - - - - - - - + + + + + + + - + Enthalpy Ionic solid Gaseous ions Hydrated ions Lattice enthalpy Hydrationenthalpy MX(s) M+(g) + X-(g) HLat Enthalpy of Solution M+(aq) + X-(aq) HHyd HSoln M+(g) + X-(g) MX(s) M+(g) + X-(g) + aq M+(aq) + X-(aq) M+(g) + aq M+(aq) X-(g) + aq X-(aq) HSoln HHyd Na+(aq) + Cl-(aq) HLat Na+(g) + Cl-(g) NaCl(s) Enthalpy    $&*,0268<>BDHJNPTVZ\`bfhlnrtxz~ªƪȪ̪ΪhhZm5CJ8aJ8mH sH (hhZm5B*CJ8aJ8mH phsH hZmCJaJmH sH hZmhmchZmCJaJmH sH ETVZ\`bfhlnrtxz~gdªƪȪ̪Ϊ46XZ~gdbgdΪԪت246VXZ|~  "*,.夝崝崝 h hZmh hZmCJH*aJmH sH hZmCJH*aJmH sH hGhZmCJH*aJmH sH hbhZmCJH*aJmH sH hZmhZmCJaJmH sH hbhZmCJaJmH sH :,.~@ԭ֭gd3:gdlcgd;`ggdIgd .028DFLrx~άЬ֬ج02:>BDJ|~yyhZmCJaJmH sH hEhZmCJ aJ mH sH hZmCJ H*aJ mH sH hEhZmCJ H*aJ mH sH hEhZmCJ H*aJ mH sH hZmCJ aJ mH sH hZmhSzhZmCJH*aJmH sH hSzhZmCJH*aJmH sH hSzhZmCJaJmH sH +ȭʭЭҭԭ֭ڭ "&.024ۜۻ۬瘇 hFz h2dCJOJQJ^JaJhh hZmCJH*aJmH sH hbhZmCJaJmH sH hbhZmCJH*aJmH sH hGhZmCJH*aJmH sH hZmCJaJmH sH hZm h hZmhZmCJH*aJmH sH ) .024gdFz gd3:.:p2c/ =!Q"Q#$% zayuIӘq( r?'Nza2fXG2.N氿( gppvzaM-*chHH( za6ݢHsԠ( 33333333zag\Oy Ek( DD$$If!vh55#v#v:V l0554aytl$$If!vh55#v#v:V l0554aytl$$If!vh55#v#v:V l0554aytl$$If!vh55#v#v:V l0554aytl$$If!vh55#v#v:V l0554aytl$$If!vh55#v#v:V l0554aytl$$If!vh55#v#v:V l0554aytl$$If!vh55#v#v:V l0554aytl$$If!vh55#v#v:V l0554aytl$$If!vh55#v#v:V l0554aytl$$If{!vh55555,#v#v#v#v,:V (45555,/ 44 (a{f4ytl$$If{!vh55555,#v#v#v#v,:V (45555,/ 44 (a{f4ytl$$If{!vh55555,#v#v#v#v,:V (45555,/ 44 (a{f4ytl$$If{!vh55555,#v#v#v#v,:V (45555,/ 44 (a{f4ytlmDd ` lJ  C A? "2^_PR *`!^_P@qxڍR=KA};/]> RB -L:@KBZ"h%?&H?bmesgbޛ;;y@`VGI4Ć4IDlb]>$ʫ*[el"d\*zQ{^DzW> djqWkUTT\݉sE7UCs? ^9o3_br H+ԥ"NmZr<0bZ`iHøUR%'9)ˌo[i+I{>fҞ C G !{Ip:ŝ5}Dc3u7+o`; [Ϗ~EVW=q֞ G~,Լ_<\ Dd pJ  C A? "2{P z%A *`!{P z%A (+xڍS=KA|]<:ˑD-Q0 XXE8P {+k E @ٻLR&v޼}3{Ah(` +C2"DA}wl\ aRX{zrVE` <уX<췽V~HUȧ'P/Ҁj-h-)3:s+}Tjx P Ѭ ~"%K{2dr?Rd+~MuF8;?>J\ph٨(Pn"Ԧowj\C;Tޜ%uO:@'!Q)wGS[[FR#|x;99+a< R^Dfs\4^t$$If!vh55 #v#v :V l t0655 aytl$$If!vh55 #v#v :V l t0655 aytl$$If!vh55 #v#v :V l t0655 aytl$$If!vh55 #v  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`acdefghiruvwxyz{|}~Root Entry FRtPData b CWordDocument=ObjectPoolHQR_1044371488FQQOle CompObjfObjInfo  !$'(+./46789;<=>CDHIJNOQSTUVXYZ[`dgmquyz~ FMicrosoft Equation 3.0 DS Equation Equation.39q԰`mI\yI  e@[100  e@1.0  e@1000][200  e@1.0  e@1000]  2BEquation Native _1044371543 FQQOle CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39qԌI؎I  e@2.210"5 0.10.04=5.510 "3d @ObjInfo Equation Native  _1044453767 F\Q\QPIC d       .  & & "- &  & ' @ "#@##@"META (PICT ObjInfo_1044455913%*F\Q\Q#@##@#@#@#@#bin265٬Y˂|jMEOW  e@  e@no. of moles of A  e@tOle ObjInfoEquation Native _1044458328F\Q\Qotal no. of moles FMicrosoft Equation 3.0 DS Equation Equation.39qل|I8I  e@[C]c[D]d  e@[A]aOle "CompObj#fObjInfo%Equation Native &[B]b FMicrosoft Equation 3.0 DS Equation Equation.39q|\II  e@PCcPDd  e@P  Aa P Bb_1044457368F\Q\QOle )CompObj*fObjInfo ,"Equation Native -_1044457444#F\Q\QOle 0ObjInfo"$1Y˂|jMEOW P Cd @       .  & & "-Equation Native 28_1044453766\' F\Q\QPIC 3dMETA &(5( &  & ' @ "#@##@"#@##@#@#@#@#binPICT ):ObjInfo?_1044458696!2,F\Q\QOle @pY˂|jMEOW  e@[C][D] 3  e@[A][B] 2Y˂|jMEOW  e@(0.02ObjInfo+-AEquation Native B_10444587080F\Q\QOle EObjInfo/1FEquation Native G_1044458927.?4F\Q\QOle K/0.5)(0.06/0.5) 3  e@(0.08/0.5)(0.26/0.5) 2x˂|jMEOW  e@0.040.0017280.160.2704@ObjInfo35LEquation Native M_10444537648 F\Q\QPIC Pdd @       .  & & "- &  & ' @ "#META 79R(PICT :WObjInfo\_1044459811=F\Q\Q@##@"#@##@#@#@#@#bin0Y˂|jMEOW 0.61.Ole ]ObjInfo<>^Equation Native _L_1044459832CAF\Q\Q400Y˂|jMEOW 0.41.40 FMicrosoft Equation 3.0 DS Equation Equation.39qOle aObjInfo@BbEquation Native cL_1044459747;EF\Q\QOle eCompObjDFffObjInfoGhEquation Native i$I,I 0Y˂|jMEOW 0.41.40_1044459845JF\Q\QOle jObjInfoIKkEquation Native lL_1044459856NF\Q\QOle nObjInfoMOoEquation Native pL0Y˂|jMEOW 0.41.400Y˂|jMEOW 0.41.40_1044459863LXRF\Q\QOle rObjInfoQSsEquation Native tL_1044460454PxVF\Q\QOle vObjInfoUWwEquation Native xٌ˂|jMEOW P PCl 3  P Cl 2  P PCl 5 Td ʂ|jMEOW 0.5710.5710.8572d @_1044460125ZF\Q\QOle {ObjInfoY[|Equation Native }p_1044453695 6^ FQQPIC dMETA ]_(PICT `        .  & & "- &  & ' @ "#@##@"#@##@#@#@#@# FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo_1307617674cFQQOle CompObjbdf#v :V l t0655 aytl$$If!vh55 #v#v :V l t0655 aytl$$If!vh55 #v#v :V l t0655 aytl$$If!vh55 #v#v :V l t0655 aytl$$If!vh55 #v#v :V l t0655 aytl$$If!vh55 #v#v :V l t0655 aytl$$If!vh55 #v#v :V l t0655 aytl$$If!vh55 #v#v :V l t0655 aytl$$If!vh555#v#v#v:V l t06555aytl$$If!vh555#v#v#v:V l t06555aytl$$If!vh555#v#v#v:V l t06555aytl$$If!vh555#v#v#v:V l t06555aytl$$If!vh555#v#v#v:V l t06555aytl$$If!vh555#v#v#v:V l t06555aytl$$If!vh555#v#v#v:V l t06555aytl$$If!vh555#v#v#v:V l t06555aytl$$If!vh555#v#v#v:V l t06555aytl$$If!vh5555 #v#v#v#v :V l t0"65555 aytl$$If!vh5555 #v#v#v#v :V l t0"65555 aytl$$If!vh5555 #v#v#v#v :V l t0"65555 aytl$$If!vh5555 #v#v#v#v :V l t0"65555 aytl$$If!vh5555 #v#v#v#v :V l t0"65555 aytl$$If!vh5555 #v#v#v#v :V l t0"65555 aytl$$If!vh5555 #v#v#v#v :V l t0"65555 aytl$$If!vh55.5.5_ 5q#v#v.#v_ #vq:V l t0<"655.5_ 5qaytl$$If!vh55.5.5_ 5q#v#v.#v_ #vq:V l t0<"655.5_ 5qaytl$$If!vh55.5.5_ 5q#v#v.#v_ #vq:V l t0<"655.5_ 5qaytl$$If!vh55.5.5_ 5q#v#v.#v_ #vq:V l t0<"655.5_ 5qaytl$$If!vh5)5P #v)#vP :V l t065)5P aytl$$If!vh5)5P #v)#vP :V l t06,5)5P aytl$$If!vh5)5P #v)#vP :V l t06,5)5P aytl$$If!vh5)5P #v)#vP :V l t06,5)5P aytl$$If!vh5)5P #v)#vP :V l t06,5)5P aytl$$If!vh5)5P #v)#vP :V l t065)5P aytl$$If!vh5)5P #v)#vP :V l t065)5P aytl$$If!vh5)5P #v)#vP :V l t065)5P aytl$$If!vh5)5P #v)#vP :V l t065)5P aytl$$If!vh5)5P #v)#vP :V l t065)5P aytl$$If!vh5)5P #v)#vP :V l t065)5P aytl$$If!vh5p5o5I5F5L5L#vp#vo#vI#vF#vL:V l t065p5o5I5F5Lytl$$If!vh5p5o5I5F5L5L#vp#vo#vI#vF#vL:V l t06,5p5o5I5F5Lytl$$If!vh5p5o5I5F5L5L#vp#vo#vI#vF#vL:V l t06,5p5o5I5F5Lytl$$If!vh5p5o5I5F5L5L#vp#vo#vI#vF#vL:V l t06,5p5o5I5F5Lytl$$If!vh5p5o5I5F5L5L#vp#vo#vI#vF#vL:V l t06,5p5o5I5F5Lytl$$If!vh5p5o5I5F5L5L#vp#vo#vI#vF#vL:V l t06,5p5o5I5F5Lytl$$If!vh5p5o5I5F5L5L#vp#vo#vI#vF#vL:V l t06,5p5o5I5F5Lytl$$If!vh5p5o5I5F5L5L#vp#vo#vI#vF#vL:V l t06,5p5o5I5F5Lytl$$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If!vh5535. 55&#v#v3#v. #v#v&:V l t0&5535. 55&yt>($$If!vh5535. 55&#v#v3#v. #v#v&:V l t0&5535. 55&yt>($$If!vh5535. 55&#v#v3#v. #v#v&:V l t0&5535. 55&yt>($$If!vh5535. 55&#v#v3#v. #v#v&:V l t0&5535. 55&yt>($$If!vh5535. 55&#v#v3#v. #v#v&:V l t0&5535. 55&yt>($$If!vh5535. 55&#v#v3#v. #v#v&:V l t0&5535. 55&yt>($$If!vh5535. 55&#v#v3#v. #v#v&:V l t0&5535. 55&yt>($$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh5 5/ #v #v/ :V l05 5/ 4a$$If!vh55 55/ #v#v #v#v/ :V l055 55/ 4a$$If!vh55 55/ #v#v #v#v/ :V l055 55/ 4a$$If!vh55 55/ #v#v #v#v/ :V l055 55/ 4a$$If!vh55 55/ #v#v #v#v/ :V l055 55/ 4a$$If!vh55 55/ #v#v #v#v/ :V l055 55/ 4a$$If!vh55 55/ #v#v #v#v/ :V l055 55/ 4a$$If!vh55 55/ #v#v #v#v/ :V l055 55/ 4ajDd l0  # A2#(g9C8Yui5E^K*`!#(g9C8Yui5E^  (xڕRN@ }K(PQ@)FEy1eHRs%FȀ EbxL%r )b$>>`KV" l#HqHtEhsUU\XK6JJFc6c8Uuc>)P+nbL@mZ )M j =|W'*6X-)?x!TL침̿/k?,$߉2hfw0*g(܁Hܪ(N'KR^Sݹ1QYw.] zm6H&cp`6-̑](+mn`Y#gJ5(kIO'5a`fFh7s7HDd L[J  C A? "2Ȩq+_M*`!~Ȩq+_,` SLx]Q;N@؆8GrA%8(( X D9A (HGIIDtTDή-Zg A-NʳQNWdаT5~wZ;  qۣúLmNe7M|ZtZd@D9mރQc U ? VAX϶" ZjO*>IܷyZ|'xapHgQ i_+F?5d2UOS˕ /U_k&kȐL!Q$(s IPDd HpJ  C A? "2(=&׳U7P*`!(=&׳U@"TxڍRMK@$jӂ/S(UAR=WEloR ([hQsOGzuwv]"v&v{3<|:]"r" !| 42}*4"oEF; ˰B 8ѫBVl88LT-0%PQQDHO Ltd'Oe/޴ ’nUG2n* Ǡ3y3?nQ ׮:A;i;,h8?{ӵOgOnNy>ލ>G?_FIyG}!Q I 0[ü/d6Dd h0  # A2\M#s9)\18R*`!0M#s9)\1@H|xڍPJA}oVMrSXbc@TBjCKo-N$~_"}~Z d]v{3ohn @ppv5Ptyhȥbkʵ,x^AD >4J}i!=:$f4${,I:_b }}ܯ*VTg|p4:##MĚ}U6J5MQn6fa J='^Dd 0  # A2Us;\NFv1YgT*`!Us;\NFv1Y`P|xڍR=KAMԻDs~X)L@J0  N< XXmRYZۦV;L*y{ogPTA4E:Kq a(+)+{Xv!\ "p9{h32A1(R著w0F%*I~zorÈ{i~=ݣnйX ,`1 !8oEI7V/ҥL q3x2a-RT=ʌ;ϩP|%6Kcહ(D6%t/! [@*ttqMpFRԎ? 2/@2l–"-7'u`^Ы/$+?/@erDd 0  # A 2Aꆉ+&!}V*`!Aꆉ+&!}8` `.PxڍR=OASίX pPZh!`Lh"bA*k’ޖ`aBP4y. _lI/F A}_!i\U&fGiϢjj-rDz=OecvuZn_zCY QCʸ2%B {- Ykwn^ TfqqdWDŽA@㿊{eeK) ~d/|IR#|4&>N ~8 +#~R~8uCh%^}qGe7v8JDd dD0  # A 2a/k%7Y*`!a/k%h^ hxeR=KA*rIXP|F8PlRD,lcg- Nsvv#ͻEpT&h[`YA eY&JTmtyEl;[$ٟ1{`;{slL{2^LTE:51k9>iebPz&gi2($W~ڻX2 xF^WŹ<0jaZ]jAZe% +Zk_5JO@*IWwlCC?'2~g&5(DIղq41+4*#be??Y6;ylʼtGܤ ̩}XEʭ`YS+m߰Y` Dd 00  # A 21aX< J:ue[*`!]1aX< J:u@Ck+x=PN@#CB"D`ّQHa R"!w UJ:jQSR ([;9i}3{!,Kء% & qQi_3!SU:MۂNVp5 zJ푑6i/4gTN uxOЌT3ËҤ߸Ji(nCsJNr_+UO*VBwd6Q<%ڎCq$T{|\Vu{XUs&c%> Dd 00  # A 2^qY.>> fb]*`!Z^qY.>> f@Ck(x=PN@B !$Du\PPR@)*%]j'PR D쭝w3{{sCh~-K4٣% & qY iO3S]L[W67!^zI.ɟRk/W~uS'](U+fFg}>o^M!ٵ愼|s?SMh*.#|s0D, o؁ǡD$N^S:3Ps6 h?> fba*`!Z^qY.>> f@Ck(x=PN@B !$Du\PPR@)*%]j'PR D쭝w3{{sCh~-K4٣% & qY iO3S]L[W67!^zI.ɟRk/W~uS'](U+fFg}>o^M!ٵ愼|s?SMh*.#|s0D, o؁ǡD$N^S:3Ps6 h?< Dd 00  # A 21aX< J:uec*`!]1aX< J:u@Ck+x=PN@#CB"D`ّQHa R"!w UJ:jQSR ([;9i}3{!,Kء% & qQi_3!SU:MۂNVp5 zJ푑6i/4gTN uxOЌT3ËҤ߸Ji(nCsJNr_+UO*VBwd6Q<%ڎCq$T{|\Vu{XUs&c%> Dd 00  # A 2^qY.>> fbe*`!Z^qY.>> f@Ck(x=PN@B !$Du\PPR@)*%]j'PR D쭝w3{{sCh~-K4٣% & qY iO3S]L[W67!^zI.ɟRk/W~uS'](U+fFg}>o^M!ٵ愼|s?SMh*.#|s0D, o؁ǡD$N^S:3Ps6 h?< Dd 00  # A 2^qY.>> fb)g*`!Z^qY.>> f@Ck(x=PN@B !$Du\PPR@)*%]j'PR D쭝w3{{sCh~-K4٣% & qY iO3S]L[W67!^zI.ɟRk/W~uS'](U+fFg}>o^M!ٵ愼|s?SMh*.#|s0D, o؁ǡD$N^S:3Ps6 h?\5d<~voyjdr;o)>X||DVm^Q6EJsP TSz]:yPQ ت≰' Cg[;Ku13Pꅄ;tQ]="Qj4+5SU8mP+Dd t00 ! # A 2xr1TV ؚmCk*`!{xr1TV ؚmC&  kIxmR=KA}3/z.!Bbg%Xha+<#$ LڿagaiB,% :ܽ};߻ `r$lʌh-J22q+SUe*LO|e%A"[' z4'b4!pkk;+X$}iGQNГ"_fF<^ v90|ofmr^%\㪵ʔ;Ʋ :鞁]֊%lhNvܙvj,aI*ZG/m]XySy.lF_AǓt {9b.4~I.X^o nP߯$$If!vh5 555#v #v#v:V l t065 55yt>($$If!vh5 555#v #v#v:V l t065 55yt>($$If!vh5 555#v #v#v:V l t065 55yt>($$If!vh5 555#v #v#v:V l t065 55yt>($$If!vh5 555#v #v#v:V l t065 55yt>($$If!vh5 555#v #v#v:V l t065 55yt>($$If!vh5 555#v #v#v:V l t065 55yt>($$If!vh5 555#v #v#v:V l t065 55yt>($$If!vh55W5 #v#vW#v :V l4 t0&6++55W5 yt>($$If!vh55W5c5d#v#vW#vc#vd:V l4 t0&6++55W5c5dyt>($$If!vh55W5c5d#v#vW#vc#vd:V l t0&655W5c5dyt>($$If!vh55W5c5d#v#vW#vc#vd:V l t0&655W5c5dyt>($$If!vh55W5c5d#v#vW#vc#vd:V l t0&655W5c5dyt>($$If!vh55W5c5d#v#vW#vc#vd:V l t0&655W5c5dyt>($$If!vh55W5c5d#v#vW#vc#vd:V l t0&655W5c5dyt>($$If!vh55W5c5d#v#vW#vc#vd:V l t0&655W5c5dyt>($$If!vh55W5c5d#v#vW#vc#vd:V l t0&655W5c5dyt>($$If!vh55W5c5d#v#vW#vc#vd:V l t0&655W5c5dyt>($$If!vh55W5c5d#v#vW#vc#vd:V l t0&655W5c5dyt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$If1!vh5{ 55 #v{ #v#v :V l t065{ 55 a1yt>($$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$Ifh!vh5~5#v~#v:V l05~54ah$$If!vh55 5 5#v#v #v #v:V l055 5 54a$$If!vh55 5 5#v#v #v #v:V l055 5 54a$$If!vh55 5 5#v#v #v #v:V l055 5 54a$$If!vh55 5 5#v#v #ObjInfoeEquation Native _1307618239hFQQOle Š$̾$ [H + (aq)][A - (aq)][HA(aq)] FMicrosoft Equation 3.0 DS Equation Equation.39q.̾  Ka [HACompObjgifObjInfojEquation Native J_1044632992m FQQ] d @       .  & & "- &   & 'PIC dMETA ln(PICT oPObjInfoP   @ "#@##@"#@##@#@#@#@#_1044622974rFQQOle ObjInfoqsEquation Native x\P΂|jMEOW [H + ][A - ][HA]q|Xx Nw [H + ]0.5000.800_1109512622vFQQOle ObjInfouwEquation Native t_1044631391p|zFQQOle ObjInfoy{Equation Native X<j҂|jMEOW [A " ][HA]<j҂|jMEOW [A " ][HA]_1044631402~FQQOle ObjInfo}Equation Native X_1044631409TFQQOle ObjInfoEquation Native X<j҂|jMEOW [A " ][HA]<j҂|jMEOW [A " ][HA]_1044631425FQQOle ObjInfoEquation Native X_1044633546aFQQOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q`IdI [concentration of salt][concentration of acid]Equation Native _1083059096tFQQOle CompObjf FMicrosoft Equation 3.0 DS Equation Equation.39qS 41 g82 g mol -1<8ӂ|jMEOW 0.500ObjInfoEquation Native o_1044632015FQQOle ObjInfoEquation Native X_1044632129FQQOle 0.80008ӂ|jMEOW 1001000,8ӂ|jMEOW 20100ObjInfoEquation Native L_1044632172FQQOle ObjInfoEquation Native H_1044632262kFQQOle 0D8ӂ|jMEOW 0.00600.0100 VjCD0100ChemDraw 7.0.12ObjInfoEquation Native `_1307693968f!mA. QQOle ObjInfoCONTENTSu _1307694027!mA. QQOle       !"#$%&'()*+,-./56789:<=>?A  @@'$$$$:;<  x 3  #x ` xXXpjVg(XXpdd'`f87tYQs$ArialTimes New Roman$$f87s @kK`CH3pOfe7sO# 7+  @\d `Cac`fVc`ai# 7+     @k&~ `Hp&yfe&yp# 7+     @>d `OC_f8_C j# 7+    f9tYQs "l0`CH3yqP5fftP5# 7+  #]{J`CHyb{JfWy@̬b4T# 7+  $    %l&vd`CNyq&_ff&_̬qYQs# 7qe k3sd7 k3sF `Nyq3Aef3AqK#7+  7      &   '?{J`OHyDsEf9sEDFY# 7+  (    '+ KCN, pH 8 (HCN)ZOm̌5This label has conflicting or unassignable charges.  !    ]] VjCD0100ChemDraw 7.0.12ObjInfoCONTENTS _1307694555!mA. QQOle 0      !#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~  @@'$$$$:;<  x 3  #x ` xXXpjVg(XXpdd'`f8Yt$ArialTimes New Roman0$$f8 YQ  L`CH3PQf8 PQ# 7+  !{f `Cafa,vw `C-pr|r`-8|#7+4 ?v `O-pn|n-#7+5 @24 8 Avh`CH3uFm灲TFm#7+9 B28 : Cvh `H@knc xnc@k-m#7+; D2: >P@e&\@= EP@7Gf& ,;F H `N f  %#7+H I6 `C(2f(2,;#7+!I JFH L M h-@4f&433:QRtQ?P Q@ `Cyf̬!#7+R R@ `CH3~RP줿#7+S SPR T T@`CNyf̬#7~!x @7y ? `Nye!7+|  7z |x { xy U UPT V V@  `Ht8y8tQ#7+W WPV X X@: `Oy85f85Q?#7+!Y YPX [ Z h-6ff63s<_Ml\^ \ٯR@H+2SMMl\#7+!eRЮt3f e `Cyf̬A#7+g f`CH3~PR줿P#7+q gfg h h`CNyPfЮ̬P#7j `7k a `Nye#7+l b@ 7m clj n djk r ifh o j `Htxyxt#7+s kfo p l`OHyxfx3#7+t mfp C Fd+uuf&&ChemDraw can't interpret this label.D Gd-f&ٜ&ChemDraw can't interpret this label.J K .?3?E&ChemDraw can't interpret this label.K L .?3?E&ChemDraw can't interpret this label.M N  ! P   Xu:gr:%^N O  !     O P    @@@@\ [    @db ]  !    jF}S>Gc ^ .>33>@D&ChemDraw can't interpret this label.d _ .>33>@D&ChemDraw can't interpret this label.ObjInfo3CONTENTSU 1TableSummaryInformation(4VjCD0100ChemDraw 7.0.12  @@'$$$$:;<  x 3  #x ` xXXpjVg(XXpdd'`@P6f.sTimes New Roman0$$w@eYe%av r`CH2@u@eu#7+x r`CH@u@Xhffu#7+y vx z r`CH2@u@e u#7+{ xz ~  `O@}@}YD#7+ x~   `O@}@}YD#7+ v   `O@}@}YD#7+ z   `C@ @ ff #7+    `C@ @ ff #7+ ~   `C@ @ ff #7+    `O@Č@ČYD#7+    `O@Č@ČYD#7+   U `OU}ČU}ČD#7+   @7   7   @7   &7   @7   97   @7   L7   @7   `7   @7   s+7   @87   E7   @R7   _7   @7   7   @7   &7   @7   97   @7   L7   @7   `7   @7   s+7   @87   E7   @R7   _7   @ 7     7     @ 7    &7   @ 7   97   @ 7   L7   @ 7   `7   @ 7   s+7    @ 87 !  "E7 #  $@ R7 %  &_7 ' fFJƞ`p.s )jR7 *aZ)7 +  ,j97 -  .aI7 /  0jJX7 1  2aCh7 3  4jw7 5  6a9q7 7  8j7 9  :a7 ;  <j)57  =   >a7  ?    @jsb7  A    Ba7 C   Dj7 E  Fab&7 G  Ha  `C9g$fF\$lg}#7+ I  JO  `O9UfFJ`U#7+ K  Ljk% `O9pkfFek`p7#7+ M  NaƎ`CH39g^fF\ƞ`j^#7+ O !f:P6f3kw  S@@J`CH2yEOf:P6fHO#7+" T^@J`CHycOfX;̬cO#7+# U " $ V|@J`CH2yOfvP6fO#7+% W"$ ) X@@h`OHyE8cf:8cE3kw#7+* Y ) + Z^@h`OHyc8cfX8cc3kw#7+, ["+ - \|@h`OHy8cfv8c3kw#7+. ]$-  (`+ 3CH3OHľl 5This label has conflicting or unassignable charges. P 3g \j&ChemDraw can't interpret this label. QBio Diesel@~@1Ls@1Yl&ChemDraw can't interpret this label. R    @v #v:V l055 5 54a$$If!vh55 5 5#v#v #v #v:V l055 5 54aDd b 1 c $A? ?3"`?029q\r&*`!9q\r&@ hxRKqwgy?("!0ȹA$H"D脋qZhwj;hJ뽯 Ѓ{{~O\ zp졠_2'}m gLLlIӢ"=rdFPc]?5”wQ!i4Y$&Dއ<!+Z44Gղ]wςFQNz#L!$Ut*fɀ S(Eฐ"d|)Q= sEǝ9%?(<+8]I$OREnp4wdpDV0,gи[<6SA>'0m~w;{kO3qդN[NW+r[Cgq=۬՝2Ɓ:Z6K6H{9QDd $b 2 c $A? ?3"`?12ĮXhٝb'2|w>*`!oĮXhٝb'2|HD h=x]Q1KP%F I)N"8b"$CDBdWšpvR)-^>}ݻ)c6 [1EeYڬס Y.}k[`n 8|/`,Y< aJ,m[ky|9&⪚ Gſ:=c!xZ&R0 &MFy]b:ssֵ7}P R&~D]4f9X)D(|4NRV;3ND[Oks I9JGQ$$If!vh55 5 5 #v#v #v :V l t0655 5 ayt>($$If!vh55 5 5 #v#v #v :V l t0655 5 ayt>($$If!vh55 5 5 #v#v #v :V l t0655 5 ayt>($$If!vh55 5 5 #v#v #v :V l t0655 5 ayt>($$If!vh55 5 5 #v#v #v :V l t0655 5 ayt>($$IfM!vh552 #v#v2 :V l0552 4aMytZm$$IfM!vh552 #v#v2 :V l0552 4aMytZm$$IfM!vh552 #v#v2 :V l0552 4aMytZm$$IfM!vh552 #v#v2 :V l0552 4aMytZm_Dd l0 5 # A42e2Yy\{@R m*`!e2Yy\{@R m` }xڍR=OASN"Wb!6섊F .K0@b(0KX5=.e/v;"`d%yHoB0 dd0^)/MoYfkB-Y0'IAת/-N!+7f_%Zaq񧍽FLUOA7{\e:9͂m(}N^PmRG#E֋S|I3~\q l>j$xjlndZϫ'3iO*}?}v&!/֊_VkA4Yցe0~%Q). |+{[z7%.79EUx0Y'r~f`4 deuDd 0 6 # A52l&Ko$VPw*`!l&Ko$VPw 4 dx}R;HA &~ `a=!$EҘ$  <#&RVV6ba)b'{[[Q&q}3"Dj$xjlndZϫ'3iO*}?}v&!/֊_VkA4Yցe0~%Q). |+{[z7%.79EUx0Y'r~f`4 de5Dd l0 8 # A72p ?R*FзRĝ*`!p ?R*FзR@ SxMQNAfE"'jb}BM( ^%j\"Ĉ Ƚ vVjG=0L6 c/ rP`:qAjF=TytolAMk\AG,cj<8:5 Pg(wU_wt}*QOo>  gU"<<^\qW7Qu&F) *?lGx8xdd11:⺘!>ɇWOH4 ged`%?L 1Dd 8J = C A? "<2Ah&}Choب*`!gAh&}Ch@@v 5xڝJAgf3wM,K89&^^v|/]O(uՖkC$5]#˒FU;a]6YA+=9bXzDn>%>~wݎ@IR85Dd l0 > # A=2p ?R*FзR *`!p ?R*FзR@ SxMQNAfE"'jb}BM( ^%j2~Խu UKpZ>*`!RԽu UKpʾkk xUPKJA}ULQAE (…PA'PaTd Gx,ro\p(׏WEr˂ [$`"U˲T%mU|vu5 ;XYJ[P3aUSyp2z M\M~ a'fK؜g.wBwyV4.c]B qknKuk)-h-.u Ȭuc8xO6^NDfM菶{Q:Ck%d9XOh?Dd 00 @ # A?2n-]@v@/j?X뙢gO妢3p|ULK{7>z15;A~gF\\W(9/jx 4*dyt }͜s) ~ܥW`p!H6GLs -|ȶ7Sςcz"d4.+-o)v+ڀy웹Chf AkH+eYj%}L}~1QcGqs(]B9υ V8+Mm6}ʁw;\1{Iv-LWؚ?^JfwE>.=~ !|k4ĦZFum\ g0D2[n3 %١MZ+\ܨ79ݨe}ClCI̽t< T;`_ _߻@$$IfM!vh5_5"525N#v_#v"#v2#vN:V l t065_5"525NaMyttI$$IfM!vh5_5"525N#v_#v"#v2#vN:V l t065_5"525NaMyttI$$IfM!vh5_5"525N#v_#v"#v2#vN:V l t065_5"525NaMyttI$$IfM!vh5_5"525N#v_#v"#v2#vN:V l t065_5"525NaMyttI$$If!vh5 5e5 #v #ve#v :V l t065 5e5 ayttI$$If!vh5 5e5 #v #ve#v :V l t065 5e5 ayttI$$If!vh5 5e5 #v #ve#v :V l t065 5e5 ayttI$$If!vh5 5e5 #v #ve#v :V l t065 5e5 ayttIDd 0 F # AE" E^D|u?i_*@=W E^D|u?iIPvI=: %x[{pǙ3+$a$K"vE^"0lt,B sຘKM\#~ Bŗ`%< U8 o{wgv$}w,~+ Y Q{U!M</ ~o22u[rUI34="MYPEujX@z^YUFr҈K\ 5U^߿o nKop~%?}P1zRďxSžZEuElqi}e''I5U!V&^ R㢷N]-B?V]G&S,h P{rϐ]:UuJӋ9}'Ck5Mwo;5jVF9HU(cW)x**NtR  I)f3Ď\>ΩPw/jqqrU.ݚk߻ kQ.kB ,T'lb R_3Y 1 v,坈0=9 { lzm^ʇLJ1>b.Ng$6vCq!GQc)vhPto'=l=D񖄢 x;Q,S,NɈ\d"-N#Ÿx,hj/[~˨yۉUWs}(N(}(s>9EEo"#o' _y;Q\(o'UYv8$hjȪj" \\޶LVS^gqm"ZW&Sg뜩M/ [. yjE W_d^gFqFC_fI}2?&Lfv"@QYDŽ,i;,+F>:o'e2STvvonњxZ0Vn\^jb4Ot_͏yx\a(Vj6E]߯ O\۸M=P6Qۘd'o's8+aYf٘;iH >M$Wu%-7n=/Ѡ }ے;c͋[M(^~h#{2UVJо@U-B[p҆7XA>V "&)c]"})S`:Sr+*TXȠ`-ǖYdٍPkzŬLAA@ U˾k5wjq22.EG:ʂ Bߩm̵\W`˿T >|:5_́>?=c5%8?oj"U9k̅:V֣Q05 ټw~|Hao%@FOXXSy"K>0@^#:Zءgt&ƵLbiȠtΥwh(vA7QwQlz%0Ɯ_#iioFTQu\^ ȫ3y#~Z:&vM@{rBuUT(#o p=NqKQjID!!>]Lc8-%l>`2e%ǚ&Әs>cG B!)TWM+]ڕSG6)U[Ťصu_4Lgr?O.WV{rV#;Hb[c;-Wcҕ~9 3& oVeI:;yvrO9RT'StR2KR,Z U1k'3鎡g&kIC8 H582 FɀN NLBJ*3IxG)=C/F.5$S(&%8R.m3ѵJ٭6SfIt3JթSN2Ծ_@zS߀5=ln2;ҿ^{pWnOo{w7P^3SΤQMğA~AΪ5maTƁ,EcZ+ & 1Rr39cSl(ɲw+m zs?X^)`9L֟ʂf9yqt_ci*t&< ,RB8)rG))$i b *4S]`=o:N޸u֬7f~گ82|Yᦷ&ZYAib!S? ʠ0nencr2N;y2OFVܹ0k Gnkڢu76NǼ__f&NljWgdі 32xhҾcݦCgpAcKW>X֣N`ֆ0326űI &VJoz&5͚GK& kp5˴%joMp;1+ lwQxKͣH^jؙ IwҐ#D E#T?hUC֕z`uAzp⿫3‡9k]f:uHՅ$_j}t< W}RG-*S9.iC#wyVRk]m$lZg0>XֳZ+ 71}jUSUWJ*7/CX o$dϫТiWgϯc ŐΡ@} p8!` u0mi3ɇҚZ|bfloW/p~W+Ґوŋ8sG o~܆}H?4]8#OCiO|^J q8_Os}7lV3Ub_ | TV [<c#EauJ&X^E_/j1^:W2e_?ZP\M'~~]vMciT`{kUjE6LuϴqԶc,Z/ ylKmN3ORt <~שj :l% WJD~61ϼt~r:7K/]G_>)(xQ(r\& =Gnx-x1'%x-!:ٞ=KKx ;^ E<:{}KǕ[Cxbxߑ%#aŶEtwI ^:$* ;NKK!dxoK'iJmK W l JG:=F5}GZ#1x~:e$xCmHC Ux{Hx[FD/1%x͡n:}Yo@/3'%x3weBo|W C`uRm ޥx ؖVENHyCs($PHfq$p'厔"яL\!d"c|19f(IÖCuD^q9̯K+kƅ_J~'<8?Jos:I,WE=VO|DHmwHq"?;?/No 2E}rx ! ѐx w*g]M(a="{,׮YÕ:Hy7q//8tdqxO1!am!,jXoB^^~qdqϾ7U\ŸJ% exH΅Ke=1<4E8v?k `Tx,mZֈ)sk"S9k2B(!cbjZEjG2[K} }kRfdݒWݿ}y8vvm*F<(uJ@/=6V<{#$P|8<*crLfq٬SdžSh>Prϐ]`I!;'{z-ٱ\tѳ- >–řsmz˜ef1|Zŵ EeLNQ (d(VPPtPtd(P$@ʼn̯(,C(D# ?E` ]2Y?5gotMDqrܓϯq&#sxy+Y (ncqKc2/6hLWΉm6Bt+IvN)hacud~~]Ū1Љ_OF]ꕳzryezc92=T$OgdyN#a ȱjv Bޡؑ8;'4&]~Z(?6jq|!vfX;tGmɝ)(HmLѫmjKcj3Rwf¯2~M#W`JOƦ%PQشl jcSz]S7 Jqsr{.C#+:JR{UX4CU-B9FW@~Ule0I,D0YY< 2#ltKŹYv=TblYPz=T6dWXm%dELʌj{BgrLx`_ºW|\ع}=VSRCӇNPK,Y),3* ` zj<"Dwx#؛%La@:_yֻ9gXSy"M>0@~C[uR;nbLbn̈@ O[2hȅR5Β3b/i%'1]`a؊ KmKUs 2oW \ɧqv#ql ~ 4V'pcxvK]ťMQ1fK'*"_DpѢx=O/c,Tֿb}I\Y\SPqm$BB}PqR.D/k~V&9z\̬Y'k3~%yWlѦ=c4j~C7\˜Lڌ~$܈~T3aҷ',:Op / o D)ȤL&mw9RrKRܞ4ȍDaJ&Ɖ&2CO冮K$9$:#SN'aS&)vgp:.s:qeˉCKTԆ7%ӿk%GY\mQוX,G^NU(XhVcP7$ۉ%fgyެjZz90ud~}?^ > wBfb}rN=Bq8o ~-ǝq 6t PIbs*T5k4In@_&l.ӱdqT7y8u&1\AY9^Ce3 t 7YepgHUs5(i6[ӽr1^or YT_Tpb ~~&ˣjɐ|KB}q=ѕ"ҥPӘr_s3e!{ 9cҜL=Yn2ml_l7e̥.%=e,\.z}ʟ`(OC67Q#L7*-Y[EnQ!(>Wצz5Lؒz#ӣ1OɷգFO{ lzFR_w{:r\K(B~= ;ax3]+Q5Cpi,ᒡ :]c*)2϶^ބ{:'$b!bIbi$wļ$ֆmx;%xkt嫝NG'IFvMIF\I?,|q+AawrgV@բnb3+ Le!=L/^ļ|BaąK(Ot}.?.f+ .E5^~ҧwRpωZZC~Uj -^z%x#u.!xU шx> &=`8^Oˇ|{Rq3:7z %u nn/uq%x/|^7KIZ^}Swmx`xHļ--"8?IV#cxxOJB{HNDe{L' YE9ޯ$xk# =!x ^ODg Q])ZzfFȈ~[57{ٿsc"{sO{rS5XjU^~uQ:~O<*3ggCg^N?Mt8yzy/?Bc}1G NEx_ Wݢ8u\oQ=By>vՇ?{vgO2?T^s+(.,.x8(1os#3ZQk(K8kgl#l+(]P}.b^gj.jDf. ʳt}x/0jnC?u VN'Y'{PxKDk ??¾PRmȹ :˳'P}FܔvLW7vI-粂O&V]m}Hl8v8j(Dd '{0 I # AH".ufn7}C *@=ufn7}Copax= xTŹ3gs6KQ<@D!  V@ [U{-UU[UjkbnjnE-`/{3;gvf&$9g?9_*l t=|F(EtqatN=Ő0BG(#hUB ti#& Ύ&`Щ.G䮗A bU|ĵַ\XЎi7-w=LƢ㚸fXGH(YoxWmKEH-(;ڐZR^ ;aH1@~.px՛/2T@IAmG|x« Z V&"鱇FJl9&!^ izT@Lf#1L݇d6vY˫de& kyMKxCSB-QsZ.KS1XT4,e OI/;":9VTr_6V VvUV8K3X'}6%]%?U.p>MSq=SoUx#Q1MN C7Xk0Yxގn5#Pl|3Mߋf9I9G13;Zw}{k RO䳖j7ϡA38]?y3kBvb~w9OC9$CLi-5p[KҌQ஀ DYPeb d6ڻ\ޮئ`gmɶ1S4OW-8*gauGryO%J :GDOctG vނj_]e'V$>z[AiK,r-ϡ [El{om Ñ ar4c>R{\D2TcXMY-n2us+S'dp| /43GLro6-( o^\ڴ%knne)"˺([5[⮪7[,} %z&ws7gzjts77㦺8՛{sTכ{7Yet=s}'gZo6;_o6nS]o6ޜmz,;ݧ:G}@llLwO8#c1yo!kltbIcӠy=]C_i\4YkV^4p3Kя eZ"m*C4U7@ Ն$ދKȟ.DCX iB~zQikuO(Q`\'>o܂ y7Alo3D=%%[{]Y;zyFc:"kgsL5bhc6"Ed?Dŕ݋>ZH$N#!NHd>o PA15MIfZSp'_7!or4-ȟQ7c#]o%%wbM=\;l 5?|."ൃӛ%O42,|wP4#_r(cF3I^DAKc[a p4hςDYNpxx<׏[="]IGP3vc ca"Q=i=!DN5˯RDHm.˲lt1c䐥># X} h~۸cv9r~FPTyy^ jHG0^Qq~3JGM)<+Kŀo͌ѥ s4eT3$ι"#Eؗ 7/58fA pE֠auuC[ofکw>ѺѣSFaor2c0Qoaw1Sf72Sa"2~W8-C/{!3F:Yu8dZHɴMDQc`N?SV(,yA s]M3p~wt'`]pv{ 9q YS R?7(Rakx~!ZY$3O 9a_.c;&a۷#}9ÞL;h5kxެ\x0m0𮒥}+I%q7OÛG;:Z}uN?Q}$uu/st{\X1vsr#4;#9f㧶L33gyDQca^0BA|8H0V*0|QɊCU "j-7k oM5"ʳJ<LlwkEqf (zSٯ-U˃]vtba1hG%H:|BS-~mK+h$6_> ^Cۜh)b}~hV%KfQ:W$Z U(ޒDK5Y!,|%жBkB;Z Zp_ԃaJ"G^QBv11he\{,y&Kju Ya08-lN)0 0R(=/˛aGchX̴I\Zo(uCϝ ؑ@8Uw9awo7mزMdc0w'lbwY[q<ܜS˰NR}?ޗxz M{ih+`Ჲ~Eg"qo2kN/WJ9U/3yc"t+,ۖxb Lb'^_-?{1{ [}Ã=/JQuhۡr_{Yl|&SwN3zc&qYN&^.ADWV衪W{/ttk(I(>Ja?V[q_ի92'ĎLjt[.tg|mDm@.|SFi7U mhΒߊx4Q-ǍƿjۋHNxr29"{ e?\Q?Eer ëOr_{ƾ酲t%#Bqy%yJ@v?PyH[6|v>i|/7AJT x z?}顗EFBWJ1& Cm[9j<ԘM4B%W7͒ t6Y<,*MB&e $ݫ mX4Yy\3NpAx@~夗mKƟi "i(~T !F0XUX5L4qF]]+wx/..F< /M>M!g7كwwڳtlKr/qSOxV&gA\9l1s gAE(m¸Wc^à|5ȇAX0k 2Q GWŁg|^օ7C8 4`mS`[ t5EU!ҍәAU48xhv|> z ќ݌ӋrH./\܎L.5;0mGf'̍56>B"m/G 'ӝ[p\|@9eBG|C_Mf/$VQ|6%6]y.TW:O#{PG_w]n!y;+hyKmGb.t!%PXCݺj;_?}9_>ue>š~QuC8QsCy|7 V6~ϫ?NH:|~"NO2?D:2;sasc<.T v;s}))?WT0}/PzzMɱvy|>YǮ.kPD4knKTXD5kq9C.Ys%ύ+wD;;"陯mE%Q|m/{yG!+bN89eZJ7M; BirlF5Mtpm͡ }[Y_^n8u@iO2ZSk#!5چהHԔ*1:_{ .-Y~q-;lTπOZN8Uq8?ҿG_)S?T+>PO5^X?G/sH8Bs{|m]r֧k1ϫ3G]c:qli6t .0iirN1~dפOlڝp= 3.uB!_n)ĥPa|Ͼ%W=7>bF_n]LqoJpz7hHc{3`v]_N/S;5d7ߩ/;3nu*sé ˮޟ??O-7s=jBv.@%Vu%%պmc K4QwrҬodZpdyi"/q|^8_7JtZ90!+9=h_š#Mɯ8vpCSCS&7s:<ġLKN$Nv-(r3?z>?q;d~*,$S>OcnEx=mR|BG4{2 OU|vax_ԺP%OtkGp|!6kK~7lWɭ6op<.UqԚ#gknv>Xp8 ~ qp|zcl?wUIOCg0 О wq=Ә{.BO2Oby+AY~esX¹!{;5H]m;5wh޳3}*4$$IfM!vh5_5=55N#v_#v=#v#vN:V l t065_5=55NaMyt>($$IfM!vh5_5=55N#v_#v=#v#vN:V l t065_5=55NaMyt>($$IfM!vh5_5=55N#v_#v=#v#vN:V l t065_5=55NaMyt>(i,Dd .$ 0 M # AL"+?bjwZ9fo+*@=+?bjwZ9foƀ.jY'"+x] xTnv&Y < !YD@4"T^5,RZI5mDҢUHJA,XPQ|Q A?3{ݹd߷۝3s=wf%Tw3 B q YӅ"JsE,ip2rڷI @n8{a ZƜN9Ll=LC<5iHsV'n x>-^y!M #nj=߇,a fϙ> _=gU䡇Z< (k ٛ. ;1BcI-7!B5S^A-jGhLHfjwDhO_3LL3rF} k>+>[0P-W侀1?6HO1$h_K[xK24*:g+>k:neL:cxy1Ʉ;)b4Xt~5%Hc"#t}#8+Aϑr# GmFʊz* q`?T|g+UOs=8=8q܃{tރV=_"<(m(`}8Xgr.!Ok(q5 d `yy&J{ЪyPxpք_5͸k\z'ȃu{:H>]iF.W-󠰷)!,\oZ^ݖxVĎ>] zC#<Y {զİb8DƐbhOu(M\ KM ]M׬"z{KZ7G^clo ibm$-Y0-]ġ!i5]!4d@djCh6\jWa[!4d>3"6d8fq(8qXq&8,$k{EBI9T+ɺ?T1d?T'?$c:iA& I6b6}fuPml1bPjs fq?T1d?T'!'G$?$c.iuA& uI3b6KCI8C]M2AvPgl1bP:s fq?ԙ1tN^/O1oovD~LkfDLtMr"ڙDusI}Gz9;OO a>L -+={&MͲ,gE;Xڬh)FZNSxO* ;{ D\^5^#9a>I9#ϓqqXI88&kg8&k^q&04KdY"$cg8qؘ-M2aOacvaO!4df_a_!4wDzc >ݎ˪+3r {dDzvWV=ysU<(mt 5-|m kZ!|>>C%11d}Z47 y|81$\M#b.\#| pIc9'qn2\\x+,ݶ#y C6iMeAxLY.FV=߉(3"Ejg}$I DJ&I\v&̣;LbFb8L 5Ӊhj$$n͔xQ#QIX{SFg$BGt^螓[^{=/kse2ِMB_*Ser<'8ܳrX*nv E2鲚/zVsu6UxLeE;'kk𱰷)>f[#?lȅ?6OYaPbs?<5}VRV҇8y/$*EZcec#p{=tAi(TADtfIwɸ: +O$t/)q P?eL7d"6`>1Ssg_T6&6Ȼ13-8J/(1ŔSkśHWSͶ; p픜{*qFɼ4nG.$>b4*8{bQ~ܞcF4z*٠Pd΁P#d Űרܖh -7ss2Ka3X=-7Uhō7 ]bXqTZq4A/r+7V܂"R\bX10F fgTي[Qe(@vv΍zE6 *vi;1*̢["D hQӢF"bXt*d-hѝEKQp#hwbh/>}ߢME7EKeFWC>z.ny܃ݛ9ݺkE^3ļc #n(Ŵaua~2½(iCׯa9½{>yôaWop^a9ԙ6 0 #}2Jnʁa?`a%",@L&G~#<+e?ӆ>wRavFwM~F vF?Q=ӆwFx2C(iü]9CZFxE>2m8a0#_0"<$#<"Ln~Do1GxCݦ c'1DxTFX"6,1%v c2“(mNOaIi-5J~xq𤌰E6(GXkegPiz "֣A%?99dڠ+"^@æ J~x8 P"_6(%#" 2(rĴA`Q2"P[%?q 𲌰E6(av6"U޴A#ePjhݔ:-'*n&)b+v;(3i "&#"N$%]8눰EFxEMtvq7uEhCm؝t(b17#Bd6(mo!vad6(q.Mts8»CFxErMt>vq] 6(Cn>@dPi.8G EMt1vw#a7t2mP'ݙ#F]2§(ŴAIa SD-#AMt9vw{Sa/6(bvw{aEN2mPݝ#G2)4mPC=vapEL%vsp N4lY+bz ?~sV='; tg}2vO3&3ŕASLj@(vGk[)1mKQac]E#2q)3mIaﰻG8ߣH_ӆa]G2{f"?2m~wAbw?D0PTӆ?MݧqZD ji=#8QdiïW#{GHGF = #d`2E6}G [FD .{3?QLӆ>!SFpӆ:F2B.epY0l~!"#Msy2EgX44K.᯷T4K՟aCVGhEE+*BVL0kӨh5:VŊh /t>c\j5ƕ'|9v:r4բhmɗ E1c}zq=KP o;EQ](-DI7|[f nN ~~Z2.ѶZ\Xx@m7WNBuKuuVmK&d ˭ڤ7W 7蛓hȅhТzɢZUT7[tZT([E&Ie㢊jƢXkf=C>:]lQ/,-..,]ӢSPŊzFKeE?CiQ ?nQ!Z[ҫ"HbAr+FbnrqJ*yFretKO f͞WP9+fTξ|f\=ګ͛7{U.^pisgNW¬肦Kyp+%dAj~ؒy #,j7?)g|U f_5kN_04;՝+Μ}uM] y &{ \AI@f)0e 9.G-ijaqT>TB<ǍF/8߸t\l< sɆG&Ac9HS 9Iഞ`2- 6d2Ձh?\f@nъeP(r] [E+r'Cȕs!uE+ϋ\ (_/z;ʍE+.RbzkE+2njq9w(yp'/_Nemq9/_().x{\?"Wkf[śG< N\_3\fOxDq9śJ7s/Pww^ezq9O`Sx{Q&φ:䲉nI>²'?*]ub5M' rpR6(zfP/]YoA9d/GM[ U3<7I xyA57qyO*}oa(^vBEIݦ4LLiJۑewH(A: oH ptB>\?iPr|H54DIU#J%o XSR@A" مɉly<ٙp6'YW_q6[7J;G396b@Ү VQڍ ɏaDir (-&eϦiJ{k֘>G ]JL(O#a/D26<"gΆٰ} 2)h1P:mgRXS:% #J ȥA9I҉P?ʋ~jDV%^ "9?|k4BN]s3$?K= SNȹ(q}FHr ~7u*pQmᏜ=勌mſL`7ݪl/=BE ;> e`%k|/W-]T;U٢ql\-DϬYtww*ۣQ-Gw\sS옱- UTܞ#<=!>+jo|(Թel+@Z}u/B/U{{B{dX(˖ ,, eTeK ̕e{o -y`.wC@eN.jC&;*r7q><[=n沏TeK:,eƿ}OPew2>jU+픻]ɸ>bA--}eڠ9U۷ $ qUdwqg">첰HLg˕Ls<G *퓽lo J9[*};/$N]~291K\[Whm7nbnʆn͓uEێXNA29 Yrzyo兆;T( OX?j`))7##TvqWa>:6I%D?#;#`#Tgjp(ydJ3Qi>5uᄵehZN; ''[G\pg',U@>1'a"CۈȊ.:"1lf"9eu,^ߧX; 0tW֏Xas5FhGlX16::Gv׏X^K?"\?9#m~G}|]QxX8nnnn^G'laxFxFxFxFxutҏЍЍЍЍЍЍЍFPxʖ,J!WCY:a3+UWbj:Y5 ƿ!ᦨkw=SU R5*lj.4HvmHع7 ɪIJc߹xsDg}gǁ\lwv8?F[^WBf#ޘ7!6^_CC=ߋakUNUNď]Z5~{;RÏcC{gl#~ҵw>`>= ]_jqmǎG£ >\7U@xF%8\.0Q1Xl>׳ӆC\ḰS䍭ƫ}v|:Muz6afNŸXi_>rpĐc |2|3 bg|oe}@\UnBN7ah'web\U1oF85ſ"_]- ti됷JOQbcB;^l舯Yڳ5}Yv&s Jznyŷ}> /95XQ k68[6|mϽ%xr'˝Cɝl\[x2J<`)ۊvk)֚Ykq͋x Vo|!>>|Q%_ @^E,_YE]V5 5q拚(b担|QLެ%bSQi|QEM닚(yPq͞2|1٩/nmEM/jyrHT#yIDhW +//'ߟy!P'/~~HTBz˼ks0Fc*sm++s=k]6)Qcin3?ͮ~λ%v'@|~}?]bhp{y̻%v7MlSc%Ҝ߄%_VowI'~k5n|jI-'OU>5tOo)>|R$emR$ʧ\'T>-v|~KI> R|R41CӾ|z%C[O*J=*R|RܣI-'On'T>|~K)rt?'޻[OOՖ )>iϟd>5d{Tm9JI$I-ŧjSO'Oo)>E?U[ΟR|ҟ?|~K)rI[OOՖO2R|<??$SSNz''S)''''"ϟ,O)>ϟd> yTg9JI$I-ŧ:SO'Oo)>E?YΟR|ҟ?|ڗS)''"ϟ,O)>ϟd> yTg9JF>N* ,۱LV|۽GEn׃4ow_Cۇ|t0l27'/ZOx=ß|RPְk`;:oVGѷm諎S$}ۄiSHgD`߆ >p }?w4jYSMpM8nBJynOFK}j&;'F\tv@-שO*XkY"#n;11.ߝ$[EwXomVb[߹FYzy<}'/F@5jf5jڬQbQ35j53fZ>32%?ro'ž+k'o~)^>|~KIS'T>|~KILOo)>|z!S[O*f|~KIY*R|R4<[[O*6f|~KIH'T>m|~KI'T>m|~K6>*{8WiceڼeŲ;rsvPY e7(_#q7)G ^| iG!Q׏75^^Xx!t@e9bb\癭}gxP~C^ Dx*?kyxo| 1ܶbq[eиm1m)CBּ\Zx!tx{Tby )~OM <^xfg['55~'GW~wre%%o/qgw[}KQ_Fm͜ߋQ݋{1N}1v=~_% @7@R+ݵV^\98bg(z/2Izgg\ lu8y*gDž.7~%b\k/;K![cYaEޒ#x9ƣ@1.KʞWˮٵ˾c/d >1{|귴CkYnٕ}+Zσoc>Mhuf<:!lgrD_4emŲㅐb0Gib\S?|W}PY%~P+/Jzk/Z~b'/1 +V4ڭ#:bf!5vF }w9Nj|x?p}mp(pW q0ȏ} 4vF }w9NJd>\Py66pW+OFH.Y% _vj J$(B6Sz-fγ&i!{<@$$Ifh!vh5 5 #v :V l05 4ahyt$$Ifh!vh5 5 #v :V l05 4ahyt$$Ifh!vh5 5 #v :V l05 4ahyt$$Ifh!vh5 5 #v :V l05 4ahyt$$Ifh!vh5 5 #v :V l05 4ahyt$$Ifh!vh5 5 #v :V l05 4ahyt$$Ifh!vh5 5 #v :V l05 4ahyt$$Ifh!vh5 5 #v :V l05 4ahyt$$If!vh5(5(5G 5 #v(#vG #v :V l t 6`>065(5G 5 yt$$If!vh5(5(5G 5 #v(#vG #v :V l t 6`>065(5G 5 yt$$If!vh5(5(5G 5 #v(#vG #v :V l4 t 6`>06+5(5G 5 yt$$If!vh5(5(5G 5 #v(#vG #v :V l4 t 6`>06+5(5G 5 yt$$If!vh5(5(5G 5 #v(#vG #v :V l t 6`>065(5G 5 yt$$If1!vh5757575a5#v7#va#v:V l t0!6575a5a1yt$$If1!vh5757575a5#v7#va#v:V l t0!6575a5a1yt$$If1!vh5757575a5#v7#va#v:V l4 t0!6+575a5a1yt$$If1!vh5757575a5#v7#va#v:V l4 t0!6+575a5a1yt$$If1!vh5757575a5#v7#va#v:V l4 t0!6+575a5a1yt$$If1!vh5757575a5#v7#va#v:V l4 t0!6+575a5a1yt$$If1!vh5757575a5#v7#va#v:V l4 t0!6+575a5a1yt$$If1!vh5757575a5#v7#va#v:V l4 t0!6+575a5a1yt$$If1!vh5757575a5#v7#va#v:V l t0!6575a5a1yt$$If!vh55#v#v:V l t0655yt>($$If!vh55#v#v:V l t0655yt>($$If!vh55#v#v:V l t0655yt>($$If!vh55#v#v:V l t0655yt>($$If!vh55#v#v:V l t0655yt>($$If!vh55#v#v:V l t0655yt>($$If!vh55#v#v:V l t0655yt>($$If!vh55#v#v:V l t0655yt>(8@8 Normal_HmH sH tH 8@8  Heading 1$@&CJBB  Heading 2$$@&a$5CJ$88  Heading 3$@&CJH::  Heading 4$@&5B*<<  Heading 5$@&>*CJDA@D Default Paragraph FontVi@V  Table Normal :V 44 la (k(No List @Z@@ Plain TextOJQJtH u4 @4 Footer  !.)@. Page Number2B@"2 Body TextCJ6P@26 Body Text 2CJ @YB@  Document Map-D OJQJjSj Fz Table Grid7:V04b4 *Header  !R^@rR 3 Normal (Web)dd[$\$CJ_H aJtH @O@ 7oIndent  CJOJQJtH XOX J 5 befored5$7$8$9DH$CJOJQJmH sH tH B>@B J Title  5CJOJQJtH 4U4 J Hyperlink >*ph@@ 5U List Paragraph ^0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ #)3?DIQWZ`nsx~-0369<?BEHKNQTWZ]`cfilorux{~"%(<TYagy|E "&*-03NXckH  {           ! < U Y \ _ b J M T W Z ] ` a b c d e f g h l m n o p q r s t u v w x y z { | } ~    #&),/258; 147:=@CFILORUX[^ay| /Ues      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abfjmp      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHKNQTUVWXYZ[\]^_bflorw{!+17@Tkqw"%+7FRauW %*8[_uy'/:HU_gt  | Ap  #&*-0369<@CFILOdm /37;EKOS`{AJ_fu   / B I Z a w I!Q!X!m!t!!!!p9o9U     !"#$%&'()*+,-./012 3!4"5#6$7%8&9':(;)<*=+>-,?/@0A1B2C3D4E5F6G7H8I9J:K;L<M.=N?O@PAQBRCS>EFGHIJ K L M N OPQRST88DTXUYVZW[X\Y]Z^[_\`]a^b_c`daebfcgdheifjgkhmnopqrstuvwxyz{|}~xyz{|}~ < <<<<;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;7jklmnopqrstuvwG=H========= = = ======B=A=>===<=:=8=3=2=/=.=-=)=(='=%=<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<(:': :!:2:888888888889128388885:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`a77befgD>?>E>F>888888q8p8&9?9:9A>C>>>=><>;>>===================================t=s=4444444z4m4j4i4+vwxyz{|}h4~222222222k339979692919.9-9,9*9]9 : :[9Y9X9V9U9Q933P9M9L9K9I99%9989999 9 9 9 9998222223O3N3=3<322222222(3'3&3!3 33333333 3 3 3 33"2222#222222222l3;3(45678333i=h=P>L>V>T>`=c=g=\=[=Z=V=U=O=LMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~     33x333o33:373M3L3N2M2L2E2D2C2K3)3=2<2;292992 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVW X Y Z [ \]^_`abcdefghij99 : :k!l"m#n$o%p&q'r(s)t*u<::::~:y:x:w:v:u:liZ:]:V:q:b:c:h:`:a:f:g:+++++++++++++++999+++++++Q+"+#+O+9+++999++++++990:9+ +++/:999***+************.:991:*****:999** :**********3:":#:$:):4:%:6:&:::::::988888888888888999999999999999999999999999999999_8`8d8^8b8)))))))))))))))))).*+*(*%*"******* * ****[*\*]*^*h*i*k*m*p*r*u*w*x*y*z*********h0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ #)3?DIQWZ`nsx~-0369<?BEHKNQTWZ]`cfilorux{~"%(<TYagy|E "&*-03NXckH  {           ! < U Y \ _ b J M T W Z ] ` a b c d e f g h l m n o p q r s t u v w x y z { | } ~    #&),/258; 147:=@CFILORUX[^ay| /Ues      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abfjmp      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHKNQTUVWXYZ[\]^_bflorw{!+17@Tkqw"%+7FRauW %*8[_uy'/:HU_gt  | Ap  #&*-0369<@CFILOdm /37;EKOS`{AJ_fu   / B I Z a w I!Q!X!m!t!!!!!      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~     # z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z !z "z#m I1%*04?+DHKLOSU=Z"\cjCqvz<j] ()1  i  , (;6EG   !$""#EFSTUlmz{YLMY{Ktu)B C { mnrtx{~FG[EFw  ;<Xrsw|}/0Lfgkpquz{67-.`a>?k>&'(VPQyY  .8DEGKOSWXZ^bfjkmquy~ S z!!0"1"""##E#F######8$v$$%%%!%"%#%&%'%(%)%.%/%0%1%Z%%&&!&#&$&%&&&)&,&-&/&3&7&8&A&B&&& ' '(( ( (1(((((())*+ +++ +'+(+++2+3+6+=+>+A+H+I+M+T+U+Y+`+a+e+l+m+q+x+y+}+++++++++H,M,Q,W,`,s,,,,,,,,,,,,,,,,,,,,,,,,-----(-)---4-@-A-B-.....)/*/w////////////0 0000#0,07080:0C0L0W0X0Z0c0l0w0x0z000000v1w1/202;2R2a22222222222222222222 3 3 3a3b333333 4 4Z4[4]44445}7~7778899D9999?::::_;`;<<<<g=h=c>>>'?d???R@@ A A1A2AYAZAAAAAAAA,B-BMBNBOBBBBB5C6C7C8C}C~CCC)DGD~EEEEEEEEEEEEEEEEEF#F$FFF%G}GGGGGGGGGGGGGGGGDHHHHHGIJIIIAJBJJJJJJJJJJJJJJJJJJJJKK K K K KKKKKKKK?KjKkKKKKKXLZL\L_L`LbLdLeLfLgLhLiLjLkLlLmLnLoLpLqLrLsLtLuLvLwLxLyLzL{L|L}L~LLLLLLL NNNNNNNNNNNNNNNNNxOyO|O}O~OOOOOOOOOOOOPPPPPPEP`PtPPPPQQQR*R+R.R4R5R8R=R>RARFRGRJRPRQRRRRRRRSS SSSS+S,S0SYAYEYHYQYZYcYdYgYkYoYxYYYYYYYYY;ZPZZZZZZZZZZZZZZZ?[@[G[H[I[J[K[L[M[N[O[P[Q[R[S[*\+\P\]]^^^^^^^^^^^^^^]_^_(`)`a0a1aaGbbcccccccccddddd$d%d,d4d9d:dAdFdLdMd\dadgdhdkd/e0eieqeweeeeeeeeeeeeeeeeeeeeeeeeffgggghFhbhxhh i iziii/j_jjokpkkkSmUmimjmmmlnmnnnnnnnnoooooooooo9o;o>o?oAoCo]o_ocodofohoooooooooooooooooooo4p5pfpipppppAqRqSqiqqqqqq r rIrrrrrrrrssIsLs}ssss u uuuuuuuuuuuuuuuvvxx x)x/x1x3x5x6x8x?\]LxXuԣգ ~MNv*+AVƧ9EFyzթ֩!":abc٫ܫ Ȭɬ,-xe:RW_ewznjьC  $(+.ĕǕѕԕוڕݕ!$'*-0369՗śΛݛޛUǠ֠  #()wġš̡ԡۡ %&-8FS]^e3Uxã&A[wx}Τդ +,/<=?HXY\kl!$(+.147:>ADGJMbkҦۦߦ +-159CIMQ^ly~§̧ӧڧ (?H]dsèƨɨ̨ϨҨըبۨި -@GX_u GOVkr.%Y.%Y.%Y.%4 .%4 .%4 .%4 .%.%I=.%I=.%I=.%I=.%I=.%I=.%I=.%t.%I=.%.%v:.%.%.%.%7.%7.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%G.%G.%G.%G.%G.%.%.%s.%.%.%s.%.%.%s.%.%.%s.%.%.%s.%.%.%.%.%.%s.%s.%.%.%.%.%.%.%.%.%s.%s.%.%.%.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%.%.%s.%s.%s.%s.%s.%s.%s.%66666.%s.%s.%s.%s.%s66666.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%s.%s.%s.%G.%G.%G.%s.%s.%s.%.%.%.%s.%s.%s.%s.%s.%s.%s.%U.%G.%G.%G.%s.%s.%s.%.%s.%s.%sPPPhhPYPPhPPPhPPPhP.%.%v:.%s.%s.%G.%s.%s.%s.%s.% .%s.%s.%s.%s.%s.%.%.%s.%s.%.%+.%.%.%.%s.%s.%s.%۱.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%s.%s.%s.%.%.%.%.%s.%s.%s.%s.%s.%s.%s.%s.%s; ; ; ; ; ; ; ; ; ; ; .%s.%G.%s.% Y.%s.%I.%s.%s.%s.%s.%s.%s.%s? Y? ? ? ? ? ? .%.%s.%s.%s.%8VV Y8VV 8VV 8VV .%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%.%s.%s.% .%s.%s.%s.% .%.%s.%.%.%.%.%s.%s.%s.%s.%s.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%s.%s.%s.%s.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%s.%s.%s.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%.%.%.%.%.%s.%s.%s.%s.%s.%.%s.%.%sQ x Q x Q x Q x Q x .%.%s.%s.%Q x Q x Q x Q x Q x Q x .%.%.%.%.%.%.%.%s.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%.%.%.%.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%s.%s.%s.%s.%.%.%s.%.%s.%s.%.%.%.%.%.%.%s.%qnntttYqnttqnttqnttqnttqnttqnttqntt.%s.%G.%s.%G.%s.% .%.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%.%.%s.%s.%s.%s.%s.%s.%.%.%.%.%.%.%.%.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%s.%sss ssss ssss ssss ssss ssss ss.%s.%s.%s.%sss ssss ssss ssss ssss ssss ss.%.%s.%s.%s.%.%.%.%s.%s.%s.%s.%s.%s.%.%s.%s.%s.%s.%s.%s.%s.%.%.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s[V NY[V N[V N[V N[V N[V N[V N.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%.%s.%s.%s.%.%s.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%.%.%.%s.%s.%.%.%.%.%.%s.%s.%s.%s.%s.%s.%s; W ; W ; W ; W ; W ; W ; W ; W ; W ; W ; W ; W .%.%s.%s.%s.%.%.%s.%?; ?W Y?; ?W ?; ?W ?; ?W ?; ?W ?; ?W ?; ?W .%.%s.%s.%s.%.%s.%s.%.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%s.%s.%s.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%s.%.%.%.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%t.%.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%s.%s.%s.%R.%s.%s.%s.%s.%s.%s.%s.%І.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%{.%s.%T.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%s.%s.%s.%s.%s.%s.%m.%s.%m.%s.%s.%s.%Ď.%s.%.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%s.%.%.%.%.%.%.%.%t.%v:.%v:ok  gKgv:v:Mtl lllllssttttttttttJv:$$Xaa$a$Oa a 3Kajajv:W W W W W W v:Jv:,5  ,Jv:Jv:tttttttItttttt E ^  U U U zv:zv:zv:v:zv:zv:zv:v:v:v:zv:3v:3v:%v:Lv:Lv:Lv:Lv:ov:ov:cv:cv:v:v:v:v:v:v:v:v:( W:DI=DI=DI=DI=DI=CI=DI=pI=pI=pI=pI=pI=pI=pI=CI=pI=%I=%I=&I=&I=&I=&I=&I=NI=NI=NI=NI=NI=NI=NI=%I=NI=,dp& q| | ,,"#EFSTUlmz{YLMY{Ktu)B C { mnrtx{~FGH[EFw  ;<Xrsw|}/0Lfgkpquz{67-.`a>?k>&'(VPQyY  .8DEGKOSWXZ^bfjkmquy~ S z!!0"1"""##E#F######8$v$$%%%!%"%#%&%'%(%)%.%/%0%1%Z%%&&!&#&$&%&&&)&,&-&/&3&7&8&A&B&&& ' '(( ( (1(((((())**+ +++ +'+(+++2+3+6+=+>+A+H+I+M+T+U+Y+`+a+e+l+m+q+x+y+}+++++++++H,M,Q,W,`,s,,,,,,,,,,,,,,,,,,,,,,,,-----(-)---4-@-A-B-.....)/*/w////////////0 0000#0,07080:0C0L0W0X0Z0c0l0w0x0z000000v1w1/202;2R2a22222222222222222222 3 3 3a3b333333 4 4Z4[4]444445}7~7778899D9999?::::_;`;<<<<g=h=c>>>'?d???R@@ A A1A2AYAZAAAAAAAA,B-BMBNBOBBBBB5C6C7C8C}C~CCC)D*DGD~EEEEEEEEEEEEEEEEEF#F$FFF%G}GGGGGGGGGGGGGGGGHDHHHHHGIJIIIAJBJJJJJJJJJJJJJJJJJJJJKK K K K KKKKKKKKK?KjKkKKKKKXLZL\L_L`LbLdLeLfLgLhLiLjLkLlLmLnLoLpLqLrLsLtLuLvLwLxLyLzL{L|L}L~LLLLLLLL NNNNNNNNNNNNNNNNNxOyO|O}O~OOOOOOOOOOOOOPPPPPPEP`PtPPPPQQQR*R+R.R4R5R8R=R>RARFRGRJRPRQRRRRRRRSS SSSS+S,S0SYAYEYHYQYZYcYdYgYkYoYxYYYYYYYYY;Zo?oAoCo]o_ocodofohoooooooooooooooooooo4p5pfpipppppAqBqRqSqiqqqqqq r rIrrrrrrrrssIsLs}ssss u uuuuuuuuuuuuuuuvvxx x)x/x1x3x5x6x8x?\]LxXuԣգ ~MNv*+AVƧ9EFyzթ֩!":abc٫ܫ Ȭɬ,-x,״ش jk}~"# 78qr#$tuĻŻefWX\]fgpqz{78YZ} ~       4444 5 5 5!5<<<<S=T===~MMMMMMyy%y&y2y3y?HXY\klm !#$'(*+-.0134679:=>@ACDFGIJLMabjkѦҦڦۦަߦ +,-014589BCHILMPQ]^lxy}~§˧̧ӧ٧ڧ (>?GH\]cdrs~¨èŨƨȨɨ˨̨ΨϨѨҨԨըרبڨۨݨި  ,-?@FGWX^_tu FGNOUVjkqr00000000000000000000 0 0 0 0 000000000000000000000000000000 0 0 0 0 0000000000000000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000 0 0 00000000 0 0 00000 0 0 000000000 00 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000 00000 0000000000000000000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000000000 0 0 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000000000000000000000000000000000000000000000000000000 0 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 00000000000000000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000 0 0 0 0000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000X0`aX0X0`aX0X0`aX0 X0fgX0 X0hi<X0X0hiX0X0hiX0 X0noX0 X0Q,RZX0X0S,TZX0X0U,VZX0X0W,X@ZX0X0Y,ZxZX0X0[,\ZX0X0],^ZX0X0_,` ZX0X0a,bXZX0X0c,dZX0X0e,fZX0X0g,hZX0X0i,j8ZX0X0k,lpZX0X0m,nZX0X0o,pZX0X0q,rZX0X0s,tPZX0X0u,vZX0X0w,xZX0X0y,zZX0X0{,|0ZX0X0},~hZX0X0,ZX0X0,ZX0X0,ZX0X0,HZX0X0,ZX0X0,ZX0X0,ZX0X0,(ZX0X0pqX0X0pqX0 X0tuX0 X0vwX0 X0xyX0 X0"xZX0X0"ZX0X0"ZX0X0" ZX0X0"XZX0X0LX0 X0X0 X0X0 X0TX0 X0ZX0 X0<ZX0 X0tZX0 X0ZX0 X0ZX0 X0ZX0 X0TZX0 X0ZX0 X0ZX0 X0ZX0 X04 ZX0 X0ZX0 X0ZX0 X0HZX0 X0ZX0 X0ZX0 X0ZX0 X0(ZX0 X0`ZX0 X0ZX0 X0ZX0 X0ZX0 X0@ZX0 X0xZX0 X0ZX0 X0ZX0 X0 ZX0 X0XZX0 X0ZX0 X0ZX0 X0ZX0 X08ZX0 X0pZX0 X04X04X0X0ܩ400X0ܩ4X040X0l0X0l0X00X00X0l0X00X0l0X00X0 L0X0  0X0 L0X0  0X0l0X0l0X0l0X0l0X0l0X00X00X0'1( 0X0'(0X00X00X0 L0X0 L0X0 t0X0 t0X00X00X0S0X00X00X00S0X00S0X00S0X00S0X00S0X00S0X00S0X00S0X00S0X040X040X040X040X040X040X040X040X040X040X040X040X0S0X0S00X0~ZS0X0|ZS0X0hS0X0hS0X0hS0X0 [S0X0  HS0X0 [S0X0 [S0X0 [S0X0~ [S0X0| [S0X0yZS00X0x0 0 0 0 0 0 0X00X0<0X0e00X0ep0X0i0X0c0X0^00X0b40X0^p0X0^l0X0[00X0W0X0WT0X0R00X0Rp0X0N0X0I00X0Ip0X0I0X0A0X0ET0X0?0X0400X0:p0X0100X09l0X050X030X030X0.00X0.0X0*0X0*T0X0%00X0%p0X0000000000X0t000000X00 0 0 0 0 0 0X0 0X00X00X00X00X00X00X00 0 0 0 0 0 0X0x0 0 0 0 0 0 0X0y@S0X0i(S0X0g(S0X0e(S0X0c(S0X0a(S0X0_(S0X0](S0X0i8\S0X0g8\S0X0e8\S0X0c8\S0X0aS0X0_S0X0]S0X0UkS0X0SkS0X0WS0X0U\lS0X0S\lS0X0QkS0X0OkS0X0MkS0X0KkS0X0HkS00X0D4AS000X0:4AS0X0:lAS0X0:AS0X0:AS0X08NT0X06NT0X04NT0X04BS0X0/NT00X0/0OT0X0LT0X0*S0X0#$T0X0L*S00X0*S00X0  T00X0  T00X00]T0X0h]T0X085T000X0AT000X0  MT00X0040X0h40X0XmT0X0040X040X04 0X0l 0X0"!0X0 !0X0!0X0!0X0!0X0!0X0!0X0!0X0!0X0!0X0!0X0 !0X0  0X0 0X0 0X0 0X0$"%l%0X0$ %l%0X0$%l%0X0$%l%0X0$%l%0X0$%l%0X0$%l%0X0$%l%0X0$%l%0X0$%l%0X0$%l%0X0$ %l%0X0$ %l%0X0$%l%0X0$%l%0X0$%l%0X0VW8,0X0XYp,0X0Z[,0X0\],0X0^_-0X0`aP-0X0bc-0X0de-0X0fg-0X0hi0.0X0jkh.0X0lm.0X0no.0X0pq/0X0rsH/0X0tu/00X0wx/0X0w x/0X0w x/0X0wx/0X0wx/0X0wx/0X0$10X004X04 S Oq!'z),,1. 1'68<DBCMdOP$R$THWXG\_a5cdhGkBnrvix}„,(]Ď2ʕ^[Oc /Ig~߷"¹o)RT@3q&<>EE R`- /~J/$fI- .%p()T+/%379;*==>@~@A6B$CDD#EEFuGIJKMOR}UW9\S^1_ac3ddf2hi0mmn ppsukv`wxz{{c}~@?~1y|ąQ.F#גҕq՝H٪XڭHF 2]:kf, Y# p  =   P Ϊ.4%&()+,./247BFHJXZ[bjklnuwxy{}~   !#$%&'(*+,-./124:<=?ACEFKMOPRSTVWXY[\]^_`bcdeghjkptux{}~   $'-/023568:<>?ACFHMOQX[]^ m<|fpz!.'W'j'~'(#./4'424=4H4T4`4l4x4445555556(6@6w88979W9w99a;;; <<?CMP$T@WWY[\^^^^^______`ande&eBeiexeeeeeff0fgDkppppp q/rBrTrgryrrv>Zց$tL$/:GT_jŕٕj4[TOGJBez G:vR&6R#&0:DP\hti Vdu I#R')N,:-e--;259=AFLPUjWWWW`Z3\_r__z`akfln p(pGppu1{@l.pʛڛ˜ѝʞBoʟȫ8Ur[߭ Gq:rѯJ4]Wd &` #^c   \     ;pT4      !"#$'*-0135689:;<=>?@ACDEGIKLMNOPQRSTUVWY\]^_`acdefghimopqrstvz|   ")0356789;>@BDGHIJLNQUZafilmnoqrsvwyz|   !"#%&()*+,.1479;=@BDEGIJKLNPRSTYZ\_2q######Zrtfz|p$<>}ט@XZ :RT՛68àŠ̠Tln026JLMacfz|äȤܤޤ "(<>[su !# 0HJs Zrt$<>f~!dxz   D\^pThj!-!/!"""###2#F#H#$#$%$[$o$q$$$$$$$&&&p(((CCCCDDEEEoFFF```Hb`bbbOcgcicelvlxl::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: '!!@O:W_r$yuIӘqi0r$2fXG2.N氿ir$M-*chHHir$6ݢHsԠikr$g\Oy Eki @WV> <   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXWYZY[\[]^_`abcdefghijikilmlnopqrstuvwvxyz{|{}~S(  ` , (AC"? w( B CDEF"u T @`,"ZB x( S D4MqMZB y( S D4q |( B-CDEF$# --Px-@` ( lBCADEFA# @`S" 7TVB ( C D"?t , (# ZC"? ( B CDEF"u T @`,"ZB ( S D4MqMZB ( S D4q ( B-CDEF$# --Px-@` ( rBCADEFA# @`S" 7T6 ( "?` * 2e5 )C"?z ) 3 )C"?* 2C4  ) C )C"? 32e5 TB ) C D* 3_3 n |<h ) C"?ln  *,- ) #"  p H2 ) #  *,- ) 0)S"`? *(- ln 8 D*X - ) #" 4 H2 ) # 3338 *X - ) 0)S"`?< D* , ln  *,- ) #"  H2 ) #  *,- ) 0)S"`? *(- ln  *,- ) #"  H2 ) #  *,- ) 0)S"`? *(- ln  *,- ) #"   H2 ) #  *,- ) 0)S"`? *(- ln  *,- ) #" \ H2 ) #  *,- ) 0)S"`? *(- ln  *,- ) #" @`H2 ) #  *,- ) 0)S"`? *(- ln  *,- ) #"  ,TH2 ) #  *,- ) 0)S"`? *(- ln  *,- ) #" |  hH2 ) #  *,- ) 0)S"`? *(- ln 8 D*X - ) #"  h H2 ) # 3338 *X - ) 0)S"`?< D* , ln 8 D*X - ) #"  , H2 ) # 3338 *X - ) 0)S"`?< D* , ln 8 D*X - ) #" | 4H2 ) # 3338 *X - ) 0)S"`?< D* , ln 8 D*X - ) #" @`@H2 ) # 3338 *X - ) 0)S"`?< D* , ln 8 D*X - ) #"   hH2 ) # 3338 *X - ) 0)S"`?< D* , ln 8 D*X - ) #" ,@ LH2 ) # 3338 *X - ) 0)S"`?< D* , ln 8 D*X - ) #"   H2 ) # 3338 *X - ) 0)S"`?< D* , Dt +. )# q#" $X H2 ) # ,.42 ) +$,42 ) -.Dt +. )# 'A#"  <H HH2 ) # ,.42 ) +$,42 ) -.Dt +. )#  8#" ,H2 ) # ,.42 ) +$,42 ) -.Dt +. )# (#" <pH2 ) # ,.42 ) +$,42 ) -.Dt +. )# ?o#"  @L H2 ) # ,.42 ) +$,42 ) -.Dt +. )# PA#" |P\H2 ) # ,.42 ) +$,42 ) -.Dt +. )# #" p |H2 ) # ,.42 ) +$,42 ) -.%n & - ) C"?rt  *,- )# #" Dd^H2 * #  *,- * 0*S"`? *(- rt 8 D*X - *# #" $D^H2 * # 3338 *X - * 0*S"`?< D* , rt  *,- *# #" ^0H2 * #  *,- * 0*S"`? *(- rt  *,- *# #" x6!~H2  * #  *,-  * 0 *S"`? *(- rt  *,-  *# #" 0~PH2  * #  *,-  * 0 *S"`? *(- rt  *,- *# #" 'F0*H2 * #  *,- * 0*S"`? *(- rt  *,- *# #" !V$H2 * #  *,- * 0*S"`? *(- rt  *,- *# #" !H2 * #  *,- * 0*S"`? *(- rt  *,- *# #" H2 * #  *,- * 0*S"`? *(- rt 8 D*X - *# #" DdH2 * # 3338 *X - * 0*S"`?< D* , rt 8 D*X - *# #" .!H2 * # 3338 *X - * 0*S"`?< D* , rt 8 D*X -  *# #" VH2 !* # 3338 *X - "* 0"*S"`?< D* , rt 8 D*X - #*# #" !b$H2 $* # 3338 *X - %* 0%*S"`?< D* , rt 8 D*X - &*# #" 0PH2 '* # 3338 *X - (* 0(*S"`?< D* , rt 8 D*X - )*# #" P#p&jH2 ** # 3338 *X - +* 0+*S"`?< D* , rt 8 D*X - ,*# #" Tt"H2 -* # 3338 *X - .* 0.*S"`?< D* , Dt +. /*# q#" X*-*H2 0* # ,.42 1* +$,42 2* -.Dt +. 3*# 'A#"  H2 4* # ,.42 5* +$,42 6* -.Dt +. 7*#  8#" $'H2 8* # ,.42 9* +$,42 :* -.Dt +. ;*# (#" %((H2 <* # ,.42 =* +$,42 >* -.Dt +. ?*# ?o#" F"RH2 @* # ,.42 A* +$,42 B* -.Dt +. C*# PA#" '& *2H2 D* # ,.42 E* +$,42 F* -.Dt +. G*# #" %6(jH2 H* # ,.42 I* +$,42 J* -.Dt +. K*# #" # &>H2 L* # ,.42 M* +$,42 N* -.Dt +. O*# ?o#" &*H2 P* # ,.42 Q* +$,42 R* -.Dt +. S*# |#" 4!*@$^H2 T* # ,.42 U* +$,42 V* -.6 W* "? Z* VBCDE F@C"?z [* C  [*S"??  z \* C  \*S"??  z ]* C  ]*S"??  z ^* C  ^*S"??  VB a* C D"?VB b* C D"?VB c* C D"?\B f* S D"?\B g* S D"?z h* C  h*S"??  z i* C i*S"??  j* \BCDE F@C"?z k* C k*S"?? VB l* C D"?z m* C m*S"?? VB n* C D"?\B o* S D"?z p* C p*S"?? \B q* S D"?z r* C r*S"?? \B s* S D"?VB t* C D"?z u* C u*S"?? \B v* S D"?z w* C w*S"?? z x* C x*S"?? V y* # y*"? \B }* S D"?&` n5t7 *C"?T z* # z*n5t7 ZB ~* S D66V * # *"? \B * S D"?\B * S D"? * bBCDE F@C"? * S *S"?? \B * S D"? * S *S"?? \B * S D"?bB * c $D"? * S *S"?? bB *@ c $D"?\B * S D"? * S *S"?? bB * c $D"? * S *S"??  * S *S"??  * S *S"?? n * # S"?? n * # S"??  * bBCDE F@C"? * S *S"?? \B * S D"? * S *S"?? \B * S D"?bB * c $D"? * S *S"?? bB * c $D"?\B * S D"? * S *S"?? bB * c $D"? * S *S"??  * S *S"??  * S *S"?? n * # S"?? P *  "? P *  "? P *  "? \ * 3 "? b * C *"? VB * C D"?\ * 3 "? V * # *"? V * # *"? V * # *"? VB * C D"?VB * C D"?VB * C D"?\ * 3 "? \ * 3 "? b * C *"? \ * 3 "? \ * 3 "? \ * 3 ~"? ~h * S *"? h * S *"? h * S *"? P *  {"? {\ * 3 |"? |b * C z*"? zVB * C D"? h + S }+"? }P +  t"?  t\ + 3 u"?  ub + C r+"?  rVB  + C D"?h  + S s +"?  sP +  m"? mP +  i"? iVB + C D"?\ + 3 k"? k\ + 3 h"? hV + # b+"? b\ + 3 c"? ch + S l+"? lh + S j+"? jh + S d+"? dV "+  ^#" ? ^P #+  _"? _\ O+ # `#" ? `\B P+ C D#" ?\ Q+ # ]#" ? ]\B R+ C D#" ?V + # \"? \VB + C D"?V + # ["?  [VB + C D"?!\ + 3 Z"?" Z\ + 3 Y"?$ YVB + C D"?#\ + 3 X"?% X\ + 3 V"?' V\ + 3 W"?& WVB + C D"?( + lBlCXDEFdX,l @C"?) + rBCDEFu @C"?* + rBCDEFu @C"?+ + rBCDEFu @C"?, + rBCDEFu @C"?-b + C O+"?3 Ob + C P+"?0 P\ + 3 N"?4 NVB + C D"?2b + C Q+"?/ QVB + C D"?1b + C R+"?. Rb + C J+"?9 Jb + C K+"?7 K\ + 3 I"?; IVB + C D"?8b + C L+"?6 LVB + C D"?:b + C M+"?5 Mb + C E+"?A Eb + C F+"?> F\ + 3 D"?B DVB + C D"?@b + C G+"?= GVB + C D"??b + C H+"?< Hn 2 # S"?? t 2 3 2S"?? z ` g 0.5 2C"?`B 2 c $DjJ3535t  mh 2# #" g 1"l5 2 s *PFPF2"`   ZB 2 S DjJ -3 - 2 s *PFPF2"`? 0lh  2 s *PFPF2"`@ mS  2 s * PFPF2"`? l  `B 2 c $ZDjJ  R`B 2 c $ZDjJ #  2 0 PFPF2"`0J52   2 6 PFPF2"`2&3   2 6 PFPF2"`w45   2 6PFPF2"`4.5 `B 2 c $DjJ.3.3fB 2 s *<DjJ;3;5`B 2 c $DjJ.3.3t  [+  2# #"  1Fu5 2 s *PFPF2"`. [  2 0PFPF2"` YJ  2 0PFPF2"`" O+  `B 2 c $ZDjJ  y`B 2 c $ZDjJ h  Lt 3m 2# #" 1@2`B 2 c $ZDjJ33`B 2 c $ZDjJmmt 2 3 2S"?? 4` <0&)5 2C"?`B 72 c $DjJ22t  mh 82# #" x04 92 s *PFPF92"`   ZB :2 S DjJ -3 - ;2 s *PFPF;2"`? 0lh  <2 s *PFPF<2"`@ mS  =2 s *PFPF=2"`? l `B >2 c $ZDjJ  R`B ?2 c $ZDjJ # t  [+  B2# #" u04 C2 s *PFPFC2"`. [  D2 0PFPFD2"` YJ  E2 0PFPFE2"`" O+  `B F2      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ c $ZDjJ  y`B G2 c $ZDjJ h  `B H2 c $DjJ2 2`B J2 c $DjJ!2#2t  [+  K2# #"  x0"4 L2 s *PFPFL2"`. [  M2 0PFPFM2"` YJ  N2 0PFPFN2"`" O+  `B O2 c $ZDjJ  y`B P2 c $ZDjJ h  n '#\( 2 #" #<0&)5ZB 2 S DjJ% K'  2 s *PFPF2"`K$x%   2 0PFPF2"`'#vT$  2 0PFPF2"`$|%  2 0PFPF2"`/'p\( `B 2 c $<DjJi$i$Lt 3m 2# #" '$n$`B 2 c $ZDjJ33`B 2 c $ZDjJmmt 2 3 2S"??  T Ng 3#" ?`B 2 c $DjJ q qt  mh 2# #" Ne  2 s *2PFPF2"`   2ZB 2 S DjJ -3 - 2 s *1PFPF2"`? 0lh 1 2 s *0PFPF2"`@ mS 0 2 s */PFPF2"`? l /`B 2 c $ZDjJ  R`B 2 c $ZDjJ # t  [+  2# #"  S  2 s *.PFPF2"`. [ . 2 0-PFPF2"` YJ - 2 0,PFPF2"`" O+  ,`B 2 c $ZDjJ  y`B 2 c $ZDjJ h   2 0+PFPF2"`&bS + 2 6*PFPF2"`B *fB 2 s *ZDjJlfB 2 s *ZDjJ"$`B 2 c $DjJ qq`B 2 c $DjJ5b7bt +f##n& 2# #" k  2 s *(PFPF2"`a"f##$ (ZB 2 S DjJ!$v"$ 2 s *'PFPF2"` 6%"n& ' 2 0&PFPF2"` q#"$ & 2 0%PFPF2"`+v#X $ %`B 2 c $ZDjJk!$k!D%ZB 2 S DjJ) $ $n '#\( 2 #" 2gZB 2 S DjJ% K'  2 s *PFPF2"`K$x%   2 0PFPF2"`'#vT$  2 0PFPF2"`$|%  2 0PFPF2"`/'p\( `B 3 c $<DjJi$i$Lt 3m 3# #" '$n$`B 3 c $ZDjJ33`B 3 c $ZDjJmmt 3 3 "3S"?? "T o*  /3#" ?`B 3 c $DjJ  t  mh 3# #" o*K   3 s *!PFPF 3"`   !ZB  3 S DjJ -3 -  3 s * PFPF 3"`? 0lh    3 s *PFPF 3"`@ mS   3 s *PFPF 3"`? l `B 3 c $ZDjJ  R`B 3 c $ZDjJ #  3 0PFPF3"`; $  3 6PFPF3"`o*   3 6PFPF3"`3"`#T  fB 3 s *ZDjJfB 3 s *ZDjJ""+ 3 0PFPF3"`G"t#3  3 6PFPF3"`6"c# fB 3 s *ZDjJ""`B 3 c $DjJ ! `B 3 c $DjJV#X%`  $  .3#" U! fB 3 s *ZDjJ"" t +f##n& 3# #"  $  3 s *PFPF3"`a"f##$ ZB 3 S DjJ!$v"$ 3 s *PFPF3"` 6%"n&   3 0PFPF 3"` q#"$  !3 0PFPF!3"`+v#X $ `B "3 c $ZDjJk!$k!D%ZB #3 S DjJ) $ $t '#\( $3# #" S%* ZB %3 S DjJ% K'  &3 s *PFPF&3"`K$x%   '3 0PFPF'3"`'#vT$  (3 0PFPF(3"`$|%  )3 0PFPF)3"`/'p\( `B *3 c $<DjJi$i$Lt 3m +3# #" '$n$`B ,3 c $ZDjJ33`B -3 c $ZDjJmm T  !& W3#" ?`B 13 c $DjJ8%% 73 0PFPF73"` s# $  :3 0PFPF:3"`!"  ;3 64PFPF;3"`^#$ 4 <3 6 PFPF<3"`$d%Q&   =3 6PFPF=3"`X%& fB ?3 s *<DjJi$%`B @3 c $DjJ ##Lt 3m G3# #" "#`B H3 c $ZDjJ33`B I3 c $ZDjJmmZB J3 S DjJ6"6" K3 s *PFPFK3"`#$  L3 s *PFPFL3"`O%&  M3 0PFPFM3"`#$  N3 0PFPFN3"`v!"  O3 0PFPFO3"`!" `B P3 c $<DjJ"#ZB Q3 S DjJ6$6$Lt 3m R3# #" $%`B S3 c $ZDjJ33`B T3 c $ZDjJmm`B U3 c $DjJ%%`B V3 c $DjJJ"J"` i \  3C"? k3 6PFPFk3"`    l3 63PFPFl3"`   3 o3 6PFPFo3"`i   `B s3 c $DjJI I `B t3 c $DjJzX |X `B u3 c $DjJI I  x3 6PFPFx3"`   0L  -  3 - fB 3 s *ZDjJ  fB 3 s *ZDjJ- -  3 0PFPF3"` \  D 3  "?n 3 # =S"?? =T  j% 4#" ? 3 0<PFPF3"` !9 # < 3 0;PFPF3"`$ QV! ; 3 6PFPF3"`!-"  3 6PFPF3"`~#$ fB 3 s *<DjJB"B5$`B 3 c $DjJO"O"Lt 3m 3# #" !G!`B 3 c $ZDjJ33`B 3 c $ZDjJmmB 3  j%n 3 # S"?? VT s  3#" ?t i \  3# #" R  3 0PFPF3"`    3 0PFPF3"`    3 0PFPF3"`i   ZB 3 S DjJI I ZB 3 S DjJzX |X ZB 3 S DjJI I  3 0PFPF3"`   2Z  -  3  - `B 3 c $ZDjJ  `B 3 c $ZDjJ- -  3 0PFPF3"` \  H 3 # |s  h4 0PFPFh4#" `?  i4 6PFPFi4#" `?  j4 6PFPFj4#" `? bB k4 c $DjJ"?bB l4 c $DjJ"? m4 6PFPFm4#" `? @h  -  n4# #" ?`B o4 c $ZDjJ  `B p4 c $ZDjJ- - |t 6C!6 q4# C"? r4 hB{C1DE FjJ=1{@#" 6V6 s4 hB{C1DE FjJ=1{@#" \6 6 t4 hB{C1DE FjJ=1{@#" 66 u4 hB{C1DE FjJ=1{@#" 6r6 v4 hB{C1DE FjJ=1{@#" 616 w4 hB{C1DE FjJ=1{@#" 666 x4 hB{C1DE FjJ=1{@#" 66 y4 hB{C1DE FjJ=1{@#" 6C!6@` O p * }4C"? z4 0PFPFz4"`p p * B2 |4  O N L`  Z 4C"? 4 6PFPF4"` Z H2 4 #   J 4 # "?z 4 C S"?? Pt R&' 4# C"?|t 6C!6 4# #" && 4 hB{C1DE FjJ=1{@#" 6V6 4 hB{C1DE FjJ=1{@#" \6 6 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6r6 4 hB{C1DE FjJ=1{@#" 616 4 hB{C1DE FjJ=1{@#" 666 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6C!6H2 4 # R&'Pt R&' 4# C"?|t 6C!6 4# #" && 4 hB{C1DE FjJ=1{@#" 6V6 4 hB{C1DE FjJ=1{@#" \6 6 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6r6 4 hB{C1DE FjJ=1{@#" 616 4 hB{C1DE FjJ=1{@#" 666 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6C!6H2 4 # R&'Pt R&' 4# C"?|t 6C!6 4# #" && 4 hB{C1DE FjJ=1{@#" 6V6 4 hB{C1DE FjJ=1{@#" \6 6 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6r6 4 hB{C1DE FjJ=1{@#" 616 4 hB{C1DE FjJ=1{@#" 666 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6C!6H2 4 # R&'Pt R&' 4# C"?|t 6C!6 4# #" && 4 hB{C1DE FjJ=1{@#" 6V6 4 hB{C1DE FjJ=1{@#" \6 6 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6r6 4 hB{C1DE FjJ=1{@#" 616 4 hB{C1DE FjJ=1{@#" 666 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6C!6H2 4 # R&'Pt R&' 4# C"?|t 6C!6 4# #" && 4 hB{C1DE FjJ=1{@#" 6V6 4 hB{C1DE FjJ=1{@#" \6 6 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6r6 4 hB{C1DE FjJ=1{@#" 616 4 hB{C1DE FjJ=1{@#" 666 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6C!6H2 4 # R&'Pt R&' 4# C"?|t 6C!6 4# #" && 4 hB{C1DE FjJ=1{@#" 6V6 4 hB{C1DE FjJ=1{@#" \6 6 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6r6 4 hB{C1DE FjJ=1{@#" 616 4 hB{C1DE FjJ=1{@#" 666 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6C!6H2 4 # R&'Pt R&' 4# C"?|t 6C!6 4# #" && 4 hB{C1DE FjJ=1{@#" 6V6 4 hB{C1DE FjJ=1{@#" \6 6 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6r6 4 hB{C1DE FjJ=1{@#" 616 4 hB{C1DE FjJ=1{@#" 666 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6C!6H2 4 # R&'Pt R&' 4# C"?|t 6C!6 4# #" && 4 hB{C1DE FjJ=1{@#" 6V6 4 hB{C1DE FjJ=1{@#" \6 6 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6r6 4 hB{C1DE FjJ=1{@#" 616 4 hB{C1DE FjJ=1{@#" 666 4 hB{C1DE FjJ=1{@#" 66 4 hB{C1DE FjJ=1{@#" 6C!6H2 4 # R&'P 4  "? &` * i/4 4C"? 4 0PFPF4"`* .1Wf2  4 0PFPF4"`Bx/o0  4 6PFPF4"`1KQ2  4 6PFPF4"`3E4 fB 4 s *<DjJ`$2`3`B 4 c $DjJ 1"1Lt 3m 4# #" p0e@1`B 4 c $ZDjJ33`B 4 c $ZDjJmmH 4 # Li/4P 7  e"? eP 7  d"? db  " 7 #" ?4 7 "H 7 #    7 nBJCDE FoKJ@#" m  7B nBJCDE FoKJ@#" ( r`B 8 c $Do'  8t   8# #" 1  8 BoCDEF jJ;i;,Fo @#" 7  8B BoCDEF jJ;i;,Fo @#" ( 8t   8# #"    8 BoCDEF jJ;i;,Fo @#" 7  8B BoCDEF jJ;i;,Fo @#" ( lt  +  8# #" &4 8 +yw4  8  + 4  8 gfy4  8 + H8 BCDE4FjJ ~v# *V_ @    c"$? I8 BCDE4FjJ ~v# *V_ @    c"$? J8 BCDE4FjJ ~v# *V_ @    c"$?bB X8 c $D>"? 6 Y8 "? bB Z8 c $D>"?6 [8 "?6 \8 "?6 ]8 "?n ^8 # S"?? n _8 # S"??  n `8 # S"??  bB a8 c $D>"?n b8 # S"?? bB c8 c $DԔ"? n d8 # S"??  n x',5 e8 C"?k f8 nBCDE Fo@(+5. g8 BCG DE|F4G M GF  Q  `8;{mjd,e C  \ P   ( Z. C @          ,+5TB h8 C D ) 1 )5n `,Q: i8 #" x(5 j8 nBC@DE Fo@@@#" `,Q:j`  i$. k8#  16TB l8 C D TB m8 C DE*i$*B n8 BCwDE|F4?6zq~aIIp;*m,X;|ZXk'x8w@          #" ( .`B o8 c $DI1I3z p8 3 uC"?z-O/ uz q8 3 tC"?~)0,2 t r8 BC"DE(F o U !g! " @   #" ''0 s8 fBCDEF@#" '0(1 t8 B CDE$F.fg  ? *6 B @`s"* )4+5 u8 BYCDE$F.fg  B*9YBP@`"6 ?n b s`%2 v8 #" ?mz D "P w8 C"s`%?2Z  $" x8 D "P y8 hBCDE Fo@ $". z8 BCG DE|F4G M GF  Q  `8;{mjd,e C  \ P   ( Z. C @          0 1$"x. {8 B,C DE|F4 a  DO %*7D||jbf S k ^ KQ 87 4 k1:P#:, @           !d. |8 BCS DE|F4S x \NPk'Ubh ^$   q Z G   K   V2g@           $"(TB }8 C DP  ~8 BGCDE F*fg c$G-G@`s"* #12z 8 3 o8C"? #& :( oz 8 3 n8C"? &( nz 8 3 :8C"?i/&F( :ZB 8 S D( 'w )ZB 8 S D; '; X*ZB 8B S Dv'qR+N 8  9)+ 9* n s`%2 8 C"?lz D "P 8 C"s`%?2Z  $" 8 D "P 8 hBCDE Fo@ $". 8 BCG DE|F4G M GF  Q  `8;{mjd,e C  \ P   ( Z. C @          0 1$"x. 8 B,C DE|F4 a  DO %*7D||jbf S k ^ KQ 87 4 k1:P#:, @           !d. 8 BCS DE|F4S x \NPk'Ubh ^$   q Z G   K   V2g@           $"(TB 8 C DP  8 BGCDE F*fg c$G-G@`s"* #12z 8 3 s8C"? #& :( sz 8 3 r8C"? &( rz 8 3 q8C"?i/&F( qZB 8 S D( 'w )ZB 8 S D; '; X*ZB 8B S Dv'qR+N 8  p)+ pn   e  8 C"?pz 8 3 88C"? V   8 8 C 78C"? e  7D 8  "?on -L>d 8 C"?rz 8 3 58C"?-md 5 8 C 18C"?@L> 1z 8 C 08S"??s 0 8 hBCDE Fo@C"?6 8 "?VB 8 C D"?n 8 # *S"?? *n 8 # (S"?? (n 8 # +S"?? +t 8 3 )S"?? )n   8 C"?tn Ux&Q 8 #"  H 8 # jJ%b 8  C"? ` Qb 8  C"?$ x&Qb 8  C"? U(& 8 ~BCDEFjJ g(F@  #"  `  8B ~BCDEFjJ g(F@  #" $ %ZB 8 S DjJ%L%ZB 8 S DjJ55Lt  Y* 8# #" ~wlZB 8 S DjJ  (ZB 8 S DjJ( 8 B,CDEXF(jJO8!pc/lL^4 #~'[,8@        (Y*TB 8 C DTB 8 C DVB 8 C D"?\B 8 S D"?t 8 3 WS"?? W\B 8 S D"?J2 8 # "?\B 8 S D"?t 8 3 XS"?? Xt 8 3 'S"?? ' 8 hBCDE Fo@C"?u6 8 "?wVB 8 C D"?tn 8 # .S"??x .n 8 # ,S"??z ,n 8 # /S"??v /t 8 3 -S"??y -P 8 3 jJ"?P 8 3 jJ"?P 8 3 jJ"?P 8 3 jJ"?bB 8@ c $DjJ"?|bB 8 c $DjJ"?}bB 8 c $DjJ"?~bB 8 c $DjJ"?{*n -[6 8 C"?Z 8 0PF0*PF0*8S"`?i1I3  8 0PF0*PF0*8S"`?-L/  8 0PF0*PF0*8S"`? _1[?3  8 0PF0*PF0*8S"`?z.0  8 0PF0*PF0*8S"`?35 t ^/55 8# Z#" T/m4ZB 8 S DjJ(^/(z1ZB 8 S DjJ-35w4NR 8 3 )25`B 8B c $DjJ2V3 8 0PFPF8S"`?m5 6  t G)// 8# #"  5- {6@t "W# 8# Z#" G)/p/ZB 8 S DjJ"W#ZB 8 S DjJ"W#@t "W# 8# Z#" G//ZB 8 S DjJ"W#ZB 8 S DjJ"W#xt `& 8# #" , %4 5 8 0PFPF8S"`?%` N2 8 3 jJ & 8 BgCeDE,F4 e^)bk*Ix_rK_gF@#"  16ZB 8 S 5D2h2t !@ # 8# #" 02 8 BCDE,F4 Hq995n@#" !@ #TB 8 C D2 "" #bB 8 c $Do"?Yv n r 8 C"?X 8 0PF0*PF0*8S"`?o     8 0PF0*PF0*8S"`?y  8 0PF0*PF0*8S"`?= x   8 0PF0*PF0*8S"`?- h f  8 0PF0*PF0*8S"`?J  fB 8 s *ZDjJ  NR 8 3 y :7 fB 8 s *DjJ>  8 0PFPF8S"`?G   xt `& 8# #" M 8 0PFPF8S"`?%` N2 8 3 jJ & 8 rBCDEFxP( @ #" rq{`B 8 c $DjJ fB 8 s *ZDjJ  8B rBCDEFxP( @ #" rV 8 # 8"?\ n 5! 8 C"?b 8 0PFPF8S"`?} '!  t G)// 8# #" > !@t "W# 8# Z#" G)/p/ZB 8 S DjJ"W#ZB 8 S DjJ"W#@t "W# 9# Z#" G//ZB 9 S DjJ"W#ZB 9 S DjJ"W#xt `& 9# #" 5  9 0PFPF9S"`?%` N2 9 3 jJ &n    9 C"?^ 9 0PF0*PF0*9S"`?yY  9 0PF0*PF0*9S"`?i   9 0PF0*PF0* 9S"`?xoO   9 0PF0*PF0* 9S"`?     9 0PF0*PF0* 9S"`?W  t ^/55  9# Z#" .ds}ZB  9 S DjJ(^/(z1ZB 9 S DjJ-35w4NR 9 3 )25`B 9B c $DjJ2V3t !@ # 9# #"  9 9 BCDE,F4 Hq995n@#" !@ #TB 9 C D2 "" #bB 9 c $Do"?an ! 9 C"?` 9 0PF0*PF0*9S"`?[~^  9 0PF0*PF0*9S"`?esS  9 0PF0*PF0*9S"`?T  9 0PF0*PF0*9S"`?6 q! NR 9 3 y fB 9 s *DjJ*g 9 rBCDEFxP( @ #" K!`B 9 c $DjJ '  9B rBCDEFxP( @ #" B!xt  M 9# C"?_  9 0PFPF 9S"`? My N2 !9 3 jJ70t !@ # "9A# "C"?] #9 BCDE,F4 Hq995n@#" !@ #TB $9 C D2 "" #P %9  "?c z &9 s *vPFPF&9#" `?j v b c&$Y) '9 #" ?fZB (9 S DjJ5& 5&t  mh )9# #" c)$v( *9 s *PFPF*9"`   ZB +9 S DjJ -3 - ,9 s *PFPF,9"`? 0lh  -9 s *PFPF-9"`@ mS  .9 s *PFPF.9"`? l `B /9 c $ZDjJ  R`B 09 c $ZDjJ #  19 s *PFPF19"`; &$h^%  29 0PFPF29"`* %W& `B 39 c $ZDjJ 0% %ZB 49 S DjJ 5& 5&ZB 59 S DjJa:&:& 69 0PFPF69"` % &  79 0PFPF79"` t'D( `B 89 c $ZDjJ & ' 99 s *PFPF99"`,%Y&  :9 0xPFPF:9"` ~( ) xFn &~( ;9 #"  &x y(`B <9 c $ZDjJ&(`B =9 c $ZDjJ~&~(xt  M >9# C"?i ?9 0wPFPF?9S"`? My wN2 @9 3 jJ70b 'Q , A9 #" ?h B9 BCDE4F #_(NN]A @    ' ,ZB C9 S D +Q +bB D9 c $Do"?gh n ""w* E9 C"?e`B F9 c $ZDjJ%'ZB G9 S DjJq %s %t  mh H9# #" #O' I9 s *PFPFI9"`   ZB J9 S DjJ -3 - K9 s *PFPFK9"`? 0lh  L9 s *PFPFL9"`@ mS  M9 s *PFPFM9"`? l `B N9 c $ZDjJ  R`B O9 c $ZDjJ #  P9 s *PFPFP9"`" $  Q9 0PFPFQ9"`~$ % `B R9 c $ZDjJ % E&ZB S9 S DjJ} % %ZB T9 S DjJ %a!% U9 0PFPFU9"`f^$%  V9 0PFPFV9"`%& ]' `B W9 c $ZDjJ # $ X9 s *PFPFX9"`_!$"%  Y9 0PFPFY9"`\'( xt  M Z9# #" -"$ [9 0PFPF[9S"`? My N2 \9 3 jJ70 ]9 0PFPF]9"``?)w* `B ^9 c $ZDjJ(N)\B _9 S D"?q `9 nBC@DE Fo@@@C"?~t  i$. a9# C"?TB b9 C D TB c9 C DE*i$*B d9 BCwDE|F4?6zq~aIIp;*m,X;|ZXk'x8w@          #" ( .bB e9 c $D"? f9 nBC@DE Fo@@@C"?VB g9 C D"?VB h9 C D"?VB i9 C D"? j9 BCDE4F zis-*h 7MZv @    C"? k9 BCDE(F 32  >[/  @   C"?bB l9 c $D"?  m9 BCDE F*fg Q*w<E@`"6 ? n9 BC0DEXFbfg -?9uf&Y;Van}G@X0-.0@`"6 ?t o9 3 S"?? t p9 3 S"?? n )k6 q9 C"? r9 nBCDE Fo@)k6. s9 BCG DE|F4G M GF  Q  `8;{mjd,e C  \ P   ( Z. C @          e-k6TB t9 C Dr1r6n )g)6 u9 C"? v9 nBCDE Fo@)g)6. w9 BCG DE|F4G M GF  Q  `8;{mjd,e C  \ P   ( Z. C @          y-g)6TB x9 C D!|,!6b G !' y9 #" ?L z9 nBC@DE Fo@@@#" <c-%TB {9 C D33TB |9 C DK!!B }9 BCDE|F4 b#G kIO 9gr<)v-Z4re)"Z~=rP@          #" [!`B ~9 c $Dh z 9 3 C"?Zd t 9 # C"?G K? t 9 # C"?W%!' z 9 3 C"?L|  9 nBC@DE Fo@@@C"?PVB 9 C D"?UVB 9 C D"?VR 9 BC DEF8"" m;Wav>a ZQ14f0g<z @           C"?Qn 9 # S"??T n 9 # S"??W t 9 3 S"??M B 9 BACDE|F4A>;/8#PkT!].[a#f#yU<#>s Q@          C"?OVB 9 C D"?St 9 3 S"??N t 9 3 S"??R P 9  "?[ P 9  "?d \B 9 S D"?\B 9 S D"?\B 9 S D"?\B 9 S D"?\ 9 3 "? \ 9 3 "?  9 |B CDE(F $I;AGFi'*_M  @   C"? 9 B CDE4F 64lV3{x+  @    #" ?VB 9 C D"?VB 9 C D"?\ 9 3 "? \ 9 3 "? b 9 C g "? hB 9@ s *D"?hB 9 s *D"?\B 9 S D"?"\B 9 S D"?-\B 9 S D"?!\B 9 S D"?,\ 9 3 "?+ \ 9 3 "?* \ 9 3 "?' \ 9 3 "?& \B 9 S D"?)\B 9 S D"?%\ 9 3 "?( \ 9 3 "?  \ 9 3 "?$  9 Bn C%DE4F %YDF8   OF n @    #" ?#\B 9 S D"?/\B 9 S D"?EVB 9@ C D"?1VB 9@ C D"?6VB 9@ C D"?:VB 9@ C D"?=\ 9 3 "?2 \ 9 3 "?. \ 9 3 "?4 \ 9 3 "?7 \ 9 3 "?9 VB 9 C D"?BVB 9 C D"?CVB 9 C D"?D 9 tBCTDE FT@#" ?5 9 tBC#DE F#@#" ?8bB 9 c $D"?<bB 9 c $D"?; 9 B<C DE4F &`M}[ [k 8 @ < @    #" ?0\ 9 3 "?A \ 9 3 "?@ \ 9 3 "?? \ 9 3 "?> \ 9 3 "?3 \B 9 S D"?G\B 9 S D"?Ft 9 3 9S"??H VB 9 C D"?It 9 3 9S"??J VB 9 C D"?K b V F 9 #" ?EpZ  F 9  F&Z a F 9 a FZB 9 S Db bZB 9 S DaFTB 9 C D{[{TB 9 C DWSWTB 9 C D3S3TB 9 C D4S4TB 9 C D5S5TB 9 C D6S6TB 9 C D7S7TB 9 C DF TF Z 9 3 TT TZ 9 3 U7 UZ 9 3 v Z 9 3 ) Z 9 3 * Z 9 3 $ Z 9 3 a % aZ 9 3 gN q gZ 9 3 f-Z fZ 9 3 eV> eZ 9 3 nj n  n~h  F 9# #" ?D&Z a F 9 a FZB 9 S Db bZB 9 S DaFTB 9 C D{[{TB 9 C DWSWTB 9 C D3S3TB 9 C D4S4TB 9 C D5S5TB 9 C D6S6TB 9 C D7S7TB 9 C DF TF \ 9 3 "?W \ 9 3 "?V \ 9 3 "?Q \ 9 3 x"?P x\ 9 3 w"?O wb 9 C o9"?J o\ 9 3 q"?F q\ 9 3 "?X \ 9 3 "?Y \ 9 3 y"?N y\ 9 3 S"?C S$ n V F 9 C"?\pZ  F 9  F&Z a F 9 a FZB 9 S Db bZB : S DaFTB : C D{[{TB : C DWSWTB : C D3S3TB : C D4S4TB : C D5S5TB : C D6S6TB : C D7S7TB : C DF TF Z  : 3 T Z  : 3 !7 !Z  : 3  v  Z  : 3 ) Z  : 3 * Z : 3 $ Z : 3  % Z : 3 N q Z : 3 -Z Z : 3 V> Z : 3 j n  ~h  F :# #" ?[&Z a F : a FZB : S Db bZB : S DaFTB : C D{[{TB : C DWSWTB : C D3S3TB : C D4S4TB : C D5S5TB : C D6S6TB : C D7S7TB : C DF TF \  : 3 $"?n $\ !: 3 %"?k %\ ": 3 "?h \ #: 3 "?e \ $: 3 "?d \ %: 3 "?_ \ &: 3 "?] \ ': 3 #"?o #\ (: 3 ""?p "\ ): 3 "?c \ *: 3 "?Z  +: \B CHDEFP44H '/U{Cv_NB=2Z[K~^><Ix/ghWG<0/" w  %(@                 C"?I ,: <B. CDEFH..3g;8"wji] IZ=15$Rg$m"SC=m" U _{= . !$@               #" ?gp -: ,BCDEFD++7Oh\YC-%w{nbXE 7{^7Ms^~C2"!U @              #" ?f\ .: 3 "?S \ /: 3 v"?K vb 0: C p0:"?H p\ 1: 3 "?R \ 2: 3 &"?j &\ 3: 3 "?i \ 4: 3 "?a \ 5: B CeDEF<%%\L`e$\S;H'X4^;"'W,*.$2^=[q.J=-B  " f  @            C"?G\ 6: 3 "?^ .n   7: C"?LTB 8: C D TB 9: C D .n   :: C"?UTB ;: C D TB <: C D .n   =: C"?TTB >: C D TB ?: C D .n   @: C"?MTB A: C D TB B: C D .n   C: C"?bTB D: C D TB E: C D .n   F: C"?mTB G: C D TB H: C D .n   I: C"?lTB J: C D TB K: C D .n   L: C"?`TB M: C D TB N: C D z ,`: O: c"$?sH P: # ,o3H Q: # ,`o3H R: # o3:H S: # o3`:ZB T: S DԔ,:ZB U: S DԔ:`:h V: S ;V:o"?q ;R W: B] C DEF8"" n` B $   d*tZd~'J/6=@T,hIZ+~qdW ] @           C"?r\B X: S D"?wbB Y: c $ZD"?xV Z: # 9Z:"?z 9\B [: S D"?y\ ]: 3 :"?t :VB ^: C D"?vVB _: C D"?u\ `: # @#" ? @\ a: # A#" ? A\ b: # =#" ? =\ c: # >#" ? >P2 d: #  #" ?\ e: C o#" ?|\ f: # B#" ?~ B\ g: # C#" ?} C\ h: # ?#" ? ?\ i: C o#" ?{ @ j: s"*? k: \B8CPDE FP8P\@J l: bB8CPDE FP8P\@@Zx@ A+ - p: s"*?T q: # <z+ - <TB r: C DA,', n + ( t: C"?f u: S 7u:i-%' 7f v: S 6v:?".$ 6f w: S 5w:4#  5f x: S 4x:$& 4f y: S 3y:$H% 3ZB z: S DjJl"`B {: c $VUDjJi$j$fB |:B s *:DjJY$$T }: C yG2J$$f ~: S 2~:&%#*& 2f : S 1:#0"c&$ 1f : S 0:#%%  0f : S /:$#& /f : S .:q'$*% .Z  %'$ :C !($ZB : S DjJ$$"`B : c $VUDjJ$$%'$fB :B s *:DjJ #e##T : C yG2 ##$ZB : S D&'B :  + (D :  "?D :  "?~n b- ; C"?n /m \ ; #" + XRTB ; C D WWZ \ v? ; v4 ; \ v?42 ;  f ; S ;`[\J ZB ; S ?9DTB ; C DvHHf ; S ;G m C\ @n | k ; #" /jYf ; S ;| k TB ; C D@Z{Z8n  >% ; #" b _n T# {$ ; #" 2 >%!f ; S ;T# {$ .n [ *!  ; #"  ! TB ; C D[ *![ TB ; C D *! f ; S ;   ZB ; S ul)Dy  ZB ; S ul)Dy f ; S ;  R n !f*6 ; #" x-PZ 9f*) ; 9f*)TB ; C D  "` \ v? ;# )"F%)4 ; \ v?42 ;  f ; S ;j&f* ZB ; S ?9D"""]TB ; C D%&f ; S ;Q!M% Ft | k ;# #" 9#f ; S ;| k TB ; C D@Z{Z>n _Y6 ; #" !Y6f ; S ;_YH n & ; #" &f ; S ; 4t [ *!  ;# #" TB ; C D[ *![ TB ; C D *! ZB ; S ul)D&aZB ; S ul)D&af ; S ;_G6 f ; S ;%!.& ZB ; S D~n b- ; C"?n /m \ ; #" + XRTB ; C D WWZ \ v? ; v4 ; \ v?42 ;  f ; S ;`[\J ZB ; S ?9DTB ; C DvHHf ; S ;G m C\ @n | k ; #" /jYf ; S ;| k TB ; C D@Z{Z8n  >% ; #" b _n T# {$ ; #" 2 >%!f ; S ;T# {$ .n [ *!  ; #"  ! TB ; C D[ *![ TB ; C D *! f ; S ;   ZB ; S ul)Dy  ZB ; S ul)Dy f ; S ;  R n !f*6 ; #" x-PZ 9f*) ; 9f*)TB ; C D  "` \ v? ;# )"F%)4 ; \ v?42 ;  f ; S ;j&f* ZB ; S ?9D"""]TB ; C D%&f ; S ;Q!M% Ft | k ;# #" 9#f ; S ;| k TB ; C D@Z{Z>n _Y6 ; #" !Y6f ; S ;_YH n & ; #" &f ; S ; 4t [ *!  ;# #" TB ; C D[ *![ TB ; C D *! ZB ; S ul)D&aZB ; S ul)D&af ; S ;_G6 f ; S ;%!.& ZB ; S D~n b- ; C"?n /m \ ; #" + XRTB ; C D WWZ \ v? ; v4 ; \ v?42 ;  f ; S ;`[\J ZB ; S ?9DTB ; C DvHHf ; S ;G m C\ @n | k ; #" /jYf ; S ;| k TB ; C D@Z{Z8n  >% ; #" b _n T# {$ ; #" 2 >%!f ; S ;T# {$ .n [ *!  ; #"  ! TB ; C D[ *![ TB ; C D *! f ; S ;   ZB ; S ul)Dy  ZB ; S ul)Dy f ; S ;  R n !f*6 ; #" x-PZ 9f*) ; 9f*)TB ; C D  "` \ v? ;# )"F%)4 ; \ v?42 ;  f ; S ;j&f* ZB ; S ?9D"""]TB ; C D%&f ; S ;Q!M% Ft | k <# #" 9#f < S <| k TB < C D@Z{Z>n _Y6 < #" !Y6f < S <_YH n & < #" &f < S < 4t [ *!  <# #" TB < C D[ *![ TB  < C D *! ZB  < S ul)D&aZB  < S ul)D&af  < S  <_G6 f  < S  <%!.& ZB < S Dt < 3 <S"?? b 5N < #" ?ZB < S DjJ t  mh <# #" 5I < s *PFPF<"`   ZB < S DjJ -3 - < s *PFPF<"`? 0lh  < s *PFPF<"`@ mS  < s *PFPF<"`? l `B < c $ZDjJ  R`B < c $ZDjJ #  < s *PFPF<"`Y  < 0 PFPF<"`5hb   < 0 PFPF<"`V  t  [+  <# #" ]? < s * PFPF<"`. [   < 0 PFPF<      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~"` YJ   < 0 PFPF<"`" O+   `B < c $ZDjJ  y`B < c $ZDjJ h  t  [+  <# #"  = N < s *PFPF<"`. [  < 0PFPF<"` YJ  < 0PFPF<"`" O+  `B < c $ZDjJ  y`B < c $ZDjJ h  ZB < S DjJ:<ZB < S DjJ ZB < S DjJ79t  [+  <# #" D? < s *PFPF<"`. [  < 0PFPF<"` YJ  < 0PFPF<"`" O+  `B < c $ZDjJ  y`B < c $ZDjJ h  `B < c $<DjJNbNLt 3m <# #" 5|`B < c $ZDjJ33`B < c $ZDjJmmzn Vk5 < C"?ZB < S DjJ  t  mh <# #" V 0 < s *-PFPF<"`   -ZB < S DjJ -3 - < s *!PFPF<"`? 0lh ! < s * PFPF<"`@ mS   < s *PFPF<"`? l `B < c $ZDjJ  R`B < c $ZDjJ #  < 0PFPF<"`@Tm  < 0PFPF<"`Fks t  [+  <# #"  ^ 5 < s *PFPF<"`. [  < 0PFPF<"` YJ  < 0PFPF<"`" O+  `B < c $ZDjJ  y`B < c $ZDjJ h  ZB < S DjJ[]ZB < S DjJ1 3ZB < S DjJXZt  [+  <# #" e& < s *PFPF<"`. [  < 0PFPF<"` YJ  < 0PFPF<"`" O+  `B < c $ZDjJ  y`B < c $ZDjJ h  Dt   <# #" [ < s *PFPF<"` G ZB < S DjJ  Z  E  <  E  < s *PFPF<"` E   < 0PFPF<"` 4 R  < 0PFPF<"` 9  `B < c $ZDjJ  :`B < c $ZDjJ ) Fn 3m < #" ^`B < c $ZDjJ33`B < c $ZDjJmmt < 3 <S"?? n  T!$R) < C"?Fn 3m < #" l"D<#`B < c $ZDjJ33`B < c $ZDjJmm = 0PFPF="`T!" ZB = S DjJ##t  mh =# #"  !& = s *PFPF="`   ZB = S DjJ -3 - = s *PFPF="`? 0lh  = s *PFPF="`@ mS  = s *PFPF="`? l `B = c $ZDjJ  R`B  = c $ZDjJ #   = 0PFPF ="`*#b$   = s *PFPF ="`! "   = 0PFPF ="`:# r$ `B  = c $ZDjJW"WZ#`B = c $ZDjJQv$Qx&ZB = S DjJ##ZB = S DjJ#!#Dt   =# #"  "!$% = s *PFPF="` G ZB = S DjJ  Z  E  =  E  = s *PFPF="` E   = 0PFPF="` 4 R  = 0PFPF="` 9  `B = c $ZDjJ  :`B = c $ZDjJ ) t +f##n& =# #" *J&!R) = s *PFPF="`a"f##$ ZB = S DjJ!$v"$ = s *PFPF="` 6%"n&  = 0PFPF="` q#"$  = 0PFPF="`+v#X $ `B  = c $ZDjJk!$k!D%ZB != S DjJ) $ $n  s& "= C"?ZB #= S DjJ~t  mh $=# #"  [ %= s *PFPF%="`   ZB &= S DjJ -3 - '= s *PFPF'="`? 0lh  (= s *PFPF(="`@ mS  )= s *PFPF)="`? l `B *= c $ZDjJ  R`B += c $ZDjJ # t  [+  ,=# #" Q -= s *PFPF-="`. [  .= 0PFPF.="` YJ  /= 0PFPF/="`" O+  `B 0= c $ZDjJ  y`B 1= c $ZDjJ h   2= s *PFPF2="` "C  3= 0PFPF3="` ! `B 4= c $ZDjJS!S!`B 5= c $ZDjJM!M!ZB 6= S DjJ ZB 7= S DjJ! #  8= 0PFPF8="`$I% t +f##n& 9=# #" &# := s *PFPF:="`a"f##$ ZB ;= S DjJ!$v"$ <= s *PFPF<="` 6%"n&  == 0PFPF=="` q#"$  >= 0PFPF>="`+v#X $ `B ?= c $ZDjJk!$k!D%ZB @= S DjJ) $ $ A= s *PFPFA="`F%s&9  B= s *PFPFB="`8%e& Lt 3m C=# #" %^%`B D= c $ZDjJ33`B E= c $ZDjJmm`B F= c $<DjJ#%w#%t G= 3 G=S"?? t H= 3 H=S"?? VB I= C D"?VB J= C D"?VB K= C D"?VB L= C D"?,b }(# M= #" ?4 N= }(,T O= # LO=(= L`B P= c $Doo'`B Q= c $Do+B'`B R= c $DoMB'M4 S= :,ZB T= S D T U= # KU= 0# KT V= # JV=v # JZB W= S D` ZB X= S D" "!ZB Y= S Dy T Z= # IZ= + # IT [= # H[=  # HT \= # G\={ # GZB ]= S D# #"JB ^= # ̙"?VB _= C D"?P `=  D"? DbB a= c $Do"?VB b= C D"?P c=  E"? Et2 d= 0333#"  ?V e= C 3f"?VB f= C D"?P g=  F"? FV h= # ?h="? ?V i= # >i="? > j= S <ALarge confetti#"  ? k= S >A Dark horizontal#"  ? l= S >A Dark horizontal#"  ?~ m= S :ADark vertical#"  ?~ n= S :ADark vertical#"  ?P o= # #"  ?P p= # #"  ? q= B Wv Wd @Ԕ#"  ?\B r= S D"?V s= # s="? V t= # t="? b )+ u= #" ? v= B2CDEFo] 2 @)+`B w= c $Do6)6+b K2}4 x= #" ? y= B2CDEFo] 2 @K2}4`B z= c $Do8284&n  *y t6 {= C"?n"n  = & |= #"  *y t6n xQ$ }= #"  %n |j ~= #" xc#Q$n   = #" |jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" y|\jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" #| jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" | jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" } |` jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" * | jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #"  |jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" |gjZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" 1|jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" |jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" |njZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?n   = #" 8|jZ  ?^ =  ?^4 =   ^4 =  ?^N = 3 g  =N = 3 g   ?TB = C De# = 6PF0*PF0*=S"`?aX%= &  = 6PF0*PF0*=S"`?Y%&  = 6PF0*PF0*=S"`?d%&  = 6PF0*PF0*=S"`?W\%3&  = 6PF0*PF0*=S"`?U%&  = 6PF0*PF0*=S"`? \%&  = 6PF0*PF0*=S"`?TX%0&  = 6PF0*PF0*=S"`?W%&  = 6PF0*PF0*=S"`?U%&  = 6PF0*PF0*=S"`?J_%&&  = 6PF0*PF0*=S"`?SV%&  = 6PF0*PF0*=S"`? U%:&  = BCMDE,F4 FFB(PMIrII7lLL@#" A ,3 = BCDE F(b  @#" ,* 0 = s *PFPF=S"`?.g/  = s *PFPF=S"`?T-}.  = s *PFPF=S"`?D+, P =  "? t = 3 S"?? z = C =S"?? \B = S Do"?\B = S Do"?\B = S Do"?bB = c $Do"?t = 3 S"?? z = C =S"?? z = C =S"?? h = S =GoH "? P =  "? z = C =S"?? z = C =S"??  = B CHDE F(HD6\# 6@C"?P =  "?  = BC DE,F4  n ! 1  y  @#" ?P =  "?  = S <ALarge confetti#"  ?p = S ,333ASphere#"  ?& = BCDEF"v^b@`"Z   ?P =  "? 6r = "?V = # ="? P =  "? \B = S D"?\B = S D"?\B = S D"? = S <ALarge confetti#"  ?p = S ,333ASphere#"  ?& = BCDEF"v^b@`"Z   ?P =  "? 6r = "?V = # ="? P =  "? & = BCDEF"v^b@`"Z   ?  = S nvvvc"$ ??  = S nvvvc"$ ??  \B = S D"? \B > S D"? \B > S D"? l n  " > C"?4 > 3 "n _ g6" > #"  O^"T > C 333333` 2V "T2 > C 333333_ >X 7T > C 3333335  NT > C 333333o '6n4  >  g N  > 3 [T  > C =T  > C \8T  > C Up[H2 > # :B 42 > t^n }Hq > #" T/4 >  4 > ~q4 > IH4 > =B > "`} 4 > l 42 > G4 > Y4 > l:vTB > C DF4 > =R > B`CDE\Fd5KdV Qp, ``/0@#" =JPt > 3 >S"??  b '*5 > #" ?2n H '"4 > #" '!5n 1 i d   > #" H '"442 !> R e H "> # O xi $ V #> # "` w # n x"   $> #" 1 L d JZ x   %> x   &> tBBCDEFBB @`  TB '>B C DA F TB (> C D   42 )> x " 4 *>   TB +> C D'  TB ,> C DJ" J TB -> C DS S 0 TB .> C De e 0 p /> S &A60%"  {)"/TB 0> C D~ \0"\0H 1> #  w("v)H 2> #  *"*H 3> # 3f +" ,H 4> #  s.".ZB 5>B S D (_%)ZB 6> S D .*>%x*ZB 7> S D *T%,ZB 8> S D +X%,ZB 9>B S D ,]%.ZB :> S D!!d0%1z ;> 3 ~C"?%11*3 ~z <> 3 }C"?$(() }z => 3 |C"?-%+*. |z >> 3 {C"?$)A*+ {V ?> # k?>"? k\B @> S D"?V A> # yA>"? y\B B> S D"?V C> # zC>"? zV D> # jD>"? jV E> # lE>"? lV F> # mF>"? m\B G>@ S D"?\B H> S D"?\B I>@ S D"?\B J> S D"?VB K> C D"?V L> # AL>"? AVB M> C D"?JB N> # ̙"?hB O> s *Do"?V P> # @P>"? @VB Q> C D"?JB R> # ̙"?hB S> s *Do"?V T> # CT>"? CP U> 3 "?V V> # BV>"? BB S  ?= noprtuvxy{|~7%%%%%%%%#%$%)%*%+%,%&&&&!&&&'&)&*&-&/&0&1&3&4&5&8&9&:&;&<&=&>&?&(. 4 4[4]4~E}GGGGGGGGGGGBJJJJJKKKKKKKKXLZL\L]L`LbLNyOzOOOOR[SuSTTTTTT$TrTsTtTuTTTTTTUUUU UUWWWWWWWWWZZZZZZZZZZ@[A[B[C[D[E[^^^^Sm5pSqqruuuxxx x!x"x#x$x%x)x*x+x,x-x/x1x3x6x8x9x:xx@xBxCxByRyzzzzCDFGfhilmpqstx!"#%'*+-.147 [\]bc|}ٙڙۙ#$efgy{ %'fh>\]i#$K!z{|~ VWX]_`fgmo-.22222233<9o99JJL LLLLLLLNXXXZZ_dddd-f/f0f1f5f6f7f8f9f:fggggggggggglqttqurutuuuwuxuzu{uMvNvPvQvTvUvYv[v^v_vbvcvwwwwwwwwwwwwwww1z6zzzzzzzzzzzzzz{{}}    '(yz|}~7/tb8t[8t]8- 't\8sCta8t^8E td8lr"tZ8 >tX8U tY8 8 tc8e!t`8Et_8M st9 `t9B7 t9`U t9Kt9 t9 Xt9-?At9=|Yt9at9 bt9!t9t9 ^t9.#t9?tH8 "g tI8 k tJ8 3 t9 D4 ot9Z5ZY t9C t9i6t9 mt9Mb t9It9:;t9 ,~t9yppt9R9t9& @t9a t9,t9n Vt9 t9 ; t9r B Bt9 t9Ht9 pL +t9 Irt9r % %t9 Wq t9 >t9O t9q  t9"t9 t9j t9 t9 @t9 t9Y t9O Okt9yt9yt9  t9 m mt9( ^;^t9 }"t9 Ut9h DDGt9 ty9|t9/`Tt9<wt9QL t9 =j. t9 % t9tvt9t91D) t9 t9Lt9At8Jx"c t8v%#%t8; t9".t8~lwt"9:#A%= t9  t9 M"xt92`$7 t9:t8! c$&t%92# t9'= tE9 ;t'9 t D9 tA9t>9Vt&9"Zte8$t8@'otv8"itu8#%gt8 Lt8pt_9lt8 t8 .t8R  t84  t8t8 } " t8$.t80 ?t8t8 !|t82mt8 mt8 # mt8Wt8 Wt8: Wt8  st8 b t8Ct8(t8 # t8D%t8 t8Pt8 { t8/t8i:$It8.eYt8=ht8l,t8cg Ct8 t8ftf9 >" t`9  tj9ti9\th9[ ! tg9te9ta9 tl9wwtk9 tq9u> to9 B tn9 q$> tm9 l) tu9#q$f tp9`x# t(t>t(@t(Y t(8y yt)d {at7xM&Bt*a!zt70(t*DC#t)?d t)t>e  tW*\ 2ltm*3#_tj*(JtZ*|YDto*  ts*%% tn*"b&tp* tk*1t]*Y XZtg* th*`# ta* tf* tb* t[*tw*]#z'ti*vt\* tx*Datl*hByBtv*Bftu*~R'Str*tq*<<Ct^*e tt*V&tc*8ty*W{{t}*44t*t*XIt* t*xRt*Cot*!!Zt*qqc t*$$t*/t* t*;|t*? t* _'t*LbRt*h t*lt*t*,=t*zPOt* qlt*  p t* t*  t*t* t*L!t* :t*t*t*)t* t* %t*<ct#+ L&t"+ 0&t*>7Kt*t*9Zt*-f:&St*}D%t* t*^..t*tKW"lt*b '^t*|  &t*88t*e (t* t*^ &t*2 M' t*Ot*] ~t* #t*n/t*D!t*# -t*.f.t+?!t*6*t*\"It*t*"t+[Ot+Q">t + N!t+"%t + O t+g"Tt+7#t+VJt+!t+MZ$t+&,t+1t+ !t+j9t+ "t23%ztO+ tP+ |tQ+ tR+ t+ t+ t+ t+ t+t+SSt+%9t+t+ xt+Fsgt+FFt+It+ 3t+ 3Ot+ 32t+ 3xt+R]$#t+]c}t+? `t+`t+ t+t+ t+R"#t+]c}t+? `t+ t+ ,t+`t+ t+R]$#t+]c}t+? `t+`t+ t+t+ t9Ct9" t9 t9pNt5:[ t0:&$t+:Jn1 t9q9t/:1 nt7:^ t@:RTxt9/t9q+t9t9t1:j#}t.:gt=:4BZt::O 3u t9t9 t9'[_t9\ t*:pt:L"z t9u t&:%t6:w%t%:tL:l0t4: -tC: Ot):\Dkt$:t#: t-:mUst,: wt":{t3:.$\t2:t!:tI:CitF:5t :t':T.t(:3_#!tV:oW'2 tW:P2 tO:;l  t]:5F("t_:B3Bt^:.BKBtX:>>;tY:3&3t[:>]D,tZ:DG6ti:~S"te:"Vtg:v!8tf:Lta:& Lt`:$td: @tj:%[th:fN^ tc: & tb:>Ntp: att: X& t <e5&/t<51t<>"t< t"=gQt<\,%*tH=E|\tG=u t;|-(]t;1)Dt;_(@t:XL`t:Bt2#t2t 2glGt2 `t/37%t3qQt3 't2 tW3at3 t3 W;t33$t4"mt3(ft3 ~tL=LtI=AALtK=  MtJ=AAUtj4 )t4W}t}4ktn4: th4Pvtm4Vtl4tk4ti4V tq4 t4$ t4 t4t4t4dt4Vt4X t4t4 #t4{A t4~s Ot4wtM=?,# tg="J#/t^=<0tf=YXta=ttc=M[!td=Bte=[^tb=yKt`='j!t_=tT> MtK>vvgtS> tR> `s ?tU>m } tQ> tV>o!itL>j:tO>( ( tN>t\ ;tP>; tM> th=c&etu=; 1m8ti=5tr=3 tj= #+tp=9@ (to=(tn=(tm=  (tl={v(tk=  (ts=Atq=.`tx= ,tt="o%t{= t=(/]'Mt=)5pt=t= t=uE %t=t= t=/3&t="t=> %t= ~1~t=t=&2t=|Ot=%t=w st= t=*It= ~t=> C| t= 3A t=Vt=t=*t=o 3t=t=Ca$t= t={ !t=B't=nk t=4t={ t=et=z ejt=t= =t>zt>_et=t=t>hsAD t>;%tC>btA>ptG>ftB>at>; ] tF> 'tH>&6 7tE>v1'8tI>l\t?>Ct@>PI PtJ><?vtD>{ Lt5rvOh(!rv,"i(l"rv"j("rv,#k(l#rv#rv#l(,$rvl$m($rv$rv,%rvl%rvrv,rvlrvrvrv,rvlrvrvrv,rvlrvrvrv,rvlrvrvrv,rvlrvrvrv,rvlrv[(,\(l](^(_(,`(la(b(c(,d(le(f(g(,**::BB/D/D:D G GAIAIWWIIHHXXgg bll      !"#$%&'()*+,-./01234**::BB9D?D?D G GDIDIZZLLKK[[  jjj  oo  !"#$%&'()*+,-./0123485*urn:schemas-microsoft-com:office:smarttagsCity=1*urn:schemas-microsoft-com:office:smarttags PlaceType=2*urn:schemas-microsoft-com:office:smarttags PlaceName94*urn:schemas-microsoft-com:office:smarttagsState9-*urn:schemas-microsoft-com:office:smarttagsplace ʺ5-4-4-2-14-4-4-4-4-4-4-44-4-4-4-4-4-4-4----4-4-4-4-4-U\`bQ ] C N $$$$((((((((M*V*...///////#/(/222222237778I8R888U>a>>>W?c?d?p?AAEE~FFFFFFHH IIeItIII0J?JxJJJJ*K3K|KK7L@LzS|SSSSSSSSSSSTTTTTTTTPURU.$@ 9#:M՜.+,0 hp  Unknown Organization' A LEVEL TitleDocumentSummaryInformation8;4CompObj@q,.;=kmԙיCERTϜќڜ!NPݡ"$LPQTptuvx!.ILkmrtvxz|ץ{}ҦԦ٦ۦ=?DF@BnpORSZMPfiln),!$&TWelnu(+ *,V_|}$/ORX[>A\e "2MSf'),.MUgu*-4<ce X[fu03>OYdemAN,.v~47;@BEINadrz HKGUjxaisv6:JSltNW       \ _     47AE26Z^ =>s{;D`h  *x{ !!!!!!""+"S"["b"d"""#####$N$W$$$%%%%v&&&&&&' 'h(j(((R)T)\)^)))*+/+++++s,v,,,,-}--s.|.....b/k///0011&1.1k1q11111_2g222444466666677)717p7y7~7799E9N9y999999 :::#::::::::::: ;(;,;4;;;;;;;;;<<a<j<<<<<<<<<<=m=u=====>%>/>6>#?%?/?1?E?G?O?Q?;@P@_@h@@@@@2A:AAAAAIBTBCCCCCCjDuDGGH HYH`HHHHI6I>III$J,JJJ{M}MMMMMMN NNNNNNhPqPPPPQbQkQtQ|QQQRRMRTRRRRRwS{SSSST TTTTTTUUdUmUUU\VeVVV?WHWWWWWXXXXYYYYYYYYuZyZZZZ [[[T[W[[[[[[[[\<\?\\\\\\]S]W]]]___`0`:`a aaaaabbccue}eeeziiiiii l lGlPlQldl|lllllmfmjm>nAnfnknnnnn oooooo(p)papfp`xqxzzzzLT7?M\L#Y[_aÌŌ:JSU0;}'dfnrDGKMWZ^flÝƝ)+ ϠѠ  #&)+6>šǡ&(^`ǣʣѣңΤӤۤݤ->X]xzԩ֩*,@BGMOTZ\bdfhkp}UkC .hj'3w|(Upu  0 1 !!"! "$" #$#l#p###8$9$v${$$$1%Y%((...(/11M3V333889999y:{:A;C;;;Q=\=d>h>>>>> ??D?K?DAIAAAAA BB1B5BdBmBBBC&CQCXCCCCCEEFFGH;I=III@KEKKKLLtPwPRRzS|SSSSTvTzTTTbUgUUUVVWWZZggiirk|kmnwnpp>pHpppppmqqqqqqqrrrrrr!s+sVsZs't,txAylyzL}}7&/{KLXbe::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::UUkk{<0++H,`,,B-w///002a22 3QRRRYSXYYYckdieeFhxhno{{~ieѴlw$6Z׻'KZw3(KW/qfn_%si  <r ""4"5a<<<<T=h=CCCCCDWMM=PPzmmpKLLNNOOQRTUWXbce,!%'/1;=@BEGMOSUVX\^jloqtvz|ÊƊȊˊ͊ΊЊӊՊ݊ߊ)+,./124578:;=>@ACDFGIJLMOPRSUVXY[\^_abdeghjkmnpqstvwyz|}ËċƋNjɋʋ̋͋ϋЋҋӋՋ֋؋ًۋ܋ދߋ !#$&8:PRUW]_ceuwxzŌnjόьӌ+Ap  "$&()+,./1KLUV`aɐʐhiőƑӑԑEFxy|}   9:RSUWXZ[]^HIKPRSUVXY[\fh~•ĕŕǕȕʕ̕ΕϕѕҕԕՕוؕڕەݕޕ!"$%'(*+-.013467-/0235689;<>?ABDEGHJKMNPQSTVWYZ\]_uwxz{}~˜ØŘƘȘɘ˘̘ϘИҘӘ՘ؘ֘٘ۘܘޘߘ ,-RSbcpqÚĚ`bdfhiklnśFGIJLMOP]^`bdhjkmnpsuwy}ݜ  ')-/35<>PRgimosu|~ŞǞߞ !#')35BDNP]_qsŠǠԠ֠ޠ !#&)4Y[]qsuw¡šʡ̡ҡԡ١ۡ #&+-68DFQS[^cepr͢   xz{}̤ΤӤդ =?lnå   !"$&()+,./124578:<>?ABDEGHJKM`bikЦҦ٦ۦݦ +-/13579ACGIKMOQ\^wy|~ʧ̧اڧ?FH[]bdqs}èĨƨǨɨʨ̨ͨϨШҨӨը֨ب٨ۨܨިߨ  +->@EGVX]_suGMOTVikprUUkkCCCDpKLXbe1KLUV`aɐʐhiőƑӑԑEFxy|}   9:R ,-RSbcpqÚĚ&aMgT I1*z gJ" X~ XfAj3X*c%VwTL^ "&6Ou*'lrQ("Y=+猖Iqb,TT.@1Tz4f2XG8&3l*9`-F<~%1QAϪ+9F&#,H8fz3CJvJ W Z]T,n^:jy_K c0qd"c8>#i2b[sr'j]tI./?}@TLZtZ@h^`OJQJo(hH*h^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh ^`hH.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.X>X^X`>o(()h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHX>X^X`>o(()h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHE^E`o() ^`hH.  L^ `LhH.  ^ `hH. x^x`hH. HL^H`LhH. ^`hH. ^`hH. L^`LhH.h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh ^`OJQJo(h ^`OJQJo(oh pp^p`OJQJo(h @ @ ^@ `OJQJo(h ^`OJQJo(oh ^`OJQJo(h ^`OJQJo(h ^`OJQJo(oh PP^P`OJQJo(h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH^`6o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`B*OJQJo(phhHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHX>X^X`>o(()>^`>o(()h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh^`B*OJQJo(phhHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh ^`OJQJo(h ^`OJQJo(oh pp^p`OJQJo(h @ @ ^@ `OJQJo(h ^`OJQJo(oh ^`OJQJo(h ^`OJQJo(h ^`OJQJo(oh PP^P`OJQJo(&T.@1n^aM0J" F1~  cd"c1QAjy_0?}@0[srZ]z3CJL#,H+9FI.=+tZF< Wgo,>8&3l*9]tIqb,zc%Aj3u*' ">#iQ(4f2&&CF                                                              6R                                                                                                                                                                                   :&                                            `^J                 {G=dc=Uyk1za2&/6#?s8gai/iw$|I} `*I V J  X Z a Fz Z!GV 3Ep3d?\ \v>=`z~/RX;92s'7Ji>,)5FGhonrXYb!5L!N!<"B5#V#+v#4$@$-h$J{%[&9m&-''(H)W))L4)zQ)v)*_.*9+.j0/Z000)1K1TK1S23bM3Ts3 4i<4 e4'?5<6q6>78b@8q8:C:;!;';2;W<W<Sg=>_.>;??&?s@1@<@z@KAhAs$BcpBCaCD!D'DlD)E7EFz FGSGL)G^NG H5HgHI@IEI3J~J 8KELoL^M_zM*NgnN4P:Q2Q0SkST\T_fTiTzT5UFUYXUOZU|VIV}YVs|VWS2W1 XTnXXYYkYZMZ$[Y>[hG[\=^rm^ {^__u_>(`V;`aca+b`!bob{rb2clcmcocpcd)d2d?dFde14e9ef)9f`^f_fxfg#g<gg;`gicgkg #h/hMiij j}jk ll,0lOl@mMMmZm;n7o}*o,oIHpO/qfq?smRsAjs.tIHt'ht rtHuIuOu vvvy*vfw(SwImwJx$x_x< y)y$yW2y|y/zAz?zjz|z%{:{;{} }l,}~0XtoXZL4Q366FiMVY g]t3\^Cv&5bL|#d*&6Epy)iXK;,X0c!3LCd "$l~R%(5Sj^l  jLo:9<:SctC|S2v ABfHzW],LbK9@%vl^1 *G:^^b<_'1^U M+F"~# U)emi{~|/\?UKVh7\ho xA]r{8Hn[z>\J_f5J^"5x['b`[,c2qu J~z 5"JV^)!r:SXZo88eFz~ xG/>(#,16_a4G#N,I 5KI1!dZ J& Q.wD8<4y&# MOOxh #R')9NQfLrF >pCQ_gtI[h_MaeZ 5Cbn1LZj}*L|a CV+-_e5>GLG`E&N>{bqCf]m{0m>gSth 6"\eAD#>WG_6HMy#/Rtalo>Ck3Wm}~3:Id-`bi;<Xrsw|}/0Lfgkpquz{ .DEGKOSWXZ^bfjkmquy~*+ +++ +'+(+++2+3+6+=+>+A+H+I+M+T+U+Y+`+a+e+l+m+q+x+y+}+++++++H,Q,`,,,,,,,,,,,,,,,,,,,,,,,,-----(-)---4-@-A-*/w////////////0 0000#0,07080:0C0L0W0X0Z0c0l0w0x0z00000/202;2R2a22222222222222222222 3 3QQR*R+R.R4R5R8R=R>RARFRGRJRPRQRRRRSS SSSS+S,S0SYAYEYHYQYZYcYdYgYkYoYxYYYYcccccccddddd$d%d,d4d9d:dAdFdLdMd\dadgdhd0eieqeweeeeeeeeeeeeeeeeeeeeeeennnnnnoooooooooo9o;o>o?oAoCo]o_ocodofohooooooooooooooooozA{J{b{c{g{l{m{r{w{x{}{{{{{{{{{{{{{{{{{{{{{{{{{{{~~~~~   %&).278=CFKLQWXYZ_efghдѴӴմ״ش 8Qjkvwy{}~˶"# )-378IMUYZi s } ~          344444444444455 5 5555 5!5`<a<q<|<<<<<<<<=S=T=h====VMWM`MhMlM~MMMMMMMMMMMMKěśΛݛޛ|}+,/<=?HXY\kl!|333333333333333333333333@UU(UU"#;<[=[>[?[g[hrkrlrnrprqrrrsrrrrrrrrrrrrrriiiii@@@*@X@@D@@@H@J@@@t@@@z@|@@@@@@@@@@@@D@@@@@@@@@@ @@@ @@@ @@ @ @@UnknownGz Times New Roman5Symbol3& z Arial;Wingdings?5 z Courier New5& zaTahoma3z Times"qhF f@ :M#:M#q4d 2qHX?12 A LEVELJuliancrl&                           ! " # $ %   FMicrosoft Office Word Document MSWordDocWord.Document.89q