ࡱ> SUR[ VDbjbj FΐΐV<3333|34.[^4`4`4`4`4`4`458n`4^`4u4###6^4#^4##13P3> 2J440428 #8(383#`4`4#48 : Name_____________________________________________________ Class_____ February Break Assignment Algebra II HON This assignment is to be completed by you over February break. You are to record your answers on this sheet of paper. ALL OF YOUR WORK MUST BE WRITTEN NEATLY ON LOOSELEAF and STAPLED to this paper. If your work is not shown for every problem, you will receive no credit for this assignment. This assignment will be counted as a quiz and you will also take an in-class quiz on this material after the break. If your work is not attached to this paper with a staple, you will receive no credit for you work. This assignment is due on Monday Feb. 22, 2010 BEFORE 8:30 AM. There will be a Ms. Lanci box located outside the Math Office (E114) where you will hand in the assignment. Again, this assignment is due BEFORE 8:30 AM on Monday, NOT in class, NOT during cor, NOT at 8:31, NOT at 8:35.. BEFORE 8:30 AM or you will not get credit for your work! If you need to ask any questions, please feel free to e-mail me. NO LATE ASSIGNMENTS WILL BE ACCEPTED! (Only hand in this answer sheet, not the question packet) 1. ___________ 2.__________ 3.___________ 4._________ 5. ___________ 6.__________ 7.___________ 8._________ 9. ___________ 10.__________ 11.___________ 12._________ 13. ___________ 14.__________ 15.___________ 16._________ 17. ___________ 18.__________ 19.___________ 20._________ 21. ___________ 22.__________ 23.___________ 24._________ 25. ___________ 26.__________ 27.___________ 28._________ 29. ___________ 30.__________ 31.___________ 32._________ 33. ___________ 34.__________ 35.___________ 36._________ 37. ___________ 38.__________ 39.___________ 40._________ 41. ___________ 42.__________ 43.___________ 44._________ 45. ___________ 46.__________ 47.___________ 48._________ 49. ___________ 50.__________ 51.___________ 52._________ 53. ___________ 54.__________ 55.___________ 56._________ 57. ___________ 58.__________ 59.___________ 60._________ 61. ___________ Sequences Definition: A sequence is a set of numbers in a specific order. 2, 5, 8,. is an example of a sequence. Note that a sequence may have either a finite or an infinite number of terms. The terms of a sequence are the individual numbers in the sequence. If we let a1 represent the first term of a sequence, an represent the nth term, and n represent the term number, then the sequence is represented by a1, a2, a3, .,an, In the example above, a1=2, a2=5, a3= 8, etc. Arithmetic Sequences Definition: An arithmetic sequence is a sequence in which each term, after the first, is the sum of the preceding term and a common difference. An arithmetic sequence can be represented by a1, a1 +d, a1 + 2d, . In the sequence 2, 5, 8, .. the common difference is 3. The sequences 1, 3, 5, 7, .. and 2, 8, 14, 20, .. are examples of arithmetic sequences. Each has the property that the difference between any two immediate successive terms is constant. The existence of a common difference is the characteristic feature of an arithmetic sequence. To test whether a given sequence is an arithmetic sequence, determine whether a common difference exists between every pair of successive terms. For example, 4, 8, 9, 16, 32, . is not an arithmetic sequence because the difference between the first two terms is 4, but the difference between the second and third terms is 8. Exercises: Do all work on loose leaf. A. Write the first five terms of the arithmetic sequence in which  EMBED Equation.3  and d are given as follows. 1.)  EMBED Equation.3 =17, d = 12 2.)  EMBED Equation.3 = 3, d =  EMBED Equation.3  3.)  EMBED Equation.3 = -6, d = -3 B. Write the last four terms before  EMBED Equation.3 of the arithmetic sequence in which  EMBED Equation.3 and d are as follows. 4.)  EMBED Equation.3 = -7, d = 6 5.)  EMBED Equation.3 = 36, d = -5 6.)  EMBED Equation.3 = 5, d = 10 C. Tell whether each of the following is an arithmetic sequence. In those sequences which are arithmetic sequences, find the common difference and write the next two terms. 7.) -2, 3, 8, .. 8.) 5, -1, -7, . 9.) -9x, -2x, 5x, . If a1 is the first term of an arithmetic sequence, an the nth term, d is the common difference, a formula for finding the value of the nth term of an arithmetic sequence is: an = a1 + (n 1)d The formula for the nth term of an arithmetic sequence may be used to find any term of the sequence. This is done by choosing the appropriate value of n and substituting in the formula above. For example, find the 75th term of the sequence 2, 5, 8, a75 = a1 + (n 1)d. Since a1 = 2, n = 75, d = 3, then a75 = 2 + (75 1)(3) = 2 + (74)(3) = 2 + 222 = 224 Thus, a75 = 222. Model Solutions A. Find the 13th term of 2, 8, 14, 20, 26, .. Steps in Solution Solution 1. List the values of those variables in the an = a1 + (n 1)d formula which are known, and indicate the a1 = 2, n = 13, d = 6, a13 = ? variable whose value is to be determined. 2. Substitute the known values in the formula a13 = 2 + (13 1)(6) for an, and compute the value to be determined = 74 B. Write the infinite arithmetic sequence whose first term is 5 and whose 7th term is 17. Solution: a1 = 5, a7 = 17, n = 7, d = ? 17 = 5 + (7 - 1)d 12 = 6d d = 2 The arithmetic sequence is 5, 7, 9, 11, 13, 15, 17, Exercises: Do all work on loose leaf Find the nth term of the arithmetic sequence in which 10.)  EMBED Equation.3 = 11, d = -2, n = 19 11.)  EMBED Equation.3 = 1.5, d = 0.5, n = 16 Find the term indicated in each of the following sequences. 12.) 43rd term of -19, -15, -11, .. 13.) 58th term of 10, 4, -2, . 14.) 13th term of 8, 13, 18, Answer each of the following. 15.) Which term of 14, 21, 28, is 112? 16.) Which term of 3, -2, -7, is -57? 17.) Which term of 23, 30, 37, is 240? 18.) Find the common difference in the arithmetic sequence whose 1st term is 4 and whose 11th term is 64. 19.) How many terms are there in the sequence -13, -8, -3, 2, ., 37? 20.) How many terms are there in the sequence 9, 33, 57, 81, .., 633? Definition: Arithmetic means are the terms between any two other terms of an arithmetic sequence. In the sequence 1, 3, 5, 7, 9, 11, 13, ., the terms 5, 7, and 9 are called arithmetic means between 3 and 11. Definition: A single arithmetic mean between two numbers is what is commonly called the average of the two numbers. It is equal to the sum of the two numbers. Model Solution Insert 3 arithmetic means between 7 and -9. Steps in solution Solution Write the sequence, leaving blank 7, ____, ____, ____, -9 spaces for the missing means, and determine the values of a1, an, and n a1 = 7, a5 = -9, n = 5 Substitute in the formula for a1, an, -9 = 7 + (5 - 1)d n and solve for d. -9 = 7 + 4d d = -4 Write the sequence by adding the value 7, 3, -1, -5, -9 of d to each term to determine the next term. In each of the following, insert the indicated number of arithmetic means between the 2 given numbers. 21.) -4 and 5, 2 means 22.) 12 and 21, 2 means 23.) -6 and 24, 4 means 24.) 36 and 48, 3 means Geometric Sequences The following are examples of a special type of sequence called a geometric sequence. 2, 4, 8, 16, 32, . 1, 3, 9, 27, 81, . This type of sequence has the property that each term is multiplied by a constant to produce the next term. Definition: A geometric sequence is a sequence in which each term, after the first is formed by multiplying the previous term by a fixed quantity. For example: 3, 6, 12, 24, is a geometric sequence, each term is being multiplied by 2 to produce the next term. A geometric sequence may be represented as a1, a2, a3, a4, , an, a1 represents the first term, an the nth term, n the term number and r is the common ratio. Definition: The common ratio is a constant which is multiplied by each term of a geometric sequence to produce the next term. In 3, 6, 12, 24, . The common ratio is 2. In 2, -6, 18, -54, 162, ., the common ratio is -3. The common ratio is the ratio of any term in the sequence to the term preceding it and can be found by dividing any term by the one before it. If r is the common ratio in a geometric sequence, then r =  EMBED Equation.3  The common ratio between any two successive terms is the characteristic feature of a geometric sequence. To test whether a given sequence is geometric, determine whether the ratio of any given term to the immediately preceding one is always the same. Thus, the sequence 64, 32, 16, 8, 4, . Is a geometric sequence because 32/64 = , 16/32 = , and 4/8 = . The common ratio is always . F. Write the first four terms of the geometric sequence in which  EMBED Equation.3  and r are as follows. 25.)  EMBED Equation.3 = 13, r = 7 26.)  EMBED Equation.3  = 4, r =  EMBED Equation.3  27.)  EMBED Equation.3 =7, r = -2 G. Write the last four terms before  EMBED Equation.3 of the geometric sequence in which  EMBED Equation.3  and r are as follows. 28.)  EMBED Equation.3 =324 r = 2 29.)  EMBED Equation.3 = 639, r = 3 30.)  EMBED Equation.3 = -400, r = -5 If a1 represents the first term of a geometric sequence, an the nth term, n the term number and r the common ratio, then the formula for finding the nth term is: an = a1 rn 1 Model Solutions Find the 8th term of the sequence 243, 81, 27, 9, . Steps in Solution Solution List the values of those variables an = a1 rn 1 which are known, and indicate the a1 = 243, r = 1/3, n = 8, a8 =? variable whose value is to be determined. Substitute the known values in the a8 = 243(1/3)7 formula, and compute the value to = 1/9 be determined. What term of the sequence 1/8, -1/4, , -1, 2, -4, . is 128? 128 = (1/8)(-2)n 1 1024 = (-2)n 1 (-2)10 = (-2)n 1 (Change bases to be the same) Then, 10 = n 1 n = 11 H. Find the term indicated in each of the following geometric sequence. 31.) 6th term of  EMBED Equation.3 , -1, 2, -4, .. 32.) 10th term of 3, 6, 12, .. 33.) 9th term of 27, 9, 3, . 34.) 7th term of 2, 6, 18, . I. Find the nth term of the geometric sequence in which: 35.)  EMBED Equation.3 = 3, r = 3, n = 10 36.)  EMBED Equation.3 = 7, r = -4, n = 5 37.)  EMBED Equation.3 = 800, r = 1, n = 7 J. Answer each question. 38.) Which term of 7, 14, 28, .. is 14336? 39.) What term of 2187, -729, 243, . is 27? 40.) Find the common ratio of the geometric sequence, whose first term is 5 and whose 4th term is -320. 41.) Find the common ratio of the geometric sequence whose first term is 4 and whose 3rd term is 36. Definition: Geometric means are the terms between any two other terms of a geometric sequence. Model Solutions Insert two geometric means between 3 and 375. Steps in Solution Solution Write the sequence, leaving blank 3, ___, ___, 875 spaces for the missing means and a1 = 3, n = 4, a4 = 375, r = ? use it to determine the values of a1, an and n. Substitute in the formula for an and 375 = 3r3 solve for r. 125 = r3 r = 5 Write the sequence by multiplying 3, 15, 75, 375 each term buy the value of r to determine the next term. Answer: The two geometric means are 15 and 75. K. In each of the following, insert the indicated number of geometric means between the two given numbers. 42.) 1 and 27, 2 means 43.) -2 and 54, 2 means 44.) 16 and 1, 3 means L. Answer each question as indicated for each problem. 45.) Find the positive geometric mean between 4 and 25. 46.) Find the negative geometric mean between 4 and 64. 47.) Between 32 and what other number is the positive geometric mean 8? SERIES Recall: A sequence is an ordered list of numbers. The sum of the terms of a sequence is called a series. To find the sum of a certain number of terms of an arithmetic sequence: The HYPERLINK "http://www.mathwords.com/s/sum.htm"sum of an arithmetic series is found by multiplying the number of terms times the HYPERLINK "http://www.mathwords.com/a/average.htm"average of the first and last terms.  where Sn is the sum of n terms (nth partial sum), a1 is the first term, an is the nth term. To find the arithmetic series, the formula for an must be used.  MODEL: Find the sum of the first 20 terms of the sequence 4, 6, 8, 10, ... To use the sum formula, an needs to be found first. a1 = 4, n = 20, d = 2 a20 = 4 + (20 1)(2) a20 = 4 + 19(2) a20 = 4 + 38 a20 = 42 Now the sum formula can be used. n = 20, a1 = 4, an = a20 = 42 S20 =  QUOTE   S20 =  QUOTE   S20 =  QUOTE   S20 = 460 PRACTICE: 48. Find the sum of the first 30 terms of 5, 9, 13, 17, ... 49. Determine the sum of the first 17 terms of the arithmetic sequence whose first 4 terms are -15, -9, -3, 3 50. Determine the sum of the first 8 terms of the arithmetic sequence whose first 4 terms are 8, 11, 14, 17 51. Find the sum of the arithmetic series 3, 6, 9, .... ,99 52. Determine the sum of 22, 16, 10, , -80 To find the sum of a certain number of terms of a geometric sequence:  where Sn is the sum of n terms (nth partial sum), a1 is the first term, r is the common ratio. MODEL: Find the sum of the first 8 terms of the sequence -5, 15, -45, 135, ... a1 = -5, r = -3, n = 8 S8 =  QUOTE   S8 =  QUOTE   S8 =  QUOTE   S8 =  QUOTE   S8 = 8200 PRACTICE: 53. Determine the sum of the first 15 terms of the geometric sequence 1, 2, 4, 8, . 54. Determine the sum of the first 11 terms of the geometric sequence 2, -6, 18, -54, . 55. Determine the sum of the first 6 terms of the geometric sequence 1000, 200, 40, 8, . 56. Determine the sum of the first 9 terms of the geometric sequence 1, 6, 36, 216, . Recursion is the process of choosing a starting term and repeatedly applying the same process to each term to arrive at the following term. Recursion requires that you know the value of the term immediately before the term you are trying to find. A recursive formula always has two parts: 1. the starting value for a1. 2. the recursion equation for an as a function of an-1 (the term before it.) Examples: 1. Consider the sequence 2, 4, 6, 8, 10, ... Recursive formula:  2. Consider the sequence 3, 9, 27, 81, ... Recursive formula:  3. Write the first four terms of the sequence: (5 is added to each term) a1 = -4 a2 = -4 + 5 = 1 a3 = 1 + 5 = 6 a4 = 6 + 5 = 11 -4, 1, 6, 11 PRACTICE: 57. Find the first 4 terms of the sequence 58. Write the first five terms of the sequence 59. Write a recursive formula for the sequence 9, -18, 36, -72, ... 60. Write a recursive formula for the sequence  61. Write a recursive formula for the sequence 5, 11, 23, 47, 95, / 7 E  y z " # _ ` ST  GH'+3$%OP`b*˾˾˹˾˾˾˾˾˾˾˴˴ˬh 18hFP>* hFP5 hFPH* hFPH*hFPhFP>*hFPhFPhFP5 hh hah h5hah5>*hah5hDFs t # $ ` a TU  HIgdwxh^hgdVgdFP$a$gdFPgd*+,-:;>?QRST]^pqѱѐvm]jO h#`hVEHUVh#`hVEHjh#`hVEHUjh#`hVEHUjO h#`hVEHUVhH/jh#`hVEHUjO h#`hVEHUVjO h#`hVEHUVh#`hVEHjh#`hVEHUhV hFPhFPhhFP hFPH* qrsuvyz%./23EǷ᝔w᝔gZV᝔hj1 h#`hVEHUjO h#`hVEHUVj. h#`hVEHUjO h#`hVEHUVh#`hVEHjh#`hVEHUj&h#`hVEHUjO h#`hVEHUVh#`hVEHjh#`hVEHUhH/hVjh#`hVEHUjh#`hVEHU .XE]Yn,h^hgd#`h^hgdVh^hgdH/EFGHUVYZlmno{~XYkl}~!KLĴėцц͆~~͆yytty hVH* hVH*hhh#`j:h#`hVEHUjO h#`hVEHUVj7h#`hVEHUjO h#`hVEHUVh#`hVEHhH/hVjh#`hVEHUj4h#`hVEHUjO h#`hVEHUV-LPQrt68Z\`auv  .?CKL}~>@]^ !3ȻȻj=h#`hH/EHUjO h#`hH/EHUVh#`hH/EHjh#`hH/EHUhH/h#`hh$ hV>*hVhV>* hV5hVhVH* hVH* hVH*hV:,L S2BQMN & Fgd#`^gdH/h^hgdH/ & FgdH/gd$ h^hgdVh^hgd#`3456N>@Cgil    J K M P s h!s!v!! ""ͽhJphJp>*hJphJp5hJphJpH*hJph=#QhrhrH*hrhh#`h#`H*h#`hH/jh#`hH/EHUjEh#`hH/EHUjO h#`hH/EHUV:>g K g!h! " ""E"F"f"" & FgdJp$a$gdJpgdJph^hgd & Fgdrh^hgd#`"H"Y"]"e"""""""""##$#'#(#########A$C$[$]$s$u$$$$$$$$%%%%&&&&&&&&&&&&''"'$'Y'c'i'u''']((ûóîîîîîîîéûóååh 18 huxH* huxH*huxhux>*huxhux5hux h|s5>*huxh|s5>*h2\h,\XhH/hr hJphJp hJpH*hJphJp>*hJpA""##>#a#o#p#####A$s$$$$$$%*%A%h^hgdux $h^ha$gdux $h^ha$gdJph^hgdr & FgdrgdJp & FgdJp8^8gdJpA%%%A&B&&&&X'Y'''()**++ ,.,,P-V-h^hgdrh^hgd 18 h^`hgdH/h^hgdH/h^hgdux(())))))**********++++(+)+*+++;+>+?+Q+R+~naQjO h#`h|sEHUVjh#`h|sEHUjO h#`h|sEHUVjh#`h|sEHUjO h#`h|sEHUVh#`h|sEHjh#`h|sEHUh|shF h|sH* huxh 18jMh 18h 18EHUjO h 18h 18EHUVh 18h 18EHjh 18h 18EHUh 18hH/R+S+T+^+_+q+r+s+t+x+{+|++++++++++++++++++˻Ԫ塑sjZMsIsh 18jB%h#`h|sEHUjO h#`h|sEHUVh#`h|sEHjh#`h|sEHUhFj:#h#`h|sEHUjO h#`h|sEHUVh#`h|sEHhH/j+!h|sh|sEHUjO h|sh|sEHUVh|sh|sEHjh|sh|sEHUh|sjh#`h|sEHUj#h#`h|sEHU+,,,,,%,.,0,3,4,F,G,H,I,X,[,\,n,o,p,q,},,,,,,,,,,,,,,,wjfafaf\ h 18H* h 18H*h 18jN-h#`h|sEHUjO h#`h|sEHUVjK+h#`h|sEHUjO h#`h|sEHUVjH)h#`h|sEHUjO h#`h|sEHUVhH/hh|sjh#`h|sEHUjE'h#`h|sEHUjO h#`h|sEHUVh#`h|sEH$,D-F-O-P-U-V-W-X-\-]-_-a-b-d-e-f-v-------------#.$.=.>.......*///=/B/I/K/R/W/u/v//////////0h|sh|sEHjh|sh|sEHUh|sh|sH*hF h 18h 18hH/ h 18>*h 18h 18H* h 185 hh hH* h 18H*hh|s h 18H*h 18;V-e-f-v----B.l..../0/C/v/////h^hgdrgdH/^gdH/^gd 18 & Fgd 18h^hgd 18 $h^ha$gd 18  h^ `hgd  h^ `hgdH/000000007090=0?0X0Z0^0`0o0p0x0y0{0000000000000000001111ѽѹ͹͹vi͹jh3h#`hsEHUjO h#`hsEHUVj`1h#`hsEHUjO h#`hsEHUVh#`hsEHjh#`hsEHUhshFhh|sh|sH*hH/h|sjh|sh|sEHUjQ/h|sh|sEHUjO h|sh|sEHUV)/70w0x00>1?1X11111 2#2$2~22223313Q3 hh]h^hgd 18$hh]h^ha$gd 18h]hgdH/ hh]h^hgdsh^hgdr1'1(1)1*151?1@1X1Z111111 2222#2$2&2z2|2}222222343E3H3P33333333344%4&4?4@4r4t4v4x44ŽŹŵŭŹŭŵťh 18h 18>* h 18H* h 18H* h 18>* h 185h 18h 185hshsH*h=#Qh 18hH/hFhshjh#`hsEHUjp5h#`hsEHUjO h#`hsEHUVh#`hsEH5Q333333'4A4M4~444444X55556G666 hh]h^hgds hh]h^hgd 18h]hgd 18 h]h^gd 18 & Fh]hgd 184444444X5Z5]5^5p5r555555566G6I66666666772787N7R7S77777778 888.8/8¸¸®®hH/h=#Q5\hH/h=#Q0JB*phhjjhjU hH/h=#Qh3h=#Q5\h3h=#Q5>* h3h=#Qh4'Jh=#Q5>*hH/hH/5>*h=#QhhH/hhshFh 18 h 18h 1806666677M7N7/8082838884959798999999:$a$gd=#Qgd=#Q$hh]h^ha$gd4'J hh]h^hgd/8081838j8k8l8{8|88888888888888$9%95969@9999999::%:':?:ĹάďĹćΏvk_k_k_k_k_kh3h=#QCJH*aJh3h=#QCJaJ juBh:hLgUmHnHuh3h=#QH*h3h=#QH*h3h=#Q5\h3h=#Q5H*\h3h=#Q56\]h3h=#Q6H*]h3h=#Q6] h3h=#Qh3h=#QmHnHu jx7h:hLgUmHnHuh3h=#Q5CJ\aJ%:1:G:I:J:K:l:::::;;;E;;;;;;]<q<r<<<<<<(=*=$a$gd4'Jgd=#Q?:A:H:I:J:K:k:l:u:v:}:~::::::::::::::::::::::::::::趫趫sf趫j~hLghLgEHUjmhLghLgEHU jhLghLgCJUaJ*jV\hLghLgEHUjJhLghLgEHUhLghLgCJaJjhLghLgCJUaJh4'JCJaJh3hCJaJhCJaJh=#QCJaJh3h=#QCJaJh3h=#QCJH*aJ&::::;;2;4;:;;;E;G;J;K;S;;;;;;;;;˺wgbXH@; h=#QH*hD-h=#QH*hD-h=#Q5B* H*\phhD-h=#Q5\ h\hD-h=#Q5B* H*\phh9h=#Q\ h9\hD-h=#Q\h=#Qh hD-h=#Qh=#QCJaJh3h=#QCJH*aJh3h=#QCJaJ jhLghLgCJUaJ*jphLghLgEHUjhLghLgCJUaJhLghLgCJaJj"hLghLgEHU;;;;;;\<c<p<r<t<<<<<<<<<<<=='=(=)=*=0=1=2=A=B=J=K=N=Y=^=_=`=u=v===òררא{רsרoh4'Jh1h=#QH*hH/h=#Q5\hH/h=#Q5H*\hH/h=#Q56\]h1h=#Q6H*]h1h=#Q6] jh:hLgUmHnHuh4'Jh=#Q5\h1h=#Q5\ h1h=#Q hD-h4'JhD-h=#QH*hh9h=#Q hD-h=#Q**==== > >(>)>@>D>^>l>v>>>'?(?????@pAqA{AAAAgd=#Qgd=#Q$a$gd=#Q=========>>> > > >>>>>> >!>">#>$>.>/>2>3>:>;><>=>>>?>I>J>M>N>U>V>W>X>ۺԠۓԆylj6hLghLgEHUjG$hLghLgEHUjhLghLgEHUjhLghLgEHUjhLghLgEHUjhLghLgU*jhLghLgEHUjphLghLgEHU hLghLgjhLghLgUh1h=#QH* h1h=#Qh4'J h1h4'J*X>Y>Z>c>d>k>l>v>x>>>>(?*?-????????AAAAABACAUAVAWAZAAAAABB B B;BμvhjhLgUmHnHu jv\h:hLgUmHnHu jXh:hLgUmHnHuh Uh=#Q6H*]h Uh=#QH*h Uh=#Q6] h Uh=#Qh Uh=#Q5\h9hh=#Qh4'Jh1h=#QH* h1h=#QjhLghLgU*jGhLghLgEHU(AAAB B B@BAB[B\BdBtBBBBBBBBB$C%C&C'C(CYCCC$a$gd=#Qgd=#Qgd=#Q;B=B]B^BeBfBuBvBBBBBBBBBBBC#C(C*CCCCCCCCCUDVD h|sh=#Q j_h:hLgUmHnHuh Uh=#QmHnHuhvyhjhLgUmHnHuh Uh=#QH* h Uh=#Qh Uh=#Q5\CCCCCDRDSDUDVD hh]h^hgdgd=#Qgd=#Q 21h:ps/ =!"8#$% nJux('*LPNG  IHDRdD_5 cmPPJCmp0712OmIDAT8˽= @@ 4Hl,< )-߄F b]쀊 c3={3]])b*EN`M4X` ~o"?;k~pΌ(e&Xtsmy rd&3Wb2@Z<bxY +\6bsneEAu#Qy/DD_F"]F MHCgyqIENDB`np4.mVG~N;}PNG  IHDRb3Yo0PLTEMMMhhh||| cmPPJCmp0712OmwIDATHM0_ʜ80"8 !?_{>v`#XGb6r#+(\s6"U<NTq|:PsK[Yۭ/0 /$nO}WADN- :T#roD''!/xM .LN/O7RNvrq.˪qr=۽b, ׳c-G Iu jZՉLx,N!x*9ӎcE4" 1Q\(i rLڦ\CK(344.~-܉/%IENDB`nS 48NJ7 PNG  IHDRV1C&0PLTEMMMhhh|||q cmPPJCmp0712OmIDATH @E' L b:,Lw/ ):<ȈF&Y8)GސRXdXYbN+v4x5( kYPg=A`\ZU3l[,cQ_6pVB%;(-;Nft墔uFuhOq%Y#69ݾ7d6[&Ei 1k  4 2IENDB`DdTR  S A@?"?2as{o(Q1J=D`!5s{o(Q1Jܒ CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`V2MNHq=`jX o@ &}Ay s?m`X C3n``YŰ&LLJ% w2u(2tA4U|r;.Ff~KIDdTR  S A@?"?2b9fu UӃiX> K`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdTR  S A@?"?2b9fu UӃiX> S`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdlR  S A@?"?2imݎ^.GXC(E[`!=mݎ^.GXC(vS9 x=P1JQ}3\j!6l. B]-6 ,ۥ K!Лx!p}3Yg{@  HU-_e5ZLdul%1c4wIͪ_ܥd3Y~DMЮGmFbs.tËd7Y:{if!/|WKN1AN¡,N27pzB#\q"?+'w~?DdTR  S A@?"?2b9fu UӃiX> j`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdhR  S A@?"?2]N3]u␞9r `!1N3]u␞@2|xcdd``> $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@` GZ> P.T m3L j#psJ. !؇ 1=0adbR ,.IeC .0!v120 $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@` $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@`?@ABCDEFGHIKLMNOPQTWYXZ\[]_^`bacedfhgikjlnmopqsrtvuwyxz|{}~Root Entry FI%V'Data JbWordDocumentFObjectPool'I%_1327469986FOle CompObjfObjInfo  %*/49>ABCFKPUZ_dinsx} FMicrosoft Equation 3.0 DS Equation Equation.39q6< a 1 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 6_1327469987 FOle CompObj fObjInfo Equation Native  6_1327469988FOle  6< a 1 FMicrosoft Equation 3.0 DS Equation Equation.39q6< a 1CompObj fObjInfo Equation Native 6_1327469990 FOle CompObjfObjInfoEquation Native 6 FMicrosoft Equation 3.0 DS Equation Equation.39q 32 FMicrosoft Equation 3.0 DS Equation Equation.39q_1327469991FOle CompObjfObjInfoEquation Native 6_1327469992"FOle CompObj f6< a 1 FMicrosoft Equation 3.0 DS Equation Equation.39q a n FMicrosoft Equation 3.0 DS EqObjInfo!Equation Native 6_1327469993$FOle CompObj#%fObjInfo&!Equation Native "6_1327469994O)Fuation Equation.39q a n FMicrosoft Equation 3.0 DS Equation Equation.39q a nOle #CompObj(*$fObjInfo+&Equation Native '6_1327469995.FOle (CompObj-/)fObjInfo0+ FMicrosoft Equation 3.0 DS Equation Equation.39q a n FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native ,6_1327469996,63FOle -CompObj24.fObjInfo50Equation Native 16_13274699978FOle 2 a n FMicrosoft Equation 3.0 DS Equation Equation.39q6< a 1CompObj793fObjInfo:5Equation Native 66_13274699981E=FOle 7CompObj<>8fObjInfo?:Equation Native ;6 FMicrosoft Equation 3.0 DS Equation Equation.39q6< a 1 FMicrosoft Equation 3.0 DS Equation Equation.39q_1327469999BFOle <CompObjAC=fObjInfoD?Equation Native @_1327470000@JGFOle DCompObjFHEf´F[ a 2 a 1 =a 3 a 2 =.....a n a n "1 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoIGEquation Native H6_1327470001LFOle I6< a 1 FMicrosoft Equation 3.0 DS Equation Equation.39q6< a 1 FMicrosoft Equation 3.0 DS EqCompObjKMJfObjInfoNLEquation Native M6_1327470002;cQFOle NCompObjPROfObjInfoSQEquation Native R6uation Equation.39q6< a 1 FMicrosoft Equation 3.0 DS Equation Equation.39q' 12_1327470003VFOle SCompObjUWTfObjInfoXVEquation Native W6_1327470004T^[FOle XCompObjZ\Yf FMicrosoft Equation 3.0 DS Equation Equation.39q6< a 1 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo][Equation Native \6_1327470005`FOle ]CompObj_a^fObjInfob`Equation Native a6_1327470006YmeF a n FMicrosoft Equation 3.0 DS Equation Equation.39q a nOle bCompObjdfcfObjInfogeEquation Native f6_1327470007jFOle gCompObjikhfObjInfolj FMicrosoft Equation 3.0 DS Equation Equation.39q a n FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native k6_1327470008hwoFpчOle lCompObjnpmfObjInfoqoEquation Native p6_1327470009tFpчpчOle q a n FMicrosoft Equation 3.0 DS Equation Equation.39q a n FMicrosoft Equation 3.0 DS Eq67CompObjsurfObjInfovtEquation Native u6_1327470010ryFpчpчOle vCompObjxzwfObjInfo{yEquation Native z6uation Equation.39q' 12 FMicrosoft Equation 3.0 DS Equation Equation.39q6< a 1_1327470011~FpчpчOle {CompObj}|fObjInfo~Equation Native 6_1327470012|FpчpчOle CompObjf FMicrosoft Equation 3.0 DS Equation Equation.39q6< a 1 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoEquation Native 6_1327470013FpчpчOle CompObjfObjInfoEquation Native 61Table9!96< a 1Oh+'0 $ D P \ ht|Arithmetic Sequences NormalAdministrator2Microsoft Office Word@ `p021)W2ԡT0!v120JDdhR   S A@?"?2]}-9ψd% 9{`!1}-9ψd% @2|xcdd``> $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@` $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@` `!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdTR   S A@?"? 2b9fu UӃiX> `!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdR   S A@?"? 2 >0KMhp`!>0KMhp `TxS1K@~j,A!: gAAS+DL+PK'N*HMP{K`}޻ラ;v/ha`00PВ lZsĠ%y}+E>m$ _wL#o>:@BXXM qn\F&j>8+~Dkql2nQlb=XY̭^^vpqRaϾVճ[3fCKpT`5aMm-JM1wMKҙuB(B<1𓘐u~ъ@ZR6̹ԟZYsS`[H+ϴqCvs=QsG>w=yw7 D~ 7|] `9Hz%oF frPN|I7&? DdTR  S A@?"? 2b9fu UӃiX> W`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdTR  S A@?"?2b9fu UӃiX> _`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdTR  S A@?"?2b9fu UӃiX> g`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdlR  S A@?"?2iE\ss4Eo!`!=E\ss4vS9 x=P=N` }vOHD!bAN :JQΈpJt# U,T"<%}~<X/R&Z׵fSE: Ʋ2{$z N?Ϊ=Xel0ki6@l΅ym@qvS,/ۢ?y^ѓ2ڹz+ K44HI27pzBc nQݻD:6: .?DdTR  S A@?"?2b9fu UӃiX> ~#`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdhR  S A@?"?2]N3]u␞9%`!1N3]u␞@2|xcdd``> $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@` GZ> P.T m3L j#psJ. !؇ 1=0adbR ,.IeC .0!v120 $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@` GZ> P.T m3L j#psJ. !؇ 1=0adbR ,.IeC .0!v120 $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@` GZ> P.T m3L j#psJ. !؇ 1=0adbR ,.IeC .0!v120 $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@` GZ> P.T m3L j#psJ. !؇ 1=0adbR ,.IeC .0!v120 $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZǰc@` GZ> P.T m3L j#psJ. !؇ 1=0adbR ,.IeC .0!v120 1`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdTR  S A@?"?2b9fu UӃiX> 3`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pNDdTR  S A@?"?2b9fu UӃiX> 5`!69fu UӃiX CJxcdd``> $X bbd12,(ㆫaR`Z(Wcgb qРc@ UXRY7PLY ZZǰc@`'n:]j mHa%/) 127 lnb%PC.΄]dp021)W2C *0!v120pN DdN j / FA?Picture 1b? !LBVC1b 7n !LBVC1bPNG  IHDRPーsRGB IDATx^]=;Wi"²(Vv *Y((la%`h)` bo!.,k!*(h~}$dܙ3rw$97'Ϭ*f4A`NxB@"v˗CGU(B;/DǏOLLIо}rcZF^ܹs333^Iv`ѣG>\Cpnnn޽{Bp̃ /^e.Z]titLk'ϟ?leHQtܺu Go\\XqqfggҷC˗͛7Y7\ĹnJz~yӦM{;gaa7nLOOj<֋2]=+~% 0) D`@;MDÜƍq6>AnݺgϞ@DO&b5)>* X)zOy#1F@d]wC[xY@;bp.K}P&aވ>Ղ ?aȱQyL-%=8wz#v֌Z͎*ϐBωK]C<ZLmQ}=S ?W<Š U*TiXWR.4W~9@W]M+JmdMqWh\ZQܾ}t*HңTN_XRsEֳsO0R]\uwg) 5he$[t<$CCaf+>~K-{7oބh\ЮJb[E## p4g)@Զma9}tۊd+_]6(MN`Ƭͫē0!'I8'EŜC.{f(}v,êqN]97;;kV `{GUSK]N Jasϟ:uj j(4% .xs@kuބoבX~,Xz+sҷ 砇-ZQH#$JC@4$uB($QV8` IENDB`Dd Xj . FA?Picture 4bl(> .w`Bnl(> .w`PNG  IHDR(sRGBFIDATx^\/uA*PiD!TR#)))DKt$G4Dh:_o=kٽqٙvSbFo1V|E 7-K%OOOooowwwsss!n^^^sgΠۭR^_@[SSS{{{4A W~"ppp088TKa'CSk%dG_fffM Wvhllb*kjj=@`mmmii ~Tutt5p__uՃ1v]dA?DܣT%)&LDHćz\YY!U"a$=.Z$?E/v1mww777ӛ}])QD=(ACov;(Q lc5P|=^]]΢סj@CSms/0sPr8bP^)@WnlǓ.a\S԰[Mh ̆&攽ݝP+sq+we ŝtE0U9AKӥ 7Uqrle"|a$9!bO{\@sj_g c4a';#_Hq1Lbΰ|oc^H!8!٬f+|9kd|,ypN&'Pv{Q-+rdhBph(ۜN\=H8Uے)!ng8eݛP&v& G<=.DZ(<<:-ekiшE2INL\ej%}frV,bWI@`@Bӿ"f8Q^Z;~urJKd^"O]&hI[Ue&* ߇kccct[ _C we}._3'qwJqż[Laez,~=.l9R`\+zAK'szR nǭ&㖵V/(LZں>hNmo1L9~C3$ ]eY?Ԕm*3!WJXc@B6]ǍO׈ d0E:9|m"tlQe. gMH͸IENDB`ZDd +  3 A" ü 1220(4+42)2b H%)wAH#@Kn H%)wAH#PNG  IHDRD%tsRGB pHYs+nIDATXGX;r0s34"Lsh!2O7&c"MKV,1Uav+{mXX 4u>7J}ȲC-l P, S+fO†TLEGz u=HF.Vg݈8 #  fïg>Wf|oPl^rr_| @y^rNPs~l>V>2<#_ ’ԇnY] bA0Ԓ0 [;댮ٮ{Ȫ+xT12(h d`[}rw 0tPH̷WvcF9t<-ĉVԷ(7DEk\ƚIu jrnfif̠f Fu"٢L Mgtxxr#.ejLq 3,-HS BP݌eE?H$&FU3$g$)3ĔaECGco2o 1K߬3ܐc6tqp>ݬϔ\T< 䙖 j`1F l6!3wEwaawEg{'"IENDB`ZDd +  3 A" ü 1220(4+42)2b H%)wAH#\n H%)wAH#PNG  IHDRD%tsRGB pHYs+nIDATXGX;r0s34"Lsh!2O7&c"MKV,1Uav+{mXX 4u>7J}ȲC-l P, S+fO†TLEGz u=HF.Vg݈8 #  fïg>Wf|oPl^rr_| @y^rNPs~l>V>2<#_ ’ԇnY] bA0Ԓ0 [;댮ٮ{Ȫ+xT12(h d`[}rw 0tPH̷WvcF9t<-ĉVԷ(7DEk\ƚIu jrnfif̠f Fu"٢L Mgtxxr#.ejLq 3,-HS BP݌eE?H$&FU3$g$)3ĔaECGco2o 1K߬3ܐc6tqp>ݬϔ\T< 䙖 j`1F l6!3wEwaawEg{'"IENDB`9Dd +  3 A " 1220(46)2b%JjG+pgtmn%JjG+pgtPNG  IHDR0%{sRGB pHYs+1IDATXGW;r0s<4>D4ɤCdBI7M> o~Jl,d #۷_{ɔiJd(*Z+/]JMR6Bn.l Auh ) F_ 4/B#3 g!GJC3@D`8nâV2Fmuu=t2OJf"ʷޓd..KڐKxYE~Z'T,)~6L1 Z":9t,H[Y*r2hBL!xcЁ2P3BI!Yb |Ib8KWBrq&2g9UU@.s4^z4sY.3H:ĘP.F viM2t]qխEE:[*nnDhJ#;#ֽh jA葲3/_틝 /nk/bcj^g©zYV(ON!,}Qrɱyaq%"Y|qY(pqIENDB`9Dd +  3 A " ?@ABCDEFGHIJKLMNOPQRSTUosoft.com/aml/2001/core" xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882" xmlns:ve="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:w10="urn:schemas-microsoft-com:office:word" xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml" xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint" xmlns:wsp="http://schemas.microsoft.com/office/word/2003/wordml/sp2" xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core" w:macrosPresent="no" w:embeddedObjPresent="no" w:ocxPresent="no" xml:space="preserve">1220(46)2 b%JjG+pgt-n%JjG+pgtPNG  IHDR0%{sRGB pHYs+1IDATXGW;r0s<4>D4ɤCdBI7M> o~Jl,d #۷_{ɔiJd(*Z+/]JMR6Bn.l Auh ) F_ 4/B#3 g!GJC3@D`8nâV2Fmuu=t2OJf"ʷޓd..KڐKxYE~Z'T,)~6L1 Z":9t,H[Y*r2hBL!xcЁ2P3BI!Yb |Ib8KWBrq&2g9UU@.s4^z4sY.3H:ĘP.F viM2t]qխEE:[*nnDhJ#;#ֽh jA葲3/_틝 /nk/bcj^g©zYV(ON!,}Qrɱyaq%"Y|qY(pqIENDB`NDd    3 A " 129202!bX%zb /BfnX%zb /BPNG  IHDR$XDsRGB pHYs+IIDATHKUA0\| <} 0ᆏO*[J[i!D[:I)}z2-BלvB/>oSC|@^EDsq|+Vz<Ã,Ln(=]p66 QhWmܹ) 1-69Z0b^Z f%%k-C|,3KO" D DD%'!MdtU}NgUHQuw+ ?iȋ2[E_Ͼ(_.4g<;+kWi=g bpZQ9;( UqhIENDB`NDd  ! 3 A " 129202"bX%zb /BnX%zb /BPNG  IHDR$XDsRGB pHYs+IIDATHKUA0\| <} 0ᆏO*[J[i!D[:I)}z2-BלvB/>oSC|@^EDsq|+Vz<Ã,Ln(=]p66 QhWmܹ) 1-69Z0b^Z f%%k-C|,3KO" D DD%'!MdtU}NgUHQuw+ ?iȋ2[E_Ͼ(_.4g<;+kWi=g bpZQ9;( UqhIENDB` Dd j - FA?Picture 7#b  X0͍mlV? n  X0͍mlV?PNG  IHDRUlWjsRGB qIDATx^]=hMUO A[RbAEF!]@@ *jO&η77o27쳳{CG?@SU*(PnBV*PnBV*PnBVi~KI [իWܹ&PR4D#&U0&-޿J><==~enQyw?yfuիGGG+N{3+Bޒa͛7`K8Y^AoF-۷o-[lya>@(Bu =}[vq41 b ("*`z̟͝py(4FDTzAnn=0p[fnC}a˖-`ԍ7bcQ%\nn'({lX&{ A4%Lroz*tǎ/;0Nk"Unନz Pŷ=]k& -"Ck (3lsÑ"]…^PXCD"]emۖo/_} к T5k|Ɋ@T- ĭCYA<~8]Wë`q)@nɺ݅ Jp]Y!<Pzӡ+*5߻w/ xIm{.#H-˜EܵkdCQ˯_Bѣ9LHen1&o@ .\x:HBٳgXeZ[Q{l߾mVE?޽{eG=_::PD͗ os) Ts,j z"fJrx%eȭTVҌ|uN*ҒZ2\gE  ~0ĸ,l ΋E;BˢIT +#aznيj#GET0fCc`M$Y늴d#NewXw8k$쉧뷸w4ʇu{%CQ5C!zڵk'W&&&࿋=̼>OqF ʭ֑&ž=6H͛FzK3p [ -Zuuk"Ivr4?rJ4VGf,'Zrp 5(7JwcF^+ۤ4d%>_l*(j+~o\'#"eDQ%B`o3@w-<%Fj4D}_Ex_Jz s Oݘ~#{X@|J2zY.dj9>֭{1ފjO3ZB@ Y+GitzHʸwAV^*((:@AU=7JUxMXk^XkEZ%z{b~d9d-oQ;!ÌD ~"*jNֽD Inu)SBWĪ^@oq[2mZڏ-6oa^ǥ?~`W:GNMMg1[ӧGGhl5D fh]Ʀ9ⵔuoڵ9ⵔʭRp5W8/TdGs@cr]HWnUB68poXIo333$u j"=,FV=_ԭIENDB`*Dd X, " 3 A "  12-5(1- -38)1--3$b=70U2#n~=70U2#PNG  IHDRa(a3PsRGB pHYs+IDAThCZ;R09I  ZntIqn@Io$i-yW XihgW/W`Âh딧e{3=$r[ ,) =ΥSʎf+H$Pj=3G@y"ѽzCCpT>t N4. ,SL*$3G-]`c\4uخLM$YlT}1•7 Pf7wjo͟sG$gϡ<c?, 0DXGplvwh\/߱|*T^waGI]rvMOQu4LK/7V0 ͐3+^ u^1uT>{]88+݄ט,s?kGn]+I&a2蚨zeT~ #rX#W͋ZC^~ SX`eHbJ@{_)۹LEHi>PCSu:`G >L`$\1_$0|MXtMzh~G8Eppȣ.y1%"#w _g>GlQ!tX-{L8G3/.v6 2JsġO|,mRd>9JiǽS6{Qe#QyԪfFh+:J {#DRblf4[θ EQ«sBIENDB`*Dd X, # 3 A "  12-5(1- -38)1--3%b=70U2#n~=70U2#PNG  IHDRa(a3PsRGB pHYs+IDAThCZ;R09I  ZntIqn@Io$i-yW XihgW/W`Âh딧e{3=$r[ ,) =ΥSʎf+H$Pj=3G@y"ѽzCCpT>t N4. ,SL*$3G-]`c\4uخLM$YlT}1•7 Pf7wjo͟sG$gϡ<c?, 0DXGplvwh\/߱|*T^waGI]rvMOQu4LK/7V0 ͐3+^ u^1uT>{]88+݄ט,s?kGn]+I&a2蚨zeT~ #rX#W͋ZC^~ SX`eHbJ@{_)۹LEHi>PCSu:`G >L`$\1_$0|MXtMzh~G8Eppȣ.y1%"#w _g>GlQ!tX-{L8G3/.v6 2JsġO|,mRd>9JiǽS6{Qe#QyԪfFh+:J {#DRblf4[θ EQ«sBIENDB`Dd (+z $ 3 A "< 6 12-5(1-6561)4&b+o7/D n+o7/D PNG  IHDRX%IK|sRGB pHYs+IDAThCZ=n0uz ԕ  XfC0 rί؎?',C!D(Ll 12-5(1-6561)4'b+o7/D n+o7/D PNG  IHDRX%IK|sRGB pHYs+IDAThCZ=n0uz ԕ  XfC0 rί؎?',C!D(Ll 12-5(-6560)4(b7r:m| K/]n7r:m| K/]PNG  IHDRO%9#sRGB pHYs+NIDAThCY1r0 A:3id/h3iqAAI,):c`wwGnzR!1a?+^ mRNxt݇ Ei_EoǜWΰ\kmE`К+˨AY ):U6 C5GdiMBnG}Xm=&YLj(ּ"nGTcل8u?4^N d`,:+s2W+~i{A7C.$h=Ya*eA\ss2zSwi=G-(dq!ҝ|N'3^RrYPs%'jx^wJQk5Wђ˂Rn,ƘZr3S44gD3tY ۅC{#a^hsr \u Ļ`siϝs[zs;/ 12-5(-6560)4)b7r:m| K/]$n7r:m| K/]PNG  IHDRO%9#sRGB pHYs+NIDAThCY1r0 A:3id/h3iqAAI,):c`wwGnzR!1a?+^ mRNxt݇ Ei_EoǜWΰ\kmE`К+˨AY ):U6 C5GdiMBnG}Xm=&YLj(ּ"nGTcل8u?4^N d`,:+s2W+~i{A7C.$h=Ya*eA\ss2zSwi=G-(dq!ҝ|N'3^RrYPs%'jx^wJQk5Wђ˂Rn,ƘZr3S44gD3tY ۅC{#a^hsr \u Ļ`siϝs[zs;/ 12328004*bmѩg1=/1;I>7nAѩg1=/1;PNG  IHDR,$}O;sRGB pHYs+IDATXGW;0Ih(8DMmn 6 JiV!RР&ىz37vʲwwrاDt rVʭWz" ?=~"UZg&Ɛ0᫋"MAP#1aRLʒԪ0g'/<][~t9C?u_CyUt_yK C@:6ɇj UZɮT;ȖJ HJkJyMT;%Տq1HFseXo.pa>$ *'oO8\6u׀,I#Mf8IBvж~6*zTg4Dx'ؓ:pX;nwh B)DAoܽ'(6ء/ Aߡ~$=>9N"¬m3'sUbqR{uMgI(Mˀ$IVªMIENDB`Dd  ) 3 A" 12328004+bmѩg1=/1;IHnAѩg1=/1;PNG  IHDR,$}O;sRGB pHYs+IDATXGW;0Ih(8DMmn 6 JiV!RР&ىz37vʲwwrاDt rVʭWz" ?=~"UZg&Ɛ0᫋"MAP#1aRLʒԪ0g'/<][~t9C?u_CyUt_yK C@:6ɇj UZɮT;ȖJ HJkJyMT;%Տq1HFseXo.pa>$ *'oO8\6u׀,I#Mf8IBvж~6*zTg4Dx'ؓ:pX;nwh B)DAoܽ'(6ء/ Aߡ~$=>9N"¬m3'sUbqR{uMgI(Mˀ$IVªMIENDB`Ddl , HA?Picture 10,b nZ~ ]XaXn nZ~ ]XaPNG  IHDRW1 |sRGBIDAThCZ=! v ^Jk0#x/`cZZZj xFd Ay žu%gu??~;£rrf&v]06 h^ 03 4MZN0ƫOJ B_/Q}403ۃ-rќ.Db!0FN^P0I^Wp8d-ӜD NE21 '^- d9Y۶qRn@X,P~Z.6 9gBe,AdM8 D8B ]®)R,VM05\V:cTD+)QHK}Ʌ \+Pr䂽(kc o݊495[GP1,9=xʫ=SM$2$rLMѥr-Ec$KisSоBKrS?1 7eֆPoo0Qx rᦄ9mBLc<7gH㹩({ױHֲ5aߓg[{B;+s6j "SN E[ɯ\0M(7Ggo|veY. %u`(X}8r:[dxF*E.?: > `K]~Co S>Cb77U}};BSGՏndSIENDB`Ddh * A?ÄREcurs30Picture 24http://www.regentsprep.org/Regents/math/algtrig/ATP3/REcurs30.gif.b[(c;qx܁`7<`n/(c;qx܁`PNG  IHDRe cmPPJCmp0712OmIDAT(ϕ1 0`o#xB=lͱAJqpp)x "C!}AiB~K/%%7S*B*phB^@B =#Q0 Normal (Web)dd[$\$HH H/ Balloon TextCJOJQJ^JaJN!N H/Balloon Text CharCJOJQJ^JaJH 2H  No SpacingCJ_HaJmH sH tH PK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] V< qEL3"(R++,014/8?::;=X>;BVD#&')*,.123468:<>?@BCE,"A%V-/Q36:*=ACVD$%(+-/0579;=ADF *,>QS]pry2EGYln 35!!!"""#(#*#>#Q#S#^#q#s#{#######$$3$F$H$[$n$p$$$$'(((((((()')))R////0022222222356 66!6#626<6>6M6W6Y6V<:::::::::::::::::::::::::::XX#######  2$s{o(Q1J=2$9fu UӃiX>2$mݎ^.GXC(E2$N3]u␞92$}-9ψd% 92$>0KMhp2$E\ss4Eb$ux('*LR4b$p4.mVG~N;}b$S 48NJ7 # AA@D(  T  A?Ä."REcurs25Picture 22http://www.regentsprep.org/Regents/math/algtrig/ATP3/REcurs25.gifPPQ`TQ`TP"T  A ?Ä."REcurs24Picture 19http://www.regentsprep.org/Regents/math/algtrig/ATP3/REcurs24.gifGGR`TR`TG"T  A ?Ä."Recurs21Picture 16http://www.regentsprep.org/Regents/math/algtrig/ATP3/Recurs21.gif R`TR`T "B S  ? :::V<Wa8 x{^%`%%%((0010j0l05161222223(5)505255 66$626?6M6Z699:: : :::::;;X<QScg %,%$,$''r)y)z)|)))))**++++++',,,~,,,,i-n---0010d0i0"1%15161~111111222223}33444444(5)5*5/5555 66$626?6M6Z666 7&7}777799&9)9999999:: : :::::;;;;L<Q<X<33333333333333333333333333333333333333333300105161222223(5)55 66$626?6M6Z699:: : :::::;;U<X<9npw~2vP_[F1n(LLr7pSaus}R[|2~"vj^`o(. ^ `. L^ `L.x^x`.H^H`.L^`L.^`.^`.L^`L.^`o(. ^ `. L^ `L.x^x`.H^H`.L^`L.^`.^`.L^`L.^`o(.)^`.pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.8^8`o(.^`. L^ `L. ^ `.x^x`.HL^H`L.^`.^`.L^`L.^`CJH*aJo(.)^`.pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.8^8`o(.^`. L^ `L. ^ `.x^x`.HL^H`L.^`.^`.L^`L.^`o(.^`.pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.|2~7pSa_[F(LLs}9np~2ЪzG        Ľ        Vĕ        |        V4        J                 #$ l '[n)T0 41 18A4'JFP=#Q,\Xe4aLgJpruxvy#`1iH/C9FVR=2\s;!gSj|sV<X<@V<h@UnknownG* Times New Roman5Symbol3. * Arial5" TahomaA BCambria Math"1h7b7b)" U3 m U3 m!08<8<2HX  ?#`2!xxArithmetic Sequences Administrator(