ࡱ> 796rO 1bjbjyy .Zee)dUD)tV%)')')')')')')$+-K)K)`).%)%)'hY(PP8')v)0)'.. Y(.Y(K)K)). : RANDOM VARIABLES: probability distributions, means, variances Random Variable = Numeric outcome of a random phenomenon Discrete example: Consider a bag of 5 balls numbered 3,3,4,9, and 11. Take a ball out at random and note the number and call it X, X is a random variable. Lets complete the probability distribution of X. X34911P(X)Lets also make a graph of the values of X (imagine the balls are now cubes with base 1 and we stack them as follows). Note that if the heights are changed to probabilities and the cubes are thought to have base 1 the total area is equal to 1 just like the continuous case (even though this case is discrete). MEAN: you may be familiar with the mean or average, to calculate this you add all the data up and divide by how many. In the formula, N=how many in the population, x=data.  EMBED Equation.3  . (use this to find the mean in our example) Note that we could also use the following formula with the exception that the xs cant repeat.  EMBED Equation.3  (use this to find the mean in our example and see that it really is the same as the other method) Note that we could also find the total area if we multiply the heights in our previous graph by x and that would give us the mean.  EMBED Equation.3 = EMBED Equation.3  VARIANCE: a measure of variability  EMBED Equation.3  Represents the average of the xs  EMBED Equation.3  Represents how far a piece of data (x) is from the mean (  EMBED Equation.3  )  EMBED Equation.3  Represents on average how far data are from the mean. This is a great measure of variability that takes each piece of data into account. The problem is that it is not used, surprisingly the mathematics (behind the scenes to us) is easier if we doctor up (mess up) the formula as follows ( EMBED Equation.3  represents variance)  EMBED Equation.3  So the variance is actually the average of the squares of the distances of data from the mean. With mathematics you can show that the following formula (which is usually much easier to use) is equivalent:  EMBED Equation.3  Use both formulas to find the variance in our example. Note that since the variance is just like the mean with  EMBED Equation.3  EMBED Equation.3  in place of x, we can use this formula in which the xs dont repeat (just like the note a page ago).  EMBED Equation.3  (use this to find the variance in our example and to see that it really is the same) Note that we could also find the total area if we multiply the heights in our graph by |x-  EMBED Equation.3  | EMBED Equation.3  and that would give us the variance (this is just like the note on the last page with |x-  EMBED Equation.3  | EMBED Equation.3  in place of x).  EMBED Equation.3  STANDARD DEVIATION: This is just the square root of the variance and is used more often than variance. The notation is  EMBED Equation.3  Example to show that  EMBED Equation.3  and variance and standard deviation are a measure of how data vary, that is, if the data is more variable these numbers are bigger. Consider the 3,3,5,6,13 example as well as 5,5,5,6,7,8. Which set of numbers varies more? Calculate these three numbers and show they are bigger for that set. CONTINUOUS CASE: The 3 ways of thinking about mean, variance, and standard deviation are great for the discrete case, but only the last case (area) can work for the continuous case. Why dont the first two work? Recall in the continuous case we replace the idea of all the probabilities adding up to 1, with total area under the probability density curve equal to 1. Areas are now the key. Total area under a probability density curve is 1. Total area under the curve x p(x) is the mean. Total area under the curve |x-  EMBED Equation.3  | EMBED Equation.3  p(x) is the variance. Recall the example about a random number between 3 and 7 and find the mean and variance. Note this is a combination of intuition and calculus (which we do not do!) Also recall HW#2 problem #1 where we were asked to guess the mean (balance point) and the median (point with 50% area on each side). We dont do it, but you might wonder how people can find for example the variance of the normal curve. Once you know the formula for normal curve, you find the area under the curve |x-  EMBED Equation.3  | EMBED Equation.3  p(x) where the mean is 0 and the p(x) is the formula for the normal curve. If you did this you would get 1. In this class many things we did involved random variables. We would like to drill into your mind that many processes involve getting a numeric outcome of a random phenomenon (a random variable) and that these random variables vary, we can find their mean, and how much they vary(variance or standard deviation). Here are 4 examples, getting more and more complex, but notice the basic theme: random phenomenon yielding a numeric result that would likely give a different answer if repeated. Roll a fair die, let X=the number of pips. Toss 16 fair coins and let X=the number of heads. Suppose the average score for all people on an exam is 82 with a standard deviation of 10 and we take a random sample of size 40 and find the mean of that sample. (This is similar to assuming the mean weight of all winged beans was 525g with a standard deviation of 110g and finding samples of size 22) Suppose for 3rd grade boys the average on a test is 50 with a standard deviation of 12 and for 3rd grade girls the average is 45 with a standard deviation of 8 and we take a random sample of 22 boys and find their sample mean and we take a random sample of 24 girls and find their sample mean. Finally suppose we subtract the girls sample mean from the boys sample mean. (This is similar to HW 9 where we had independent means) The last two are particularly important as someone may do a study or an experiment. The outcome if numeric is a random variable but would not give the same answer every time. Knowing how the answers are likely to vary can tell us how much we can trust the result. In practice so much work is put done into doing this one time that we might forget that if we did do it over and over that the answers would differ. Can you guess the mean for each of the four examples? (we actually have formulas, but the mean is pretty intuitive) Can you give the standard deviation? We have formulas we used before that we will discuss why they are what they are very soon. Properties of random variables with means and variances: (For each rule we will find an example that might convince someone they are true, our goal is not to give mathematical proofs, but rather argue why they might make sense) 1.  EMBED Equation.3  (if you add or subtract a constant to each piece of data, the mean will get that same constant added or subtracted) 2.  EMBED Equation.3  (if you add or subtract a constant to each piece of data, the variance will stay the same) Heres an example that might convince you of these two rules. Suppose an exam is given and the mean is 55 and the variance is 10. Suppose 5 points is added to each exam score, the new mean and variance would be___and ___. 3.  EMBED Equation.3  (if you multiply or divide each piece of data by a constant, the mean gets multiplied or divided by that same constant) 4.  EMBED Equation.3  (if you multiply or divide each piece of data by a constant, the variance get multiplied or divided by the square of that constant), hopefully your intuition agrees for example that if you double all the data, the variance will be more, that detail that its actually 4 times more is probably not obvious. Heres an example that might convince you of rules 3 and 4. Suppose an exam is given and the mean is 55 and the variance is 10. Suppose each exam score is multiplied by 2, the new mean and variance would be ______ and ______(hopefully you agree at least that this last blank should be higher than 10, the exact number is probably not obvious) 5.  EMBED Equation.3  (if you make a new random variable that is the sum of two independent random variables, the mean of this sum is the sum of the means) 6.  EMBED Equation.3  (if you make a new random variable that is the sum of two independent random variables, the variance of this sum if the sum of the variances) 7.  EMBED Equation.3  (if you make a new random variable that is the difference of two independent random variables, the mean of this difference is the difference of the means) 8.  EMBED Equation.3  (if you make a new random variable that is the difference of two independent random variables, the variance of this difference if the sum of the variances) Heres an example that might convince you of rules 5-8. Suppose an insurance company pays an average of $20 a year on each policy, and the variance is 149,600 (standard deviation = $387). Also suppose that we want to take one policy at random and find its payout, then take another policy at random and find its payout and add those payouts together. The mean of these two payouts added is _______ and the variance is ________ (hopefully you agree that the variance is more than 149600 since there is that much variance at each step, the fact that it is exactly what it is probably not obvious). Now suppose we do the same but want to find the difference of the two payouts. The mean of this difference is _____ and the variance cant be 149,600 149,600 = 0, in fact the variability is the same whether we add or subtract the payouts, so the variance is _______. Heres another example: Suppose you roll two fair dice a red one and a green one. You calculate RED pips GREEN pips. What will be the mean of these calculations? Hint:the mean of each is 3.5. What will be the variance? First find the variance for each die. Doesnt it make sense that the variance of RED pips GREEN pips would be the same as RED pips + GREEN pips? Example to use the rules: Suppose you have two barrels of numbered balls. Green Barrel balls have a mean of 18 and a variance of 10. Red Barrel balls have a mean of 12 and a variance of 8. You repeatedly take one ball from each and subtract Green Number Red Number. What will be the mean and variance of that process? Describe what the standard deviation is in words: The square root of the average of the squares of how far data are from the mean. =>?NOPQy  H ^ n G H I \ ] ^ _ 붮룾뾏ufU!jhY7h[CJ$EHUaJ$jaI hY7CJUVaJhY7hY7CJ$aJ$jhY7hY7CJ$UaJ$hhw5CJ$aJ$hxmpCJ$aJ$hzhwCJ$aJ$hY7CJ$aJ$hYCJ$aJ$hwCJ$aJ$hCJ$aJ$h5CJ$aJ$hhLs5CJ$aJ$h9CJ$aJ$hLsCJ$aJ$hhLs5CJ,aJ,!>?xyH J L N P S $If S T Y Z [ \ ] KEEEEE$Ifkd$$Iflr(@  t0644 laytz] ^ KIIIIIIIkd$$Iflr(@  t0644 laytz_ `     h i j      ! ݛsΓgXGg!j hY7h[CJ$EHUaJ$jSaI hY7CJUVaJjhY7CJ$UaJ$!jhY7h[CJ$EHUaJ$jGaI hY7CJUVaJhY7CJ$aJ$hCJ$aJ$hY7h'CJ$aJ$!jhhY7h[CJ$EHUaJ$j aI hY7CJUVaJjhY7hY7CJ$UaJ$h'CJ$aJ$hwCJ$aJ$h[CJ$aJ$hY7hY7CJ$aJ$ i j " # G H $% !! " # + J K ^ _ ` a   '(;<=>$ȹșyhYH!jhY7h[CJ$EHUaJ$jaI hY7CJUVaJ!jhY7h[CJ$EHUaJ$jaI hY7CJUVaJ!j hY7h[CJ$EHUaJ$jaI hY7CJUVaJ!j} hY7h[CJ$EHUaJ$jaI hY7CJUVaJhY7CJ$aJ$jhY7CJ$UaJ$h'CJ$aJ$hh'5CJ$aJ$h[CJ$aJ$hCJ$aJ$$%Oy{| !ͼ𴨴xpxd\MjzaI hCJUVaJhCJ$aJ$jhCJ$UaJ$h.QCJ$aJ$hwCJ$aJ$h[CJ$aJ$!j{hY7h[CJ$EHUaJ$j4aI hY7CJUVaJjhY7CJ$UaJ$hY7CJ$aJ$!j`hhCJ$EHUaJ$j1NL hCJUVaJjhCJ$UaJ$hCJ$aJ$h'CJ$aJ$hCJ$aJ$./02EFGHJ (ʻʛ{j[jbI hCJUVaJ!jhh[CJ$EHUaJ$jaI hCJUVaJ!j@hhCJ$EHUaJ$jaI hCJUVaJ!jhh[CJ$EHUaJ$jaI hCJUVaJhCJ$aJ$h[CJ$aJ$hCJ$aJ$jhCJ$UaJ$!jhh[CJ$EHUaJ$ !"#$%&'(YZ[\]^_`ayz  opgd)*+,./BCDEG[_abuvòڪ~o^ڪOj6bI hCJUVaJ!j+'hh[CJ$EHUaJ$jbI h[CJUVaJ!j6%hh[CJ$EHUaJ$jbI h[CJUVaJjh[CJ$UaJ$h[CJ$aJ$!jB#hhCJ$EHUaJ$jbI hCJUVaJhCJ$aJ$hCJ$aJ$jhCJ$UaJ$!jM!hh[CJ$EHUaJ$vwxyz    "$%89:;ot)J`abcھھzzkZzҾҾҾҾ!j-hY7h[CJ$EHUaJ$jaI hCJUVaJhCJ$aJ$hACJ$aJ$!j+hhJ~CJ$EHUaJ$jїM hJ~CJUVaJjhJ~CJ$UaJ$hJ~CJ$aJ$hBGCJ$aJ$hh5CJ$aJ$h[CJ$aJ$hCJ$aJ$jhCJ$UaJ$!j)hh[CJ$EHUaJ$#pqrst*+IJ23bcrsRSDEp & Fgd~hgd[\qrs봣Ó{o{`Oo{o{!jC4hhWCJ$EHUaJ$jbI hWCJUVaJjhWCJ$UaJ$hWCJ$aJ$h2CJ$aJ$h.QCJ$aJ$hACJ$aJ$h[CJ$aJ$!jO2hhCJ$EHUaJ$j bI hCJUVaJhBGCJ$aJ$!j_0hhCJ$EHUaJ$jbI hCJUVaJhCJ$aJ$jhCJ$UaJ$RZs{|XxCDptuxD24FH !!"!X!Z!"S"T"U"ûëããwwwÓoãhQCJ$aJ$hguCJ$aJ$hFYhFYCJ$H*aJ$hCJ$aJ$h[CJ$aJ$hOLCJ$aJ$h~hCJ$aJ$h6yCJ$aJ$hFYCJ$aJ$h^fCJ$aJ$hACJ$aJ$hWCJ$aJ$jhWCJ$UaJ$!j36hhWCJ$EHUaJ$j bI hWCJUVaJ)"!!!""T""### $ $$$%%&&9(:((()gdpgd^gdgu & FgdguU"X""#################### $ $$$$$ % % % %%̽̒vgV!j<h]yhCJEHUaJj^sL hCJUVaJhh~hCJaJ!j:h]yhOLCJEHUaJj_L hOLCJUVaJhhwCJaJ!j'8h]yhCJEHUaJjsL hCJUVaJhCJaJjhCJUaJhpCJ$aJ$hwCJ$aJ$h~hCJ$aJ$hCJ$aJ$!%%%%%%%%%&&&8(9(:(?(@(S(T(U(V(\(((((((((((yqbQ!j Dh]yhCJEHUaJjsL hCJUVaJhY!UCJ$aJ$!jAh]yhCJEHUaJjsL hCJUVaJh_ CJ$aJ$h^fCJ$aJ$hCJ$aJ$hhpCJaJhguCJ$aJ$!jA?h]yhCJEHUaJjsL hCJUVaJhCJaJjhCJUaJhpCJ$aJ$())))))))))T*U*h*i*j*k*o*,a-b-t.u./:/;/W/~/911111ʹٱىyqqiqyaVhLsh_ CJ$aJ$hc CJ$aJ$hCJ$aJ$hhgCJ$aJ$h6yCJ$aJ$hxmpCJ$aJ$hCJ$aJ$!jHh]yhCJEHUaJjtL hCJUVaJhY!UCJ$aJ$!jFh]yhCJEHUaJjsL hCJUVaJjhCJUaJhh_ CJaJh_ CJ$aJ$hCJaJ ))O*P* + +t.u.;/(P 27)?|\pv=?2xZntsr 6j.Ls>L,e#޽@VrAc `!v 0y{Ĥ\Y\ 2C D|b@3X?*{\Dd <LTb  c $A? ?3"`?2le`ozK FQ`!zle`ozK ` hHxcdd``ed``baV d,FYzP1n:! KA?H1Z @@P5< %! `3 vL@(\+Î%i,@@@~2^di}Z 1.8,p?]8e`ZZӝsgY 0d_ͭ۳uXabA |=\Xp0AXN;LLJ% s:@Dg!t?14\Dd <b  c $A? ?3"`?2ZopQvFQ`!zZopQvҺ` hHxcdd``ed``baV d,FYzP1n:! KA?H1Z @@P5< %! `3 vL@(\+Î%i,@@@~2^di}Z 1.q?]8e`ZZӝsgY 0d_ͭ۳uXabA $|=\Xp0AXN;LLJ% s:@Dg!t?1n}1]Dd b  c $A? ?3"`?2ٶhh2`2 =~dFQ`!{ٶhh2`2 =~R@hIxcdd``dd``baV d,FYzP1n:&~! KA?H1ZusC0&dT20t/ @2@penR~#^v,\~ Usi# O+!5C2h^Hfnj_jBP~nb@ @FhV  Y!|tw0;8 nO'8 *l(KI-b2Rb8Xa/)#RpeqIj.C= @ ]` bg!b-nt;Dd b  c $A? ?3"`?2é&sqBKa FQ`!Yé&sqBK@@ 'xcdd``~$d@9`,&FF(`TɁŁYRcgbR vx ?7$# ( XXbS% dd7S? `01d++&1X +|-gK; 1lfQNJ*9_Q 1_`Bܤ kႏB8gܞw #VrA}F=ddbR ,.Ie8 2C D, .&PxR@Dd @b  c $A? ?3"`?29oV-qYб4f FQ`!^9oV-qYб4R`\ ,xcdd``dd``baV d,FYzP1n:&,B@?b u X ㆪaM,,He` @201d++&1X +|-KKʠ TmX@Zk*a|%|AW&00q}_Q =?@Vbq70$~:\ps/[{IL^CE%41fh 0y{qĤ\Y\ː2C 2HuDd b  c $A? ?3"`?2;qADeuŲ3<FQ`!qADeuŲ3:R  !"#$%&'()*+,-/012345s8;f<=?>@BACDEHFGIJKMLNPOQRSUTVXWY[Z\^]_`acbdgehijlkmonpqtuvwxyz{|}~Root Entry FP8:@,Data .wKWordDocument.ZObjectPool|P8P8_1231158703F|P8|P8Ole CompObjfObjInfo  %*-058;>?BEHMPSX]`adinsvy| FMicrosoft Equation 3.0 DS Equation Equation.39qM2d =x  " N FMicrosoft Equation 3.0 DS EqEquation Native N_1231158796 F|P8|P8Ole CompObj fuation Equation.39qM4p =xP(x)  " FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo Equation Native  P_1231158855F|P8|P8Ole  CompObj fObjInfoEquation Native P_1231158867 1F|P8|P8M4p =xP(x)  " FMicrosoft Equation 3.0 DS Equation Equation.39qM\@,Q areas_under_xP(x)  "Ole CompObjfObjInfoEquation Native x_1231158917F|P8|P8Ole CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qM* 5 x  " N FMicrosoft Equation 3.0 DS EqEquation Native F_1231158934"F|P8|P8Ole CompObj fuation Equation.39qMp' |x"| FMicrosoft Equation 3.0 DS Equation Equation.39qM  ObjInfo!!Equation Native "9_1231158958'$F|P8|P8Ole #CompObj#%$fObjInfo&&Equation Native ')_1231158976)FP8P8Ole (CompObj(*)fObjInfo++Equation Native ,V FMicrosoft Equation 3.0 DS Equation Equation.39qM:HC |x"|  " N FMicrosoft Equation 3.0 DS Eq_1280230193wY.F|P8|P8Ole .CompObj-//fObjInfo01uation Equation.39q $_  2 FMicrosoft Equation 3.0 DS Equation Equation.39qM\p  2 =Equation Native 26_1231159092;3F|P8|P8Ole 3CompObj244fObjInfo56Equation Native 7x_1231159162@8F|P8|P8Ole 9|x"| 2 " N FMicrosoft Equation 3.0 DS Equation Equation.39qMH  2 =x 2 "x  " () 2 N  " NCompObj79:fObjInfo:<Equation Native =_12311592296r=F|P8|P8Ole @CompObj<>AfObjInfo?CEquation Native DF FMicrosoft Equation 3.0 DS Equation Equation.39qM*hn |x"| 2 FMicrosoft Equation 3.0 DS Eq_1231159218BF|P8|P8Ole FCompObjACGfObjInfoDIuation Equation.39qM   FMicrosoft Equation 3.0 DS Equation Equation.39qM`do  2 =Equation Native J#_1231159257GF|P8|P8Ole KCompObjFHLfObjInfoINEquation Native O|_1231159313EOLFP8P8Ole Q|x"| 2 P(x)  " FMicrosoft Equation 3.0 DS Equation Equation.39qM HntԅmGBhhB s }9Yr7}LDd b   c $A ? ?3"`? 2#tjU\厒} 3<FQ`!#tjU\厒} 3g oWKdɇ3\`CyMnpo)Q2x&kNs^>2R$ճ ܣ&.TDd 4b   c $A ? ?3"`? 2#Doix_FQ`!Doix `X xڕSM/Qv:MH aA%.hb%QѦBTRtmC؉XYbANN!5}U`&oɹ&@)'bUQBtEy m[gi ۢ1<$CDsQU ƒ+N*2&RqG&Lni2m8*\ >6#.yCdv6#JߨW JZQYUnjn1-+K-~΋n\MeSy'*8lrA^2Nwf-#jl*y۾1c2>5p?>lRۯ}|">W}L %b'M3F-SD'[|ewM}zLy8D/QIIBi_IeuAttlGɆLDd Hhb   c $A ? ?3"`? 2=Zb{ҜWr8FQ`!j=Zb{ҜW@@"|8xcdd``ed``baV d,FYzP1n:&&V! KA?H1h7T obIFHeA*CL N`A $37X/\!(?71aǒXk2_) P.P560ըb^?cd.`[S +1@dOpenR~#^E > t7F=?@bs?|\pKx^ݽPQU.p̃ `pZadbR ,.Ie0ԡ"|b@3X?ZDd Tb   c $A ? ?3"`? 24yS FQ`!4yS   ȽXJkxcdd``d!0 ĜL0##0KQ* Wä2AA?H1Zc@øjx|K2B* R\``0I3ڎDd b  c $A? ?3"`? 2s?b{FQ`!s?b{r xhzxcdd`` @c112BYL%bpu > 1X +|-K`*F\?g2>y|\q?] dn%bhOHfnj_jBP~nbNwCa# 2Bnyn_k|Vݿ_1c!|t2Rl p|f6<{XP/)27n _\M\ Fh``<#RpeqIj.CE.B ~fఉDd b  c $A? ?3"`?2?B<Bq!FQ`!B<Bq:Rxcdd`` @c112BYL%bpu 1X +|-WKf*F\  VrAml*v0oLLJ% :@:|b?eG6Dd ,b  c $A? ?3"`?2> 8 %1m#FQ`! 8 %1m:xcdd`` @c112BYL%bpu 1X +|-WKf*F\  VrAml*v0oLLJ% :@:|b?eG6Dd ,b  c $A? ?3"`?2> 8 %1mo'FQ`! 8 %1m:xcdd`` @c112BYL%bpu > 1X +|-WK e*F\?g2>y|\cd.`[ 0a`ZZ{hЄs[׀K@8?o >ĝ s'zx|avQ%ᣇ#Q. 2 ~39A4/%b SR5Ut* A2 ~q4s8)\9LLJ% {: @> 1 3XpDd  b  c $A? ?3"`?2a@%Yճ)Ap(h =,FQ`!5@%Yճ)Ap(h `H!xcdd``> @c112BYL%bpu 0D@2Wdnq%\` u;&LLJ% SA2u(2tA4T}bb#3X0FLwDd 8b  c $A? ?3"`?2gGEɫ 3L,.FQ`!gGEɫ 3L@v cxڕJAgӜICZ 1@`2`;Dd b   c $A? ?3"`?2:EX_ ?4FQ`!EX_ ?:Rx=Na]G\(P^@"9/@B.$$rZ$ Px"*:d !Dv%J1Q PԤ|KyӚAxE [泠JCNr#/^5ƕ l ԳVqwp<CZ 1@`2`;eDd xhxxb  c $A? ?3"`?2z b}l נk8FQ`!z b}l נ@ |Qxcdd``ed``baV d,FYzP1n:&B@?b 8 ㆪaM,,He`H 01d++&1X|#+|-I g*`x3bcd>` 2!/`2B B Ma`x#uN@egJ?ķ=2\Opۃ{ y, ssw`𹠩 RA``#RpeqIj.C8E.YO`~\lDd |xxb  c $A? ?3"`?2M/U_yOt<):FQ`!M/U_yOt<)` 0XxڕR1KPF(CtpE J:JDX!vvrq9t'?Q8^R \}yw;B0PO^ZS8"mb8YުYB"ÑQzҶM`A nwڟF\)Q y{~nKs7QߐuɞgzM^Dl~W~:_&:k)`'xXw5J!)PXO̾b]Jt*o R\E:jt)V}N!s*Ŗe.?^?C5a%[`MNvF#[ļAWy!#qk4.#CNIDd hxxb  c $A? ?3"`?2hsS81S?o<=FQ`!ghsS81S?b@ |5xcdd``6dd``baV d,FYzP1n:&6! KA?H1Zl πqC0&dT20$ͤ `[YB2sSRsV\ oJf*F\[XA:#*a|MF# 7#|FnO=fF\2 Ma`(㚱NwCe277w`E =\̸tN&\#t] `p321)W2DePdh,Ā'f x^dDd t|xxb  c $A? ?3"`?2k7_"J?FQ`!k7_"J ` 0Pxڝ=KPs{[DPV*cB6gMqsѥR㽷7E+5prs @]YN3&2q$:[)8Nޖ|nHeev+1LJxJXoѱ44D3EQ^lxG2abgUb-JQ/2&0#yhzԧuq`8d81=Y4/i3B//珩U}70Gpn90[ mvV][}$?e`z2!7cBwaCL wW&00hIpq8|o;Xxdnq%?/ j${qۋ7@Fhigm++=@q?{ =Ĥ\Y\ 2C D|b@3X?^eDd Txxb  c $A? ?3"`?2Bedr*v5PFFQ`!Bedr*v5P `XJQxڍ;KP&}$-4dqH*5fB !tvIDq'oR7@wϽ`s_'DE[_%˫ G b d2,֯ݰ0荛U*[fx#HmW X8^lnF׏\\u{YV~(HiOLW)_HS`6C{ ׯl=,ɾ~G}R!yי2$Q7IFQ`!/>י2$Q @|pxcdd``ed``baV d,FYzP1n:&B@?b } UXRY7&,e`abM-VK-WMcXsF V0Z7m P.P56 jT _cE3B1d# ȄJ8? Uޙ"qG?$w0\G!wAWYP2 >f@n{>m=] m%xE{+8t+ =Ĥ\Y\˰ d.P"CX,Ā'f~D1Table.SummaryInformation(DocumentSummaryInformation8dCompObjrn;8@n;8 =# ՜.+,04 hp  Mesa State CollegeK) >RANDOM VARIABLES: probability distributions, means, variances Title  F Microsoft Word 97-2003 Documentw666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@6666_HmH nH sH tH @`@ NormalCJ_HaJmH sH tH DA D Default Paragraph FontRi@R  Table Normal4 l4a (k (No List jj Ls Table Grid7:V0PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭VGRU1a$N% ʣꂣKЛjVkUDRKQj/dR*SxMPsʧJ5$4vq^WCʽ D{>̳`3REB=꽻Ut Qy@֐\.X7<:+& 0h @>nƭBVqu ѡ{5kP?O&Cנ Aw0kPo۵(h[5($=CVs]mY2zw`nKDC]j%KXK 'P@$I=Y%C%gx'$!V(ekڤք'Qt!x7xbJ7 o߼W_y|nʒ;Fido/_1z/L?>o_;9:33`=—S,FĔ觑@)R8elmEv|!ո/,Ә%qh|'1:`ij.̳u'k CZ^WcK0'E8S߱sˮdΙ`K}A"NșM1I/AeހQתGF@A~eh-QR9C 5 ~d"9 0exp<^!͸~J7䒜t L䈝c\)Ic8E&]Sf~@Aw?'r3Ȱ&2@7k}̬naWJ}N1XGVh`L%Z`=`VKb*X=z%"sI<&n| .qc:?7/N<Z*`]u-]e|aѸ¾|mH{m3CԚ .ÕnAr)[;-ݑ$$`:Ʊ>NVl%kv:Ns _OuCX=mO4m's߸d|0n;pt2e}:zOrgI( 'B='8\L`"Ǚ 4F+8JI$rՑVLvVxNN";fVYx-,JfV<+k>hP!aLfh:HHX WQXt,:JU{,Z BpB)sֻڙӇiE4(=U\.O. +x"aMB[F7x"ytѫиK-zz>F>75eo5C9Z%c7ܼ%6M2ˊ 9B" N "1(IzZ~>Yr]H+9pd\4n(Kg\V$=]B,lוDA=eX)Ly5ot e㈮bW3gp : j$/g*QjZTa!e9#i5*j5ö fE`514g{7vnO(^ ,j~V9;kvv"adV݊oTAn7jah+y^@ARhW.GMuO "/e5[s󿬅`Z'WfPt~f}kA'0z|>ܙ|Uw{@՘tAm'`4T֠2j ۣhvWwA9 ZNU+Awvhv36V`^PK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!g theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] ) Z_ ! $vU"%(1 !#$&')*+S ] p)1"%(,H\^  J^` ';={ . 0 1 E G  ) + . B D a u w  $ 8 :   ? S U !!!T"h"j"):::::::::::::::::::::::::::::::::8@0(  B S  ?OP'%')1RhmY ] !!!!m"q"'%')3333333333OQ))OQ9))7"EQh%Ng<'0zL8**0?_^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.  ^ `o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.7QzL80?_Ng<'         ^`y                                   ('z_ | HAQ[9FOL.QY!UFYD_hgpxmpLsguJ~6yWY7BG[w2v'c bp+a^f~Y~h2))@QQQ)@UnknownG.[x Times New Roman5Symbol3. .[x ArialC.,.{$ Calibri Light7..{$ CalibriA$BCambria Math"qhՃGՃGıf=# K=# K!24))3QHP ?D_2!xxh{ =RANDOM VARIABLES: probability distributions, means, variancesepackard Packard, Erik      MSWordDocWord.Document.89q