ĐĎॹá>ţ˙ npţ˙˙˙ghijklm˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ěĽÁ€ đżÚbjbj ő ő 4hŸhŸ­,˙˙˙˙˙˙ˇĐ Đ ˙˙˙˙'''8_ü[ '<”g g } } } X!X!X!§“Š“Š“Š“Š“Š“Š“V–˘ř˜Š“X!X!X!X!X!Š“} } Űž“BöeöeöeX!ZC} } §“öeX!§“öeöe> +ux ?’} ˙˙˙˙Wŕ›TWÉ'˛dvŁ~““”<<”§˜ş™(eŽş™đ?’ş™?’TX!X!öeX!X!X!X!X!Š“Š“śe@X!X!X!<”X!X!X!X!˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ş™X!X!X!X!X!X!X!X!X!Đ Ů: The Human Body: An Orientation An Overview of Anatomy and Physiology Levels of Organization Maintaining Life Homeostasis The Language of Anatomy Overview A. Topics of Anatomy Two complementary branches of science Anatomy – studies the structure of body parts and their relationships to one another Physiology – function of the body’s structural machinery, harder to “see” Topics in Anatomy Gross (Macroscopic) Anatomy - study of large body structures visible to the naked eye Heart, lungs and kidneys Regional – structures in an area Muscles, bones, blood vessels, nerves in the leg Systemic - system by system Cardiovascular system ( heart, blood vessels, etc Surface - how underlying structures relate to overlying skin surface How to draw blood Microscopic - small things in the body Cytology – cells in the body Histology – tissues Developmental - changes that occur over a lifespan Embryology- Development before birth Topics in Physiology Renal Physiology - study of the kidneys Neurophysiology - workings of the nervous system Cardiovascular Physiology - examines the operation of heart and blood vessels Principle of Complementarity of Structure and Function Function reflects structure Levels of Structural Organization A. Overview of Levels (fig ) Chemical Cellular Tissue Organ Organ System (fig ) Organismal level Maintaining Life A. Necessary Life Functions Important to note that all systems work together (fig ) Maintaining Boundaries Most keep the external environment separate from the internal environment Integumentary system protects from the sun, heat, bacteria, dehydration, etc Movement All activities promoted by the muscular system with the help of the skeletal system Also the movement of food and waste through the body Responsiveness (Irritability) Ability to sense changes in the environment Nervous system is overseer, but all systems are involved Digestion - Breaking down food into small molecules to absorb Metabolism - means a state if change All chemical reactions in body cells Catabolism – breaking down substances into simpler building blocks Anabolism – synthesizing complex cellular structures from simpler substances Cellular Respiration – using nutrients and oxygen to produce ATP Excretion - removing wastes; indigestible food, nitrogenous waste (urea), carbon dioxide Reproduction Cellular reproduction via mitosis Organismal reproduction via meiosis Growth - increase in size of a body part or an organism B. Survival Needs Nutrients - contain chemical substances used for energy & cell building Plant –derived – carbohydrates, vitamins, minerals Carbohydrates are the major source of energy fuel for the body cells Animal – derived – protein and fat Proteins and fats are used to build cell structures Fats insulate and energy reserves Oxygen - reactions that release energy are oxidative, therefore they need oxygen Water 60-80% of body in water Guarantees the appropriate environment for all reactions to occur Appropriate Temperature Controls metabolic rates (98) Too low, slows things down; too high, reactions occur to quickly Atmospheric Pressure Important for breathing High altitudes – pressure is low, air is thin, can have problems maintaining cellular support Homeostasis A. Ability to maintain relatively stable internal condition s even though the outside world changes continuously Not a static system, very dynamic But always within borders of acceptability Involves all systems working together B. Homeostatic Controls Mechanisms Communication within the body Accomplished by nervous system and endocrine system Use electrical impulses and chemical signals Steps in the Process Variable - factor of event being regulated Receptor - sensor that monitors the environment and responds to the stimuli Control Center - receives info from the receptor and determines level at which the variable is to be maintained Effector - means for the control centers response to the stimulus Follows pathway set by the control center – efferent pathway Homeostasis is restored Negative Feedback Mechanism Most controls are negative feedback Home heating system is best example Body thermostat is located in the hypothalamus Endocrine system and reflex response also work with this system Example of endocrine system (fig ) High sugar intake leads to product of insulin Low sugar leads to production of glucagons Tells liver to release sugar Positive Feedback Mechanisms Changes occur in the same direction as the initial disturbance, causing the variable to deviate further from the original value or range Can run out of control, so they aren’t used to monitor daily activities C. Homeostatic Imbalances If there is a problem with keeping the balance Mainly caused by disease and aging Language of Anatomy Anatomical Position and Directional Terms Anatomical Position Erect body, feet slightly apart, palms forward Right and left refer to the body, not the observer Directional Terms (Table ) Superior (cranial) –toward head Inferior (caudal) – away from the head Anterior – toward the front Posterior – toward the back Medial – toward the midline Lateral – away from the midline Intermediate – between medial and lateral Proximal – closer to trunk Distal – farther from trunk Superficial – toward the surface Deep – away from the surface Regional Terms (fig ) Axial – head, neck, trunk Appendicular - appendages Body Plans and Sections (fig ) Sagittal – vertical plane dividing body into left and right Median (Midsagittal) – on midline Parasagittal – offset from midline Frontal –lie vertically, divide body into anterior and posterior Also called the coronal plane Transverse – horizontal plane, divides body into superior and inferior parts Also called cross sections Oblique sections are diagonally between horizontal and vertical planes Body Cavities and Membranes Cavities (fig ) Dorsal – 2 parts Protects the nervous system Cranial cavity – skull to encase the brain Vertebral cavity (spinal) – to protect spinal cord Ventral – 2 parts Viscera (visceral organs) – all housed in the ventral cavity Thoracic – 2 parts Surrounded by the ribs & muscles of the chest Pleural cavity - lungs Mediastinum Superior mediastinum – trachea, esophagus Pericardia cavity – encloses the heart Abdominopelvic – 2 parts Separated by the diaphragm (muscle) Abdominal cavity Contains the stomach, intestines, spleen, liver, other organs Pelvic Cavity Within the bony pelvis Contains the bladder, the reproductive organs & the rectum Membranes of the Ventral Body Cavities Serosa – very thin double-layered membrane (fig 1.10) Parietal serosa - Part that lines the cavity walls Visceral serosa – lines the organs in the cavity Serous fluid keeps the area between the layers Layers are named for the organ/area they protect Parietal pericardium lines pericardial cavity Other Body Cavities Oral and digestive cavities – starts with mouth, teeth and tongue, includes all the digestive organs to anus Nasal Cavity – within and posterior to the nose Orbital Cavity – houses the eyes in the skull Middle ear cavities – medial to eardrum, contains bones to transmit vibrations Synovial cavities – joint cavities, around elbow and knee Have lubricant to reduce friction Abdominopelvic Regions and Quadrants (fig 1.11) Regions – used by regional anatomists Umblical region Epigastric region Hypogastric region Right and left iliac (inguinal) region Right and left lumbar region Right and left hypochondriac region Quadrants – used by medical personnel Right Upper Left Upper Right Lower Left Lower _____________________________________________________________________________________ Study Questions Anatomy and Physiology What does each study cover? Be sure you can give examples Levels of Organization What are they? How do they relate to each other Maintaining Life What are the main functions? Survival needs? What is Metabolism? What’s the difference between anabolism & catabolism? Homeostasis What is homeostasis? What are the mechanisms for control? What are the reasons for aging? Language of Anatomy Use the terms in the appropriate manner Be able to identify the regions, and determine the organs you would find it them What does each cavity protect? Why does it make sense to have cavities? Try to use the organs to help the regions make sense Body Planes and Orientation Learn the terms! Make up sentences using the word to describe the regions & parts Lab 1( fig.s 1.1, 1.2, 1.3, 1.4, 1.6, 1.7 (4 quadrants only), 1.8 Lab 2 ( know the major systems, what organs they contain and where they are on a torso model Models: torsos Microscopes Know the parts (fig 3.1), be sure you remember the equations! Be able to calculate total magnification & explain how it affects field of view? Chemistry Basic Chemistry Matter and Energy Composition of Matter: Atoms and Elements Molecules and Mixtures Chemical Bonds Chemical Reactions Biochemistry Inorganic Compounds Organic Compounds Basic Chemistry Matter and Energy A. Matter Anything that occupies space and has mass Mass is the amount of matter in the object Weight varies with gravity Weigh less on a mountaintop, less gravity Three States of Matter Solid – has definite shape and volume (bones and teeth) Liquid – definite volume, variable shape (blood plasma) Gaseous states – Neither shape or volume (air) B. Energy The capacity to do work, or to put matter into motion The more work do, the more energy required Two Types of Energy Kinetic – energy in action (battery in a toy being used) Potential – stored energy, inactive energy (battery in a toy not being used) Forms of Energy Chemical Energy - form stored in the bonds of chemical substances When the bonds rearrange, energy is released (Potential ( Kinetic) Ex: Adenosine Triphosphate (ATP) How we store energy in our bodies The breaking of these bonds fuel all our systems Electrical Energy - movement of charged particles Ions are charged and move across cell membranes Nerve Impulses – electrical current used by the nervous system to transmit messages from one part of the body to another Mechanical Energy - directly involved in moving matter Radiant Energy (Electromagnetic energy) Electromagnetic spectrum (talk about more when we get to vision) All energy transformations release heat, even in the body Atoms and Elements A. Elements All matter is composed of fundamental substances Cannot be broken down into simpler substances by ordinary chemical methods Four Elements make up the majority of body weight (96.1%; Table ) Oxygen, Carbon, Hydrogen, Nitrogen 112 are known, only 92 exist in nature, they rest are made in a particle accelerator Periodic Table lists all known elements (Appendix D) Atoms - building block of elements, tiny Physical properties - detectable (smell, size, texture) or measurable (boiling, freezing point) Chemical properties - Way atom reacts to other atoms (bonding behavior) Atomic Symbol - one or two letter symbol (shorthand) Usually the first letter of the name of the element (Latin sodium ( natrium Na) B. Atomic Structure Not indivisible as name implies (Greek) Consists of Nucleus: protons (+) & neutrons (no charge) Tightly bound together Overall its positively charged Both have same mass ( 1 atomic mass unit Electrons that orbit the nucleus Negative charge, very small mass Number of electrons have to equal number of protons for the atom to carry no charge Planetary Model (Fig ) Planetary is a simplified model of atom Electrons don’t really travel in a ring, travel in orbitals or regions (fig ) Electron Cloud – area that the electron is likely to be found C. Identifying Elements All elements have a different number of protons, neutrons and electrons Hydrogen, Helium, Lithium (fig ) Hydrogen - One Proton – One Electron Helium – 2 of each; Lithium – 3 of each We classify elements based on atomic number, atomic mass and atomic weight Atomic Number Number of protons in the nucleus Also tells you how many electrons it has to (Hydrogen – 1) Mass Number and Isotopes Mass Number – the sum of the protons and neutrons Hydrogen ( 1; Helium ( 2 protons, 2 neutrons ( 4 (4/2 He) Mass number – atomic number = number of neutrons Isotopes (fig ) - Same number of protons, different number of neutrons Atomic Weight Average of the relative weights of all isotopes found in nature Equal to mass number of the most abundant isotope D. Radioisotopes Isotopes that decay to stable forms because they are heavy and unstable Radioactivity – process of decay Dense nuclear particles are composed of even smaller particles (quarks) that associate in one way to form protons and another way to form neutrons Bonds between quarks is less effective in heavy isotopes Half-life – the time needed to loss half of its activity Used in diagnosis of damaged and cancerous tissues Molecules and Mixtures A. Molecules and Compounds Combination of atoms held together by chemical bonds Compounds – two different atoms bound together to form a molecule B. Mixtures Solutions – homogeneous mixtures of components that may be gases, liquids or solids Two parts Solvent – dissolving medium (usually a liquid (water is the universal solvent) Solute – what’s being dissolved Concentrations of Solutions Percent tells you how much solute there is in the solution Morality – moles per liter (M) Mole – equal to its atomic weight or molecular weight (sum of weights) in grams Add up the atomic weight or each atom X the number of atoms of each One molar solution = total grams in 1 liter of solution Avogadro’s number – 6.02 x 1023 molecules of substance Same number of molecules for each mole, regardless of atom Colloids - emulsions, heat erogenous mixtures Usually gel-like mixtures, particles are larger than those in watery (true) solutions Cytosol – inside the cell Suspensions Heterogeneous mixtures with large often visible solutes that tend to settle out Blood will separate into plasma, platelets, WBCs and RBCs C. Distinguishing Mixtures from Compounds No bonding occurs in a mixture, just physically intermixed Components can separate by physical means (straining, filtering, evaporation, etc Mixtures can be homogeneous or heterogeneous Homogeneous – any sample of the mixture will be exactly the same Heterogeneous – substance varies in make up from place to place Chemical Bonds A. How are molecules held together? Electrons form a cloud around the nucleus of an atom = electron shell Number of electron shells occupied in a given atom depends on # of e atom has Each shell contains 1+ orbital Each shell represents a different level of energy Potential Energy = depends on the energy level the bond occupies Valence Shell = used specifically to indicate an atoms outermost energy level containing the electrons that are chemically reactive Shell 1 = 2 e Shells 2+ = 8 e B. Types of Bonds Ionic (fig ) - Forms an ion Anion – gains an electron (-) Cation – loses an electron (+) Most are salts, crystals Sodium Chloride (NaCl) Covalent (fig ) - Share electrons & share an orbital Often forms gases Polar - Positive and Negative sides to the molecule due to shifts in size, electric charge, etc Nonpolar - Electrically balanced Hydrogen (fig ) Too weak to bind atoms, just attraction between a positive end of a polar covalent bond and a negative end Chemical Reactions A. Reactions occur whenever chemical bonds are formed, rearranged or broken Written as Chemical Equations H + H = H2 or 4H + C = CH4 Subscript = atoms that are bonded Prefix = atoms that are not bonded Reactants - # or kind or reacting substances Products = proportions of reactants after reaction B. Patterns of Chemical Reactions Three patterns Synthesis (combination) ( A + B = AB Basis for constructive (or anabolic) activities like building cells Decomposition ( AB = A + B Molecule is broken into smaller parts or constituent atoms Underlie catabolic or degradative activities Exchange of reactions (displacement) ( AB + C = A + BC Oxidation Reduction Reactions (Red-Ox) Reactant that is losing the electron (donor) is Oxidized Reactant that is gaining the electron (acceptor) is Reduced C. Energy Flow in Chemical Reactions Exergonic – release energy Endergonic – energy absorbing D. Reversibility of Reactions Some reactions can go either way – said to be in a state of Chemical Equilibrium Shown by double directional arrows E. Four Factors that Influence Rate of Reaction Temperature Particle Size Concentration Catalysts Biochemistry A. What is biochemistry? The study of the chemical composition and reactions of living matter Organic Compounds - contain carbon, are covalently bonded molecules, usually large Inorganic Compounds - water, salts, acids and bases Inorganic Compounds A. Water Most abundant and important inorganic compound in living material Special qualities of water High heat capacity Absorbs & releases large amounts of heat before changing in temperature itself Prevents sudden changes in internal body temperature Redistributes temperature throughout the body High heat of vaporization Takes a lot of heat to change from liquid into a gas (water vapor) Breaking of hydrogen bonds Therefore large amounts of heat are released from the body Polar solvent properties Universal solvent - biological molecules do not react unless they are in a solution Dissociate properties (fig. ) Orient positive ends toward negatively charged end of solutes Separates ionic-ly bonded molecules (salt) via dissociation Actually surrounds Na and Cl atoms Hydration layers Layers of water molecules around large charged molecules such as proteins, shielding them from the effects of other charged substances (colloids) Water serves as the body’s major transport medium Reactivity Hydrolysis - decomposition reactions using water Foods are broken down into building blocks via water Dehydration synthesis – when you remove water from protein and carbohydrates (causes those to bond together) Cushioning - forms a cushion for body’s organs B. Salts Ionic compound containing cations other than H+ and anions other than OH- All form Electrolytes (ions) Substances that conduct an electrical current in a solution Not just NaCl Calcium Carbonate Ca2CO3 and Potassium Chloride (KCL) Most plentiful - Calcium phosphate (bones and teeth) Ionic iron forms part of the hemoglobin molecules to transport oxygen Electrolyte properties of sodium and potassium help nerve impulses and muscle contraction Zinc and copper help enzymes C. Acids and Bases Electrolytes, ionize and dissociate in water, can conduct an electric current Acids – sour taste Proton donors (remember, no electrons of neutrons if +) Substance that releases a hydrogen ion (H+) in detectable amounts Release anions and hydrogen ions in water Concentration of protons that determines the acidity of a solution Anions have little to no effect Ex: HCL ( H+ (proton) + Cl- (anion) Molecular formula for an acid ( H is written first Bases - bitter taste Proton acceptors (take up hydrogen ions) in detectable amounts Hydroxides Magnesium hydroxide (Milk of magnesia) and sodium hydroxide (lye) Dissolve in water to form hydroxyl ion (OH-) – liberates cations, free OH- binds with H to form water and reduce acidity NaOH( Na+ + OH- then OH- and H+ ( H2O Bicarbonate ion - particularly abundant in blood & help transport carbon to the lungs Ammonia (NH3) - common waste product PH: Acid-Base Concentration More hydrogen ions, the more acidic More hydroxyl ions, the more basic (alkaline) PH units: measure concentration in various fluids Expressed in terms of moles per liters (molarity) Scale Runs 0-14 (fig. ) - logarithmic, each step is tenfold change in H ion concentration Neutralization Reactions Acid + Base ( Water and Salt (always) HCl + NaOH ( NaCl + H2O Buffers Chemical systems that regulate pH of the body Proteins and other molecules Remember need to keep homeostasis of acid-base balance Lungs and kidneys also help keep balance Resist abrupt changes in pH of bodily fluids Blood has to stay within 7.35-7.45 Strong acids vs. weak acids Strong acids - dissociate completely and irreversibly in water Drastically change pH of a solution (HCl and HS) Weak acids - don’t completely dissociate, change in pH is less Carbonic acids (H2CO3) and acetic acid (HAc) Strong Bases vs. weak bases Strong bases - easily dissociate in water, give up H+ (protons) Weak bases – Ionize incompletely and reversibly Sodium bicarbonate (baking soda) is best example Carbonic-bicarbonate system Helps to maintain pH in blood H2CO3 ( HCO3 + 2H+ Moves right if pH rises (basic), moves left in pH drops (acidic) Organic Compounds A. All things Carbon Except carbon dioxide, carbon monoxide and carbides Carbon is special because Electroneutral - never loses or gains electrons, it shares them 4 valance shell electrons ( forms 4 covalent bonds B. Carbohydrates (fig. ) Group of molecules that contain sugars, starches, represent 1-2% of cell mass Contain carbon, hydrogen and oxygen Usually has a hydrogen: oxygen ration of 2:1 Carbohydrate means hydrated carbon Classified by size and solubility Monosaccharide Simple sugars, single chain or single ring of 3-7 carbons 1:2:1 ration of carbon: hydrogen: oxygen (CH2On) n = # of carbons Named by how many carbons they have Many isomers of glucose- same formula, different structure Disaccharides Double sugar, dehydrated monosaccharides forms disaccharide & water 2C6H12O6 (glucose) ( C12H22O11 (sucrose) + H2O Disaccharides are too big to cross membrane, so they have to be broken down into monosaccharides (hydrolysis) Sucrose – table and cane sugar Lactose – milk Maltose – malt sugar Polysaccharides Long chains of carbon, lots of dehydration Polymers – chainlike molecules made of many similar units ( big Fairly insoluble, good for storage Not as sweet Starch – storage carbohydrate in plants Each grains and plants to obtain glucose Can’t digest most of cellulose in plants (fiber) Glycogen Storage in animal tissue (in liver and skeletal muscle) When blood sugar drops, liver breaks down glycogen and releases glucose into blood Carbohydrate Functions Cellular fuel - Can store carbohydrates as fat Some are used for structural purposes too C. Lipids (Table ) Insoluble in water, but dissolves in other lipids Contains carbon, hydrogen and oxygen, but less oxygen than carbohydrates Neutral Fats - fats as solids, oils as liquid (fig ) Also called Triglycerides (tricylglycerols) Composed of two types of building blocks Fatty Acids – linear chains of carbon & hydrogen w/acid group (COOH) This varies in different neutral fats Glycerols – modified simple sugar 3:1 fatty acids: glycerol ration Yield a lot of energy when they are broken down, lots of bonds, big molecules Can be stored for later in deep tissue Nonpolar hydrocarbon That’s why oil and water don’t mix Saturation determines how solid the neutral fat is at a given temperature Unsaturated (monounsaturated or polyunsaturated) 1+ double bonds between carbons Short chain means liquid at room temperature Monounsaturated – olive and peanut oil Polyunsaturated – corn, safflower and soybean oil Saturated - single covalent bonds between carbons Long chains mean solid at room temperature ( butter Phospholipids (fig ) Modified triglycerides with a phosphorus group and 2 fatty chains Polar head and non-polar head ( Perfect for membranes Steroids (fig ) Flat molecules made of 4 interlocking hydrocarbon rings Fat soluble and contain little oxygen Cholesterol – found in cell membranes, vitamin D, steroid hormones (testosterone, estrogen) and corticosteroids produced by adrenal glands D. Proteins Composes 10 to 30% of cell mass, but not all are for structure Enzymes – biological catalysts All have carbon, hydrogen and nitrogen, some have sulfur and phosphorus Amino Acids and Peptide Bonds Amino Acids – building blocks of proteins, 20 common types Two important functional groups (fig ) Amine group –NH2 Organic acid – COOH Can act as either an acid (proton donor) or a base (proton acceptor) All have an R group, that’s what makes them different - behavior Peptide Bond – result of dehydration synthesis process bonds OH and H Amine binds with the acid end of another one Makes polypeptides (more than 10) Macromolecule – 100 – 10,000 amino acids Order of proteins determines type of Amino Acids (letters of alphabet) Structural Levels of Proteins Four structural levels (fig ) Primary – linear sequence “beads” Secondary Alpha helix, coils around Primary chain is coiled and stabilized by hydrogen bonds formed between NH and CO groups of aa in primary chain Link different parts of the same chain together Beta-pleated sheet link side-by-side by hydrogen Multiple chains Tertiary structure When other structures fold up on themselves to form a ball Both hydrogen and covalent bonds Quaternary One of more polypeptide chains bond together Fibrous and Globular Proteins Fibrous – extended and strand like Most only secondary structure, but some quaternary, ropelike Insoluble in water and very stable (collagen, keratin, contractile muscle) Structural Protein building blocks Globular - compact, spherical proteins, soluble, chemically active molecules Called functional proteins – help immune system, hormones, enzymes Less stable than fibrous Protein Denaturation Activity depends on structure and intramolecular bonds (Hydrogen - fragile) Denatured - protein has unfolded and lost its 3D shape Caused by pH, temperature, other environmental conditions Can be irreversible Active sites on globular proteins are lost when the protein denatures, therefore, protein doesn’t work as well (hemoglobin – changes atom placement) Molecular Chaperones (chaperonins) In all cells, help proteins become 3D and stay that way, bolts Enzymes and Enzyme enzyme Activity Characteristics of Enzymes Globular proteins, catalysts – substances that regulate and accelerate the rate of biochemical reactions but are not used up or changed Holoenzymes - functional enzyme, 2 parts apoenzyme– protein part cofactor – either an ion or organic molecule needed to assist Coenzyme – when the cofactor is derived from vitamins Most enzymes are named for the type of reaction they catalyze Always end with –ase Mechanism of Enzyme Activity (fig ) 3 basic steps Enzyme-substrate complex is formed Internal arrangement occur to form product Product is released, enzyme stays the same E. Nucleic Acids (DNA and RNA; fig ) Nucleic acids (nucleotides) – carbon, hydrogen, oxygen, nitrogen and phosphorus 3 Components Nitrogen base (five major varieties) Purines (2 rings): Adenine, Guanine Pyrimidines (1 ring): Cytosine, Thymine, Uracil Pentose sugar – ribose or deoxyribose Phosphate group Two major classes of molecules Deoxyribonucleic acid (DNA) Double stranded, found in nucleus, genetic material, copies itself Complementary pairs: A=T; G=C Ribonucleic acid (RNA) Single stranded, outside the nucleus, works with DNA to copy proteins F. Adenosine Triphosphate (ATP; fig ) ATP – universal energy compound of body cells, very unstable Glucose isn’t energy used directly for cellular work, its catabolised into ATP Adenine containing RNA nucleotide; 3 negatively charged phosphates When high phosphate bonds are broken (hydrolyzed), molecule becomes more stabl Study Questions Basic Chemistry What makes up an atom? What does atomic number or weight tell you about an atom? What are the 3 types of bonds? How are they similar? Different? Examples? Covalent Bonds: what’s the difference between polar and non-polar molecules? What is the pH scale? What is the range? What keeps it within homeostatic bounds? Biochemistry What’s so special about heat? What’s an acid? What’s a base? What is the pH scale? What is the range? What keeps it within homeostatic bounds? What makes something organic? Biological Molecules What are the four main biological molecules? For the following, know basic structure, polymer differences, what is their function: Carbohydrates Lipids Proteins Nucleic Acids Cells: The Living Units Cells in General Nucleus Cytoplasm - Organelles Plasma Membrane: Structure and Function Extracellular Materials Growth and Reproduction Developmental Aspects Overview of Life A. Cells - structural units of living things Theory of Spontaneous Generation – life arises from nothing Cell Theory Basic structure of living organisms Activity of an organism depends on both individual & collective activities of cells Principle of Complementarity – biochemical activities of cells are dictated by the specific subcellular structure of cells Continuity of life has a cellular basis Cell Make-Up (fig ) Chemical: Carbon, hydrogen, nitrogen and oxygen (for the most part) Human 3 Main parts: Plasma Membrane, Cytoplasm, Nucleus Nucleus Nucleus Control center of cell, genetic library Dictates the kinds of and amounts of proteins to be synthesized at any one time in response to signal acting on the cell Multinucleated – skeletal muscles, liver cells Anucleated – no nucleus; mature RBCs Three parts – Draw on the board Nuclear Envelope Double membrane barrier separated by a fluid-filled space Outer – has ribosomes, connected to rough ER Inner – lined by a network of protein filaments (nuclear lamina) that maintains the shape of the nucleus Nuclear pores 2 layers fuse together and allow passage from inside to out Pore complex – protein complex that lines the pore & regulate the entry & exit of large particles Selectively permeable Nucleoplasm – jellylike fluid with nuclear elements suspended Salts, nutrients, other essential solutes Nucleoli (fig ) Sites of ribosome production, where subunits are assembled Not membrane bound Contain chromatin – made up of DNA Chromatin (fig ) Equal amounts of DNA and globular histone proteins Nucleosome Fundamental units of chromatin Discus-shaped clusters of 8 histone proteins connected like beads on a string of DNA molecule that winds around each of them and then continues on to the next cluster of DNA Chromosomes - 2 sister chromatids Chromatin condenses to form short, barlike structures Cytoplasm A. Cytoplasm “cell forming” material Cellular material between plasma membrane and the nucleus Three major elements Cytosol - largely water, proteins, salts, sugars Viscous, semitransparent fluid substance Cytoplasmic Organelles - metabolic machinery of the cell, specialized functions Inclusions - not functional units but chemical substances in cells (mainly nutrient storage) Cytoplasmic Organelles Little organs, specialized cellular compartments Non-membranous organelles – lack membranes Mitochondria (fig ) Powerhouse of the cell – provides most of ATP to cell More mitochondria in a cell, the energy it needs Two membranes Outer – smooth Inner – folds in to form shelves or cristae Attaches phosphate groups to ADP Aerobic cellular respiration – requires oxygen Have there own DNA and RNA – can replicate themselves Ribosomes - sites of protein synthesis Composed of proteins and a variety of RNA – rRNA Two types Free floating – function in the cytosol Membrane-bound ribosomes – synthesize proteins for export Can detach and reattach to the membrane whenever needed Endoplasmic Reticulum (ER; fig ) – network within the cytoplasm ER - an extensive system of interconnected tubes and parallel membranes Rough – has ribosomes attached Proteins are assembled on ribosomes Integral proteins and phospholipids made here are sent to the membrane Process overview (fig ) Signal sequence – short “leader” peptide segment that attached to membrane of rough ER Signal-recognition particle (SRP) – moves ribosome to the right receptor site on ER membrane Smooth - continuation of rough ER, tubules in loop network No role in protein synthesis Catalyze reactions involved with Lipid metabolism and synthesis of cholesterol Synthesis of steroid-based hormones Absorption, synthesis & transport of fats (intestinal cells) Detoxification of drugs, pesticides & carcinogens (liver & kidney) Breakdown of stored glycogen to form free glucose (liver Golgi Apparatus (fig ) - stacked & flattened membranous sacs Postal Center of cells – modify (trim sugars, add phosphate) concentrate, and package the proteins and membranes made at the rough ER Transport vesicles - bud off rough ER & move to cis face (receiving end) Lysosomes - carry digestive enzymes to breakdown old organelles Work well in acidic conditions 2 ways membrane of lysosome is adapted for the job Contains hydrogen ion pump to help cell maintain low pH Retains dangerous acid hydrolases while lets products leave Jobs Digest bacteria, viruses and toxins Degrading worn-out or non-functional organelles Break down non-use tissues, bone to release calcium ions into blood Autolysis – lysosomal rupture results in self-digestion of the cell Endomembrane Systems System of organelles that work together to Produce, store, & export biological molecules Degrade potentially harmful substances Includes Organelles, membrane and other structures Peroxisomes - containing a variety of enzymes (oxidases and catalases) Use enzymes to detoxify (alcohol & formaldehyde) Neutralize free radicals – highly reactive chemicals with unpaired electrons that mess up biological processes ( cancer Cytoskeleton Three types of rods through the cytosol – no membranes Microtubules – largest diameter, made of tubulins (proteins) Start at centrosomes Attach to mitochondria, lysosomes & secretory granules Microfilaments – thinnest elements, strands of actin Arrangement is specific to each cell Interact with other proteins& provide movement Intermediate filaments – tough, insoluble protein fibers Most stable and permanent of cytoskeleton Centrosomes and Centrioles (fig ) Centrosome – look like they are anchored by the nucleus Centrioles – 2 granules that make up the centrosomes 9 triplets of microtubules around a hollow tube form the bases of cilia and flagella Cilia and Flagella (fig ) Cilia – cellular extensions that occur on exposed surface of cells Helps moving substances across membrane (mucus) Flagella – longer projections that usually help cells move Basal bodies – centriole sits just under the plasma membrane Plasma Membrane: Structure A. Plasma Membrane “Cell Membrane” Separates 2 fluid compartments Intracellular fluid – within cell Extracellular fluid – outside and between cells Five Main Parts Fluid Mosaic Model (fig ) Bilayer – phospholipids with smaller cholesterol and glycolipids 2 long fatty-acid chains – hydrophobic Nonpolar tail Phosphate bearing group – hydrophilic Polar head Means they can fix themselves quickly, not much passes Only hydrophobic molecules (and small hydrophilic molecules) pass Lets things like steroids in Keeps hydrophilic substances out: ions, polar molecules Water is small so it goes through Glycolipids – mainly on the outside, phospholipid within attached sugar (polar) Cholesterol – stabilization of membrane, less flexible (arteries) Between phospholipid molecules throughout the plasma membrane 2 Functions Act as a patch substance on the bilayer, keeps out small molecules Keep the membrane at an optimum level of fluidity Proteins – make up half of membrane (fig ) Integral – inserted into lipid layer Transmembrane proteins – used for transport Have hydrophobic & hydrophilic ends, able to interact with water in cells & nonpolar lipids in membrane Form channels, work as carriers External Out – hormone receptors or other chemical receptors Peripheral – on outside, attached to something inside (protein or lipid) Removable, on either side, some are enzymes, others change shape of cell, help with muscle contractions, or linking cells Not bound to membrane, attached to integral proteins at surface Functions of Proteins Structural Support Peripheral proteins help connect membrane to cell to keep shape Recognition/Transport Binding sites or proteins tell molecules if they can pass Certain proteins respond to certain molecules Cell with foreign set of binding sites will be destroyed Communication Receptor proteins – used for cells to communicate with each other Changes cell activity Glycocalyx – carbohydrate rich cell surface, each cell is different (bio-markers) Carbohydrate or Sugar-side chains; “sugar coat” Main Functions Serve as binding sites for proteins Lubricate cells Keep cells in place by sticking to something Specializations of Plasma Membrane Microvilli – minute, fingerlike extensions of the plasma membrane that project from a free, or exposed surface, mainly in absorption cells (increase absorption) Membrane Junctions – 3 Factors bind cells together (fig ) Glycocalyx form adhesive Contours fit in tongue and groove fashion Membrane Junctions Tight Junctions - prevent molecules from passing by forming a impermeable junction, some ions can pass Desmosomes - anchoring junctions, zipper with protein teeth Gap Junctions (nexus) - channels connect cells, so things can pass Plasma Membrane: Function A. Main Functions Keeps important things in & bad stuff out Controls passageway of necessary molecules Interprets signals from other cells ( receptors B Diffusion & Gradients Use example of dye in water that will eventually turn pink Remind them that molecules move randomly & with even chance of any direction Diffusion - movement of molecules or ions from a region of higher concentration to lower Moves down a concentration gradient Difference between the highest and lowest concentration of a solute If permeable both the water & the solutes can move across the membrane Water will move freely. If semipermeable Water moves freely, solutes don’t Plasma Membrane is semipermeable Four Types of Passive Transport - required No Energy Simple Diffusion - doesn’t require special protein channels Water, oxygen, carbon out of cell Facilitated Diffusion - passage of materials through the plasma membrane, using both a concentration gradient &channel made by a transport/integral protein Transport proteins – conduit for one protein or a small group of substances Provides a hydrophilic passageway in a hydrophobic environment Glucose, amino acids Filtration - forces water and solutes through a membrane or capillary bed by fluid (hydrostatic) pressure Pressure gradient – pushes solute-containing fluid from high – to low pressure Osmosis Net movement of water across a semipermeable membrane from an area of Lower solute concentration to an area of higher solute concentration Ones with the solute stick to the solute molecules so it needs free water too Osmosis moves water across the membrane, not solutes Why you shouldn’t drink salt water, it would pull water out of the cell and into extracellular fluid Osmolarity – concentration of solutes in water Water level is higher in the area with solute Terms Hypertonic – a fluid has a higher concentration of solutes than another, water flows out of cell Isotonic – same concentration of solutes inside and out Hypotonic – a fluid that has a lower concentration of solutes than another, water flow into cell Active Transport (fig ) Sometimes molecules need to be higher concentration inside the cell Molecules need to move against the concentration gradient ATP required to “pump” molecules across membrane Primary Active - Sodium-Potassium Pump Cell needs high K+ inside & high Na+ outside the cell – to keep resting potential (positive outside, negative inside) Each keeps trying to leak back to equalize concentrations, so pumps have to keep working to pump it back out Secondary Active Moving Big Things In and Out –Vesicular Transport (Active) A. Movement Out: Exocytosis The movement of materials out of the cell through a fusion of vesicles with the plasma membrane Cells use exocytosis to export protein B. Movement In: Endocytosis Movement of relatively large materials into the cell by infolding of plasma membrane Three forms Pinocytosis – cell drinking Tiny bits of extracellular fluid Plasma membrane creates an enclosure that pinches off to become a vesicle that moves into the cell Receptor-Mediated Endocytosis Cell-surface receptors bind with materials to bring them into the cell Material moves in cell membrane to place where vesicle budding brings them in clathrin – protein that makes up coated pit ( becomes coated vesicle Endosome – larger vesicle that will separate receptor from good stuff and send receptors back out Phagocytosis – cell eating Phagosome – formed vesicle that will fuse with lysosome to break contents open Certain cell engulfs whole cells, fragments of them or other organic materials Extracellular Materials Substances outside the cell Body fluids Cellular secretions Extracellular matrix Particularly abundant in connective tissue Cell Growth and Reproduction A. Cell Life Cycle (fig ) Series of changes a cell goes through from the time it is formed until it reproduced itself Two Main Phases Interphase (growth phase) - Cell formation to division; 3 stages G1 – Gap 1 (variable rate) Cells are metabolically active, grow & synthesize proteins rapidly S – Synthesis DNA replicates itself (fig ) DNA unwinds from nucleosome Helicase enzyme untwists the double helix Separates DNA into 2 complementary chains Replication bubble – site of separation Replication fork – Y Each strand serves as a template (set of instructions) Bases pairing of Nucleotides Adenine-Thymine; Guanine-Cytosine Ex: TACTGC-ATGACG DNA polymerase catalyzes process Leading strand – new strand following the movement of the replication fork Lagging – moving in other direction Semiconserative Replication Segments of DNA are spliced together by DNA ligase Result if 2 identical DNA molecules are formed Chromatid formation Chromatin strands condense to form Chromatids united by a centromere G2 – Gap 2 Enzymes & proteins are synthesized & moved to proper sites Cell Division or M phase – 2 main events Mitosis (fig ) – 4 phases ( ~1 hours total time Prophase - longest stage Chrms form, centrioles move toward poles, mitotic spindle (microtubules) form across cell Metaphase Chrms meet in the middle, centromeres at met-plate Anaphase Chrms split, move toward poles, kinetochore fibers form Telophase Chrms stop moving, nucleolus and nuclear membrane form, spindle fibers break down Cytokinesis - division of cytoplasm Begins in late anaphase & finishes when mitosis ends Cleavage furrow - center of the cell drawn inward by contractile ring made of actin and myosin filaments Control of Cell Division – has timer system Surface-volume relationship – amount of nutrients a growing cell requires is directly related to its volume Cell has a critical size and splits into two to compensate Other signals – hormones, growth factors Contact inhibition - stop when they touch other cells Cancerous cells keep going 2 Groups of Proteins that control mitotic stage – “switches” Cyclins - regulatory proteins, destroyed at end of cycle Cdks - cyclin dependant kinases Build in interphase causes enzymatic cascades B. Protein Synthesis DNA serves as blueprint for protein synthesis to make proteins only Remember proteins are polypeptide chains made of amino acids Gene – a segment of DNA that has instructions for one polypeptide chain Triplet of nucleic acids (bases) form the word AAA, TGC, etc = amino acid Exons – code that will be excised (part to be copied) Introns – interruption in the code between exons Role of RNA RNA uses Uracil instead of Thymine Three forms of RNA Messenger RNA (mRNA) Long strands of nucleotides, carries instructions gene to ribosome Transfer RNA (tRNA) Small transport RNA, carry amino acid to the ribosome Ribosomal RNA (rRNA) Parts of the ribosome Work together to translate the information carried by mRNA Genetic code is translated into protein structure via 2 Major steps Transcription – in nucleus Transfer of information from a DNA gene’s base sequence to the complementary base sequence of an mRNA molecule Making mRNA Complement RNA polymerase enzyme oversees the synthesis of mRNA Sense strand – one molecule works as template for complementary mRNA Antisense strand – DNA molecule not being used for template Codon – 3-base sequence on mRNA Stop codon tells where the end of chain should be Translation – in cytoplasm Information in nucleic acid is translated into proteins (amino acids) Each codon will bind with a specific anticodon that is attached to tRNA Each amino acid is attached to tRNA with a specific anticodon Use hydrogen bonds to attach codons and anticodons until they can break apart from amino acid/polypeptide chain Sites of tRNA A – site for incoming tRNA P – site for holding growing polypeptide chain E – exit site for outgoing tRNA Polyribosome - multiple ribosome complex attached to multiple ribosomes Stop codon - ribosome will continue to read mRNA until it reached this codon UGA, UAA or UAG Cytosolic Protein Degradation Organelles are digested within the lysosome, but not proteins Proteins ready to be broken down are “tagged” with ubiquitin, then its hydrolyzed by enzymes (like proteasomes) Developmental Aspects of Cells First cell is fertilized egg, Cell differentiation – specialization begins and reflects differential gene activation, development of specific & distinctive features Adulthood – Young Hyperplasia (anemic) – bone marrow undergoes accelerated growth, RBCs grow fast Atrophy – decrease in size of an organ or body tissue, can result from loss of use cell numbers remain constant, division only occurs to replace lost cells Cellular aging Can reflect chemical insults, progressive disorders of immunity or a genetically programmed rate of cell division with age (may programmed in telomeres) Study Questions Anatomy Know the parts of the cell!!! Be able to label organelles and understand their function Be able to extrapolate on the function of DNA Plasma Membrane What are the main parts of the plasma membrane? What are the main types of cell junctions? What are the main mechanisms for solutes to get in and out of a cell? What about bigger molecules? Lab 5a & b – Figs 5a.3,5a.4 Be sure you review the computer lab activities!! Write out summaries of computer activities with definition of process Division – Mitosis Know what happens at each stage of Interphase and Mitosis Be able to Identify the different stages on slides What types of cells go through mitosis Protein Synthesis: Transcription & Translation Where does each occur? What happens during the process? What types of RNA are used at each step? Use this process to learn the organelles and their function!!!! Lab 4 – fig.s 4.2, 4.3,4.4 Tissue Types Epithelial Tissue Connective Tissue Epithelial Membranes Nervous Tissue Muscle Tissue Tissue Repair 4 Types of Tissue Epithelial Lines the areas exposed to air to protect from outside world Keratin protein in skin is “waterproof” Forms Glands Organs or groups of cells that secrete one or more substances Two Types Exocrine - secrete material through tubes or “ducts” onto surface (ex: sweat) Endocrine - secrete from cell directly into the tissue Hormones – substances that prompt physiological activity elsewhere Types of Epithelial Tissue (fig. ) Squamous - flat Cubodial - square Columnar - rectangular Stratified Squamous – 2+ layers Basement membrane - network of protein fibers & filaments that attach to deeper tissues Connective (not exposed to air) Two Jobs Supports and protects other tissues Secretes extracellular material directly from cells Common Characteristics (fig ) Common origin - All connective tissue comes from mesenchyme Degrees of vascularity Extracellular Matrix - Nonliving matrix of fluid, not really all cells Structural Element Ground substance - material fills the space between the cells and contains the fibers Fibers 3 Main types that all provide support Collagen fibers – strong, highly stress resistant Elastic fibers – long, thin, from branching networks to stretch Reticular fibers – collagenous fibers, around small blood vessels Cells Each cell has a immature cell (blast) that determines tissue type Also house mature cells (cyte) Matrix – ground and fibers together Classified by surrounding extracellular material (fig. ) Loose connective tissue Ground substance & fibers of protein (collagen) to provide strength/flexibility Fibrous and Supporting Connective Tissue More collagen, less ground substance ( tougher and stronger Forms: Tendons that attach skeletal muscle to bones Ligaments that connect bone to another bone Capsules that surround organs and enclose joint cavities Supporting Connective Tissue - most rigid form, less fluid, more fiber Cartilage (in nose, ear) – support and flexibility No blood vessels Bones - contains mineral deposits (calcium) (calcified Make bones strong and resistant to shattering Fluid Connective Tissue Blood - Population of cells and plasma (ground substance) Lymph - from Interstitial Fluid (fluid pushed out of capillaries around tissues) Epithelial Membranes (fig ) - Incorporate both connective and epithelial tissue Cutaneous - skin (organ system) Keratinized stratified squamous epithelium (epidermis) & connective tissue (dermis) Exposed to air (dry) Mucous (mucosae) - line body cavities that open to the exterior Refers to a location, not a type of cell Moist tracts Serous - found close to ventral cavities Serous fluid fills space between layers Nervous (fig. ) Specialized for rapid conduction of electrical impulses Two type Neurons – functional unit of nervous tissue Neuroglia – provide support, nourishment, insulation, defend neurons from infection Structure of Neuron Cell body – with nuclei Axon – long extension that transmits information Dendrites – information transmitted to another neuron Synapse – site where neuron connects with another cell Muscle (fig ) Main Characteristics Highly vasularized Posses myofilaments( 2 contractile proteins (fibrils: actin and myosin) Specialized tissue – can shorten and contract Striated Muscle - Actin and myosin are regularly arranged Skeletal Muscle - mainly for movement, associated w/bones Cardiac Muscle - can have 2 nuclei & have intercalated discs (junctions) Nonstriated Muscle - Lack regular arrangement Smooth Muscle - mainly contractions, lungs, GI tract, etc. 3 Steps of Tissue Repair (fig ) Inflammation – swell to protect Organization Restores Blood Supply Regeneration of fibrosis effect (scar tissue( connective tissue) Study Questions Overall Make a Concept Map of the tissue types to review the major differences between types What are the main characteristics of each type For instance the structural elements of connective tissue Where would you find it What’s the difference between exocrine and endocrine glands What are the 3 main membrane types Where do you find them What are the main parts of a neuron How can you differentiate between the different muscle types Lab 6 (fig. 6.1,6.2, 6.3, 6.4, 6.5) Know the four main tissues types and where you might find each Think of ways to differentiate between them Be able to identify the different types of epithelium Be able to identify different types of connective tissue Be able to differentiate between the types of muscular tissue Be able to identify the parts of nervous tissue Integumentary System The Skin Appendages of the Skin Functions of the Integumentary System Homeostatic Imbalances of the Skin The Skin Integumentary System Two Main Layers of Skin Epidermis Outermost thin layer, stratified squamous epithelium Constantly replacing cells and producing keratin 14 days until they surface, surface cells are dead, stay for 2 wks Dermis Thicker layer Accessory structures derived from epidermis (hair follicles, glands) Uppermost region Loose connective tissue that supports & nourishes epidermis (nerves, blood flow, secretion rates, sensory receptors) Hypodermis (superficial fascia) Subcutaneous layer Loose connective tissue that attaches to structures (bone, muscles) Epidermis Cell of the Epidermis Keratinocytes Produce keratin ( fibrous protein for protection, provide antibiotics & enzymes that detoxify chemicals Connected by desmosomes Constant mitosis to replace cells on surface Melanocytes (spider shaped) producing melanin pass off to keratinocytes Synthesize melanin to prevent damaging DNA strand from UV Lysosome right above basal layer in light-skinned people digest melanin, no digestion in dark Dark doesn’t mean more melanocytes Tanning – build up of melanin Merkel Cells (hemispheric) dispersed through Epidermal/dermal junction, help with junction of feeling by attaching to a nerve ending Epidermal dendritic cells (Langerhans’ cells) Come from bone marrow, migrate to epidermis Macrophages that help activate immune system Use receptor mediated endocytosis to pick up antigens in epidermis Travel to Lymph node to give antigen to killer T lymphocyte Layers of Epidermis (fig ) Variation is either: Think: covers palms, feet, fingertips ( 5 layers (strata) Thin: rest of body ( 4 strata Stratum Basale (basal layer; also called germinativum) Deepest layer of young keratinocytes Single row of cells rapidly dividing Merkel Cells (hemispheric) dispersed through Melanocytes (spider shaped) producing melanin pass off melanin to keratinocytes Stratum Spinosum Multiple layers of prickly keratinocytes Mitosis occurs less often than in basal layer Cells filled with tonofilaments (tension) filaments Epidermal dendritic cells (Langerhans’ cells) Stratum Granulosum (Granular layer) 1-5 thin layers of flat keratinocytes Cells have tonofilaments as well as Keratohyaline granules (form keratin in higher strata) Lamellated granules (secrete waterproofing glycolipids) Stratum Lucidum A few flat, clear cells between SL and SC Transition zone ( dead kerainocytes Stratum Corneum Thicker layer of dead cells filled with keratin Nuclei and organelles died & disintegrated Thickness depends on thick of thin skin Protect skin from abrasion and penetration Glycolipids still exist between cells from waterproofing Dermis Strong, flexible connective tissue proper: fibroblasts, macrophages, mast cells and scattered white blood cells Fibers – collagen, elastic & reticular Blood vessels regulate temperature ( shunting blood to provide warmth 2 vascular plexuses Nerve plexus – located between the hypodermis & dermis Subpapillary plexus - more superficial dermal structures & epidermis 2 layers (fig ) Papillary - areolar conn tissue, fingerlike projections into epidermis Collagen and elastin fibers & lots of blood vessels Dermal papillae Meissner’s corpuscles – touch receptors Dermal ridges ( epidermal ridges ( fingerprints Sweat released onto skin leaves mark Reticular – network of collagen fibers Most of dermal layer (80%) Lines of cleavage – less dense regions between bundles Used by surgeons to make incisions Pacinian corpuscle – vibration monitors Blisters ( separation of epidermis and dermal layer Skin Color Three pigments contribute to color Melanin – Amino acid tyrosine Tyrosinase is enzyme that triggers product Carotene – yellow-orange pigment that can accumulate from vegetable sources in corneum & fat of hypodermis Hemoglobin – pink in Caucasian people Oxygenated in capillaries of dermis Appendages of the Skin Associated Structures Sweat (sudoriferous) Glands Apocrine – armpits, nipples, groin Larger glands that secrete through hair follicles Same composition as sweat, but with fatty substances and proteins Form of communication Mammary gland is modified apocrine gland Merocrine (eccrine) – secrete sweat Produce sweat to cool surface & reduce temperature (mainly water) Found mainly on palms, feet, forehead Sweat - hypotonic filtrate of the blood Mainly water – some salts, vitamins, lactic acids pH of 4-6 Ceruminous Glands Glands in ear canal Secrete cerumen ( ear wax Sebaceous Glands Produce waxy, oily secretions (sebum) into hair follicles Inhibits bacterial growth on skin Holocrine cells – accumulate secretion and then burst Hair and Hair Follicles (fig ) Hair (pili) - originate at hair follicles Composition Hard keratin, usually dead keratinized cells Regions Shaft – projects from the skin Root – part is embedded in the skin 3 concentric layers Medulla – middle, large cells and air Cortex – bulky, flattened cells Cuticle – single layer of cells that overlap (shingles) Hair follicles Hair bulb – deep end of follicle Root hair plexus – knot of nerve endings Hair papilla – peg-like structure of connective tissue w/capillaries & nerves Wall of follicle Connective tissue root sheath – outer Glassy Membrane – basement membrane Epithelial root sheath Hair Matrix – produce hair (w/in bulb) Arrector pili - smooth muscle pull hair upright – change with emotional state Nails (fig ) Modification of epidermis made of hard keratin Nail matrix is responsible for growth Nail fold – proximal and lateral borders of nail Eponychium (cuticle) – proximal nail fold projection Protect fingertips and toes Functions of the Skin Protection Chemical Barriers Secretions and melanin Physical (Mechanical) Barriers Continuity of skin & hardness of keratinized cells Substances that can cross Lipid-soluble substances Oxygen, carbon dioxide, ACE vitamins, steroids Oleoresins Poison oak Organic solvents Acetone, paint thinner (Dissolve cell lipids Salts of heavy metals Lead, mercury, nickel Drug agents (penetration enhancers) Help ferry other drugs Biological Barriers Antigens are presented to Langerhans cells to activate immune system Body Temperature Regulation Control of blood vessels in dermis layer can control heat release Cutaneous Sensation Sensory receptors throughout skin to help awareness of external environment Metabolic Functions Sunlight helps convert things in skin to vitamins, chemicals, etc Cholesterol ( vitamin D Keratinocytes ( transforms cortisone into hydrocortisone Blood Reservoir - holds a lot of blood Excretion - nitrogen-containing wastes are eliminated via sweat glands Homeostatic Imbalances Skin Cancer Basal Cell Carcinoma Most common, easily cured Proliferation of basale cells invade layers of dermis Squamous Cell Carcinoma Arise from keratinocytes of stratum spinosum Melanoma Cancer of Melanocytes Most dangerous type, usually occur where the is an existing mole ABCD Rules of recognizing cancer Asymmetry - 2 sides don’t match in pigment Border irregularity - Indentations along border Color - Several colors Diameter - Larger than 6mm in diameter Elevated above skin surface Burns Degrees of burns First – only epidermis is destroyed Second – epidermis and part of dermis destroyed Third –epidermis, dermis and maybe parts of hypodermis destroyed Study Questions Composition of Epidermis What are the strata? What is happening at each level? What types of cells do you find in each? What gives the epidermis strength? Composition of Dermis What types of cells do you find in the dermis? What are the glands? How are they different? How are they the same? What about vascularization? Innervation? Accessories to Skin What are they? Where do they originate? What are their parts? Functions/Repair What are the functions of skin What happens if there is damage to the skin? How do you quantify it? What are the types of skin cancer? Lab Hints: figs 7.1, 7.2, 7.4 a &b, 7.5, 7.6, 7.7 Models: Skin Bones and Skeletal Tissues I Skeletal Cartilages II Classification of Bones III Functions of Bones IV Bone Structure V Bone Development VI Bone Homeostasis: Remodeling and Repair V Homeostatic Imbalances of Bone Skeletal Cartilages Basic Structure, Types and Locations Skeletal Cartilage (fig ) Primarily water – that’s why its resilient No nerves or blood vessels Surrounded by perichondrium - a layer of dense irregular connective tissue Has blood vessels to feed cartilage Contains all three types of cartilage Have chondrocytes in lacunae within matrix Hyaline Cartilage (most abundant) Only have collagen fibers (which you can’t see) Include: Articular - cover ends of bones at joints Costal – ribs to breastbone Respiratory – form larynx, reinforce passageways Nasal – support external nose Elastic Cartilage More elastic fibers so it can bend more Include: External ear & epiglottis – prevents food from entering larynx Fibrocartilage Highly compressible and strong Intermediate between hyaline and elastic Include: Pad like cartilage in knee (Menisci), discs of vertebrae, pubic symphysis Growth of Cartilage (Two main ways) Appositional - Growth from outside Cartilage forming cells in surrounding perichondrium secrete new matrix Interstitial - Growth from inside Lacunae bound chondrocytes divide in matrix and expand from within Classification of Bones Axial Skeleton Includes: bones of skull, vertebral column, rib cage Appendicular Skeleton Include: upper and lower limbs & girdles: shoulder and hip Classification based on size (fig ) Long bones (most of limb bones) Longer than they are wide Long shaft with two ends Short bones Roughly cube shaped Wrist and ankle bones Sesamoid bone – shaped like a sesame seed Flat bone Thin, flattened, maybe curved Sternum, scapulae, ribs, skull Irregular bone Complicated shapes: vertebral and hip bones Functions of Bones Support - provide framework for body Protection - provide protection for major organs Movement - skeletal muscles attach to bones via tendons Mineral Storage - reservoir for minerals, most important of which are calcium and phosphate Can be released into blood stream as ions Blood cell formation - hematopoiesis (formation of blood cells) Bone Structure Bones are organs – organs contains several types of tissues Contain ( Osseous (bone) tissue, nervous tissue, cartilage, fibrous connective tissue, muscle and epithelial tissue Gross Anatomy Bone Textures: Compact and Spongy Compact – outer, smooth looking Spongy (cancellous) – internal, honeycomb Trabeculae – small needle-like or flat pieces Open space is filled with red and yellow bone marrow Structure of a Typical Long Bone (fig ) Diaphysis - tubular, long axis of bone Collar (thick) surrounds central medullary cavity or marrow cavity Adults – yellow marrow cavity (fat) Epiphysis - ends, more expanded Compact bone forms from exterior of epiphysis Interior contains spongy Joint surface is covered with articular (hyaline) cartilage Epiphyseal line – Between Diaphysis and epiphysis Remnant of cartilage disc from youth Membranes Periosteum – Double layered membrane that covers the surface of epiphysis except joint surfaces Fibrous layer Outer dense irregular connective tissue Osteogenic layer Inner, contains Osteoblasts (bone-forming cells) and Osteoclasts (bone breakers) Nutrient foramen – where bones is supplied with nerve fibers, lymphatic and blood vessels from Periosteum Sharpey’s fibers Secures the Periosteum to underlying bone matrix Tufts of collagen fibers that extend from the fibrous layer into matrix Endosteum – within bone membrane Connective tissue that covers internal bone surface Covers Trabeculae of spongy in marrow and canals of compact Contains Osteoblasts and Osteoclasts Structure of Short, Irregular and Flat Bones (fig ) Thin plates of Periosteum-covered compact bone outside and Endosteum-covered spongy bone within Have marrow, but no marrow cavity No epiphysis or shaft Flat bones have diploe (folded) Location of Hematpoietic Tissues in Bones Red Marrow Cavities – in spongy bone and diploe of flat bone Long bones are mainly yellow, most of red in flat & irregular bone Microscopic Structure Compact Bone (fig ) – often called lamellar bone Osteon/Haversian System – structural unit of bone Elongated cylinder oriented parallel to long axis of bone Lamella – matrix tubes Collagen fibers that run in one direction Next layer will run in opposite direction Reinforce each other, for stress Central/Haversian canal Contain small blood vessels and nerve fibers for osteon Perforating or Volkmann’s canal Lie at right angles to long bone axis to connect blood and nerve supply of the Periosteum and medullary cavity Lined with Endosteum Osteocytes occur in lacunae Canaliculi – hair like canales Connect lacunae to each other and to central canal Interstitial lamellae Incomplete lamellae Not part of osteon, between osteons Fill gaps between forming osteons or remnants of old ones Circumferential lamellae Deep to the Periosteum extend entire shaft circumference Resist twisting of long bone as a whole Spongy Bone Trabeculae align along lines of stress Contain irregularly arranged lamellae and Osteocytes interconnected by canaliculi Chemical Composition of Bone Organic components Cells (Osteoblasts, Osteocytes and Osteoclasts) Osteoid (organic part of matrix) – ground substance (proteoglycans and Glycoproteins) and collagen fibers Fibers made by and secreted by Osteoblasts Inorganic components Hydroxypatities (mineral salts) – calcium phosphates Salts – tiny crystals around collagen matrix 65% of bone mass Bone Markings Bulges, depressions and holes Muscle, ligaments and tendons attach, joint surfaces, conduits for vessels and nerves Bone Development Osteogenesis and Ossification Process of bone formation Bones can grow in thickness through life, ossification is for repair in adults Formation of the Bony Skeleton Intramembranous Ossification (fig ) Formation of bone from fibrous membrane or membrane bone Most of bones in skull and clavicles Mesenchymal cells produce fibers for initial support Four major steps Ossification center in fibrous connective tissue membrane Mesenchymal cells differentiate into Osteoblasts Bone matrix (Osteoid) is secreted w/in membrane Trapped Osteoblasts ( Osteocytes Woven bone and Periosteum form Random network formed by Osteoid being laid between blood vessels ( Trabeculae Vascularized mesenchyme condenses on external face of woven bone and becomes Periosteum Bone collar of compact bone forms & red marrow appears Trabeculae thickens forming woven bone collar, later replaced by mature lamellar bone Spongy bone consisting of Trabeculae grows internally & vascular tissue becomes red marrow Endochondral Ossification Formation of bone by replacing hyaline cartilage or cartilage bone All other bones (skull down) is via Endochondral ossification Primary ossification center – center of hyaline cartilage shaft Perichondrium becomes filled with blood vessels and it becomes vascularized Periosteum Mesenchymal cells specialized into Osteoblasts Five steps (fig ) Bone collar forms around diaphysis of hyaline cartilage Osteoblasts secrete Osteoid encasing model Cartilage in center of the diaphysis calcifies and cavitates Chondrocytes within the shaft enlarge and the cartilage matrix calcifies Chondrocytes die and leaves cavities Periosteal bud invades internal cavities forming spongy bone Bud contains nutrient artery and vein, lymphatics, nerve fibers, red marrow elements, Osteoblasts and Osteoclasts The Diaphysis elongates and a medullary cavity forms Primary ossification center enlarges, Osteoclasts break down spongy bone The epiphyses ossify – Only in epiphysis!!! Secondary ossification center – Reproduces the same as primary, but keeps spongy in interior & no medullary cavities Cartilage only in epiphyseal plates & articular cart. Postal Natal Bone Growth (fig ) Growth in Length of Long Bones Side of epiphyseal plate closet to the epiphysis is inactive Side closest to shaft is active Three zones of Growth Growth Zone – Cartilage cells undergo mitosis Transformation Zone – older cells enlarge (hypertrophy), matrix calcifies, cartilage dies, matrix deteriorating Osteogenic Zone – new bone forms, marrow elements from medullary cavity, spongy bone tips (spicules) are digested by Osteoclasts & long bone lengthens Only happens until epiphyseal plate closure (M-21; F- 18) Growth in Width (thickness) Bones thicken as they grow Less breaking down than building up, so bones are thick Hormonal Regulation of Bone Growth During Youth Growth Hormone produced from pituitary gland is most important for infancy and childhood growth Thyroid Hormone modulates the activity of growth hormone, ensuring skeleton has proper proportions Sex Hormones promote growth spurts at puberty and induce epiphyseal plate closure Bone Homeostasis: Remodeling and Repair Bone Remodeling Two main steps Bone Deposits When bone is injured or added bone strength is required Eating protein, vitamins C, D, A and minerals helps Osteoid stem – unmineralized band of gauzy-looking bone matrix; sites of new matrix deposit Calcification front – between old and new Calcium and phosphate help in calcification Alkaline phosphatase – enzyme shed by Osteoblasts that is essential for mineralization Packs of calcium and collagen fibers prevents cracks Bone Resorption Osteoclasts travel around creating Resorption bays Membrane surrounds cell that Secretes lysosomal enzyne to digest org. material Acids that convert calcium salts into soluble forms that pass easily into solution Also digests old Osteocytes and demineralized matrix Control of Remodeling Hormonal Mechanisms (fig ) Parathyroid hormone Released when blood levels of Ca+ decline Triggers Osteoclasts to break down calcium Calcitonin Secreted when blood calcium levels rise Inhibits bone Resorption & increases Ca+ salt deposit in bone matrix Response to Mechanical Stress (fig ) Repair of Fractures Different Fractures (breaks) Position of bone ends after fracture (diplaced/nondiplaced) Completeness of the break (complete/incomplete) Orientation of break to the long axis of the bone (linear/transverse) Bone penetrates the skin (open/compound or closed/simple) Reduction – realignment of broken bone ends Closed – bone ends are coaxed back into position Open – Surgically pinned or wired together Four Main Phases of Repair Process (fig ) Hematoma formation Hematoma – mass of clotted blood ( inflammation, pain Fibrocartilage callus formation Soft granulation tissue forms Capillaries grow and phagocytes clean up debris Fibrocartilaginous callus splits bone Bony callus formation (3-4 weeks later) New Trabeculae form ( bony callus (spongy/woven bone) Bone remodeling Removing of bony callus, reconstruct walls Homeostatic Imbalances of Bone Osteomalacia and Rickets Osteomalacia – “soft bones”; bones are inadequately mineralized Osteoid is produced, but calcium salts are not deposited, so bones soften and weaken Rickets (same as above, but in children) Can lead to deformations in skull, pelvis and rib cage Long bones end up large due to epiphyseal plates not calcifying Osteoporosis Group of diseases where reabsorption outpaces deposits Bone becomes more porous and lighter Affects spongy bone of spine the most & femur Vertebral fractures are common Hip fractures also common Causes Insufficient exercise Diet poor in calcium and protein Abnormal Vitamin D receptors Smoking – reduces estrogen levels Hormone-related conditions Treatments Calcium and vitamin D supplements Increased weight baring exercise Hormone replacement therapy Only slows process Preventable Calcium & Exercise Paget’s Disease Excessive bone formation and breakdown Paget’s bone --. Hastily made with a high ratio of woven bone to compact bone Weakens bone Study Questions Skeletal Cartilage Types and places you find it Types of Bones Tissue types: compact, spongy What are other names of these bone tissue types Gross Anatomy types: flat, long, short, irregular How do they differ structurally? Where do you find them? Microscopically: What are the parts of the osteon Follow how blood flows into the bone to learn the parts Chemically: What cells do you find and what are their jobs? What minerals do you find and what do they do? What happens if you break a bone? Or you are growing longer bones? What are the processes? Explain the diagram to someone How do we quantify bone breaks? Lab Hint: figs. 9.1, 9.2, 9.3, 9.4 Models: Osteon, cut bone The Skeleton The Axial Skeleton The Skull The Vertebral Column The Bony Thorax The Appendicular Skeleton The Pectoral Girdle The Upper Limb The Pelvic Girdle The Lower Limb AXIAL SKELETON (fig ) The Skull Overview of the Skull (fig ) Two Main Parts: cranium and facial bones Cranial Bones: protects the brain, place to attach muscles Facial Bones - form the framework of the face Contain cavities for the special sense organs of sight, taste and smell Provide openings for passage of air and food Secure the teeth Anchor the facial muscles of expression Most skull bones are flat (mandible) Interlocking joints called sutures - named after the after the bones they connect Cranium (fig ) Cranial vault (calvaria) – forms the superior, lateral and posterior aspects of the skull, as well as the forehead Cranial base (floor) – forms the skull’s inferior aspect Three steps of the floor (fossae) Anterior, middle and posterior cranial fossae Cranial Cavity – where the brain sits Smaller Cavities – Ear cavities – carved into lateral side of base Orbits – eyeballs Air-filled cavities – sinuses – lighten skull 85 openings (foramina, canals, fissures) – passageway for the spinal cord, blood vessels serving the brain & 12 cranial nerves Cranium – 8 bones Frontal Bone - anterior portion of the cranium –coronal sutures – parietal bones Supraorbitial margins – thickened margins (eyebrows) Orbits – eyesockets Anterior cranial fossa – supports the frontal lobes Supraorbital foramen (notch) – allows supraorbital artery and nerve to enter forehead Glabella – portion of frontal bone between orbits Frontal sinuses – lateral Parietal Bones and Major Sutures – Most of cranial vault Two large parietal bones – curved, rectangular bones Form the superior and lateral aspects of skull Four Largest Sutures Coronal sutures – parietal and frontal Sagittal sutures – right and left parietal bones at cranial midline Lambdoid sutures – parietal meets occipital bone posteriorly Squamous – parietal and temporal bone meet on the lateral aspect of skull Occipital Bone - most of the skull’s posterior wall and base Paired parietal & temporal bones via lambdoid and occipitomasoid sutures Joins the sphenoid bone in cranial floor via pharyngeal tubercle Posterior cranial fossa – occipital bone forms walls Foramen magnum – base of occipital bone brain connects w/ spinal cord Occipital condyles - lateral to the foramen, so you can nod your head Hypoglassal canal –hypoglossal nerve passes through External occipital protuberance – protrusion with ridges (external occipital crest and superior and inferior nuchal crest Ligamentum nuchae – ligament connects vertebrae of neck to skull at Nuchal lines anchor neck and back muscles Temporal Bones (2) Lie inferior to the parietal bones and meet them at the squamosal sutures Form the inferolateral aspects of the skull and parts of the cranial floor Four major regions Squamous – abuts the squamous suture Zygomatic process – barlike, meets the zygomatic bone Together, two bones form the zygomatic arch (cheek) Mandibular fossa – inferior surface of the zygomatic process receives the condyle of the mandible (lower jawbone) Forms Temporomandibular joint Tympanic (eardrum) Surrounds external auditory (acoustic) meatus (external ear canal) Styloid process – attachment point for several muscles of tongue and neck for a ligament that secures hyoid bone of neck to the skull Mastoid Anchoring site for some neck muscles Mastoid process - lump behind ear Stylomastoid foramen – between styloid & mastoid processes, allows cranial nerve VII to leave the skull Petrous Contributes to the cranial base between occipital bone and sphenoid bone Middle cranial fossa – sphenoid bone & petrous portions of the temporal bone which supports the brain Houses the middle and inner ear cavity Several foramina – penetrate the bone of petrous region Jugular foramen –junction of occipital & petrous temporal bones; passageway for internal jugular vein & 3 cranial nerves Carotid canal – just anterior to the jugular foramen, transmits internal carotoid artery into cranial cavity Arteries supply blood to 80% of cerebral hemisphere Foramen lacerum – opening between petrous temporal bone & sphenoid bone, almost all cartilage Internal Acoustic (auditory) meatus – cranial nerves VII & VIII Sphenoid Bone (fig ) Butterfly shaped, spans the width of middle cranial fossa Forms a central wedge that articulates with all other cranial bones Central body and 3 pairs of processes: greater wings, lesser wings & pterygoid Sphenoid sinuses – within body of sphenoid Sella turcica – saddle-shaped prominence Hypophyseal fossa – pituitary gland house (hypophysis) Tuberculum & dorsum sellae – terminates at posterior clinoid processes Greater wings form 3 parts middle cranial fossa dorsal walls of the orbits external wall of the skull – medial to the zygomatic arch Lesser wings – floor of anterior cranial fossa Anterior clinoid processes - anchor for the brain within the skull Pterygoid processes –projects inferiorly, anchor pterygoid muscles (for chewing) Optic canals – connected by chiasmatic groove, passage for optic nerves Superior orbital fissure – between greater and lesser wings, allows eye movements Foramen rotundum & foramen ovale – passage of nerve V Foramen spinosum – transmits middle meningeal arterty, goes to internal face of cranial bones Ethmoid Bone (fig ) Area between nasal cavity and orbits Cribriform plate – roof of the nasal cavities & floor of the anterior cranial fossa olfactory foramina – allow nerves to pass from receptors in cavities to brain Crista galli – triangular process Perpendicular plate – superior part of nasal septum, divides cavity into right and left Lateral mass with ethmoid sinuses – on each side of plate Superior & middle nasal conchae (turbinates) – protrude into nasal cavity Orbital plates – walls of orbits Sutural Bones Wormian bones – within sutures Facial Bones Mandible – U shaped bone, lower jaw Rami (branches) & chin Mandibular angle – ramus meets the body Mandibular notch – Separates 2 processes of ramus Coronoid process – insertion point for the large temporalis muscles Mandibular condyle – articulates with the mandibular fossa of temporal bone Mandibular body – anchors lower teeth Alveolar margin – superior border w/sockets where teeth are embedded Mandibular symphysis – midline depression, line of fusion Mandibular foramina – nerve passage, where dentists inject novacain Mental foramina – openings lateral for blood vessels and nerves to pass to skin Maxillary Bones (fig ) Form upper jaw and central portion of facial skeleton All bones articulate with maxillae (except mandible) Alveolar margins – carry upper teeth Palatine processes – two-thirds of hard palate, bony roof of the mouth Incisive fossa – passage of blood vessels Frontal processes - lateral aspects of the bridge of the nose Maxillary sinuses – largest paranasal sinuses Zygomatic processes – maxillae articulate with zygomatic bones here Inferior orbital fissure – junction of maxilla and sphenoid bone Infraorbital foramen – for intraorbital nerve and artery to reach face Zygomatic Bones Cheekbones Nasal Bones Fused medially, forming bridge of nose Inferiorly they attach to the cartilage that forms external nose Lacrimal Bones Contribute to the walls of each orbit Lacrimal fossa – houses the lacrimal sac, tear passage Palatine Bones Horizontal – posterior of hard palate Perpendicular – form part of posterolateral walls of nasal cavity & part of orbits 3 articular processes: pyramindal, sphenoidal, orbital Vomer Plow-shaped, lies in the nasal cavity, forms part of nasal septum Inferior Nasal Conchae Thin, curved bones in nasal cavity largest of the conchae, lateral walls of nasal cavity Special Characteristics of the Orbits and Nasal Cavity The Orbits – bony cavities that protect eyes, cushioned by fatty tissue Walls formed by: frontal, sphenoid, zygomatic, maxilla, palatine, lacrimal, ethmoid The Nasal Cavity Bone and hyaline cartilage Roof – of nasal cavity is formed by cribriform plate of the ethmoid Lateral walls – shape by superior and middle conchae of the ethmoid bone, perpendicular plates of the palatine bones and inferior nasal conchae Meatuses – depressions under cover of the conchae on the lateral walls Floor – formed by palatine processes of maxillae and palatine bones Nasal Septum - divides left and right parts of cavity Septal cartilage – completes septum anteriorly Nasal septum and conchae are covered with mucus-secreting mucosa Paranasal Sinuses 5 bones contain mucosa-lined air-filled sacs: frontal, sphenoid, ethmoid & paired maxillary Hyoid Bone Inferior of mandible in the anterior of neck Doesn’t articulate directly with any other bone Stylohyoid ligament – anchors hyoid to styloid processes of temporal bones Two parts: horns and the cornua The Vertebral Column General Characteristics Spine – 26 irregular bones, very flexible and curved From skull to pelvis, holds weight, protects the spinal cord 33 as infants – Sacrum and coccyx fuse Divisions and Curvatures Sinusoidal shape due to four curvatures 5 major divisions Cervical (concave) Curvature – top 7 Thoracic (convex) Curvature – 12 Lumbar (concave) Curvature – 5 Sacrum – 5 – articulates the hip bones Coccyx - 4 Ligaments – hold up the spine with trunk muscles Anterior and Posterior ligaments (fig )- prevent hyperextension and hyperflexion Intervertebral discs Cushionlike pad composed of 2 parts Nucleus pulposus – gives discs elasticity, Annulus fibrosus – Collar of collagan & Fibrocartilage around np General Structure of Vertebrae (fig 7.15) Body (centrum) at back (anterior), bears weight Vertebral arch – posteriorly 2 pedicles – sides of arch 2 laminae – top of arch Vertebral foramen – opening between two Vertebral canal –successive foramen Spinous process – median process at junction of 2 lamina Transerve process – junction of laminae and pedicle Superior & Inferior articular processes – superiorly and inferiorly from lamina-pedicle junction Intervertebral foramina – Pedicle nothes on superior and inferior borders for spinal nerves Regional Characteristics Types of movements between vertebrae Flexion and extension (anterior bending & posterior straightening) Lateral flexion (bending the upper body to right or left Rotation on one another along longitudinal axis Cervical Vertebrae (fig. 7.16) Features: Body is oval Spinous process is short (except c7), projects back, is split (bifid) Foramen is large and triangular Transverse process has transverse foramen to pass to brain Vertebra prominens – C7 unbifid spinous process, visible through skin Atlas (C1) – no body or spinous process Axis (C2) – Knoblike (dens) or odontoid process projecting superiorly Thoracic Vertebrae (fig ) Articulate the ribs, increase in size as you move down Features Body is heart shaped w/2 facets (demifacets) to receive ribheads Foramen is circular Spinous process is long and points sharply inferior Transverse process articulate with ribs at facets (not T11 & T12) Superior & inferior facets on frontal plane - prevents flexion/extension Lumbar Vertebrae (fig ) Small of the back Sturdier structure to bear weight Features Pedicles and laminae are shorter & thicker Spinous processes are short, flat & hatchet shaped for back muscle attachment Foramen is triangular Facet orientation differs to lock lumbar vertebrae together & provide stability by preventing rotation of lumbar spine (can still flex and extent) Sacrum (fig ) Posterior wall of the pelvis Superior articular process – articulates with L5 and Coccyx Auricular surfaces articulate 2 hip bones to form sacroiliac joints of pelvis Sacral promontory – anterosuperior margin of first sacral vertebra Transerve lines – site of fusion Ventral sacral foramina – transmit blood vessels and nerves Alae – winglike extenstion lateral to foramina Median sacral crest – fused spinous processes of sacral vertebrae Dorsal sacral foramina & lateral sacral crest – remnants of transverse process Sacral canal – vertebral canal continues inside sacrum Sacral hiatus – gap made by laminae of 5th failing to fuse medially Coccyx (tailbone) Babies can be born with a long one, but mainly a remnant of evolutionary past The Bony Thorax (fig ) – Thoracic cage Sternum Breastbone – fusion of 3 bones: manubrium, body and xiphoid process Manubrium – knot-shaped top section Clavicular notches – articulate with clavicle & first two ribs Body (midportion) – forms bulk of sternum, articulates with ribs 2-7 Xiphoid process – inferior end of sternum, attachment of some stomach muscles 3 anatomical landmarks Jugular (suprasternal notch) – central indention of manubrium, where left carotid artety levels aorta Sternal angle – horizontal ridge across front of sternum, allows hinge action for expansion in breathing Xiphisternal – sternal body and xiphoid process fuse Ribs (fig ) 12 pairs of ribs True or vertsbrosternal – 1-7 that attach to the sternum False ribs – other 5 Costal margin – formed by costal cartilages of ribs 7-10 Vertebral ribs (floating ribs) – 11 and 12 have no anterior attachment Rib structure Bowed flat bone Shaft – bulk Costal groove – sharp inferior border Head – lodges the intercostals nerves and blood vessels Tubercle – knoblike, articulates with transverse process of thoracic vertebrae APPENDICULAR SKELETON Pectoral (Shoulder) Girdle (fig ) Parts of the girdle: clavicle and scapulae Factors for mobility Clavicle attaches to axial skeleton, not scapulae, so arm can move across thorax Shoulder joint (scapula’s glenoid cavity) socket is shallow and poorly reinforced Clavicles – collarbones Sternal end – cone shaped medial part, attaches to sternal manubrium Acromial end – flattened, articulates with scapula Medial 2/3 – convex Lateral third is concave Superior surface is smooth, inferior is grooved and ridged Jobs: Holds arms, anchors many muscles Transmits compression forces from upper limbs to axial skeleton Scapulae – shoulder blades Thin, triangular flat bones Dorsal to rib cage between ribs 2 and 7 Three borders: Superior border – shortest, sharpest border Medial border (vertebral) – parallels vertebral column Lateral (axillary) border – abuts armpits, ends superiorly in glenoid cavity Three corners: Superior, Lateral & Inferior angle Spine – posterior surface feature, can feel through skin Acromion – point of the shoulder Acromioclavilcular joint – articulates with the acromial end of clavicle Coracoid process Beaklike process, helps anchor bicep muscles in arm Suprascapular notch – nerve passage Infraspinous and supraspinous fossae – inferior and superior to the spine Subscapular fossa – entire anterior surface of scapula Upper Limb Arm (fig ) Humerus – sole bone of arm Articulates with shoulder and at elbow (radius and ulna) Head – proximal end fits into glenoid cavity Anatomical neck – inferior to head Greater & lesser tubercle – protrusions on head of humerus, bicep attachment Intertubercular groove – separates two tubercles, guides biceps Surgical neck – distal to tubercles Deltoid tuberosity – roughened deltoid attachment site Radial groove – course of radial nerve Trochlea – distal end, 2 condyles Attachment site for ulna and radius Capitulum – ball like ends Medial and Lateral epicondyles – muscle attachment sites Supracondylar ridges Coronoid fossa- anterior surface Olecranon fossa – posterior surface, allow elbow to move freely Radial fossa - lateral to coronoid fossa, head fits here when elbow is flexed Forearm (antebrachium) Main Features of Radius and Ulna Proximal ends articulate with humerus Distal ends articulate with wrist bones Radioulnar joints – articulate two together Interosseous membrane – connects them Ulna (fig ) Two main processes: Olecranon & Coronoid process Separated by trochlear notch Grip trochlae of humerus to form a hinge joint locking – forearm fully extended, olecranon process fits into olecranon fossa Radial notch – where ulna articulates with head of the radius Head – distal end of shaft Styloid process – medial to head, ligament from wrist runs through Fibrocartilage discs separate lunar head from wrist Radius – Head is shaped like a nail head Superior surface is concave and articulates with capitulum of humerus Articulates with radial notch of luna medially, which anchors biceps Ulnar notch – articulates with the luna and lateral styloid process Major forearm bone that contributes to the wrist Hand (fig ) Carpus (wrist) – 8 carpal bones 2 irregular rows of four bones each Proximal row: scaphoid, lunate, triquetral, pisiform Only scaphoid and lunate articulate with wrist Distal row: trapezium, trapezoid, capitate, hamate Metacarpus (palm) – 5 numbered bones; knuckles Bases – articulate with carpals proximally, each other medially/laterally Heads – articulate proximal phalanges of fingers Phalanges (fingers, digits) – numbered 1 – 5 also (thumb first) Pollex – thumb, numbered 1, no middle phalanx 14 phalanges in each hand: 3 on each finger: distal, middle and proximal Pelvic (Hip) Girdle (fig ) Main Features Attaches lower limbs to axial skeleton Transmits weight of upper body to the lower limbs Supports visceral organs of pelvis Girdle: pair of hip bones (os coxae or coxal hip bone) Bony Pelvis : hip bones, sacrum and coccyx Acetbulum – socket at point of fusion of ilium, ishium & pubis, receives the femur Ilium – large flaring bone, superior region of coxal bone Body Ala – winged region Iliac crests – margins of alae Tubercle of the iliac crest – thickest part Anterior superior (blunt) & posterior superior (sharp) iliac spine – ends of crest All points of attachment for muscles, trunk, hip, thigh Greater sciatic notch – sciatic nerve passes through thigh Gluteal surface – posterolateral surface of ilium 3 ridges: posterior, anterior and inferior gluteal lines (gluteal muscles attachement) Iliac fossa – internal surface concavity Auricular surface – articulates with sacrum (sacroiliac joint) Arcuate line – defines pelvic brim of true pelvis Ischium Forms posteroinferior part of hip bone Body - adjoins ilium Ramus - inferior branch joins pubis Three major markings Ischial spine – point of attachment of sacrospinous ligament from sacrum Lesser sciatic notch – nerves & blood vessel passage to anogenital area Ishcial tuberosity – strongest part of hip bone sacrotuberous ligament – holds pelvis together Pubus V shaped: inferior and superior rami from flattened medial body Pubic crest – anterior border Pubic tubercle – attachment site for inguinal ligament Obturator foramen – blood vessels and nerve passage, full of fibrous membrane Pubic symphysis – fibrocartilage disc that joins 2 pubic bones Pubic arch – V – shaped arch caused by angle of inferior pubic rami and joint Pelvic Structure and Childbearing Pelvic brim – oval ridge that runs from pubic crest through acruate line and sacral promontory False pelvis – Superior to pelvic brim, bound by alae of ilia laterally & lumbar vert. posteriorly True Pelvis – region inferior of pelvic brim, all bone, can restrict child birth Pelvic inlet (same as pelvic brim) – Must be wide enough for childbirth Sacral promontory can impair entrance for child into true pelvis Pelvic outlet – inferior margin of true pelvis Bound by pubic arch , ichia and sacrum & coccyx Lower Limb (fig ) Thigh (femur) – largest, longest, most durable Articulates with hip proximally, closer to center of gravity for balance Head has fovea capitis = ligamentum teres runs from pit to the acetabulum, secure femur Neck is very fragile, breaks often (broken hip is really femur) Greater and lesser trochanter – junction of neck and shaft Intertrochanteric line & interotrochanteric crest – connect 2 trochanters Gluteal tuberosity inferior to interotrochanteric crest and blends with linea aspera Supraconylar lines – linea diverges distally into these lines Lateral and medial condyles – articulate with tibia Medial and lateral epicondyles – sites of muscle attachment Adductor tubercle – bump on superior part of medial epicondyle Patellar surface – articulates with patella (kneecap) Intercondylar notch – U-shaped on posterior aspect of femur Patella – triangular sesamoid bone enclosed by tendons that secure to thigh muscles Leg Tibia and Fibia connected by interosseous membrane Tibiofibular joints don’t allow for movement like radius & ulna Tibia – receives weight from femur and transmits to foot Lateral and medial condyles – proximal end Intercondylar eminence – irregular projection separating them Articulate with corresponding condyles of the femur Proximal tibiofibular joint – inferior region lateral to condyle Tibial tuberosity – where patellar ligaments attach Anterior crest – anterior border Crest nor medial surface have muscles, so you can feel them Medial malleolus – bulge of ankle Fibular notch – lateral surface of tibia, part of distal tibiofibular joint Fibula Sticklike bone, articulates with tibia Head – proximal end Lateral malleolus – distal end, lateral ankle bulge Foot (fig ) Functions: Carry weight of body & acts as lever for movement Tarsus – 7 bones, posterior of foot Talus – articulates with tibia and fibula superiorly Calcaneus – heel of foot and carries talus superiorly Achilles (calcaneal) tendon – attaches to calcaneus Tubercalcanei – part that touches the ground Sustentactalus tali – part that supports the talus Cuboid, Navicular & Medial, Intermediate and lateral cuneiform bones Cuboid and cuneiform bones articulate with metatarsals Metatarus – 5 long bones Numbered 1-5 starting from big toe (hallux) First metatarsals are shorter and thicker to support weight Phalanges (toes) – 14 bones, 3 in each except hallux Arches of the Foot (fig ) – stretch for energy efficiency in movement 3 arches: 2 longitudinal arches (medial & lateral), 1 transverse Medial longitudinal: calcaneus ( 5th metatarsal Lateral long: just for weight redistribution Transerve: runs obliquely from one side to the other Developmental Aspects Membrane bones ossify 2nd month of development Fontanels – remnants of fibrous membrane that connect skull of baby So head can compress during birth Changes of distribution through life (fig ) Primary curvatures – only thoracic and sacral at birth Secondary curvatures – cervical and lumbar happen in adulthood Scoliosis and Lordosis – happen with rapid growth of muscles Study Questions Prioritize!!! Prioritize!!! Prioritize!!! Learn the major (large) bones for each first, walk your way through the body – skeleton Learn the generalities about the fossae, foramen, processes, etc. ( what’s there main jobs If you can’t remember all the little bones, at least remember how many when you get to that part (i.e. hands, feet, etc) What articulates with what? Use the terminology you know to learn how it all fits together Breakdown of Skeleton Axial Skull: Start with major bones of cranium and facial bones, then move on to the markings Vertebral Column: Curvatures, structure of the vertebrae (axis & atlas) Thorax: Scapula, clavicle, sternum, ribs Appendicular Upper Limbs: Use proximal and distal to walk through arm to major bone groups of the hand How do they articulate? Pelvis: Lower Limbs: Use proximal and distal to walk through leg to major bone groups of the foot How do they articulate? How do these articulations differ from that of the arm? Lab Hints: all of ‘em Models: Skeletons, pelvis, vertebral column, skulls, knee joints, shoulder joints Joints Classifications Fibrous Joints Cartilaginous Joints Synovial Joints Imbalances Classification of Joints Functional Synarthroses – immovable joints Amphiarthroses – slightly movable joints Diarthroes – freely movable joints Structural (Table ) Fibrous - immovable Cartilaginous – rigid and slightly movable Synovial – freely movable joints Fibrous Joints (fig ) Characteristics Amount of movement depends on amount of connective tissue No joint cavity Sutures Only occur between bones of the skull Minimal amount of connective tissue that is continuous with the periosteum Synostoses – at middle age, fibrous tissue ossifies and skull is fused Syndesmoses Connected by a ligament – a cord or band of connective tissue Amount of movement depends on length of connecting fibers Synarthrosis – no movement, although there is some “give” Gomphoses Peg-in-socket joint Tooth in bony alveolar socket Peridontal ligament – fibrous connective tissue Cartilaginous Joints (fig ) Characteristics Bones and cartilage unite No joint cavity Synchondroses - bar of plate of hyaline cartilage unites the bones All are synarthrotic Symphyses - articular surfaces with articular hyaline cartilage fused to pad, or plate, of Fibrocartilage Shock absorber Intervertebral joints and pelvis Synovial Joints General Structures (fig ) Articular cartilage covers the opposing bone surfaces to absorb compression on joint Joint (Synovial cavity) – space with small amount of synovial fluid Articular capsule – two layered capsule that encloses the joint cavity External fibrous capsule – dense irregular connective tissue Continuous with periostea of articulating bones Synovial membrane – loose connective tissue All internal joint surfaces that are not hyaline Synovial fluid- derived from blood filtration Hyaluronic acid makes it white and goopy Weeping lubrication – lubricates free surfaces of cartilage & nourishes cells Reinforcing ligaments – thickened parts of the fibrous capsule Very innervated Structural features specific to joint Hip & knee: fatty pads between fibrous capsule and synovial membrane or bone Articular discs (menisci) – discs or wedges of fibrocartilage separate articular surface Bursae and Tendon Sheaths (fig ) Work as “ball bearings” to reduce friction between adjacent structures during joint activity Bursae – flattened fibrous sacs lined with synovial membrane and containing synovial fluid Common where ligaments, muscles, skin, tendons or bones rub together Bunion – enlarged bursa at base of big toe Tendon sheath - elongated bursa that wraps completely around tendon subjected to friction Three Factors Influencing Stability Articular Surfaces Movement is determined by shape of articular joint Shallow socket ( less movement Ligaments More ligaments the joint has, the stronger it is If other stabilizing factors are inadequate, the ligaments stretch until it snaps Muscle Tone Muscle tendons are the most important stabilizing factor Keeps tendons taught Especially important for shoulder and knee joints and the arches of feet Movements Allowed by Synovial Joints Muscle placement Origin – attachment at immovable (less movable) bone Insertion – attachment at movable bone Directional term relative to axes around which body part moves (sagittal, front, transverse) Range of motion Nonaxial – slipping movement, no axis for movement Uniaxial – movement in one plane Biaxial – movement in two planes Mulitaxial – movement around all three axes Three General Types Gliding Movements (Translation; fig ) Simplest joint movement One flat bone surface glades over another Intercarpal and intertarsal joints and flat articular processes of vertebrae Angular Movements Increase or decrease angle between two bones Flexion Bending movement that decreases the angle of the joint Extension Increases the angle between the articulating bones Hyperextension – bending head back past straight position Movements of the foot at the ankle joint Dorsiflexion - lifting foot toward shin Planar Flexion - pointing the toe Abduction Moving limb away from the midline or median plane along the frontal plane Arm moving laterally, toes spreading apart Adduction Moving toward the midline Circumduction Moving limb in a circle (makes a cone) Flexion, extension and adduction ( ball and socket joints Rotation Turning the bone around its long axis Only movement allowed between the first 2 cervical vertebrae Can be medial rotation or lateral rotation based on direction Special Movements Supination – turning radius backward around ulna Pronation – turning radius forward around ulna Inversion - sole of the foot turns medially Eversion - sole faces laterally Protraction – when you move your jaw out Retraction – when you move your jaw in Elevation – Lifting the body superiorly Depression – Moving elevated part inferiorly Opposition – When you touch your thumb to the tips of your fingers Types of Synovial Joints (fig ) Plane Joints – Articular surfaces are essentially flat Hinge Joints Pivot Joints Condyloid Joints Saddle Joints Ball-and-Socket Joints Selected Synovial Joints Shoulder (Glenohumeral) Joints Hip (Coxal) Joint Elbow Joints Knee Homeostatic Imbalances Common Joint Injuries Sprains Cartilage Injuries Dislocations Inflammatory and Degenerative Conditions Bursitis and Tendonitis Arthritis Osteoarthritis Rheumatoid Arthritis Goudy Arthritis Study Questions Movement capabilities of each Anatomical characteristics Subgroups of the main joints (esp. Synovial) Movement: Rotation, Flexion, Extension, Inversion Homeostatic imbalances: Autoimmune disorders, types of arthritis, etc Lab Diagrams: 13.1, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8 Models: Knee and Shoulder Muscles I Overview of Muscle Tissues II Skeletal Muscle III Smooth Muscle Overview of Muscle Tissues Muscle Types (Table ) Three Types of Muscle Tissue Differences: structure, location in body, function & means by which they contract Similarities Skeletal & smooth muscles cells are elongated muscle fibers Muscle contraction depends on 2 myofilaments Actin and myosin containing microfilaments Terminology: Myo, mys and sarco = muscle Sarcolemma – plasma membrane muscle fiber Sarcoplasm – muscle fiber cytoplasm Skeletal Attach to bony skeleton, striations, can be controlled by voluntary muscles Contracts rapidly and tires easily (rests) Can control the amount of pressure Cardiac Only in the heart, bulk of heart walls Striated but not voluntary Smooth Walls of hollow visceral organs (stomach, urinary bladder, respiratory passageways Forces fluid through the channels of body No striations, no voluntary controls Contractions are slow and sustained Four Muscle Functions Producing Movement All movements are due to muscle Skeletal – locomotion & manipulation Cardiac - moves through body from the heart Smooth – squeezes things through systems Maintaining Posture: constantly working to maintain Stabilizing Joints Generating Heat: skeletal muscles (40% body mass) produces heat Functional Characteristics of Muscle Excitability (irritability): ability to receive and respond to a stimulus Stimulus – an environmental change Usually chemical signal (neurotransmitter, hormone, change pH) Generation of an electrical impulse that passes along the sarcolemma & causes the muscle to contract Contractility: ability to shorten forcibly when adequately stimulated Extensibility: ability to be stretched or extended (can shorten and stretch) Elasticity: ability to recoil and resume length Skeletal Muscle Gross Anatomy of a Skeletal Muscle (fig ) Skeletal muscle is a discrete organs, made up of several kinds tissues Held Together by Layers of Connective Tissue Wrappings Epimysium – dense irregular connective tissue surrounding muscle Can blend with deep fascia of other muscles Fascicles – muscles are grouped into bundles Perimysium - fibrous connective tissue that surrounds fascicles Endomysium – within fascicle, surrounds each fiber by a sheath of connective tissue Mainly reticular fibers Nerve & Blood Supply Each muscle has one nerve, an artery and 1+ veins All enter or exit near central part of the muscle & branch through connective tissue Skeletal muscle has a nerve ending that controls activity Lots of oxygen needs = lots of metabolic waste Attachments Insertion moves toward origin what muscle contracts Attachments can be Direct (fleshy attachments) – epimysium of the muscle is fused to the periosteum of a bone or perichondrium of a cartilage Indirect attachments – muscle’s connective tissue wrappings extend beyond the muscle as a ropelike tendon or sheet like aponeurosis Tendon or aponeurosis anchors muscle to connective tissue covering of a bone or cartilage or to fascia of other muscles More common due to durability & small size Microscopic Anatomy of Skeletal Muscle Fiber Skeletal muscle fiber - long cylindrical cell with multiple oval nuclei under sarcolemma Muscle fiber is a syncytium produced by the fusion of hundreds of embryonic cells Sarcoplasm – similar to cytoplasm with large amounts of glycosomes (stores glycogen) & myoglobin (oxygen-binding protein; red color) T tubules – modification of muscle fiber Myofibrils Myofibers – rod like fibers that run the length of the cell Striations, Sarcomeres and Myofilaments (fig ) Striations – repeating dark A bands and light I bands A band H (helle – bright) zone – midsection M line – bisects H zone, dark lines I band Z discs – midline interruption Composed of connectins (proteins) Sarcomere – region of myofibril btwn 2 successive Z discs Smallest contractile unit of muscle fiber Functional unit of skeletal muscle Myofibrils are chains of sacromeres Banding pattern – 2 types of even smaller structures called filaments (myofilaments) within the sarcomere Thick filament – extends the length of the A band Thin filament – extends across the I band & partway into the A band Anchors thin filaments & connects each myofibrils to next H zone of A band appears less dense because the thin filaments do not overlap thick ones M line in center of H zone is darker because of desmin (fine protein) strands that hold adjacent thick filaments together Elastic filament – 3rd type (latter) Ultrastructure and Molecular Composition of the Myofilaments (fig ) Thick filaments – mainly of myosin Rod like tail and 2 globular heads Tail - two interwoven heavy polypeptide chains Heads – heavy chains, attached to 2 smaller polypeptide chains Called cross bridges – link thin & thick during contractions Myosin molecules are bundled together with their tails forming central part of filament & their heads in opposite direction Heads contain: Actin-binding sites ATP binding sites ATPase enzymes that split ATP to generate to generate energy muscle contraction Thin filaments – mainly of actin Globular actin (G actin) – polypeptide subunits of actin Active sites to which myosin cross bridges attach during contraction Become long actin filaments Tropomyosin – two strands spiral around actin core & help stiffen it Relaxed muscle prevents active sites from binding Troponin – three-polypeptide protein complex TnI – inhibitory subunit that binds actin TnT – binds to tropomyosin & helps position it on actin TnC – binds calcium ions Elastic filaments – Titin – giant protein that extends from Z disc to thick filament and attaches to M line Two functions Hold thick filament in place in sarcomere Part of titin in I zone extends, unfolds when the muscle is stretched & recoils when released Sarcoplasmic Reticulum and T tubules (fig ) Intracellular tubules in involved in contractions SR: elaborate smooth endoplasmic reticulum Interconnecting tubules surround each myofibril (sleeve) Most run longitudinally Terminal Cisternae – perpendicular cross channels in pairs Major role: regulates intracellular levels of ionic calcium – stores & releases it on demand when muscle fiber contracts Calcium = go signal Transverse (T) tubules Sarcolemma of cell at A-I junction penetrates cell interior formingtube Runs in-between terminal cisternae Pass from one myofibril to the next Contraction is nerve-initiated impulses that travel along sarcolemma Triad Relationship T tubule and 2 t.c. provide signals for contraction at triads Protruding integral proteins of T tubule act as sensor & SR protruding integral proteins act as receptors Regulates Ca2+ from SR Cisternae Contraction of a Skeletal Muscle Fiber Contraction – activation of myosin’s cross bridges (force-generating sites) Relaxation – end of contraction, cross bridges become inactive & tension generated decline Sliding Filament Mechanism of Contraction Theory of contraction - during contraction thin filaments slide past thick ones so actin and myosin filaments overlap to a greater degree Summary action Nerve stimulation = cross bridges latch to myosin sites on actin in thin filament (sliding starts: detach & attach Thin slide centrally, Z discs pulled toward thick Distance between Z discs is reduced I bands shorten, H zones disappear A bands move closer together w/o changes in length Steps in cross bridge attachment (requires calcium; fig ) Nerve impulse leads to contraction Increase in Ca2+ in muscle Low intracellular Ca2+ – muscle relaxed – active sites on actin blocked by tropomyosin Higher calcium – binds to regulatory sites on troponin changing shape Moves tropomyosin into groove of helix and away from myosin After binding sites on actin are exposed (fig ) Cross bridge attachment – myosin & actin attached Working (power) stroke – myosin head pivots & bends, slides toward M line ADP & phosphate from last contraction released Cross bridge detachment due to binding of new ATP ATP hydrolysis ( ADP + P leads to “cocking” of myosin head Regulation of Contraction Action potential along sarcolemma leads to skeletal contraction Excitation-contraction coupling Events linking electrical signal to contraction Neuromuscular Junction & Nerve Stimulus (fig ) Skeletal muscles are stimulated by motor neurons of somatic system Neuromuscular junction – where axonal ending & muscle fiber Synaptic cleft - space between Synaptic vesicles – membranous sacs acetylcholine ACh (neurotransmitter) Motor end plate – junctional folds of sarcolemma Voltage gets to the end of axon, starts letting Ca2+ into motor neuron Generation of an Action Potential Across the Sarcolemma Resting sarcolemma is polarized (inside -/membrane +) Binding of ACh molecules to ACh receptors on sarcolemma opens chemically regulated Na+ channels in ACh receptors Depolarization - changes membrane potential (voltage) Action Potential moves in all directions from junction 3 Steps in Action Potential (fig ) Membrane depolarized and action potential generated Na+ moves into the cell Propagation of AP Opens sodium channels (electrochemical gradient) Repolarization (refractory period) Na+ channels close, K+ channels open moving K+ out Can’t be stimulated until repolarization is over Only restores electric conditions of rest Na/K pump restores ionic balance Destruction of Acetylcholine Acetylcholinesterase (AChE) – an enzyme located on the sarcolemma at neuromuscular junction & in synaptic cleft Breaks down ACh after in binds to receptor Prevents continual contraction Excitation-Contraction Coupling Latent period – AP initiation to beginning of mechanical activity Steps (fig ) AP propagates along sarcolemma & down T tubules AP triggers release of Ca2+ from terminal cisternae of SR into sarcoplasm, now it’s available for myofilaments Protein particles on sensitive to voltage & change shape Also changes shape in SR foot to release Ca2+ Ca2+ ions bind to troponin & removing tropomyosin blockage Contraction: myosin bridges attach and pull thin filaments to center Removal of Ca by active transport into SR after AP ATP-dependant Ca2+ pump ( Ca2+ into SR tubules Tropomyosin blockage restored ( relaxation Summary of Roles of Ionic Calcium in Contraction Ca2+ has to stay low so it doesn’t combine with phosphate and form crystals Calcium’s regulatory proteins Calsequestrin – in SR cisterna, binds Ca2+ Calmodulin – releases it to provide metabolic signal Contraction of a Skeletal Muscle Principles of contraction are similar Force Tension - force extending on an object by a contracting muscle Load – opposing force exerted on muscle by weight of object to be moved If contracting muscle doesn’t move load (shorten) Isometric – tension develops with but the load is not moved Measurements of increasing muscle tension Isotonic – tension developed overcomes load and muscle shortening occurs Amount of shortening Motor unit – nerve-muscle functional unit, Skeletal muscle contracts with varying force & for different periods of time Motor Unit Unit including the motor neuron and all the muscle fibers it supplies Small muscles have small muscle fibers, and vice versa Fibers are spread throughout muscle so whole muscle contracts Muscle Twitch and Development of Muscle Tension (fig 9.12) Myogram – a graphic recording of mechanical contractile activity Muscle twitch – response to a single brief threshold stimulus Short “jerky” motion 3 Phases of twitch Latent period – first few milliseconds following stimulation Muscle tension is beginning to increase Period of contraction – when cross-bridges are active, If tension is enough, muscle will shorten Period of relaxation – initiated by reentry of Ca2+ into SR Tension decreases to zero & tracing returns to baseline Muscle will return to regular length Graded Muscle Responses– variations in degree of muscle contraction Graded in 2 ways By changing the frequency (speed) of stimulation By changing the strength of stimulus Response to Frequency of Stimulation Wave Summation & Tetanus Wave (temporal summation) – if identical stimuli are delivered to muscle in rapid succession, the second twitch is stronger Refractory period has to happen (depolarize), but can be shorter Unfused (incomplete tetanus) – Sustained but quivering contraction due to shorter relaxation & higher conc. of Ca2+ Fused (complete tetanus) – evidence of relaxation disappears & contractions fuse into a smooth, sustained contraction Muscle fatigue (prolonged tetanus) – muscle cannot contract & tension drops to zero, inability to produce enough ATP to contract Muscle Response to Stronger Stimuli: Multiple Motor Unit Summation Multiple motor unit summation (recruitment) – controls force of contraction Threshold stimulus – first observable muscle contraction Maximal stimulus – strongest stimulus produces increased contractile force Point at which all motor units are recruited Smaller motor units for smaller movement Treppe: Staircase Effect Contractions may be half as strong as those that happen later Reflects increasing availability of Ca2+ in sarcoplasm that expose more active sites on actin filaments for cross bridge attachment Why you should warm up when exercising Muscle Tone Relaxed muscles that are almost always in a slightly contracted state Helps keep muscles firm and ready to respond Skeletal muscle helps joint stability and maintain posture Isotonic and Isometric Contractions (fig ) Isotonic contractions – muscle changes in length and moves load Two types Concentric – muscle shortens & does work Eccentric – muscle lengths, important for coordination and purposeful movements More forceful Isometric contractions – neither shortens or lengthens Occur when muscle attempts to move a load that is greater than the force (tension) the muscle is able to develop Knee bend example Knee flex (eccentric) Hold position (isometric) Knee extend (isometric, then concentric) Electrochemical and mechanical events occurring within a muscle are identical in both isometric and isotonic contractions Result varies Isotonic – thin filaments are sliding Isometric – cross bridges are generating force but are not moving Muscle Metabolism Providing Energy for Contraction (fig ) Stored ATP ATP provides energy for: Cross bridge movement & detachment Operation of calcium pump ATP is regenerated after hydrolysis into ADP + P quickly 3 Pathways for regeneration as follows….. Direct Phosphorylation of ADP by Creatine Phosphate Creatine Phosphate (CP) – high energy molecule stored in muscles CP + ADP = ATP + creatine Muscle stores a lot of CP and creatine kinase (catalyst) Anaerobic Glycolysis and Lactic Acids Formation Glycolysis first phase of glucose respiration Doesn’t use oxygen, therefore anaerobic Glucose is broken into 2 pyruvic acid molecules to form ATP Aerobic Respiration Normally – pyruvic acid enters mitochondria & reacts with oxygen to produce more ATP in aerobic respiration Muscles bulge, prevent blood flow and pyruvic acid becomes lactic acid (anaerobic glycolysis) Lactic acid can go to liver, heart or kidney to be use later Produces less ATP (5%), but faster (2.5x) than aerobic Good for spurts of activity Aerobic Respiration Source of most of ATP (95%) Aerobic respiration in mitochondria (36 ATPs) Glucose + oxygen ( carbon dioxide + water Energy Systems Used During Sports Activities Aerobic endurance – length of time a muscle can continue to contract using aerobic pathways Anaerobic threshold – point at which metabolism converts to anaerobic Muscle Fatigue Muscle stores glucose to relieve need for blood supplied glucose Muscle fatigue – physiological inability to contract even though the muscle is still receiving stimuli (limited oxygen & low ATP production) Contractures (no ATP, not low ATP) – states of continuous contraction, result because the cross bridges are unable to detach Muscle cramping Other imbalances that lead to muscle fatigue High lactic acid & other ionic imbalances Drops in pH – makes anaerobic ATP production less useful Fatigued muscles lose more K+ & can’t regain balance of Na/K pump Alters E-C coupling (happens fast, recovers fast) Low-intensity long duration use may take longer to recover Oxygen Debt For muscle to return to resting state after vigorous exercise: Oxygen reserve must be replenished Accumulated lactic acid must be reconverted to pyruvic acid Glycogen stores must be replaced must be resynthesized Liver must convert any lactic acid persisting in blood to glucose or glycogen Oxygen Debt – extra amount of oxygen that the body must take in for these restorative processes Amount of oxygen needed for aerobic muscle activity & amount actually used All nonaerobic sources of ATP used during muscle activity contribute to debt More exercise to which a person is accustomed, the higher the oxygen delivery during exercise & the lower the debt incurred Heat Production During Muscle Activity 40% of energy released during muscle contraction is converted to useful work, the rest is given off as heat Shivering – when muscle contractions are used to produce more heat Force of Contraction is Affected by Number of Muscle Fibers Stimulated More motor units = greater the force Size of Muscle Stimulated Bulkier muscle (greater cross sectional area) = more tension can develop Large fibers can produce most powerful movements Regular exercise increases muscle force by causing muscle cells to hypertrophy (increase in size) Frequency of Stimulation More rapidly a muscle is stimulated – the greater the force it exerts Steps Internal tension – force generated by cross-bridges (myofibrils) External tension – muscle is taut and transfers tension to load (muscle insertion) Contraction ends, recoil to return the muscle to resting length Internal tension is already declining while time is taken to take up slack and stretch the series elastic components In brief twitch contractions, external tension is always less than the internal tension Rapid stimulation of muscle contractions are summed up, becoming stronger and more vigorous and ultimately producing tetanus More time is available to stretch elastic components and external tension approaches internal tension during tetanus Degree of Muscle Stretch Optimal resting length for muscle fibers is length at which they can generate maximum force Length-tension relationship – occurs when a muscle is slightly stretched & thin and thick filaments don’t overlap Permits sliding along entire length of thin filaments If stretched to extent that don’t overlap, cross bridges can’t attach If sarcomeres cramped, Z discs abut thick myofilaments (interferes) Velocity and Duration of Contraction Two Functional Characteristics that help explain muscle fiber type Speed of contraction Slow-fibers & fast-fibers ( based on speed of shortening and contracting ( reflects how fast myosin ATPases spilt ATP Major pathways for forming ATP Oxidative fibers – cells that rely mostly on oxygen-using aerobic pathway Glycolytic fibers – rely on anaerobic glycolysis Classify Skeletal Muscle Fiber Types (fig ) Slow Oxidative Fibers Contracts relatively slowly because myosin ATPases are slow Depends on oxygen delivery and aerobic mechanisms (high oxidative capacity – a criterion) Fatigue resistant and has high endurance Is thin (amount of cytoplasm slows diffusion of O2 & nutrients from blood) Relatively little power (limited myofibrils) Rich capillary supply (better to deliver blood borne O2 Red (abundance myoglobin – oxygen-binding pigment that stores O2 in cell and aids diffusion of O2 through cell) Fast Oxidative Fibers Fast Glycolytic Fibers Load (fig ) Recruitment Effect of Exercise of Muscles Adaptations of Exercise Aerobic (endurance) exercise leads to Increase in number of capillaries surrounding the muscle fibers, as well as mitochondria and fibers synthesize more myoglobin Most dramatic in slow oxidative fibers (aerobic pathways) Results in More efficient muscle metabolism & in greater endurance, strength & resistance to fatigue Increase in overall metabolism & neuromuscular coordination more efficient , improves gastrointestinal mobility (and elimination) Enhances strength of the skeleton Promotes changes in cardiovascular & respiratory system increasing oxygen intake Heart hypertrophies & greater stroke volume Fatty deposits from blood vessels & gas exchange becomes more efficient Resistance exercise Strength not stamina, causes high muscle hypertrophy Cells have more mitochondria, myofilaments & myofibrils More glycogen stores Amount of connective tissue between cells increases Increases in muscle strength and size Cross-training - Alternating aerobic and anaerobic to balance Smooth Muscle Walls of all hollow organs (except heart) Arrangement and Microscopic Structure of Smooth Muscle Fibers (fig. ) Spindle-shaped with one nucleus, no coarser connective tissue sheaths Fine connective tissue (Endomysium - secreted by muscle) in-between fibers Organized into sheets of closely apposed fibers Occur in walls of blood vessels (not small capillaries) & hollow organs Two layers Longitudinal – runs parallel to long axis, can shorten Circular – circumference of organ, constricts lumen, elongates Contraction of each ( peristalsis Varicosities – swellings, part of autonomic nervous system Release neurotransmitter into synaptic cleft (diffuse junction) SR is less developed and lacks pattern, no T tubules Caveoli – pouch like infoldings of plasma membrane that can hold high concentrations of Ca2+, Influx of Ca2+ happens rapidly No striations, no sarcomeres Do have interdigitating thick and thin filaments Thick are longer in smooth muscle Proportion of Myofilaments Ratio of thick to thin is lower Thick filaments have actin-grapping heads along entire length Thin has Tropomyosin but not troponin complex Filaments spiral down long axis of muscle fiber Have intermediate bundles (noncontractile) that resist tension which attach to dense bodies (dark-staining) who are tethered to the sarcolemma (dense are like Z discs) Dense bodies bind muscles to connective tissue fibers outside cell too Contraction of Smooth Muscle Mechanisms and Characteristics of Contraction Smooth muscles exhibit slow, synchronized contractions – whole sheet responds to a stimulus in unison Cells are connected by gap junctions where as skeletal muscles are isolated from one another Pace-maker cells can be self-excitable and/or modified by neural or chemical stimuli Similarities with skeletal muscle contractions Actin and myosin interact by the sliding filament mechanism Final trigger for contraction is rise in intracellular calcium ions Sliding process is energized by ATP Ca2+ is trigger in all types, here Ca2+ interacts w/regulatory molecules (calmodulin – Ca2+ binding protein & myosin light chain kinase) Both are part of thick filament and active myosin Thin filament sequence Ionic calcium binds to calmodulin, activating it Activated calmodulin activates the kinase enzyme Activated kinase catalyzes transfer of P (ATP) to cross bridge Phosphorylated cross bridge interacts w/actin of thin filaments Ca2+ drops and muscle is relaxed 30 times longer to contract and relax than skeletal muscle Regulation of Contraction Neural Regulation Not all neural signals result in an AP, some respond with graded potentials (local electrical signals) Not all smooth muscle activation results from neural signals Different autonomic nerves serving smooth muscle of visceral organs release different neurotransmitters that can excite or inhibit different cells Local Factors Some cells have no nerve supply, they depolarize spontaneously or in response to chemical stimuli Ex: hormones, lack of oxygen, low pH, excess CO2 Special Features of Smooth Muscle Contraction Response to Stretch Stretching provokes contraction, which moves substances along tract Stress-relaxation response – increased tension persists briefly & muscle adapts to new length & relaxes (ex: full stomach) Length and Tension Changes Lack of sarcomeres and irregular arrangement make them stretch more and generate more force then skeletal Hyperplasia – dividing to increase size Hypertrophy – increase cell size Often related to hormonal changes Types of Smooth Muscle Smooth muscle varies in Fiber arrangement and organization Responsiveness to various stimuli Innervation Two types of Smooth Muscle Single- Unit Smooth Muscle (visceral) Contract rhythmically as a unit Electrically coupled to one another by gap junctions Often exhibit spontaneous action potentials Also: arranged in opposing sheets, exhibit stress-relaxation response, etc. Multi-unit Smooth Muscle Ex: large airways to lungs, large arteries, arrector pili muscles, internal eye muscle that adjust pupil size Gap Junctions are rare, little spontaneous and synchronous depolarization Similarities to Skeletal Muscle fibers that are structurally independent of Richly supplied with nerve endings, each forms motor unit with a number of muscle fibers Responds to neural stimulation w/graded contractions Difference Innervated by autonomic division (involuntary) and is responsive to hormonal controls Study Questions - Make a vocabulary list!!! Characteristics of skeletal, cardiac and smooth muscle Characteristic of muscle fibers: Excitability, contractility, extensibility, and elasticity Gross Anatomy of Skeletal Muscle Connective Tissue: Epimysium, Perimysium (fascicles), Endomysium Nerve Supply: motor unit Attachment: direct (fleshy) attachment, indirect attachment ( aponeurosis Microscopic Sacrolemma, Sarcoplasm, Myoglobin Myofibrils: Striations: A & I bands (think and thin filaments), H zone, M line, Z discs, sarcomere Molecular: Myofilaments and other organelles Actin – troponin, tropomyosin Myosin – cross bridges, globular heads Elastin – titin Sacroplasmic Reticulum & T tubules Contraction (definition) Action Potential – Think in terms of polarity of sarcolemma & muscle fiber (Na/K pumps) Depolarization – Refractory period Excitation-contraction coupling Neuromuscular junction: synaptic cleft & vesicles, ACh, AChE, ACh receptors Force: Load & tension (use lab 16b to study) Isotonic (concentric, eccentric) & Isometric contractions Muscle twitch vs. Graded response (wave summation, fused tetanus, unfused tetanus) Metabolism: Storing ATP, regeneration ATP (3 methods: Creatine, glycolysis, aerobic respiration) * When would each type be used? Smooth Muscle: Circular & Longitudinal layers (their role in peristalsis), varicosities, caveoli, dense bodies Types: single unit vs. multiunit – which is more common? Lab Hints: figs: 14.1, 14.2, 14.4, 14.5; lab 16 – methods and results for all tests Models: Muscular Tissue models (skeletal, smooth), muscle cell Muscular System I Interactions of Skeletal Muscles in the Body II Naming Skeletal Muscles III Muscle Mechanics: Importance of Fascicle Arrangement and Leverage IV Major Skeletal Muscles of the Body Interactions of Skeletal Muscles in the Body Muscle system is the skeletal muscle system Overview Muscles pull, not push Insertion moves toward the origin There is always an muscle that can undo the action of another Four Functional Groups Prime Movers (Agonists) – muscle that provides major force for producing movements Antagonists – muscles that oppose, or reverse, a particular movement Prime mover often stretches the antagonist Help regulate the action of the prime mover by: Contracting (eccentrically) to provide resistance Prevent overshoot or to slow or stop the movement Usually on either side of the joint they act on Synergists - help prime movers by adding extra force to same movement Reducing unnecessary movements that might occur as prime mover contracts If muscle crosses 2+ joints, its contraction causes movement at all stabilizers Help to prevent movement to focus force of prime mover Fixators – synergists that immobilize a bone, or a muscle’s origin Naming Skeletal Muscles Named according to a number of criteria, each of which describes the muscle in some way: Location of the muscle - bone or body region with which the muscle is associated Temporalis – over temporal bone Shape of the muscle - named for distinctive shape Deltoid = triangular; trapezius = trapezoid Relative size of the muscle Maximus (largest), minimus (smallest), longus (long), brevis (short) Direction of muscle fibers - named for direction fibers run (usually midline or longitudinal axis) Rectus (straight) - parallel to line Transversus & oblique – run at right angles and obliquely to that line Number of origins: biceps – 2 origins; triceps – 3 origins; quadriceps – 4 origins Location of the attachment - point of origin and insertions, always origin first Sternocleidomastoid – (neck) dual origin sternum and clavicle & inserts at mastoid process of the temporal bone Action: flexor, extensor, adductor – tells what the muscle does Adductor longus – brings thigh toward midline Muscle Mechanics: Importance of Fascicle Arrangement & Leverage Arrangement of Fascicles – results in different shapes & functional Parallel - long axes if fascicles run parallel to long of muscle Straplike or spindle-shaped (fusiform muscles – spindle-shaped) Pennate - short & attach obliquely to central tendon that runs the length of the muscle Unipennate – fascicles insert into only one side of the tendon Bipennate – fascicles insert into tendon from opposite sides, grain looks like feather Mulitpennate – arrangement looks like many feather situated side by side, Convergent - broad origin, fascicles converge to single insertion tendon Triangular or fan shaped Circular (sphincters) - arranged in concentric rings Determines range of motion and power Longer and more parallel fascicle = greater degree of shortening Greater number of muscle cells = greater power Lever Systems: Bone-Muscle Relationship Operation of most skeletal muscles involves the use of leverage Terminology Lever – rigid bar that moves on a fixed point (fulcrum_ when a force is applied to it Effort (applied force) used to move a resistance or load Joints = fulcrum; bones = levers Contraction = effort applied a the muscles insertion point on bone Load = bone itself along with overlying tissues Operation of Lever (fig ) Mechanical advantage (power lever) Effort farther than load from fulcrum Load is close to the fulcrum/ effort applied far from fulcrum Small effort exerted over a relatively large distance can move a large load over a small distance Car - jack - person Mechanical disadvantage (speed lever) Effort nearer than load to fulcrum Load far from fulcrum & effort is applied near the fulcrum Force exerted must greater than load moved or supported Allow the load to move rapidly through a large distance Wielding a shovel Types of Lever Systems (fig ) Depends on relative position of the three elements: Effort, load, fulcrum First-class levers - Seesaws Effort is applied at one end of lever, load is at other, with fulcrum between Occurs when you lift your head off your chest Some mechanical advantage Some mechanical disadvantage – triceps extend forearm Second-class levers (wheelbarrow) Effort is at one end of lever, fulcrum is located at other, with load in between Uncommon, standing on toes Joints in ball = fulcrum; load = body weight; calf = effort All mechanical levers work at mechanical advantage because muscle insertion is always farther from the fulcrum than is the load to be moved Levers of strength, speed and range of motion are sacrificed for that strength Third class levers Effort is applied between the load and the fulcrum Operate with speed and always at a mechanical disadvantage Tweezers or forceps provide this type of leverage Most skeletal muscles are third-class lever systems Conclusions Differences in positioning of 3 elements modify muscle activity with respect Speed of contraction Range of movement Weight of load that can be lifted In mechanical disadvantage lever systems – force is lost but speed and range of movement are gained In mechanical advantage – are slower, more stable, strength is a priority Study Questions - Prioritize!!! Prioritize!!! Prioritize!!! Prioritize!!! Learn the chart, apply it to the models, then worry about the others What are the 4 functional groups of muscles? How are they named? (7 cues to naming) How does arrangement of fascicles vary? What are the 3 systems? What does placement of those elements change? With your knowledge of muscles & deductive reasoning skills, which muscles work for certain actions? Lab Hint: work with the models first torsos (both sides& face), leg, arm, little man/woman, big body Nervous System I General Information II Organization of the Nervous System III Histology of Nervous Tissue General Information (fig ) Nervous System -– master controlling & communicating system of body Communicate through electrical signals (rapid, specific, immediate) 3 overlapping functions Sensory Input – gathering information from different stimuli (change detected by sensory receptors inside and outside the body) Integration – processes and interprets the sensory input and decides what should be done at each movement Motor output – causes a response by activating effector organs (muscles and glands) Organization of the Nervous System – 2 Parts (fig ) Central Nervous System (CNS) – brain &spinal cord (dorsal cavity) Integration and command center of nervous system Interprets information & dictated the response Peripheral Nervous System (PNS) – Outside the CNS; nerves that extend from brain and spinal cord, link between body & CNS Spinal nerves - carry impulses to & from spinal cord Cranial nerves – to & from brain 2 functional subdivisions of PNS Sensory (afferent) division – Convey impulses to CNS from sensory receptors, keeps CNS informed Somatic afferent fibers – conveying impulses from skin, skeletal muscles & joints Visceral afferent fibers – transmitting from visceral organs (in ventral cavity) Motor (efferent) division – Transmits info from CNS to effector organs, muscles & glands Effect (bring about) motor response 2 parts of Motor division Somatic Nervous System (voluntary)- from CNS to skeletal muscles Autonomic Nervous System (ANS; involuntary) Regulate activities of smooth, cardiac muscles & glands Two functional subdivisions Sympathetic – emergency situations Stimulates Parasympathetic – conserves energy, Inhibits Histology (fig ) Nervous System is made up of 2 types of cells Neurons – excitable nerve cells that transmit electrical signals Supporting Cells – smaller cells that surround & wrap the more delicate neurons Supporting Cells (neuroglia or glial) Supporting cells in CNS Have cell body and processes. Outnumber neurons 10:1 Astrocytes (nutrient regulate) Most abundant and most versatile glial cells Anchoring them to capillaries for nutrients Control chemical environment Take up K & neurotransmitters that leaked Can signal each (connected by gap junctions) via intracellular calcium pulses Microglial cells (immune system) Small ovoid cells, long thorny processes Regulate health of nearby neurons Will migrate toward injured or infected neuron Can become macrophage to phagocytize microorganisms or neuronal debris Ependymal cells (help circulate cerebrospinal fluid) Squamous to columnar, many are ciliated Line the central cavity of the brain and spinal cord Form a ~permeable barrier between cerebrospinal fluid that fills cavities & tissue fluid bathing cells of CNS Cilia move fluid around to help cushion the brain Oligodendrocytes (myelin sheaths) Branched, but not as many as Astrocytes Line up along thicker neuron fibers in CNS & wrap cytoplasmic extension around fibers Supporting cells in PNS Satellite cells (unknown job) Surround neuron cell bodies within ganglia Schwann cells (neurolemmocytes) Surround & form myelin sheaths around the larger nerve fibers in peripheral nervous system (like Oligodendrocytes) Vital in nerve fiber regeneration Neurons Special Characteristics of nerve cells (neurons) Extreme longevity: can live for your entire life They are amitotic: assume roles as communicating links of nervous system, they lose ability to divide (can’t replace themselves; exceptions – hippocampus & olfactory neurons) High metabolic rate – require continuous and abundant supplies of oxygen & glucose (can’t survive without oxygen) 3 functional components: Receptive (input) region Conducting component Secretory (output) component Cell body Biosynthetic center of neuron Transparent, spherical nucleus, w/nucleolus covered by cytoplasm Also called perikaryon or soma Processes Classifications of Neurons Structural Functional Study Questions Organization: 2 main parts CNS & PNS What are the parts within those parts? Learn the chart in the front of the chapter Histology: parts of the neuron, supporting cells, classification of neurons Learn where each supporting cell exists Neurophysiology Best thing is to apply this to the muscle system we just learned What is an action potential? What does it need to work? What is the all-or-none phenomenon? What mechanisms control/monitor the progress? Neurotransmitters: what are the big ones, what do they do Lab Hints: parts, supporting cells, how we classify neurons (structural & functional) Models: Neuron models, slides Lab 18b – do the lab review in the back and be sure you did the reading for all the labs! Central Nervous System I Brain II Higher Mental Functions III Protection of the Brain IV Spinal Cord V Diagnostic Procedures for Assessing CNS Dysfunction VI Developmental Aspects Brain General Info Cephalization – elaboration of anterior (rostral) portion of CNS Increase in number of neurons in the head Brain size = average mass is 3 - 4 pounds Embryonic Development Development of neural tube from embryonic ectoderm (fig ) Neural plate – ectoderm (dorsal surface) thickens along dorsal midline axis Neural folds – plate invaginates to form neural groove Neural crest – groups of folds give rise to neurons in ganglia Neural tube – groove deepens, superior edges of folds fuse Will separate from ectoderm and sinks lower Steps in brain development (fig ) Immediately ( 3 primary brain vesicles form from neural tube by expansion of anterior end & constrictions to mark off areas Prosencephalon (forebrain) Mesencephalon (midbrain) Rhombencephalon (hindbrain) 5 weeks ( Secondary brain vesicles Telencephalon – “ endbrain” from forebrain Forms mouse ears on sides = celebral hemispheres of cerebrum Diencephalon – “ interbrain” from forebrain Forms hypothalamus, thalamus & epithalamus Mesencephalon – stays the same Brain stem, midbrain Metencephalon – “afterbrain” from hindbrain Brain stem, pons and cerebellum Myelencephalon – “spinal brain” from hindbrain Brain stem, medulla oblongata Tube stays full of fluid and becomes ventricles of brain Effects of space restriction on brain development (fig ) Brain grows faster than skull 2 major flexures: midbrain & cervical flexures Bend toward forebrain toward the brain stem Restricted space makes cerebral hemispheres grow in horseshoe shape (posteriorly & laterally) Grow over diencephalon and midbrain More folds and creases to fills space (convolutions) to increase surface area, more neurons in space Regions and Organization (fig ) 4 main parts Cerebral Hemispheres Diencephalon Brain stem – midbrain, pons and medulla Cerebellum Basic Pattern (fig ) Central cavity surrounded by gray matter core external white (myelinated) cavity Brain has additional regions of gray matter not in spinal cord Cortex- outer layer (bark) surrounds cerebellum and cerebral hemispheres Ventricles (fig ) Arise from expansion of lumen of embryonic neural tube Lined with ependymal cells and cerebropspinal fluid Lateral ventricles - large C-shaped chamber, 1 in each hemisphere Septum pellucidum - thin membrane that separates lateral ventricles Third ventricle – narrow, in diencephalon Communications with lateral via interventricular foramen Fourth ventricle – connected via cerebral aqueduct Lies hindbrain, dorsal to pons and superior medulla Continuous with central canal of spinal cord inferiorly Three openings mark walls of 4th ventricle Lateral apertures – paired in side walls Median aperture – on roof Connect ventricles to subarachnoid space – fluid-filled space surrounding the brain Cerebral Hemispheres General Info (fig ) Cerebral hemisphere – superior part of brain 83% of total brain mass Gyri (plural) - elevated ridges Sucli (plural) - shallow grooves Fissures - deeper fissures, separate large regions of brain Longitudinal fissures - medial, separate cerebral hemispheres Transverse cerebral fissures - separates hemispheres from cerebellum Divisions by sucli – lobes 5 lobes: Frontal, Parietal, Temporal, Occipital, Insula Central sulcus – separates frontal and parietal lobes Precentral gyrus – borders the central sulcus Each cerebral hemisphere has 3 basic regions Superficial cortex – brain tissue Internal white matter - Basal nuclei – islands of gray matter within white matter Cerebral Cortex General info Enables us to be aware of ourselves, our sensation, to communicate, remember, understand and to initiate voluntary movements Mainly gray matter 40% of total brain mass Brodmann areas – structural map of functional regions Domains – specific functions are localized in discrete cortical areas Higher mental functional overlap Generalizations 3 kinds of functional area: Motor: voluntary movement Sensory: awareness Association: integration of information Each hemisphere is concerned with functions of other side of the body 2 hemispheres are not entirely equal in function Lateralization (specialization) of functions No functional area acts alone & conscious behavior involves the whole cortex Motor areas- posterior part of frontal lobe Primary (somatic) motor cortex - in precentral gyrus of frontal lobe Pyramidal cells – large neurons that allow control skeletal muscles Pyramidal (corticospinal) tracts – long axons that project to spinal cord Somatotopy – map of movements with locations on cortex Motor homunculus – little man drawing (fig ) Contralateral – Left primary motor gyrus controls muscles on the right side of body & vice versa Premotor cortex Controls learned motor skills of repetitious or patterned nature (playing instruments) Several movements at a time Planning for movements Broca’s area - Anterior to inferior premotor area (44 & 45) Present in 1 hemisphere only (left) Special motor speech area Directs the muscles of tongue, throat, lips Maybe used when we think of speaking or other activities Frontal eye field – voluntary eye movements Located in & anterior to the premotor cortex Superior to Broca’s area Sensory areas – awareness of sensation Primary somatosensory cortex (PSC) In postcentral gyrus of parietal lobe, just posterior to premotor cortex (1-3) Get info from sensory receptors in skin & proprioceptors in muscles via 3-neuron synaptic chain Spatial discrimination – ability to identify region being stimulated Somatosensory homunculus - upside-down fashion Somatosensory association cortex Posterior to PSC: lots of connections Function: to integrate different sensory inputs (temp, pressure = texture) & relay it to PSC One can tell what is pocket w/out looking Visual Areas Primary visual striate cortex – extreme posterior tip of occipital lobe, buried Largest of all cortex regions Map of regions on cortex from info from retina Right half cortex = left half visual space Visual Association Area interprets visual stimuli (color, form & movement), based on envr. history 2 “streams” - have to remember and focus Auditory Areas Primary auditory cortex (PAC) – superior margin of temporal lobe abutting lateral sulcus Sound energy excited hearing receptors (cochlea) causes impulses to PAC Translates to pitch, rhythm & loudness Auditory association area = sound memory Olfactory (smell) cortex Small areas of frontal lobes above orbits & in medial aspects of temporal lobe (piriform lobe) Used to smell different odors Rhinencephalon – parts of brain that receive olfactory signals Orbitofrontal cortex Uncus – hook like part of piriform lobe Associated regions on temporal lobe Olfactory tracts & bulbs extend to nose Newer brains have limbic system here Gustatory (taste) cortex - taste stimuli Parietal lobe deep in temporal lobe Vestibular (equilibrium) cortex Consciousness awareness of balance Maybe in posterior insula (deep in temporal lobe) Association Areas – none are primary Prefrontal cortex - Anterior portion of frontal lobe Intellect, complex learning abilities, recall, etc Abstract ides, judgment, reasoning, persistence Language areas Lateral sulcus in left (language dominant hemi) Wernicke’s area – sounding out words Broca’s area – speech production Lateral prefrontal cortex – word analysis Lateral & ventral parts of temporal lobe - visual General (common) interpretation area Encompassing temporal, parietal, occipital lobes Integrates all sensory signals into one thought Visceral association area – maybe stomach aches, etc Consciousness perception of visceral sensations Lateralization of Cortical Functioning Lateralization – division of labor between hemispheres Cerebral dominance – dominant for language Left – language, math, logic Right – visual-spatial skills, intuition, emotion, artistic & musical skill Right handed people – left cerebral dominance Left handed – right dominance, often male, often ambidextrous Dyslexia – cerebral confusion between hemispheres Fiber tracts allow communication between 2 Cerebral White Matter – 2nd of 3 basic regions Communication between cerebral areas & cerebral cortex & lower CNS centers Myelinated fibers bundled into large tracts Classification of fibers and tracts Commissures Commissural fibers – connects gray areas of 2 hemispheres Corpus callosum – largest of Commissures Superior to lateral ventricles, deep within longitudinal fissure Anterior & posterior Commissures – other ones Run horizontally (same as associations) Associations Connect different parts of the same hemisphere Short – fibers connect adjacent gyri Long – bundled into tracts connect cortical lobes Projections Enter cerebral hemispheres from lower brain or cord centers & those that leave cortex to travel lower areas Tie cortex to rest of nervous system & body’s receptors and effectors Run vertically Internal capsule Projection fibers on each side of top of brain stem that form a compact band Pass between the thalamus & basal nuclei Corona radiate – fanlike arrangement through cerebral white matter to cortex Basal Nuclei (ganglia) Group of subcortical nuclei Caudate nucleus, putamen & globus pallidus – most of mass of basal nuclei Lentiform nucleus (lens shaped) – putamen & globus Caudate – arches superiorly over diencephalon Corpus striatum – Lentiform and caudate nuclei Received info from cerebral cortex & subcortical nuclei & each other Influence movements via thalamus & premotor/prefrontal cortices Functionally assc w/ subthalamic nuclei & substantia nigra Amygdala – sits on end of caudate – functionally part of limbic May be part of starting and stopping movements?? Diencephalon (fig ) General – forms center core of 3 structures Gray matter areas collectively enclose the third ventricle Thalamus – gateway to cerebral cortex Deep, hidden brain region, lots of nuclei Interthalamic adhesion (intermediate mass) – midline holds bilateral masses together Afferent impulses from all parts of the body converge on thalamus Ventral posterior lateral nuclei – receives impulses from general somatic sensory receptors (touch, pressure, pain, etc) Lateral & medial geniculate bodies – important visual & auditory relay centers Information is “edited” and sorted out, then relayed to the right area (pleasant/unpleasant at this point) of cerebral cortex Virtually all other inputs ascending to cerebral cortex funnel through thalamic nuclei: Emotion and visceral functions of hypothalamus Direction of motor activities from cerebellum & basal nuclei Mediating sensation, motor activities, cortical arousal, learning and memory Hypothalamus - below thalamus Forms inferolateral walls of 3rd ventricle Mammillary bodies – paired bulges, relay for olfactory pathways Infundibulum – connects pituitary gland to base of hypothalamus Chief Homeostatic roles Autonomic control center - ANS Center for emotional response Body temperature regulation Regulation of food intake Regulation of water balance and thirst Regulation of sleep-awake cycles Control of endocrine system functioning Epithalamus Most dorsal portion of diencephalon, forms roof of 3rd ventricle Pineal gland (body) - posterior border & visible externally Secretes melatonin (hormone) & regulates sleep-awake Some aspects of mood Choroid plexus – cerebrospinal fluid-forming structure Brain Stem (fig ) Structurally similar to spinal cord, white around gray, but have gray embedded in white matter Provides pathway for fiber tracts running between higher and lower neural centers Association with 10 of 12 cranial nerves (innervation of head) Main parts: Midbrain – between pons and Diencephalon Cerebral peduncles – 2 bulging pillars that “hold-up” cerebrum Large pyramidal (corticospinal) motor tracts toward spinal cord Superior cerebellar peduncle - also fiber tracts Connect midbrain to cerebellum dorsally Cerebral aqueduct Connects 3rd and 4th ventricles Periaqueductal gray matter – involved in pain suppression Link to amygdale (fear-perceiving) & ANS Oculomotor & trochlear nuclei - control 2 cranial nerves Corpora quadrigemmina 2 domelike protrusions on dorsal midbrain surface Superior colliculi – visual reflex centers that coordinate head and eye Inferior colliculi – auditory relay from hearing receptors of ear 2 pigmented nuclei Sustantis nigra – high content of melanin pigment, precursor of dopamine release Red nucleus – rich in blood supply (iron) Relay info to reticular formation – used for limb flexion Pons = bridges Between midbrain and medulla oblongata Conduction tracts which run in 2 directions Longitudinal – path between brain center & spinal cord Superficial ventral fibers – from cerebellum and motor cortex Middle cerebellar peduncles – transversely and dorsally, connect pons to cerebellum Pneumotoxic center – respiration center (breathing rhythm) Medulla Oblongata Medulla & pons = 4th ventricle Blends with spinal cord @ foramen magnum Central canal broadens out to form the fourth ventricle Pyramids – ridges from motor cortex Decussation of pyramids cross-over to opposite side above cord Inferior cerebellar peduncles – fiber tracts connect medulla to cerebellum Inferior olivary nuclei – relay info on stretch of muscles & joints Cranial nerve associations Hypoglossal nerves Glossopharyngeal Vagus Accessory Auditory Nerves Vestibulocochlera nerves synapse w/cochlear nuclei Vestibular nuclear complex Vestibular nuclei in pons & medulla Sensory tract related Nuclei gracilis Medial lemniscal tract Motor functions: Cardiovascular center – cardiac & vasomotor Rate & force Respiratory center – rate & depth of breath With hypothalamus & pons Various other centers – swallowing, hiccups, etc Cerebellum Anatomy 2 hemispheres Subdivisions: anterior, posterior, floccolumotor Has thin outer cortex of gray internal white matter & small gray matter in it Arbor vitae – branching tree lobe Anterior & posterior: body movements, overlapping sensory & motor maps Medial – motor of trunk & girdle Intermediate hemisphere – distal limbs Flocculomodular lobe Input on equilibrium from inner ear posture Vermis –wormlike connection Folia – pleated gyri Purkinje cells – send axons through white matter Cerebellar Peduncles 3 paired tracts connect cerebellum & brain stem No direct connection with cerebral cortex Most are ipsilateral = same side Superior connections Cerebellum – mid Middle – pons to cerebellum only Inferior - medulla & cerebellum Brings info from muscle proprioceptors & vestibular nuclei of brain stem Cerebellar Processing – functional scheme Frontal motor association of cerebral cortex tells cerebellum intend to contract Cerebellum gets info from proprioceptors in muscles at the same time & from visual –equilibrium pathways Cerebellar cortex figures best way to coordinate (force, direction, extent of contraction) to prevent overshoot Superior peduncles of cerebellum send blueprint to cerebral motor cortex Cognitive Function of Cerebellum Cognition, language and problem solving Functional Brain Systems Limbic System Emotional (affective) brain Two main parts: Amygdala: fear response Anterior part of cingulated gyrus: expressing emotions through gestures & frustration Odor triggers emotional state Interacts with prefrontal lobes ( large tie between emotion and thoughts (cognitive brain) Reticular Formation Extends through central core of medulla oblongata, pons and midbrain Mainly clustered neurons (white matter) Reticular Activating System (RAS) Long axons means it can arouse the whole brain Keeps body alert Can act as a filter of sensory inputs (99% are not important to us) LSD – affects RAS so sensory overload Damage can lead to temporary or permanent unconsciousness Higher Mental Functions Brain Wave Patterns and EEG Normal brain functions = continuous electrical activity of neurons EEG – electroencephalogram, record electrical activity (brain waves) Electrodes on head to measure Brain waves are as unique as fingerprints 4 frequency Classes Alpha Waves – Low-amplitude, slow, synchronous waves, 8-13 Hz (cycles per second): “idling” brain Beta Waves – 14-25 Hz, wake mentally alert, concentrate on a stimulus or problem, a little irregular Theta Waves – 4-7 Hz, mainly kids, abnormal for awake adults Delta Waves – <4Hz, high amplitude, deep sleep, anesthesia, dampened RAS, brain damage Active brain = complex & low amplitude Inactive brain (sleep) = high amplitude neurons firing synchronously Change w/age, sensory stimuli, brain disease & chemical state Epilepsy Unique electrical discharges of groups of brain neurons Aura – may occur before seizure, sensory hallucinations (taste, smell, or flash of light) Consciousness Conscious perception of sensations, voluntary initiation & control of movement of capabilities associated w/higher mental processing (memory, logic, judgment, perseverance) Clinically defined by levels of behavior Alertness Lethargy Stupor Coma Sleep/Awake Cycles Sleep – a state of changed consciousness or partial unconscious from which a person can be aroused by stimulation Cortical activity is depressed but not “off” Kind of shutting down of RAS (monitors cerebral cortex activity), involved in dreaming 2 Major Types of Sleep NREM – non REM; all other stages (4 main), decline in waves frequency & vital signs 1st 30-45 minutes of sleep, slow-wave sleep; sleep waking and nightmares occurs during NREM REM – rapid eye movement Paradoxical sleep = EEG pattern similar to awake state Temporary paralysis, dreaming occurs Sleep Patterns Circadian rhythms – 24 hr cycle Hypothalamus (under thalamus) is responsible for sleep cycle Alternate between NREM and REM, REM is longer the longer you sleep Sleep Disorders Narcolepsy – inability to control when you sleep Insomnia – inability to sleep Sleep apnea –stop breathing Memory - storage and retrieval of information Three Principals of Memory Memory storage occurs in stages & is continually changing Hippocampus & surrounding structures play unique roles in memory processing Memory traces – chemical & structural changes that encode memory, are widely distributed in the brain Stages of Memory (fig. ) STM – short term memory (like RAM in a computer) Working memory, holding bin of information LTM – long term memory Memory consolidation Emotional state Rehearsal Association w/old data Automatic memory – what I’m wearing & saying Categories of Memory Fact Memory – learning specific information Skill Memory – how to do stuff Protection of the Brain Protected by: Bone (skull); Membrane (meninges); Watery cushion (cerebrospinal fluid) Meninges (fig ) 3 connective tissue membranes external to the CNS organs Jobs Cover and protect CNS Protect blood vessels & enclose venous sinuses Contain cerebrospinal fluid Form partitions within the skull Dura Mater Means tough mother ( strongest of meninges Two layers where it surrounds the brain Periosteal layer Attached to inner surface of skull (periosteum) No dural Periosteal layer surrounding spinal cord Meningeal layer True external covering of the brain Spinal cord “Dural sheath” down vertebral canal Two layers are fused together except in certain areas Dural sinuses – where they separate (fig ) Collect venous blood from brain & direct it into internal jugular veins of neck Dural septa – Meningeal layer turns inward to form flat partitions that subdivide cranial cavity Falx cerebri – attaches to crista galli Falx cerebelli – runs along vermis Tentorium – tent over cerebellum Arachnoid Mater (fig ) Forms a loose covering Subdural space – separates AM from DM Narrow serous cavity Subarachnoid space – beneath AM Webs attach AM to Pia Mater Filled with CSF & large blood vessels serving brain Fine & elastic - blood vessels aren’t protected that well Arachnoid villi – Protrude through dura mater into superior sagittal sinus CSF is absorbed into venous blood Pia Mater Delicate connective tissue & tiny blood vessels Only one that connects to brain at every convolution Arteries that enter brain have pia mater for a distance Meningitis – inflammation of the meninges Can result in bacterial or viral infection of CNS Encephalitis – brain inflammation Cerebrospinal Fluid (fig ) Liquid cushion around brain and spinal cord Prevents the brain from crushing itself Helps protect from trauma (buoyancy) Rich in nutrients May carry chemical signals (hormones) around brain A lot like plasma because that is what it comes from Choroid plexuses - Form CSF Hang from each ventricles roof Frond-shaped clusters of broad thin-walled capillaries enclosed in pia mater & then a layer of Ependymal cells lining ventricles Once produced, CSF flows freely through ventricles Circulates through central canal of the spinal cord Movements is aided by long microvilli of ependymal cells lining ventricles Bathes outer surface of the brain 7 cord in subarachnoid space, then returns to blood in dural sinuses via Arachnoid villi Hydrocephalus – build up pressure do to lack of CSF circulation & pressure on brain Blood-brain barrier Protective mechanism that helps maintain a stable environment Neurons fire uncontrollably if exposed to variation in chemical levels Bloodborne substances in brain’s capillaries are separated from extracellular space & neurons by Continuous epithelium of capillary wall Thick basal lamina surrounding external face of each capillary Bulbous “feet” of astrocytes that cling to capillaries Job: provide signals that stimulate the capillary endothelial cells to form the tight junctions Capillaries joined by tight junctions ( least permeable of capillaries Selective Membrane permeability Facilitated diffusion – glucose, essential amino acids & some electrolytes Denied entry – metabolic wastes, toxins & most drugs Pumped out of brain – K+ and nonessential amino acids Simple Diffusion - fats, fatty acids, oxygen, carbon dioxide, other fat-soluble molecules (alcohol, nicotine, anesthetics) Barrier is not uniform, incomplete in newborns, injury can break it Choroid plexus – very porous Ependymal cells – tight junctions Absent around some parts of 3rd and 4th ventricle Vomiting center – detects poisons Hypothalamus – regulates water balance, body temperature and other metabolic activities Homeostatic Imbalances of the Brain Traumatic Brain Injuries Coup injury –at site of the blow Contrecoup injury – where brain hits opposite end of blow Concussion: brain injury is slight & symptoms mild & short Contusion – marked brain destruction Unconscious/coma - injury of reticular activating system Subdural or subarachnoid hemorrhage Bleeding from ruptured vessels into those spaces Leads to death due to increased pressure in the brain Can surgically remove hematoma (blood mass) Cerebral edema - swelling of brain Cerebrovascular Accidents (strokes or brain attacks) Blood circulation to a brain area is blocked & tissue dies (ischemia – deprivation of blood supply to any tissue) Usually a blood clot in cerebral artery, compression of tissue by hemorrhage or edema Leads to paralysis on one side of body, can regain faculties Transient ischemic attack (TIA) – temporary episodes of reversible cerebral ischemia Glutamate – neurotransmitter in learning & memory maybe culprit, released from oxygen deprivation in neurons Degenerative Brain Disorders Alzheimer’s Parkinson’s Huntington’s Disease Spinal Cord Embryonic Development Develops from the caudal portion of embryonic neural tube 6th week – each side two recognizable clusters of neuroblasts that migrated outward Dorsal alar plate – becomes interneurons Axons form white matter of the cord growing along length of CNS Ventral basal plate – becomes motor neurons Sprouts axons that grow to effector organs Plates expand dorsally & ventrally to produce the H-shaped central mass of gray matter of the adult spinal cord Neural crest cells -grow alongside the cord & form dorsal root ganglia containing sensory neuron cell bodies Axons into the aspect of the cord Gross Anatomy and Protection (fig 12.24) From foramen magnum to 1st or 2nd lumbar vertebra, just inferior to ribs Two-way junction to and from the brain Major reflex center: Spinal reflexes initiated & completed at spinal cord level Protected by bone, meninges & cerebrospinal fluid Spinal dural sheath – single dural mater of spinal cord Not attached to bony walls of column Epidural space – between bony vertebrae & dural sheath CSF fills subarachoid space between arachoid & pia mater Dural & arachoid membranes extend to the levfel of S2 inferiorly Subarachoid space within the meningeal sac inferior to L1 is where they take fluid ( no spinal cord or roots past L3 Conus medullaris – end of spinal cord Filum terminate – fibrous extension pia mater that extends past conus medullaris to the posterior surface of coccyx Anchors spinal cord in place Denticulate ligaments – spinal cord is secured to walls of vertebral canal throughout it length by saw-toothed shelves of pia mater 31 pairs of spinal nerves attach to cord by paired roots & exit from vertebral column via intervertebral foramina Defined by pair of nerves superior to vertebra Cervical & lumbar enlargements – at cervical & lumbosacral region Cauda equine – collection of nerve roots at the inferior end of the vertebral canal Looks like a horse tail Cross-Sectional Anatomy (fig 12.27) Flattened from front to back & 2 grooves marks surface Anterior median fissure Posterior median sulcus Run length of cord,partially divide into right & left halves Gray in core, white outside Gray Matter & Spinal Roots Neuron cell bodies, their unmyelinated processes & neuroglia All are multipolar neurons H like – laterally similar connected by cross-bar of gray matter (gray commissure – encloses central canal) Posterior (dorsal) horns - 2 posterior projections Mainly interneuron Anterior (ventral) horns – 2 anterior Mainly somatic motor with some interneurons Ventral roots – place where axons leave to go to the skeletal muscles Size of ventral root = amount of innervations Lateral horns – in thoracic & superior lumbar segments Autonomic (sympathetic divisions) motor neurons for visceral organs Axons leave through vent. rt w/somatic motor neurons Ventral roots – serve both somatic & autonomic efferents (both motor divisions of PNS) Dorsal roots – afferent fibers carrying impulses from peripheral sensory receptors Dorsal root (spinal) ganglion – enlarged region of dorsal root with nerve cell bodies of associated sensory neurons Spinal nerves – dorsal & ventral roots Very short & fuse laterally (part of PNS) Spinal gray matter can divide by involvement in innervation of somatic and visceral regions of body Four zones: Somatic Sensory (SS), Visceral (autonomic) Sensory, Visceral Motor, Somatic Motor White Matter Fibers help communication between part of cord Fibers run in 3 directions Ascending – up to higher centers (sensory inputs) Descending – down to cord from brain or within cord to lower levels (motor outputs) A & D are vertical, make up most of white matter Transversely – across from one side of cord to other (commissural fibers) Divided into 3 white columns (funiculi) named posterior, anterior & lateral funiculi based on location (fig 12.29) Part of neuron pathway Spinal Cord Trauma and Disorders Diagnostic Procedures for Assessing CNS Dysfunction Study Questions Brain Neural Development – what happens at different times during growth Major areas in the brain and the functions they control Lobes, Gyri and Sucli – what are they, what information goes there Named regions we went over in class Parts of the Hemispheres, Diencephalon & Brain Stem ( what does each one do Make a table of anatomical parts, list their respective jobs, what type of matter is each made up of Know what dysfunctions would happen if one was damaged Trauma and damage – what happens to the brain if injured? Concussions vs. contusions & Cerebrovascular accidents Higher Mental Functions What happens during the 2 parts of the sleep cycle (who runs it?) What are the levels of consciousness What effects memory What are the 4 brain wave types and what is their function Protection (fig19.7a) What are the meninges and what are their functions ( know characteristics of each Where is CSF made Spinal Cord (fig 21.2; fig 2.15) Anatomy (gray matter, white matter, horns, roots, etc) Peripheral Nervous System & Reflex Activity I Overview of PNS Sensory Receptors Somatosensory System II Cranial Nerves III Spinal Nerves IV Reflex Activity V Developmental Aspects Overview of PNS Sensory Receptors Structures that are specialized to respond to changes in environment (stimuli) Sensation – awareness of a stimuli Perception – interpretation of the meaning of the stimulus 3 ways to classify sensory receptors: Type, Location, Structure Classification by Stimulus Type Detected Mechanoreceptors Respond to mechanical forces (touch, pressure, vibration, stretch, itch) Thermoreceptors Respond to Temperature changes Photoreceptors Respond to light energy (retina) Chemoreceptors Respond to chemicals in solution (smell, taste, etc) Nociceptors Respond to potentially damaging stimuli (pain) Classification by Location Exteroceptors Sensitive to stimuli arising outside body Near body surface (touch, pain, pressure, temp) Interoreceptors Changes inside body (internal visera & blood vessels) Stretch of tissues, chemical changes, temp inside Hunger, pain, discomfort, thirst Proprioceptors Musculoskeletal organ: muscles, tendons, joints, ligaments Classification by Structural Complexity Sense Organs Complex Cells that work together to accomplish a specific receptive process Special Senses – vision, hearing, smell, taste General Sensory Receptors Most are simple with modified endings General Senses – everything else Tactile (touch, pressure, stretch, vibration) Temperature Monitoring (hot & cold Pain Muscle Sense – from proprioceptors Free Dendritic Endings (naked/unencapsulated; table ) Everywhere in body Most abundant in epithelia & connective tissues Unmyelinated, small & distal ends have small swellings Mainly pain & temperature receptors Some respond to tissue movement due to pressure Associated with Merkel Cells – free dendritic endings form Merkel discs in skin epidermis Root hair plexus – free dendritic endings are hair follicle Itch receptor – in dermis, triggered by histamine & (inflammation) Encapsulated Dendtritic Endings Enclosed in connective tissue capsule Mainly Mechanoreceptors: Meissner’s Corpuscles – tactile corpuscles (touch) Surrounded by schwann cells & egg-shaped capsule on connective tissue Just beneath epidermis in dermal papillae Lots in areas w/out hair (nipples, fingertips, soles of feet) Krause’s end bulbs – mucocutaneous corpuscles Variation of Meissner’s In mucous membrane (ig, mouth) Pacinian corpuscles – large lamellated corpuscles In dermis & subcutaneous layer of skin Deep pressure receptors when first applied Mainly on/off pressure receptor Ruffini’s corpuscles In dermis, subcutaneous tissue, joint capsules Lot of dendritic endings w/flattened capsule Respond to deep & continuous pressure Muscle spindles (neuromuscular spindles Fusiform (spindle shaped) proprioceptors In perimysia of skeletal muscles Intrafusal – each muscle spindle consists of a bundle of modified skeletal muscle fibers Detect muscle stretch & initiate a reflex that’s resists stretch Golgi Tendon organs Proprioceptors in tendons close to point of muscle insertion Collagen fiber bundles in layered capsule Dendrites coil between & around fibers Stimulated by muscle contracts & helps to relax muscle Joint kinesthetic -proprioceptors Monitor stretch in articular capsules that enclose Synovial joints Four different receptor types General Organization of Somatosensory System: from Sensation to Perception Info from exteroceptors, proprioceptors, interoceptors of body wall & limbs Three Main levels of neural integration Receptor – sensory receptors Circuit – Ascending pathway Perception – Neuronal circuits in the cerebral cortex Processing at the Receptor Level Step1: Receptor must have specificity for stimulus energy Stimulus must be applied within a sensory receptor’s receptive field – particular area Energy must be converted into graded potential (receptor potential) Generator potentials – membrane depolarizations that summate & directly lead to generation of action potentials in an afferent fiber Receptor in non-neuron cell ( receptor & generator potentials are separate events Last Step: Generator potential in associated (first order) neuron must reach threshold so voltage-gated Na+ open Info re:strength, duration & pattern in frequency of impulse Tonic receptors (Slow-adapting) – generate nerve impulses at a constant rate, inner ear Phasic receptors (Fast) – “off” unless activate Adaptation – reduction in sensitivity in presence of constant stimulus Processing at the Circuit Level Job: deliver impulses to right region of cerebral cortex for stimulus localization & perception via ascending pathway First-order: central processing in spinal cord or medulla Second-order: synapse with some 1st in dorsal horn or continue upward to synapse in medullary nuclei Synapse with thalamus or cerebellum Third-order: conduct to somatosensory cortex of cerebrum Processing at the Perceptual Level Interpretation of sensory input in cerebral cortex Identified by who is calling from where – specific location Projection – when brain refers sensations to usual point of summation (interprets activity of specific sensory receptor as specific modality (touch, taste, etc) regardless of type Main Aspects Perceptual detection – ability to detect stimulus Magnitude estimation – how much stimulus Spatial discrimination – identify site of stimulation 2-point discrimination test – how close? Feature abstraction –identify a substance or object that has a specific texture or shape Quality discrimination – differentiate submodalities (qualities) of sensation Pattern recognition – recognize familiar patterns, unfamiliar & important patterns (dots in smiley face, musical notes) Nerves & Associated Ganglia Structure & Classification Nerve – bundle of peripheral axons enclosed by successive wrappings of connective tissue Layers (fig ) Endoneurium – surrounds axon over myelin sheath or neurilemma ( makes a fiber Perineurium – surrounds one fascicle (bundles of fibers) Epineurium – binds all fascicles together ( makes nerve PNS Division review Sensory (afferent) – to CNS Motor (efferent) – away from CNS Mixed Nerves – have fibers of each Classification based on regional innervation Somatic afferent, Somatic efferent, Visceral afferent, Visceral efferent Ganglia – bundles of neuron cell bodies Regeneration of Nerve Fiber If cell body is not damaged, axons on peripheral nerves can regenerate Steps in Process (fig ) Separated ends seal off & swell up Wallerian degeneration – axon & myelin sheath of distal end disintegrate due to lack of nutrients Macrophages eat up dead tissue, except neurilemma within endoneurima Schwann cells divide & multiple in response to chemicals released by macrophages Release growth factors (NGF & IGF – nerve & insulin) Express cell surface adhesion molecules (CAMs) for axonal growth Regeneration tube guides regenerating axon across gap Cell body changes Swells in size due to substance build up (chromatophillic) Stops protein synthesis for anything except proteins to rebuild axon The farther the nerves are away, the less likely the re-built axon with line up correctly In CNS – unlikely to regenerate Cranial Nerves 12 pairs of cranial nerves (table ) First 2 pairs attach to forebrain, others to brain stem All but vagus serve head & neck 12 pairs Olfactory – not olfactory tract or large olfactory bulbs Sensory for smell, small Run from nasal mucosa to olfactory bulbs Optic Brain tract that develops as outgrowth of brain Oculomotor Move eyeball in orbit Trochlear Extrinsic eye muscle that loops through pulley-shaped ligament in orbit (pulley) Trigeminal Nerves to face & motor fibers to chewing muscles Abducens Extrinsic eye muscle that abducts the eyeball (lateral) Facial Facial expression Vestibulocochlear – auditory nerve Hearing & balance Glossopharyngeal Innervates tongue & pharynx Vagus Extends into abdomen Accessory (spinal accessory nerve) Accessory of vagus nerve Hypoglossal – means “under the tongue” Tongue moving muscles Most are mixed nerves except Olfactory, Optic & Vestibulocochlear - sensory Cranial sensory ganglia – all cell bodies of sensory nerves except optic & olfactory Spinal Nerves General Features of Spinal Nerves 31pairs of spinal nerves (fig ) C1-C7 exit vertebral canal superior to vertebrae; C8 emerges inferior to C7 After that all nerves exit inferior to same-numbered vertebrae Each spinal nerve connects to the spinal cord by a dorsal & ventral root Rootlets- attach along length of corresponding spinal cord segments (fig ) Ventral roots – contain motor (efferent) fibers that arise from anterior horn of motor neurons, extend to & innervate skeletal muscles Dorsal roots – contain sensory (afferent) fibers that arise from sensory neurons in dorsal root ganglia & conduct impulses from peripheral receptors to spinal cord Roots: lie medial to & form the spinal nerves * each root is strictly sensory or motor Spinal nerves are short because directly after they emerge from each foramen, divide into: Dorsal ramus - small Ventral ramus - larger Meningeal ramus – tiny, reenters vertebral canal to innervate meninges & blood vessels within Each ramus is mixed Rami communicantes – joined to base of ventral rami of thoracic spinal nerves that contain autonomic (visceral) nerve fibers Rami: lie distal to & are lateral branches of spinal nerves & can carry both sensory & motor fibers Innervation of Specific Body Regions All ventral rami (except T1-T120) branch & join one another lateral to vertebral column forming nerve plexuses Only ventral rami form plexuses Branch & redistribute in plexus: Each branch contains fibers from several nerves Fibers travel from each ramus to body periphery via several routes (damage can’t paralyze a limb: nerve supply from more than one spinal nerve The Back Innervations by dorsal rami The Anterolateral Thorax & Abdominal Wall Intercostal nerves – from ventral rami, simple pattern Cutaneous branches from IC nerves to skin Subcostal nerve – T12, tiny Cervical Plexus & the Neck (Table ) Cervical plexus – under Sternocleiodmastiod muscle Formed by ventral rami of first 4 cervical nerves Cutaneous nerves – to skin Phrenic nerve – runs inferiorly through thorax & supplies motor & sensory fibers to diaphragm (breathing) Brachial Plexus & the Upper Limb Brachial plexus – gives rise to all upper limb Plexus formed by intermixing of ventral rami of inferior 4 cervical neurons (5-8) & T1 Received fibers from C4 or T2 or both Four Major Branches Ventral rami (called roots but isn’t) forms ( Trunks which aform ( Divisions which form ( Cords Five roots (ventral rami) lie deep to sternocleidomastiod muscle & form upper, middle & lower trunks – each divide into anterior & posterior divisions (which serve front & back of limb) & form lateral, medial & posterior cords Cords wind along axillary artery & give rise to main nerve of limb Axillary nerve – neck of humerus, innervates deltoid & teres minor Musculocutaneous nerve – major end branch of lateral cord, supplying motor fibers to biceps branchii & branchialis muscles Median nerves – skin & flexor muscles Ulnar nerve – medial aspects of arm toward elbow, behind epicondyle & along ulna Innervates: flexor carpi ulnaris & flexor digitorum profundus, skin & h& muscles (wrist, fingers) Radial nerve – largest branch of brachial plexus – continuation of posterior cord Innervates – posterior skin, extensor muscles of upper limb Lumbosacral Plexus & Lower Limb Lumbosacral plexus – sacral & lumbar plexuses overlap a lot Lies within psoas major Lumbar plexus First of four lumbar spinal nerves Proximal branches innervate abdominal wall muscles Femoral nerve – largest terminal nerve of plexus Obturator nerve – enters thigh via obturator foramen & innervates adductor muscles Sacral plexus Arises from spinal nerves L4-S4 & lies immediately caudal to lumber plexus Fibers from lumbar plexus add to sacral via Lumbosacral trunk Innervates buttock and lower limb, pelvic structures and perineurium Sciatic nerve – largest branch of sacral plexus – thickest and longest nerve in body except anteromedial thigh 2 nerves in common sheath (tibial & common fibular) Sciatic nerve leaves pelvis leaves via greater sciatic notch Tibial – posterior compartment of leg, skin of posterior calf, sole Sural – serve skin of posterolateral leg Plantar nerves – serve foot Common fibular (peroneal) nerve – wraps around fibula and divides into superficial & deep branches Innervates: knee joint, skin of lateral calf, dorsum of foot and muscles of anterolateral leg (extensors that dorsiflex foot) Next largest branches – superior & inferior gluteal nerves Innervates buttock & tensor fasciae Pudendal nerve – muscles & skin of perineurium, mediates erection, voluntary control of urination Innervation of Joints Hilton’s law - Any nerve serving a muscle producing movement at a joint also innervates the joint itself & the skin over it Innervation of Skin: Dermatomes Area of skin innervated by cutaneous branches of single nerve All spinal nerves except C1 participate in dermatomes Fairly uniform in width and Motor Endings and Motor Activity Motor Endings Innervations of Skeletal Muscle (review only) Neuromuscular Junctions – terminals of somatic motor fibers Axon terminals meet with muscle ACh released to continue Action Potential Innervation of Visceral Muscle & Gl&s Junction between autonomic (visceral) motor endings & visceral effectors, smooth & cardiac muscles are simpler Varicosities – swellings with mitochondria & synaptic vesicles where axonal endings meet with smooth muscles (not cardiac) Cleft is wider than in somatic junctions – takes longer to cross Usually have ACh or norepinephrine From Intention to Effect Levels of Motor Control Cerebellum and basal nuclei are ultimate party planners, not cerebral cortex Fixed-action patterns – stereotyped sequential motor actions triggered internally or by appropriate environmental stimuli All or none Segmental Level Lowest level, spinal cord and circuits Anterior horn neurons of a single cord segment ( stimulates a specific group of muscle fibers Central Pattern Generators (CPGs) – circuits that control locomotion & other specific & oft-repeated activities Projection Level Upper motor neurons of motor cortex & brain stem nuclei Upper motor stimulates pyramidal system (direct) Brain stem – indirect (multineuronal) systems Axons direct reflexes and fixed action patterns Projection motor pathways convey information to lower motor neurons and send copy to higher command levels Precommand Level (really two that act as one system) Regulate motor activities in basal nuclei and cerebellum Start and stop movements, coordinate movements with posture and monitor muscle tone Control outputs of cortex and brain stem motor centers Highest Level of Hierarchy Cerebellum – center for sensorimotor integration Acts on motor pathway through projection areas of brain stem & on motor cortex via thalamus Basal Nuclei – receive inputs from all cortical areas and send their outputs back to premotor and prefrontal cortical areas Both are involved with unconscious planning and discharge in advance of willed movements Reflex Activity Reflex – rapid, predictable motor response to a stimulus Unlearned, unpremeditated & involuntary & built into our neural anatomy Also: learned or acquired reflexes from practice and repetition Components of a Reflex Arc (fig ) Reflex arc – where reflexes occur Five Essential Components Receptor – site of stimulus action Sensory Neuron – transmits the afferent impulses to CNS Integration Center – Monosynaptic reflex – simplest reflex arc may be a single synapse between sensory and motor neurons Polysynapse reflex – multiple synapses with chains of interneurons Intregration center – always within CNS Motor Neuron – conducts efferent impulses from the integration center to an efferent organ Effector – muscle fiber or gland cell that responds to the efferent impulses in a characteristic way (contract or secrete) Functional classifications Somatic – skeletal muscles activated Autonomic – visceral effectors (smooth, cardiac muscles, glands) are activated Spinal Reflexes General Info Spinal Reflexes – somatic reflexes mediated by spinal cord, without brain involvement Stretch & Golgi Tendon Reflexes To perform normally: Brain must be continually informed of current muscle state Depends on transmission of information from muscle spindles & Golgi tendon organs (proprioceptors & associated tendons) to cerebellum & cerebral cortex Muscles must have healthy tone Depends on stretch reflexes which monitor changes in muscle length Important for muscle function, posture, locomotion Functional Anatomy of Muscle Spindles (fig ) Structure Intrafusal muscle fibers enclosed in connective tissue capsule Central region - receptive surface of spindle Primary sensory endings (Type Ia fibers) – innervate center of spindle Stimulated by rate & amount of stretch Secondary sensory endings –ends of spindle (type II fibers) Stimulated by degree of stretch Contractile regions of intrafusal muscle fibers are limited to their ends because are only cellular areas that contain actin & myosin Innervated by gamma efferent fibers that arise from small motor neurons in ventral horn of spinal cord Extrafusal muscle fibers – effector fibers of muscle Stimulated by alpha efferent fibers of large alpha motor neurons The Stretch Reflex Occurs in one of two ways Applying external force lengthening entire muscle Activating the gamma motor neurons that stimulate the distal ends of the intrafusal fibers to contract Stretches the middle of spindle (internal) Reciprocal inhibitions – branches of afferent fibers also synapse with interneurons that inhibit motor neurons controlling antagonistics muscles Gamma motor neuron reflex arc – always accompanies the stretch reflex to smooth out action Just alpha response would be jerky Without both, information of muscle length & rate of change would stop flowing from contracting muscle Patellar (knee-jerk) reflex (fig ) – hit knee w/ hammer Stretches quadriceps Stimulates muscle spindles Contractions quadriceps muscles & inhibits hamstrings (deep tendon reflex) All stretch reflexes are monosynaptic & ipsilateral (same side) – one synapse and same side of body Reflex arc deals with more than 2 (polysynaptic) Deep Tendon Reflex (fig ) Polysynaptic reflex that leads to muscle relaxation & lengthening of antagonist in response to contraction Reciprocal Activation – motor neurons in spinal cord circuits supplying the contracting muscle are inhibited & antagonist muscles are activated Causes antagonist to contraction & contracting muscle to relax Golgi tendons help keep contraction smooth The Flexor (withdrawal) Reflex (fig ) Causes withdrawal of threaten part of body (pain stimulus) Crossed Extensor Reflex (fig ) Reflex of ipsilateral withdrawal & contralateral extendsor reflex Superficial Reflexes - gentle cutaneous stimulation Two types Plantar reflex – tests integrity of spinal cord (L4 –S2) Babinski’s sign – great toe dorsiflexes & small toes fan laterally Abdominal reflex – Integrity of spinal cord (T8 – T12) Study Questions Sensory Receptors Ways to classify ( make a chart of each classification & the major types Examples of encapsulated receptors and what they do Somatosensory Receptors Levels of neural integration Cranial Nerves – What are they, where are they, where do they go, what do they do? Spinal Nerves General knowledge of what region innervates what (major plexus we went over in class) Reflex Arc What are they main components What are the major types of reflexes and what happens with each (stretch, flexor, crossed, superficial) – again, charts are good Autonomic Nervous System I Introduction II ANS Anatomy III ANS Physiology IV Homeostatic Imbalances Introduction ANS – provides stability of our internal environment (fig ) Innervates smooth and cardiac muscles & glands Responds by shunting blood, speeds or slowing heart rate, adjusts blood pressure & body temperature, increases or decreases stomach secretions Also called: general visceral motor system & involuntary system Comparison of Somatic and Autonomic Nervous System (fig ) Effectors Somatic stimulates skeletal muscle ANS stimulates smooth & cardiac Efferent Pathways and Ganglia Somatic Motor neurons in CNS & axons extend to muscles Motor fibers - thick, heavily myelinated type A (rapid) ANS - two-neuron chain Preganglionic neuron –in brain or spinal cord Preganglionic axon – synapses w/2nd motor neuron (outside CNS) Thinner, lightly myelinated Ganglionic neuron (autonomic ganglion) – outside CNS Postganglionic axon – to effector organ Thinner, unmyelinated Autonomic ganglia = motor ganglia (have cell bodies) Somatic motor division lacks ganglia entirely: dorsal root ganglia Neurotransmitter Effects Somatic motor neurons release acetylcholine (Ach) Always excitatory & muscle contractions Visceral effector organs by postganglionic autonomic fibers: Norepinephrine (NE) secreted by sympathetic fibers ACh by parasympathetic fibers can be excitation or inhibition Overlap of Somatic and Autonomic Function Nearly all spinal nerves contain both SNS & ANS fibers Work together for homeostasis: ANS responses to SNS ANS Divisions Dual innervation: 2 divisions counterbalance: 1 stimulates, 1 inhibits Role of Parasympathetic Division Resting and Digesting system – keeps energy use down Relaxing after eating – not much happening but digesting Role of Sympathetic Division Fight or Flight System – Excites heart, dilated pupils, change in brain wave patterns During vigorous exercise ANS Anatomy Distinguishing Characteristics (fig ) Unique origin site PSNS – from brain & sacral spinal cord SNS – from the thoracolumbar region of spinal cord Relative lengths of fibers PSNS – long preganglion fibers & short postganglion fibers SNS – other way around Location of ganglia PSNS – located in visceral effector organs SNS – lie close to spinal cord Parasympathetic (Craniosacral) Division (fig ) General Info Preganglionic fibers spring from opposite ends of CNS, brain stem & sacral region of spinal cord Axon reaches extend from CNS to innervation sites Synapse with ganglionic neurons located in terminal or intramural ganglia that are close to or in target organs Short postganglionic axons issue from terminal ganglia & synapse with effector cells in immediate area Cranial Outflow Contain parasympathetic outflow (preganglionic fibers) Oculomotor nerves (III) Accessory oculomotor nuclei – from midbrain, innervate muscles in eye Pupil contraction & focusing of eye Ciliary ganglia – cell bodies within eye Facial nerves (VII) Stimulate secretory activities of large glands in head Nasal glands, lacrimal glands nerve originates in lacrimal nuclei of pons Pterygopalatine ganglia – preganglionic fibers synapse with these ganglia by maxillae Superior salivatory nuclei (of pons) - origin of neurons that stimulate submandibular & sublingual salivary glands Synapse with Submandibular ganglia – Glossopharyngeal nerves (IX) Originate in inferior salivatory nuclei of medulla & synapse in otic ganglia – located just inferior to foramen ovale of skull Activate parotid salivary glands anterior to ears 3 above supply head with nerves Only preganglionic fibers lie within 3 pairs of cranial nerves, postganglionic are in trigeminal (V) Vagus nerves (X) Remainder & major portion of parasympathetic cranial outflow 90% of preganglionic parasympathetic fibers Fibers to neck + contribute to plexus of thoracic & abdominal cavities Serves Cardiac plexus – slow the heart rate Pulmonary plexus – lungs & bronchis Esophageal plexus - esophagus Anterior & Posterior Vagal trunk – trunks reach esophagus and form these trunks Aortic plexus – trunks run down esophagus & fibers run through this plexus, then branch to abdominal viscera Organs: liver, gallbladder, stomach, small intestine, kidneys, pancreas, proximal half of large intestine Rest is from sacral outflow Sacral Outflow From neurons in lateral gray matter of spinal cord segments (S2-S4) Axons run in ventral roots then to ventral rami then form pelvic (splanchnic) nerves, which pass through inferior hypoglastric (pelvic) plexus in pelvic floor Most synapse in intramural ganglia located within the walls of the: distal half of large intestine, urinary bladder, ureters, reproductive organs Sympathetic (Thoracolumbar) Division General Info (fig ) Innervates more organs, so it’s more complex All preganglionic fibers arise from cell bodies of preganglionic neurons in T1-L2 Lateral horns (visceral motor zones) – lots of preganglionic neurons located in the spinal cord Posterolateral to ventral horns = somatic motor Lateral horns are absent in sacral region White ramus communicans Area where preganglionic sympathetic fibers go after leaving spinal c via ventral root Then enter chain (paravertebral) ganglion forming sympathetic trunk or chain: beads on the sides of the column Ganglia are named for location (fig ) Sympathetic fibers only come from thoracic & lumbar regions 23 ganglia in sympathetic chain: 3 c; 11 t; 4l; 4 s; 1coc Once preganglionic axon reaches paravertebral ganglion (fig ) – one of three things happens It synapses with ganglionic neuron within same chain It ascends or descends the sympathetic chain to synapse with another chain ganglion It passes through the chain ganglion & emerges from sympathetic chain without synapsing (to target) Form Splanchnic nerves which synapse with Prevertebral (collateral) ganglia anterior to vertebral column Prevertebral ganglia Are not paired or segmented Only in the abdomen & pelvis NOTE: all sympathetic ganglia are close to spinal cord & postganglionic fibers are longer than preganglionic fibers Pathways with Synapses in a Chain Ganglion (fig 14.6a) After they synapse with chain ganlia Gray rami communicantes – where postganglionic axon with adjoin spinal nerves (in ventral ramus) Travel from there to innervate skin, sweat glands & arrector pili muscles Branch off to innervate smooth muscle on the way NOTE: gray indicates unmyelinated, no assoc w/CNS White myelinated, carry preganglionic axons to sympathetic trunks Sympathetic outflow: T1-L2 segments Rami communicantes are only sympathetic division, no parasympathetic fibers run with spinal nerves Pathways to Head Emerge from 1st 4 segments (T1-T4) Ascend sympathetic chain to synapse w/ganglionic neurons in superior cervical ganglion Runs with cranial nerves & upper spinal nerves Serves skin, blood vessels of head, irises of eyes, inhibit nasal & salivary glands, innervates smooth (tarsal) muscle of upper eyelid Branches to heart Pathways to Thorax (Table 14.2) Originate at T1-T6 Synapse with cervical chain ganglia Postganglionic fibers emerge from middle & inferior cervical ganglia & enter C4-C8 Some innervate heart via cardiac plexus, thyroid gland, most for skin Also directly innervate organs on the way Pathways with Synapses in a Collateral (Prevertebral) Ganglion General Info T5 down synapse in collateral ganglia – enter and leave sympathetic chain without synapsing Form splanchnic nerves – thoracic (greater, lesser & least), lumbar & sacral splanchnic Serves entire abdominopelvic viscera Important ganglia – celiac, superior mesenteric, inferior mesenteric, hypogastric ( all close arteries Follow arteries they are named after Pathway to Abdomen T5-L2 – origin of preganglionic fibers that innervate abdomen ( via thoracic splanchnic nerves Synapse with celiac & superior mesenteric ganglia Serve: stomach, intestines, liver, spleen, kidneys Pathway to Pelvis Originate from T10 to L2 and descend in sympathetic trunk to lumbar & sacral chain ganglia Most go to lumbar & sacral splanchnic nerves ( inferior mesenteric & hypogastric fibers (distal half of large intestines, urinary bladder, pelvic reproductive organs) Mainly inhibit activity Pathways with Synapses in the Adrenal Medulla Synapse with hormone-producing medullary cells of adrenal gland, don’t synapse with celiac ganglia they pass through Medullary cells secrete norepinephrine & epinephrine (also called noradrenaline & adrenaline) into blood Considered equivalent to ganglionic sympathetic neuron Visceral Reflexes (fig ) Visceral sensory neurons – send signals about chemical changes, stretch & irritation of viscera Visceral reflex arcs – same components as somatic reflex arcs *receptor – sensory neuron – integration center – motor neuron –effector* But, with a two-neuron motor chain Enteric nervous system – 3-neuron chains (sensory, motor, intrinsic neurons) within the walls of the gastrointestinal tract only Referred pain (fig 14.8) – pain stimuli arising in viscera are perceived as somatic in origin Similar innervation displaces pain from organ to skin areas Heart attack = pain in arm ANS Physiology Neurotransmitters and Receptors ACh and NE (norepinephrine) – major neurotransmitters released by ANS neurons Classified by what each binds to ACh: released by Cholinergic fibers & binds to Ch receptors All preganglionic axons in the ANS All parasympathetic postganglionic axons at synapses with their effectors NE: released by Adrenergic fibers (from adrenaline) Most sympathetic postganglionic axons Exceptions innervate: sweat glands of skin, some blood vessels with skeletal muscles, external genitalia Only 2 types of Cholinergic Receptors Nicotinic receptors – always stimulatory Found on Motor end plates of skeletal muscles (somatic) All ganglionic neurons (sympathetic & parasy) Hormone producing cells of adrenal medulla Muscarinic receptors – stimulatory or inhibitory Found on Occur on all effector cells stimulated by postganglionic Cholinergic fibers All parasympathetic target organs: eccrine sweat glands & a few blood vessels 2 Classes of Adrenergic Receptors Alpha – usually stimulatory Beta – usually inhibitory Both have subclasses The Effects of Drugs Have to know location of different receptors for drug interactions Interactions of the Autonomic Divisions Antagonistic Interactions - Sympathetic and Parasympathetic Tone Cooperative Effects Unique Roles of the Sympathetic Division Thermoregulatory Responses to Heat Release of Renin from the Kidneys Metabolic Effects Localized Versus Diffuse Effects Control of Autonomic Functioning Brain Stem and Spinal Cord Controls Hypothalamic Controls Cortical Controls Influences of Biofeedback on Autonomic Function Study Questions Comparison of the two systems (learn the table) 2 major divisions – what does each control Anatomy - Distinguishing characteristics between the two divisions Physiology - Know where you would find the different neurotransmitters being released      PAGE \* MERGEFORMAT 36 ‘’› + † ‡ ˘ Ś Ü Ý     P T c d z {  Ą Ú Ű ř ü   0 1 S W x y ƒ … ˛ ł Ă Ç ę î % ) Ž Đ ë î đ " & : ěăŇăŇÁҰҰҰҰҰҰҰҜҰҰҰҰҰҋҋҋҋҋҋҋŇăŇ°ÁŇ°Ň hœ3;hYnwCJOJQJ^JaJ& jŕđhœ3;hv;ŔCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJ hœ3;hWPuCJOJQJ^JaJ hœ3;hv;ŔCJOJQJ^JaJhœ3;hv;ŔaJ&hœ3;hv;Ŕ5CJOJQJ\^JaJ6E\my‘’›°Ö+ u ‡ Ý ö  H d – Ű í  1 ÷ďďďďďĺăáŮŃŃŮŃÉŃÉŃÉŃÉŃÉ & FgdÄw• & FgdÄw• & FgdÄw• &d PĆ˙  & FBgdâ/ř$a$gdžKn1 E y ž ł Ű Z ‘ ­ Ž Đ ń ú   ( ; L h Ł ş ÷ď÷çďďďçďĺăĺŰŰŰŰŰŰăĺÓÓË & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw•: ; L ž Ą psŻłÉÍswŔÄöú§łˇX[\„‡ŐŮ?CĂĆ™­gjÚŢ14đňż"Ŕ"‘%’%ç%ďćŐÄŐłŐłŐłŐłŐłŐłŐćłŐ˘łŐłŐłŐłŐÄՎŐÄŐÄŐÄŐÄճՅt hœ3;h¸ŔCJOJQJ^JaJhœ3;hWPuaJ&hœ3;hv;Ŕ5CJOJQJ\^JaJ hœ3;hYnwCJOJQJ^JaJ hœ3;hWPuCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJ hœ3;hv;ŔCJOJQJ^JaJhœ3;hv;ŔaJ hœ3;h—`CJOJQJ^JaJ-QZŽă.gĽĘď2Ŕ&ImĽˇ˙2w÷ď÷÷ď÷÷çç÷ßßßçď÷÷çÝŐÍĹ & FgdÄw• & FgdÄw• & FgdWPu & FgdÄw• & FgdWPu & FgdÄw• & FgdÄw•wšÎđBH`ŁťÚ0HŚ§ł$Fq—ťŮ ÷ďďçß÷÷ß÷÷ß÷÷ÝŰÝÓËÓÝĂĂ & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw• & FgdWPu & FgdÄw• & FgdÄw• :P{Ç7zˇĎë3b˘Čö!>[ä,Fu÷ďççççß÷ď÷÷ß÷ß××Ďď÷÷ÍĹ & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw• & FgdWPu & FgdÄw• & FgdÄw•u˜™­×ëNlŒłĎë'QlˆŠĆŕú6r”÷őđčŕŘŘŕŘŘŘŘŘŘŘŘŘŘŘčŕŕčŕŘ & FgdÄw• & FgdÄw• & FgdÄw•$a$ & FgdÄw•”ˇřc~Ĺâô!L‘Îá & 2 \ ƒ œ Ŕ Ń !÷ď÷ď÷÷çď÷ßßß÷ßß×××ĎĎß××Ď & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw•!!4!o!–!Ě!˙!0"`"‘"ż"Ŕ"Ô"A#q#Ÿ#î#($J$z$ $°$Â$Ő$÷ďďçß××××÷Ňçßßßßß×Ęçßßß & FgdÄw•gdWPu & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw•Ő$ü$%=%c%o%z%†%‘%’%č%ř%ů%&J&K&c&“&”&Ś&Ó&'÷÷÷ď÷÷÷÷ęĺÝŐŐÍÄŐźŐŐźÍ & F5gd¸Ŕ„8^„8gd¸Ŕ & F5gdWPu$a$gd¸Ŕ$a$gdWPugdWPugdÇ & FgdÄw• & FgdÄw•ç%č%ř%ů%&+&I&J&K&c&“&”&Ś&''+'†'š'›'Ă'‘(­())G)H)ž)­)¸)š)I*J*ďÝÔËďşďşÔşŽÔşŽÔşÔËşďœďˆďˆďwďcďZhœ3;hżQóaJ&hœ3;hWPu5CJOJQJ\^JaJ hœ3;hâ/řCJOJQJ^JaJ& jŕđhœ3;hWPuCJOJQJ^JaJ#hœ3;hWPu>*CJOJQJ^JaJhœ3;h¸Ŕ5\aJ hœ3;h¸ŔCJOJQJ^JaJhœ3;hWPuaJhœ3;h¸ŔaJ#hœ3;hWPu5CJOJQJ^JaJ hœ3;hWPuCJOJQJ^JaJ''+'f'†'‡'›'Ă'(\(‘(­(ž(˙(A)ž)­)š)÷)H*I*T*d*v*÷÷ďçâ÷ççççÝççÝÝÝŘççÝÓÎĆ & F6gd¸Ŕgd¸ŔgdÇgdWPugdWPugdWPu & F5gdWPu & F5gd¸Ŕ$a$gd¸ŔJ*T*c*o*u* *ˇ*Ĺ*ć*ů*ú* ++.+Ž-˛-..$.(.Š.­.„/ˆ/M0N0a0#10172V2÷ăϝϝŠť—ťă†÷†u†a†u†u†u†Mă†u†u&hœ3;hÄw•5CJOJQJ\^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ hœ3;hžKnCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJ#hœ3;hÇ5CJOJQJ^JaJ#hœ3;hžKn5CJOJQJ^JaJ&hœ3;hžKn5CJOJQJ\^JaJ&hœ3;h¸Ŕ5CJOJQJ\^JaJ&hœ3;hÇ5CJOJQJ\^JaJhœ3;hÇaJv* *ˇ*Ć*Ů*ć*ú* ++.+8+b++Š+Ó+ę+#,[,Š,”,÷ďďďęâŃĚÁź´´ŹŹ´ŹŹŹź & F gdÄw• & F gdÄw•gdÇ $ & Fa$gdžKngdÇ & F7&d PĆ˙ gdU & F7gdUgdžKn & F6gdžKn & F6gd¸Ŕ”,Ę,ő, -B--Ÿ-á-$.E.g.˜.Ę.ú.s/Ş/Ň/0M0N0a0m0÷ď÷ďç÷çß×ĎĎçßßçďß÷ÇÇÂgdÇ$a$gdÇ & F gdžKn & F gdžKn & F gdÄw• & F gdžKn & F gdÄw• & F gdÄw•m0ž0é021U1Ş1ß12h2°2ĺ253I3q3~3Ş3Á3ŕ3 4*4L4 4ž4ć4÷÷÷ď÷ď÷çç÷ďâÚÚŇĘĘĘŇĘĘÚŇ & F gdÄw• & F gdÄw• & F gdÄw•gdÇ & F gdžKn & F gdÄw• & F gdÄw•V2g2h2'3(3ô3ő3ľ4ź42585x55÷5ü5T7U7`7a7x7y7Ŕ7Ä7Č7Ë7„8•8÷:ř:v;y;–;—;˜;X<k<==t=w=ďŢďĘďĘďŢďŢďśďŢďĘďĘďĘďިŢďśďŢš‰ďŢďvďš$hœ3;hÇCJEHOJQJ^JaJ h$c3hÇCJOJQJ^JaJh$c3CJOJQJ^JaJhł ŐCJOJQJ^JaJ&hœ3;hÇ5CJOJQJ\^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ hœ3;hžKnCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJ'ć4:5x55Ř5ţ5#6K6–6¤6Ĺ677K7…7ś788R8„8•8Ý8ţ8÷ďęââÚÚââÚÚâÚŇŇÚâÚÚÍĹ˝ & FgdÄw• & FgdÄw•gdÇ & F gdÄw• & F gdÄw• & F gdÄw•gdžKn & F gdžKn & F gdžKnţ8‘9Ę9:6:M:h::ß:ë:?;I;˜;¸;Ô;<.<~<Â<ú<1=÷ď÷÷çâÚÚâŇĘÂş˛ĘĘşşşş & FgdÄw• & FgdÄw• & Fgd$c3 & FgdÄw• & FgdžKn & FgdÄw•gdÇ$a$gdžKn & FgdÄw• & FgdÄw•1=l=š=đ= >>f> >Ę>?W?…?Î?@@@.@R@˜@÷ďççßççÚŇĘš°Ú¨¨Ú  & FgdÄw•$a$gdÇ„h^„hgdźSľ„Đ^„ĐgdźSľ & FgdźSľ & FgdžKn & FgdÄw•gdÇ & FgdÄw• & FgdÄw• & Fgd$c3 & FgdÄw•w=x=š=V?W?„??Î?Ý?@@.@-B2B8B=BťBÄBÉBĐB CCPCiCjCrC‹C“C™CžC D D“D”DŁD¤D“EďŢͼͫͫ͗ƒÍoÍŤÍoÍŤÍoÍŤÍoÍo͍̓Í\Í\Í$hœ3;hÇCJEHú˙OJQJ^JaJ&hœ3;hÇ6CJOJQJ]^JaJ&hœ3;hÇ5CJOJQJ\^JaJ&hœ3;hÄw•5CJOJQJ\^JaJ hœ3;hźSľCJOJQJ^JaJ hœ3;hžKnCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJ h$c3hÇCJOJQJ^JaJ h$c3h$c3CJOJQJ^JaJ$˜@ć@A7AxAüA BB-BNBlB‹B¤BťB÷B CjC‹CĄC D D DlD÷ďď÷÷ďďęâÚÚŇŇâŇŇŇâŇĘĘę$a$gdÇ & FgdÄw• & FgdÄw• & FgdÄw•gdÇ & FgdÄw• & FgdÄw•lDŠDĽDÇDęDEJElE{E EäE˙E:FgFžFĆFGYY˛Y÷ď÷ç÷ßď÷÷×ď÷÷÷ĎĘÂÂş˛ & Fgd˜5ă & FgdÄw• & FgdÄw•gdÇ$a$gdÄw• & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw• & FgdÄw•˛YĎYZAZnZ‘ZłZÂZüZ>[b[[Ť[ď[\Œ\Ť\ş\Ď\ß\ ]J]m]z]˘]Ě]úňňňęňęâââÚęâÚâÚÚÚęââÚÚâÚ & F gdÄw• & F gdÄw• & F gdÄw• & F gdÄw•gdÇĚ]ý]^>^‘^¨^Ř^__J_“_Í_ú_#`h`Ž`°`Ń`aFa\aaÉa÷ď÷÷çďďâÚÚÚŇŇĘÂĘĘŇĘŇĘŇ & F!gdÄw• & F!gdÄw• & F!gdÄw• & F!gdÄw•gdÇ & F gdÄw• & F gdÄw• & F gdÄw•ÉaűabHbobĄbÓbc!ccc™c­cćc d—dŁdâdeIege˘e÷ďďççßď×ĎĎ×ĎĎĎĘÂşşÂ˛ & F"gdÄw• & F9gdU & F"gdÄw•gdÇ & F!gdÄw• & F!gdÄw• & F!gd$c3 & F!gdÄw• & F!gdÄw• & F!gdÄw•Şb­bŽbÓbţb˙bccc‚c§cŤcÇeËešgżgűnoŠo­o˛ołošqÝqâqäqîrňáĐżŤżšżŤżšżšżšżšż†r†ż`N`ż#hœ3;hźSľ5CJOJQJ^JaJ#hœ3;hÇ5CJOJQJ^JaJ&hœ3;hźSľ5CJOJQJ\^JaJ&hœ3;hÇ5CJOJQJ\^JaJ hœ3;hźSľCJOJQJ^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJ h$c3hÇCJOJQJ^JaJ h$c3h$c3CJOJQJ^JaJh$c3CJOJQJ^JaJ˘eÎeßeóe8fyfŔfífg8gggÁgăgďg hzhŞh˝hŰhëhţh:i[igi•iłi÷ďďďď÷ďďď÷ç÷÷÷ďßßďßß÷ďď÷ďç & F"gdÄw• & F"gdÄw• & F"gdÄw• & F"gdÄw•łiÖij^jjÎjk*k?k‹kĂkţkl§lĘl m,mGmĎmůmnPn†nÄnŮn÷ďďď÷ďďç÷÷ďď÷çßç÷ďď××Ďďď & F"gdÄw• & F"gdÄw• & F#gdÄw• & F"gdÄw• & F"gdÄw• & F"gdÄw•Ůnoo4o_oŠo‹o´opp6pZpŠp°pŔpßpűp>q\qsqšqäq÷ďçççŢŮŃŃÉÁÁÉÉŃÉÁÁÉÁŮ & F$gdÄw• & F$gdÄw• & F$gdÄw•gdÇ„Đ^„ĐgdÇ & F"gdÄw• & F"gdÄw• & F"gd˜5ăäq!rrrľrssss&s=swsÁst`tatntŒtŤtýtuu1u÷÷÷ćÖŃĚÄźźźźźĚÄźźźźĚÄ & F8gdU$a$gd˜5ăgd˜5ăgdMlŻ$&d PĆ˙ a$gdMlŻ & F$&d PĆ˙ gdMlŻ & F$gdÄw•îrssss&s`tntu1uâuăuűukvƒv™všvŤv˜w´wMxRxĐxŮxĄzďŢŐďĚŢĚŢĚŢĂşŚ’Ś‰şxdxSxAx#hœ3;hÇ5CJOJQJ^JaJ hœ3;h9cCJOJQJ^JaJ&hœ3;hÇ6CJOJQJ]^JaJ hœ3;hÇCJOJQJ^JaJhœ3;hO(°aJ&hœ3;h9c5CJOJQJ\^JaJ&hœ3;hÇ5CJOJQJ\^JaJhœ3;hÇaJhœ3;hÄw•aJhœ3;h˜5ăaJhœ3;hMlŻaJ hœ3;h˜5ăCJOJQJ^JaJ hœ3;hMlŻCJOJQJ^JaJ1u^u´uĂuĘuÔuâuűu vv+vSvkvƒv™všvŤvŘvw w÷÷ďďďďęâââââÚÉÁśąŠŠ & F&gdÄw•gdÇ $ & Fa$gdO(° & FgdO(° & F%&d PĆ˙ gdÄw• & F%gd9c & F%gdÄw•gdÇ & F8gdU & F8gdU wDw˜wx;xTx˜xĐxŃxŮxâx yƒy˛y×y÷y zCzpzŮzçz#{…{÷÷÷÷ď÷÷çß×ĎĎĎĎ×ĎÇżżÇżż & F>gdU & F>gdU & F>gdU & F>gdU$a$gd9c$a$gdÇ & F&gdÄw• & F&gdÄw•ĄzŻz||š|ž|~~~~5~n~o~‹~ľ~ő~ů~9=ak€€Ă€Ę€[yů‚m‚r‚}ƒ‚ƒ?„C„Ň…Ů…Ú…Ţ…ę…†‡†ˆ†¸†Ŕ†Ă†Ń†Ű†Ţ†3ˆOˆ‰’‰lŠíÜËÜËÜš°ŚÜËÜËÜËÜËÜËÜËÜíܕÜËÜËÜËÜËÜËÜËÜËÜËÜíÜËÜËÜ•Ü•Ü hœ3;h(\HCJOJQJ^JaJhœ3;hÇ5aJhœ3;hÇaJhœ3;h(\HaJhœ3;h9caJ hœ3;h9cCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJ#hœ3;hÇ6CJOJQJ^JaJ5…{›{Ů{||U|h|‹| |Ó|Ţ|ý|Ť}Í}~~~5~o~„~÷ď÷çďďďçďď÷÷ď÷×ĸ°° & F*gd9c  & F„h^„hgdÄw•$ & F„8„0ý^„8`„0ýa$gd9c & F„8„0ý^„8`„0ýgd9c & F>gdU & F>gdU & F>gdU„~ľ~ß~/ŒŁŐ€€P€€€Ÿ€Ě€í€RyŞ´Ü‚N‚“‚Ü‚÷ď÷÷çßßßďďď××ď×ďĎďď××ďßď & F*gd(\H & F*gdÄw• & F*gdÄw• & F*gdÄw• & F*gdÄw• & F*gd9c܂ű‚ ƒgƒ„ƒÜƒ9„t„‘„˛„ŕ„…A…„…˝…†‡†Ň†‡1‡d‡œ‡Ů‡ß‡ˆ3ˆ÷ďďďççßďďççççç×÷ď×÷÷ďď÷ďď & F*gd9c & F*gd9c & F*gdÄw• & F*gdÄw• & F*gdÄw•3ˆwˆťˆĐˆűˆ)‰Q‰„‰Ë‰ý‰uŠ‚ŠšŠöŠ ‹C‹y‹ž‹Í‹Œ0ŒUŒŽŒĂŒóŒ÷ďçď÷÷ďß÷÷ď÷×ĎĎ×ĎĎ×Ďď÷÷× & F*gdÄw• & F*gdÄw• & F*gd(\H & F*gdÄw• & F*gdÄw• & F*gdÄw•lŠmŠÁŠÚŠž‹Ÿ‹ş‹Ě‹4ŒSŒ05äĺ"Ž#Ž$Ž?ŽüŽ˙Ž#’’&”6”’”Ÿ”E•W•¨—ą— ˜˜~˜˜Ä˜Đ˜ó˜ěŰĘŰĘŰĘŰĘŰĘŰĘŰš°§Ű–ŰˆŰ–ŰwŰwŰwۖŰwŰwŰwŰ hœ3;hátCJOJQJ^JaJhřcĺCJOJQJ^JaJ hœ3;h˛[CJOJQJ^JaJhœ3;hÇaJhœ3;h(\HaJ hœ3;h9cCJOJQJ^JaJ hœ3;h(\HCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ&óŒ7zŞĺ#Ž$Ž?ŽbŽŽ¤ŽÔŽäŽCxŠá$÷ďç÷ßßÔÔĎÇżżÇżˇŻŻ§§ & F'gdÄw• & F'gdÄw• & F'gdÄw• & F'gdÄw• & F'gdÄw•gdÇ $ & Fa$gd9c & F*gd(\H & F*gdÄw• & F*gdÄw• & F*gdÄw•$Ay›ë-‘k‘w‘ş‘ě‘’@’m’Ö’ö’3“}“÷“7”M”`” ”ś”đ”÷÷ďççßß××çß×ĎĎ×ß××ß×Ç×Ď & F'gdát & F'gdÄw• & F'gdÄw• & F'gdÄw• & F'gdÄw• & F'gdÄw• & F'gdÄw•đ”•X•f•¨•ž•–@–O–s–ƒ–°–Ó–t—‰—ł—Í—÷— ˜s˜Ż˜ó˜ô˜÷÷ď÷÷çßßďď×ĎççßďďďÇÇÇż$a$gdÇ & F'gdát & F'gdÄw• & F'gdát & F'gdÄw• & F'gdÄw• & F'gdÄw• & F'gdÄw•ó˜ ™™™š™Ľ™˝™OšRšwš—šžšŸšĂšÄš› ›P›Q›h›i›y›z›œ››ž›ż›œ œiœmœ2>Ÿ˘˙ž?ĄFĄ×ĄÝĄ0˘ěŰÇŰě۶ۨ۶۶۶۶۶۶۶۶ۗۗۆۗۗۗŰrŰ&hœ3;hÇ6CJOJQJ]^JaJ hœ3;hátCJOJQJ^JaJ hœ3;h˛[CJOJQJ^JaJhřcĺCJOJQJ^JaJ hœ3;h(\HCJOJQJ^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJ&hœ3;hÇ5CJOJQJ\^JaJ(ô˜™ ™J™u™Ľ™˝™ř™EšŸšÄš ›Q›i›z››ż›ő›2œTœńœ÷îćććáŮŮŃÉÁÁÁÉÁÁŮšąš & F.gdÄw• & F.gd˛[ & F.gd(\H & F.gd(\H & F.gd(\H & F.gdÄw•gdÇ & F-gdÄw• ĆĐgdÇ$a$gdÇńœ?”žOžXžŸžĺž3ŸiŸÎŸýŸ+ 2 “ Ë ,Ą-ĄIĄĄÇĄ÷÷ďçß×÷÷÷÷ď÷ď÷ďďďĂť×÷ & F.gdÄw• & F Ć „ „˜ţ^„ `„˜ţgdÇ & F.gdÄw• & F.gd˛[ & F.gd˛[ & F.gdÄw• & F.gdÄw•ÇĄřĄ˘•˘ŁŁŁPŁlŁĚŁóŁ¤d¤p¤Œ¤­¤Ľ.ĽuĽĂĽ÷ď÷÷ďă×ËĂĂËťťłŤŤłŤŤ & F0gdÄw• & F0gdÄw• & F0gdÄw• & F/gdÄw• & F Ć gdÇ $ ĆĐa$gd9c & F ĆgdÇ & F.gdÄw• & F.gdÄw•0˘1˘B˘C˘ŁPŁďĽđĽ„ŚÔŚ"§#§$§<§¸§š§Ö§ę§ó§ő§,Š/Š)ŹíÜíÜČܴܢܢŽČ˘Č…ymy\K\ hœ3;h˛[CJOJQJ^JaJ hœ3;h9cCJOJQJ^JaJhœ3;h˛[5\aJhœ3;h9c5\aJhœ3;h9caJ&hœ3;h‰}^5CJOJQJ\^JaJ#hœ3;hÇCJOJQJ\^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ&hœ3;hÇ5CJOJQJ\^JaJ hœ3;hÇCJOJQJ^JaJ$hœ3;hÇCJEHOJQJ^JaJĂĽŚjŚ…ŚÔŚ#§$§<§X§d§x§§¸§š§Ö§ő§Q¨b¨Ł¨÷÷ďççßßÔÉÉÉÉßžśŽŽŚ & F+gd9c & F+gd9c & Fgd9c $ & Fa$gd9c $ & F(a$gdÄw• $ & F(a$gdÄw•$a$gdÇ & F0gdÄw• & F0gdÄw• & F0gdÄw•Ł¨ż¨Š1ŠMŠwŠ˘ŠĘŠŕŠŞ5ŞXŞjŞ‹ŞÖŞűŞŤJŤyŤŤŇŤÝŤŹAŹvŹ÷ď÷ďďçßßďçß×çßßďççďç÷ďĎ÷ & F+gd9c & F+gd9c & F+gd9c & F+gd9c & F+gd9c & F+gd9c)Ź*ŹJŹRŹ_Ź`Źš°›°°°˜´Ż´CˇFˇˆˇŒˇ§¸Š¸Č¸ť&ť'ť(ťěŰĘۭۜĄŰŰŰŰ|hVMD8hœ3;h˘v•5\aJhœ3;h‰}^aJhœ3;h˘v•aJ#hœ3;hÇCJOJQJ\^JaJ&hœ3;hÇ5CJOJQJ\^JaJ&hœ3;h9c5CJOJQJ\^JaJ hœ3;hĺ,čCJOJQJ^JaJhœ3;h9c5\aJhœ3;h9caJ& jŕđhœ3;h9cCJOJQJ^JaJ hœ3;hátCJOJQJ^JaJ hœ3;h9cCJOJQJ^JaJ&hœ3;h9c6CJOJQJ]^JaJvŹŹéŹóŹ&­/­g­r­Ä­é­Ž‡ŽłŽŻZŻƒŻšŻÔŻ°K°l°š°°°ô°1ą÷ď÷ď÷ď÷ďç÷÷ç÷ď÷ď÷÷ďďß×ĎĎ & F,gd9c & Fgd9c & F+gd9c & F+gd9c & F+gd9c & F+gd9c1ąyąĂąúą+˛7˛Z˛m˛ƒ˛Ç˛Ü˛ł(ł>łył˝łŘłG´^´“´Ř´ľ4ľfľľÇľ÷÷ďďç÷÷ďßďßďßßç÷ďďßßßß×÷ď & F,gd9c & F,gd9c & F,gd9c & F,gd9c & F,gd9cÇľśMśžśĚśçśˇ6ˇ~ˇËˇŰˇůˇ7¸§¸¨¸Š¸Č¸ç¸nš{š‚š÷ďď÷ďďďççß×ĎĎÇÇÇżˇżˇ & F)gdÄw• & F)gdÄw•$a$gdÇ & F,gd9c & F,gd9c & F,gd9c & F,gdĺ,č & F,gd9c & F,gd9c‚šŇš%şnş~şť'ť(ť1ťOť‰ťˇť¸ťÉťúť&źlź‰źĽźÖź÷÷ďäŮÔĚĚÄÄÄźź´´´´Ź´ & FgdB\– & F8gdU$a$gdB\– & F8gdU$a$gdátgd‰}^ $ & F)a$gdÄw• $ & F)a$gdÄw• & F)gdÄw• & F)gdÄw•(ť1ťśťˇťÉť&źĽźŐź˝˝˝˝1˝ž˝Ĺ˝Ć˝ß˝ő˝ö˝Wž—ž˛ž´ž7żŔ÷ćŐĚŔśŹ˘›“‚÷ć‚vlblćNDćNćhœ3;h‰}^5aJ&hœ3;h‰}^5CJOJQJ\^JaJhœ3;hB\–]aJhœ3;h‰}^]aJhœ3;hB\–6]aJ hœ3;hB\–CJOJQJ^JaJhřcĺhřcĺ5 hřcĺ5aJhřcĺhřcĺ5aJhœ3;hÂ^15aJhœ3;hB\–5aJhœ3;hB\–5]aJhœ3;hB\–aJ hœ3;hÂ^1CJOJQJ^JaJ hœ3;h‰}^CJOJQJ^JaJhœ3;h‰}^aJÖź˝˝1˝k˝ž˝Ĺ˝Ć˝ö˝.žWž—ž˛žłžÁžÓžĺžúž żż%ż÷îćŢŢŢÖÖŢŢŢÖŃÉÁÁÁÁ°° & F;&d PĆ˙ gdU & F;gdU$a$gdâ/řgd‰}^ & Fgdát & F8gdU$a$gdát„Đ^„ĐgdB\– & F8gdřcĺ%ż7żCżżŠżśżôżţżLŔƒŔÇŔďŔ˙ŔÁ(ÁHÁĄÁÁÁĘÁîÁ"ÂGƒšÂáÂ÷ďçßçßß××Ďçßßßßçďçßßçßßß & F:gdU & F:gdU & F:gdU & F:gdU & F:gdU$a$gd‰}^Ŕ ŔUŔYŔçŔčŔěŔíŔHÁIÁYÁ\Á"ÂAÂDÂEÂĂĂéÄňÄ ĹĹĹĹOĹPĹŞĹŤĹwĆ{ĆëĆďĆÇÇĽÇŚÇîÇ ČČČLČVČbČcȋșțȜȶȷČËČĚČÜČďŢďŢďÍďŢďŢďŢďÍďŢďŢďŢÍŢÍŢÍޚިŢďŢšŢďŢďޗކިކ¨†Ţ¨Ţ¨Ţ hœ3;hŘN5CJOJQJ^JaJ hœ3;hŰ(?CJOJQJ^JaJ hœ3;hŽÍCJOJQJ^JaJ& jŕđhœ3;h‰}^CJOJQJ^JaJ hœ3;h‰sCJOJQJ^JaJ hœ3;h‰}^CJOJQJ^JaJ hœ3;h˝ fCJOJQJ^JaJ4áÂôÂJĂQĂwĂŠĂéĂ,Ä2ÄtēķÄôÄ Ĺ\ŅĹÁĹÉĹöĹ"Ć[ƢĆŐĆćĆÇ÷ďďçßßßďççď÷ďçďççßßß×ßĎß & F:gdU & F:gdŽÍ & F:gdU & F:gdU & F:gdU & F:gdUÇKÇcǝÇîÇCČcȡČĚČ É6ÉDÉmɕɲÉęÉóÉĘtʈʠĘŃĘË÷ďççß×ĎĎ×ĎĎ×ĎÇżżďďżďďď & F:gdU & F:gdU & F:gdŽÍ & F:gdŽÍ & F:gdŰ(? & F:gdU & F:gdU & F:gdUÜČŕČ É É4É5É6ÉCÉDÉKÉNÉlÉmɞɰÉ+ĘIĘFËPˍˎË*Ě<ĚsĚxĚy̆̊ĚéĚěĚÍÍ#Í:ÍŤÍŹÍŔÍÁÍďŢÍŢźÍŢÍŢďŢÍޫޚޫކŢďŢďŤŢŤŢďŢuޚކŢlhœ3;h‰}^aJ hœ3;hUCJOJQJ^JaJ& jŕđhœ3;h‰}^CJOJQJ^JaJ hœ3;hB$CJOJQJ^JaJ hœ3;h˝ fCJOJQJ^JaJ hœ3;hŰ(?CJOJQJ^JaJ hœ3;hŽÍCJOJQJ^JaJ hœ3;h‰}^CJOJQJ^JaJ hœ3;hŘN5CJOJQJ^JaJ%Ë>ËRËgËzËÂËđË*ĚdĚ­ĚŰĚÍ<Í\ÍÍŔÍÁÍÂÍŇÍ÷ďç÷÷ççßßç×ĎÇÇÇąŹ§gd‰}^gdU$d &d NĆ˙ PĆ˙ gd‰}^ & F:gdŘN5 & F:gdŘN5 & F:gdU & F:gdŘN5 & F:gdU & F:gdU & F:gdUÁÍÂÍŃÍŇÍŮÍ/ΰÎĎ&ĎgπφχψϭĎöĐ÷Đ ŃѬџŇďĺŰɸ§–¸–§¸–„–{q]Q@ hœ3;hÇCJOJQJ^JaJhœ3;hÇ5\aJ&hœ3;hÇ5CJOJQJ\^JaJhœ3;hÇ\aJhœ3;hÇaJhœ3;h‰}^aJhœ3;h˝ faJ hœ3;h‰}^CJOJQJ^JaJ hœ3;hŽÍCJOJQJ^JaJ hœ3;hŽ,CJOJQJ^JaJ#hœ3;hŽ,5CJOJQJ^JaJhœ3;h‰}^\aJhœ3;hőOq\aJ hœ3;hMlŻCJOJQJ^JaJŇÍÚÍ/Î^ΘΰÎěÎĎ&ĎJχψϭĎěĎĐNЇĐĹĐőĐöĐ ŃŃ,ŃúňňęňââęââÚÚŇĘŇŇŇŇúĹ˝˝ & F2gdÄw•gd˝ f & F=gdU & F=gdU & Fgd˝ f & F8gdU & F8gdŽÍ & F8gdŽ,gd‰}^,ŃRŃuŃvŃєѬѶŃëŃŇ_ŇfŇtŇşŇËŇ@Ó`ÓsÓˇÓÁÓ÷ćáŮÎÎĆžśžĆžŽžŽĆžžŚ & F2gdÄw• & F2gdÄw• & F1gdÄw• & F2gdÄw• & F2gdÄw• $ & F2a$gdÄw•$a$gdÇgdÇ & F2&d PĆ˙ gdÄw• & F2gdÄw•ŸŇ˘Ň¸ŇšŇLÓ^ÓÁÓ×ÓřÓůÓĂÔĚÔÜÔÝÔëÔďÔŐŐuŐvŐ8×C×Y×]×`×cץע×Č×É× Ů Ů8Ů9ŮOŮmŮnٝŮŔŮÁŮďŢďŢĘޚ޼ŢďŢďŢďŢďŢďŢďޔď”޼޼ކu†ud†uކ hřcĺhřcĺCJOJQJ^JaJ hřcĺhÇCJOJQJ^JaJhřcĺCJOJQJ^JaJ hœ3;hUCJOJQJ^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ hœ3;h|7kCJOJQJ^JaJ&hœ3;hÇ6CJOJQJ]^JaJ hœ3;hÇCJOJQJ^JaJ hœ3;h†8ŃCJOJQJ^JaJ'ÁÓŘÓčÓPÔhԕÔÝÔŐvՙշŐäŐ<Ök֗ÖÄÖ×D×e×{׾×Ó× Ř÷ďçççß×××çďçďççççĎÇżżÇ & F@gdU & F?gdU & F2gd<í & F2gd†8Ń & F2gd†8Ń & F2gdÄw• & F2gdÄw• & F2gdÄw• Ř/ŘT؁ŘŃŘâŘ Ů9ŮnٝŮÁŮçŮ ÚDÚ|ڌڶÚÚÚęÚŰEŰmۘŰŃŰ÷÷÷÷ďççççß××ĎĎß××ß×ÇÇ×× & F?gdřcĺ & F?gd>$Ř & F?gdřcĺ & F?gdřcĺ & F2gdřcĺ & F?gdU & FAgdUÁŮćŮçŮ Ú ÚCÚDÚ{Ú|ڋڌڵڶÚĆÚÇÚÚÚéÚęÚŰŰDŰEŰlŰmۗۘŰŃŰŘŰŮۓܔÜÝÝHÝ\ÝgÝkÝŔÝÄÝŢ Ţ2Ţ3ŢoތŢ3ß4ߊŕďáďáďÓďáÂáďáďŽďÂáďáďáďáďáď®ŒÂ{ŒŒ®®Œ® hœ3;h|7kCJOJQJ^JaJ hœ3;h†8ŃCJOJQJ^JaJ hœ3;h<íCJOJQJ^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJh>$ŘCJOJQJ^JaJhřcĺCJOJQJ^JaJ hřcĺhÇCJOJQJ^JaJ/ŃŰŮŰIÜpܡÜËÜÝHÝ^ÝĽÝŮÝéÝŢAŢfލިŢßŢß*ß^ß÷ďçßßç×ß×ĎĎÇÇżçĎĎÇϡ & F2gd>$Ř & F2gdÄw• & F2gdÄw• & F2gdÄw• & F2gd†8Ń & F2gdÄw• & F2gdÄw• & F2gd<í & F2gd<í^ßiߌߪßŐß@ŕfŕŠŕ‹ŕ˘ŕ¸ŕŐŕřŕ+ámáƒáŹá÷ďçßçç×Ç´Ź ”ŒŒŒŒ & FgdÁd˜ & F Ć gdÁd˜ & F Ć gdÁd˜ & Fgd<í$ & F„8„0ý^„8`„0ýa$gdU & F„8„0ý^„8`„0ýgdU & F2gdÁd˜ & F2gdÄw• & F2gdÄw• & F2gdÄw• & F2gdÄw•Šŕ‹ŕ˘ŕˇŕ¸ŕÔŕŻâÂâĂâÓâÔâÜâÝâíâîâ'ă(ăIăJă€ă˘ăŁă¤ăŻăłăóäôäĺĺMĺNĺ‹ĺŒĺœĺĺťĺźĺÂĺĂĺćĺçĺ3ć5ćWćuć…ć÷îÝĚݻݻݧݻݻݻݻݻݖݖݖݖݖݖݖݖݖݖݖݖ‚&hœ3;hőBţ5CJOJQJ\^JaJ hœ3;hőBţCJOJQJ^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ hœ3;hÁd˜CJOJQJ^JaJ hœ3;h<íCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJhœ3;hÇaJhœ3;hUaJ-ŹáĐáâ8âaâ“ââŻâĂâÝâîâ(ăJă€ă¤ăĎăŰăää/ä÷ďďďăă×÷÷×ËËËᯧŻ§ & FgdőBţ & FgdőBţ & F Ć gdőBţ & FgdőBţ & F Ć gdÁd˜ & F Ć gdÁd˜ & F Ć@ gdÁd˜ & FgdÁd˜ & FgdÁd˜/äSägää­äĺäôäĺ>ĺŒĺĺĂĺçĺţĺ%ćuć‡ćśćÜć ç÷ďçççß×Ë××÷÷ż×׳§§§  & F ¤¤gdőBţ  & F¤¤gdőBţ & F Ć@ gdőBţ & F ĆpgdőBţ & FgdőBţ & FgdőBţ & FgdÁd˜ & FgdÁd˜ & FgdőBţ çBç^ç_çuçç”çŤçĘçýçč0č_čjčuč†čłčÉčóăĐĐĹşŻş§§Ÿ—Ÿ—Ÿ—Ÿ & F3gdÄw• & F3gdÄw• & F3gdÄw• $ & F3a$gdÄw• $ & F3a$gdÄw• $ & F3a$gdÄw•$ & F„8„0ý^„8`„0ýa$gdÁd˜ & F Ć ¤¤gd>$Ř  & F ¤¤gdőBţ…ć]ç^ç`çuçĘçčžč“ę”ę­ęŽęGë]ë^ë_ëkë€ëˇí¸íůíěŘĎĆşŠ•Š•Š•ŠěmcQşEşhœ3;hőBţ5\aJ#hœ3;hÇCJOJQJ\^JaJhœ3;hőBţ5aJ&hœ3;h†8Ń5CJOJQJ\^JaJ&hœ3;hőBţ5CJOJQJ\^JaJ& jŕđhœ3;hÇCJOJQJ^JaJ hœ3;hÇCJOJQJ^JaJhœ3;hÇ5\aJhœ3;hÇaJhœ3;hÁd˜aJ&h>$ŘhÇ5CJOJQJ\^JaJ&hœ3;hÇ5CJOJQJ\^JaJÉčßčéé.ésééŃéĺé1ęEę‡ęŸęŘę˙ęFëGë_ëkë€ë÷ď÷çß×ç×ç×çßß××ÎĆžą & F4 Ć ĐgdőBţ & F4gdőBţ$a$gd†8Ń„h^„hgdÇ & F3gdÄw• & F3gdÄw• & F3gdÄw• & F3gdÄw• & F3gdÄw•€ëšëĐëčëěě4ěuě–ěÁěńěí/íKíRídíˆí¸íůíúíűí î÷÷ď÷ď÷÷÷çççççß×ĎĎĎĹŔťgd‰}^gd‰}^ &d PĆ˙  & F1gdőBţ & F1gdőBţ & F1gdőBţ & F4gdÄw• & F4gdÄw• & F4gdÄw•ůíúíűí î î$îŚî§î˝îYďZďnďŽďżďŢď đ đ$đHđˆđ‰đÚđçđxńľńźńňďŢŐĚşŠďşŠď—ď—ďŠďŠďŠ„y„hWh hœ3;h‹ CJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJhœ3;h‹ CJaJhœ3;h#sVCJaJh>$ŘCJaJ#hœ3;hőBţ5CJOJQJ^JaJ hœ3;h‰}^CJOJQJ^JaJ#hœ3;h‰}^5CJOJQJ^JaJhœ3;h‰}^aJhœ3;hâ/řaJ hœ3;hâ/řCJOJQJ^JaJ hœ3;hőBţCJOJQJ^JaJ î$î9îZîƒîŚî§î˝îěî0ďYďZďnď~ď—ď­ďŽďżďŢď đ$đGđHđzđúňňňňéúňňňääÜÜÜúúÔÔĚÔéú & F<gdőBţ & F<gd‰}^ & F<gdőBţgdőBţ„Đ^„ĐgdőBţ & F<gdUgd‰}^zđ‡đˆđ¤đ˝đÚđńđńńBńcńdńxńńžńéńňOňsň™ňÄňúřóëëëëëëŰëóÓËĂĂÝÝ & FCgd#sV & FCgd#sV & FCgd#sV & FCgd#sV$&d PĆ˙ a$gd#sV$a$gd#sVgd#sVgd‰}^ňňŐňŘňäňĺňôôşô˝ôÎôŃô'ő‘őŐőÖőîőöööö'ö*öPöRöföjöĽöŞöśöËöâ÷ő÷ö÷ý÷ř%ř)řTřXř“ř—řů"ů/ů0ůHůIůJůKů[ů\ů ůěŰĘŰĘŰĘŰĘŰĘۚۼ‘ŰĘŰĘŰĘŰĘŰĘŰĘŰĘۈĘŰĘŰĘŰĘŰĘŰĘŰĘŰĘۑˆĘŰhœ3;h#sVaJ&hœ3;h#sV5CJOJQJ\^JaJ&hœ3;h‹ 5CJOJQJ\^JaJ h>$Řh#sVCJOJQJ^JaJ hœ3;h‹ CJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJ&hœ3;h#sV6CJOJQJ]^JaJ4ÄňćňóóIóeó–ó´óĆóîó÷ó6ôEôdôô–ôŕôő'őpő’őŐőÖő÷ďďççççßďď×ßďďď×ĎßÇßďż$a$gd#sV & FCgd>$Ř & FCgd#sV & FCgd‹  & FCgd#sV & FCgd#sV & FCgd#sV & FCgd‹ Öőîőýő2öHöƒöŹöĚöćö˙ö ÷÷5÷_÷i÷‡÷Ś÷ľ÷á÷â÷ő÷÷ďçďçďß×Ďß××Ďß××ß×Ćł$ & F„8„0ý^„8`„0ýa$gd‹ „ź^„źgd#sV & FDgd‹  & FDgd#sV & FDgd#sV & FDgd‹  & FDgd#sV$a$gd#sVő÷ö÷řLř„řŕř ůJůKůLů[ů\ů˜ů úú<ú\ú‡úľúęúűúňňňňęňâÚŐúÍĹÍĹ˝˝ľľĹ & FFgd#sV & FFgd#sV & FFgd#sV & FFgd#sVgd#sV$a$gd#sV$a$gd#sV & FEgd#sV & FEgd‹ gd‹  ůĄůűű!ű%űŻűłű˙†˙06Ęéęëý /řü)6R S Ŕ Á \ j  † ťŔxyz˘ĂČĐÓěŰĘŰĘŰĘŰĘŰśŰĘŰĘŰĘۨ۔ŰĘŰśŰěŰěŰśŰĘŰĘ۔€”ŰoŰo hœ3;hMlŻCJOJQJ^JaJ&hœ3;hMlŻ5CJOJQJ\^JaJ&hœ3;h#sV5CJOJQJ\^JaJh>$ŘCJOJQJ^JaJ&hœ3;h#sV6CJOJQJ]^JaJ hœ3;h‹ CJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJ& jŕđhœ3;h#sVCJOJQJ^JaJ+ű?ű‚űŚűĆűôű üIü{ü üŞü ýýAýSý¤ýţ ţQţ™ţşţîţ*˙O˙ˆ˙÷ďç÷ďďďďçßďç×ç×ďďççďçççĎ & FFgd#sV & FFgd#sV & FFgd#sV & FFgd#sV & FFgd#sV & FFgd‹ ˆ˙č˙  @j§ęë7iĽźć2J‚˘&Ba”÷÷÷÷ď÷÷ćŢď÷Ö÷ÖÖÖ÷Ö÷ÖÖ÷÷Ö & FFgd#sV & FFgd#sV„p^„pgd‹  & FFgd#sV & FFgd#sV”Şžâ5n–˘É8K|ć&[ˆ™§Ć÷ďďď÷ďďç÷ďßç÷÷ďç÷×÷ßç÷Ňgd‹  & FFgd‹  & FFgd#sV & FFgd#sV & FFgd#sV & FFgd#sV/MhˇÖţ7\‘˘Ü > _ ~ Í % \ ˛  ( k Š ÷÷ďççďçßßßß×Ď×Ď×ĎĎ×ĎĎçßß & FGgd#sV & FGgd#sV & FGgd#sV & FGgd#sV & FGgd#sV$a$gd#sVŠ é @ o ˆ Á ě ) r — Ô F{ĹńgÂá>T‚ňŠ÷ďď÷ďçďççďçďçďçççß×÷÷÷ďďď & FGgd#sV & FGgd#sV & FGgd#sV & FGgd#sV & FGgd#sVŠÄŕű3cĂ&xy˘˛ÁĎ;—ÁíDy‰˝Ú÷ď÷÷ď÷÷÷ççß×ĎÇÇÇÇÇÇÇĎÇÇ & FHgd#sV & FHgd#sV & FHgd#sV & FHgd#sV$a$gd#sV & FGgd#sV & FGgd#sVÚ _”ŞĘß 4@h­ŐÖęCsšóP{Ťž÷÷ďçßď÷÷ď÷÷ßÚŇçßßßßçßßçß & FHgd#sVgd#sV & FHgd#sV & FHgd#sV & FHgd#sV & FHgd#sVÓŁŠßŕÄĹ!"#B÷ú)*+:;Nká!ď!Ł"Ś"˛"Í"Ń"C#G#ďŢďĘďĘśďŢďŢďޙ™ďŢď™~l~ďŢď^h>$ŘCJOJQJ^JaJ#hœ3;hMlŻ5CJOJQJ^JaJ#hœ3;h#sV5CJOJQJ^JaJhœ3;hMlŻaJhœ3;h#sVaJ&hœ3;hMlŻ5CJOJQJ\^JaJ&hœ3;h#sV5CJOJQJ\^JaJ& jŕđhœ3;h#sVCJOJQJ^JaJ hœ3;hMlŻCJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJžô2bˆ°ćö!"B[›đPŐű)÷ď÷ç÷ď÷ď÷âÚŇĘÂşÂÂŇĘĘĘ & FIgdMlŻ & FIgd#sV & FIgd#sV & FIgd#sV$a$gd#sVgd#sV & FHgd#sV & FHgd#sV & FHgd#sV)Hbi ˝ßú'Hdwƒ–ŚÍ()*;÷÷ď÷÷÷÷÷ď÷÷÷çď÷ßďďďÎĹŔgd#sV„h^„hgd#sV„h&d PĆ˙ ^„hgd#sV & FIgd#sV & FIgd#sV & FIgd#sV & FIgd#sV;Nkz˜Čú 3 e  Ş Ú  !L!ƒ!Ł!Ç!ŕ!á!ď!" "!"1"úňúęâęââęâęââúęęúúúÝúŐŐŐ & FJgd#sVgd#sV & F<gd#sV & F<gd#sV & F<gdMlŻgd#sV1"K"_"n"€""¨"˛"Ó"ü"7#e#­#Ú#ë#$8$Š$$%I%úňňňáŮúŃÉÉÁššššÉÉÉšš & FLgd#sV & FLgd>$Ř & FLgd#sV & FLgd#sV$a$gd#sV & FK&d PĆ˙ gd#sV & FKgd#sVgd#sVG#e#S$Z$—$›$á&ĺ&Ą)Ź)Č)ä)ů)ý)",6,f,g,ů.ý./6/—2Ë2ă2ç2!65677?7P7–7Ě7×7Ř7?8Y8^:_:Ž;ł;ß@î@¤CŇC§DźDćEďŢĚ޻ު޻޻ުުުޜޜ޻޻ުުުޜޜުޜުުުފŢ#hœ3;h#sV5CJOJQJ^JaJh>$ŘCJOJQJ^JaJ hœ3;hÚECJOJQJ^JaJ hœ3;hMlŻCJOJQJ^JaJ#hœ3;h#sV6CJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJ h>$Řh#sVCJOJQJ^JaJ0I%k%™%Ŕ%Ô%&&D&Ă&Ő&&'['o'Ł'ů'+(F((ľ(ä(ů( )d)Ą)ë)÷ďçç÷÷÷÷ß×ççççççĎç÷ç÷÷÷÷ & FLgd#sV & FLgdÚE & FLgd#sV & FLgd#sV & FLgd#sV & FLgd#sVë)(*q*˛*ç*-+t+¨+",g,‘,¤,î,9-L-q-§-Ű-M.k..Ă.I/Q/v/÷ďďďďďďďççßďďďç×××Ďç××ç× & FLgd#sV & FLgd#sV & FLgd#sV & FLgd#sV & FLgd#sV & FLgdÚEv/˜/0 0R0¸0ß011ţ1222Đ2é2#3g3ś3á3 4A4ˆ4¤4š4Ô45=5÷ďçďďďďďď÷ďďß××××××××ççç× & FLgd#sV & FLgd#sV & FLgd#sV & FLgd#sV & FLgd#sV=55Ň56l6˘677=7‘7ß78Z8”8Ţ8˙8 9,999]9t9œ9Î9:`:†:Ë:÷÷÷÷÷÷ď÷÷ç÷÷÷÷÷ď÷ßď÷÷÷÷÷÷ç & FLgd#sV & FLgd#sV & FLgd#sV & FLgd#sVË:;I;™;ľ;ë; <E<Œ<ś<ô<"=f=§=î=ţ= >><>}>Œ>˛>é>ř>?q?¨?÷ďďçďďďďďďďďďďçďçďďçďďçďďď & FLgd#sV & FLgd#sV & FLgd#sV¨?Ž?đ?@`@—@ß@3ADA_AŁA3BzBžBőB$CeCwCÓCŢC D;D†DŚD§DźD÷ď÷ďç÷ď÷ďďďďďďďďç÷ç÷÷÷÷ŢŮgdT&ż„h^„hgd#sV & FLgd#sV & FLgd#sV & FLgd#sVźDÔD EFEnE‡EŻEÁEćEF&FMFXF‰FŢFóFGCG„GŽGŢGűGH/HXH|H÷ďďďďççßßßßßď×ďçßß÷ďďççďď & FMgdÚE & FMgd#sV & FMgd#sV & FMgd#sV & FMgd#sVćEöEFFŽFłF´FśFLLL4L:LŚMŤMOO‡Q‰QŠQŹQłQ´QRR!R2RšTT}UňáňáĐáĐáÂąáĐáĐáĐáŸáĐáĐá{iWi#hœ3;hÚECJOJQJ\^JaJ#hœ3;h#sVCJOJQJ\^JaJ#hœ3;hÚE5CJOJQJ^JaJ#hœ3;h#sV5CJOJQJ^JaJ#hœ3;h#sVCJH*OJQJ^JaJ hœ3;h>$ŘCJOJQJ^JaJh#sVCJOJQJ^JaJ hœ3;hÚECJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJhd6#CJOJQJ^JaJ|HľHéHJIŚIżIäI'J`JJŻJšJĆJ K,KgK­KŐKLL$Ř & FMgd#sV & FMgd#sV & FMgd#sV & FMgd#sVŃLMGMM­MżMáMęMNcNyN O O=OyOČO P,PhP—PŮP(Q_QŁQľQR÷÷÷ďççç÷÷÷÷ďçççççççççççßç & FMgdÚE & FMgd#sV & FMgd#sV & FMgd#sVRR3R;RRŁRâR'SuSŒSňS[TTŸT°TéTţT7U~UŒUœUŞUĐUVWVXVúúňęęęęęęâââňęęęâÚęâââââú & FNgd>$Ř & FNgd#sV & FNgd#sV & FNgd#sVgd#sV}U~UXVnVŽV–V˜VŤV­VŽVĂVŘVíVôV(WiWzWęYúYZ ZZZZZź[Ç[Đ[íŰÉŔˇŔŚ˜‡vŚeŚeŚTŚTŚTŚTŚTŚÉŚ hœ3;h˙VËCJOJQJ^JaJ hœ3;h°I“CJOJQJ^JaJ hÎHhh#sVCJOJQJ^JaJ hÎHhhÎHhCJOJQJ^JaJhÎHhCJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJhœ3;hÚEaJhœ3;h#sVaJ#hœ3;h#sV5CJOJQJ^JaJ#hœ3;h#sVCJOJQJ\^JaJ#h>$Řh#sVCJOJQJ\^JaJXVnV˜VĂVŘV)W{W“WŘW XX8XsXyXšXÚXőXY;YJYvY­YűY Z÷ďçß×Ďß××××××ÇÇß×××ÇÇÇ× & FJgd#sV & FJgd˙VË & FJgd#sV & FJgd#sV & FJgdÎHh$a$gd q9$a$gd#sV Z.ZgZˆZŃZâZ[;[…[ź[Ç[Ů[ô[-\Z\}\Ë\ ]/]g]Ž]°]÷ďďçďçßďďÚŇĘÂşĘĘÂĘĘĘĘ & FOgd˙VË & FOgd#sV & FOgd#sV & FOgd#sVgd#sV & FJgd#sV & FJgd#sV & FJgd#sV & FJgd˙VËĐ[×[A\B\Ď_Ř_PbmbŠbąbďdđdńd eee!h#h>h?h@hŕkîkjlˆl”l•lÜmím÷můmŁn˝nŞqďŢÍ޼ޫ޼ޙ‡u‡uŢgVgVŢŤŢŤŢŤŢu‡uŢŤŢ hÎHhh#sVCJOJQJ^JaJhÎHhCJOJQJ^JaJ#hœ3;h#sV5CJOJQJ^JaJ#hœ3;h÷Ex5CJOJQJ^JaJ#hœ3;hMlŻ5CJOJQJ^JaJ hœ3;hÔˇCJOJQJ^JaJ hœ3;h÷ExCJOJQJ^JaJ hœ3;h˙VËCJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJ hœ3;hÚECJOJQJ^JaJ!°]Ô]ď](^=^^^Ÿ^í^_%_K_s_Ÿ_Ĺ_Ú_ `(`W`Ľ`ă`ţ`Aaua~ažaäa)b÷ďďďďďďçď÷÷÷÷ď÷ß÷ß÷÷÷ßď÷÷÷ & FOgd#sV & FOgd#sV & FOgd#sV & FOgd#sV)bnbŸbłbÓb÷b,c[cŽc˝cd8dxdŚdďdńde eGeyeœeÔe˙e÷÷ďç÷÷ß÷ç÷÷ç÷×ŇŇĘ & FPgd#sV & FPgd#sVgd#sV & FOgd÷Ex & FOgd#sV & FOgd#sV & FOgd#sV & FOgd#sV˙eRfŒf’fŚfĹfńfDg|gˇgég@hih¨hÚhâh iiCiXiĄiéijHjNjŽj÷ď÷÷÷÷÷ç÷÷ß÷÷÷ď÷÷÷÷ççç×ď÷ & FPgd#sV & FPgdÎHh & FPgd#sV & FPgd#sV & FPgd#sVŽjŹjăj1kpkžkŕk?l˘lól;m|mŹmÜmÝmům(nqnĘn oEooäo"p÷÷÷÷ďç÷÷÷÷÷÷÷ââÚŇŇŇŇŇŇĘ & FQgdÔˇ & FQgd#sV & FQgd#sVgd#sV & FPgd#sV & FPgdÔˇ & FPgd#sV"pVp’pŃpqCq—q›qÎqrGrrr°rär%sYszsśsŘs$t+tRtftštŹtét÷÷÷÷÷÷ďçß÷ß××ßßß×ßß÷ßßßď÷ & FQgd#sV & FQgd#sV & FQgdÎHh & FQgd#sV & FQgd#sVŞqŹqÎq¤tŞtXw^wěwíwďwńw_x`xaxxxx‘x7y;yńyňyzzĆzÇzz}˜}4~ňáппЫЙЈvdЙпЈ[RЍЈĐhœ3;h#sVaJhœ3;hÔˇaJ#hœ3;h#sV5CJOJQJ^JaJ#hœ3;h q95CJOJQJ^JaJ hœ3;h÷ExCJOJQJ^JaJ#hœ3;h#sVCJH*OJQJ^JaJ& jŕđhœ3;h#sVCJOJQJ^JaJ hœ3;h˙VËCJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJ hÎHhh#sVCJOJQJ^JaJhÎHhCJOJQJ^JaJét uBuxuŹuŮu vRv‰v˘vÎv w@wŒwÍwýw*x_x`xxx§xëx y=y÷ďďçççďď÷ďď÷÷ďďďďŢŮŃŃÉŃ & FRgd#sV & FRgd#sVgd#sV„p^„pgd÷Ex & FQgd#sV & FQgd#sV & FQgd#sV=ytyłyđyńyňyz,z„zßzX{t{ł{É{Ď{'|o|˜|Ľ|˙|} }z}Ę}ŕ}÷÷÷ęĺŕĺĺĺĺĺĺĺĺŘŘŘĺŘĐŘŘĐĺ & F<gd#sV & F<gd#sVgd#sVgd#sV &d PĆ˙ gd#sV & FRgd#sVŕ}2~3~;~K~Z~o~~Š~‹~Œ~Ľ~°~Đ~ů~5It•–ŽúúňęęęßßŇúÇżˇˇˇżˇˇˇúÇ & FSgd#sV & FSgd#sV $ & Fa$gdĚ - &d PĆ˙ gd#sV $ & Fca$gdĚ - & FcgdÔˇ$a$gdÔˇgd#sV4~o~~~~Š~‹~Œ~Ľ~.3–ŞŹŽô‚‚‚]‚a‚ą‚ľ‚̂BƒCƒSƒtƒރŽƒěăÚăěĆ㾤ľă›ăľă›ăľŠľŠyľygyľYhś_ZCJOJQJ^JaJ#hœ3;h#sV5CJOJQJ^JaJ hœ3;hĚ -CJOJQJ^JaJ hœ3;hŸhČCJOJQJ^JaJhœ3;hÔˇaJ hœ3;hÔˇCJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJ&hœ3;hĚ -5CJOJQJ\^JaJhœ3;hĚ -aJhœ3;h#sVaJ&hœ3;h#sV5CJOJQJ\^JaJŽžř€€6€€ȀԀL†¤ňóô‚&‚@‚P‚“‚÷ďď÷ďďď÷ďďď÷ďďçââ×ĎÇÇż & FUgdŸhČ & FUgd#sV & FUgd#sV $ & Fa$gdĚ -gd#sV & FTgdŸhČ & FTgd#sV & FTgd#sV“‚¨‚ƒ!ƒBƒCƒSƒuƒʃ„U„’„„î„…N…w…ƅ††;†ˆ†÷ď÷÷ęâÚŇĘÂÂşĘÂÂşşĘĘĘ & Fdgdé=$ & Fdgdé=$ & Fdgdé=$ & Fdgdś_Z & Fdgdé=$$a$gdĚ -gdĚ - & FUgdŸhČ & FUgd#sVŽƒąƒ´ƒʃ…Š…Ź…Ņ††˝†ŕ†‡‡“‡˛‡>ˆBˆ‰‰FŠGŠ؊يŒ$ŒćçŽŽ ‘Š‘2’3’’’d“e“f“u“ďáďппппппЮКпппппКпЉЉЀo€ hœ3;h÷ÇCJOJQJ^JaJhœ3;hŻ ôaJ hœ3;hŻ ôCJOJQJ^JaJ& jŕđhœ3;h#sVCJOJQJ^JaJ hœ3;hŸhČCJOJQJ^JaJ hœ3;hĚ -CJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJhś_ZCJOJQJ^JaJ hś_Zh#sVCJOJQJ^JaJ)ˆ†á†â† ‡f‡Á‡ˆ1ˆ‹ˆŒˆ°ˆÈöˆ‰‰P‰˘‰Ž‰ç‰ü‰EŠFŠkŠ÷ňňęęââÚňňŇĘĘŇĘĘŇĘĘĘňň & FVgd#sV & FVgd#sV & F[gdŸhČ & F[gd#sV & F[gd#sVgd#sV & Fdgdé=$kŠ|ŠąŠ؊5‹E‹x‹™‹ş‹ć‹ú‹&Œ>ŒiŒśŒȌőŒţŒ6AtŽ׍˙!Ž+Ž÷ďďď÷ďďďď÷ďçççďççßçßßç××ç & FWgdĚ - & FWgd#sV & FWgd#sV & FWgd#sV & FWgd#sV+ŽuŽ ŽގĎҎůŽ3<bŸݏď O|Ɛ퐑B‘…‘†‘Ť‘â‘÷÷ď÷ď÷÷çďďďßçççççççççÚÚŇ & FXgdĚ -gdĚ - & FWgd#sV & FWgd#sV & FWgd#sV & FWgd#sVâ‘ď‘ü‘ ’’2’3’L’k’}’Š’’’§’˝’Œؒĺ’“&“0“?“T“d“÷÷÷÷÷ňňęęęęňňâÚÚÚâÚÚŇŇĘ & FZgd#sV & FZgdĚ - & FZgdĚ - & FZgdĚ - & FYgdĚ -gdĚ - & FXgdĚ -d“e“f“v“w“•“ą“ޓ”V””§”¨”ą”Δá”ó”ô”•ňíčß××××ĎĎĎĘÂĘʾʭ$a$gd#sV &d PĆ˙ gd#sV$a$gdT&żgd#sV & F<gdT&ż & F<gd#sV„Đ^„ĐgdT&żgd#sVgdŻ ô &d PĆ˙ gd#sVu“v“w“ݓޓ””=”G”U”V”Œ””Š”ó”ô”•#•(•€••á–—°›Á›é›ď›^ţž0ž2ž 7 K o á ř +Ą:ĄnĄĄ°˘ˇ˘DĽNĽ¨Ľ˛ĽŚ"Ś7Ś9ŚŠŚŚG§H§Ś§§ɧÓ§٧÷ćŐćŐćŐÇŐćŐćŐľŐľŐćŐćŐćŐľŐćŐÇŐćŐćŐćŐćŐćŐćŐćŐćŐćŐÇŐÇŐŁŐćŐćŐćŐćŐ#hœ3;h#sVCJH*OJQJ^JaJ#hœ3;h#sV5CJOJQJ^JaJhś_ZCJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJ hœ3;hT&żCJOJQJ^JaJhœ3;h#sVaJ=•*•G•™•Ś•â•–:–G–c––ą–ş–—1—T—\—ƒ—Ÿ—Ś—ů—#˜H˜óçŰŰĎĎĂĎĂĂĂçŰŰŰçŰŰçŰŰŰ & F\ Ć` gd#sV & F\ Ć` gd#sV & F\ Ć` gd#sV & F\ Ć` gd#sV & F\ Ć` gd#sVH˜l˜‚˜•˜ľ˜ۘ™0™d™w™ˇ™ܙ&šIšˆšíš3›€›°›ą›Á›ń›8œóçŰóóóóŰŰŰçŰóóóŰŰŰÓÓËĂ & F]gd#sV & F]gd#sV$a$gd#sV & F\ Ć` gd#sV & F\ Ć` gd#sV & F\ Ć` gd#sV8œoœ°œܜ JŸˇ̝ţTžŽž˝žɞýžŸ‹Ÿ ‡ ł á ;ĄŽĄ˘=˘H˘÷ďçďďďç÷ďďçď÷ďďççßß×÷ďďď÷ & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sVH˘„˘š˘ď˘ö˘Ł@ŁGŁfŁˆŁÂŁíŁ¤4¤ž¤ФĽOĽ¨Ľ#ŚHŚ‘Ś´ŚŘŚ§G§„§÷÷ďďççďçßďçççďççßßßç÷ďçççß & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV٧꧍Ť‘Ť^ŹsŹ ­.­K­c­źŽžŽžąÇąúąüą˛˛łł´´ľľ7ľSľTľUľ‘ľ’ľ+ś,ś^ś`śvˇŠˇߡéˇI¸J¸`¸+š,š-şCş‘ş—şâşäş>ťMťœťžť˘ť¤ťŞťďŢďŢďŢĐŢĐŢ˝Ţď޽޽ŢďŢŠŢďޛޛޛޛ޽ޛŢďލ›Ţ›ŢŢ›Ţ˝Ţ›Ţ˝Ţ˝Ţh÷iĆCJOJQJ^JaJhœ3;CJOJQJ^JaJ& jŕđhœ3;h#sVCJOJQJ^JaJ$hœ3;h#sVCJEHOJQJ^JaJhś_ZCJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJ hœ3;hœ3;CJOJQJ^JaJ7„§¨¨$¨7¨‡¨¨¨á¨&ŠBŠ‡ŠšŠćŠŞHŞaŞuŞÍŞŰŞŤcŤ“ŤĹŤđŤ)Ź÷÷ďďďç÷ďď÷ď÷ďďďç÷÷ďß×ĎĎç & F]gd#sV & F]gd#sV & F]gdœ3; & F]gd#sV & F]gd#sV & F]gd#sV)ŹAŹ|ŹőŹ ­ ­h­‹­Ż­ô­ŽEŽ°ŽŃŽřŽDŻŸŻĘŻT°d°Ř° ą/ąSą†ąÉą÷÷ď÷çďďďďçďďďß×××ççďď÷÷÷ç & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sVɹ칲`˛Ś˛â˛łJł”łĂłőł0´J´Š´Ť´Ű´ľUľ’ľąľúľ,śtś­śăśUˇ÷÷÷÷÷ď÷÷ç÷÷ßďď÷ď×÷÷÷÷÷ď÷÷ & F]gdœ3; & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sVUˇ‹ˇ¡ëˇ¸7¸I¸z¸¸Ѹš,šMšjšÚšş$şDş†ş™şÉş8ťqť ťÜť"ź÷÷÷ďçďçďççßß×÷÷÷×÷÷ďďççďď & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sVŞťťť ź!źfźhźoźpźsźuźź‡ź§ź¨źçźéź˝2˝y˝{˝Ň˝Ó˝ů˝Zžtž*żFżŞżŤż˝ŔŸÁ ÁÂÂh˜šœÂĂFĂňáňáÎáşáÎáňáşáÎáňáÎᬛáňáňáňá‰zh‰h‰áÎá‰h#h÷iĆh#sVCJOJQJ\^JaJh÷iĆCJOJQJ\^JaJ#hœ3;h#sVCJOJQJ\^JaJ hś_Zhś_ZCJOJQJ^JaJhś_ZCJOJQJ^JaJ& jŕđhœ3;h#sVCJOJQJ^JaJ$hœ3;h#sVCJEHOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJh÷iĆCJOJQJ^JaJ("źVźˆź´źĺź3˝Q˝}˝˛˝Ó˝ů˝ž?ž‡žšžőžżhż~żŞż÷żŔHŔŔ÷ď÷çßß÷÷×Ďçßßçß÷ß÷çßÇçç & F]gd#sV & F]gdś_Z & F]gdś_Z & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sVŔ˝ŔřŔ9ÁxÁÁ ÁŢÁÂ>ÂiÂĽÂÝÂĂFĂWĂˆĂ­ĂëĂgÄŠÄĹ“ĹĆ÷ď÷÷çß×Ď×ĎçĎĎÇ÷çç÷çĎççç & F]gd÷iĆ & F]gd#sV & F]gd÷iĆ & F]gd÷iĆ & F]gd#sV & F]gd#sV & F]gd#sVFÎĨÄĹĹĹęĆÇűÇýÇ˙ÇČaÉkÉwĚ€Ě°ĐąĐŃ˜ŃÖŐ×ŐÚŐ ÖŮŮ^Ţ_ލޮŢŮŢß#ßTßaß„ß[ŕíŢíÍşíŢíÍşÍíŢíŢíĽíŢí–í–ííĽíĽío`oíŢíhnD’CJOJQJ\^JaJ#hnD’h#sVCJOJQJ\^JaJ)hœ3;h#sV6CJOJQJ\]^JaJhś_ZCJOJQJ\^JaJ) jŕđhœ3;h#sVCJOJQJ\^JaJ$hœ3;h#sVCJEHOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJh÷iĆCJOJQJ\^JaJ#hœ3;h#sVCJOJQJ\^JaJ$ĆWĆĽĆßĆ*ÇWǀǙÇ×Ç[Č‚ČŽČÔČÉ<ÉmɭɸÉáÉ1Ę?ĘvĘçĘůĘË)Ë÷ďďďççß÷÷÷ß÷÷÷ß÷ďçç×÷ďďçç & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV)ËRËĚËÚËĚCĚUĚ‚ĚĚŚĚĘĚĺĚÍHÍ|Í˝Í×ÍÎ@ÎnΖÎÓÎçÎSĎąĎîĎ÷ďç÷÷ß×ďç÷÷ççďçççďçççďçç÷ & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sVîĎ%ĐAĐUĐqĐŸĐÉĐöĐRљѨŃéŃvŇóŇÓ0Ó[Ó”ÓÖÓÔDÔEÔQԐԴÔ÷÷ď÷÷çď÷÷ßďďď÷ď÷÷÷÷÷Ößď÷„Ř ^„Ř gd#sV & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV´ÔđÔ'ŐuŐÖŐ!ÖnÖëÖ×~×Á×ĺ× Ř.ŘHŘ’ŘĂŘ%Ů?Ů…Ů‹ŮÍŮ Ú`ÚŐÚ-ŰŞŰ÷÷÷ď÷÷ďçďďßçďçďďďçďď÷÷÷ďďď & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sVŞŰÜ8Ü”ÜÝ<Ý‚ÝĆÝěÝ/ŢDŢşŢŮŢ#ßT߆ߜßŘß2ŕ[ŕŚŕÓŕ á{á‘á¨áşá÷ďçç÷ççßďç÷ç÷÷ďç÷÷÷÷÷÷÷ççď & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV[ŕ}ŕŒŕŕ á áJáKákáláŽá¸áÜĺÝĺëĺTć\ćţç˙çéé'é)éë)ë¤ěđŢĘŢĘŢĘŢĘޝޏš‰{‰g‰T‰T‰F‰hA¤CJOJQJ^JaJ$hœ3;h#sVCJEHOJQJ^JaJ& jŕđhœ3;h#sVCJOJQJ^JaJh÷iĆCJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJ#hœ3;h#sV5CJOJQJ^JaJh÷iĆ5CJOJQJ^JaJh÷iĆCJOJQJ\^JaJ'hœ3;h#sVCJEHú˙OJQJ\^JaJ#hœ3;h#sVCJOJQJ\^JaJhA¤CJOJQJ\^JaJşáĆáäáüá"â âÚâĺâ?ăăĂăćă7äeä­äÁä÷ä/ĺDĺxĺžĺÜĺÝĺëĺ÷ď÷çßßß×××××××çßß×ßßçĎĎ$a$gd#sV & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sV & F]gd#sVëĺć^ćĽćđć çhçsçŞçęç čGč‡čźč:éWéˆéŞéĹéĺé#ęQę‚ę*ëqëŽëźë÷÷ďďďççßßßďçďçďďçďçßçççç÷ď & F^gd#sV & F^gd#sV & F^gd#sV & F^gd#sVźë"ěěÔěí?íƒí§í0îbîyîŞîŰîďZď{ďśďĐďâďIđ†đń'ń‰ńşńčńüń÷÷÷÷ďďď÷÷÷ďďďďď÷ç÷ďďď÷ďďç÷ & F^gd#sV & F^gd#sV & F^gd#sV¤ěĂěŠíŤíĚíÎíîî\ď^ď¸ńšńF÷G÷H÷W÷t÷ř(řžřżř&ű-űHüUüXüyýňáÎáÎáÎáÎáťáľŽ¨Ÿáá|áháVEá hŠ)öh#sVCJOJQJ^JaJ#hŠ)öh#sVCJOJQJ]^JaJ&hœ3;h#sV5CJOJQJ\^JaJ& jŕđhœ3;h#sVCJOJQJ^JaJhœ3;h#sV56\]aJhœ3;h#sVaJ hnD’aJ hnD’hnD’ h#sVaJ$hœ3;h#sVCJEHú˙OJQJ^JaJ$hœ3;h#sVCJEHOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJhnD’CJOJQJ^JaJüń@ňťňÖň@óhó‰óŤóÂóÚóýóô+ôFôlôŒôÁôíô9őRőŔő ö#öWö°öĺö÷÷ď÷ď÷çß×ďďď×ď÷÷÷÷ď÷÷÷ççç & F^gd#sV & F^gd#sV & F^gd#sV & F^gd#sV & F^gd#sVĺöđöF÷G÷H÷t÷Ť÷ř(řiř‚řĚřŘřúřů^ůŒůŞůŃůáůúú÷ďâÝŘÓÓËÂÂÂÓÂÂľÓľľľÓÓ „Đ„Đ^„Đ`„Đgd#sV„Đ`„Đgd#sV & FgdnD’gd#sVgd#sVgdnD’ &d PĆ˙ gd#sV & F^gd#sV & F^gd#sVúxúúžú ű8űsűĆű'üHüXüšüóüHý‡ýˆý‰ýšýÉýäý*ţPţQţ~ţúúúúúúńúńúúúúúúúéäää×ĎĎ$a$gd‹  &d PĆ˙ gd‹ gd‹ $a$gdA¤„Đ`„Đgd#sVgd#sVyý†ýŠý~ţU˙q˙'?@Ő,G\]\]őö# E k l Ž  Ę Ë   M [ p â ňáĎž°ž°žĎ°žňžňžĄĎĄž~žmž°ž°~°~°~°~ž°ž hlFWh‹ CJOJQJ^JaJ hA¤h‹ CJOJQJ^JaJ#hA¤h‹ 5CJOJQJ^JaJhA¤5CJOJQJ^JaJhA¤CJOJQJ^JaJ hœ3;h‹ CJOJQJ^JaJ#hœ3;h‹ 5CJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJhŠ)öCJOJQJ^JaJ%~ţŤţ´ţËţíţ+˙B˙–˙Ű˙6i›Ě[Ťâ&'?˜é÷÷ďďď÷ďďççßßçďçßßďÚŇÇÇ $ & F`a$gd‹ $a$gd‹ gd‹  & F_gd‹  & F_gd‹  & F_gd‹  & F_gd‹ é ;gƒĘ-R™ě=­î]˘ă#{ťôéôéŢéôôééôéôÖÎĆžśžśś & Fagd‹  & Fagd‹  & Fagd‹ $a$gdA¤$a$gd‹  $ & F`a$gd‹  $ & F`a$gd‹  $ & F`a$gd‹ ]§Áö \ ‹ ´ ô  V  ° ó # G k ‘ Ď 2 F l  ÷ďçß×ďď×ďďçççççďçĎĎĎĎ÷Ç & FagdA¤ & Fagd‹  & Fagd‹  & FagdlFW & Fagd‹  & Fagd‹  & FagdA¤ Ë  M q Ś ÷÷÷­cI & FaEƀ˝z†gd‹ I & FaEƀ˝z†gd‹  & FagdA¤Ś ź Ů 'UoĽÇ3püKľkľľľľkľľľľľI & FaEƀ˝z†gd‹ I & FaEƀ˝z†gd‹  â ˙ Ëßăü2>MNjƒ„…”ĎghŐÖ;`aŸ ňáÓáÓáÁÓáň᳢œ“‚qňqň‚cR‚c‚c‚ hŠ)öh#sVCJOJQJ^JaJhŠ)öCJOJQJ^JaJ hlFWh#sVCJOJQJ^JaJ hœ3;h#sVCJOJQJ^JaJhœ3;h#sVaJ hlFWaJ hœ3;hlFWCJOJQJ^JaJh‹ CJOJQJ^JaJ#hA¤h‹ 5CJOJQJ^JaJhA¤CJOJQJ^JaJ hœ3;h‹ CJOJQJ^JaJhlFWCJOJQJ^JaJK^‘Ěţ2>‹ľkkkkľkI & FaEƀ˝z†gd‹ I & FaEƀ˝z†gd‹ ‹ ˛Ô8ƒ„…ĎhÖ; ľľľ­­ —’ŠŠŠŠŠ…gd#sV & F<gd#sVgd#sV„Ř ^„Ř gd‹  &d PĆ˙ gdlFW & Fagd‹ I & FaEƀ˝z†gd‹  ŻĹë   -qľÍMˇ  D†ˇć b÷ňňĺŕňŐÍĹÍĹĹĹźŐ´ŹŹ´Ź & Fegdé=$ & Fegdé=$„8^„8gdó? & Fggdé=$ & Fggdé=$ $ & Fa$gdŠ)ögd{ &d PĆ˙ gdó?gdó?$a$gdŠ)ö    +- "BD 3 %ŽĘ–™ľ‘’¤ĽŚ‹%3f$ěăŇĚĂŇĂĚĂҾҾҧҾҾ–ŇˆwfěŇZŇľŇhœ3;hó?5\aJ hŠ)ö5CJOJQJ\^JaJ hœ3;hŠ)öCJOJQJ^JaJhó?CJOJQJ^JaJ hŠ)öhó?CJOJQJ^JaJhw;CJOJQJ^JaJhŠ)öCJOJQJ^JaJhœ3;hó?aJ hŠ)öaJ hœ3;hó?CJOJQJ^JaJhœ3;h{aJ&hœ3;hó?5CJOJQJ\^JaJb—¸Ůř:ŒÝů6Ztľá5Xcˆ‘’÷÷ď÷ççç÷çççß×ĎĎǿǿś„€^„€gdŠ)ö & Fegdé=$ & Fegdé=$ & Fegdé=$ & Fegdé=$ & FegdŠ)ö & Fegdé=$ & Fegdé=$ & Fegdé=$’ŚÔe‹¤Ůř%Rpšč 2TƒĘ˙'\Ę÷ěááěŮŃŃÉÉÉÁÉŃÉÉÁÁŃÉÉÉ & Ffgdé=$ & Ffgdé=$ & Ffgdé=$ & Ffgdé=$ $ & Ffa$gdé=$ $ & Ffa$gdé=$$a$gdó?Ęü F  ľ Ó ţ !‘!ł!ť!ě!"Ě">#X#q#†#Ł#­#Ë# $+$5$P$[$÷ď÷÷çď÷ď÷÷ßçďďďçďďďçďďďççď & Ffgdé=$ & Ffgdé=$ & Ffgdé=$ & Ffgdé=$[$f$g$w$œ$đ$<%g%w%ş%Ú%ö%&H&‚&Ř&ö&P'h'p'‹'§'ś'ě'÷ęĺŕŕŕŕŕŕŕÓÓÓÓŕŕŕËĆĆĆĆĆgdó?$a$gd{ „Đ„Đ^„Đ`„ĐgdŠ)ögdŠ)ögdŠ)ö &d PĆ˙ gd{ & Ffgdé=$f$g$m$v$w$ö&O'P'(( (ŕ()))N)O)[)x)…)‡)“)Ć)Ň)1*Q*`*a*b*q*r*ňîęćÚËżŤšŤšňš†uň†u†uašašňšMšaš& jŕđhœ3;hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ h{hó?CJOJQJ^JaJ&h{hó?6CJOJQJ]^JaJ hœ3;hó?CJOJQJ^JaJ&hœ3;hó?5CJOJQJ\^JaJh{CJOJQJ^Jh{5CJOJQJ\^JhŠ)öCJOJQJ^JhŠ)öh{h.Óh{CJOJQJ^JaJě'(( ((Z(„(Ž(Ä()O)‡)Ć)*-*T*Ń*ě*+!+D+o+ňíĺÝŐÍŐÝŐÍÍÍÍĹÍĹ˝˝˝Ĺ˝ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$$a$gdó?gdó? &d PĆ˙ gdó?r*z*)+*+- -$-D-Š.Ę.//H/$090Ś0¸0š0ť0ź0č0ů0ú0ü0ý0,1;1w111 1Ł1¤1ą1ěŰÇۜۨۨۨۨŰěۨ—†ěۨ—†ěŰěŰěŰud hw;hó?CJOJQJ^JaJ hw;hw;CJOJQJ^JaJ h{hó?CJOJQJ^JaJ h{h{CJOJQJ^JaJh{CJOJQJ^JaJ hlFWhó?CJOJQJ^JaJ& jŕđhœ3;hó?CJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ o+Ź+Ř+,",7,c,ƒ,˛,Đ, -F-e-”-Ŕ-.B.§.Ě.Ú.ď.ü.$///÷ď÷ď÷ď÷ď÷çß××ĎĎĎĎÇß×××× & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & FhgdlFW & Fhgdé=$ & Fhgdé=$//J/›/Ú/$0;0r0Ś0č0,1W11Ă1÷1/2Z2ƒ22ń233L3d3„3Ľ3÷ďďďç÷÷ßß÷ď×ďď÷ďďĎç÷ďďĎĎ & Fhgd{ & Fhgdw; & Fhgd{ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ą1Â1Ă1M2O2Z2k2ƒ2’2ł2Ć2đ2ń233d3h3q3t3u3„3Š3“3•3–3Ľ3­3Ž3°3ą3á3÷3ů3ú3ěŰʸʤʤʤʓʅʤʅt“¤Ę…t“¤Ę…t“ĘfU hw;hw;CJOJQJ^JaJhw;CJOJQJ^JaJ h{h{CJOJQJ^JaJh{CJOJQJ^JaJ h{hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ#hœ3;hó?CJH*OJQJ^JaJ hœ3;hó?CJOJQJ^JaJ hw;hó?CJOJQJ^JaJ&hw;hó?6CJOJQJ]^JaJ!Ľ3á34e4€4¸4î45I5k5„5ž5Î5Ű5X6k6ƒ6ş67!717N7h7{7Ł7÷ďďçßßßß×××çß××××××ß×ĎĎĎ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdw; & Fhgd{ú34;4>4?4H4R4S4e4X6j6Ţ8â89909Ű9ü9K<L<ł=š=pEˆEtF‘FŽGG¤GĽGˇGËGVHhH…H”H›K­KŽKŘKăKřKďŢĐżĐďĐďŢĐŢą ŢąŢąŢŢĐŢ{ŢĐŢiŢĐŢĐŢąŢ{Ţ{Ţ{ĐŢ#hœ3;hó?CJH*OJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ hŠ)öhó?CJOJQJ^JaJ h{hó?CJOJQJ^JaJh{CJOJQJ^JaJ hw;hw;CJOJQJ^JaJhw;CJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJ hw;hó?CJOJQJ^JaJ)Ł7é78G8”8Ŕ89K9•9Ě9ţ9_:o:Ć:â:ů: ;6;Z;u;Ą;Ú;<3<L<÷÷ď÷çßď×ďďď÷ďďď÷ďďďďď÷ďĎ & FhgdŠ)ö & Fhgdé=$ & Fhgd{ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$L<s<–<ĺ<E=Š=ş=Ű=>_>‰>–>ć>?3?^?Á?ę?ů?R@š@Á@ę@AcAAŔA÷ďççççďçççďçççßçßďççççďçßç & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ŔAŐAýA!BIBnB—BťBŰBţB0CUCŠC˝CíCüC,DQDrDœDÎDóD$ETE‰EšEŕE÷÷÷÷÷ďçďççßďççďçççççďççďçß & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ŕEFBF_FŤFŮFGIGuG¤GďGH?HKH…HŽHďHIEIRIIŚIŘIäIPJ–J÷÷ďďďďďďçßßß÷ďď×ďď÷ďďď÷ďď & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$–JĽJˇJK.K{K’KŽKřK+LYLˆLÍLMIM‰MşMŐMNS?SSSHTIT_T†UěŰěŰěŰÍŰÍŰÍŰěۿۿۿۿۿŰěŰěۿۭ۟ŽŰ}Ű­ŰlżŰ hwQhw;CJOJQJ^JaJ h{hó?CJOJQJ^JaJ hwQhó?CJOJQJ^JaJhwQCJOJQJ^JaJ#hœ3;hó?CJH*OJQJ^JaJh{CJOJQJ^JaJhw;CJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ*ěOjPÂPńP.Q{Q™QÄQRDR\R{R™RľRĎRöRS?SKSŒSČSýSTITaT÷÷ďď÷ç÷÷ß÷ďďďďďď×ç÷÷ďďßĎ & Fhgdé=$ & Fhgd{ & FhgdwQ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$aTŔTUQU]U†UĹUV7V_VqV’VĚVőV/WEWwWŔWXXgX‘XËXÚXY÷÷÷÷ďçßçßçßß×Ďçßßßçßß×ďç & Fhgdw; & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$†U˜UĹUĆUÜUńUV%V_VpV{V}VƒV…V’VŹVőVWWW/WDWwWŒWŔWŐWóWXX%XIXJXgXrXŸXłXmY‚Y1Z2ZVZXZm]n]†]G^_^l^ěŰÍŰÍŰěŰě۝۝ŰěŰěŰ­œěŰěŰěێŰěŰ­ŰěŰěŰÍŰ}۝ۭœŰ­œ hlFWhó?CJOJQJ^JaJhwQCJOJQJ^JaJ hw;hó?CJOJQJ^JaJhw;CJOJQJ^JaJ#hœ3;hó?CJH*OJQJ^JaJh{CJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ/Y.YeYŁY÷Y2ZDZcZŒZÄZéZ([s[ˇ[Ň[ĺ[ö[ü[\\I\e\‰\Ÿ\Ż\Ć\×\÷ďďďçß÷÷÷÷ď÷÷÷ďďďď÷ď÷ď÷ďď÷ & Fhgdé=$ & FhgdlFW & Fhgdé=$ & Fhgdé=$×\]]<]U]†]‘]™]§]Ř]&^H^^°^×^ě^_4_I_z__ż_é_÷ď÷ďçß×ĎÇÇżżççÇ÷ĎĎĎ×ĎĎ & Fhgdw; & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdé=$ & Fhgdw; & Fhgdé=$ & Fhgdé=$l^o^Ž^^Ż^°^×^[`^`r`‚`ƒ`„`˜`œ`ş`ť`ź`Łc¤cfee…e$i&jďŢĐŢĐŢżą żą ą żmżdżS?&hlFWhó?5CJOJQJ]^JaJ hlFWhó?CJOJQJ^JaJhœ3;hó?aJ& jŕđhœ3;hó?CJOJQJ^JaJhó?CJOJQJ^JaJ hwQhwQCJOJQJ^JaJ hwQhó?CJOJQJ^JaJhwQCJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJhw;CJOJQJ^JaJ hw;hó?CJOJQJ^JaJ hw;hw;CJOJQJ^JaJé_ ``0`R`r`ť`ź`ć`7a abYb{bŁbźbĘbćb÷bcecƒcŢcňc÷÷ďďçßÖÎ÷÷÷÷Î÷ĆÎ÷÷ďď÷÷Î & Fhgdé=$ & Fhgdé=$„p^„pgdwQ & FhgdwQ & FhgdwQ & Fhgdé=$ & Fhgdé=$ňc7d_ddądÂde,efegee›eŢe#fAfkffŽfâfđfHgWg†g÷÷÷ďçďďďââÚŇŇĘĘŇĘÂĘÂĘ & Figdé=$ & Figdé=$ & Figdé=$ & Figdé=$gdó? & Fhgdé=$ & Fhgdé=$ & Fhgdé=$†g•gŢghJhˆh’hĘh$i2ißijjj"j'j:jŹj÷ď÷÷÷ç÷÷ŰĎĎĂĂ᫟  & Fi¤¤gdé=$  & Fi¤¤gdé=$  & Fi¤¤gdó?  & Fi¤¤gdé=$  & Fi¤¤gdé=$  & Fi¤¤gdé=$ & Figdé=$ & Figdé=$ & Figdé=$&j'j0kdk~kkŸkHlml—m˜mÎnęn_o4pLpŁp¸pzq…q˜qěŘĚḀ̶̙̆؈إn`nN= hł Őhó?CJOJQJ^JaJ#hł Őhó?CJOJQJ]^JaJhł ŐCJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJhœ3;hó?aJ hł Ő5CJOJQJ]^JaJhw;hó?5]aJ hlFWhó?CJOJQJ^JaJhlFWhó?5H*]aJhçE‚5]aJhlFWhó?5]aJ&hlFWhó?5CJOJQJ]^JaJ&hw;hó?5CJOJQJ]^JaJŹjŮj0kHkœkřklHlml|lœlŮlm,m]m{m˜mĆmâmóóëăŰăŰÓËĂĂĂËĂĂťŻŁ  & Fi¤¤gdé=$  & Fi¤¤gdé=$ & Flgdó? & Flgdé=$ & Flgdé=$ & Flgdé=$ & Figdé=$ & Figdé=$ & Figdé=$  & Fi¤¤gdé=$âmnhnÎněnoHo_oto„oŽoĽoŇoçop2p3p4pLp[pŁpóóóçóŰóÓËËËËÓËËĆĆÁšą & Fjgdé=$ & Fjgdé=$gdó?gdó? & Figdé=$ & Figdé=$  & Fi¤¤gdé=$  & Fi¤¤gdé=$  & Fi¤¤gdé=$Łpşpópřpq=qYqzq…q°qŘqéqrKr[rr°rćrsesÇsďst3tOt÷ďďççççďççß××ß××ß×Ď×ĎĎĎď & Fjgdé=$ & Fjgdé=$ & Fjgdé=$ & Fjgdé=$ & Fjgdé=$ & Fjgdé=$˜q™qŘqéqKr[rćrórţrsesps3tCtMtNtOtťuĹuŕvôvővţvőwxy˘yĎyŢyS|T|f~h~n~p~2=SeIƒěŰÉŰÉŰÉŰťŰÉŰÉťŰÉŰÉŰŞ–ťŞ–Ş–Ş–Ş‚ŞpŞpŞ–Ş–Ş#hœ3;hó?CJH*OJQJ^JaJ& jŕđhœ3;hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ hœ3;hó?CJOJQJ^JaJhł ŐCJOJQJ^JaJ#hł Őhó?CJOJQJ]^JaJ hł Őhó?CJOJQJ^JaJ& jŕđhł Őhó?CJOJQJ^JaJ'Otgtt˘tÂtŢtuLu_u˜uťuĹuőu*vbvŒvžvŕvw-wUwzwŒwŔwőwx0x÷÷ď÷ďďď÷ďďç÷÷÷ç÷çßççççççç÷ & Fjgdé=$ & Fjgdé=$ & Fjgdé=$ & Fjgdé=$0xąxäxydyßy3zGz…zĚz-{U{”{Ě{-|t|”|ß|}J}Ć} ~'~I~{~~ő~÷ďďďď÷çďďď÷÷÷ßďď÷÷÷÷ď÷÷÷ßß & Fjgdé=$ & Fjgdé=$ & Fjgdé=$ & Fjgdé=$ő~2SÉî'€L€}€ł€߀7Š˙<‚‘‚ţ‚ƒ'ƒ3ƒHƒIƒVƒ÷ďççççßçßßßçďççççç÷ďďďÖÎ$a$gdó?„8^„8gdó? & Fjgdé=$ & Fjgdé=$ & Fjgdé=$ & Fjgdé=$IƒVƒ§ƒŠƒű…ý…††6ˆ7ˆg†ђҒӒԒă’ä’””– –@–A–~––ɖěŰÉŰÉŰÉ۵ۧۙ‹zvrfWfHfWfHfhŠ)ö6CJOJQJ]^J jŕđhŠ)öCJOJQJ^JhŠ)öCJOJQJ^JhŠ)öhw; hœ3;hw;CJOJQJ^JaJhw;CJOJQJ^JaJhó?CJOJQJ^JaJhł ŐCJOJQJ^JaJ& jŕđhœ3;hó?CJOJQJ^JaJ#hœ3;hó?CJH*OJQJ^JaJ hœ3;hó?CJOJQJ^JaJ&hœ3;hó?5CJOJQJ\^JaJVƒlƒŚƒúƒ#„c„„ť„+…˜…ş…ă…,†S†h†Ł†Ն ‡2‡i‡˘‡ă‡Xˆ~ˆňˆ‰“‰÷ďďçßçßççß÷ďďďçďçßççççďďçď & Fkgdé=$ & Fkgdé=$ & Fkgdé=$ & Fkgdé=$“‰Š5ŠwŠˊ㊋>‹V‹n‹Ť‹Njâ‹Œ;Œ§Œڌ@‡ˇď3ŽhŽżŽ÷ď÷÷ďç÷ďďß÷÷ďßďďßďßß×ďßßď & Fkgdé=$ & Fkgdé=$ & Fkgdé=$ & Fkgdé=$ & Fkgdé=$żŽ†­׏;G™ŚՐń#‘w‘¨‘ň‘e’|’’ђҒӒԒä’÷÷÷ď÷ďçß÷÷ďďçď÷÷×ßĘĹĹŔgdŠ)ögdó? &d PĆ˙ gdó? & Fkgdé=$ & Fkgdé=$ & Fkgdé=$ & Fkgdé=$ & Fkgdé=$ä’ë’/“g“Ť“ϓ””¸”ň”)•A•ƒ•¨•ź•÷• –_–q–’–ɖö–——/—A—úňňęęňęęňęúňňňňúňňúňĺŕŘŘŕ & Fqgdł Őgdł Őgdó? & FvgdŠ)ö & FvgdŠ)ögdŠ)öɖʖö–.—1—@—~——Ž——ń—ú—˜˜~›Š›”›•›؛ć›œ œGœUœůœ‚ž—žœžąžŰ á [Ľ`ĽěĽúńÝɡݣ”ƒoƒoƒoƒaƒoƒoƒoƒaƒaƒaƒoƒŁƒhł ŐCJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ hœ3;hó?CJOJQJ^JaJhœ3;hó?aJ hł ŐaJ&hœ3;hó?5CJOJQJ\^JaJ#hł Őhó?5CJOJQJ^JaJ&hł Őhł Ő5CJOJQJ\^JaJ&hł Őhó?5CJOJQJ\^JaJhł Őhó?aJ hlFWaJ"A—S—f—~———˘—ń—˜O˜˜¸˜ɘ™"™A™P™q™€™ľ™Á™đ™úúíĺÚŇĘÂÂĘĘººººº & Fmgdé=$ & Fmgdé=$ & Fmgdé=$ & Fmgdé=$ $ & Fa$gdł Ő$a$gdó? &d PĆ˙ gdł Őgdł Őđ™ ššCšsšƒšššëš ››V›~›Œ›”›؛œ!œGœhœ–œšœžœáœ,\“÷ďççďçççďç÷ďçççďççßßßßďççç & Fmgdé=$ & Fmgdé=$ & Fmgdé=$ & Fmgdé=$“ˇçAž}žŔžŕžŸŸRŸ˜ŸŸ . F e — ž é  ĄĄMĄzĄĄĄÉĄňĄ˘÷ď÷÷÷ç÷÷ďßßßďßßďßßßďßßßďßß & Fmgdé=$ & Fmgdé=$ & Fmgdé=$ & Fmgdé=$˘l˘­˘Á˘ţ˘(ŁOŁ†Ł¨ŁëŁ ¤ ¤W¤Ł¤ˤ褼:Ľ[Ľ•ĽěĽ1ŚśŚ§÷÷ď÷÷÷÷ď÷÷ćŢÖÖÎÎÎÖÎÎĆĆĆ & Fmgdé=$ & Fmgdé=$ & Fmgdé=$ & Fmgdé=$„,^„,gdó? & Fmgdé=$ & Fmgdé=$켌.Ś0ŚFŚľŚŇŚÓŚ§§ś§ŧǧ˧¨%¨=¨>¨?¨I¨…¨†¨‡¨ˆ¨¨¨Ť¨Š)ŠYŠeŠzŠďŰďŰďʶʢʢʢʢʢʢʔƒrʢĘ^Ę^Ę&hœ3;hó?6CJOJQJ]^JaJ hœ3;hł ŐCJOJQJ^JaJ hł Ő5CJOJQJ\^JaJhó?CJOJQJ^JaJ&hœ3;hó?5CJOJQJ\^JaJ& jŕđhœ3;hó?CJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJ&hł Őhó?6CJOJQJ]^JaJ hł Őhó?CJOJQJ^JaJ§y§ś§¨?¨†¨‡¨ˆ¨¨¨ŠYŠžŠăŠŞ?ŞrŞŽŞbŤoŤĄŤĘŤŹ)Ź‚ŹĐŹ÷÷ďď÷ććŢ÷÷÷ď÷Ţ÷÷÷÷ďďďÖďď & Fmgdé=$ & Fmgdé=$„p^„pgdł Ő & Fmgdé=$ & Fmgdé=$zŠ|ŠăŠďŠŽŞ¸ŞŘ­é­)Ž*ŽœŽŽ¤ŽŠŽ °:°_°u°Îąßąłł'łHłƒś§ś˛śĘśĚśˇˇ;ˇ]ˇ`¸€¸­šş=şRş{ťŢťíÜČܴܦܒܒܴܦÜČÜČÜŚÜŚÜČÜ´„Üs܄܄ܴ܄ܴ hX‹hó?CJOJQJ^JaJhX‹CJOJQJ^JaJ& jŕđhœ3;hó?CJOJQJ^JaJhł ŐCJOJQJ^JaJ&hœ3;hó?5CJOJQJ\^JaJ&hœ3;hó?6CJOJQJ]^JaJ hœ3;hó?CJOJQJ^JaJ#hœ3;hó?CJH*OJQJ^JaJ(ĐŹH­d­­Ř­ë­9ŽrŽŞŽžŽÚŽűŽŻKŻ”ŻźŻŮŻ °<°_°Á°ąWąąÎą÷ďçßß÷÷÷ß÷÷÷×Ďßçßß÷÷÷÷÷÷ & Fmgdé=$ & Fmgdé=$ & Fmgdé=$ & Fmgdé=$ & Fmgdé=$ & Fmgdé=$Îą˛˛R˛—˛ń˛ł!łJł‚ł˘łŹłĺłţł'´-´]´h´~´ˆ´Ů´ä´ľľ÷ď÷÷ďďęâÚÚÚŇĘĘŇĘŇĘŇĘŇĘŇ & Fngdé=$ & Fngdé=$ & Fngdé=$ & Fngdé=$gdó? & Fmgdé=$ & Fmgdé=$ľVľ]ľoľ’ľĽľśľŇľŘľíľś)śPśfś˛śˇˇ9ˇ_ˇŤˇęˇ3¸‚¸÷ď÷ď÷ď÷ď÷ď÷ď÷çßÚŇĘÂÂĘ & Fogdé=$ & Fogdé=$ & Fogdé=$gdó? & FngdX‹ & Fngdé=$ & Fngdé=$ & Fngdé=$‚¸ š­šş_ştş‹şęşţş{ťßťŕťźtź”źľźĺźt˝~˝š˝Ä˝ű˝%žAžjž÷÷÷ď÷÷÷÷÷÷ćŢď÷÷ÖÎď÷ď÷÷÷ď & FogdX‹ & Fogdé=$ & Fogdé=$„p^„pgdX‹ & Fogdé=$ & Fogdé=$ŢťßťŕťeźsźE˝H˝t˝Ä˝Ö˝%ž4žGžhžjžyžĐžŕžëžřžĽżľżÂżßżbŔcŔxŔyŔŔŔœŔ˘ŔŕŔýŔÁ/ÁXÁďŰʜʨ—ĘƒĘƒĘ¨ĘƒĘƒĘƒĘ¨Ę¨ĘoĘoĘoĘ]Ę]Ę]Ę#hœ3;hó?5CJOJQJ^JaJ& jŕđhœ3;hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ hX‹hó?CJOJQJ^JaJhX‹CJOJQJ^JaJ&hœ3;hó?5CJOJQJ\^JaJ hœ3;hó?CJOJQJ^JaJ&hœ3;hX‹5CJOJQJ\^JaJ hó?5CJOJQJ\^JaJ$jžžĐžëžUżvżĽżüż"Ŕ6Ŕ˜Ŕ{ÁžÁÂ|¢ÂôÂVèĂäĂÄ@ÄXÄfÄ÷ď÷÷çßßßßďßß××××Ď×ĎÇ÷ď÷ & Fogdé=$ & Fogdé=$ & FygdX‹ & FxgdX‹ & FogdX‹ & Fogdé=$ & Fogdé=$XÁ{ÁÇÇ<Ç=ÇpȀȞĘËĘEÍZÍ1Î2΋қŇbÓƒÓ4ÔGÔ˜ÔŞÔÜÔđÔí×؋؏ظŘĐŘ.ÚDÚ„Ú™ÚÝÚőÚEÜ[ÜÖÜóÜÔÝâÝŢ™ŢœŢ§ŢűŢß ß'ß”ßíÜÎÜÎÜÎܺܺܦܒÜÎ܀܀܀ÜÎÜÎÜşÜÎÜíܺ܀ܺÜÎܺܺܺÜÎÜ#hœ3;hó?6CJOJQJ^JaJ&hœ3;hó?5CJOJQJ\^JaJ& jŕđhœ3;hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJhX‹CJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJ#hœ3;hó?5CJOJQJ^JaJ2fĉğÄíÄ@ĹNĹ™ĹŮĹƍĆÂĆ˙ĆCÇmljÇěÇjȧČËČ-ÉCÉżÉßÉĘSĘoĘ÷÷÷÷ď÷ç÷÷÷÷çßßçßçßç×ď×ďďď & Fogdé=$ & Fogdé=$ & Fogdé=$ & Fogdé=$ & Fogdé=$oʐʞĘĚĘË)ËSËyËčËc̤ĚÇĚŕĚřĚEÍżÍËÍŰÍÎ`ÎĐÎáÎĎJĎ÷ďçßßßç××××ďçßßĎßĎĎĎßĎÇ & Frgdé=$ & Frgdé=$ & Fmgdé=$ & Frgdé=$ & Frgdé=$ & Frgdé=$$a$gdX‹JĎxϨĎĐHЁĐŐĐ Ń(ŃYŃľŃ1ŇŠŇ‹Ň›ŇÔŇÓ]Ó…Ó¨ÓÂÓćÓÔ÷ďďçďďďďď÷ďďâÚŇĘĘŇĘĘ & Fpgdé=$ & Fpgdé=$ & Fpgdé=$$a$gdó?gdó? & Frgdé=$ & Frgdé=$ & Frgdé=$Ô4Ô˜ÔÜÔŐ_ŐÚŐőŐÖiÖyÖ†ÖÜÖüÖ×M×ĺ×ŘHŘ{؎ظŘ÷Ř%ŮlŮ÷ďďď÷÷ç÷÷ßç÷ç÷ď×ď×ď÷ď×ĎĎ & Fpgdé=$ & Fpgdé=$ & Fpgdé=$ & Fpgdé=$ & Fpgdé=$ & Fpgdé=$lŮ“ŮĎŮďŮvÚÝÚŰTŰgہ۳ŰÜEÜÖÜ1ÝTÝťÝůÝŢ)ŢtŢŘŢ ß)ß”ß%ŕ÷ď÷çďçďß×ççď××çç×ççç×çß×× & Fpgdé=$ & Fpgdé=$ & Fpgdé=$ & Fpgdé=$ & Fpgdé=$”ߊߘŕşŕůŕá]áuá‘áOâPâQâ`âaâ…â†âzăˆăňăä‹äŒäďäńäţäĺ=ĺYćzć[çěŰÍŰÍŰÍźŰÍŽŞŚš‹šššŰkŰbŰTŰTŰh[OťCJOJQJ^JaJhœ3;hó?aJ&hœ3;hó?5CJOJQJ\^JaJhX‹CJOJQJ^J jŕđhŠ)öCJOJQJ^JhŠ)öCJOJQJ^JhŠ)öhX‹hŠ)öCJOJQJ^JaJ hX‹hó?CJOJQJ^JaJhX‹CJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ%ŕdŕŕźŕ÷ŕá]á‘á›áÔáâOâPâQâaâtâ˝âńâ ă&ă÷ďçßçß×ßď÷ďĘ½¸°¨¸° & FwgdŠ)ö & FwgdŠ)ögdŠ)ögdŠ)ö$a$gdó? &d PĆ˙ gdX‹ & FpgdX‹ & Fpgdé=$ & Fpgdé=$ & Fpgdé=$ & Fpgdé=$&ă8ăză‰ăßăęă ä‹äĽä´äĂäÖäđäńäţä?ĺnĺýĺ=ć|ć†ćúňúňúňňęâââŇâÍ¡ˇˇÂˇ $ & Fsa$gdé=$ $ & Fsa$gdé=$gdŔŹ$&d PĆ˙ a$gdó?$a$gdó?$a$gdX‹ & FwgdŠ)ögdŠ)ö†ćŠćÉćçćđćçXçoççÜçřç-čUčkč čäčýč0éXé•éČéôôéôŢŢÓČ˝˝Č˝˝Ţ˛éôŢôŢ $ & Fsa$gdé=$ $ & Fsa$gdŔŹ $ & Fsa$gdŔŹ $ & Fsa$gdŔŹ $ & Fsa$gdé=$ $ & Fsa$gdé=$ $ & Fsa$gdé=$[ç_çnçoçƒçœçç çžçŔçÁçŰçÜç÷çřçč,č-čBčCčTčUčkč čÍčĎčĐč×čăčäčĺéçéęňë ě ěě!ěBěŽí­í°íœď´ď&óDóżóňáňÍáňáňťňáňáňÍáňáňáňáŞá™ňáňáŞňáŞňސނނňŞňŞňŞh[OťCJOJQJ^JaJhœ3;hó?aJ hŔŹhŔŹCJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJ#hŔŹhŔŹCJH*OJQJ^JaJ&hŔŹhó?6CJOJQJ]^JaJ hŔŹhó?CJOJQJ^JaJhŔŹCJOJQJ^JaJ.Čéę0ęgę›ęŠęđęëFëëœëňë ě ěěDěXěě˛ěÍěôéŢŢÓééŢŢéŢŢËĆť°ĽĽ° $ & Fta$gdé=$ $ & Fta$gdé=$ $ & Fta$gdé=$gdŔŹ$a$gdó? $ & Fsa$gdé=$ $ & Fsa$gdé=$ $ & Fsa$gdé=$ $ & Fsa$gdŔŹÍěíí3í^í}í˛íżí îRîÂî)ď9ďpďˆďÎďňďđ/đfđ°đń|ńŁńôôéôôŢéôôôôéôôÓČÓôÓÓÓÓÓ $ & Fta$gdé=$ $ & Fta$gdé=$ $ & Fta$gdé=$ $ & Fta$gdé=$ $ & Fta$gdé=$ŁńŔń?ňqň‘ňöňóEóqó¸óżóäóô&ôwôäôNőjőyő˝ő\öîö÷ôééôéôéŢééŢŢŢôôôôÓôôôČ $ & Fta$gdé=$ $ & Fta$gdé=$ $ & Fta$gdé=$ $ & Fta$gdé=$ $ & Fta$gdé=$żóÍóäóôóôô&ôFôIôwô…ô÷őö/öKö÷+÷hřřăřů ů$ůhůqů ú*ú<űMűaű‚űžüŐüţü ýeţ–ţ´ţśţ˙ ˙*@c…­ťąÂ|}'(ýěŰěŰěŰěÍŰěŰěŰěŰÍŰěŰěŰěŰÍŰÍŰěŰěŰěۚۚۧŰěŰěŰěŰěŰěۓۓۓŰ& jŕđhœ3;hó?CJOJQJ^JaJ#hœ3;hó?CJH*OJQJ^JaJ&hœ3;hó?5CJOJQJ\^JaJhŔŹCJOJQJ^JaJ hœ3;hó?CJOJQJ^JaJ&hœ3;hó?6CJOJQJ]^JaJ7÷-÷Z÷Ź÷ ř=řhřřŘřGůsůŻůéůJúúÓú7ű űľűŃűîűbü™üžüý÷ďďďççďçďçďçďçççß×ĎĎď÷ďç & Ftgdé=$ & Ftgdé=$ & Ftgdé=$ & Ftgdé=$ & Ftgdé=$ & Ftgdé=$ýiýšýĚýţ3ţ–ţ§ţĘţ!˙P˙Ř˙ę˙ A”ÚCPŹ*‘ś÷÷÷ďçďß÷÷÷÷ďß÷÷÷÷÷×ß÷÷÷÷÷ & Ftgdé=$ & Ftgdé=$ & Ftgdé=$ & Ftgdé=$ & Ftgdé=$śÉ(ZŸúĄšç\Ĺüý{š'¨C^÷ďďď÷ďďďç÷÷÷ŢÖççÉççç÷ď „Đ„Đ^„Đ`„Đgdó? & Ftgdé=$„Đ^„Đgdó? & Ftgdé=$ & Ftgdé=$ & Ftgdé=$ý%_nŁ¤ŚľśŤŹ­Ž°ął´śˇšşŃŇÔŐ×ŘŮÚňáÍáĂᡍ§ ˇ‘€xtxtxtxtlhl_UhQt€héL•jh$c3U†*hd6#mHnHuh$c3jh$c3UhŇ\˙jhŇ\˙U hœ3;hm"CJOJQJ^JaJhŠ)ö5CJOJQJ\^J h(Űh(Űh(Űh(ŰCJOJQJ^JhŠ)öCJOJQJ^Jhœ3;hó?\aJ&hœ3;hó?6CJOJQJ]^JaJ hœ3;hó?CJOJQJ^JaJhďzCJOJQJ^JaJ^_nŽÜý9 \ Ś Ű  j ‘ ş Ä ó ! L ~ ‡ Ô öńćŰĐĐĹĹĐĹĹŰĐĹşşşĐĹş $ & Fua$gdé=$ $ & Fua$gdé=$ $ & Fua$gdé=$ $ & Fua$gdé=$ $ & Fua$gdé=$gdó?„Ř ^„Ř gdó?Ô " D ` z  ¤ ç  , Q e Ž ą Ó ĺ 'KasŁ¤ôéŢŢŢÓéÓééééËËËĂÓéééŢžgdŠ)ö & Fugdé=$ & Fugdé=$ $ & Fua$gdé=$ $ & Fua$gdé=$ $ & Fua$gdé=$ $ & Fua$gdé=$¤ĽŚśćTŞŤŹ­Ż°˛łľś¸šÖ×ŘŮÚňíčŕŕŕŕííŢŮŢŮŢŮŢŮŢÔŇŢŢŢ$a$gd$c3 & FwgdŠ)ögd(ŰgdŠ)ö &d PĆ˙ gdŠ)ö21h:pWPu°Đ/ °ŕ=!°ě"°ě#8$8%°°Đ°Đ Đ^ 02ŔĐŕđ 0@P`p€ŔĐŕđ2(Řč 0@P`p€ŔĐŕđ 0@P`p€ŔĐŕđ 0@P`p€ŔĐŕđ 0@P`p€ŔĐŕđ 0@P`p€ŔĐŕđ 0@P`p€8XřV~_HmH nH sH tH @`ń˙@ NormalCJ_HaJmH sH tH P@P  Heading 1$$@&a$5CJOJQJ\^JR@R  Heading 2$ & F@&5CJOJQJ\^JZ@Z Ç Heading 3$¤đ¤<@&5CJOJPJQJ\^JaJZ@Z Ç Heading 4$¤đ¤<@&5CJOJPJQJ\^JaJ^^ Ç Heading 5 ¤đ¤<@&$56CJOJPJQJ\]^JaJX@X Ç Heading 6 ¤đ¤<@&5CJOJPJQJ\^JaJDA ň˙ĄD Default Paragraph FontVió˙łV  Table Normal :V ö4Ö4Ö laö (k ô˙Á(No List Rţ˘ńR ÇHeading 3 Char5CJOJPJQJ\^JaJRţ˘R ÇHeading 4 Char5CJOJPJQJ\^JaJXţ˘X ÇHeading 5 Char$56CJOJPJQJ\]^JaJRţ˘!R ÇHeading 6 Char5CJOJPJQJ\^JaJ<J2< WPuSubtitle>*OJQJ^JJţ˘AJ WPu Subtitle Char>*CJOJQJ^JaJ>>@R> #sVTitle$a$5OJQJ\^JFţ˘aF #sV Title Char5CJOJQJ\^JaJ4r4 $c3Header  ĆH$6ţ˘6 $c3 Header CharCJaJ4 @’4 $c30Footer  ĆH$6ţ˘Ą6 $c30 Footer CharCJaJPK!‚Šźú[Content_Types].xmlŹ‘ËjĂ0E÷…ţƒĐśŘrş(ĽŘ΢Iw},Ňäą-j„4 Éßwě¸Pş-t#bΙ{UŽă “óTéU^h…d}㨍ôűî)ť×*1Pƒ'Źô “^××Wĺî0)™ŚTéž9<“l#¤Ü$yi}ĺ;Ŕ~@‡ćś(îŒőÄHœńÄĐuů* D× zƒČ/0ŠÇ° đűů $€˜ XŤÇ3aZ˘ŇÂŕ,°D0j~č3ßśÎbăí~i>ƒŘÍ3ż\`ő?ę/ç[ŘŹśGéâ\Ä!ý-ŰRk.“sţÔť..—ˇ´aćż­?˙˙PK!ĽÖ§çŔ6 _rels/.rels„ĎjĂ0 ‡ď…˝ƒŃ}QŇĂ%v/ĽC/Ł}á(h"ŰëŰOÇ ť„¤ď÷Š=ţŽ‹ůá”ç šŞĂâC?Ëháv=ż‚É…¤§%[xp†Ł{Űľ_źPŃŁ<Í1ĽHś0•ˆŮOźRŽBdŃÉŇJEŰ4b$§‘q_טžŕ6LÓőR×7`Ž¨É˙łĂ0̞OÁŻ,ĺEn7”LiäbĄ¨/ăS˝¨eŞÔĐľ¸ůÖý˙˙PK!ky–ƒŠtheme/theme/themeManager.xml ĚM Ă @á}ĄwŮ7cť(Eb˛ËŽťöCœAǠҟŰ×ĺăƒ7Îß՛K Y,œ ŠeÍ.ˆˇđ|,§¨ÚHĹ,láÇćéxÉ´ßIČsQ}#Ր…­ľÝ Öľ+Ő!ď,Ý^š$j=‹GWčÓ÷)âEë+& 8ý˙˙PK!–ľ­â–Ptheme/theme/theme1.xmlěYOoŰ6żŘw toc'vuŠŘą›-MÄn‡i‰–ŘP˘@ŇI}Úă€Ăşa‡Řm‡a[ŘĽű4Ů:lĐŻ°GR’ĹX^’6؊­>$ůăű˙ŠŤ×îÇ !)OÚ^ýrÍC$ńy@“°íÝö/­yH*œ˜ń„´˝)‘Ţľ÷ßťŠ×UDb‚`}"×qۋ”Jח–¤ĂX^ć)I`nĚEŒźŠp)řčĆlišV[]Š1M<”ŕČޏŠOĐP“ô6râ=Ż‰’zŔgb Ig…ÁuSŮebÖö€OŔ†äžňĂRÁDŰŤ™Ÿˇ´qu Żg‹˜Z°ś´Žo~ŮşlAp°lxŠpT0­÷­+[}`j×ëőş˝zAϰV–2ÍF­ŢÉi–@öqžvˇÖŹ5\|‰ţʜ̭N§Óle˛X˘dsřľÚjcsŮÁĹ7çđÎfˇťęŕ ČâWçđý+­Ő†‹7 ˆŃä`­ÚďgÔ Č˜łíJřŔ×j|†‚h(˘KłóD-Šľß㢠dXŃŠiJĆ؇(îâx$(Ö đ:ÁĽ;äËš!Í I_ĐTľ˝S 1Ł÷ęů÷Żž?EÇž?řéřáĂă?ZBÎŞmœ„ĺU/żýěĎÇŁ?ž~óňŃŐxYĆ˙úĂ'żüüy5Ňg&΋/ŸüöěɋŻ>ýýťGđMGeřĆD˘›äíó3Vq%'#qžĂÓňŠÍ$”8ÁšKýžŠôÍ)f™w9:ÄľŕĺŁ x}rĎx‰‰˘œw˘ŘîrÎ:\TZaGó*™y8IÂjćbRĆíc|XĹť‹Çż˝I u3KGńnD1÷NIBŇsü€ íîRęŘu—ú‚K>Vč.EL+M2¤#'šf‹śi ~™Vé ţvlł{u8ŤŇz‹şHČ Ě*„ć˜ń:ž(W‘☕ ~Ť¨JČÁTře\O*đtHG˝€HYľć–}KNßÁPą*ݞˌą‹ŠTŃź9/#ˇřA7ÂqZ…Đ$*c?˘íqUßĺn†čwđNşű%ŽťOŻˇičˆ4 =3ڗPޝ ÓäďĘ1ŁPm \\9†řâëÇ‘őśâMؓŞ2aűDů]„;Ytť\ôíŻš[x’ěóůç]É}Wr˝˙|É]”Ďg-´łÚ eW÷ ś)6-rź°CSĆjĘČ išd űDЇA˝ÎœIqbJ#xĚ꺃 6kŕę#Ş˘A„Sh°ëž&ʌt(QĘ%ěĚp%m‡&]ŮcaSl=XíňŔŻčáü\P1ťMhŸ9ŁMŕŹĚVŽdDAí×aV×B™[݈fJĂ­P|8Ż քAŰV^…óšf ĚH ín÷ŢÜ-Ć é"á€d>ŇzĎű¨nœ”ÇŠš €ŘŠđ‘>äbľˇ–&űÜÎâ¤2ťĆvš÷ŢÄKyĎź¤óöD:˛¤œœ,AGmŻŐ\nzČÇiŰÙăź.uχYCž6ěOMf“ĺ3ośrĹÜ$¨Ă5…ľűœÂNH…T[XF64ĚT,ќŹüËM0ëE)`#ý5¤XYƒ`řפ;şŽ%ă1ńUŮŮĽm;űš•R>QD ˘ŕŘDěcpżUĐ' Ž&LEĐ/pŚ­mŚÜâœ%]ůöĘŕě8fi„łrŤS4Ďd 7y\Č`ŢJân•˛ĺÎŻŠIů RĽĆ˙3Uô~7+ö€׸#Żm q¨BiDýž€ĆÁÔˆ¸‹…i*¸L6˙9Ô˙mÎY&­áŔ§öiˆ…ýHE‚=(K&úN!VĎö.K’e„LD•Ä•Š{D 긪÷vEꦚdeŔŕNƟűžeĐ(ÔMN9ߜRě˝6ţéÎÇ&3(ĺÖaÓĐäö/DŹŘUízł<ß{ˊč‰Y›ŐČł˜•ś‚V–öŻ)Â9ˇZ[ąć4^nćç5†Á˘!Jážé?°˙Qá3űeBo¨CžľÁ‡M ¢ú’m<.vp“´Á¤IYÓf­“śZžY_p§[đ=al-ŮYü}Nc͙ËÎÉŋ4vfaÇÖvlĄŠÁł'S†ĆůAĆ8Ć|Ň*uâŁ{ŕč-¸ßŸ0%M0Á7%Ąő˜<€äˇÍҍż˙˙PK! ѐŸś'theme/theme/_rels/themeManager.xml.rels„M Â0„÷‚wooÓş‘&݈ЭÔ„ä5 6?$Qěí Ž,.‡až™iť—Éc2Ţ1hŞ:é•qšÁm¸ěŽ@RN‰Ů;d°`‚Žo7íg‘K(M&$R(.1˜r'J“œĐŠTů€Ž8ŁVä"ŁŚAČťĐH÷u} ń›|Ĺ$˝b{Ő–Pš˙łý8‰g/]ţQAsم(˘ĆĚŕ#›ŞLĘ[şşÄß˙˙PK-!‚Šźú[Content_Types].xmlPK-!ĽÖ§çŔ6 +_rels/.relsPK-!ky–ƒŠtheme/theme/themeManager.xmlPK-!–ľ­â–PŃtheme/theme/theme1.xmlPK-! ѐŸś'› theme/theme/_rels/themeManager.xml.relsPK]– Ú ˙˙˙˙ +++.: ç%J*V2w=“EUOhUŞbîrĄzlŠó˜0˘)Ź(ťŔÜČÁ͟ŇÁيŕ…ćůíň ůÓG#ćE}UĐ[Şq4~Žƒu“٧ŞťFĂ[ŕ¤ěyýâ  f$r*ą1ú3řK†Ul^&j˜qIƒɖěĽzŠŢťXÁ”ß[çżóýÚˆ‹“•™ ¤ŚŤ°ł¸źŔĂČËÎĐÓÖŮÝŕăçďôü   #)-17;@BEGMPSW[_dikprx|€„1 w u”!Ő$'v*”,m0ć4ţ81=˜@lD¸GJNœRaV˛YĚ]Éa˘ełiŮnäq1u w…{„~܂3ˆóŒ$đ”ô˜ńœÇĄĂĽŁ¨vŹ1ąÇľ‚šÖź%żáÂÇËŇÍ,ŃÁÓ ŘŃŰ^ߏá/ä çÉč€ë îzđÄňÖőő÷űˆ˙”Š ŠÚž);1"I%ë)v/=5Ë:¨?źD|HŃLRXV Z°])b˙eŽj"pét=yŕ}Ž“‚ˆ†kŠ+Žâ‘d“•H˜8œH˘„§)ŹÉąUˇ"źŔĆ)ËîĎ´ÔŞŰşáëĺźëüńĺöú~ţé Ś K‹ b’Ę[$ě'o+//Ľ3Ł7L<ŔAŕE–JěOaTY×\é_ňc†gŹjâmŁpOt0xő~Vƒ“‰żŽä’A—đ™“˘§ĐŹÎąľ‚¸jžfÄoĘJĎÔlŮ%ŕ&ă†ćČéÍěŁń÷ýś^Ô ¤Ú‰ŠŒŽ‘’”–—˜š›œžŸĄ˘ŁĽ§¨ŠŞŹ­ŽŻą˛´ľśˇšşť˝žżÁÂÄĹĆÇÉĘĚÍĎŃŇÔŐ×ŘÚŰÜŢßáâäĺćčéęëěíîđńňóőö÷řůúűýţ˙   !"$%&'(*+,./02345689:<=>?ACDFHIJKLNOQRTUVXYZ\]^`abcefghjlmnoqstuvwyz{}~‚ƒ…†‡ $'.!˙•€đ8đ@ń˙˙˙€€€÷đ’đđ0đ( đ đđB đS đżË˙ ?đ(27?z…”  ¨°şÂÍ! !­!¸!2&>&)+0+-!-đ5÷5l:r:ľ:š:j;r;P>[>a?j?|?†?UDWD›DDŠF°FQLQčW÷WŽX—XFYNYf`h`2c>cacoc˝dČde"eĎeÚeůefŐfŘf6h=hZhehƒh‰h¤hŻhĆiŇi[jfjţjkĽo´oôo˙o˛qźqOrXr›sŚsÂtÉtÓtÝtu uÂuĚuđu÷u„v‹vßvęvŒw—wĂxĘx!y&yRy[yĽyŠyÔyŰyëyôyčzńz{{¸~ť~Ň~Ű~DLł˝ƒ€Œ€ť€Ç€„łťŔÉ˘‚Š‚â‚ę‚˙‚ ƒ$ƒ-ƒ0ƒ9ƒrƒwƒ0„;„@„J„U„_„Ž„˜„ˇ„„ô…ý…‡‡6‡A‡j‡r‡›ˆŚˆŔˆĚˆ5‰A‰—‰ž‰@ŠMŠšŠÁŠžČÓŽÝŽł˝s}l“y“°“˝“w–„–Ηؗa›k›Ö›ŕ›œœGœPœpœ{œ"-ĂËžžjžvž…žŽž´žźžb l BĄLĄMĄUĄű˘ ŁCŁIŁyŁ‚Ł°ŁşŁÇŁŃŁ¤”¤›¤Ľ¤ó¤ř¤ ĽĽ/Ľ4ĽOĽZĽgĽpĽrĽwĽÄĽĎĽlŚqŚ¨¨K¨O¨R¨X¨c¨j¨u¨¨ĂŠČŠúŠŞ%Ş*Ş@ŞFŞŐŞŮŞ!Ť%Ť­­9­>­Ě­Ń­ě­ő­ ŽŽ.Ž2ŽCŽLŽjŽpŽuŽŽÇŽËŽâŽćŽ1Ż5ŻtŻ}ŻƒŻˆŻĹŻĘŻŰŻäŻ°$°j°s°š°Ľ°Tľ^ľŸś¤śď¸÷¸˙¸š3š;šxş‚şŽş™şüťźź‘źCŔLŔzŔ‚ŔÔŔŰŔÂ(ÂnĂyÁÍðõĂÄĭĸÄ×ÉßÉŘËĺË]Ěg̠̕ĚĎĚÜĚÍ͍͘ÍFÎOÎWÎaÎÚÎĺÎŰĎáĎüĎĐ!Đ.ЁЌĐĂĐĐĐŮĐáĐýĐ ŃKŃXŃxсщѓѥѯŃŮŃćŃňŃ˙Ń ŇŇDŇNŇoŇz҄ҋŇÍŇŮŇâŇéҘӣÓŐŐjŐqŐrŐvŐ˛ŐšŐéŐóŐ× ×Ş×´×$Ř+ŘżŘËŘŐŘÝ؝٥٬ٵٷپٝڧÚËÚŇÚJŰSŰŞŰŽŰ%Ţ-Ţ.Ţ2Ţ ßßHáRáŃáÚáŸâŹâŤăąăĐăŘăóăä ää(ä3ä;çJçLçWçęęžęŞęë(ë6ěDěÖěßěNí[í íŹí5ď=ď!ń.ńdňnň‡ň‘ňó!ó`óió+ô4ôIôSôcôlôŞô´ôAőKőcőnőˆő“őö ööö,ö6ö™ö˘öőö˙ö3÷>÷C÷N÷—÷Ą÷Ă÷Ě÷0ř6řLřXř“ř™ř7ů=ů>ůGů:úCú{úúńúűúű űű%ű&ű0űBűLűYű`űĘűĐűÚűáűüűüAüKü˘üŹüóüýüýýRý]ý_ýiýnýyý|ýƒýąýžýĂýĐýţţ&ţ5ţ/˙;˙Ö˙ĺ˙\gÜç "FQT^nx—žÂĚÍŮÚä$\fĚÖ ›éö(45?@KcnĄŞÁĚŐÜ()5r~—Ąű*5:EJSdmĄŹT]yƒ–éóňü) 2 M U g r  § _ i ; B J W ö    ~ ˆ ‰ ” Ź ś ă ě í ó pzŒ4>v€-56Aôbt´žBN[g›˘oyľÁ^dĎŐŹ´ci’˜&3dn€…ŁŻÉŐů  !(!d!l!•! !Ą!Š!M"U"Z"h"Ä"É"7#?#t##$$"$,$-$3$g$m$Ü$ĺ$÷$%L%T%a%i%q%z%…%Œ%˜%Ą%Ä%Í%Ű%ĺ%ć%ë%&&%&,&S&d&Ś&Ź&Ă&Ę&˜'¤'ˇ'ž'((a(f(y(€())@)G)Ú)â):*A*T*[*­*ł*+"+Ź+ľ+á+ć+ç+î+ ,,,,5,?,A,K,U,[,v,},ł,¸,˙,-7-<-F-M--Š-˛-ť-î-ř-t.|.‡.Œ.Ş.˛.Ć.Ď.Đ.×.//=/G/‹//ß/ĺ/ć/ë/l0s0Ź0ł0ľ0ż0˙01 11]1a1t1~1‡1Œ1œ1Ś1Č1Í1Î1Ö1˙1 2222$2<2F2G2L2`2j2Ë2Ő2Ö2ß233@3H3•4š455"5+5Q5Z5§5ł5Â5Î5î5÷5}6…6˛6ş6ť6Ŕ6Î6Ö6;7I7s7|7ˆ7’7”7ž7¨7­7˙7898@89 9!9)9+929ƒ99›9˘9Đ9×9ß9ć9+:2:3:;:]:d:ő:ű:;#;5;<;e;n;¸;ż;;<E<b<i<Ÿ<Ľ<ć=÷=>>Ń>Ý>Ţ>ě>ó>ţ>?'?K?S?`?h?k?y??ƒ?´?ť?ď?ú?@@|@ƒ@ľ@ž@Ő@Ü@ý@AJAXAlArAĆBÍBpCyCC†C‡CŽCĹCĚCôCüCD§D´DźDŃDŘD÷EţEFFFGOGÜGęG HHhHlHoHwHxH‚HłHşH{I‚I[JdJoJvJJˆJŁJ­JčJňJ'K.K•KĄKŔKÉKŢKäKňKůK[LgLjLqL{L‚L¸LÇLCOJO“OšOĆOÍOÎO×OŘOŕOśQžQëQňQgRoRˆRšR¸RŔRŃRŮRS$S;SGSLSXSYS_S…SS‘S–SŮSŕSKTRT°TˇTËTÚT7UAUŽU–U§UŻUÔUÝUV V(V5V=VEVFVKV^VgVhVmVŚVŤVšVÁVÂVÇVöVWCWJWsW}WŸWŤWîW÷WúWXX!X-X5X9X@XyX‚X•XžXŸX¤XţXYAYOYĎYŘYÜYăYZ Z)Z.ZLZPZ]ZdZłZšZ[ [[[[![#[+[1[9[>[D[}[…[‡[[¸]ş]ť]Ŕ]Ä]É]˙]^(^-^/^5^^†^Ŕ^Ä^ˇ_ž_É_×_ă_č_``#`*`3`>`F`K`¨`Ż`Ú`á`č`÷`aaa#aXa_aa‹aŮaăaéađańaűab&bHbMbnbrbăběb7c@cCcQcŻcłcd#dpdtdxd|d–dĄdÂeÇe€f‡f‹f•f–f›fąfťfg'gEgVg^gpgƒgŽgg–g—gĄgŽgŔg×gÜgÝgăgägđgůgţg5h=hihthĆhĐhiiXi`iĽiŞi¸iÄiÎiÚiZjbjrjjÎjÖjíjůjk$k%k+k,k6k˝kĆkllnlwlBmKm‚m‹m˘mŤmŹmšmŮmçmčměm nnnnRnXn‰n’nĆnĚn8o>oâoëo*p3pÁqÉqĽrŤrÝußu°vźvĐvŢvůvwvx€xx‹xČxÓxLyXy†yyÂyĚyPz]z›z§z¨ząz´z˝zĚzŐz{{!{/{u{~{||˘|Ť|N}X}ˆ~‘~ˇ~Ĺ~Ď~Ř~â~č~fl°€š€ć€ď€ƒ ƒEƒMƒxƒ€ƒşƒăi„t„y„„„•„ž„ׅă…Ćцď‡ů‡ ˆ)ˆ|ˆ„ˆş‰Éü‰ŠVŠbŠpŠuŠŽŽŽŽGŽJŽLŽOŽTŽYŽcŽmŽŽ—Ž’̒o”x” ••J•T•.—7—V—`—n—{—˜˜˜$˜/™9™M™V™Ž™˜™ƙЙĺ™î™HšQššššŸšŤšůšţšr›|›ˆ›‘›¨›Ź›)œ3œ{œ‡œ”œœ؝ޝHžVžxž„ž  7 = ˘ § ą ś ş ż Ű ŕ 2Ą7ĄBĄMĄjĄoĄšĄÁĄćĄéĄ ˘˘˘˘˘*˘B˘G˘H˘K˘u˘z˘ű˘Ł ŁŁcŁoŁJ¤S¤ Ľ*Ľ\ĽgĽĽŠĽéĽóĽŚŚÇŚĐŚ¨"¨Ÿ¨¤¨BŞGŞSŞ^ŞŽŞ–ŞŹŞˇŞůŞţŞ;Ť@ŤaŹkŹă­ć­ ŽŽ Ž*ŽĄŽŤŽľŽżŽîŽńŽ˙ŽŻŻŻFŻIŻz°ˆ°ë°ů°ją~ą€ą„ąĄąŤąćąéą­˛ˇ˛ó˛ü˛łł+ł7łłłťłÇłŇłˆ´“´Qľ^ľgľoľ}ľ‡ľř¸˙¸Šź°ź€ż†żŔ Ŕ/Ŕ4ŔOĹ^ĹiĹqĹ|Ĺ„ĹÎĹÖĹőĹýĹţĹĆĆ$Ć@ĆJĆŻĆśĆňĆůĆyǀǼǯÇăĚęĚÍ&Í%Î/Î…ŐŐŹŐ¸Ő¨ÖŻÖ#×-×I×S×Ç×Î×Ů#Ů–Ů Ů–ÚŸÚÝ!Ý˝ŢÇŢźŕĂŕŃŕŰŕLáVá_áná¸áÄáúá˙á,â7â@âHââŤâăăĺĺńĺűĺ(ć.ććšć´ćžćÍćÓćĺćëćç(çBçGçŢęčę2ë6ëě*ě~í†í‡í‹í;đDđFđPđ^đhđŔđËđŘđâđäđîđđđůđTń]ńjńvńŒń‘ń”ńœńžńŠńŃńŘńŰńŕńăńďńQň[ňňňőň÷ňűňýňóľóźóüóôôôŁôŞôâůęůéúóúQűZűƒűŠű–űűŞű°űšűżűRü]ü=ýPý÷ýýýăţěţ˙˙#˙*˙{˙…˙ť˙Ä˙ćîw€„‰Ůăčňœ§ĘÓ˙ü ;Exƒ †" & B I d!o!Ń"ß"ě"ů"##D#Q#‹#“#÷#$$$7$D$H$R$o$s$ƒ$‘$&&''ˆ'’'}(†(‘(Ÿ(ď(ů(w)‡)Ý)á)d+h+„+‰+r,w,ą,ˇ,Ŕ,Ć,î,ř,ů,ţ,--ƒ.‹.ä0î0ď0ô0V1c1•1Ÿ1ţ1 2!2&2_2g2ů233&3#4+4?4F4{4ˆ4™4¤4Ľ4Ş4Ď4×455Š5—5ş5Ç5ł7ˇ7K8Q8S9[999Ŕ9Í9Ő9Ú9ď9÷9;;< <,<6<Q<X<Ţ>ä>ď?ů??@J@Œ@”@˘@­@AAĄAĽAPBSB›CŚCżCĆCÉCĎCĐCŘCřCDD!D$D*DkDtD­D¸DđDřDEE#E.E8EBECEHEIEQEŒF™FŽG¸GŸIŹIÄIÎIJJ?KJKqBqKq˝qÂqĎqŘqŮqŢqrrĚrÖrŚs°s'v0vSw]wyyŘ{ă{|||"|Ť|ł|ś~ž~Ü~á~ň~÷~\as~•˜›Ş˛ËŃăî€ €X€]€^€h€~€ƒ€˘€Ľ€ž€ÀĀ΀‰Œíűd‚o‚w‚|‚gƒmƒ|ƒŠƒüƒ„„„'„1„‚„Œ„3…?…M†O†—† †ˆˆŠŠ>ŠFŠn‹r‹w‹|‹Ž"Ž'‘!‘q‘‘ľ‘Ŕ‘ ’’s’‚’Ą’§’ ““Ҕŕ”ć”ď”˙” •\•h• ––Y–b–͖ז—)—`—g—˜"˜;˜E˜Z˜\˜e˜m˜˜‹˜ ™™T™]™əљă™ń™ő™ţ™ššÁšϚ™›§›ť›ě$œ1œaœnœpœ~œ€œœQž`ž~Ÿ‰Ÿ  ­ĄśĄűĄ˘Š¤ś¤ëĽöĽŚ(Ś9ŚDŚrŚ|Ś?§J§_¨h¨č¨ň¨ú¨ŠAŞPŞŠŤŤ]ŹgŹ~Ź‡Ź­­o­€­Ľ­ľ­Ň­×­Ž"Ž–Ž§Žf˛k˛|˛˛‹˛”˛•˛š˛ɲѲď˛ô˛ţ˛łłł-ł1ł{łłŕłëł´´´…´ý´ľ•ľ™ľžľŤľÄľĎľćľęľűľś%ś.ś‚ś•śŻśłśĐśŮśëśňś͡ѡ>¸B¸r¸w¸Ź¸°¸ž¸ѸŒš”šךŢšőšúšşş]şeşhşsş˘ş§şŰşĺşť ť ťťť'ť(ť1ťäťďťźźLźQźíźöź˝˝Ĺ˝Đ˝žžzž†ž¨žŽž˙žżCżHżYżgż™żĄż8ŔEŔZŔcŔ—ŔžŔËŔÓŔîŔůŔ-Á8ÁżÁĘÁúÁÂ)Ă,ĂSĂ^ĂtĂxùĴĸÄĆÄaÇnÇČČ@ÉLÉ ĘĘ˜ĚŁĚÎĚÚĚÜĚčĚ_Íg͠ώϸĐÂĐCŃEŃŇŇfŇkŇÝŇçŇřŇÓüÓԌԘÔŔÔÍԜ֧Ö%Ů0Ů>ŮKŮLŮUŮ{Ů„ŮÔŮŢŮđŮűŮńÚţÚ=ßGßißnßoß|ß˜ßœßßŞßíß÷ßřßŕFŕNŕ^ŕjŕaáiá•áŁáČáËáŽâšâŽä›äŮäääôäĺNĺVĺŽĺšĺżĺĚĺ@ćKć_ćićççZçgçpçzç’çœçňçůç9čBčtč|č˜č čŤčŻč°čżčĘč×čéé%é)éPé]é‰é–éŁéłéÖéŕéęę0ę5ę–ęŁęöęűęLëYë˙ëě;ě@ěčíěí˙í î/î;îŃîŘîűîďď,ď^ďkďďšďŰďčď đđnđsđtđđŒđ™đęđ÷đîńűń ňň[ňeň!ó*ó<óFóaómó óŹóMôZôˇô˝ôĂôÇôČôŐôőőSő[ő\ő`őŻőťőŇőÜőäőńő3ö7ö8öEöđöúö,ů8ů˘ůŤůąůťůůůúú!úpú{úŰúčúű űüü?üJüýý\ýeýtý‚ýžýŤýŢýčýýýţůţ˙Ž‘š¨ý=J÷LV”œ÷ţźÁŹ­­ŻŻ°°˛łľś¸šŐŰ/>%>yGŹ­­ŻŻ°°˛łľś¸šŐŰó=ö=>>%ň*ňţţŹ­­ŻŻ°°˛łľś¸šŐŰó=ö=>>%ň*ňţţŹŰy+–Î5šş˙˙˙˙˙˙˙˙˙cÁp[.÷˙˙˙˙˙˙˙˙˙+ŽŃ(\˙˙˙˙˙˙˙˙˙â~ŇĐT˙˙˙˙˙˙˙˙˙g÷Î=6h˙˙˙˙˙˙˙˙˙Éi× ŽîA˙˙˙˙˙˙˙˙˙NěÄÉîŐ˙˙˙˙˙˙˙˙˙ő::Ź˙˙˙˙˙˙˙˙˙"Kž€˙˙˙˙˙˙˙˙˙ {˘Ştđ˙˙˙˙˙˙˙˙˙™{Ż–8¸‡˙˙˙˙˙˙˙˙˙Č$“PDĘó˙˙˙˙˙˙˙˙˙đKV öő˙˙˙˙˙˙˙˙˙3Dă 4ŚŘ˙˙˙˙˙˙˙˙˙Ja{ ¤ËD˙˙˙˙˙˙˙˙˙QL… ŘŽg˙˙˙˙˙˙˙˙˙˜RfČ*Ô˙˙˙˙˙˙˙˙˙łsX"ż¤Ó˙˙˙˙˙˙˙˙˙Ýz;ňE|ř˙˙˙˙˙˙˙˙˙šuŇî(œ˙˙˙˙˙˙˙˙˙Čt•¸X0Č˙˙˙˙˙˙˙˙˙–;€Ŕʢc˙˙˙˙˙˙˙˙˙bÂ8fˇ˙˙˙˙˙˙˙˙˙œ%^ë˙˙˙˙˙˙˙˙˙€"iŹ€ b˙˙˙˙˙˙˙˙˙΢PnœŐ˙˙˙˙˙˙˙˙˙lß!˙˙˙˙˙˙˙˙˙ATó'xK Ň˙˙˙˙˙˙˙˙˙{w)üiRĹ˙˙˙˙˙˙˙˙˙d-ą)‚THú˙˙˙˙˙˙˙˙˙: Ü) ä&Ż˙˙˙˙˙˙˙˙˙#+ő*pçÄ˙˙˙˙˙˙˙˙˙Ő%Ô+$œ5˙˙˙˙˙˙˙˙˙\gQ/Ź™œ ˙˙˙˙˙˙˙˙˙Qoš/>Ü˙˙˙˙˙˙˙˙˙Kv1Ŕ¨ž.˙˙˙˙˙˙˙˙˙‡?R2ţ͊O˙˙˙˙˙˙˙˙˙gŒ2žŒÔŁ˙˙˙˙˙˙˙˙˙! Ť2ź?"™˙˙˙˙˙˙˙˙˙9 3ha8j˙˙˙˙˙˙˙˙˙ˆ4ކ[˙˙˙˙˙˙˙˙˙WdŠ47*‹˙˙˙˙˙˙˙˙˙mC9ěňÄf˙˙˙˙˙˙˙˙˙Zť:,Nn˙˙˙˙˙˙˙˙˙Ę*Œ; %, ˙˙˙˙˙˙˙˙˙|d>É˙˙˙˙˙˙˙˙˙OWČArYöŔ˙˙˙˙˙˙˙˙˙Ä..Bwž˙˙˙˙˙˙˙˙˙$EQCęĄÜN˙˙˙˙˙˙˙˙˙ckPDÄ`"˙˙˙˙˙˙˙˙˙JţD”!ޛ˙˙˙˙˙˙˙˙˙&`Elzřä˙˙˙˙˙˙˙˙˙R_ˆHŮ:¤˙˙˙˙˙˙˙˙˙îHr°ž˙˙˙˙˙˙˙˙˙f~şJ ԜŒ˙˙˙˙˙˙˙˙˙lÎKŔr>†˙˙˙˙˙˙˙˙˙.#3O4]dť˙˙˙˙˙˙˙˙˙ĂGzON>şŢ˙˙˙˙˙˙˙˙˙ářOpn(˘˙˙˙˙˙˙˙˙˙MKP€śf˙˙˙˙˙˙˙˙˙ÉőP–2 ?˙˙˙˙˙˙˙˙˙BOĐQ"ÇúŰ˙˙˙˙˙˙˙˙˙BC˝SŒaüý˙˙˙˙˙˙˙˙˙? ŽT"|ľ˙˙˙˙˙˙˙˙˙XŻTPîT˙˙˙˙˙˙˙˙˙’"ĆVÔl.ő˙˙˙˙˙˙˙˙˙Č•XŚ™ôë˙˙˙˙˙˙˙˙˙2?ŔZ”Œ˙˙˙˙˙˙˙˙˙(0[ř ˆę˙˙˙˙˙˙˙˙˙Ĺ%f[.hćŠ˙˙˙˙˙˙˙˙˙ˢ[vWVľ˙˙˙˙˙˙˙˙˙6@­[b\z ˙˙˙˙˙˙˙˙˙l1Ç[ŹâxC˙˙˙˙˙˙˙˙˙Q"^´č(z˙˙˙˙˙˙˙˙˙łaF^zÎP@˙˙˙˙˙˙˙˙˙„ta^ŕžă˙˙˙˙˙˙˙˙˙źL`4żÖ@˙˙˙˙˙˙˙˙˙(MN`"Ďęz˙˙˙˙˙˙˙˙˙ƒgĘ`J[Ňë˙˙˙˙˙˙˙˙˙ŘdjÍzť˙˙˙˙˙˙˙˙˙‚Z$ev5´é˙˙˙˙˙˙˙˙˙Úq–e ‚x˙˙˙˙˙˙˙˙˙]póeÔO°˙˙˙˙˙˙˙˙˙Žz”fv@É˙˙˙˙˙˙˙˙˙rhĂg÷nJ˙˙˙˙˙˙˙˙ěĚi”˛Œ=˙˙˙˙˙˙˙˙˙œKjšÉ@Ž˙˙˙˙˙˙˙˙˙Í*lĽ*h˙˙˙˙˙˙˙˙˙nJąęß˙˙˙˙˙˙˙˙˙+jJnR*ޝ˙˙˙˙˙˙˙˙˙b%ĐpŘłl˙˙˙˙˙˙˙˙˙EirœKzŹ˙˙˙˙˙˙˙˙˙mu˙rčŘŮ˙˙˙˙˙˙˙˙˙Ö4sƨV˙˙˙˙˙˙˙˙˙ômĘsŕW6Ŕ˙˙˙˙˙˙˙˙˙ˇ3 tb÷zq˙˙˙˙˙˙˙˙˙*~&uŠŮŚ#˙˙˙˙˙˙˙˙˙/x ŔxQ˙˙˙˙˙˙˙˙˙Xy#î=˙˙˙˙˙˙˙˙˙bÍyJY(Ľ˙˙˙˙˙˙˙˙˙Ś=A{xÚ´Ž˙˙˙˙˙˙˙˙˙čgF|?ę{˙˙˙˙˙˙˙˙˙S$\|Pá>˙˙˙˙˙˙˙˙˙8-|DŃí˙˙˙˙˙˙˙˙˙‰ |`tý˙˙˙˙˙˙˙˙˙˜,ů|‚THú˙˙˙˙˙˙˙˙˙¤>,~ŘŽg˙˙˙˙˙˙˙˙˙M\;ř>”Ź˙˙˙˙˙˙˙˙˙„Đ„˜ţĆĐ^„Đ`„˜ţo(.€„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH.€ „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„8„˜ţĆ8^„8`„˜ţo(.€„„˜ţĆ^„`„˜ţ.‚„Ř „L˙ĆŘ ^„Ř `„L˙.€„¨ „˜ţƨ ^„¨ `„˜ţ.€„x„˜ţĆx^„x`„˜ţ.‚„H„L˙ĆH^„H`„L˙.€„„˜ţĆ^„`„˜ţ.€„č„˜ţĆč^„č`„˜ţ.‚„¸„L˙Ƹ^„¸`„L˙.8„Đ„˜ţĆĐ^„Đ`„˜ţ.„Đ„˜ţĆĐ^„Đ`„˜ţo(.8„ „L˙Ć ^„ `„L˙.8„p„˜ţĆp^„p`„˜ţ.8„@ „˜ţĆ@ ^„@ `„˜ţ.8„„L˙Ć^„`„L˙.8„ŕ„˜ţĆŕ^„ŕ`„˜ţ.8„°„˜ţĆ°^„°`„˜ţ.’8„€„L˙Ć€^„€`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „p„˜ţĆp^„p`„˜ţ‡hˆH.’h „@ „L˙Ć@ ^„@ `„L˙‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „ŕ„˜ţĆŕ^„ŕ`„˜ţ‡hˆH.’h „°„L˙Ć°^„°`„L˙‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.h „P„˜ţĆP^„P`„˜ţ‡hˆH.’h „ „L˙Ć ^„ `„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţo(.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„ „L˙Ć ^„ `„L˙.8„p„˜ţĆp^„p`„˜ţ.8„@ „˜ţĆ@ ^„@ `„˜ţ.8„„L˙Ć^„`„L˙.„H„0ý^„H`„0ýo(.8„°„˜ţĆ°^„°`„˜ţ.’8„€„L˙Ć€^„€`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ű„˜ţĆű^„ű`„˜ţ.’H„äý„L˙Ćäý^„äý`„L˙.H„´„˜ţĆ´^„´`„˜ţ.H„„„˜ţĆ„^„„`„˜ţ.’H„T„L˙ĆT^„T`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ô „˜ţĆô ^„ô `„˜ţ.’H„Ä„L˙ĆÄ^„Ä`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„°„˜ţĆ°^„°`„˜ţ.„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH. „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţo(.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h „8„˜ţ^„8`„˜ţ‡hˆH.h „„˜ţ^„`„˜ţ‡hˆH.’h „Ř „L˙^„Ř `„L˙‡hˆH.h „¨ „˜ţ^„¨ `„˜ţ‡hˆH.h „x„˜ţ^„x`„˜ţ‡hˆH.’h „H„L˙^„H`„L˙‡hˆH.h „„˜ţ^„`„˜ţ‡hˆH.h „č„˜ţ^„č`„˜ţ‡hˆH.’h „¸„L˙^„¸`„L˙‡hˆH.h „ „˜ţ^„ `„˜ţ‡hˆH.h „p„˜ţ^„p`„˜ţ‡hˆH.’h „@ „L˙^„@ `„L˙‡hˆH.h „„˜ţ^„`„˜ţ‡hˆH.h „ŕ„˜ţ^„ŕ`„˜ţ‡hˆH.’h „°„L˙^„°`„L˙‡hˆH.h „€„˜ţ^„€`„˜ţ‡hˆH.h „P„˜ţ^„P`„˜ţ‡hˆH.’h „ „L˙^„ `„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţOJPJQJ^J>„ „˜ţĆ ^„ `„˜ţOJPJQJ^J.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„8„0ýĆ8^„8`„0ýo(.€ „ „˜ţĆ ^„ `„˜ţ‡hˆH.‚ „p„L˙Ćp^„p`„L˙‡hˆH.€ „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.h„8„˜ţĆ8^„8`„˜ţo(.h„„˜ţĆ^„`„˜ţ.’h„Ř „L˙ĆŘ ^„Ř `„L˙.h„¨ „˜ţƨ ^„¨ `„˜ţ.h„x„˜ţĆx^„x`„˜ţ.’h„H„L˙ĆH^„H`„L˙.h„„˜ţĆ^„`„˜ţ.h„č„˜ţĆč^„č`„˜ţ.’h„¸„L˙Ƹ^„¸`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ű„˜ţĆű^„ű`„˜ţ.’H„äý„L˙Ćäý^„äý`„L˙.H„´„˜ţĆ´^„´`„˜ţ.H„„„˜ţĆ„^„„`„˜ţ.’H„T„L˙ĆT^„T`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ô „˜ţĆô ^„ô `„˜ţ.’H„Ä„L˙ĆÄ^„Ä`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ű„˜ţĆű^„ű`„˜ţ.’H„äý„L˙Ćäý^„äý`„L˙.H„´„˜ţĆ´^„´`„˜ţ.H„„„˜ţĆ„^„„`„˜ţ.’H„T„L˙ĆT^„T`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ô „˜ţĆô ^„ô `„˜ţ.’H„Ä„L˙ĆÄ^„Ä`„L˙.h„8„˜ţĆ8^„8`„˜ţo(.h„„˜ţĆ^„`„˜ţ.h„Ř „L˙ĆŘ ^„Ř `„L˙.h„¨ „˜ţƨ ^„¨ `„˜ţ.h„x„˜ţĆx^„x`„˜ţ.h„H„L˙ĆH^„H`„L˙.h„„˜ţĆ^„`„˜ţ.h„č„˜ţĆč^„č`„˜ţ.’h„¸„L˙Ƹ^„¸`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţĆ°^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.’h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţĆ°^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.h„8„˜ţĆ8^„8`„˜ţo(.h„„˜ţĆ^„`„˜ţ.’h„Ř „L˙ĆŘ ^„Ř `„L˙.h„¨ „˜ţƨ ^„¨ `„˜ţ.h„x„˜ţĆx^„x`„˜ţ.’h„H„L˙ĆH^„H`„L˙.h„„˜ţĆ^„`„˜ţ.h„č„˜ţĆč^„č`„˜ţ.’h„¸„L˙Ƹ^„¸`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.€ „ „˜ţĆ ^„ `„˜ţ‡hˆH.‚ „p„L˙Ćp^„p`„L˙‡hˆH.€ „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.8 „Đ„˜ţĆĐ^„Đ`„˜ţ‡hˆH.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„ „L˙Ć ^„ `„L˙.8„p„˜ţĆp^„p`„˜ţ.8„@ „˜ţĆ@ ^„@ `„˜ţ.8„„L˙Ć^„`„L˙.„H„0ý^„H`„0ýo(.8„°„˜ţĆ°^„°`„˜ţ.’8„€„L˙Ć€^„€`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.€„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH.‚ „p„L˙Ćp^„p`„L˙‡hˆH.€ „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH. „p„L˙Ćp^„p`„L˙o(‡hˆH.€ „ „˜ţ^„ `„˜ţ‡hˆH.‚ „p„L˙^„p`„L˙‡hˆH.€ „@ „˜ţ^„@ `„˜ţ‡hˆH.€ „„˜ţ^„`„˜ţ‡hˆH.‚ „ŕ„L˙^„ŕ`„L˙‡hˆH.€ „°„˜ţ^„°`„˜ţ‡hˆH.€ „€„˜ţ^„€`„˜ţ‡hˆH.‚ „P„L˙^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.€„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h „„˜ţ^„`„˜ţ‡hˆH.h „ŕ„˜ţ^„ŕ`„˜ţ‡hˆH.’h „°„L˙^„°`„L˙‡hˆH.h „€„˜ţ^„€`„˜ţ‡hˆH.h „P„˜ţ^„P`„˜ţ‡hˆH.’h „ „L˙^„ `„L˙‡hˆH.h „đ„˜ţ^„đ`„˜ţ‡hˆH.h „Ŕ!„˜ţ^„Ŕ!`„˜ţ‡hˆH.’h „$„L˙^„$`„L˙‡hˆH.8 „Đ„˜ţĆĐ^„Đ`„˜ţ‡hˆH.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„ „L˙Ć ^„ `„L˙.8„p„˜ţĆp^„p`„˜ţ.8„@ „˜ţĆ@ ^„@ `„˜ţ.8„„L˙Ć^„`„L˙.„H„0ý^„H`„0ýo(.8„°„˜ţĆ°^„°`„˜ţ.’8„€„L˙Ć€^„€`„L˙. „Đ„˜ţĆĐ^„Đ`„˜ţOJPJQJ^Jo(ˇđ „ „˜ţĆ ^„ `„˜ţOJQJo(o€ „p„˜ţĆp^„p`„˜ţOJQJo(§đ€ „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđ€ „„˜ţĆ^„`„˜ţOJQJo(o€ „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đ€ „°„˜ţĆ°^„°`„˜ţOJQJo(ˇđ€ „€„˜ţĆ€^„€`„˜ţOJQJo(o€ „P„˜ţĆP^„P`„˜ţOJQJo(§đh „8„0ýĆ8^„8`„0ýo(‡hˆH.€„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH.‚ „p„L˙Ćp^„p`„L˙‡hˆH.€ „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.8„ „˜ţĆ ^„ `„˜ţ.\ „p„L˙Ćp^„p`„L˙.„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h „8„˜ţĆ8^„8`„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „Ř „L˙ĆŘ ^„Ř `„L˙‡hˆH.h „¨ „˜ţƨ ^„¨ `„˜ţ‡hˆH.h „x„˜ţĆx^„x`„˜ţ‡hˆH.h „H„L˙ĆH^„H`„L˙‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „č„˜ţĆč^„č`„˜ţ‡hˆH.’h „¸„L˙Ƹ^„¸`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH.€ „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH.€ „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„8„0ýĆ8^„8`„0ýo(.„ „˜ţĆ ^„ `„˜ţo(.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙. „Đ„˜ţĆĐ^„Đ`„˜ţOJPJQJ^Jo(ˇđ „ „˜ţĆ ^„ `„˜ţOJQJo(o€ „p„˜ţĆp^„p`„˜ţOJQJo(§đ€ „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđ€ „„˜ţĆ^„`„˜ţOJQJo(o€ „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đ€ „°„˜ţĆ°^„°`„˜ţOJQJo(ˇđ€ „€„˜ţĆ€^„€`„˜ţOJQJo(o€ „P„˜ţĆP^„P`„˜ţOJQJo(§đ„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţo(.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„8„0ýĆ8^„8`„0ýo(.„ „˜ţĆ ^„ `„˜ţo(. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH. „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„ „L˙Ć ^„ `„L˙.8„p„˜ţĆp^„p`„˜ţ.8„@ „˜ţĆ@ ^„@ `„˜ţ.’8„„L˙Ć^„`„L˙.8„ŕ„˜ţĆŕ^„ŕ`„˜ţ.8„°„˜ţĆ°^„°`„˜ţ.’8„€„L˙Ć€^„€`„L˙.h „Đ„˜ţĆĐ^„Đ`„˜ţ‡hˆH.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţĆ°^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.’h „P„L˙ĆP^„P`„L˙‡hˆH.h„Đ„˜ţĆĐ^„Đ`„˜ţ.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„8„0ýĆ8^„8`„0ýo(.€„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„8„˜ţĆ8^„8`„˜ţOJPJQJ^Jo(-€ „„˜ţĆ^„`„˜ţOJQJo(o€ „Ř „˜ţĆŘ ^„Ř `„˜ţOJQJo(§đ€ „¨ „˜ţƨ ^„¨ `„˜ţOJQJo(ˇđ€ „x„˜ţĆx^„x`„˜ţOJQJo(o€ „H„˜ţĆH^„H`„˜ţOJQJo(§đ€ „„˜ţĆ^„`„˜ţOJQJo(ˇđ€ „č„˜ţĆč^„č`„˜ţOJQJo(o€ „¸„˜ţƸ^„¸`„˜ţOJQJo(§đ„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH. „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„°„˜ţĆ°^„°`„˜ţ.„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţOJPJQJ^Jo(ˇđ „ „˜ţĆ ^„ `„˜ţOJQJo(o „p„˜ţĆp^„p`„˜ţOJQJo(§đ€ „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđ€ „„˜ţĆ^„`„˜ţOJQJo(o€ „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đ€ „°„˜ţĆ°^„°`„˜ţOJQJo(ˇđ€ „€„˜ţĆ€^„€`„˜ţOJQJo(o€ „P„˜ţĆP^„P`„˜ţOJQJo(§đ„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţo(.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„„0ý^„`„0ýo(.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţ5o(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţOJPJQJ^Jo(ˇđ „ „˜ţĆ ^„ `„˜ţOJQJo(o€ „p„˜ţĆp^„p`„˜ţOJQJo(§đ€ „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđ€ „„˜ţĆ^„`„˜ţOJQJo(o€ „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đ€ „°„˜ţĆ°^„°`„˜ţOJQJo(ˇđ€ „€„˜ţĆ€^„€`„˜ţOJQJo(o€ „P„˜ţĆP^„P`„˜ţOJQJo(§đ„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„ „L˙Ć ^„ `„L˙.8„p„˜ţĆp^„p`„˜ţ.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„Đ„˜ţĆĐ^„Đ`„˜ţ.8„ŕ„˜ţĆŕ^„ŕ`„˜ţ.8„°„˜ţĆ°^„°`„˜ţ.’8„€„L˙Ć€^„€`„L˙. „Đ„˜ţ^„Đ`„˜ţ‡hˆH. „ „˜ţ^„ `„˜ţ‡hˆH. „p„L˙^„p`„L˙‡hˆH. „@ „˜ţ^„@ `„˜ţ‡hˆH.€ „„˜ţ^„`„˜ţ‡hˆH.‚ „ŕ„L˙^„ŕ`„L˙‡hˆH.€ „°„˜ţ^„°`„˜ţ‡hˆH.€ „€„˜ţ^„€`„˜ţ‡hˆH.‚ „P„L˙^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH. „„˜ţĆ^„`„˜ţ‡hˆH. „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH. „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţĆ°^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH. „„˜ţĆ^„`„˜ţ‡hˆH. „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH. „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ. „p„L˙Ćp^„p`„L˙o(‡hˆH.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.Ř „Ř „˜ţĆŘ ^„Ř `„˜ţ.Ř „8„˜ţ^„8`„˜ţ‡hˆH.Ř „„L˙^„`„L˙‡hˆH.Ř „Ř „˜ţ^„Ř `„˜ţ‡hˆH.Ř „¨ „˜ţ^„¨ `„˜ţ‡hˆH.Ř „x„L˙^„x`„L˙‡hˆH.Ř „H„˜ţ^„H`„˜ţ‡hˆH.Ř „„˜ţ^„`„˜ţ‡hˆH.’Ř „č„L˙^„č`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙. „Đ„˜ţ^„Đ`„˜ţ‡hˆH. „ „˜ţ^„ `„˜ţ‡hˆH. „p„L˙^„p`„L˙‡hˆH. „@ „˜ţ^„@ `„˜ţ‡hˆH.€ „„˜ţ^„`„˜ţ‡hˆH.‚ „ŕ„L˙^„ŕ`„L˙‡hˆH.€ „°„˜ţ^„°`„˜ţ‡hˆH.€ „€„˜ţ^„€`„˜ţ‡hˆH.‚ „P„L˙^„P`„L˙‡hˆH.„8„0ýĆ8^„8`„0ýo(.€„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ű„˜ţĆű^„ű`„˜ţ.’H„äý„L˙Ćäý^„äý`„L˙.H„´„˜ţĆ´^„´`„˜ţ.H„„„˜ţĆ„^„„`„˜ţ.’H„T„L˙ĆT^„T`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ô „˜ţĆô ^„ô `„˜ţ.’H„Ä„L˙ĆÄ^„Ä`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţĆ°^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.h „8„0ýĆ8^„8`„0ýo(‡hˆH.€„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţĆ°^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.h „Đ„˜ţĆĐ^„Đ`„˜ţ‡hˆH.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „p„L˙Ćp^„p`„L˙‡hˆH.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.’h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţĆ°^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.’h „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ű„˜ţĆű^„ű`„˜ţ.’H„äý„L˙Ćäý^„äý`„L˙.H„´„˜ţĆ´^„´`„˜ţ.H„„„˜ţĆ„^„„`„˜ţ.’H„T„L˙ĆT^„T`„L˙.H„$ „˜ţĆ$ ^„$ `„˜ţ.H„ô „˜ţĆô ^„ô `„˜ţ.’H„Ä„L˙ĆÄ^„Ä`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.€„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţĆ°^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH. „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţOJPJQJ^Jo(- „ „˜ţĆ ^„ `„˜ţOJQJo(o€ „p„˜ţĆp^„p`„˜ţOJQJo(§đ€ „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđ€ „„˜ţĆ^„`„˜ţOJQJo(o€ „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đ€ „°„˜ţĆ°^„°`„˜ţOJQJo(ˇđ€ „€„˜ţĆ€^„€`„˜ţOJQJo(o€ „P„˜ţĆP^„P`„˜ţOJQJo(§đ„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH.€ „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„°„˜ţĆ°^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙. „@ „˜ţĆ@ ^„@ `„˜ţo(‡hˆH.€ „ „˜ţ^„ `„˜ţ‡hˆH.‚ „p„L˙^„p`„L˙‡hˆH.€ „@ „˜ţ^„@ `„˜ţ‡hˆH.€ „„˜ţ^„`„˜ţ‡hˆH.‚ „ŕ„L˙^„ŕ`„L˙‡hˆH.€ „°„˜ţ^„°`„˜ţ‡hˆH.€ „€„˜ţ^„€`„˜ţ‡hˆH.‚ „P„L˙^„P`„L˙‡hˆH.h„8„˜ţĆ8^„8`„˜ţo(.h„„˜ţĆ^„`„˜ţ.h„Ř „L˙ĆŘ ^„Ř `„L˙.h„¨ „˜ţƨ ^„¨ `„˜ţ.h„x„˜ţĆx^„x`„˜ţ.’h„H„L˙ĆH^„H`„L˙.h„„˜ţĆ^„`„˜ţ.h„č„˜ţĆč^„č`„˜ţ.’h„¸„L˙Ƹ^„¸`„L˙.h „„˜ţ^„`„˜ţ‡hˆH.h „ŕ„˜ţ^„ŕ`„˜ţ‡hˆH.’h „°„L˙^„°`„L˙‡hˆH.h „€„˜ţ^„€`„˜ţ‡hˆH.h „P„˜ţ^„P`„˜ţ‡hˆH.’h „ „L˙^„ `„L˙‡hˆH.h „đ„˜ţ^„đ`„˜ţ‡hˆH.h „Ŕ!„˜ţ^„Ŕ!`„˜ţ‡hˆH.’h „$„L˙^„$`„L˙‡hˆH.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.„ „˜ţĆ ^„ `„˜ţ.„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.Đ„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„Đ„˜ţĆĐ^„Đ`„˜ţo(.Đ„Đ„˜ţĆĐ^„Đ`„˜ţo(.„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(. „ „˜ţĆ ^„ `„˜ţ‡hˆH. „p„L˙Ćp^„p`„L˙‡hˆH. „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.€ „„˜ţĆ^„`„˜ţ‡hˆH.‚ „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.€ „°„˜ţĆ°^„°`„˜ţ‡hˆH.€ „€„˜ţĆ€^„€`„˜ţ‡hˆH.‚ „P„L˙ĆP^„P`„L˙‡hˆH.yrhĂgf~şJČ•X.#3ObÍyŘd™{Żg÷ő:%"s #í<"KĘ*Œ;Ś=A{/…<XŻT56"?? ŽTmu˙rômĘsářOATó'b%ĐpQL… ‡?R2–;€EirbÚq–eđKV $EQC¤>,~ˢ[€"iNěn&`EMKP‚Z$ecÁˆ4! Ť23Dă Í*l› Čt•‰ |ˇ3 tZť:Ĺ%f[Ýz;R_ˆH: Ü)ŤĺI"Ť/xłsXźL`ƒgĘ`BOĐQĂGzO’"ĆVQ"^˜,ů|d-ą)ŤŐ%Ô+\gQ/œKjÉőPÉi×BC˝SěĚiKv1OWČAšuŇckPD†)Ć#čgF|mC9XyM\;Qoš/łaF^Žz”flß„ta^(0[GS;&+–WdŠ4ĐA'Ja{ 6@­[Ö4sîH9 3*~&uYi͘R(MN`lÎK]póe+jJn X,!gŒ2S$\|{w)+ {˘Ä..Bl1Ç[΢â~JţDČ$“Ěp2?ŔZ|d><#+ő*gve'8-|˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙V\°ƒ                          (úô÷         Cœo       V\°ƒ                 TŘ^o        DŚR˛   ŇĆŘ    V\°ƒ              Œß˜b                    îdz<                                   6ĆÔr!r¤       ä'ę        îdz<                          îdz<        şŔ$n        V\°ƒ        V\°ƒ        îdz<                          .:Ŕ                        Œß˜b           V\°ƒ                 ´§Ŕ        „7ĚĚ                                Œß˜b  &?Ƅ                 V\°ƒ                 V\°ƒ        şŔ$n  şŔ$n                                         V\°ƒ                 ܲ|´}@…       „7ĚĚ        ˙ęb        ’Ó€•        Ŕ#Ă        LœÔ        Fîžç&8ŢĘ       V\°ƒ                                   Ę:­        ˜ ň                  bL8V\°ƒ       V\°ƒ        śöĐo  –ÖB…     V"        :Ž‹        `1Q     ţŽ8.  îdz<        V\°ƒ        :Ž.P        V\°ƒ        :˘<\AÎR       2h                          V\°ƒ                 V\°ƒ                 V\°ƒ ~´‘      şŔ$n                 V\°ƒ        V\°ƒ                 Xśř¸         9DÍ        ˛Ě        ŢAe        V\°ƒ        V\°ƒ        ŢAe                 V\°ƒ        V\°ƒ        îdz<        V\°ƒ                 îdz<        ,â]        V\°ƒ                 Ěčl                          ҏ                 Xśř¸        >fŽM                 ž|”˘                 ĐçTJ                 ”„Ü'                 îdz<        ˜`¸Š        ´ň        ţÜb4        OĺNwQÇŽ,m"{B$—`Uát‹ d6#é=$Ě -Â^1$c3ŘN5 q9œ3;w;ó?Ű(?ÚE(\H#sVlFWś_Z˛[‰}^9cTc˝ fÎHh|7kžKnőOqWPuYnw÷Exďz‰sçE‚X‹nD’°I“éL•˘v•Äw•B\–Ád˜A¤ŔŹMlŻO(°źSľÔˇ[OťT&ż¸Ŕv;Ŕ÷iĆ÷ǟhČ˙VËŽ͆8Ń.Ół Ő>$Ř(ۘ5ăřcĺĺ,č<íżQóŻ ôŠ)öâ/řőBţŇ\˙­Ż˙@ÚH@˙˙UnknownAmy Suzanne Bohorquez˙˙˙˙˙˙˙˙˙˙˙˙ Gď*ŕAxŔ ˙Times New Roman5€Symbol3. ˙*ŕCxŔ ˙Arial;€Wingdings7ď K@ŸCambria7.ď { @ŸCalibri5. ˙*á[`Ŕ)˙Tahoma?= ˙*ŕCxŔ ˙Courier NewAď ë BŸCambria Math"1ˆđĐhQTdžę,ĚŚ)Ăx(ŔĹsč“SŒĹsč“SŒŠđě8´´4!! 2ƒQđÜ˙ýHPđ˙?ä˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙—`2u!xx ˙˙*Chapter One The Human Body: An Orientation Amy BohorquezAmy Suzanne Bohorquezđy                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x ţ˙ŕ…ŸňůOhŤ‘+'łŮ0¨˜ĚŘđü  ,8 X d p |ˆ˜ ä,Chapter One The Human Body: An OrientationAmy BohorquezNormalAmy Suzanne Bohorquez40Microsoft Office Word@€Yb@ÖÜ€jĂ@΂ŃóâČ@t@˜TWÉSĹsč“ţ˙ŐÍ՜.“—+,ůŽ0 hp|„Œ” œ¤Ź´ ź óäŒ! +Chapter One The Human Body: An Orientation Title  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ Ą˘Ł¤ĽŚ§¨ŠŞŤŹ­ŽŻ°ą˛ł´ľśˇ¸šşťź˝žżŔÁÂĂÄĹĆÇČÉĘËĚÍÎĎĐŃŇÓÔŐÖ×ŘŮÚŰÜÝŢßŕáâăäĺćçčéęëěíîďđńňóôőö÷řůúűüýţ˙      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ Ą˘Ł¤ĽŚ§¨ŠŞŤŹ­ŽŻ°ą˛ł´ľśˇ¸šşťź˝žżŔÁÂĂÄĹĆÇČÉĘËĚÍÎĎĐŃŇÓÔŐÖ×ŘŮÚŰÜÝŢßŕáâăäĺćçčéęëěíîďđńňóôőö÷řůúűüýţ˙      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆţ˙˙˙Š‹ŒŽ‘’“”•–—˜™š›œžŸ Ą˘Ł¤ĽŚ§¨ŠŞŤŹ­ŽŻ°ą˛ł´ľśˇ¸šşťź˝žżŔÁÂĂÄĹĆÇČÉĘËĚÍÎĎĐŃŇÓÔŐÖ×ŘŮÚŰÜÝŢßŕáâăäĺćçčéęëěíîďđńňóôőö÷řůúűüýţ˙      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVţ˙˙˙XYZ[\]^ţ˙˙˙`abcdefţ˙˙˙ý˙˙˙ý˙˙˙ý˙˙˙ý˙˙˙ý˙˙˙ý˙˙˙ý˙˙˙oţ˙˙˙ţ˙˙˙ţ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Root Entry˙˙˙˙˙˙˙˙ ŔFđ=ě›TWÉq€1Table˙˙˙˙˙˙˙˙‰Ş›WordDocument˙˙˙˙˙˙˙˙4SummaryInformation(˙˙˙˙WDocumentSummaryInformation8˙˙˙˙˙˙˙˙˙˙˙˙_CompObj˙˙˙˙˙˙˙˙˙˙˙˙y˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ţ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ţ˙ ˙˙˙˙ ŔF'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.8ô9˛q