
11/16/2012

1

Java
Arrays

(Java: An Eventful Approach, Ch. 14-15),

Slides Credit: Bruce, Danyluk and Murtagh

CS 120 Lecture 19

16, 20 November 2012

2

We number elements of a

larger collection
the pages of a book

 (chapters and sections too)

days of a month

years

small collections-often use distinct names

 days of the week are Mon, Tues, etc.

large collections- numbering is handy

 pages of a book

11/16/2012

2

3

Arrays

 A collection of primitive values or objects

• Useful in programs that manipulate relatively
large collections of similar data

• Number items in the data collection instead of
using distinct names

• Each item in the collection is associated with
a number called its index

4

Declaring Array Names

• The collection needs a name

Ex: say that page is the name of an array and its

items are Strings corresponding to pages of a book.

We say page[12] to access 12th element of the

collection

• To declare page as the name of the collection

private String[] page

11/16/2012

3

5

Types of Array Elements

• Array elements may be any type

 private FilledOval[] piece;

(the ovals are pieces on a checkerboard)

• But all elements of a given array must

have same type.

 No mixing of types!

 (We’ll figure out how later)

6

Creating an Array

• Declaration of a collection’s name does

not create the collection or the items in

it

 ex: private FilledOval[] piece;

• Need to

– construct array

– construct individual Filled Ovals

11/16/2012

4

7

Constructing an Array

• Need to provide
– Types of items

– Total size

piece= new FilledOval[24];

Constructs the collection- not the individual
elements

8

Array Constructions in

Declarations

• Common to use array constructions as

initial values in array name declarations

Ex 1: our array of checkers

private FilledOval[] piece=new FilledOval[24];

Ex 2: Array of Strings to hold text of pages of

a book

private String[] page = new String[723];

assuming the book has 723 pages.

11/16/2012

5

9

Array Elements

 After

private FilledOval[] piece=new FilledOval[24];

 we have an array but no FilledOvals.

piece[3].setColor(Color.RED);

 will result in a null pointer exception

Use an assignment statement to associate members of
an array with index values

piece[3]=new FilledOval(checkerLeft, checkerTop,

 SIZE, SIZE, canvas);

10

Indexed Variables

• An array name followed by an index value is

called an indexed variable

• Can be used in any context where a variable

of the array’s element type can be used

• Java arrays use 0 as the first index value

• Last usable index is 1 less than size of array.

 piece[3] refers to fourth array element

11/16/2012

6

11

Array Initializers

 These combine creation of an array and association of values

with its elements into a single step

– List values to be associated with array’s elements

– Separate values by commas

– Surround with curly braces

private int[] monthLength = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31,

30, 31} ;

private String [] monthName = { “January”, “February”, “March”,

“April”, “May”, “June”, “July”, “August”, “September”, “October”,

“November”, “December” };

12

Using Arrays:

A Triangle Class
 Say you want to define a Triangle class

– need 3 instance variables to refer to the three

Lines that make up a triangle- or can use an array

private Line [] edge = new Line[3];

initially, edge[0], edge[1], edge[2] all have null

as their values

11/16/2012

7

13

A Simple Triangle Class

• Simplest way to describe a triangle is to provide coordinates of vertices

• Define constructor to expect 4 parameters: 3 Locations and the canvas

public class Triangle {

private Line [] edge = new Line[3];

public Triangle(Location vert1, Location vert2, Location vert3, DrawingCanvas
canvas) {

 edge[0] = new Line(vert1, vert2, canvas);

 edge[1] = new Line(vert2, vert3, canvas);

 edge[2] = new Line(vert3, vert1, canvas);

}

// additional method declarations

…

}

14

 If Triangle constructor invoked with Locations
(100, 50), (50, 150), (250, 50):

 Note that elements of the edge array

 refer to components of a Triangle

11/16/2012

8

15

Additional Triangle Methods

 Might want to include implementations of methods
like move, setColor, or hide

 Could write

 public void hide() {

 edge[0].hide();

 edge[1].hide();

 edge[2].hide();

 }

16

Or even better
public void hide() {

 for (int edgeNum = 0; edgeNum < edge.length; edgeNum++) {

edge[edgeNum].hide();

 }

}

• The desired element of an array can be

specified by a variable or any other

expression that describes an int

• Name of an array variable followed by .length

produces the number of elements in the array

11/16/2012

9

17

Array-processing Loops

General Form:
for (int elementPosition = 0; elementPosition < array.length;

 elementPosition++) {

 // perform desired operation on array[elementPosition]

 …

}

Why loop?
– Flexibility- triangles, hexagons, etc can all be handled the

same way

– Short, simple, and descriptive

18

Additional examples

public void move(double dx, double dy) {

 for (int edgeNum = 0; edgeNum < edge.length; edgeNum++) {

 edge[edgeNum].move(dx, dy);

 }

}

public void show() {

 for (int edgeNum = 0; edgeNum < edge.length; edgeNum++) {

 edge[edgeNum].show();

 }

}

11/16/2012

10

19

Arrays are Objects

• can pass entire arrays as parameters

• can write methods that return arrays

public Location [] getVertices() {

 Location [] result = new Location[edge.length];

 for (int edgeNum = 0; edgeNum < edge.length; edgeNum++) {

 result[edgeNum] = edge[edgeNum].getStart();

 }

 return result;

}

20

Enhanced for loop (Java 1.5)

Makes it easier to iterate through arrays

AKA: “foreach” or “forAllInOrder” loop

public void hide() {

 for (Line nextLine: edge) {

 nextLine.hide();

 }

}

11/16/2012

11

21

Gathering Information

• Often useful to gather info about a

collection rather than process its

elements independently.

 Ex 1. Determining the perimeter of a

Triangle

 Ex 2. Computing traffic statistics

22

Computing stats in a traffic radar trailer

11/16/2012

12

23

Speeding Violation Patterns

• Say we want to determine the number of

speeders passing the trailer during each of 24

hrs.

• 24 numbers to count speeders can be kept in

array

private int [] speedersAt = new int[24];

• speedersAt[hour] accesses number of

speeders at “hour” (using 24-hr clock)

24

Program Organization

• RadarController

– acts as “controller”

– event-handling method to be invoked when

vehicle detected

• RadarStats

– responsible for recording stats

– update speedersAt when speeder detected

– provide access to collected statistics

11/16/2012

13

25

Counting Speeders

• Method in RadarStats class

• Invoked by RadarController when vehicle
detected

public void vehicleReport(double speed, int hour, int minute) {

 if (speed > speedLimit) {

 speedersAt[hour]++;

 }

}

Remember that hour is based on a 24-hr clock

26

Summing Values in an Array

private int speedersSeen() {

 int total = 0;

 for (int hour = 0; hour < speedersAt.length; hour++) {

 total = total + speedersAt[hour];

 }

 return total;

}

Note the use of total to accumulate the sum

11/16/2012

14

27

Reporting Stats

Might report

• number of speeders detected at different times of the day

• percent speeders in each hour

28

A Simpler Version

11/16/2012

15

29

A Simple Histogram
• Loop is similar to loop of Triangle

• Operation: to draw bars corresponding to hours

public void drawHistogram() {

 double barHeight;

 double totalSpeeders = speedersSeen();

 for (int hour = 0; hour < speedersAt.length; hour++) {

 barHeight = (speedersAt[hour]/totalSpeeders)*graphHeight;

 new FilledRect(graphLeft + hour*barWidth,

 graphBottom - barHeight,

 barWidth-1,

 barHeight,

 canvas

);

 }

}

30

Assume

• graphHeight is height of area in which graph is to be drawn

• graphLeft is x coordinate of bottom edge of graph

• graphBottom is y coordinate of bottom edge of graph

• barWidth is width of a single bar

11/16/2012

16

31

Simple Histogram Output
likely to look like this

• At any hour, the number of speeders on average is 1/24th of

the total number of speeders

• Bars on average are 1/24th of the available vertical

space

Output of drawHistogram

32

Finding the Largest Value in

an Array
• Begin with the first value and then look hour by hour for a new

maximum

• Variable max is equal to the largest number in the array so far. If a new,
larger number is in the array, then max changes

private int maxSpeeders() {

 int max = speedersAt[0];

 for (int hour = 1; hour < speedersAt.length; hour++) {

 if (speedersAt[hour] > max) {

 max = speedersAt[hour];

 }

 }

 return max;

}

11/16/2012

17

33

Review

• Arrays are collections of primitive values or

objects

• Learned how to

– Declare them

– Create them

– Refer to items in them

– Process all items in them in some way (move,

hide)

– Gather information from them (sum, max)

34

Collections With Variable

Sizes

• A new application: timing and scoring of

a cross-country race

11/16/2012

18

35

Team Score

• Add placements of a team’s four fastest

racers.

• Last digit of runner’s bib indicates team

• Team 1’s score = 1+2+4+6 = 13

36

Program Organization

• RaceController

– Extension of WindowController

– User interface to enable officials to enter

timing data

• RaceStatistics

– Uses array to keep track of data entered

– Methods to compute team score, etc.

11/16/2012

19

37

Parallel Arrays vs. Arrays of

Objects
Need to keep track of pairs of bib numbers and times

• Two separate arrays
– Arrays are “parallel arrays,” one number from one

associated with one from other

 private int [] bibNumber;

 private String [] elapsedTime;

• Single array of racer information
– Assumes definition of a RacerInfo class

 private RacerInfo [] racer;

38

RacerInfo Class
public class RacerInfo

 private int bibNumber;

 private String time;

 public RacerInfo(int number, String finishingTime) {

 bibNumber = number;

 time = finishingTime;

 }

 public int getBib() {

 return bibNumber;

 }

 public String getTime() {

 return time;

 }

 public int getTeam() {

 return bibNumber % 10;

 }

}

11/16/2012

20

39

Keeping Track of Size

• must specify size to construct racer array.

• often perfect size info unknown, but can give

upper limit

• use upper limit as size

• separately keep track of actual number of

items in array

40

Keeping Track of Size

private static final int TEAMSIZE = 100;

private static final int TEAMSINMEET = 3;

private RacerInfo[] racer = new RacerInfo[TEAMSIZE*TEAMSINMEET];

private int racerCount;

11/16/2012

21

41

Adding Array Entries

• Check that there’s room left

• Add new item to the end

• Update count of items

public void addRacer(int bib, String time) {

 if (racerCount < racer.length) {

 racer[racerCount] = new RacerInfo(bib, time);

 racerCount++;

 }

}

42

Iterating Through Collection of

Variable Size
• Similar to earlier for loops

• Use array size variable to determine when to stop

Ex. To create a string of race results for printing

public String individualResults() {

 String results = “”;

 for (int place = 0; place < racerCount; place++) {

 results = results +

 (place+1) + “. “ +

 “Racer” + racer[place].getBib() + “ “ +

 “/n”;

 }

 return results;

}

11/16/2012

22

43

Finding an Element

• Use a for loop

• Keep going as long as not found and items left to consider

public int getPlacement(int bib) {

 int result = -1

 for (int place = 0;

 place < racerCount && result == -1

 place++

) {

 if (racer[place].getBib() == bib) {

 result = place+1);

 }

 }

 return result;

}

44

Alternate Version

public int getPlacement(int bib) {

 for (int place = 0; place < racerCount; place++) {

 if (racer[place].getBib() == bib) {

 return place+1;

 }

 }

 return -1;

}

11/16/2012

23

45

Computing a Team’s Score
A combination of

– Finding an element

– Adding to a running total

public int teamScore(int teamNo) {

 int racersCounted = 0;

 int score = 0;

 for (int place = 0;

 place < racerCount && racersCounted < 4;

 place++) {

 if (racer[place].getTeam() == teamNo) {

 racersCounted++;

 score = score + (place + 1);

 }

 }

 if (racersCounted < 4) {

 score = -1;

 }

 return score;

}

46

Ordered Arrays

• Previous examples assumed

– Array items ordered by elapsed time

– Items supplied to array in correct order

What if we want to add or delete items and

guarantee that correct order is maintained?

11/16/2012

24

47

Adding to an Ordered Array

 The racer that should be associated with index 4 is

missing

48

 Runner with bib 200 was omitted from the

array

11/16/2012

25

49

Adding the New Item

Need to

• Find appropriate index for the new item

• Shift existing items out of the way

• Insert new item

• Update the count

50

Shifting Array Entries

11/16/2012

26

51

Shifting Racer Entries

To make room for runner 200 at index 4

racer[10] = racer[9];

racer[9] = racer[8];

racer[8] = racer[7];

racer[7] = racer[6];

racer[6] = racer[5];

racer[5] = racer[4];

Note that each line is of the form

racer[positon] = racer[position-1]

52

Loop to Shift Array Entries

for (int position = racerCount; position > insertionPos;

 position––) {

 racer[position] = racer[position-1];

}

Why does the loop go backward?

11/16/2012

27

53

Putting It Together

To insert at a specific index

public void addRacerAtPosition(int bib, String time,

 int insertionPos) {

 if (racerCount < racer.length && insertionPos <= racerCount) {

 for (int position = racerCount;

 position > insertionPos;

 position––) {

 racer[position] = racer[position-1];

 }

 racer[insertionPos] = new RacerInfo(bib, time);

 racerCount++;

 }

}

54

Removing from an Array

Need to shift again!

11/16/2012

28

55

To shift entries 7, 8, 9 left (and delete 6)

racer[6] = racer[7];

racer[7] = racer[8];

racer[8] = racer[9];

racer[9] = null;

56

Putting it all Together

public void removeRacerAtPosition(int position) {

 if (position < racerCount) {

 racerCount––;

 for (int place = position; place < racerCount; place++) {

 racer[place] = racer[place + 1];

 }

 racer[racerCount] = null

 }

}

11/16/2012

29

57

Arrays of Arrays

An array can represent a collection of any type of object - including other arrays!

The world is filled with examples

• Monthly magazine: we number

– the monthly editions

– pages with in each

• Calendars: we number

– the months

– days in each month

58

General Two-Dimensional

Arrays
Say we want to develop an annual calendar manager

Representing the Data

• A month is an array of strings that represent daily events

• A year is a 12- element array of months.

11/16/2012

30

59

Declaring an Array of Arrays

• A month is an array of daily event Strings

• A year is an array of months

So a year is an array of String arrays

private String[] [] dailyEvent;

60

Creating an Array of Arrays

Array declaration introduces a name, but does not

create an array

Proceed in two steps

1. Construct 12- element year

2. Construct each individual month array

11/16/2012

31

61

1. Construct 12- element year

dailyEvent = new String[12] []

62

1. m

2. Construct months

for (int month = 0; month < 12; month++) {

 int numDays = getDays(month+1);

 dailyEvent[month] = new String[numDays];

}

Assume getDays is a private method that returns the number of days in a

month

11/16/2012

32

63

64

Indexing an Array of Arrays

Say a user enters the information

 1/28- Spring semester starts

The month is 1

The day is 28

The event is “Spring semester starts”

Since array indexing begins at 0,

 dailyEvent[0][27] = “Spring semester starts”;

11/16/2012

33

65

66

Setting and Getting Array

Values
// Set the event description for a given month and day

public void setEvent(int month, int day, String description) {

 dailyEvent[month-1][day-1] = description;

}

// Returns the event associated with a given date

public String getEvent(int month, int day) {

 return dailyEvent[month-1][day-1];

}

11/16/2012

34

67

Arrays of Arrays are two

dimensional

When you think of an array of arrays in this way, it is natural to think of

indices as specifying row and column

someArray[rowNum][colNum]

68

Traversing a 2-D Array
 Often want to do something with every element in an array- Use for

loops!

• Ex. Initialize all calendar entries to “No event today”

– to initialize all calendar entries for a single month:

for (int day = 0; day < dailyEvent[month].length; day++) {

 dailyEvent[month][day] = “No event today”;

}

– to initialize all 12 months

// Fill all entries in each month with “No event today”

for (int month = 0; month < 12; month++) {

 // Fill all entries for one month with “No event today”

 ...

}

11/16/2012

35

69

Putting it all Together

// Fill all entries in each month with “No event today”

for (int month = 0; month < 12; month++) {

 // Fill all entries for one month with “No event today”

 for (int day = 0; day < dailyEvent[month].length; day++) {

 dailyEvent[month][day] = “No event today”;

 }

}

70

General Structure of Nested

for Loops for 2- D Arrays

for (row = 0; row < myArray.length; row++) {

 for (col = 0; col < myArray[row].length; col++) {

 // Do something with array element myArray[row][col]

 ...

 }

}

11/16/2012

36

71

Matrices

• two dimensional arrays with rows of same length

Ex. magnified region of pixels from an image

Each pixel can be described by row and column

position, as well as color value

72

More examples

• chessboards

• sliding block puzzles

11/16/2012

37

73

Magic Square

• a matrix in which the sums of rows, columns,

and diagonals are all equal

74

Declaring and Constructing a

Matrix
• Matrices are simply 2-D arrays, so a matrix is

declared in the same way

 private int[][] magicSquare;

• Matrix must be constucted before it is filled

 magicSquare = new int[SIZE][SIZE];

• n- row, m- column matrix constructed as follows

 rectangularArray = new type[n][m];

11/16/2012

38

75

Traversing a Matrix

Ex. Determine whether a square matrix is a magic

square

• Row, column, and diagonal sums must be equal.

• Start by finding target sum

// Compute sum of elements in row 0

int targetSum = 0;

for (int col = 0; col < SIZE; col++) {

 targetSum = targetSum + magicSquare[0][col];

}

76

Row by Row Traversal
• check sum of each row

• use nested for loops!

// Assume we have a magic square unless a sum is incorrect

boolean isMagicSquare = true;

for (int row = 1; row < SIZE; row++) {

 // Check sum of each row

 int sum = 0;

 for (col = 0; col < SIZE; col++) {

 sum = sum + magicSquare[row][col];

 }

 if (sum !=targetSum) {

 isMagicSquare = false;

 }

}

11/16/2012

39

77

A More Efficient Version

• If any row’s sum does not match target, can stop right away

// Assume we have a magic square unless a sum is incorect

boolean isMagicSquare = true;

for (int row = 1; row < SIZE && isMagicSquare; row++) {

 // Check sum of each row

 int sum = 0;

 for (col = 0; col < SIZE; col++) {

 sum = sum + magicSquare[row][col];

 }

 if (sum !=targetSum) [

 isMagicSquare = false;

 }

}

78

Column by Column

• nested loops again

• reverse order of nesting

– outer loop through columns

– inner loop through rows

// Assume we have a magic square unless a sum is incorrect

boolean isMagicSquare = true;

for (int col =0; col < SIZE && isMagicSquare; col++) {

 // Check sum of each column

 int sum = 0;

 for (row = 0; row < SIZE; row++) {

 sum = sum + magicSquare[row][col];

 }

 isMagicSquare = (sum == targetSum);

 }

11/16/2012

40

79

Diagonal Traversal

• two diagonals- two loops

• no nested loops this time

//Check sum of major diagonal

int sum = 0;

for (int element = 0; element < SIZE; element++) {

 sum = sum + magicSquare[element][element];

}

isMagicSquare = (sum == targetSum);

80

Minor Diagonal

• a bit more tricky to get indices right

• for a 4x4 matrix:

– [0][3], [1][2], [2][1], [3][0]

– if loop var is row (over 0,1,2,3), associated column is (SIZE-1)-row

// Check sum of minor diagonal

int sum = 0;

for (int row = 0; row < SIZE; row++) {

 sum = sum + magicSquare[row][SIZE-1-row];

}

isMagicSquare = (sum == targetSum);

11/16/2012

41

Student To Do’s
• HW09: Four problems:

– 7.11.1, 7.11.2, 7.11.4, 7.11.5.

– All but one of them you should do twice: once with a while loop, and once with a for

loop.

– One of them cannot easily be done with a for loop, you have to figure out which

one.

– In total you should have 7 programs!

• Practice examples on your own!

• Read Java: An Eventful Approach

– Ch. 14 and 15 (Today)

81

