Finding How Many Solutions

NAME:
Multi-Step Equations - How Many Soluti ne?
Directions Solve each equation for the missing variable.

1. $-(6 x-5)=-6 x+13$
2. $2 x+12=2(x+6)$

About thls product:
--Included in this product:

- Worksheet with 10 problems
(4 One Solution, 3 NO Solution, and 3 Infinite Solutions)
- Coloring Picture
- Option to have both on one page(side by side)
- Answer key to problems page
- Colored Answer Key of Picture

Students will solve 10 Multi-Step Equations with Variables on BOTH sides. When they get their answer they will look at the boxes on the right. Whatever answer matches the answer they got they will color that problem number the corresponding color.

This is a fun way to review Multi-step Equations with Variables on BOTH sides and color a picture! This also makes a great substitute plans activity or can be used as a review!

I hope you enjoy! Happy Teaching!

You may also like:

Coordinate Graphing Mystery Picture

Bundle

MULTI-STEP EQUATIONS

 With Variables on Both Sides Color by Number

MATH MOVIE

Questions BUNDLE GREAT END OF THE YEAR ACTIVITY!

LIGHTBOX SLIDES
Inspirational quotes *GROWING BUNDLEぇ -22 QUO+CS -COLOR VERSION -BLACK and
WHITE VERSION $\cdots \sqrt{ }$

MATH

Click the pictures to check it out!

NAME: \qquad DATE: \qquad CLASS: \qquad
Multi-Step Equations - How Many Solutions?
Directions: Solve each equation for the missing variable. You must show ALL your work! Circle the correct answer and color the corresponding areas on the coloring sheet.

I. $-(6 x-5)=-6 x+13$	$x=\frac{17}{12}$ Brown	$\begin{gathered} \text { No } \\ \text { solution } \\ \text { Red } \end{gathered}$	$\begin{aligned} & X=-\frac{17}{12} \\ & \text { Orange } \end{aligned}$	Infinite Solutions Yellow
2. $13+2 k=3 k+4(k-3)$	$k=5$ Yellow	$k=-5$ Black	$\begin{gathered} k=\frac{1}{5} \\ \text { Red } \end{gathered}$	No solution Green
3. $-5(-5+4 a)=-23-8 a$	$a=-4$ Orange	$\begin{aligned} & a=\frac{1}{4} \\ & \text { Yellow } \end{aligned}$	$a=4$ Green	Infinite Solutions Purple
4. $2 x+12=2(x+6)$	$x=0$ Orange	Infinite Solutions Pink	No solution Blue	$x=8$ Red
5. $8 n-2(n+5)=$	$n=-13$ Yellow	$\begin{gathered} n=13 \\ \text { Red } \end{gathered}$	Infinite Solutions Green	No solution Orange
6. $-16-6 x=-6(x+3)$	solution Lt. Blue	$\begin{aligned} & x=-\frac{1}{6} \\ & \text { Blue }^{2} \end{aligned}$	$x=1$ Orange	Infinite Solutions Lt. Green
7. $-4(5+3 x)=-30-7 x$	$x=2$ Lt. Green	$\begin{gathered} x=-10 \\ \text { Red } \end{gathered}$	$x=-2$ Blue	$x=10$ Green
8. $-7(n+2)=-14-7 n$	$n=14$ Green	Infinite Solutions Pink	$n=-4$ Purple	$\begin{gathered} \mathrm{n}=4 \\ \text { Red } \end{gathered}$
9. $4-7 n=-(8 n+4)+2$	$n=-6$ Blue	$\begin{gathered} \mathrm{n}=6 \\ \text { Red } \end{gathered}$	No solution Brown	Infinite Solutions Purple
$10.7 n+12=\frac{1}{2}(14 n+24)$		$\begin{aligned} & \mathrm{n}=0 \\ & \text { Brown } \end{aligned}$	$n=6$ Green	Infinite Solutions Red

pəy suounnos ว!!u\|fuI	นəә.9 $9=u$	uMOAg $0=u$	oldand uoun\|os ON	$\left(t_{1} Z+u t_{1}\right) \frac{Z}{1}=Z 1+u L^{\circ}$ Ol	
Ird.and suounnos atulut дии,	umodg uounjos ON	pey $9=u$	อก\|ร $9-=u$	$Z+\left(t_{1}+u 8\right)-=u L-t_{1} \cdot \mathbf{b}$	
$\begin{aligned} & \text { pəу } \\ & h_{1}=u \end{aligned}$	əoland $h^{-}=u$	>्रu!d suounjos ว!!u!fuI	บəәдد $H=U$	$u_{L}-H-=(Z+U) L-\cdot 8$	
บəə $\text { Ol }=x$	อกำ Z- = X	рәу $\mathrm{OH}=\mathrm{X}$	uəә. 9 $Z=X$	$\times L-0 \varepsilon-=(x \varepsilon+G)+r^{-} \mathbf{L}$	
uəә.9 71 suounjos ว!!ufuI	a6ubjo 9 $T=X$	$\begin{aligned} & 9^{\text {ənlg }} \\ & T^{-}=x \end{aligned}$	ənlg ' 71 uoun\|os ON	$(\varepsilon+\times) 9-=\times 9-91-9$	
a6ubio uounnos ON	บəә.Д suounnos ә!ululuI	$\begin{gathered} \text { pəy } \\ \varepsilon \mid=u \end{gathered}$	мํㅔㅅ $\varepsilon \mid-=u$	$49+\varepsilon-=(G+u) Z-48 \cdot \mathbf{S}$	
pəy $8=x$	อก\|ร uounjos ON	>्रu!d suounnos วम!ulfuI	ə6ubao $0=x$	$(9+X) Z=Z 1+X Z \quad$ 'h	
əldand suounjos ว!ululut	$\begin{aligned} & \text { uəəə } \\ & h_{1}=D \end{aligned}$	$\begin{aligned} & \text { MO\\|ə } \\ & \frac{H}{T}=D \end{aligned}$	a6ubao $h^{-}=D$	$D 8-\varepsilon Z-=\left(D H_{1}+G-\right) G-\cdot \varepsilon$	
uounjos ON	$\begin{aligned} & \text { pəy } \\ & \frac{G}{T}=\lambda \end{aligned}$	$\begin{aligned} & \text { YวDIg } \\ & G^{-}=y \end{aligned}$	м에ə入 $G=X$		
 suounn\|os ət!u!fuI	ə6ubдo $\frac{\mathrm{Zl}}{\mathrm{LI}}-=x$	pey uounjos ON	$\begin{aligned} & \text { umodg } \\ & \frac{Z I}{Z l}=X \end{aligned}$	$\varepsilon 1+\times 9-=(G-\times 9)-\quad$ I	

NAME: \qquad DATE: \qquad CLASS: \qquad
Multi-Step Equations - How Many Solutions? KEY
Directions: Solve each equation for the missing variable. You must show ALL your work! Circle the correct answer and color the corresponding areas on the coloring sheet.

I. $-(6 x-5)=-6 x+13$	$x=\frac{17}{12}$ Brown	$\begin{gathered} \text { No } \\ \text { solution } \\ \text { Red } \end{gathered}$	$\begin{aligned} & X=-\frac{17}{12} \\ & \text { Orange } \end{aligned}$	Infinite Solutions Yellow
2. $13+2 k=3 k+4(k-3)$	$k=5$ Yellow	$k=-5$ Black	$\begin{gathered} k=\frac{1}{5} \\ \text { Red } \end{gathered}$	No solution Green
3. $-5(-5+4 a)=-23-8 a$	$a=-4$ Orange	$\begin{aligned} & a=\frac{1}{4} \\ & \text { Yellow } \end{aligned}$	$a=4$ Green	Infinite Solutions Purple
4. $2 x+12=2(x+6)$	$x=0$ Orange	Infinite Solutions Pink	No solution Blue	$x=8$ Red
5. $8 n-2(n+5)=$	$n=-13$ Yellow	$\begin{gathered} n=13 \\ \text { Red } \end{gathered}$	Infinite Solutions Green	No solution Orange
6. $-16-6 x=-6(x+3)$		$\begin{aligned} & x=-\frac{1}{6} \\ & \text { Blue }^{2} \end{aligned}$	$x=1$ Orange	Infinite Solutions Lt. Green
7. $-4(5+3 x)=-30-7 x$	$x=2$ Lt. Green	$\begin{gathered} x=-10 \\ \text { Red } \end{gathered}$	$x=-2$ Blue	$x=10$ Green
8. $-7(n+2)=-14-7 n$	$n=14$ Green	Infinite Solutions Pink	$n=-4$ Purple	$\begin{gathered} \mathrm{n}=4 \\ \text { Red } \end{gathered}$
9. $4-7 n=-(8 n+4)+2$	$n=-6$ Blue	$\begin{gathered} \mathrm{n}=6 \\ \text { Red } \end{gathered}$	No solution Brown	Infinite Solutions Purple
$10.7 n+12=\frac{1}{2}(14 n+24)$	No solution Purple	$n=0$ Brown	$n=6$ Green	Infinite Solutions Red

Copyright \& Terns of Use
©Hayley Cain (activity after Math) Your download includes a limited use license from Hayley Cain. The purchaser may use the resource for personal classroom use only. The license is not transferable to another person. Other teachers may purchase additional licenses.

To share with colleagues:

- Login to TPT and click on "My TPT" on the top right of your screen.
- Click on "My Purchases"
- Find the resource you"d like to share and click "Buy Additional Licenses".
- Purchase a discounted license for each colleague you plan to share with.
- Email a copy of the resource to each person you purchased a license for.

Earn TPI CRedits
By giving feedback you earn credit to use towards future purchases!

Clickhere!

Frames, Clip ARt and Fonts Purchased/Downlooded FroM:

