	in humans, 20 alpha amino acids	lower activation E		Aerobic Respiration – requires O2. products
MCAT – BIO: Print and Highlight in PDF	amine attached to alpha carbonyl	not consumed, altered	positive cooperativity. low [substrate], small	of glycolysis will move into mitochondrial
	n think the r	do not alter Keq	increasees in [substrate] increase enzyme	matrix. inner mitochondrial memberate less
most bio molecules:	10 are essential.	lock-and-key theory / enzyme specificity.	efficiency and rxn rate. positive are the first	permeable. Once inside matrix, pyr converted
-lipids	aa's differ in their R group.	specific shape.	changes. it's why there is an 02 dissociation	to acetyl CoA producing NADH and CO2
-proteins	digested proteins reach our cells as single aa's	* *	curve with Hb. (sigmoidal shape). both	
-carbohydrates		second theory: induced fit. Shape of both	positive and negative cooperativity.	
-nucleotide derivatives	Nonpolar:	enzyme and substrate altered during binding.		
	Gly, Ala, Val, Leu, Iso, Phe, Tryp, Met, Pro			Krebs Cycle
70 to 80 % water is cell	Polar	enzymes \rightarrow saturation kinetics.	Enzyme Classification:	Acetyl CoA – coenzyme which transfers 2
	Ser, Thr, Cys, Tyr, Asp, Glu	as [substrate] goes up, so does rxn rate, but	memorize "-ase" sometimes complex	carbons to the 4 carbon oxaloacetic acid to
water, small polar molecule, can H-bond	Acidic	curve slows as gets closer to Vmax.	chemical has "ase" and you will know it is an	begin krebs cycle (aka TCA). Each turn
allows it to maintain liquid at room	Aspr Acid, Glu acid	Km good indicator of affinity for its substrate	enzyme, it contains nitrogen, and it is subject	produces 1ATP, 3NADH, and 1 FADH2.
cohesive forces squeeze	Basic:		to denaturation.	ATP production is substrate-level
hydrophobic away from H20	Lysine, Arginine, Hist	temp and pH.		phosphorylation. during cycle, 2 CO2 given
hydrophilic dissolve easily		in human body, temp of 37C	lyase – catalyzes addition of one substrate to a	off. oxaloacetic acid is reproduced, cycle
-negative charged ends	(italics for mnemonic)	pepsin in stomach likes ph< 2. Trypson, in	double bond of a second substrate.	again.
attract the posi H's of		small intestine likes ph between 6 and 7.		
H20.	Proline induces turns.		ligase also governs an addition rxn, but	
	2 types of proteins – globular and structural.		requires energy from ATP.	Proteins \rightarrow aa's \rightarrow Pyruvic Acid + NH3
Most macromolecules can be hydrolyzed, and		called cofactor. \rightarrow optimal activity.		(waste) \rightarrow Acetyl CoA \rightarrow TCA/Kreb's
formed via dehydration.	struct: cell / matrix structure. collagen.	Cofactors:	kinase – enzyme which phosphorylates	
		Minerals,	something, phosphatase DEphosphorylates.	Fatty acids + energy \rightarrow Acyl CoA + NAD+ +
lipid – low sol in H20, high sol in nonpolar	glycolproteins – cell matrix	Coenzymes (many are vit's of their	eg, hexokinase phosphorylates glucose as soon	FAD \rightarrow Acetyl CoA \rightarrow enter TCA/Kreb's
make good barriers	cytochromes – prothetic heme group. Hb	derivatives)	as it enters cell to prepare for glycolysis.	
1) Fatty acids		-cosubstrates		Polysaccharides \rightarrow simple sugars \rightarrow PGAL \rightarrow
2) triaglycerols	Carbohydrates	-prosthetic groups.	Metabolism : all the cellular chemical rxns	Pyr acid \rightarrow Acetyl CoA \rightarrow TCA/Kreb's
3 phsopho lipids	C and H20. C(H20). Glucose $- 6$ C's. all	\rightarrow bind to specific enzyme, txfer chemical group to another substrate. cosubstrate then	3 stages 1) macromolecules broken down into	
4) glycolipids 5)steroids	sugars broken down to glucose.	reverted back.	constituent parts (little E released)	aa's are deaminated in the liver. chemically
6) terpenes	-2 anomers, alpha (trans) and beta (cis)	Tevened back.	2) constituent parts (nucle E released)	converted to pyr acid or acetyl CoA.
o) terpenes	Animals eat Alpha. Bacteria break Beta	ATP is cosubstrate type of coenzyme	pyruvate, or other metabolites forming ATP	converted to pyr acid or accept COA.
Fatty acids are building blocks for most lipids	Animais cat Alpha. Dacteria oreak Deta	ATT is cosubstrate type of coenzyme		Electron Transport Chain (ETC)
Tatty actus are building blocks for most lipids	absence of insulin, neural and hepatic cells use		which does not directly utilize oxygen	series of proteins, including cytochromes with
	facilitated txport for glucose.	Enzyme inhib:	3) if O2 is avail, metabolites go into TCA and	heme, in the inner mitochondrial membrane.
Saturated FA's \rightarrow only single C-bonds	nemated appir for grueose.	•	oxidative phosphorylation to form large	electrons passed down series and accepted by
Unsaturated \rightarrow one or more double C-C bonds	cellulose has beta linkages	-competitive \rightarrow raise apparent Km but not	amounts of energy (more NADH, FADH2, or	oxygen to form water. protons are pumped
		Vmax	ATP); otherwise, coenzyme NAD+ and other	into intermembrane space for each NADH. \rightarrow
most fats reach cell as FA, not triaglycerols	if you see N on the mcat, think protein	-noncompetitive \rightarrow some other spot, change	byproducts either recycled or expelled as	proton gradient \rightarrow proton motive force \rightarrow
<i>, , , , , , , , , ,</i>	5 7 1	conformation. lower Vmax	waste. 2 nd and 3 rd stages, the energy acquiring	propels protons through ATP synthase to make
tria's are 3 carbon backbone – stores energy		do not change Km	stages, called respiration. aerobic and	ATP. Oxidative phosphorylation. 2-3 atps
also thermal insulation, etc.			anaerobic versions.	manufactured for each NADH. FADH2
	Nucleotides: 3 components	Regulation:		similar fashion. only 2 ATPs, however.
glycolipids have 3-C backbone with sugar	-5-C / pentose sugar		anaerobic: 02 not required.	
attached. membranes of myelenated cells in	-Nitrogenous base	-zymogen/proenzyme - not yet activated.	glycolysis first step.	intermembrane pH lower than matrix.
nervous system	-phosphate group	need another enzyme or change of pH. eg,	glucose → pyruvate (3C's).	Glucose + $02 \rightarrow CO2 + H20$ (combustion
		pepsinogen.	+ 2ATP, PO3, H20, 2NADH	rxn)
steroids – 4 rings. include hormones, vit D,	bases in nucleotides - AGCT and U		happens in cytosol (fluid portion) of cells	final electron acceptor is 02, that's why it's
and cholesterol (membrane)	polymers: DNA, RNA, Nucl-acids	-phosphorylation		aerobic
	joined by phosphodiester		glucose facilitated diffusion into cell.	
Eicosanoids – local hormones – bp, body T,	nucleotides written 5' to 3'	-control proteins, eg, G proteins		Aerobic Respiration: 36 net ATP, including
smooth muscle. Aspirin commonly use	DNA written so top strand is $5' \rightarrow 3'$	And the second	resulting 3-C molecules each transfer one of	glycolysis. 1 NADH brings 2-3 ATPs, and 1
inhibitor of prostaglandins.	bottom is $3^{\circ} \rightarrow 5^{\circ}$	-Allosteric interactions: negative or positive	their PO3 groups to an ADP to form one ATP	FADH2 brings about 2 ATPs. One glucose
linida ingol. ao teononoste dise TTE -sie	RNA is 1-stranded. U replaces T.	feedback mechanism.	each in substrate level phosphorylation.	produces 2 turns.
lipids insol, so transported in Hb via	important nucleotide: ATP. energy. cyclic	negative : product downstream comes back to	Formentation, ano archie	
lipoproteins. classified by density, VLDL,	amp	inhibit positive: product activates first enzyme.	Fermentation: anaerobic respiration. $raduation of pur to athenol or$	
LDL, HDL. (lipid::protein ratio).	is a messenger.	occurs much less often.	glycolysis \rightarrow reduction of pyr to ethanol or lactic acid. humans do the latter. no 02 avail	
	l	other proteins have these characteristics	or unable to assimilate E from NADH.	
		other proteins have these characteristics	fermentation recycles NADH back to NAD+	
Proteins: chain of aa's linked by peptide bonds	Enzymes	negative allosteric inhibitors do not resemble	Information recycles WADII back to WAD+	
aka polypeptides	globular proteins	substrates, they cause conformational change.		
······································	catalysts	can alter Km without affecting Vmax.		
	• · ·		•	1

	as well			
Genes	$5 \rightarrow 3$. 5 is upstream, 3 downstream.	operator + promoter + genes = operon	Genetic code: mRNA nucleotides.	
	"reading DNA like paddling upstream"		code is degenerative. more than one set of 3	translocation - segment of DNA from 1
gene – series of n-tides. codes for single	reading Drar inte padding aportain	eg, lac operon. codes for enzymes to allow E	nucleotides can code for a single amino acid.	chromo inserted into another
polypeptide, or mRNA, rRNA, or tRNA.	5 steps of replication:	coli to import and metabolize lactose when	but 1 and only 1 aa, so unambiguous.	inversion – orientation reversed
Eukary's have more than 1 copy of some	1) helicase unzips double helix	low glucose. low glucose, high cAMP,	start codon is AUG	transposons can excise themselves and insert
genes. Prokary's only have 1 copy of each.	2) RNA polymerase builds a primer	activates CAP, activates promoter. operator	stop codons UAA, UAG, and UGA.	themselves elsewhere
	3) DNA polymerase assembles leading and	downstream, too. Allows for repression via	64 possible combinations of the bases	
one gene; one polypeptide. exception: post	lagging strands	binding to a protein, allolactose (inducer).		forward mutation – changing organism away
transcriptional processing RNA.	4) Primers are removed		20 possible amino acids.	from original state
	5) Okazaki fragments joined	initial mRNA sequence called primary	if protein contains 100 aa's, then 20<100	backward - back to original state
Genome: entire DNA sequence of organism.		transcript. processed by addition of n-tides,	possible sequences.	original state called wild type
	process of replication: semidiscontinuous	deletion of n-tides, modification of n-bases. 5'		
only $\sim 1\%$ of genome codes for protein		end capped with GTP. 3' end poly A tail to	RNA n-tides written $5' \rightarrow 3'$	Cancer
human DNA differs only at about 0.08%.	telomeres: ends of eukaryotic chromosomal	protect from exonucleases		proto-oncogenes - stimulate normal growth in
Small variation \rightarrow big difference.	DNA. protect from chromosomal erosion	1	Translation: mRNA directed protein synthesis.	cells. can be converted to oncogenese – genes
	· · ·	primary txscript cleaved into introns, exons	mRNA the template. tRNA carries n-tides	that cause cancer, by UV radiation, chemicals,
Central Dogma: DNA transcribed to RNA,	RNA	snRNPs (snurps) recognize, form spliceosome,	complementary for codon, called anticodon.	or simple random mutations. Mutagens that
translated to aa's for protein	carbon 2 not deoxygenated	cut off introns. only 30,000 genes, but	rRNA with protein make up ribosome, which	cause these called carcinogens
$DNA \rightarrow RNA \rightarrow Protein.$	single stranded	120,000 proteins possible bc of splicing.	is the site of translation.	eause mese caned caremogens
	uracil instead of thyamine	introns::exons = 24::1	is the site of translation.	
(same for all organisms)		1000000000000000000000000000000000000		DNA is 5 ft for each call summer of tightles
	can move through the nuclear pores		small subunit, large subunit. ribosomes	DNA is 5 ft for each cell. wrapped tightly
4 bases of DNA:		denatured DNA – heat \rightarrow separated strands.	require nucleolus for their origin.	around globular proteins, histones. 8 histones
-Adenine (purine) – two ring	3 types	more C3G pairs, higher Tm	tRNA posessing 5'-CAU-3' anticodon	wrapped in DNA - nucleosome. wraps into
-Guanine (purine) – two ring		DNA-RNA hybridization	sequesters methionin and enters at P site.	coils, supercoils, entire complex called
-Cytosine (pyrimidine) – one ring	-mRNA: delivers DNA code for aa's to	restriction enzymes cut DNA at certain	Large subunit joins (initiation). next tRNA	chromatin.
-Thymine (pyrimidine) – one ring	cytosol for protein manufacturing	sequences, usually palindromic. leave DNA	enters A site. translocation. tRNA shifts,	
		with sticky end so they can reconnect.	moves to E site.	somatic cell: 46 double stranded DNA
each n-tide bound to next by phosphodiester	-tRNA: collects aa's in cytosol, transfers to	recombinant DNA.	initiation, elongation, and termination.	molecules. chromosome. 46 chromosomes
bond b/w 3 rd carbon of one deoxyribose and	ribosomes			before replication, 46 after replication.
the phosphate backbone of a single strand of		DNA library – use a vector in a bacterium,	txlation begins on free floating ribosome.	duplicates referred to as sister chromatids.
DNA with $5' \rightarrow 3'$ directionality.	-rRNA: combines w/ proteins to form	then reproduce bacterium. active gene, turn	signal peptide can transport polypeptide to	Diploid means cell as 23 homologous pairs.
	ribosomes \rightarrow protein synthesis.	blue with x-gal. some bacteria wont take up,	lumen. SRP can carry entire ribosome towards	
In DNA, two strands run antiparallel bound	noosonies 's protein synthesis.	so introduce lac-z with your inserted vector.	ER	sex cens haplora.
together by H-bond. Double stranded. h-	DNA is produced by replication	introduce X-gal and the right ones will turn		stages of cell's life
bonding \rightarrow base pairing.	only in nuc and mito matrix	blue	Mutations	1) G1 – first growth
			Withations	1001 - 108020000
	DNA by transprintion	orde	any alteration that is not recombination	
complementary strands \rightarrow double helix	RNA by transcription		any alteration that is not recombination	2) S – Synthesis
complementary strands \rightarrow double helix	RNA by transcription also in cytosol	one way to find gene in library – hybridization	gene mutation - sequence of n-tides in a single	2) S – Synthesis3) G2 – second growth phase
complementary strands \rightarrow double helix each groove spirals once around double helix	also in cytosol	one way to find gene in library – hybridization radioactive labeled comp sequence of desired	gene mutation – sequence of n-tides in a single gene	 2) S – Synthesis 3) G2 – second growth phase 4) M – mitosis / meiosis
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs.	also in cytosol transcription: starts w/ initiation. promoter.	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product –	gene mutation – sequence of n-tides in a single gene	2) S – Synthesis3) G2 – second growth phase
complementary strands \rightarrow double helix each groove spirals once around double helix	also in cytosol	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed	 2) S – Synthesis 3) G2 – second growth phase 4) M – mitosis / meiosis
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs.	also in cytosol transcription: starts w/ initiation. promoter.	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product –	gene mutation – sequence of n-tides in a single gene	 2) S – Synthesis 3) G2 – second growth phase 4) M – mitosis / meiosis
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs.	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good).	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed	 2) S – Synthesis 3) G2 – second growth phase 4) M – mitosis / meiosis 5) C – cytokinesis 1-3 called interphase.
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR).	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations	 2) S – Synthesis 3) G2 – second growth phase 4) M – mitosis / meiosis 5) C – cytokinesis
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene.	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good).	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations	 2) S – Synthesis 3) G2 – second growth phase 4) M – mitosis / meiosis 5) C – cytokinesis 1-3 called interphase. in G1 – regions of heterochromatin have been unwound into euchromatin, RNA synth and
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing.	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious	 2) S – Synthesis 3) G2 – second growth phase 4) M – mitosis / meiosis 5) C – cytokinesis 1-3 called interphase. in G1 – regions of heterochromatin have been unwound into euchromatin, RNA synth and
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly,	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR).	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction,	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates.	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough.
complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G"	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells.
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3.	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells.
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript.	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor (MPF)
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes.	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional usually frameshift is non-functional	 2) S – Synthesis 3) G2 – second growth phase 4) M – mitosis / meiosis 5) C – cytokinesis 1-3 called interphase. in G1 – regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint – Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from origin – each direction produces a leading and 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes. transcription decides this. most regulation of	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks target fragment.	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional	 2) S – Synthesis 3) G2 – second growth phase 4) M – mitosis / meiosis 5) C – cytokinesis 1-3 called interphase. in G1 – regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint – Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change 4 stages –remember PMAT: prophase
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes. transcription decides this. most regulation of gene expression during transcription by	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks target fragment. Northern blot uses same techniques to ID	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional usually frameshift is non-functional nonsense – stop codon created by mutation	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change 4 stages -remember PMAT: prophase (condensation of chromatin into chromosomes,
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from origin – each direction produces a leading and lagging strand. 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes. transcription decides this. most regulation of gene expression during transcription by activators and repressors. bind to DNA	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks target fragment.	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional usually frameshift is non-functional nonsense – stop codon created by mutation chromosomal mutations—	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change 4 stages -remember PMAT: prophase (condensation of chromatin into chromosomes, centrioles move to opposite sides of cell.
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from origin – each direction produces a leading and lagging strand. Prokaryotic replisome 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes. transcription decides this. most regulation of gene expression during transcription by activators and repressors. bind to DNA promoter, and either activate or repress RNA	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks target fragment. Northern blot uses same techniques to ID specific sequences of RNA	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional usually frameshift is non-functional nonsense – stop codon created by mutation chromosomal mutations— deletions—portion of chromosome breaks off	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change 4 stages -remember PMAT: prophase (condensation of chromatin into chromosomes, centrioles move to opposite sides of cell. spindle apparatus forms of aster, centromeres
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from origin – each direction produces a leading and lagging strand. 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes. transcription decides this. most regulation of gene expression during transcription by activators and repressors. bind to DNA	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks target fragment. Northern blot uses same techniques to ID	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional usually frameshift is non-functional nonsense – stop codon created by mutation chromosomal mutations— deletions—portion of chromosome breaks off	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change 4 stages -remember PMAT: prophase (condensation of chromatin into chromosomes, centrioles move to opposite sides of cell.
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from origin – each direction produces a leading and lagging strand. Prokaryotic replisome 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes. transcription decides this. most regulation of gene expression during transcription by activators and repressors. bind to DNA promoter, and either activate or repress RNA	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks target fragment. Northern blot uses same techniques to ID specific sequences of RNA	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional usually frameshift is non-functional nonsense – stop codon created by mutation chromosomal mutations— deletions—portion of chromosome breaks off	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change 4 stages -remember PMAT: prophase (condensation of chromatin into chromosomes, centrioles move to opposite sides of cell. spindle apparatus forms of aster, centromeres
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from origin – each direction produces a leading and lagging strand. Prokaryotic replisome DNA polymerase builds the new strand. 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes. transcription decides this. most regulation of gene expression during transcription by activators and repressors. bind to DNA promoter, and either activate or repress RNA poly. can be allos regulated by small molecules such as cAMP. respond to enviro	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks target fragment. Northern blot uses same techniques to ID specific sequences of RNA	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional usually frameshift is non-functional nonsense – stop codon created by mutation chromosomal mutations— deletions—portion of chromosome breaks off duplication – breaks off and incorporates into	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change 4 stages -remember PMAT: prophase (condensation of chromatin into chromosomes, centrioles move to opposite sides of cell. spindle apparatus forms of aster, centromeres at center. spindle micotubules connect two centrioles.) metaphase (chromosomes align
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from origin – each direction produces a leading and lagging strand. Prokaryotic replisome DNA polymerase builds the new strand. Requires RNA primer to get started. reads parental in 3→5 direction 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes. transcription decides this. most regulation of gene expression during transcription by activators and repressors. bind to DNA promoter, and either activate or repress RNA poly. can be allos regulated by small molecules such as cAMP. respond to enviro changes.	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks target fragment. Northern blot uses same techniques to ID specific sequences of RNA Western blot: detects a protein with antibodies RFLP: ID's individuals instead of specific	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional usually frameshift is non-functional nonsense – stop codon created by mutation chromosomal mutations— deletions—portion of chromosome breaks off duplication – breaks off and incorporates into hmologous chromosome	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change 4 stages -remember PMAT: prophase (condensation of chromatin into chromosomes, centrioles move to opposite sides of cell. spindle apparatus forms of aster, centromeres at center. spindle micotubules connect two centrioles.) metaphase (cister chromatids
 complementary strands → double helix each groove spirals once around double helix for every 10 base pairs. diameter of double helix is 2 nanometers remember: Ntide made of pentose sugar, P03 group, nitrogenous base. pairings: AT, GC 2 H bonds in A-T, 3H bonds in C-G "A2T, C3G" DNA replication: semi-conservative new dbl strand created → has one new one old. Replication proceeds in both direction from origin – each direction produces a leading and lagging strand. Prokaryotic replisome DNA polymerase builds the new strand. Requires RNA primer to get started. reads parental in 3→5 direction complementary strang 5→3 	also in cytosol transcription: starts w/ initiation. promoter. RNA polymerase. promoter is upstream from gene. replication: transcription bubble, elongation mode. strand transcribed: template or antisense. other strand is coding. RNA poly, like DNA poly, reads in the 3→5 direction, building new RNA to be made 5→3 no proofreading mechanism. slower. rate of error is higher. not hereditary errors. end is called termination. Coding strand resembles RNA transcript. replication doesn't distinguish genes. transcription decides this. most regulation of gene expression during transcription by activators and repressors. bind to DNA promoter, and either activate or repress RNA poly. can be allos regulated by small molecules such as cAMP. respond to enviro	one way to find gene in library – hybridization radioactive labeled comp sequence of desired DNA fragment (probe). cDNA product – mRNA produced by the DNA. lacks introns (good). better cloning: polymerase chain rxn (PCR). fast way to clone dna. heating and annealing. primers hybridize. polymerase replicates. southern blotting: ID target fragments of known DNA in large pop of DNA. DNA cleaved into restriction fragments. separated by size in gel elctrophoresis. large moves slower than small. gel denatures DNA fragments. probe hybridizes w/ and marks target fragment. Northern blot uses same techniques to ID specific sequences of RNA Western blot: detects a protein with antibodies RFLP: ID's individuals instead of specific genes. we are polymorphic for our restriction	gene mutation – sequence of n-tides in a single gene chromosomal mutation – structure is changed somatic vs. germ cell mutations latter more serious point mutation – single n-tide changed base pair mutation – AT to GC, vice versa missense – bp mutation in aa sequence of gene may or may not be serious eg, sickle cell anemia insertion or deletion → frameshift mutation multiples other than 3. sometimes nonframeshift and still functional usually frameshift is non-functional nonsense – stop codon created by mutation chromosomal mutations— deletions—portion of chromosome breaks off duplication – breaks off and incorporates into	 2) S - Synthesis 3) G2 - second growth phase 4) M - mitosis / meiosis 5) C - cytokinesis 1-3 called interphase. in G1 - regions of heterochromatin have been unwound into euchromatin, RNA synth and protein synth very active. G1 checkpoint → S stage, if ratio of cytoplasm to DNA is high enough. Gzero is nongrowing state. neurons, liver cells. G2 checkpoint - Mitosis promoting factor (MPF) Mitosis, nuclear division w/o genetic change 4 stages -remember PMAT: prophase (condensation of chromatin into chromosomes, centrioles move to opposite sides of cell. spindle apparatus forms of aster, centromeres at center. spindle micotubules connect two centrioles.) metaphase (chromosomes align

of cytoplasm due to microfilaments.), and telophase (nuclear membrane reforms		lysogenic, longer word, longer cycle	gradient. the two can be added to form an "electrochemical gradient".	transformation, and transduction. also can do binary fission (split).
followed by reformation of nucleolus. Chromosomes decondense and cannot be seen under microscope. Continuued cytokinesis).		Prokaryotes – no memb bound nucleus.	membrane must be permeable to allow diffusion	binary fission
Interphase is both before and after PMAT. Interphase = normal cell, nothing happening.	protein coat (capsid), 1-400 genes (DNA or RNA) inside. mature virus outside host cell –	either bacteria or archea. arch more similar to euk's	two things affect permeability – size and	-circular dna replicated -2 dna poly's begin at same point of circle (origin of replication)
Meiosis – double nuclear division which produces four haploid gametes. aka germ		carbon source. all microorganisms tend to fix CO2, reducing it and using it to create organic molecules via Calvin cycle	the greater the polarity of a mol, less permeable a membrane is. very large lipids	-cell divides, leaving 1 chromosome in each daughter -2 daughters are identical.
cells. only spermatogonium and oogonium undergo it in humans.	receptor of host, usually glycoprotein on	however this is energy expensive. Autotrophs can use Co2 as sole source of carbon.	(nonpolar) can therefore move easily. eg, water is larger than sodium, but water is	conjugation requires one of the bact. have a plasmid w/
after replication of S phase, cell is primary germ cell. in females, replication takes place	membrane. in bacteriophage, virus infects bacteria. nuc	Heterotrophs use organic molecules. classification system of prokaryotes:	polar whereas sodium is a complete charge, so easier to pass through. \rightarrow most membranes highly permeable to water.	gene that codes for sex pilus. small circles of DNA that exist and replicate independently of bact. chromosomes. sex pilus – phalic,
before birth. life cycle arrested at primary oocyte stage until puberty. before ovulation, primary oocyte undergoes meitotic division to	acid is injected through tail after it has made a hole in wall with enzymes. virus engulfed by endocytosis.	 energy source – photo if light, chemo if from chemicals carbon source- auto (CO2) and hetero 	water moving is considered passive diffusion. for larger, necessary compounds, proteins are	attaaches to the other bacterium. one strand is nicked. etc etc
become secondary oocyte. 2ndary released upon ovulation, penetration of secondary by sperm stimulates anaphase II of second	 → lytic or lysogenic infection. lytic: virus takes over machinery and begins 	(organic molecules) some bacteria can fix nitrogen. N2 converted	needed. transport or carrier proteins facilitated – occur down electrochemical	2 important plasmids. F and R. F is called fertility factor. if it has F, called F+. if not, F
meitotic division of oocyte. Two rounds of division for 4 daughters		to ammonia. nitrification breaks down ammonia into nitrates, useful to plants.	gradient of all species. all human cells do this for glucose supply. selectively permeable, bc molecules of similar size and charge.	R plasmid denotes resistance to antibiotics.
meiosis I and II similar to mitosis except: prophase I, homologous cr-somes align along	enzyme reverse transcriptase, DNA made from	instead, prok's have single ciruclar double stranded molecule of DNA. Under	if against e-chemical gradient, active transport. requires expenditure of energy.	Transformation – bacteria may incorporate DNA from external environment into genome. typical experiment: heat killed virulent
side, matching their genes exactly. May exchange exchange sequences of n-tides in crossing over. recombination happens here for	"Temperate virus." Cell may show no	microscope can be seen as a nucleoid. name often reveals shape, e.g., spiroplasma, staphylococcous, or pneumococcous.	Bacterial Envelope. surrounds protoplast (plasma membrane). basic function: to	bacteria mixed with harmless living. harmless living receive those genes and become virulent.
euk's. Side by side homologues exhibit a total of four chromatids. called tetrads. chiasma, center of the x shape.	common cold – unenveloped. plus strand RNA. plus = proteins can be directly	cocci – round, and bacilli are rod shaped. helical called spirilla or spirochetes.	prevent cell burst / lysis. most bacteria are hypertonic to enviroment (their soln has more solute when compared to outside).	sometimes, capsid of bacteriophage w/ mistakenly encapsulate DNA fragment of host
under microscope, metaphase in mitosis appears like metaphase II in meisosis, but not number I.	translated from the RNA. enveloped version include retroviruses such as HIV. Retrovirus = reverse transcriptase = making DNA from RNA. \rightarrow DNA incorporated into host cell.	Bacteria have no complex membrane bound organelles. They have organelles, ribosomes, nucleoid, mesosomes, but not complex ones.	bc of concentration gradient, water would like to move inside cell, but this would call cell burst.	cell. when virons infect, they inject harmless bacterial DNA fragments. called transduction. virus that mediates this called vector. can be done in a lab.
mitosis = meiosis except -2 rounds	minus strand rna include measles, rabies, and		as water goes in, hydrostatic pressure builds.	Endospores – gram + bact. that can lie
-daughters haploid -genetic recomb occurs	flu. must be transcribed to plus version first.	tails. -polar heads -nonpolar tails	stops.	dormant for 100's of years. resistant to heat, uv, etc. can survive in boiling water.
Spermatogenesis spermatogonium → primary spermatocyte → secondary spermatocytes → spermatids →	antibodies bind to infected cell, and with cytotoxic T cells, kill the infected cell.	aka amphipathic embedded in plasma membrane are proteins. can act as transporters, receptors, attachment sites, and enzymes. amphipathic proteins that	cell wall made of peptidoglycan. made of disaccharide chains w/ aa's more elastic than cellulose, plant cell walls	Fungi. in divisions, not phyla. all are eukaryotic heterotrophs, obtain food by absorption. spend most of their time in the haploid state. can reproduce both sexually and
spermatozoa Oogenesis oogonium → primary oocyte + first polar	injection of nonpathogenic virus w/ same	transverse the entire membrane are called integral or intrinsic. Peripheral or extrinsic are just on the surface.	staining. if gram positive – thick cell wall, more peptidoglycan, shows up as purple.	asxually. most have cell walls called septa. most are saprophytic (rotten, decayeed). wall's made of chitin. more resistant to
bodies \rightarrow second oocyte + 2 nd polar bodies \rightarrow zygote	-capsid	the membrane is fluid, parts can move laterally but not separate. fluid mosaic model.		microbial attack. In growth state, fungi consist of tangled mass
nondisjunction – centromere doesn't split during anaphase I or II. 1 cell has 2 extra chromatids. the other lacks a chromosome.	-lipid-rich protein envelop for some	cholestorol moderates fluidity in eukaryotic membmrane. Prokary membrane only differs slightly from euk membrane	Flagella. Long hollow rigid cylinders. do NOT equal euk flagella, which are made of microtubules.	called mycelium, of branched structures, hyphae.
	for most bacteriophages: -tail -base plate -tail fibers	Diffusion. Moving down gradient if no electrical charge. chemical concentration gradient. if electric charge, also electrical	Bacterial reproduction. they don't do mit or mei. do not reproduce sexually. 3 alternative forms of genetic recombination: conjugation,	haploid spores in hyphae give rise to new mycelia in asexual reproduction. yeasts, asexual occurs by budding / fission.
	l		l	l

outputcontaining (By, which am by due) to subjects (Contained, contained and containe	sexual repro occurs between hyphae from to mycelia of diff mating types + and –	SER lacks ribosomes. resembles tubes, not flattened sacs like RER.	microfilaments smaller than microtubules. actin is major component of microfilaments.	-simple: 1 layer, eg heart -stratified: 2+ layers	dendrites, nucleus, axon hillock, mitochondrion in soma. nodes of ranvier,
 Jaccal when it holes are good in a second in the stand of the stand of	conjugation bridge.	-contains G6P, which can hydrolyze to	contractile force in muscle, also cytoplasmic	2) muscle	myelin sheath, axon terminal.
sectorgenesegenes	1 1 12 1		streaming, etc.		
 chowner, Sinter, Sharkane, Sharane, Sharkane, Sharkane, Sharkane, Sharkane, Sharkane, Sharkan					
Heining fatter of subary is nearborn being and being in and reproduction is an endown of the subsection is a subsection in an organization of systems. The subsection is a sub	sexual: when it's tough, parent less adaptable	1 5		4) nervous	glucose. Get it right from the blood.
Drivengi fauture of eaker y		-chorestoror formation, conversion to steroids		the 4 types combined can form an organ diff	
amend services reprint (mode)convertient (mode) <td>Defining feature of eukary's – nucleus DNA</td> <td>phospholipids in cell memb formed from SER</td> <td>Cellular junctions</td> <td></td> <td></td>	Defining feature of eukary's – nucleus DNA	phospholipids in cell memb formed from SER	Cellular junctions		
lake place in nucles IRA leaves makes in nuclear swapped in doube ploopholying higher - nuclear resolution is resolution in the source in the sour					
Interaction process membrane with males in an advance support with males in advance support with males in advance support 			3 types of junctions that connect animal cells		Action Potential
Inclustrationancipotating lipids. self splicationaprical and basilitation another of the opticationincrepotating lipids. self splicationcetting potationsplicatio					
billow reweights win nucleas in an expendical ty mached and subarias are assembled. in tanker that and subarias are assembled. in the assembled are able assembled are assembled. in the assembled are assembled are assembled. in the assembled are assembled are assembled are assembled are assembled are assembled. in the assembled are assembled are assembled are assembled. in the assembled are assembled are assembled are assembled are assembled. in the assembled are assembled are assembled are assembled are assembled are assembled are assembled. in the assembled are assemb	-	Peroxisomes - vesicles in cytosol. grow by	etc.bladder, intestines, kidney. also blocks		AP is disturbance in e-field across membrane
 winnacheba indexis in steadous with tRN s¹ werview: 1) Show "side" of cell -cytosol and R 1) Show "side" of cell -cytosol and R 1) Show "side" of cell -cytosol and R match in adde to get to cytosol, substance properties - cranchular final caguid properties - cranchular final caguid		incorporating lipids. self replicate.		Intercellular Communication	
Transleto dan dabuit ar sambhé1) 2 bais: "side" of ellcytoud and FA-demonstreego twelch holing content in corto say			membrane. fluid barrier around cells		
 Justice is suffy a endycyclose of a constraint of gas and support of gas a					membrane and Na+/K+ pump. it moves 2 +
colls can sequire suff via can equire suff vigesunuar encode/stois, suffunuar encode/stois, suffcolls can equire suff via suf	transcribed and subunits are assembled.				
types <thtypes< th="">typestypes<!--</td--><td>calle con acquire stuff vie and contagie diff</td><td></td><td></td><td></td><td></td></thtypes<>	calle con acquire stuff vie and contagie diff				
phageytois:memb protois over transportgap - tunnels bw cells, allow cells, choose chong of mail molecules:"ecc.prostaglandin", 5 - smooth muscle constraction, inflammed muscle constraction, inflammed mail molecules:to outside, called cells cells cells allow centraction muscle constraction, inflammed muscle constraction, inf			in places of suess. skin, intestinal epithenum.		has potential difference (voltage) compared
 sinted by receptor building, priority of system of the syst			-gan – tunnels b/w cells allow exchange of		
pinner/					to outside. cuiled resting potential.
nonsectiveiside. synthesizes virtually all proteins not used nerecytor metilization update of hormonsal antitation.iside. synthesizes virtually all proteins not used being metilization of the proteins in the protein station.flow them membrane membrane shortly, the membrane incombrane shortly, the membrane synthesizes readownithout interventions of each each intervention.flow them interventions intervention of each each each each each each each each					voltage gated sodium channels – allow Na+ to
Initiatis.ER lumen and sext to GolgER lumen and sext to GolgInitiation and sext to GolgEX expartses cytosol from RR lumen / citerand space.EX expartses cytosol from RR lumen / citerand space.Systems continue discussesInitiation returns and sext to GolgNT stravel over short intercellular gapes and membrane.Initiation returns and membrane and cellInitiation returns and membrane and cell and			I		flow thru membrane shortly. the membrane
Perceytosis the reversos of not severtosis the reversos of not severtosis the reversos of not severtosis the reversos of not person de reversos de reversos of not person de reversos de reversos de reversos not person de reversos de reversos de reversos not person de reversos de reversos de reversos de reversos de reversos not de reversos de rev	-receptor mediated. uptake of hormones and		Mitochondria		
exerciseuse in other parts of cell and outside cycle happens here. (hysosomes cort for moge plat, have hydrolytic enzymes to digest endocytosed tistancesNT's travel over short intercellular gas of mombalanceshyperpolarization, passive diffusion returns membalancesER can be consigued with endocytoseSJSER is atie of Lipid synthesis, eg steroids. SJSER is atie of Lipid synthesis, eg steroids. SUBCR is atie of Lipid synthesis, eg steroids. SubstancesNT's travel over short intercellular gas of mombalances in the product to divers outcal mediators functions in immediate are and sometimes glycosylated. Newly synthesized proteins as shutted by transport effect cell as secretory vesicles, redeard from golg in have and effect neutrophilabilic shares and ecol to the of ac ellNT endoc to short intercellular gas of mombalance in terms replatize in the product in the dynamic ation in terms replatize in the product in the dynamic ation short membrane equilibrates to esting potential tissues in many ways.NT endoc to short intercellular gas of mombalance in terms NT endoc to short intercellular gas of mombalance in the product in the dynamic ation in terms inter the membrane intervence intervence in a short dut for the product is short intervence in the type origin as short dut for the product is short intervence in the type origin as short dut for the product is short intervence in the type origin and trans construction in the membrane intervence in a short dut for the product is short intervence in the type origin and trans construction in the membrane intervence in ashort dut for construction ind	nutriants.				
 He separates cytosol from E Junion / cisterana space. ER can be contiguous well membrane. He separates cytosol from E Junion / cisterana space. ER can be contiguous well substances Parates C R can be contiguous well substances <					
EX separates cytosof from EX lumen / membrane. hydrolytic enzymes to diget endocytosed substances from symbiotic enty (* sub substances local mediators function in immediate area around cell moruna estance (hybrolytose) substances substances AP Overview near meleus. EX 's cytosome side has a granular appearance (rinbosomes), a kaj, rougi ER. Si ER ais detox's, eg drugs. Succure: NT tends to be rapid, direct, and specific to cose Nembrane arest. Na'K channels closed (2) Na channels open, cell depolarizes protocose Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels closed. (2) (2) Na channels open, cell depolarizes Na channels begin to (2) Na channels (2) Na channels	exocytosis is the reverse of endo.				
 citizerial space. ER can be contiguous w/ cell substances subst		4) lysosomes come frome golgi, have			
membrane.5) SFR is site of lipid synthesis, eg steroidsreplicates independently. Always inherited by boomes travel through the organism via ha boodstreamAP Overviewnear nucleus, FK's cytosome side has a granular appearance (ribosomes). ak, rough FR.Celluar filaments: cytoskeleton determines skeleton and motility of a cellCelluar filaments: cytoskeleton determines skeleton and motility of a cellNT tends to be spore, rapid, direct, and specific hormonal tends to be slower, spread iner membrane crista (inregination of inner membrane)NT tends to be slower, spread inregination of inner membrane evalues in many ways.A) Na channels closed. Open K channels close and membrane crista (inregination of inner membrane)A) Na channels closed. Open K channels close and membrane crista (inregination of inner membrane)A) Na channels closed. Open K channels close and membrane evalues inter cents inter the species parts in humans, cili a only found in falopian tubes and resp tract. righ hollow species end product: vesicle full of protein spindle is made of microtinbules spindle spindle is made of microtinbules. spindle is made of microtinbules spindle spindle is made of microtinbules. spindle is made of microtinbules spindle is made of microtinbules. spindle is made of microtinbules spindle spindle is made of microtinbules. spindle i			from symbiotic rel'ship b/w ancient prok's and		sodium-potassium pump keeps working.
SER also detox's, eg drugs.SER also detox's, eg drugs.InommaDodostreamI) Membrane at rest. Na/K channels closedInanular appearance (ribosomes), aka, rougCelluar filaments: veloskeleton determines skeleton and motility of a cellSurcutre: uner membrane space inter membrane sparatus in humans, clin a olita fallo spin tubes sade of protein tubes in fallogin tubes and resp tract, rigid hollow sprintel stade of microtubels in tacion er many spin a is and construction, and spinal deta at sta sparatus in humans, clin a olita fallo spinal is spinal apparatus. In humans, clin a olita fallo spinal is spinal content matrix, components, release contents thru exocytois, respinal er many contain enzyme, toris to tubels, canse spinal of microtubules, content is AP, absolute relisk spinal cont, nerves, nerval indicisma de microtubules, axoneme contains nine pairs tubels arangement 9°2, cross bridges from toris tubels, content show specific intersolution tow specific intersolution tubes, spinal cont, nerves, nerval intersolution tubes, spinal apparatus. In humans, clin a olita protein tubels, spinal spinal erate matrix, clamaet spinal content show specific parsato sin humans, clin a olita protein tubels, spinal 					AP Overview
near nucleus, ER's cytosome side has a granular appearance (ribosomes), aka, rough ER. Translation on RER propels proteins into ER lumen as they are created. They are traged and sometimes glycosylated. Newly synthesized proteins moved through lumen towards oglic. Golgi organizes and concentrates proteins as shuttled by transport vesicles. reform golgi to oncert reats proteins as shuttled by transport vesicles. reform golgi to oncert reats proteins as shuttled by transport vesicles. reform golgi to oncert reats proteins as shuttled by transport vesicles. reform golgi to oncert reats proteins as shuttled by transport vesicles. reform golgi to oncert reats proteins and cilia construction, and spindle appearance from alpha and beta parts. inter membrane logies and cytokines is and through lumer into lysosomes, or transported to oonber parts of cell such as mitochond. Secretory vesicles: may contain enzymes, growth factors, or extracellular matrix components. release contents thru excyclis the strate function inter called dyncin. Lysosomes contain acid hydrolases (function inter called dyncin.	memorane.				
granular appearance (ribosomes). aka, roup ER.Clubar filaments: cytoskeletion determines skeleton and motiling of a cellStructure: -nouter membrane space inner membrane space inner membrane space inner membrane space inner membrane space onster membrane space inner membrane space onster membrane space inter membrane space inter membrane space onster membrane space inter membrane space onster membrane space inter membrane space onster membraneNT tends to be shower, space introughout the body, and affect many cells and issues in many ways.3 K channels open as Na channels begin to closeImmediation of metric synthesized proteins concentrates proteins as builted by transport vesicles: end product vesicle fail of proteins either can be capieled from the cell as secretory vesicles: may contain enzymers, growth factory and the cell as secretory vesicles: may contain enzymers, eomopenents. release contents thru exocytosis defer in phage(vtosis and cytokines), can be functional to difficultion the space to content in acid bydrolases (function best in acide environs): capable of branking the can be content is nucled.Na channels open as Na channels begin to close throughout the body, and affect many cells and transportation of matter into hydrolase infore in the microvilli and muscle.Na channels open as Na channels begin to closeSecretory vesicles: may contain enzymers, growth factory weicles: may contain enzymers, to contain acid hydrolases (function best in acidic environs): capable of forexing down any time of macroviti and muscle.Nature divise depends on any appression of the content is not be write on the microvili and muscle.Nature divise depends on arroy optical to any appression in the microviti and muscle.Natur	near nucleus. ER's cytosome side has a	Shire also detox 5, 65 diago.	inomina.		
ER. cycoselection determines skeleton and motility of a cell		Cellular filaments:	Sturcutre:	NT tends to be rapid, direct, and specific	3) K channels open as Na channels begin to
Translation on RER propels proteins into ER lumen as they are created. They are taged and sometimes glycosylated. Newly synthesized proteins moved through lumen towards golgi. Golgi organizes and concentrates proteins as shuttled by transport enter can be expelled from the cell as sected or yesicles, released from golg in these and espine the twose sected from golg in these and espine the twose sected released from golg in these and espine the twose sected in practices in phage-task in the twose and espine the twos		cytoskeleton determines skeleton and motility	-outer membrane	hormonal tends to be slower, spread	close
Lumen as they are created. They are tagged and sometimes glycosylated. Newly synthesized proteins moved through lumen towards golj. Golj organizes and concentrates proteins as Nutled by transport vesicles. end product: vesicle full of proteins, infagella and cilia construction, and spindl apparance from alpha and beta parts. spindle is made of microtubules secretory vesicles, released from golgi to mature into lysosomes, or transported to coother parts of cell such as mitchond.2 major types of filaments: indication of inner membrane) -rista (invagination of inner membrane) -arista (invagination of inner memb		of a cell			4) Na channels closed. Open K channels
and sometimes glycosylated. Newly synthesized proteins moved through lumen towards golgi. Golgi organizes and concentrates proteins as shuttled by transport vesicles, roles and product vesicle full of protein tubulin, spiral aparatus. in humans, cilia only found in fallopin tubes and respirater, rigid hollow tubes made of protein tubulin, spiral specretory vesicles, released from golgi to mature into lysosomes, or transported to oother parts of cell such as mitochond.Nervous systemequilibrates to resting potentialAP is all or nothing. Membrane completely deporalizes on AP is generated. must pass a scenetory vesicles, released from golgi to mature into lysosomes, or transported to oother parts of cell such as mitochond.Nervous systemequilibrates to resting potentialSecretory vesicles, released from golgi to omtarce into lysosomes, growth factors, or extracellular matrix components thur exceptors hasi a cidi cenvirons). capable of breaking dives arangment 9+2. cross bridges from protein called dyneinform molecular network that holds tissue place (extracellular matrix) can be liquid (blood) or solid done)form molecular network that holds tissue place (extracellular matrix) can be liquid (blood) or solid done)				tissues in many ways.	
 synthesized proteins moved through lumen towards golgi. Golgi organizes and concentrates proteins as shuttled by transport vesicles, end product: vesicle full of protein tubulin. spiral concentrates proteins as shuttled by transport vesicles, released from golgi to matrix in humans, cilia only found in fallopian tubes and resp tract. rigid hollow tubes and eor protein tubulin. spiral secretory vesicles, released from golgi to matrix in the sperate from alpha and beta parts. minitotis spindle is made of microtubules Secretory vesicles: may contain enzymes, growth factors, or extracellular matrix in the smaller: squeeze membrane together in phagocytosis and eytokinesia. Jas proteins elastin and ollagenform molecular network that holds tissue in the microvilli and muscle. Lysosomes contain acid hydrolases (function bet in acidic environs). capable of breaking down any time of macromolecule w/ rule. Lysosomes contain acid hydrolases (function pheres form of the callas and cilia specialized structures from of the callas and cilia specialized structures from of the callas and cilia specialized structures from alpha and ettracential mantix interovilli and muscle. Lysosomes contain acid hydrolases (function pheres form pH) of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release their tine clausing authopies. Key hube, sarasoneme contains nine pairs of this rand of protein called flagellin, euk to fore in called dynein. Lysosomes contain a of thydrolases (function pheres form of the callas and cilia specialized structures from ptotein called flagellin, euk to fore in called dynein. Lysosomes contain acid hydrolases (function ptotein called flagellin, euk to fore in called flagellin, euk to fore in called dynein. Lysosomes contain acid hydrolases (function pheres form ptotein called flagellin, euk to fore in called dynein. Lysosomes contain acid hydrolases (function ptotein called f		2 major types of filaments:			/
towards golgi. Golgi organizes and concentrates proteins as shutted by transput vesicles, end product: vesicle full of proteins. either can be expelled from the cell as secretory vesicles, released from golgi to mature into lysosomes, or transported to oother parts of cell such as mitcodond.in flagelia and cillia construction, and spindle aparatus. in humans, cilia only found in fulses made of protein tubulin. spiral aparatance from alpha and beta parts. mice of macromolecule wrine of and regit contents. Problem: can release throm of ther fulse.In flagelia and cillia construction, and spindle aparatus. in humans, cilia only found in fulses made of protein tubulin. spiral apace (extracellular matrix) components. release contents thru excyctors.In flagelia and cillia construction, and spindle aparatance from alpha and beta parts. mice disc transported to other parts of cell such as mitcodond.Api sall or nothing. Membrane completely deprolations or glandular sceretory seciels. release thread on alpha and beta parts. mice disc transported to protein tubulin. spiral apace (extracellular matrix) components. release contents thru excyctors.Api sall on and cilia construction. and spindle and cilia specialized structures from tubules arrangment 9+2. cross bridges from protein called dynein.Extracellular Matrix tubules arrangment 9+2. cross bridges from 9+2 mice disc contents. Problem: can release thread of protein called dynein.Api and direct communication b/w specific parts end to disc write the provide tile approximation of tissue, however, tubules arrangment 9+2. cross bridges from 9+2 mice diaged structures from tubules arrangment 9+2. cross bridges from 9+2 mice diaged from of tissue, however, tubules arrangment 9+2. cross bridges from 9+2 figelia do whip-like action whereas provide t				<u>Nervous system</u>	equilibrates to resting potential
concentrates proteins as shuttled by transport vesicles. end product: vesicle full of proteins secretory vesicles. released from golgi to mature into lysosomes, or transported to oother parts of cell such as mitochond.partaus. in humans, cilia only found in fallopian tubes and resp tract. rigid hollow some tissue, have fibroblast shat secret product vesicles: may contain enzymes, growth factors, or extracellular matrix components. release contents thru exocytosis.paperatus. in humans, cilia only found in fallopian tubes and resp tract. rigid hollow some tissue have fibroblast shat secret place (extracellular matrix) can be liquid (blood) or solid (bone)parts of bodydeporalizes or no AP is generated. must pass a threshold stimulus. Once there is AP, absolut refractory period until another AP can happen.Secretory vesicles: may contain enzymes, growth factors, or extracellular matrix components. release contents thru exocytosis			-matrix	ranid and direct communication h/w aposition	AD is all as nothing. Mamhrona completely
 vesicles. end product: vesicle full of proteins. either can be expelled from the cell as secretory vesicles, released from goli to other parts of cell such as mitochond. Secretory vesicles: may contain enzymes, growth factors, or extracellular matrix components. release contents thru excevets in acidic environs). capable of breaking down any time of macromolecule winic cell. interior pH of S. fuse w/ endocytotic vesicles and digest contents. Problem: can release there to form fingers, etc. Lysosomes, ort. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers, etc. Appens during formation of tissue, however, to form fingers,			Extracellular Matrix		
 either can be expelled from the cell as secretory vesicles, released from golg to mature into lysosomes, or transported to oother parts of cell such as mitochond. Secretory vesicles: may contain enzymes, growth factors, or extracellular matrix components. release contents thru exocytoris. Lysosomes contain acid hydrolases (function digent any time of macromolecule w/in cell, interior pH of 5. fuse w/ endocytotic vesicles, and guest contents. Problem: can release thruis include. Lysosomes contain into the own cell causing autolysis, happens during formation of tissue, however, to form fingers, etc. 					
secretory vesicles, released from golgi to mature into lysosomes, or transported to oother parts of cell such as mitochond.appearance from alpha and beta parts. mitotic spinel is made of microtubulesfibrous proteins elastin and collagen form molecular network that holds tissue i place (extracellular matrix) can be liquid (blood) or solid (bone)includes: brain, spinal cord, nerves, neural support cells, organs such as eye and ear. main unit is neuron -electrical signal from one cell via electrochemical means. so specialized it canto tivide. depends entrely on glucose depends on aerobic respiration: low stores of may branches, as well as many dendrites.happen.Lysosomes contents thru exorytosis.fagella and cilia specialized structures from microtubules axoneme contains nine pairs of tubules arrangent 9+2. cross bridges from protein called dynein.basal lamina – thin sheet of matrix material. sparates epithelial from support tissue, alos semipermeable barrier.happen.Neural impulses transmitted cardiac muscle.Interior PI of 5. fuse w/ endocytoic vesicles to form fingers, etc.fagella and cilia specialized structures from protein called dynein.basal lamina – thin sheet of matrix material. sparates epithelial from support tissue, alos semipermeable barrier.depends on aerobic respiration: low stores of sparates epithelial from support tissue, alos and tigget contents. Froblem: can release their flagella and of protein called flagellin. euk flagella and of protein called flagellin. euk flagella do whip-like action, whereas proki to fate.Organizationderives receive signal to eell.happen.happen.I bord flagella or to trace to the sparates from the sparates from the sparates from the sparates from the spa					
mature into lysosomes, or transported to oother parts of cell such as mitochond.spindle is made of microtubulesform molecular network that holds tissue in place (extracellular matrix) can be liquid (blod) or solid (bone)support cells, organs such as eye and ear. main unit is neuron -electrical signal from one cell via electricohemical means. so specialized it cannot divide. depends entirely on glucose. depends on aerobic respiration: low stores of glycogen and oxygen, so relies heavily on best in acidic environs). capable of breaking down any time of macromolecule w/in cell. interior pH of 5. fuse w/ endocytoit vesicles and digest contents. Problem: can release thir to form fingers, etc.Support cells, organs such as eye and ear. main unit is neuron -electrical signal from one cell via electrical signal from one cell via electrical signal from support tissue. also somes contains acid hydrolases (function microtubules. axoneme contains nine pairs of tubules arrangment 9+2. cross bridges from protein called dyneinform molecular network that holds tissue in place (extracellular matrix) can be liquid (blod) or solid (bone)support cells, organs such as eye and ear. main unit is neuron -electrical signal from one cell via electrical signal from one cell via electrical signal from support tissue. also soma loody and 1 axon w/ many branches, as well as many dendrites.Aps, besides in neurons, also in skeletal and carlae muscleform molecular network that holds tissue in to tareform molecular network that holds tissue in place (extracellular matrix) can be liquid (blod) or solid to tareform molecular network that holds tissue in place (extracellular matrix) can be liquid (blod) or solid totareform molecular network that h					
 - microfilaments: smaller. squeeze membrane together in phagocytosis and cytokinesis. also growth factors, or extracellular matrix components. release contents thru exocytosis. - Lysosomes contain acid hydrolases (function best in acidic environs). capable of breaking down any time of macromolecule w/in cell. interior pH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release their in the docytotic negativation of tissue, however, to form fingers, etc. - microfilaments: smaller. squeeze membrane together in phagocytosis and cytokinesis. also force in the microvilli and muscle. - basal lamina – thin sheet of matrix material, separates epithelial from support tissue. also found around nerves, muscle, and fat. acts as and digest contents. Problem: can release their in called dynein. - basal lamina – thin sheet of matrix material, separates filed with NT reside just inside presynaptic membrane. Together in called dynein. - basal lamina – thin sheet of matrix material, separates epithelial from support tissue. also found around nerves, muscle, and fat. acts as and digest contents. Problem: can release their in called dynein. - basin digest contents. Problem: can release their in this content in the down cell causing autolysis. Happens during formation of tissue, however, to form fingers, etc. - of the microvilie contents. Problem: can release their in this cand of protein called flagellin. euk fagella do whip-like action, whereas protein called flagellin. euk fagella do whip-like action, whereas protein called flagellin. euk fagella do whip-like action, whereas protein called flagellin. euk fagella to whip-like action, whereas protein called flagellin. euk fagella do whip-like action, whereas protein called flagelline euk fagella do whip-like action, whereas protein called flagelline contents. In terto form fingers, etc. - prethelial – separates free body surfaces - p		spindle is made of microtubules		support cells, organs such as eye and ear.	
Secretory vesicles: may contain enzymes, growth factors, or extracellular matrix components. release contents thru exocytosis.together in phagocytosis and cytokinesis. also force in the microvilli and muscle.(bone)electrochemical means. so specialized it cannot divide. depends entirely on glucose. depends on aerobic respiration: low stores of glycogen and oxygen, so relies heavily on bood. usually soma (body) and 1 axon w bood. usually soma (body) and 1 axon w more the presented dynein.Neural impulses transmitted intercellularly via a synapse. Usually chemical, not electrical. asynapse. Usually chemical. asynapse. Usually chemical. asynap	oother parts of cell such as mitochond.				1 /
growth factors, or extracellular matrix components. release contents thru exocytosis. Lysosomes contain acid hydrolases (function best in acidic environs). capable of breaking down any time of macromolecule win cell. interior PH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release their to form fingers, etc. basal lamina – thin sheet of matrix material. happens during formation of tissue, however, to form fingers, etc. basal lamina – thin sheet of matrix material. interior PH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release their to form fingers, etc. basal lamina – thin sheet of matrix material. happens during formation of tissue, however, to form fingers, etc. basal lamina – thin sheet of matrix material. interior PH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release their to form fingers, etc. basal lamina – thin sheet of matrix material. happens during formation of tissue, however, to form fingers, etc. basal lamina – thin sheet of matrix material. happens during formation of tissue, however, to form fingers, etc. basal lamina – thin sheet of matrix material. happens during formation of tissue, however, to form fingers, etc. basic anatomy of neuron: basic anatomy of neur	a				cardiac muscle.
components. release contents thru exocytosis.basal lamina – thin sheet of matrix material.depends on aerobic respiration: low stores ofa synapse. Usually chemical, not electrical.Lysosomes contain acid hydrolases (functionflagella and cilia specialized structures frommicrotubules. axoneme contains nine pairs ofsparates epithelial from support tissue. alsoglycogen and oxygen, so relies heavily ona synapse. Usually chemical, not electrical.best in acidic environs). capable of breakingflagella and cilia specialized structures frommicrotubules. axoneme contains nine pairs ofseparates epithelial from support tissue. alsoglycogen and oxygen, so relies heavily onaka motor end plate if neuron-muscle connexdown any time of macromolecule w/in cell.interior pH of 5. fuse w/ endocytotic vesiclesEukaryotic flagella made from 9+2organizationcells of same tissue tend to have sameendrites receive signal to be transmittedelectrical stimulus goes to axon hillock, ifmembrane end contains large number ofcontents into the own cell causing autolysis.thin strand of protein called flagellin. eukthin strand of protein called flagellin. eukells of same tissue tend to have samegreat enough, hillock generates AP towardssynapse, which passes signal to cell.mito cell. causes NT vesicles to beto form fingers, etc.rotate.types of tissue in animals:l) epithelial – separates free body surfacesBasic anatomy of neuron:synaptic cleft. diffuses across cleft with			(bone)		
Lysosomes contain acid hydrolases (function best in acidic environs). capable of breaking down any time of macromolecule w/in cell. interior PH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release ther to form fingers, etc.flagella and cilia specialized structures from microtubules. axoneme contains nine pairs of tubules arrangment 9+2. cross bridges from protein called dynein.separates epithelial from support tissue. laso found around nerves, muscle, and fat. acts as semipermeable barrier.glycogen and oxygen, so relies heavily on blood. usually soma (body) and 1 axon w/ many branches, as well as many dendrites.aka motor end plate if neuron-muscle connexInterior PH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release ther to form fingers, etc.Eukaryotic flagella made from 9+2 microtubule configuration; prokaryotic is just thin strand of protein called flagellin. euk flagella do whip-like action, whereas prok just rotate.Organizationdendrites receive signal to bart same great enough, hillock generates AP towards synapse, which passes signal to cell.aka motor end plate if neuron-muscle connexI) epithelial – separates free body surfacesBasic anatomy of neuron:aka motor end plate if neuron-muscle connex		force in the microvilli and muscle.	hasal lamina thin sheat of matrix material	cannot divide. depends entirely on glucose.	
Lysosomes contain acid hydrolases (function best in acidic environs). capable of breaking down any time of macromolecule w/in cell. interior pH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release their contents into the own cell causing autolysis. happens during formation of tissue, however, to form fingers, etc.microtubules. axoneme contains nine pairs of tubules. axoneme contains nine pairs of tubules arrangment 9+2. cross bridges from protein called dynein.found around nerves, muscle, and fat. acts as semipermeable barrier.blood. usually soma (body) and 1 axon w/ many branches, as well as many dendrites.undirectional. small vesicles filled with NT reside just inside presynaptic membrane.OrganizationCalled dynein.Organizationcells of same tissue tend to have same embryology.dendrites receive signal to be transmitted electrical stimulus goes to axon hillock, if great enough, hillock generates AP towards synapse, which passes signal to cell.arrives, these are activated to allow calcium flow into cell. causes NT vesicles to be released through exocytotic process into synaptic cleft. diffuses across cleft with	components. Telease contents tinu exocytosis.	flagella and cilia specialized structures from		alwoogen and oxygen so relies heavily on	
best in acidic environs). capable of breaking down any time of macromolecule w/in cell. interior pH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release their contents into the own cell causing autolysis. happens during formation of tissue, however, to form fingers, etc. to form fingers, etc. torganized fingers, etc. to form fingers, etc. to form f	Lysosomes contain acid hydrolases (function				and motor end plate it neuron-muscle conflex
down any time of macromolecule w/in cell. interior pH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release their contents into the own cell causing autolysis. happens during formation of tissue, however, to form fingers, etc.protein called dynein.protein called dynein.reside just inside presynaptic membrane. membrane near end contains large number of Ca2+ voltage gated channels. When AP arrives, these are activated to allow calcium flagella do whip-like action, whereas prokjust rotate.organizationreside just inside presynaptic membrane. membrane near end contains large number of Ca2+ voltage gated channels. When AP arrives, these are activated to allow calcium flow into cell. causes NT vesicles to be released through exocytotic process into synaptic cleft. diffuses across cleft with				many branches, as well as many dendrites.	unidirectional. small vesicles filled with NT
interior pH of 5. fuse w/ endocytotic vesicles and digest contents. Problem: can release their contents into the own cell causing autolysis. happens during formation of tissue, however, to form fingers, etc.					
contents into the own cell causing autolysis. happens during formation of tissue, however, to form fingers, etc.	interior pH of 5. fuse w/ endocytotic vesicles		Organization		
happens during formation of tissue, however, to form fingers, etc.thin strand of protein called flagellin. euk flagella do whip-like action, whereas prok just rotate.embryology.synapse, which passes signal to cell.flow into cell. causes NT vesicles to be released through exocytotic process into synaptic cleft. diffuses across cleft with					
to form fingers, etc. flagella do whip-like action, whereas prok just 4 types of tissue in animals: rotate. 1) epithelial – separates free body surfaces Basic anatomy of neuron: synaptic cleft. diffuses across cleft with					
rotate. 1) epithelial – separates free body surfaces Basic anatomy of neuron: synaptic cleft. diffuses across cleft with				synapse, which passes signal to cell.	
	to form fingers, etc.			Degie anotomy of nours	
non surroundings.		Totate.		basic anatomy of neuron:	
		1		1	indian of Brownian motion. Post synaptic

			1	
membrane contains NT receptor proteins.		deactivates all of the above and activates		pressure since oval window is smaller than ear
When attached, post syn membrane becomes	only vertebrates have mylenated axons	intestines and excretory system.	let's follow path of light through eye.	drum. (physics, mech advantage).
more permeable to ions. ions move through		eg, slows heart rate, increases digestive and	light reflects off object in external environ,	3) inner ear: wave moves thru cochlea to
now permeable proteins called ionophores,	to naked eye:	excretory activity.	strikes first on cornea (nonvascular, made of	center of spiral, spirals back out to round
completing transfer of neural impulse.	White matter – mylenated axons		collagen). refractive index of abt 1.4, bending	window. as wave moves thru cochlea, the
	Grey matter – neuronal cell bodies.	receptors for epi and norepi called adrenergic	of light occurs at interface of air and cornea,	alternating increase/decrease of P moves
NT attaches to receptor only for milisecond.		receptors for ACh called cholinergic	not lens.	vestibular membrane in and out. movement
then released back into syn cleft. if remains,	nodes of ranvier - tiny gaps b/w myelin,	2 types	\rightarrow goes to anterior cavity/aq. humor. (leaks	detected by hair cells of organ of corti,
can stimulate post syn memb over and over. to	allows for saltatory conduction	-nicotinic: generally found in postsyn cells of	out to canal of Schlemm. if blocked,	transduced into neural signals towards brain.
deal with this, cell can use enzyme to destroy	Structure of Nervous System	synapse between ANS pregang and post gang	glaucomma, blindness.)	also here are semicircular canals, responsible
NT. it can also be absorbed by cell	Neurons are of 3 functions	neurons, and on skeletal membranes at		for balance (contain fluid and hair cells).
	1) Sensory (afferent)- rec'v signals from	neuromuscular junction.		responds to gravity. senses motion.
Usually 1 NT per 1 synapse. Can either inhibit		-muscarinic: found on effectors of PNS.		
or excite. Some have diff effects depending	to other neurons. 99% is discarded by brain.			Nose and Mouth
on area;	Located located dorsally (toward back) from	Overview: ANS is involuntary. innervates	from ant. cavity, light enters lens. ciliary	
-Acetyl Choline (ACh)	spinal cord.	cardiac and smooth muscle, some glands.	muscle attached to it. circles lens. when it	senses called olfactory and gustatory.
on heart: inhibitory effect	2) Interneurons – txfers signals from neuron	somatic nervous system innervates skeletal	contracts, opening of circle decreases,	4 tastes
on visceral smooth muscle (intestines):	to neuron. 90% of neurons in body	muscle. Autonomic pathways controlled by	allowing lens to be more like sphere, bringing	1)bitter
excitatory	3) Motor (efferent) neurons - carry signals to	hypothalamus.	focal point closer to lens. when relaxes, lens	2) sour
	muscle or gland called "effector". Located		flattens, increasing focal distance.	3) salty
Receptors	ventrally (toward front) from spinal cord	Generally, when you hear		4) sweet
-ion channels themselves, or,		acetylcholine \rightarrow somatic and parasympathetic	eye acts as converging lens. object is outside	all tastes are combo's of the above.
-2 nd messenger system	Think of CNS as brain + spinal cord, PNS as	nervous systems	focal distance, image on retina is real and	
	everything else.	(nor)epinephrine→ sympathetic nervous	inverted	
For prolonged change, eg, memory, 2 nd		system		
messenger preferred.	CNS integrates nervous signals b/w sensory		Retina covers inside of back/distal part of eye	
	and motor neurons. connected to peripheral	Central Nervous System	contains rods and cones. tips of these contain	
G proteins initiatie 2 nd messenger systems	parts of body via PNS. PNS handles sensory	spinal cord, lowerbrain, all of higher brain	pigments, chem change when e-trons struck by	
-attached to receptor inside post syn memb.	and motor functions of nervous system.	acts mainly as conduit for nerves to reach	photon.	
-when receptor stimulated by NT, part of the G		brain	rods – rhodopsin pigment. made from protein	
protein called alpha subunit breaks free	Simple reflex arc	does limited integrating functions	retinal. derived from vit A. photon isomerizes	
Alpha subunit may	receptor→dorsal root ganglion→sensory	-walking reflexes, leg stiffening, etc.	retinal, causing membrane of cell to be less	
1) activate separate specific ion channels	neuron \rightarrow interneuron \rightarrow Motor neuron \rightarrow		permeable to Na+, causes hyperpolarization.	
2) activate a 2^{nd} messenger, eg, cAMP or GMP	effector	lower brain: medulla (pons, mesencephalon),	transduced into neural action potential, signal	
3) activate intracellular enzymes		hypothalamus, thalamus, cerebellum.	sent to your noggin. sense wv 390nm to 700.	
4) activate gene transcription.	PNS divides to	Integrates subconcious activities such as resp	cannot distinguish colors.	
		system, arterial pressure, salivation, emotions,	cones – distinguish 3 types of colors.	
overall: chemical synapse most important.	-Somatic nervous system - to respond to ext.		C 31	
slowest step in txfer of nervous signal, can	environement. motor neurons only innervate	1 / 1	fovea- small point on retina containing most	
	skeletal muscle. cell bodies of these in ventral	higher (cortical) brain: incapable to function	cones. vwhere vision is most acute.	
important to recognize.	horns of spinal cord. use ACh for NT.	w/o lower brain. acts to store memories,		
1 0	considered "voluntary." sensory bodies		iris: colored portion of eye, creates opening	
Support Cells	located in dorsal root.		called pupil . made of circular+radial muscles	
	-Autonomic nervous system (ANS) - sensory	Sensory Receptors		
nervous tissue contains glia cells/neuroglia.	receives singals from viscera, organs inside		in dark, symp ns contracts, dillating, allow	
usually ratio of 10::1 glia to neurons	ventral body cavity. function is involuntary.	overall: sensory receptors transduce physical	more light in.	
	NT used by all preganglionic neurons and by	stimulus to neural signals	in light, parasymp contracts muscles,	
usually do during traumatic brain injury to fill		_	constricting pupil, ,screening out light.	
any space created in CNS.	The post ganglionic in the symp system use	5 types of sensory receptors		
	either epinephrine (adrenaline) or	-mechanoreceptors (touch)	The Ear	
6 types of glia	norepinephrine (noradrenaline).	-thermoreceptors (change in T)		
-microglia – phagocytize microbes and debris	divides into 2 antagonistic systems:	-nocireceptors (pain)	can show up on physics passage, concerning	
in CNS	-sympathetic (fight or flight):	-e-magnetic (light)	waves or mechanics. Know cochlea detects	
-ependymal – epithelial that line the cerebral	activates heart, major skeletal muscles, dilates	-chemoreceptors (taste, smell)	sound, while semicircular canals detect	
fluid containing parts of CNS	pupils for night hunting, redirects blood, etc.		orientation/movement of head.	
-satellite- support ganglia in PNS	eg, heart, it increases beat rate, stroke volume,	on MCAT, prob just deal with eye and ear.		
-astrocytes – star shaped neuroglia in CNS,	constricts vessels around digestive and		3 basic parts	
give physical support to neurons, help	excretory systems to increase flow around	Eye	1) outer ear: cartilage, helps direct sound into	
maintain mileu	skeletal muscle.	might show up as physics passage. understand	external canal. carries wave to tympanic	
-oligodendrocytes - wrap around axons in	signals originate in spinal cord. if in CNS,	lens of eye is converging, flatting the eye by	membrane / ear drum / begin of middle ear	
CNS, creating electrical insulation.	called nucleus, if outside CNS, called ganglion	6 5	2) middle ear: malleus, incus, and stapes	
-neurolemmocytes or Schwann in PNS,	-parasympathetic (rest and digest)	powerful, thus moving focal point away from	(bones). act as lever system, translate wave to	
increases rate at which axon can txmit signals		lens.	oval window. increase in force. increase in	

	2) steroid – come from adrenal cortex,	translation, transcription, decreasing	Cortisol: steroid, glucocorticoid. ↑blood	PO3 uptake by gut, \rightarrow renal production of
	gonads, and placenta. lipids, can diffuse thru	breakdown of proteins and aa's.	glucose by stimulating gluconeogenesis in	DOHCC (vit D derivative). regulated by
	memb and act in nucleus. don't mix with		liver. degrades adipose to fatty acids for	plasma ion conc, and glands grow & shrink
Endocrine System	blood, so need transport molecule. acts at the txscription level. increasing membrane or	2) A dama a serti setta si a la servera se (A CTU)	energy. a "stress hormone". diminishes	accordingly.
Hormono Chemistry	cellular proteins	2) Adrenocorticotropic hormone (ACTH)	immune response.	
<u>Hormone Chemistry</u> vs. NT's, which are "local hormones."	central proteins	stimulateds adrenal cortex to release		
General hormones are released by endocrine	steroid must know's:	glucocorticoids via 2 nd msnger using cAMP.		
system, released into body fluids, blood, etc.	a) glucocorticoids and mineral corticoids of	stimulated by stress. gluco's are stress	Catecholamines:	Reproductive hormones FSH, LH, HCG, and
affect many cell types in tissue, many types of		hormones.	tyr derivatives synth in adrenal medulla; epi	inhibin are peptides. All others are steroids.
tissues.	b) gonadal: estrogen, progesterone,		and norepi (aka adrenaline and noradrenaline).	
	testosterone.	3) Thyroid-stimulating hormone (TSH)	Similar to sympathetic nervous response, but	Male Reproductive System
Exocrine – release enzymes to external enviro			longer. both are vasoconstrictors of most	male gonads = testes. production of sperm in
thru ducts. include sweat, oil, mucous, and	3) tyrosine derivatives – thyroid hormones	aka thyrotropin. stimulates thyroid to release	tissues but they are vasodilators of skeletal	seminiferous tubules. Spermatogonia located
digestive	and catecholamines. Some can diffuse, some	T3 and T4 via 2^{nd} messenger cAMP. increases	muscle. consistent with fight or flight	in tubules arise from epithelial to become \rightarrow
Endocrine – release hormones directly into	can't. thyroids diffuse, but catecholamines	thyroid cell size, number, and rate of secretion $f T^2 = 4$, their concentrations have not	response (give the most blood to the parts of	spermatocytes \rightarrow spermatids \rightarrow spermatozoa.
blood fluids.	can't, so they use 2 nd msnger.	of T3&4. their concentrations have neg feedback effect on TSH release, both at ant.	body that will carry you away). "stress hormones"	FSH causes sertoli cells to surround, nurture
Pancreas does both: releases digestive	tyrosine must know's:	pituitary and hypothalamus.	normones	pre-sperm. lydig cells release testosterone
enzymes thru panc duct (exo), and releases	thyroid hormones T3 and T4 (insoluble)	pitultary and hypothalamus.	Thyroid Hormones	when stimulated by LH. Test is the primary
insulin/glucagon directly into blood (endo)	catecholamines formed in adrenal medulla \rightarrow	4) FSH and 5) LH	Triiodothyronine (T3) and thyroxine (T4) and	androgen (male sex hormone), stimulates germ
	epinephrine and norepinephrine. (water	-,	calcitonin.	cells \rightarrow sperm. also resp for 2ndary sex
endocrine tends to be slower, less direct, and	soluble)	6) Prolactin	T3 and T4: very similar in effect. secretion	characteristics, pubic hair, enlargement of
longer lasting than nervous system. may take		promotes lacation. inhibited by progesterone	regulated by TSH. both lipid soluble tyr	larynx, growth of penis and vesicles.
seconds to days to have an effect. Hormones	Negative Feedback	and estrogen if baby not yet born.	derivitives, diffusable, a ct in nucleus of cell of	
need a receptor, either on membrane or inside		hypothalamus, oddly, inhibits release of	their effector. <i>†</i> basal (resting) metabolic rate.	when spermatid becomes spermatozoon, forms
cell.	effector will inhibit this. (negative feedback).	prolactin. suckling stimulates hypo to		head, midpiece, and tail. head composed of
and recenter manifie to its hormonal and	gland lags behind effector: high insulin does	stimulate ant. pituitary to release, inhibits	Calcitonin – large peptide. ↓blood Ca2+ via	nuclear material and acrosome for penetrating
each receptor specific to its hormone. one method of hormone regulation: reduction or	not create low blood glucose. high insulin	menstrual cycle. also: prolactin produces milk; oxytocin ejects milk.	↓osteoclast activity & number.	egg. carried to epididymus to mature. propelled thru vas deferens during ejaculation
increase of receptors, or modulating hormone	responds to high blood glucose, and low blood	mink, oxytoeni ejeets mink.	Pancreas (Islets of Langerhans)	into urethra and out of penis. Semen is
concentration.	glucose causes high glucagon to respond. so if	Posterior Pituitary	acts as both endo and exocrine gland. 2	mixture of spermatozoa and fluid that leaves
	patient has high levels of blood glucose, you		important endocrine are insulin and glucagon.	penis.
Endocrine system alters metabolic activities,	would expect the hormone to be most present	aka neurohypophysis. hromones oxytocin and	also releases somatostatin, which inhibits both	<u> </u>
regulates growth and development, guides	the one that is responding to the condition, not	ADH synthesized in hyopthalamus, but	ins and gluc.	Female Reproductive System
reproduction. works in conjunction w/	creating it. so: insulin.	txported down axons to posterior pituitary	Insulin: peptide, released by B-cells of panc.	oogenesis-begins in ovaries. all eggs are
nervous system. Many endocrine glands		where released into blood. (small peptides).	α with energy abundance / high [nutrients] in	arrested as primary oocytes at birth. at
stimulated by neurons to secrete hormones	eg, ADH holds water in body, decreasing urine		blood. released when blood levels of carbs or	puberty, FSH stimulates growth. form zona
3 basic types of hormones	output. increases blood pressure. so person w/ high blood Hg has low ADH.	Oxytocin: small peptide that increases uterine contractions during birth; causes milk ejection	proteins high. affects carb, fat, and protein metab. insulin α carbs uptaken as glycogen in	pellucida around egg. primary follicle. theca cells differentiate and form secondary follicle.
1) peptide – all made in RER, cleaved in ER	high blobd fig has low ADTI.	contractions during offin, causes mink ejection	liver and muscles, fat as adipose, aa's in cells	LH stimulates and rogen secretion, conversion
lume, transported to golgi, packaged by golgi,	eg2, aldosterone increases blood Hg. if low	Antidiuretic Hormone / Vasopressin	and made into proteins. \rightarrow lowers blood	to estradiol (type of estrogen). FSH stimulates
exocytosed whenever the cell is stimulated by		(ADH):	glucose. it uses a 2 nd messenger, so it binds to	its release into blood. estradiol is steroid
another hormone or nervous signal. Water		small peptide, causes collecting ducts of	receptor. does not affect neurons in brain. all	hormone preparing uterine wall for pregnancy.
soluble, move freely thru blood. But have	Specific Hormones and their Functions	kidney to become permeable to water, ↑ H20	others become highly permeable to glucose	inhibits LH secretion by ant pituitary. just
trouble diffusing thru membrane of effector	must know major hormones and glands and	reputake, ↑blood Hg. coffee and beer block	upon insulin binding. also,k intracellular	before ovulation (bursting of folicle), estradiol
(aka target cell). Instead, must attach to	target tissues. group them together in the	ADH.	metab enzymes activated, and even translation,	
receptor.	gland that secretes them.	Adrenal Cortex	transcription rates affected.	surge). positive feedback loop. egg swept into
peptide must know's:	Anterior Pituitary	adrenal glands—on top of the kidneys.	Glucagon: peptide hormone, released by α -	fallopian (uterine) tupe or oviduct. remaining portion left behind to become corpus luteum.
a)anterior pituitary: FSH, LH, ACTH, hGH,	aka adenohypophysis. located in brain	contain:	cells of panc. nearly opposite to insulin.	secretes estradiol and progesterone thruout
TSH, Prolactin	beneath hypothalamus – controls release of	adrenal medulle and adrenal cotex : outside	stimulates glycogenolysis (glyc breakdown).	pregnancy, or if no pregnancy, for about 2
b) posterior pituitary: ADH, oxytocin	ant. pituitory hormones with releasing and	portion. secretes only steroid hormones.	Acts via 2 nd messenger cAMP. in higher []'s,	weeks until corpus luteum degrades into
c) parathyroid: PTH	inhibitory hormones of its own. nervous	secretes 2 types of steroids, mineral	breaks down adipose, increasing fa level in	corpus albicans.
d) pancreatic: glucagon, insulin	signals control release of these.	corticoids (affect electrolyte balance in blood)	Hb. <i>†</i> blood glucose levels.	
		and glucocorticoids (\uparrow [blood glucose], \uparrow fat,		Menstrual cycle repeats itself every 28 days
Receptor – may act as ion channel, may	6 major ant pit hormones (all peptide)	protein metab). major one is cortisol.	Parathyroid	after puberty until pregnancy. with each cycle,
(de)activate other intrinsic proteins. May	1) Human growth Harrison (LOH)	Aldostovono starsid mineral	4 small parathyroid glands attached to back of	
activate intracellular 2nd messenger such as cAMP, cGMP, or calmodulin. Creates	1) Human growth Hormone (hGH) stimulates growth in nearly all cells. increases	Aldosterone, steroid, mineral corticoid. acts in distal conv. tubule and coll. duct to ↑Na+	thyroid. they release: parathyroid hromone (PTH) – peptide,	1) follicular – development of foillicle, ends at ovulation
cascade of of rxns that amplify hormone.	episodes of mitosis, cell size, rate of protein	and Cl- reabsorption, $\uparrow K+, H+$ secretion.	\uparrow Ca2+ in blood. \uparrow osteocyte absorption of Ca	2) luteal- begins w/ ovulation, ends w/
	synthesis, mobilizing fat stores. increases aa	↑bloodHg.		degeneration of corpus luteum into corpus
	txport across cell membrane \rightarrow increases		Ca reabsorption, renal PO3 excretion. ↑Ca and	

in menstrual cycle, all of FSH, LH, and Estrogen peak right before ovulation. Estrogen and progesterone have peaks during secretory phase.	thicken and form into nerual plate. Eventually degenerates, while a neural tube forms from neural plate to become spinal cord, brain, and most of nervous system. (Induction is when one cell type affects direction of differentiation of another cell type).			 also secrete intrinsic factor, helps ileum absorb B12. 4) G cells - secrete gastrin to interstitium. large peptide hormone, absorbed into blood and stimulates parietal cells to secrete HCl.
 Fertilization and Embryology once in fallopian, egg swept towards uterus by cilia. fertilization normally takes place in fallopian tube. sperm entry into egg causes cortical reaction, preventing other sperms from fertilizing. NOW oocyte goes thru second meitotic division to become ovum, releases 2nd polar body. fertilization occurs when nuclei of ovum and sperm fuse to form zygote. cleavage beings while zygote still in fallopian → many cycles of mitosis. when 8 or more cells, called morula. cells here are totipotent, or can express any gene. Form hollow ball called blastocyst. lodges in uterus in process called implantation about 7 days after ovulation. egg begins secreting peptide hormone human chorionic gonadotropin (HCG). prevents degeneration of corpus luteum, maintains its secretion of estrogen and progesterone. HCG in blood and urine of mother a sign of pregnancy. placenta is formed from tissue of egg and mother, takes over job of hormone secretion. starts secreting its own estro and progest. After 8 cells, embryo starts to differentiate. committed developmental path – determination. gastrulation forms gastrula in 2nd week. primitive streak formed in mammals, analagous to blastopore in aquatic vertebrates. cells destined to become mesoderm migrate to primitive streak. 3 germ layers formed: 1) ectoderm – outer coverings, skin, nails, tooth enamel, cells of nervous system and sense organs. 	programmed cell death. essential for development of nervous system, operation of immune system, and destruction of tissue b/w fingers and toes to create normal hands and feet. failure to do this → cancer This is regulated by protein activity instead of transcription/translation level. Mitochondria plays important role. Proteins for apop are present but inactive in healthy cell.	secretion TSH – stims release of T3 and T4 in thyroid Prolactin – promotes milk production Posterior Pituitary Oxytocin – milk ejection, uterine contraction ADH – water absorption by kidney; ↑ Hb Hg Adrenal Cortex Aldosterone- ↓Na excretion; ↑K excretion; ↑ Blood Hg. Cortisol - ↑ blood levels of carbs, proteins, fats Adrenal Medulla Epinephrine – stimulates sympathetic actions Norepinephrine - stimulates sympathetic actions Thyroid T3, T4 - ↑basal metabolic rate Calcitonin - ↓blood calcium Parathyroid PH – ↑ blood calcium Pancreas Insulin – Promotes entry of glucose into cells, ↓glucose blood level Glucagon – Increases gluconeogenesis,	 area of food, enables more enzymes to act on it at once. Form a bolus of food. Pushed into esophogous by swallowing and then down esophogous via peristalsis. performed by smooth muscle. no digestion in esophagus. <u>Stomach</u> All digestion, no absorption. bolus enters stomach at cardiac sphincter. stomach: flexible pouch that stores and mixes food, reducing it to semifluid mass called chyme. Has exocrine glands with gastric pits. another function of stomach: begin protein digestion with pepsin. low pH assists process by denaturation. full stomach has pH of 2. Helps kill ingested bacteria. 4 types of cells: mucous cells – secrete mucous to line stomach wall and necks of exocrine glands. food can slide along wall without damage, protects epithelial lining from acidic environment. also secrete a little pepsinogen. 	 major hormones that affect secretion of stomach juices: -acetylcholine: ↑ all types of secretion -gastrin: ↑ HCl mostly -histamine: ↑ HCl mostly Small Intestine 90% of digestion and absorption. 3 parts largest to smallest: duodenum, jejunum, ileum. Most digestion in duodenum, most absorption in the other two. small intestine wall contains villi – finger like projections. on apical surface of the cells of each villus cell (enterocytes) are much smaller finger length projections, microvilli. fuzzy covering, aka brush border. Contains membrane bound digestive enzymes for carbs, as well as dextrinase maltase sucrase and lactase; peptidates for proteins, nucleosidases for n-tides. Some epithelial are goblet cells, secrete mucus to lubricate intestine. Lots of cell death and growth here. villus: capillary network and lymph vessel called lacteal. Nutrients absorbed pass thru cappilary and then lacteal. intestinal exocrine glands deep in villi. secrete pH 7.6 juice and lysozyme (regulates bacteria). Pancreas chyme squeezed out of stomach thru pyloric sphincter into duodenum. pancreas has sent bicarbonate, so pH is ~6. Panc also acts as exocrine gland, releasing enzymes from acinar cells thru panc. duct into duodenum. Major panc. enzymes: -trypsin: proteins → small polypeptides -chymotrypsin: "" -pancreatic amylase: hyrdolyzes polysacch's to disacch's and tri's. much more powerful
 2) mesoderm – the stuff that lies between inner and outer coverings of body: muscle, bone, all the rest. 3) endoderm – lining of digestive tract, most of the liver and pancreas. 		Testosterone- 2ndary sex characteristics, closing of epiphyseal plates Placenta HCG – stimulates corpus luteum to grow, release estro and progest	 protein digestion. 3) parietal (oxyntic) cells – secrete hydrochloric acid (HCl) which diffuses to lumen. needs lots of energy to do this. CO2 involved, making carbonic acid inside cell. 	than salivary. -lipase- degrades fat, spef. triglycerides. fat is insoluble in aq. soln. reduced surface area unless bile breaks it up. bile produced in liver, stored in gall bladder. released thru cystic duct, empties into common bile duct shared w/ liver. \rightarrow pancreatic duct \rightarrow duodenum. Bile

physically but not chemically. increases			loop, passively at first, then actively.	systemic circulation -1^{st} half.
surface area, allowing lipase to break down	converted to fat for long-term storage. For big		ascending loop is nearly impermeable to	
into fatty acids and monoglycerides.	picture, think about glycolysis and kreb's	spleen.	water. 2 nd capillary bed called vasa recta	from right atrium, blood squeezed into right
-ribonuclease -	cycle.	Vitamin storage: liver stores vitamins A, D,	surround loop and helps to maintain [] in	ventricle, r ventr pumps blood through
-deoxyribonuclease	Durgestering substanting the still distance encoded in its	and B12. also stores iron combining with	medulla.	pulmonary arteries to arterioles to capillaries
	Proteins – virtually all dietary protein is broken down completely into aa's before being	protein apoferritin to form ferritin.		of lungs. from lung capillaries, blood collects
chyme is moved thru intestines by peristalsis. segmentation is mixing of chyme w/ digestive	absorbed into blood. When you hear proteins,	when liver metabolizes fat for E, produces	Distal tubule : reabsorbs Na+ and Ca2+ while secreting K+, H+, and HCO3 Aldosterone	in venules, then veins, finally in pulmonary veins leading to heart. pulmonary veins empty
juices.	think "nitrogen." Uses cotransport	ketone bodies. \rightarrow ketosis / acidosis.	acts on distal to increase sodium and	into left atrium, which fills left ventricle. 2 nd
juices.	mechanism.	when liver metabolizes fat or	potassium memb transport proteins. Net	half of circulation is called pulmonary
The Large Intestine	ammonia is by-product of gluconeogenesis	protein for energy, bloody acidity	effect: lower filtrate osmolarity. collecting	circulation. Closed circulatory system for
If get a large intest question, think water	from proteins. nearly all NH3 converted to	increases $\downarrow pH$.	tubule : at end of the distal, ADH acts on it to	humans.
reabsorption. profuse water loss in diarrhea	urea by liver and then excreted in urine by	mereuses (prin	increase permeability to H20. \rightarrow more	
results from problem in the LI. know	kidney.		concentrated filtrate. empties into collecting	
mutualistic symbiosis b/w humans and	5	The Kidney	duct. cd carries filtrate into highly osmotic	concentrate on function: left v contracts w/ the
bacteria there. bacteria get leftovers, we get	Fats: fat is insoluble in water, so needs carrier,		medulla. impermeable to water, but sensitive	most force to propel the blood through
vitamins	such as albumin (a lipoprotein). hear "fat"	1) excrete waste: urea, uric acid, NH3, PO3.	to ADH. if ADH, permeable to water, urine is	systemic circulation
4 parts:	think "long-term energy storage, lots of	2) maintain homeostasis of body fluid V,	more concentrated. \rightarrow renal calyx \rightarrow renal	
1) ascending colon	calories (energy) with little weight.	solute composition.	pelvis.	Heart is large muscle. Not attached to bone.
2) transverse colon		3) control plasma pH.		Systole occurs during contraction; diastole
3) descending colon	shuttled via bile micles to brush border of sm.		Juxtaglomerular Apparatus	during relaxation of entire heart, and then
4) sigmoid colon	intestine.	2 kidneys. each is made up of outer cortex	-monitors filtrate pressure in distal tubule.	contraction of atria.
	energy rate (cal per gram)	and inner medulla. Urine created by kidney	-granular cells secrete renin.	<u></u>
		and emptied into the renal pelvis. emptied by	\rightarrow initiates regulatory cascade of angiotensins	Blood is propelled by hydrostatic pressure
if this fails \rightarrow diarrhea. LI also has E.Coli.	but takes diff amnt of energy to break down	ureter, which caries urine to bladder, drained		created by contraction of heart. Rate of
they produce vitamins K, B12, thiamin,	globules called chylomicrons move into	by urethra .		
riboflavin. healthy feces has 75% water. rest	lacteals of the lymph . emptied into large veins at throactic duct. from adipose, most fa's	n - h f	absorb sodium and secrete potassium.	by ANS, though. Contracts automatically by specialized cells called sinoatrial node (SA
is dead bacteria, fat, inorganic matter, etc.	transported as free fa, which combines	nephron : functional unit of kidney. blood flows first into capillary bed of nephron called	ADH = "Always Digging Holes" in the	node) located in R atrium. spreads
Gastrointestinal Hormones	immediately in blood w/ albumin.	glomerulus. Bowman's capsule and	collecting duct.	contractions to surrounding muscles via
don't need to know them but may appear. just	miniculately in blood w/ albumin.	glomerulus make up the renal corpuscle .	concerning duct.	electrical syapses via gap junctions. SA pace
understand idea of digestion. body eats to gain	The Liver	Hydrostatic pressure forces some plasma	Overview: know function of each section of	is faster than normal heartbeats but parasymp
energy in form of food. digestive system	positioned to receive blood from capillary beds		the nephron: filtration occurs in renal	vagus innervates SA node, slowing
breaks down food so it can be absorbed into	of intestines, stomach, spleen, and pancreas	endothelium and into Bowman's capsule.	corpuscle; reabsorption and secretion mostly	contractions. AP generated by SA nodes
body. one prob is that food may move to fast	via hepatic portal vein. leads eventually to	fenestrations screen out blood cells and large	in proximal tubule; loop of Henle concentrates	spreads around both atria causing them to
and come out undigested. stomach stores	vena cava.	proteins from entering the capsule. fluid	solute in medulla, distal tubule empties into	contract and spread to AV note. AV is slower
food, releases small amnt at time to be		entering is called filtrate . moves to proximal	the collecting duct; collecting duct	to contract. from AV node, moves to bundle
digested / absorbed by intestine. that way	Functions:	tubule. where reabsorption takes place.	concentrates urine. Amnt of filtrate is related	of His (on wall separating ventricles). spread
body can take in large amnt at a single time		2ndary active transport proteins on apical	to hydrostatic pressure of glomerulus.	to Purkinje fibers . AP is spread through
and take a long time to digest. GI hormones	Blood storage: liver can expand to act as Hb	membranes of prox tubule cells, reabsorb	Descending loop of henle is permeable to	muscle.
just help to regulate this process.	reservoir for body	nearly all glucose, most proteins, and other	water, and ascending loop is impermeable to	
	Blood filtration: kupfer cells phagocytize	solutes. transport proteins become saturated	water and actively transports sodium into	must know the vagus nerve. parasympathetic,
secretin – responds to HCl in duodenum.	bacteria picked up from intestines	until reach transport maxiumum. any more	Kidney.	innverates heart and digestive system. slows
cholecystokinin – responds to food in	Carbohydrate metabolism: liver maintains	solute washed into urine. some solutes	big picture: function of kidney is homeostasis.	rate of heart contractions and increaes
duodenum gastric inhibitory peptide – responds to fat /	normal blood glucose levels thru gluconeogenesis, glycogenesis, and storage of	reabsorbed by passive or facilitated diffusion. Water is rabsorbed into renal interstitium of	big picture: function of kidney is nomeostasis.	digestive activity of enzymes. Know role and location of purkinje fibers.
protein in duodenum.		prox tubules across relatively permeable tight		location of purkinge fibers.
protein in duodendin.		junctions down the osmotic gradient.		Arteries: elastic. stretch as fill w/ blood.
Absorption and Storage overview	cholesterol and converts carbs, proteins into	Janeachis down are osmotic grutient.	Cardiovascular Anatomy	when ventricles fully contract, stretched
convert ingested food into basic nutrients that	fat. oxidizes fa's for E, forms most	drugs, bile, uric acid, antibiotic, toxins, other	consists of heart, blood, and blood vessels.	arteries recoil. smooth muscle; innervated by
small intestine is able to absorb. once	lipoproteins.	solutes secreted into filtrate by proximal	for MCAT, must be able to trace	sympathetic nervous system.
absorbed into enterocytes, nutrients processed	Protein metabolism: liver deaminates aa's,	tubule. H ions secreted thru antiport system	,	-5 F
and carried to indiv. cells for use. Quick and	forms urea from NH3 in the Hb, synthesizes	w/Na. \rightarrow net result: reduce amnt of filtrate in	circulatory path of blood:	Epinephrine: powerful vasoconstrictor
dirty overview of the 3 main nutrients, carbs,	plasma proteins such as fibrinogen,	nephron w/o changing osmolarity.		causing narrowing of arteries.
proteins, fats	prothrombin (important clotting factors)		left ventricle, pumped through aorta. from	Medium-sized arteries constrict under
	albumin (major osmoregulatory protein in Hb),		aorta, branch with many smaller arteries,	sympathetic stimulation; large ones less
Carbohydrates - 80% glucose. absorbed via		Henle. loop dips into medulla. function is to	which branch into still smaller arterioles,	affected.
2ndary actie transport down conc. gradient of			which branch into still smaller capillaries.	
sodium. all absorbed into bloodtream and	Detoxification: detoxified chemicals excreted	pressure of medulla. water passively diffuses	collected into venules, which themselves	Arterioles: very small. Wrapped by smooth
carried by portal vein to liver. liver's job is to		out of loop of Henle and into medulla.	collect into larger veins, which collect again	muscle. constrict/dilate to regulate blood
maintain constant blood glucose level. liver	excreted by kidney.	descending loop has low permeability to salt,	into superior and inferior vena cava. the vena	pressure, also rerouting.
converts the carbs to glucose and then glycogen, breaks down when needed.		so filtrate osmolarity goes up. as filtrate rises out of medulla, salt diffuses out of ascending	cava empty into the right atrium of the heart.	
grycogen, oreaks uown when needed.	1	out of meduina, san unfuses out of ascelluling	I	l

Arteries – blood away from heart. Not always		-bicarbonate ion $\rightarrow 80\%$ of the time	(txports fatty acids, steroids),	promoted by B lymphocytes. differentiate,
oxygenated. Pulmonary arteries contain the most deoxygenated blood in the body.	prevents food from entering trachea during swallowing. contains vocal chords.	-carbamino cpds	immunoglobulins (antibodies), and clotting factors (eg, fibrinogen).	mature in bone marrow, liver. capable of making single antibody, displays it on
Veins – blood to heart.	swanowing. contains vocar chorus.	bicarb ion formation governed by carbonic		membrane. will recognize antigen.
venis bloba to neart.	trachea (windpipe)- lies in front of	anhydrase in reversible rxn:	Buffy Coat (white blood cells). Aka	macrophages present antigenic determinants of
Capillaries – microscopic blood vessels.	esophogous. composed of ringed cartilage.	$CO2 + H20 \rightarrow HCO3 - + H+$	Leukocytes. no Hb. protection from	engulfed microbes on their surfaces. if B
only 1 cell thick. this is where nutrient and	contains mucous and cilia, usher dust towards		invaders. neutrophils, eosinophils, and	lymph recognizes, then helper T cell,
gas exchange happens. 4 methods of crossing:	pharynx. trachea splits into L and R bronchi.	When CO2 absorbed into lungs, bicarb	basophils are granular leukocytes. live	differentiates into plasma cells and memory B
1) Pinocytosis	each bronchi branches into tiny bronchioles,	diffuses into cell. To balance, chlorine is	shorter bc are nonspecific infection fighters.	cells. \rightarrow synthesize free antibodies, releasing
2) diffusion or transport through cap memb's	terminating into grape-like clusters alveoli.	expelled.	Agranular include mono, lympho, and	into blood. antibody attached to mast cell,
3) movement thru cell fenestrations	There, O2 diffuses into capillary where picked		megakaryocytes. Live longer bc respond	releasing histamine, etc. cause antigenic
4) movement thru space b/w cells	up by red Hb cells. they release CO2, which	\uparrow CO2 pressure α \uparrow Hb content of CO2.	specifically to infectious agents. need to hang	perforation. antibodies may cause antigenic
found along to all calls of hady	diffuses into alveolus and expelled upon	when Hb saturated with O2 $\alpha \downarrow$ CO2 affinity	around for when they return. monocytes	substance to agglutinate. may mark for destruction by macrophages or natural killer
found close to all cells of body. as blood flows:	exhallation.	Rate of breathing affected by central	become macrophages.	cells. primary response. Memory b cells
-hydrostatic P > osmotic P at artery end	Since microtubules found in cilia, and ciliated	chemoreceptors in medulla. also peripheral	Red blood cells (35-50%). Aka	proliferate and remain in body. 2ndary
\rightarrow net fluid out of capillary, into interstitium	cells in respiratory tract (and fallopian tubes	ones in cartoid arteries and aorta. Increase	Erythrocytes. bags of hemoglobin. No	response. much shorter.
-osmotic $P >$ hydrostatic P towards venule end		breathing when CO2 concentration gets too	organelles, no nucleus. no mitosis or meiosis.	
,	in microtubule production might result in	high.	disk shaped. main fx to deliver O2 and	effective response against bacteria fungi,
	breathing problems (or fertility or circulation	0	remove CO2.	parasites, viruses, blood toxins.
	of cerebrospinal fluid).			
Venules and veins – similar in structure to			All blood cells differentiated from stem cells,	
arterioles and veins.	Chemistry of Gas Exchange		in bone marrow.	
	air inhaled: 79% N2, 21% O2.	Nitrogen's effect on body: extremely stable		
larger lumen than arteries, containing far	air exhaled: 79% N2, 16%O2, 5% CO2.	bc of triple bond. diffuses into blood, but		
greater V of blood.	inside lungs, partial pressure of O2:	doesn't interact. Divers: more pressure, more N2 diffused. bubbles \rightarrow the bends	Platelets : small portions of memb-bound cytoplasm. agranular. adheres to, activates	
blood velocity α 1/cross-sectional area	110mmHg. CO2: 40 mmHg	N2 diffused. bubbles – the bends	other platelites when encounters injured	-cell-mediated/T-cell immunity
blood velocity a 1/closs-sectional area	\rightarrow O2 moves into capilaries, CO2 leaves to	Lymphatic System	endothelium.	-cen-mediated/1-cen minumty
blood moves slowest through capillaries	alveoli.	<u></u>	\rightarrow coagulation. 3 steps	Cell-mediated immunity involves T-
Bernouli's equation states that		-collects excess interstitial fluid, returns it to	1) a dozen factors form coagulation complex	lymphocytes. effective against infected cells.
Pressure α 1/cross-sectional area	98% of O2 in blood binds rapidly and	blood	called protrombin activator	mature in thymus. antibody like protein at
this is not the case for blood, because not an	reversibly with protein hemoglobin inside the	-takes up proteins and large particles that	2) protrombin activator catabolizes	surface. unlike B cells, never make free
ideal flow.	erythrocytes forming oxyhemoglobin.	capillaries cannot take up	conversion of prothrombin into thrombin	antibodies. tested against self-antigens. if
	Composed of 4 polypeptide subunits, each	-monitors for infection.	3) thrombin : enzyme that governs	responds to self-antigen, it is destroyed. if
Pressure : Hb Hg \uparrow near the heart and \downarrow at	with single heme cofactor. (has iron atom	-reroutes low soluble fat digestates around	polymerization of protein fibrinogen to fibrin	passes test, allowed to circulate in blood &
capillaries.	center). Each of 4 Fe atoms can bind with one	small capillaries of intestine into large veins of	threads that attach to platelits. Bloot clot	lymph. Differentiate into:
X7 1 • 4 • 1 • 4 • 1 • 11	O2 molecule. Binding / Unbinding accelerates	neck.	formation (coagulation) appears in seconds in	
Velocity : single artery bigger than capillary, but far more capillaries than arteries. Blood	the same thing for nearby ones. \rightarrow "cooperativity"	-Drains almost all tissues except CNS.	small injuries.	-helper T cells: assist in activating B lymphocytes. the ones attacked by HIV
follows continuity equation $Q = Av$, so	cooperativity	-open system	Immune System	-memory T cells: similar to memory B cells.
velocity is greatest in arteries' cross sectional	As O2 pressure ↑,	Fluid is propelled in 2 ways	innate immunity – generalized protection	-supressor T cells: negative feedback.
area is smallest.	O2 saturation of Hb \uparrow sigmoidally	1) smooth muscle contracts when stretched	against most intruding organisms, toxins.	-killer / cytotoxic T cells: bind to antigen-
	Oxyhemoglobin (HbO2) dissociation curve:	2) may be squeezed by adjacent skeletal	Includes skin barrier, stomach acid,	carrying cell; release perforin, punctures and
Respiratory System	-shows % Hb bound to O2 at varies pp's of	muscles	phagocytotic cells, and chemicals in blood.	kills antigen-carying cell. can kill many cells.
provides path for gas e/x b/w external enviro	O2. arteries of normal person breathing air,			implicated in cancer fighting and transplanted
and blood. Air enters through nose, moves	O2 saturation is 97%. straight portion show	empties into large veins @ thoracic duct and R	acquired immunity- attacking specific	tissue.
through pharynx, larynx, trachea, bronchi,	small fluctuations have little effect.	lymphatic duct. All throughout, many lymph	organisms or toxins after recognition.	
bronchioles, and into alveoli where O2 is e/x		nodes containing large quantities of		Overview of Infection
for CO2 w/ the Hb.	$\uparrow P(Co2) \alpha \uparrow [H+] \alpha \uparrow Temp$	lymphocytes.	Inflammation: caused by histamine,	first: Inflammation. macrophages, neutrophils
Inspiration occurs when medulla oblongata	O2 saturation of Hb also dependent on CO2	Dlood	prostaglandins, lymphokines. dilation of	engulf bacteria. Interstitial fluid flushed to lymphatic system where lymphocytes wait in
sends singal to diaphragm to contract.	pressure, pH, and T. O2 dissociation curve	Blood	blood vessels, ↑ capillaries, tissue swelling, migration of granulocytes, macrophages to	their nodes. Macro's process and present
-diaphragm is skeletal muscle and innervated	shifted to right by increase in CO2 pressure,	Blood is connectivie tissue : contains cells +	inflamed area.	antigens to B lymphocytes. W/ Helper T cells,
by phrenic nerve. if relaxed, dome-shaped.	hydrogen ion concentration, or	matrix. regulates extracellular movement of		B lymphocytes differentiate into memory and
flattens upon contraction. chest expands.	temperature.	body by transporting nutrients, waste products,	when neutrophils and macrophages engulf	plasma cells. Prepare for future attack.
nations apon contraction. Chost empanaes	→ lowering of Hb's affinity to O2. If CO	hormones, even heat. also involved in	dead tissue/bacteria, they die and become pus.	plasma cells produce antibodies.
nasal cavity: space inside nose.	poisoning, pure O2 can be administered to	immune	Eosinophils mostly against parasitic infections	· · · · · · · · · · · · · · · · · · ·
filters, moistens, and warms incoming air.	replace.		Basophils release chemicals for inflamm rxn	Know a single antibody is specific for a single
coarse hair, mucus secreted by goblet cells.	•	blood in centrifuge separates into 3 parts:		antigen, and a single B lymphocyte produces
Cilia move mucus and dust.	O2 P usually 40mmHg in body tissues		2 types of acquired immunity:	only 1 antibody type.
	CO2 carries by blood in 3 forms	Plasma (matrix: water, ions, urea, ammonia,	-humoral/B-cell immunity	
pharynx (throat)- passageway for food + air	-physical soln	proteins, etc.). Contains proteins albumin	1	Blood Types

		fibers thruout muscle innervated by single	1) single-unit : visceral. most common smooth	Most calcium stored in bone matrix
defined by the A and B surface antigens. if	shivering - involuntary skeletal movement	neuron.	muscle. connected by gap junctions, spreading	
type A, then you don't make A antibodies, of	controlled by hypothalamus to generate heat.	neuron + fibers = motor unit	of AP. cells can contract as single unit. found	
course. Type O has neither A nor B antigens,		smaller mu's react quicker than large ones.	in small arteries and veins, stomach, intestines,	
but makes both A and B antibodies. Blood	Physiology of Skeletal Muscle Contraction	smooth motion works via this process.	uterus, urinary bladder. many cells innervated	4 types: long (finger, arm), short (ankle or
donor may only donate to an individual that	sarcomere: smallest functional unit.	fingers: small mu's, intricate movement	by 1 neuron.	wrist), flat (skull, ribs, made of spongy bone),
does not make antibodies to donors blood. O	composed of many strands of 2-protein	back: large mu, large force	2) multi-unit : each multiunit muscle fiber	or irregular.
may donate to anyone; individual with AB	filaments, thick and thin. surrounded by		attached directly to a neuron. 1 cell, 1 neuron.	
may receive from anyone.	endoplasmic reticulum of muscle cell called	Skeletal Muscle Type	group of fibers can contract independently.	Bone is not just for support, protection, and
		3 types:	large arteries, bronchioles, iris, etc.	movement. Also stores calcium and
Genes that produce A and B antigens are	with Ca2+ ions. lots of mitochondria, nuclei.	1) slow oxidative (type I) fibers. "slow		phosphate, maintains their concentrations in
codominant. Type O is 2 recessive alleles. A	skeletal muscle is multinucleate. sarcolemma	twitch". Red. large amounts of myoglobin,	Also contract/relax in presence of hormones,	blood. Stores energy in adipose. Also, site of
or B may be hetero or homozygous.	wraps several myofibrils together to form a	(O2 storing protein similar to Hb, but can only	changes in in pH, O2, CO2 levels, T, ion	blood cell formation.
	muscle cell or muscle fiber. many fibers	store one molecule of O2.) lots of	conc's.	
Rh factors: surface proteins on red blood	bound into fasiculus, fasiculae into single	mitochondria. slow at splitting ATP. slow to	7	Cartilage
cells. Rh-negative or Rh positive. usually	muscle.	fatigue, but slow to contract.	Bone	flexible, resilient, connective tissue. mostly
mild w/ transfusions. Important during		2) fast oxidative (type IIA) fibers. "fast	living tissue	collagen. great tensile strength. no blood
pregnancy of an Rh-negative mother with Rh-	Know that during contraction, H zone and I	twitch." also red. split ATP at high rate.	supports soft tissue, proects internal organs	vessels or nerves except in outside membrane
positive fetus. 1 st pregnancy, mother not exposed to fetal blood until birth. but by 2 nd	band get smaller, while A band does not	contract rapidly, not as resistant to fatigue as	assists in movement of body, minteral storage,	called perichondrium.
	change size.	slow. 2) fast shugehtin (type IID) fibers "fast	blood cell production. energy storage, too:	3 types: 1) hyaline 2) fibrocartilage 3) elastic
birth, has developed imune response. Can	thick filament of sarcomere made up of	3) fast glycolytic (type IIB) fibers. "fast twitch B." low myoglobin. appear white.	adipose in bone marrow.	hylaine most common. reduces friction and absorbs shock in joints.
attack baby if not caught early.	myosin. globular heads protrude along both	contract rapidly, lots of glycogen.	4 types of cells surrounded by matrix:	absorbs shock in joints.
	ends of thick filament. thin filament is mostly	contract rapidity, lots of grycogen.	1) Osteogenic/Osteoprogenitor cells:	Joints
	globular protein actin . attached are troponin	Most muscles in body mixture of these 3.	differentiate to osteoblasts	3 types
	and tropomyosin.	Depends where Posture muscles mostly type		1) Fibrous – b/w 2 bones closely/tightly
	Myosin and actin work together sliding	I. type IIA in legs. type IIB in upper arms.	collagen. –incapable of mitosis. differentiate	together. little or no movement. eg skull
Muscle, Bone, and Skin	alongside to make contractile force of muscle.	. type in this toget type ind in upper units.	into osteocytes as they release matrix around	bones or teeth w/ mandible
nusere, bone, and shin			themselves.	2) Cartilaginous : - also restricted movement.
Muscle	Each myosin head crawls in 5 stage cycle.	Adult human skeletal muscle: so specialized	3) Osteocytes: also incapable of mitosis. E/x	b/w 2 bones connected by cartilage,
3 types of muscle tissue:	1) tropomyosin covers active site on actin;	they don't do mitosis. Instead, they change	nutrients and waste w/ blood	ribs/sternum, eg.
1) skeletal		due to force. including: diameter of muscle	4) Osteoclasts: reabsorb bone matrix,	3) Synovial: not bound directly by innervating
2) cardiac	head remains "cocked" in high-energy position	fiber ↑, number of sarcomeres and mitochond	releasing	cartilage. separated by capsule filled w/
3) smooth	with phosphate and ADP attached.	\uparrow , sarcormeres' length \uparrow . Changes referred to	minterals back to blood. Develop from WBC	synovial fluid. allows lubrication and
	2) Presence of Ca2+ ions: troponin pulls	as hypertrophy.	called monocytes.	nutrients to cartilage. also has phagocytic cells
muscle contraction has 4 possible functions:	tropomyosin back, exposing active site, allows			that remove microbes from wear/tear. allow
1) body movement	myosin head to bind to actin.	Cardiac Muscle	Spongy bone - contains red bone marrow, site	for lots of movement.
2) stabilization of body position	3) Myosin head expels phosphate and ADP	heart: mostly cardiac muscle. striated,	of RBC development (homopoiesis).	
3) movement of substances thru body	and bends into low-E position, dragging actin	composed of sarcomeres. Each cell only 1		Skin
4) generating heat for homeostatis				considered organ. group of tissues working
~	of sarcomere and muscle contraction.	disc (contain gap junctions, allowing AP to	holds yellow bone marrow. contains adipose.	together.
Skeletal Muscle	4) ATP attaches to myosin head, releasing it	spread via synapse). mitochondria of cardiac	highly organized.	FUNCTIONS:
voluntary muscle tissue; can be consciously	from active site, which is covered immediately			1) Thermoregulation : blood conducts heat to
controlled. connects one bone to another.	by tropomyosin.	skeletal. also, not connected to bone. forms a		skin. hairs excreted and can trap heat. skin
attaches to the tendon attached to the bone.	5) ATP \rightarrow PO3 + ADP \rightarrow causes myosin head		osteoclasts burrow tunnels, called Haversian	has warmth and cold receptors.
usually stretches across a joint.	to cock into high-E position.	-involuntary -grows via hypertrophy	canals. Osteoblasts then lay down new matrix forming concentric rings, lamellae .	2) Protection : physical barrier against bacteria, dehydration chemicals, UV rays
Muscles work in groups,	Cycle repeats many times to form a	-AP has plateau after depolarization		3) Environmental Sensory Input: skin
wuscies work in groups,	contraction. $Ca2+$ is important.			gathers info from environment. sense T, P,
antagonistic:	contraction. Ca2 + is important.	channels.	connected by crossings called Volkmann's	pain and touch.
uniugonistic.	muscle contraction begins with AP. neuron	enamiers.		4) Excretion: water and salts excreted.
- the agonist contracts	attaches to muscle cell: neuromuscular	Smooth Muscle	called "osteon."	5) Immunity : specialized cells of epidermis
- the antagonist stretches	synapse. AP of neuron releases ACh into	mostly involuntary. innervated by ANS. like		are components of immune system. besides
example: upper arm muscle – biceps and	cleft. activates ion channeles in sarcolemma	cardiac, only 1 nucleus. thick and thin	Bone Function in Mineral Homeostasis	being a barrier.
triceps.	of muscle cell creating AP. AP moves deep	filaments, but not organized into sarcomeres.	Ca salts mostly insoluble. usually bound to	6) Blood reservoir : vessels in dermis hold
	into muscle cell via small tunnels in membrane		proteins in blood. Free Ca2+ in blood is	10% of our blood.
OR	called T-tubules. allows for uniform	dense bodies. when contract, cause	important concentration.	7) Vitamin D synthesis: UV rays activate
			-	molecule in skin that is precursor to vit D.
ann anaistia:		intermediate filaments to pull dense bodies		more cure in shin that is preclasser to the D.
synergistic:	rapidly. AP spreads to sarc retic, allows in	together. smooth muscle cell shrinks length-	too much : membranes hypo-excitable \rightarrow	modified by enzymes in liver and kidneys to
synergistic.	rapidly. AP spreads to sarc retic, allows in Ca2+ ions. begin 5 stage cycle. at the end of	intermediate filaments to pull dense bodies together. smooth muscle cell shrinks length- wise.	lethargy, fatigue, memory loss	
-movement / posture.	rapidly. AP spreads to sarc retic, allows in	together. smooth muscle cell shrinks length- wise.	• •	modified by enzymes in liver and kidneys to become the vitamin.
	rapidly. AP spreads to sarc retic, allows in Ca2+ ions. begin 5 stage cycle. at the end of	together. smooth muscle cell shrinks length-	lethargy, fatigue, memory loss	modified by enzymes in liver and kidneys to

1) epidermis: avascular epithelial. made up of	1 dominant 1 recognize = hotorographic =	1	5) no selection for fittest organism.	(body cavity w/in mesoderm). Posess
keratinocytes for waterproofing. melanocytes		Species – usually all organisms that can	5) no selection for fittest organism.	notochord during development (embryonic
for melanin (pigment). Langerhans for	nyond	produce fertile offspring with each other.	No population has all 5 characteristics. Small	axial support), pharyngeal slits, dorsal, hollow
interaction with helper T cells of immune	(1 st) Law of Segregation – alleles segregate	r	populations subject to genetic drift \rightarrow one	nerve cord, and tail.
system. Merkel cells attach to sensory neurons		speciation – geographic isolation, habitat	allele permanently lost due to death of all the	
for sensation of touch.	chance of possess any allele.	isolation, seasonal isolation, mechanical	carriers.	Vertebrata – subphylum. have notochord
5 strata		isolation, gametic isolation, developmental		replaced by segmented cartilage or bone
deepest layer is Merkel cells and stem cells.	Inbreeding: what mendel did. does not	isolation, hybrid sterility, selective hybrid	Binomial theorem:	structure. brain enclosed in skull. Mammals
continually divide to produce keratinocytes	change %'s of alleles but causes homozygotes	elimination, and behavioral isolation.		arose from reptiles about 220 million years
and others. Keratinocytes rise to the top layer. as they rise, accumulate keratin and die, losing			$\mathbf{p}^2 + 2\mathbf{p}\mathbf{q} + \mathbf{q}^2$	ago.
cytoplasm and nucleus, etc. at top layer,	Outbreeding is mating of nonrelatives \rightarrow	niche – way species exploits their environment	predicts genotypic frequency w/ only 2 alleles	
slough off and die. 2-4 week process.	heterozygotes ↑	survival of the fittest – one species will	in population	
pressure or friction stimulates thickening	heterozygotes	exploit environs more efficiently – leading to	in population	
called callus.	Punnett square – predicts genotypic ratios.	extinction of other with same niche.	so if A is dominant and a is recessive, and they	
	dihybrid cross		are only alleles for specific gene.	
2) dermis:	Ww+Gg x Ww+Gg \rightarrow 9 y, r	2 operating reproductive strategies		
fat beneath skin important insulator for body.	3 y, w	r-selection: large numbers of offspring with	if 80% of genes are A, 20% a.	
connective tissue from mesoderm. embedded	"dihybrid cross" 3 g, r	no parental care	Same percentages for gametes.	
by Hb vessels, nerves, glands, hair folicles.	1 g, w	K-selection: slow maturing offspring, strong	Probability that two A's come together is	
collagen and elastic fibers \rightarrow strength.		parental care \rightarrow sigmoidal growth curve	$0.8 \text{ squared} = 0.64 \frac{64\%}{64\%}$	
Meissner's corpuscle – touch	9:3:3:1 = phenotypic ratio of dihybrid cross	leveling off at carrying capacity.	Two s's come together 0.2 squared = $0.04 = \frac{4\%}{4}$	
sebaceous gland – oil	(2 nd) Law of Independent Assortment –	Adaptive radiation – several species arise	All remaining = heterozygotes	
Pacinian corbuscle – vibration	genes on diff chromosomes assort	from single ancestral species.	32%	
	independently. closer genes are on a			
	chromosome, more likely they will stay	evolutionary bottleneck: shift in allelic	only 2 alleles, so $p + q = 1$.	
	together.	frequencies of survivors of a crisis.		
	male vs. female chromosomes	Divergent evolution – 2 or more species		
	23 rd pair establishes sex of individual.	evolving from same group from common		
	aka "sex chromosome"	ancestor.		
Populations	The pair of sex chromosomes appear as an X	Convergent evolution – 2 species		
i opulations	and a Y. If found on either, gene considered	independently evolving similar structures \rightarrow	Origin of Life	
Mendelian Concepts	sex-linked. woman is carrier if she has one	homoplastic structures. eg, wings of bats and		
Mendel, monk, crossed purple flowered plants	recessive sex-linked gene.	birds. no common ancestor, but common	universe is 12-15 B yrs old	
w/ white flowered. first filial, F1, produced		structure.	early earth probably had atmosphere mainly	
purple flowers. \rightarrow purple dominant, white	Barr body – condensed X chromosome in		from N2 and H2 gas, very little O2.	
recessive. 2 nd generation had mendelian ratio	somatic cells.	Some phenotypes vary gradually w/in species,		
of 3:1 dominant to recessive.	Hemophilia – sex-linked disease. sex-linked	such as height. Those that are distinct (yellow or white petals) is called polymorphism.	Urey-Miller experiments of early earth: autosynthesis of molecules such as urea,	
test cross – Mendel crossed unknown purple	= X -linked = males have 1 in 2 chance of	of white petals) is called polymorphism.	amino acids, and adenine from just H2S, NH3,	
F1 w/ homozygous recessive (white) parent.	disease.	Symbiosis – rel'ship b/w two species. if	and CH4 methane.	
White offspring of this proved F1 was		beneficial for both \rightarrow mutualism.		
heterozygous	Evolution		first cells thought to have been coacervates, or	
		beneficial for only one but neutral for other \rightarrow	lipid protein layer bubbles. spontaneously	
phenotype – expression of trait	gene pool – total of all alleles in population	commensalism.	form from fat.	
genotype – genetic makeup	Evolution – change in gene pool (not just			
	phenotype)	Benneficial for one, detrimental for other \rightarrow	earliest organisms 3.6 Billion years old.	
complete dominance : two homologous chromosomes. corresponding genes @ same	Ontarian and the far and interview	parasitism.	2.2 Dama and National Activity front allo to	
locus on respective chromosomes.	Ordering system for organisms: Kingdom > Phylum > Class > Order > Family	Hardy Weinberg Equilibrium	2.3 B yrs ago \rightarrow cyanobacteria. first able to use sunlight and water to reduce CO2 (fixate	
(homozygous dominant) When there is no	> Genus > Species	<u>Hardy-weinberg Equilibrium</u>	it). First photosynthetic bacteria. \rightarrow	
	Strids: Sporto	There should be no change in gene pool of	atmosphere fills with O2. Eukaryotes come in	
blending of dominant and recessive.				
blending of dominant and recessive.	Ontogeny recapitulates phylogeny = course		at about 1.5 B yrs ago. millions of yrs later \rightarrow	
blending of dominant and recessive. partial / incomplete dominance – blend of	Ontogeny recapitulates phylogeny = course of development from embryo to organism	sexually reproducing population posessing 5 following conditions:	at about 1.5 B yrs ago. millions of yrs later \rightarrow multicellular organisms.	
-	of development from embryo to organism reflects humans' evolutionary history. e.g.,	sexually reproducing population posessing 5 following conditions:	multicellular organisms.	
partial / incomplete dominance – blend of dominant and recessive.	of development from embryo to organism	sexually reproducing population posessing 5 following conditions: 1) large population	multicellular organisms. Chordata: phylum that contains humans.	
partial / incomplete dominance – blend of	of development from embryo to organism reflects humans' evolutionary history. e.g.,	sexually reproducing population posessing 5 following conditions:1) large population2) mutational equilibrium	multicellular organisms. Chordata : phylum that contains humans. means "bilateral symetry" Deuterosomes –	
 partial / incomplete dominance – blend of dominant and recessive. codominant – both traits exhibited. 	of development from embryo to organism reflects humans' evolutionary history. e.g., human fetus has pharyngeal pouches \rightarrow gilled ancestor.	sexually reproducing population posessing 5 following conditions:1) large population2) mutational equilibrium3) immigration or emigration does not change	multicellular organisms. Chordata : phylum that contains humans. means "bilateral symetry" Deuterosomes – anus develops from or near blastopore. vs.	
 partial / incomplete dominance – blend of dominant and recessive. codominant – both traits exhibited. Each gene contributes to an allele to genotype. 	of development from embryo to organism reflects humans' evolutionary history. e.g., human fetus has pharyngeal pouches → gilled ancestor. 3 new superkingdoms called "domains"	sexually reproducing population posessing 5 following conditions: 1) large population 2) mutational equilibrium 3) immigration or emigration does not change gene pool	multicellular organisms. Chordata : phylum that contains humans. means "bilateral symetry" Deuterosomes – anus develops from or near blastopore. vs. proteosomes, where mouth develops from or	
 partial / incomplete dominance – blend of dominant and recessive. codominant – both traits exhibited. Each gene contributes to an allele to genotype. 	of development from embryo to organism reflects humans' evolutionary history. e.g., human fetus has pharyngeal pouches \rightarrow gilled ancestor.	sexually reproducing population posessing 5 following conditions:1) large population2) mutational equilibrium3) immigration or emigration does not change	multicellular organisms. Chordata : phylum that contains humans. means "bilateral symetry" Deuterosomes – anus develops from or near blastopore. vs.	

	<i></i>		<i>bottom-left trend</i> – Atomic radius, metallic	molecular cpds w/ only 2 elements: name
			character.	begins w/ element towards bottom left.
	mass number, Z, is not exact. amu weight is a	MCA1 mentions "nonreactive."	SI Unite Desfines Investment for all MCAT	Chaminal Barra Earra
	weighted average of its isotopes.	small atoms – good p orb overlap \rightarrow strong pi	<u>SI Units, Prefixes – Important for all MCAT</u>	<u>Chemical Rxns, Eqns</u> physical rxns are melting, evaporation,
	of element X. Avogadro's number = $6.02e23$	bonds possible	7 base units in SI system:	dissolution, rotation of light. molecular
	moles = grams / molecular weight	large atoms – weak p orb overlap \rightarrow unable to		structure maintained.
	mores – grams / morecular weight	form strong pi bonds. Have d orbitals allowing		
	Periodic Table	for more than 4 bonds.	Time – s	chemical rxn – molecular structure changed.
	lists elements in order of atomic number		E current- A (ampere)	eg, combustion, redox. common combustion:
	periods = rows	Ions	Temp – K	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_20$
	groups = columns		Luminocity – cd (candela)	*MCAT will give balanced eqn unless
	nonmetals on right, metals on left, metalloids		Amnt of substance – mol	otherwise stated
	diagonal from IIIA to Rn. AT.		Force – 1 newton: $1N = 1 \text{kg m} / \text{s}^2$	wing to completion wing to right until supply
	Metals – large atoms. Tend to lose e's to form	Common transition metal ions: Cr ³⁺ Mn ²⁺ Fe		runs to completion – runs to right until supply of at least 1 of reactants is depleted. rxns often
	+ions or form + oxidation states (eg, in cpd).	$^{2/3+} Co^{2+} Ni \xrightarrow{2+} Cu^{1/2+} Zn^{2+} Ag^{+} Cd^{2+} Sn^{2+} Hg^{(2)2+}$	common prefixes:	don't get here be get to equilibrium first.
	fluid nature of valence e's. They are lustrous,	$Hg^{2+} Au^{1,3+} Pt^{2+} Pb^{2+} Bi^{3+}$	Mega (M) $- 10^{6}$	
	ductile, malleable, thermally and electrically		Kilo (k) $- 10^3$	limiting reagent – that which would be
	conductive.	cations are smaller than anions bc of radius.	$Deci - 10^{-1}$	completely used up if rxn were run to
	-They easily form ionic oxides such as BaO	C L L L E L $/^{2}$	Centi- 10^{-2}	completion
	Nonmetals – lower Tm than metals. Form		Milli (m)- 10^{-3}	Chemical Yield = Actual / Theoretical
	negative ions. Molecular (organic) substances	describes electrostatic forces holding e to nucleus.	Micro (u) - 10^{-6} Nano (n) - 10^{-9}	$x100 \rightarrow$ Percent Yield.
	usually made only from nonmetals. Form	liucieus.	Pico (p) - 10^{-12}	
	covalent oxides such as SiO2 or CO2	in atoms with more than 1 e-tron, there is e-	1 ko (p) - 10	Fundamental Rxn Types
		shielding. 2^{nd} e-tron doesn't feel entire charge.	Bonds	Combination : $A + B \rightarrow C$
	Know. aikan metals (IA), aikanne carti metals	2^{nd} e'tron's feel of charge called	covalent (shared electrons)	Decomposition : $C \rightarrow A + B$
	(IIA), halogens (VIIA), and noble gases		negative e's pulled toward both positvely	Single Displacement/Replacement:
	(VIIIA).		charge nuclei by electrostatic forces. "tug of	$A + BC \rightarrow B + AC$
	Elements in same column \rightarrow similar	e'tron in question.	war" repulsive and attractive forces balance	Double Dis/Replacement / Metathesis: AB + CD \rightarrow AD + CB
	properties. eg, # of bonds formed, similar		out until bond length is met (equilibrium,	AB + CD - AD + CB
	charges.	Periodic Trends	lowest energy).	Rxn Symbols
	Characteristics w/in Groups	Zeff increases left to right. \rightarrow each electron is		Δ means change in. or heat is added if above a
	Hydrogen stands out from its family.		E required to break bonds, no energy is	rxn arrow.
MCAT Chemistry			released. compound is 2 or more elements.	double arrow means equilibrium can be
Atoms, Molecules, and Quantum Mechanics atom: nucleus surrounded by e-trons	1A alkali metals – low densities and Tm's.		ratio is empirical formula.	reached \cap means there are resonance structures.
radius of $\sim 10(-4)$ A. Protons and neutrons.	usually form 1+ cations. highly reactive w/	ionization energy – E required to remove electron. increases from left to right, and from	band anargy E required to break band	indicates concentration
factors of $\sim 10(-4)$ A. Thorons and field to the	nonmetals to form ionic cpds. also react with	bottom to top. explained by Zeff.	bond energy – E required to break bond.	° indicates standard state conditions
Neutrons = Protons = ~ 1 amu each	Hydrogen to form hydrides.		% mass of element in molecule = weight of	
mass of e-tron about 1/1800 th of	2A alkaline earth metals – harder, denser,		element / weight of molecule	Bonding in Solids
neutron/proton	higher Tm's. form 2+ cations. less reactive than alkali metals.	another atom. Pauling scale goes from 0.79 at		solids can be crystalline or amorphous.
e-tron and protons – equal magnitude, opposite	4A can form covalent bonds w/ nonmetals.		empirical formula from % mass = take 100g	ionic crystals – oppositely charged ions held
charges	All but carbon can form 2 additional bonds w/	undefined for noble gases.	sample. put weight of element over its molar	together by electrostatic forces. Molecular crystals – composed of individual
	lewis bases. only C can form strong dbl /	Electron affinity – willingness of atom to	mass \rightarrow # of moles. do the same for the other	molecules held together by intermolecular
1e = 1.6x10e-19 coulombs of charge.	triple		element. Compare their relative ratios \rightarrow	bonds. eg, ice.
· · · · · · · · · · · · · · · · · · ·	bonds		empirical formula.	
atoms are electrically neutral (vs. ions).	5A – can form 3 covalent bonds all except N	right.		Quantum Mechanics
most of the atom is empty space b/w nuc and e	can form five bonds by using d orbitals.	inclaime character increases noin right to ien,	Nomenclature	elementary particles can only gain or lose
Element – over 100. cannot be decomposed	6 th covalent if with Lewis base. N can make	top to bottom.	Jania and a named after action and anion	energy in discrete units. eg, walking up stairs.
into simpler substances via chemical means.	strong double and triple bonds.	easy way to remember 5 periodic trends:	Ionic cpds – named after cation and anion. roman numeral I or II refers to +1 or +2.	-Quantum numbers a set of 4 numbers as ID for an e- in given
into simpler substances via enemicar means.	$6A - O2$ is 2^{nd} most e-negative element.		also, $cupric = higher charge, cuprous = lower$	atom. no 2 e's have same 4.
A \rightarrow where A is mass number	usually exists as O2 and O3. reacts w/ metals		charge. cation name in front of anion name.	1 st is principal quantum number: n.
	to form oxides. Na2S is very commonly found	then it increases oppositely so. ionization	entron nume in none of amon name.	designates shell level. the larger, the greater
$_{\rm Z} X \rightarrow$ where Z is atomic number	in nature. can form up to 6 bonds.	energy is known as energy of ionization. Zeff	Monatomic/simple anions = "ide"	size / E of orbital. outermost shell designated
	7A – halogens. stable. highly reactive. Like		polyatomic anions w/ multiple oxygens: ite	by rows.
alamant always has the same atomic number	to gain electrons. Flourine always has oxidation state of -1. others can make more	these are just trends, and are violated	(fewer) or ate (more), depending on # of	Valence e's – contribute most to element's
element always has the same atomic number. protons = constant. isotopes \rightarrow neutrons vary	than one bond, sometimes up to 7.		oxygens. hypo and per are least and most	chemical properties. located in outermost
protons – constant. isotopes – neurons vary	8A – noble gases. unreactive. inert.	Carbon.	oxygens, respectively.	shell. typically only s and p shells.
isotope – 2 or more of same element w/				2 nd is azimuthal quantum number: <mark>l</mark> .
different numbers of neutrons. aka "nuclide".			Acids: named by their anions.	designates subshell. these are orbital shapes: s
	I	electronegativity.	l	(l =0), p (l=1), d (l=2), and f (l=3).

$\ell = n-1$	explains Hund's rule: e's will not fill any	where P is in atm, V in litres, T in Kelvin, and	$aA + bB \rightarrow cC + dD$	consider A→B
s subshells look like sphers	orbital in same subshell until all orbitals in	R is universal gas constant (0.082 L-atm /		forward rate law is rate = $kf[A]$
p subshells look like peanuts	subshell contain @ least 1 electron. unpaired	mol K)		reverse is rate =kr[B].
3 rd : magnetic quantum number: <mark>m</mark> ı	electrons will have parallel spins. (bus to	ideal gas:	at b c d	they are directly proportional to each other.
designates precise orbital of subshell. each	camden)	1) zero volume; 2) no forces other than		(a) equilibrium [B] $>$ [A], kf $>$ kr
subshell has possible m_1 values from $-\ell$ to $+\ell$.	This is moderated by having to climb an extra	repellant 3) completely elastic 4) avg KE α T	Intermediates – products of one step,	
so for first shell n=1, ℓ =0, only possible m _l is	energy step.		reactants in another. Often at very low	rate definition
0.	² p	@ STP 1 mole of any gas occupies 22.4 L	concentration.	rate = $-1 \Delta[A]$
For $n = 3$, 5 possible orbitals with m_1 equaling	2s			a t
-2, -1, 0, +1, +2.	1s	partial pressure = total pressure of mixture	rate law for fwd rxn	rate at equilibrium is zero. does not mean rxn
4 th number is e- spin number: m _s , can be	Defers 2n will start filling 1a and 2a must be	times mole fraction of gas \rightarrow	rate _{forward} = $\mathbf{k}_{\mathbf{f}}[\mathbf{A}]^{\alpha}[\mathbf{B}]^{\beta}$ where alpha and beta are the order of each	rate is zero.
$+\frac{1}{2}$	· ·	$P_a = X_a P_{total}$	where alpha and beta are the order of each	$V = [C]^{c}[D]^{d} = Droducts^{coefficients}$
or $+ \frac{1}{2}$. Pauli exclusion principle – no 2 e's	paired.	where $Xa = moles a / total moles of gas$	respective reactant, the sum of them are the overall order.	$K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} = \frac{Products^{coefficients}}{Reactants^{coefficients}}$
can have same 4 coordinates.	Planck's quantum theory: electromagnetic E	Dalton's Law total gas pressure is sum of	overall older.	[A] [D] – Reactants
Uning the sector into the principal	is quantized in discrete units.	partial pressures of each gas.	Determining the Rate Law by Experiment	equilibrium constant depends only on T
<u>Heisenberg Uncertainty Principle</u> dual nature of matter – wave and particle	$\Delta \mathbf{E} = \mathbf{h}\mathbf{f}$	$\mathbf{P}_{\text{total}} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3$	relatively simple.	don't confuse with equilibrium itself.
inherent uncertainty in product of a particle's	(where h =Planck's constant = $6.6e-34$ J-s).	KEavg = 3/2 RT		K has no units. proportion \rightarrow activity.
position and its momentum. on the order of		valid for both gases and liquids	$2A + B + C \rightarrow 2D$	good for all equations, including non-
Planck's constant (6.63e-34 J-s).	Einstein: if we think of light as particle (ie,	vana for oour gabob and nquido		elementary
1 miler 5 consum (0.050-5+ 5-5).	photons), we can use same equation.	in sample of gas, KE of molecules will vary	if concentration doubles and rate doubles, then	
Energy Level of Electrons	······································	from molecule to molecule, but there will be	superscript is 1. if rate quadruples with	*Do not include solids or pure liquids (eg
Aufbau principle – each new proton added	deBroglie: wave nature of electrons follow	average of the KE of the molecules that is	doubled concentration, exponent of 2. if rate	water)
for new element, new e-tron added, as well.	equation	proportional to the T and independent of the	does not change with doubling of a	,
Nature prefers lower E state. more stability.	$\lambda = h / mv$	type of gas.	concentration, that exponent is zero.	Partial Pressure Equilibrium Constant
electrons thus look for orbital with lowest e			· •	
state whenever they add to atom. lowest	when electron falls from higher E rung to	Graham's law; $v_1/v_2 = \sqrt{m_2} / \sqrt{m_1}$	add the exponents \rightarrow eg, third order.	rxns for more than 1 pathway. any 2 or more
subshell.	lower E rung, energy given off in form of			single rxns or series resulting in same products
	photon.		Reversible Rxns	from same reactants must have same Keq.
	photon must have frequency which	P through a "pinhole."		
	corresponds to energy change $\Delta \mathbf{E} = \mathbf{h} \mathbf{f}$	effusion rate ₁ / effusion rate ₂ = $\sqrt{m_2} / \sqrt{m_1}$		Kp is partial pressure Keq, n sum of
	The reverse is true: photon collides w/	Diffusion – spreading of one gas into another	to it can still contribute to rate law.	coefficients of products minus sum of coeff of
	electron, it can only bump electron to another	gas or into empty space. approximated by	use equilibrium concentration of any	reactants.
	rung.	Graham's law.	intermediates.	
				Reaction Quotient
	photoelectric effect- one-to-one photon to	<u>Real Gases</u>	Catalysis	
	electron collision. proved light is made of	deviate from ideal behavior when molecules	catalyst – substance that increases rate of rxn	For reactions not at equilibrium $\mathbf{Q} = \mathbf{Products}^{\text{coefficients}}$
	particles (einstein). KE ectrons increases only	are close together. volume of molecules		$Q = \frac{Products}{Reactants^{coefficients}}$
Electron configuration – lowest to highest	when intensity is increased by frequency of photons. minimum E required to eject an	become significant compared to volume around molecules. High pressure / tiny	lower the Ea. creates new rxn pathway which includes an intermediate	Reactants
energy subshells	electron called work function, Φ , of metal.	container, low temp.	-heterogeneous – in diff phase than reactants	use to predict direction of rxn.
1,s	KE of ejected electron given by E of photon	Basically , real gases take into account their	and products	we always move toward equilibrium. $Q \rightarrow K$
2s2n	minus work function	own volume, so	-homogeneous – same phase	if $Q = K \rightarrow$ equilibrium; if $Q > K$,
	$\mathbf{K}\mathbf{E} = \mathbf{h}\mathbf{f} - \mathbf{\Phi}$	Vreal > Videal.	nomogeneous sume phuse	products>reactants than <i>when at equilibrium</i> ;
5\$5p.3a		2^{nd} , real gases exhibit forces on each other. so	first order uncatalyzed rxn example:	rxn rate reverse > fwd left shift
4s4p4d4f		\mathbf{P} real $< \mathbf{P}$ ideal	rate = $k_0[A]$	
2s2p 3s3p3d 4s4p4d4f 5s5p5d5f				if $Q < K \rightarrow$ products < reactants than <i>when at</i>
əsəpədət	Gases Kinetics and Chemical Equilibrium			<i>equilibrium</i> . rxn rate fwd > reverse. right
			rate = $k_0[A] + K_{H+}[H+][A]$	shift.
if we follow arrows, they show us order of	gas - loose collection of weakly attracted	Chemical Kinetics		
increasing energy for subshells. not	atoms moving randomly.	study of rxn mechanisms, rates.		Le Chatelier's Principle
necessarily in numerical order: eg, 4s subshell	STP - 0°C and 1atm	typically deals w/ reaction as it moves towards	catalyst changes Ea, but not delta G.	when a system at equilibrium is stressed,
lower energy level than 3d.	speed – 481 m/s at STP	equilibrium (eg, how fast it's achieved).		system will shift to reduce stress.
$1s \rightarrow 2s, 2p \rightarrow 3s, 3p \rightarrow 4s \rightarrow 3d \rightarrow 4p \rightarrow$	mean free path – distance traveled by gas		Effects of Solvent on Rate	3 stressors
5s Think of "d" as dilatory in the order	between collisions ~ 1600Angstroms	collision model – reactants must collide.	liquids have 100x more collisions than gas.	1) addition or removal of pdt or rct
Think of "d" as dilatory in the order.		activation E – threshold	most with solvent \rightarrow no rxn.	2) changing P of system
*total number of e's in your configuration	unlike liquids, all gases are miscible w/ each	Arrhenius eqn: $k = zpe^{-Ea/RT}$		3) heating or cooling system
should equal that for atom / ion.	other, regardless of polarity. with time and	where $z = collision$ frequency.	insulate reactants, reducing forces b/w them.	
shourd equal that for atom / 1011.	low temp, heavier gases settle below lighter			consider the following:
Like charges repel. if placed close to each	ones	rate of rxn increases with T.	Equilibrium	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) + Heat$
other, \uparrow PE. explains why only 2 electrons can	Ideal gas obeys ideal gas law:		chemical equilibrium = fwd rxn rate equals	
fit into one orbital.	PV = nRT	Equations for Rxn Rates	reverse. no change in [pdts] or [rcts]	
	I	rates given in molarity per second (mol/L-s)	l	l

if we add N2 gas to rigid container, rxn moves right. H2 partial pressure also reduced bc it's forward rxn. NH3 and heat created.		indicates standard state conditions. consider water:	Solutions	heat of soln given by Δ Hsol = Δ H1 + Δ H2 + Δ H3 first 2 steps endothermic, last is exothermic
if we raise T, rxn pushed to left. NH3 decreased.	(where work on system considered positive) Heat Engines	H2(g) + fiO2(g) → H20(l) ΔH°f = -285.8kj/mol	solution : homogenous mixture of 2+ cpds in single phase, eg, solid, liquid, gas. solvent : compound which there is more of.	breaking a bond always requires energy input. solution with –ΔH will give off heat
if size of container reduced in constant temp,	gas pushes against piston, now held by outside force we can control. heat gas, it expands		solute: cpd of which there is less.	when it forms. Solution that gives off heat when forming creates stronger bonds w/in
or when solution is concentrated/diluted, rxn moves to side of least gas moles.	while at constant T. Total E of gas does not change as it expands. energy of heat we've	Hess's Law : When you add rxns, you add their enthalpies.	<u>Colloids</u> like soln, but only solute particles are larger.	solution. positive heat of solution \rightarrow weaker
Does not always predict correct shift. exceptions include salts, solvation rxns, and	added changes completely into PV work done by force against piston. heat of liquid gets disipated into a cold reservoir nearby.	$\Delta H^{\circ}f$ reaction = $\Delta H^{\circ}f$ products - $\Delta H^{\circ}f$ rcts	eg, hemoglobin. usually can't pass semipermeable membrane.	intermolecular bonds than before
nonreactive gas. Helium does not affect equilibrium at all.	compressed to original state, back to where we started.	endothermic = positive enthalpy exothermic = negative enthalpy	More Solutions dissolved – when solute is mixed w/ solvent like dissolves like – nonpolar solvents	forming of solutions <i>α</i> entropy ↑ (solutions usually more disordered than its separated pure substances)
Thermodynamics	2 nd law of Thermodynamics – Heat cannot be changed completely into work in a cyclical	top of the hill in a rxn graph = transition state	dissolve nonpolar solutes, etc. London dispersion forces – hold together	Vapor Pressure
study of energy and macroscopic properties. divide universe into system and surroundings.	process.	catalyst lowers Ea of fwd and rev. rxns affects the rate, NOT the equilibrium, and	nonpolar molecules. weak interactions. Ionic cpds – dissolved by polar solvents.	Equilibrium b/w liquid and gas phases of cpd when it moves quickly VP necessary to
<u>System ΔΕ? ΔΜ?</u>	reverse of heat engine = refridgerator.	NOT the enthalpy.	break into cations and anions surrounded by respectively charged ends of polar solvent.	bring liquid and gas phases to equilibrium is vapor pressure of the cpd.
OpenYesYesClosedYesNo	Thermodynamic State Functions : Internal Energy (U); Temperature (T); Pressure (P);	Entropy nature's tendency towards disorder (S)	called solvation . Water does this really well. H+ sides of H20 would surround Cl- ion,	Clausius-Clapeyron as it relates to VP: $\ln(Pv) = -\Delta Hvap (1) + C$
Isolated No No State functions- physical condition of system.	Volume (V); Enthalpy (H); Entropy (S); Gibbs Energy (G).		whereas O- side would surround Na+ ion. water-solvated = hydration. said to be in aqueous phase.	$\begin{array}{c} \mathbf{R} (\mathbf{T}) \\ \text{vaporization is ENDOthermic} \\ \text{so} \rightarrow \uparrow \mathbf{VP} \ \alpha \uparrow \mathbf{T} \end{array}$
pathway independent. extensive- change w/ amount in system. eg,	Internal Energy molecular energy such as vibrational,	<u>2nd law of thermodynamics</u> – entropy of an isolated system never decreases.	water is poor conductor of electricity unless it contains electrolytes , cpds that form ions in ac	
volume, number of moles. intensive- independent of system's size.	rotational, translational, etc. $\Delta U = q + w$	$\Delta S(sys) + \Delta S(surr) = \Delta S(univ) > 0$	soln.	melting is T at which vpliquid = vpsolid
Pressure and temperature, eg.	Temperature	fwd entropy = (-) reverse entropy	Be aware of some common ions: nitrite NO ₂ ⁻ , Nitrate NO ₃ ⁻ , sulfite SO ₃ ²⁻ ,	nonvolatile solute – solute w/ no vapor
Heat aka, "q." movement of E via Always from hot	how fast molecules are moving / vibrating. \rightarrow hot T bc of more molecular movement.	"reversible" = Ea lower than fwd Ea. irreversible = "" Opposite	sulfate SO_4^{2-} , hypochlorite ClO^- , cholrate ClO_3^- , perchlorate ClO_4^- , carbonate CO_3^{2-} ,	pressure.
to cold (down the gradient).	Described by zeroth law.	Entropy, not energy, dictates direction of rxn.	bicarbonate HCO ₃ ⁻ , phsphate PO ₄ ³⁻	Raoult's Law (nonvolatile) – if 97% of the soln is solvent, then the vapor pressure will be
1) conduction - mollecular collisions. requires physical contact. substances conduct at	KEavg = 3/2 kT	it increases	<u>Units of Concentration</u> Molarity (M) = moles solute / volume	97% of the vapor pressure of the pure solvent.
different conductivity, k .	Kelvin = Celsius + 273 virtually all phys properties change w/ T	<u>3rd Law of Thermodynamics</u> – zero entropy for any pure substance @ absolute zero and in		$\mathbf{P}_{\mathbf{v}} = \mathbf{X}_{\mathbf{a}} \mathbf{P}_{\mathbf{a}}$
2) convection – heat txfer via fluid movements, such as air currents.		internal equilibrium.	Mole fraction (X) = mols solute / all mols mass % = mass solute / total mass soln x 100 ppm = mass solute / total mass soln x 10^6	Raoult's Law (volatile) – if 97% of soln is solven, vapor pressure will be 97% of the uncer pressure of the pure solven PLUS 2% of
3) radiation . via e-magnetic waves. all objects at $T > 0K$ radiate some heat, some e-	Pressure P of ideal gas is random translational KE per	entropy units are J/K. Gibbs Free Energy	"parts per million"	vapor pressure of the pure solven PLUS 3% of the vp of the pure solute. $P_{v} = X_{a}P_{a} + X_{b}P_{b}$
magnetic waves. only type that txfers through vacuum.		equilibrium achieved by maximizing entropy	Soln concentrations always given in terms of the form of the solute before dissolution	Negative heats of soln form stronger bonds and lower vp; Positive heats of soln form
Work	Enthalpy	of universe.		weaker bonds and raise vp.
any energy transfer that isn't heat. PV work – a system at rest with no	extra capacity to do PV work. cannot be intuited, just memorize equation:	$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$	NaCl goes to 2 ions.	Solubility solute's tendency to dissolve in solvent.
gravitational PE or KE, but pressure and volume change create work.	$\Delta H = \Delta U + P \Delta V$	a negative ΔG usually implies spontanaeity it is a state function. non-PV work. eg,	Normality measures number of protons per acid. H_2SO_4 would be 2 normal, whereas HCl	on MCAT: usually salt in water. reverse rxn: precipitation .
$w = P\Delta V$ (constant pressure)	Standard State (not same as STP). =	contracting muscles, transmitting nerves, batteries.	would be 1 normal.	when rate of dissolution = precipitation \rightarrow saturated.
0 th Law – temperature exists	reference form for a substance at any chosen temperature T and P of 750 torr.	deals with change of enthalpy / entropy of a system.	Solution Formation Physical rxn:	Equilibrium of solvation rxn:
3 rd law – perfect crystal at 0 K is assigned entropy value of zero. all other substances and all T's have positive entropy value.	E enthalpy for rxn that creates 1 mole of cpd	If + enthalpy, -entropy \rightarrow nonspontaneous If - enthalpy, +entropy \rightarrow spontaneous	3 steps: 1) breaking of solute molecules, 2) breaking of solvent molecules, 3) forming intermolecular bonds b/w solvent and solute.	own eq constant, solubility product Ksp. set equal to products over reactants raised to their coefficients in balanced equation. leave
First Law of Thermodynamics	from raw elements. the naught symbol	higher T favors direction favored by entropy	E required to break bond.	out pure solids, liquids.

2				
eg, Ba(OH) ₂ (s) $\leftarrow \rightarrow$ Ba ²⁺ (aq) +2OH ⁻ (aq)	(different slopes of the lines)			drop-by-drop mixing of an acid and base.
$\mathbf{Ksp} = [\mathbf{Ba}^{2+}][\mathbf{OH}^{-}]^{2}$ "solubility product" changes only with tempereature		3 definitions you must know:	autoionization of water:	performed to find the concentration of some
	Evaporation – partial p above liquid < vp		$H_2O + H_2O \rightarrow H_3O^+ + OH^-$	unknown by comparing it with known
\rightarrow constant found in a book.	liquid. atmospheric $P > vp$.	Arrhenius- anything that produces H+ ions		concentration of titrant.
	Entropy – positive for melting and	(acid) or OH- ions (base) in solution.	$K_W = [H+][OH-]$	
Solubility is the max number of moles of	vaporizing, positive for freezing and	Bronsted-Lowry – anything that donates a	(h30+ is equivalent to saying "h plus")	titration curve of strong acid titrated with
solute that can dissolve in soln.	condensing.	proton (acid), anything that accepts a proton		strong base (base added to acid) is sigmoidal,
depends on T and ions		(base).	$Kw = 10^{-14}$	with mid point usually equaling pH of 7. but
	Phase Change Diagram	Lewis – most general. anything that accepts a		not with diprotic acids
spectator ion – ion w/ no effect on eq	indicates phases of substance at different P and	pair of electrons (acid), anything that donates a	so if solution is pH 2, ion concentrations will	
common ion – if added to a saturated soln,	T. Temp on x axis, Pressure (atm) on y axis.	pair of electrons (base).	be $[H+] = 10^{-2} \text{ mol/L}$; $[OH-] = 10^{-12} \text{ mol/L}$	if starting with base in a titration, sigmoid
will shift Keq increasing precipitate.	graph forms a Y shape with			starts at a high y intercept
unsaturated – not in equilibrium	left: solid; top/middle: liquid; right: gas	Any aqueous soln contains both H+, OH-	larger the Ka and the smaller the pKa, the	if starting with acid in titration, sigmoid starts
1	1 atm line runs just above the triple point	think of acid as H+, base as OH	stronger the acid. eg, $Ka > 1$; $pKa < 0$.	at low y intercept.
Solubility Guidelines	changing from H20 to CO2, we see the \ in the	acidic soln: greater [H+] than [OH-]	same is true for Kb and pKb of a base	• •
cpds with H20 solubilities of less than .01	letter Y move towards middle; 1atm line is	basic soln: the reverse	1	Titration of weak acid w/ strong base
$mol/L \rightarrow insoluble$	now intersecting solid and gas, only.	neutral soln: equal concentrations	acid dissociation constant Ka:	y intercept is slightly higher than rock bottom
		· · · · · · · · · · · · · · · · · · ·	Ka = [H+][A-]	there are 2 plateaus, not 1
Solubility Factors	line separating solid and liquid has negative	pH = -log[H+]	[HA]	half equivalence point: where pH = pKa; at
solubility affected by P and T.	slope in H20, but positive slope in CO2. Most	1 90 1	equilibrium constant for that acid's conj.	middle of 1 st plateua, equivalence point is on
P on gas α \uparrow solubility	phase diagrams resemble CO2 in this respect.	log(AxB) = log(A) + log (B)	base w/ water:	the second slope in the middle.
	negative slope in water explains why ice		Kb = [OH-][HA]	end point range is a little bit above and below
Vpa α <i>Xa</i>	floats; water is denser than ice. why? its	each one unit of pH represents a 10-fold	[A-]	equivalence point.
Henry's law demonstrates that solubility of	crystal structure takes up more volume	difference in H+ concentration	(if you multiply Ka x Kb equations, you'll	buffer zone : the plateau where the $\frac{1}{2}$
gas is proportional to VP. think of opening a	because of the lattices.	unreferete in 11, concentration	come out with Kw).	equivalence point lies. you can add the largest
can of soda – gas is released be of \downarrow solubility	because of the fattices.	HA + H ₂ O $\leftarrow \rightarrow$ A ⁻ + H ₃ 0 ⁺	$\mathbf{pKa} + \mathbf{pKb} = 14$	amount of base or acid with the least amount
$\alpha \downarrow \text{ pressure } (\alpha \uparrow \text{ Temp})$	Colligative Properties	acid base conj. base conj. acid	рка + рко – 14	of pH change.
$a \downarrow \text{pressure} (a \mid \text{remp})$	properties that depend on "how many" and not		Finding pH with strong acid:	of pri change.
↑T α Salt solubility ↑	"what type."	the stronger the acid, the weaker the conj. base	eg, 0.01 M HCl will have 0.01 mol/L of H ions	Handarson Hassalbach equation
$\uparrow T \alpha$ Salt solubility \uparrow	\rightarrow vapor pressure, boiling point, freezing	the stronger the base, the weaker the conj. acid	$\rightarrow 0.01 = 10^{-2}$; -log ans = 2. pH =2	pH = pKa + log [A-]
Heat Capacity, Phase Change, and Colligative	point, osmotic pressure.		Finding pH of strong base:	[HA]
	boiling point elevation eqn:	Kw = KaKb	0.01 M NaOH soln. 0.01 mol/L of OH- ions	basically says, "@ half equiv point, $pH = pKa$
Properties	$\Delta T = \text{constant } \mathbf{x} \ m \ \mathbf{x} \ i$		pOH will equal 2, so pH equals 12.	of the acid."
homogeneous system constant properties		Many rxns in living cells involve proton		
homogeneous system – constant properties	m = molality	transfer. the rate of such rxns depend on the	double check that your pH makes sense. if base, pH always >7.	half equivalence = where [acid] = [base]
various phases – aqueous, pure liquid, vapor,		pH.	base, pH always >7.	
crystalline solid, amorphous solid.	solut will dissociate into.	r		on MCAT realize that adding small amount of
	on MCAT, use the expected value of van't	amphoteric – substances act as either base or	Finding pH with weak acids:	water to ideally dilute, buffered solution will
Heat Capacity	hoff unless they tell you an "observed" one	acid, depending on environment. eg, water.	given 0.01 M HCN	have no effect on the pH.
measure of E change needed to alter T of	that is less be of ion pairing	can act as base (accepting proton), or acid	1) set up Ka equation:	
substance.		(donating proton).	$Ka = [H+][CN] = 6.2x10^{-10}$	To Find equiv point, we use an indicator .
defined as: $C = \mathbf{g}$ given in cal/g - C	addition of nonvolatile solute \rightarrow bp elevation	([HCN]	usually weak acid whose conj. base is a diff
ΔT H20 = 1 cal/g-C	addition of nonvolatile solute \rightarrow mp	Strong Acids: HI, HBr, HCl, HNO ₃ , HClO ₄ ,	2) assume x mol of HCN has dissociated. so x	color. "endpoint" – where indicator changes
$\rightarrow q = mc\Delta T$	depression	HClO ₃ , H ₂ SO ₄	mol of H plus x mol of CN. plug it into your	color, i.e., changes into conj base.
either at constant V or P	same equation, different constant	Strong Bases: NaOH, KOH, NH ₂ ⁻ , H.,	equation above:	The set of the set
		$Ca(OH)_2$, Na ₂ O, CaO.	$Ka = [x][x] = 6.2 \times 10^{-10}$	Polyprotic Titrations
	osmotic pressure – tendency of a solvent to	cu(011)2, 1(u20, cu0.	[0.01]	assume 1 st proton completely dissocaiates.
Calorimeter	move into a solution. relative term when	polyprotics on the MCAT – pay attention to	3) solve for x. double check your pH is	two ½ equiv points, two equiv points. pKa1
coffee cup calorimeter – constant P.	comparing solutions	first one, unless Ka values differ by less than	reasonable.	and pKa2
measures E change at atmospheric P. can	divid pure liquid by membrane that is	10^3		
measure heat of rxn	permeable to liquid but not solute.	10	4) for a base, the process is the same, except	Electrochemistry
bomb calorimeter - measures E change at		"strong acid" or "strong base" = completely	what pops out is pOH. make sure you subtract	
constant volume. measure heat of water.	$\Pi = iMRT$	dissociates in water.	from 14 to get pH.	another. OIL RIG.
	where M is molarity if the soln	dissociates in water.		eg, $2H_2 + O_2 \rightarrow 2H_2O$
Phase Changes		3 factors contributing to acid strength	Salts	when H+ is oxidized, oxi state has increased
graph with various slopes	osmotic potential - partial measure of system's	1) strength of H- bond. 2) polarity of bond.	ionic cpds that dissociate in water.	from 0 to +1.
	free energy.	3) stability of conj base.		when O is reduced, oxi state reduced from 0 to
plateaus for heat of fusion, and later, heat of	think of osmotic pressure as pressure pulling	systaonity of conjouse.	so it produces a neutral solution.	-2.
vaporization.	into a solution \downarrow and hydrostatic pressure as	oxyacids: more oxygens $\uparrow \alpha \uparrow$ acid strength	Remember that all cations, except metals (such	
the slopes - $mc\Delta T$	pusshing out of a solution \uparrow	oxyaeids. more oxygens u acid suclight	as Ca2+, Sr2+, Ba2+), act as weak lewis acids	
phase changes: melting/freezing;		Hydrides – cpd with 2 elements, one of which	in aq solns.	states must add up to net charge on molecule.
vaporization/condensation;	$\Pi(b) = pgh(b) - pgh(a)$ physics	is hydrogen. basic ones are group 5, acids are		
sublimation/deposition.		group 6.	Titrations	Oxi States worth Memorizing
each phase of water has its own specific heat	Acids and Bases	Broup 0.		Elements:

elemental atoms 0	bc electrons are negatively charged, like repels	\rightarrow force (a vector)	Center of Mass – single point at which all	I
Flourine -1	like.	any vector can be broken up into component	mass is concentrated. any force here in any	Circular Motion / Centripetal Force
Hydrogen +1	cell potential for galvanic cell always +	vectors, whose sum is the original.	direction, same magnitude of acceleration	$a_c = v^2/r$ v
bonded to metal -1	· · · · · · · · · · · · · · · · · · ·		sometimes CoM is not "in" the object (a ring)	$F_c = mv^2$
Oxygen -2	Free Energy and Chemical Energy	and	center of gravity - single point where force of	
50	$\Delta G = -nFE_{max}$	O=HsinΦ	gravity can be applied to entire mass.	
Compounds:	determines a spontaneous rxn	A=HcosΦ		
Group 1 elements +1	F is faraday's constant (~100,000 C / mol)	these values w/ be provided	For MCAT assume CoM = CoG	
Group 2 +2	w=qV	common MCAT triangles: 3/4/5; and 5/12/13		
Group 5 -3	*	speed = distance/t ; velocity = displacement/t	forces on MCAT:	
Group 6 -2	$\Delta G^{\circ} = -RTln(Keq)$		1) gravitational force (mg);	Friction
Group 7 -1	where K equals eq constant	$a = \Delta v / t$	2) electromagnetic force (charged object or	1) Normal force always perpendicular to
	Q is where rxn does not yet equal equilibrium		magnet)	contact surface
(first table has priority over 2 nd)		velocity and accel not always in same	3) contact force – perpendicular to surface	2) F _r always parallel to contact surface
	if $K = 1$ then $\Delta G^\circ = 0$	direction	(aka normal force) and/or parallel to surface	
reducing agent / reductant: cpd whose	if $K > 1$ then $\Delta G^{\circ} < 0$		(friction) $mgcos\Phi$	static friction – force oppositng motion when
element gives e-trons to atom	if $K < 1$ then $\Delta G^{\circ} > 0$	Uniformly Accelerated Motion	F(T)	contiguous surfaces are not moving rel. to each
		constant a.		other.
oxidizing agent / oxidant: compound	that is to say, if rxn has Keq that's greater than			Kinetic friction – force resisting motion once
containing the atom that is being reduced.	1, it will be spontaneous at STP.	$x = x_0 + v_0 t + 1/2 a t^2$	<i>fk</i>	the two surfaces start sliding.
		$\mathbf{v} = \mathbf{v}_0 + \mathbf{at}$	mgsinΦ▲▲	
Potentials	Nernst equation:	$\mathbf{v}^2 = \mathbf{v}_0^2 + 2\mathbf{a}\mathbf{x}$		for any two surfaces, there are 2 coefficients of
electric potential E associated w/ any rxn.	$\mathbf{E} = \mathbf{E}^{\circ} - \underline{0.06} \log \left(\mathbf{Q} \right)$	$\mathbf{v}_{avg} = \underline{(\mathbf{v} + \mathbf{v}_0)}$	\swarrow mgcos Φ	friction: u _s and u _k .
when you reverse the rxn, it's E's sign	n	2	mg	
switches			NY A SIST 1 C' A'	$\mathbf{f}_{s} \leq \mathbf{u}_{s} \mathbf{F}_{n}$
	<u>Concentration Cell</u>	Displacement versus Time Graph	Newton's 1^{st} Law: law of inertia. Newton's 2^{nd} Law: $F = ma$	$\mathbf{f}_{\mathbf{k}} = \mathbf{u}_{\mathbf{k}}\mathbf{F}_{\mathbf{n}}$
positive E voltage \rightarrow spontaneous rxn	a cell that is taking place in two jars. never at standard conditions.	displacement versus time.	Newton's 2 Law: $F = ma$ Newton's 3rd Law : every force has opposite	with the sine weaklance is here being held been
negative E voltage \rightarrow endergonic		upward slope: + velocity downward: - velocity	force	with tension problems, a box being held by a string, if no movement, $F(T) = mg$
Nickel, Iron, Zinc, and water do not	never @ standard conditions, so use nernst.	5	loice	string, if no movement, $F(1) = mg$
spontaneously oxidize, or give up their	galvanic cells have + cell potential	plateau: 0 accel curve: +/- accel	Newton's Law of Universal Gravitation:	Hooke's Law
electrons.	electrolytic cells have (-) cell potential	slope = velocity	$F = Gm_1m_2$	force due to stretched or compressed object
electrolis.	electrolytic cens have (-) cen potential	slope – velocity	$r = \frac{G m_1 m_2}{r^2}$	$\mathbf{F} = -\mathbf{k}\Delta\mathbf{x}$
half reaction potential is NOT multiplied when	Red Cat. An Ox	Velocity versus Time Graph	$G = 6.67 \text{ e} \cdot 11 \text{ m}^3/\text{kg-s}$	$\Gamma = -R\Delta x$
rxn is multiplied, but half reactions are		slope = acceleration	G 0.07 C 11 III / Kg 5	Equilibrium, Torque, and Energy
ADDITIVE.		stope acceleration	F of A on B equals F of B on A	Equilibrium, Forque, und Energy
ADDITI'E.		Projectile Motion	why earth doesn't move when we jump on it?	equilibrium: no translational / angular
Galvanic/Voltaic Cell			too massive	acceleration
turns chemical energy into electrical energy.		components.	F = tiny a	static equilib: all velocities = 0
salt bridge – electrolyte conduction solution		peak height of projectile given by:	huuuuuuge mass	dynamic equilib: nonzero but constant v
TEIET – Terminals, electrodes, ionic		$\mathbf{v}_0 \sin \Phi = \sqrt{(2gh)}$ when v. is zero.	C C	
conductor, electrodes, terminal. emf is the		acceleration on the ball is constant (-9.8m/s)		$\mathbf{F}_{upward} = \mathbf{F}_{downward}$
voltage b/w T and T.		in the absence of air resistance, mass does not	inclined plane	$\mathbf{F}_{rightward} = \mathbf{F}_{leftward}$
		affect projectile motion.	without friction, only forces are Fn and gravity	
				Only system not in equilib MCAT tests is one
				that experiences translational acceleration.
electrodes		<u>Air resisance</u>		to solve these probs:
anode – negative sign. oxidation happens here.	Physics	surface area α air resistance		1) write equations as though it were in
cathode – positive sign. reduction happens		irregular, rough objects α ""	mgsind	equlibrium
here.	Key to solving probs: well drawn diagram.	higher velocity α " "	Φ	2) before solving, add "ma" to side w/ less
"RED CAT" mneumonic	write a know/want table.	Mass α 1/air resistance, bc less affected by it.		force
		(think of an anvil versus hollow rubber		N.C.
both usually a strip of metal in solution.	vectors and scalars	ball)	Shortcut to inclined planes:	$\Sigma F = ma$
one side may be called a "half cell."	vector has magnitude and direction	Esses	Normal force = $mgcos\Phi$	
	scalar has magnitude only	Force	one portion counters some gravity	
cell potential E / electromotive force (emf): potential difference between terminals when	to add vectors place head of first vector to tail	inartia tendency to remain in proport state	the rest is accel. gravitational = $mgsin\Phi$	
not connected. connection \rightarrow reduces voltage	to add vectors, place head of first vector to tail of second vector, draw arrow from tail of first	inertia – tendency to remain in present state Mass - quantitative measure of inertia (kg)	$g_{1av}(a)(0)(a) = mgs(0)\Psi$	Torque
due to internal resistance in the cell.	to head of second.	Weight – gravitational force on an earth (N)		Torque twisting force. clockwise or counter
aue to internar resistance in the cen.	to nead of second.	on earth this is "mg"		clockwise.
electrons flow alphabetically	multiplying	on carui uno io mg		product of Force and position vector "r"
from a node to c athode.	vectors can be multiplied/divided by scalars			$\tau = \mathbf{F} \mathbf{x} \mathbf{l}$ (assuming perpendicular force)
allow to callow.	eg, mass (scalar) times accel (vector)			(accuming perpendicular force)

1	Power rate of energy transfer. unit is watt (W).	ramp: inclined plane. pushing an object up ramp, you are pushing $mgsin\Phi$.	$\mathbf{P} = \rho \mathbf{g} \mathbf{y} + \mathbf{P}_{atmosphere}$	$\Delta \mathbf{P} = \mathbf{Q}\mathbf{R}$
Solving torque probs:	equivalent to J/s. don't confuse with W work.	W = mgh W=Fd	Patmosphere = 101kPa	Surface Tension although denser than H20, a needle can float
$\begin{array}{ll} F_{upward} & = F_{downward} \\ F_{rightward} & = F_{leftward} \\ \tau_{clockwise} = \tau_{counterclockwise} \end{array}$	$\mathbf{P} = \underline{\Delta \mathbf{E}}{\mathbf{t}}$	work is held constant, so $\mathbf{F} \alpha \mathbf{1/d}$	gauge pressure – measure of pressure compared to local atmospheric P	on water. due to intensity of intermolecular forces per unit length.
	if you know force and time: $\mathbf{P} = \mathbf{W}$	lever – based on torque. like ramp, allows us	absolute P = pgauge + patm	capillary action – fluid may be pulled up a
	$t \rightarrow P = Fv \cos \Phi$	to increase the distance over which force acts.	hydraulic lift – works via Pascal's principle. $F_1d_1 = F_2d_2$ or $F_1A_1 = F_2A_2$	thin tube. intermolecular/cohesive forces and adhesive forces (sticking to each other and
mg1 mg2	Momentum, Machines, Radioactive Decay	pulleys are actually modified levers. multiple tension strings add up to counter act mg.		sticking to the tube.
↓ I	Momentum:	Radioactive Decay	fraction submerged = $\underline{\rho}_{\text{floating object}}$	$\frac{\text{Solids}}{\text{Stress}} = \mathbf{F}/\mathbf{A} \text{ in units } N/m^2$
In this example, mg1 and mg2 are clockwise and equal in sum to force of tension T.	$\mathbf{p} = \mathbf{m}\mathbf{v}$ given in kg-m / s	Particle Symbol	ρ _{nuid}	Strain = Δ dimension / original dimension strain responds to stress.
Forces upwards = Forces downwards also, the torques are equal	momentum is always conserved.	alpha α_2^4 beta β or β_{-1}^0	an object floating displaces its weight in fluid, a submerged object displaces its volume in	Modulus of elasticity = stress/strain
so $Tx = mgd + mgL$	momentum is a vector.	$\begin{array}{ccc} \textbf{positron} & \stackrel{+}{\beta} & \text{or } \stackrel{0}{}_{+1}\textbf{e} \\ \textbf{gamma} & \gamma \end{array}$	fluid.	3 moduli to know for MCAT:
	<u>Collisions</u> Elastic – mechanical E conserved. no E	Half-Life Problems	Fb doesn't change w/ depth.	 Young's modulus (E) [tensile] shear modulus (G) [shear]
	dissipated to heat, sound, etc. eg, atomic collisions.	4 variables: initial amnt of substance, final amount of substance, number of half lives, and	$V = A\Delta h$ Fb = pg A\Delta h	3) bulk modulus (B) [compression/expansion]
$KE = \frac{1}{2} mv^2$	$U_i + K_i = U_f + K_f$	the half life. MCAT will give you 3 of these.	$\frac{Fb}{A} = pg\Delta h$	$\mathbf{E} = (\mathbf{F}/\mathbf{A})/(\Delta/\mathbf{h}_{o})$
Potential Energy (U)	Inelastic – colliding objects lose some mech E	electron capture : 201/80Hg + ⁰ -1e> 201/79 Au	$\Delta \mathbf{P} = \mathbf{p}\mathbf{g}\Delta\mathbf{h}$	$G = (F/A)/(\Delta/x_o)$ $B = \Delta P/(\Delta V/V_o)$
8 0	to internal energy. Completely inelastic – when colliding objects	Mass Defect	random translational motion – contributes to fluid P at rest	Waves
	stick together upon collision. can use conserv. of momentum for inelastic:	$\mathbf{E} = \mathbf{mc}^2$ where $\mathbf{c} = 3x10^8$ m/s	uniform translational motion – shared equally by all the molecules at a location of	wave – txfer of momentum and E from one point to another. for MCAT, assume ideal.
Systems	$\mathbf{p}_{i} = \mathbf{p}_{f}$	Fission and Fusion	fluid.	wavelength λ – measured crest-to-crest
Law of Conservation of energy: constant E $E_{before} = E_{after}$	can be further broken down into $\mathbf{p}(\mathbf{x})_{i} = \mathbf{p}(\mathbf{x})_{f}$	Fusion – combining of 2 nuclei to form heavier nucleus.	Ideal fluid – 1) no viscosity; 2) incompressible; 3) steady/laminar flow; 4) not	frequency (f) – number of wavelengths / time units of herts (Hz) or cycles/s
Work	$\mathbf{p}(\mathbf{y})_{\mathbf{f}} = \mathbf{p}(\mathbf{y})_{\mathbf{f}}$	Fission- splitting of single nucleus to 2 lighter.	\rightarrow most likely to show up on MCAT	$\mathbf{v} = \lambda \mathbf{f}$
Work – transfer of energy via force, measured in Joules.	-	Fluids fluid – liquid or gas. conforms to shape of	assume non-changing volume	period (T) - reciprocal of frequency;
	momentum is conserved before and after collision	container. battleship floats be ocean conforms to surface so that always normal force.		T = 1/f amplitude (A) – maximum displacement from
	Reverse Collisions opposite of completely elastic: one object	density – "heaviness of fluid" units kg/m ³ $\rho = m/V$ compression of a gas makes it more dense.	continuity equation: $\mathbf{Q} = \mathbf{A}\mathbf{v}$ where $\mathbf{Q} = \text{flow rate}$	zero. velocity is dictated by the wave's medium.
	spontaneously combusts into 2.	assume not possible for solids, liquids.	$\mathbf{I} = \mathbf{p}\mathbf{Q} = \mathbf{p}\mathbf{A}\mathbf{v}$	elasticity; inertia. for a gas, velocity increases with temperature.
Conservative / Nonconservative Forces Law of Cons. of Mechanical E		Specific Gravity- SG = $\rho_{substance} / \rho_{water}$	where I equals mass flow rate.	sound waves move more quickly thru hot gas
	Impulse (J) is equal to change in momentum	know H20 density on MCAT:	flow rates are constant in an ideal fluid.	intensity (I) = $\frac{1}{2}$ pw ² A ² v
	$J = \Delta p$ $J = F_{avg} \Delta t$	$\rho_{water} = 1000 \text{ kg/m}^3 = 1 \text{g/cm}^3$	Bernouli's Equation (memorize): P + pgh + 1/2 pv ² = K	$I = \frac{P}{4\pi r^2}$
5	$\Delta \mathbf{m} \mathbf{v} = \mathbf{F}_{avg} \Delta t$	fluid pressure – result of molecular collisions. $\mathbf{P} = \mathbf{F}/\mathbf{A}$ in units Pascal (Pa)	where K is fluid-specific constant. where h is distance above some arbitrary point	
for this: $W = \Delta K + \Delta U$		sucking water out a straw, how's it work? atm	sum of the three terms is constant throughout	factor of 10, the decibels increase by the "addition" of 10 decibels.
Work and Friction	Machines	pressure above water in straw lower than atm pressure above water in cup.		eg, from 30 W/m ² to 3000 W/m ² = adding 20 decibels.
$\Delta \mathbf{K} + \Delta \mathbf{U} = \mathbf{fdcos} \boldsymbol{\Phi}$	if you see on MCAT, ideal machines reduce force but don't change work.	Fluids at rest – only perpendicular forces on it. $\mathbf{P} = \rho \mathbf{g} \mathbf{y}$	Non-Ideal Fluid- drag and viscocity act to impede flow. the narrower the pipe, the	$\beta = 10\log (I / I_0)$ where Io is threshold intensity (lowest we can
$\mathbf{W} = \Delta \mathbf{K} + \Delta \mathbf{U} + \Delta \mathbf{E}_{\mathbf{i}}$	č	if an open container exposed to air:	greater the drag. (greater velocity, too). slower than ideal fluid, but similar principles.	hear)

AT	AD	$a(t) = -w^2 x(t)$		I	register og vegyment 🔿 v	valtaga	
$\frac{\Delta I}{x10}$	$\frac{\Delta B}{+10}$	a(t) = -w x(t)		Charge (q) given in units coulombs (C)	resistance x current → V V=iR (Ohr		Power
x100	+20	acceleration α -displac	ement α √f	charge (q) given in antis coulonios (c)	v in (oin	ii 5 iaw)	power – interchangable with mechanical
x1,000	+30	1		Universal Law of Conservation of Charge-	Kirchoff's first rule: a	mount of current	power
x10,000	0 +40	Hooke's law: F = -mw		universe has no net charge.	flowing in = amount of		-
		elastic potential energy	gy: $PE = \frac{1}{2} kx^2$		node – any intersection	of wires.	
WOULD B	have berigental shift of wave on a	$F=-k\Delta x$		charg eis quantized. smallest unit is one electron unit ($e = 1.6 \times 10^{-19}$ C). photon or	Vinahoff?a accord nulo	v valtaga araund anv	$\mathbf{P} = \mathbf{i}\mathbf{V} = \mathbf{i}^2\mathbf{R} = \mathbf{V}^2/\mathbf{R}$
	hase – horizontal shift of wave on a "out of phase" vs "in phase."	periodic motion for ma	ass on a spring	electron unit $(e - 1.0x10^{\circ} C)$. photon of electron.	Kirchoff's second rule path in a circuit must su		
Bruph.	out of phase vs in phase.	$T = 2\pi \sqrt{(m/k)}$	iss on a spring		pati in a circuit must st		
Two or	more waves can occupy same space.			opposite charges attract, like charges repel.	battery adds energy to		
superpo	osition \rightarrow interference	pendulum – exchange	s energy b/w PE and		voltage from one point		2Ω 6V
C (KE.		Coulomb's law:	electromotive force (E		21
displace	ructive – sum of displacements = larger	$I = 2\pi V(L/g)$		$\mathbf{F} = \frac{\mathbf{kq_1q_2}}{\mathbf{r}^2}$	assume no internal resis	stance on MCA1.	2 4
	ctive – sum of displacements = smaller	on MCAT may come i	n the form of:	where k is coulomb constant of 9x10 ⁹	capacitor - temporarily	v stores energy in a	2V • 2V
displace		orbit of planet as view	ed from side, tetherball	and r is distance b/w centers of charge.	circuit. parallel plate o		6V 2Ω
		around pole, electrons	oscillating back and		by small distance. creat		
	- case of superpositioning waves.	forth in AC current.		mass/gravity very similar to charge	constant everywhere b/	w the plates. E field	
$\mathbf{f}_{\text{beat}} = \mathbf{f} $	I ₁ - I ₂			field can be represented by lines of force—	given by $\mathbf{E} = 1 \mathbf{Q}$		2Ω
piano fi	uner. he listens until beat frequency is	Hooke's law \rightarrow accele	ration of any system in	points in direction of the field. (positive to	$E = \frac{1}{K} \frac{Q}{A\epsilon_0}$		
zero.		SHM α displacement		negative for e-fields). positive test charge.	Q = charge on either pla	ate: Eo is constant.	
	equency = alternating increase and	-					
	se in noise intensity. hearing the pitch.	if hanging on a string a		Electric field – electrostatic force / unit charge	· ·	o store charge per unit	
	ncy creating this is the average of the ncies from piano and tuning fork.	$F_T = mgcos\Phi + m(v^2/r)$)	E. vector pointing in direction of field. units N/C or V/m.	voltage.		AC Current
nequen	letes from plano and tuning fork.	wackem	wiggle	$\mathbf{E} = \frac{\mathbf{k}\mathbf{q}_1}{\mathbf{k}\mathbf{q}_1}$	C = Q		direct current (DC) – net movement of etrons
high pit	tch α high frequency α high note		$w = \sqrt{(g/L)}$	r^2	V		in one direction around circuit.
		box on a	pendulum	in units N/C	the farther apart the plat		alternating current (AC) - oscillating e-trons
	vavelength crosses to a different	string		F=Eq	voltage, the lower the c	apacitance.	back and forth in SHM. in home outlets in
	n, wavelength changes, frequency s the same.	so we see that period of	f a swinging string is	W=U=qEd V=Ed volts in units J/C	C α A / d		US. described as sine wave.
remaine	s the sume.	independent of the mas		V Eu Volts in units 5/C	$\mathbf{O} = \mathbf{CV}$		$V_{max} = \sqrt{2}V_{rms}$
	ng wave – string is still at the nodes	Ĩ		voltage due to point charge	$U = \frac{1}{2} QV = \frac{1}{2} CV^2 = \frac{1}{2}$	$\frac{1}{2} Q^2 / C$	$\mathbf{i}_{max} = \sqrt{2}\mathbf{i}_{rms}$
while w	vaves move up and down at antinodes.	Doppler Effect		V = (kq)/r			
harmo	nic series – list of all wavelengths from	waves are unaffected to	by speed of their source.	Movement of Charge	dielectric constant, K - plates of capacitor. mus		rms = square root of the average of the squares
	to shortest.	w/ travel diff distance,	so frequency of	conductors – metals, allow e's to flow freely	buildup of charge.	st be insulator, to allow	rms voltage in US is usually 120 Volts, 170
	= first harmonic (λ 1) or fundamental	receiver/observer will	seem different.	resistors - bad conductors, hold e's tightly in	1 0		max.
	ngth. fewest number of nodes (2).			place. eg, diamond, glass.	capacitor sign - both pl		
second	harmonic ($\lambda 2$) requires extra node.	$\underline{\Delta \mathbf{f}} = \underline{\mathbf{v}}$ and	$\frac{\Delta \lambda}{\lambda_{\rm s}} = \frac{\rm v}{\rm c}$		battery sign - diff sizes		Magnetism
harmon	ic series totally closed or open:	f _s c	λ_s C	can charge a conductor by induction.	$R_{eff} = R_1 + R_2 + \dots$ (re	esistars in sories)	measured in tesla, T. north and south poles.
$L = n \lambda$		c is not necessarily spe	ed of light, can be speed	current – moving charge. in units amps (A)		sistors in series)	a changing electric field creates a magnetic
2		of sound, radio, etc.		or C/s	$\underline{1} = \underline{1} + $	<u>1</u> + (resistors	field. a stationary charge does not create a
	L = distance b/w 2 ends of string	1 . 1.1. 1.		moves in the direction of (+) charge	R_{eff} R_1 I	R ₂ in parallel)	magnetic field.
and n =	number of the harmonic.	understand this qualita		think of electrical movement like fluid.	1 = 1 +	<u>1</u> + (capacitors	B=u iLsinΦ
when or	ne end is tied down harmonic series is:	observed frequency \uparrow a		think of electrical movement like fluid.	i	$\frac{1}{C_2}$ in series)	$\frac{d_0}{4\pi r^2}$
L = <u>n λ</u>	(n=1,3,5)	1 5 .	•	<u>Circuits</u>		- ,	
4		higher frequency α hig	her pitch	circuit – cyclical pathway for current	$C_{eff} = C_1 + C_2 \dots (C_{eff})$		for a long wire:
standin	g waves cause string to resonate @	blue shift = wavelengt	th appears shorter	all substances resist flow of charge measured quantitatively with resistivity (ρ)		parallel)	$\mathbf{P} = \mathbf{u}$:
	, resonant frequency.		id obs closer than b4)	ineasured quantitativery with resistivity (p)	mneumonic: "C, it's inv	verted in the series"	$\mathbf{B} = \underline{\mathbf{u}}_{0} \underline{\mathbf{i}}$ $2\pi \mathbf{r}$
	,	red shift \rightarrow opposite		measure of this is called Resistance (R) in			
$v=f\lambda$				ohms (Ω)			right hand rule. thumb in direction of current
		when objects are movi		$\mathbf{P} = (\mathbf{p}\mathbf{I})/\mathbf{A}$			(i) and grab wire, direction in which our
		frequency change is ze Electricity and Magnet		$\mathbf{R} = (\mathbf{\rho}\mathbf{L}) / \mathbf{A}$ if a wire is doubled in length or its cross			fingers wrap is the direction of magnetic field (B).
Simple	Harmonic Motion – perfect sin wave			sectional area is halved, $R\uparrow$ by factor of 2.			(2).
	dal function in time.	because of history of s		(analogous to fluids)			$\mathbf{F} = \mathbf{qv}\mathbf{Bsin}\mathbf{\Phi}$
		opposite direction of the	ne electrons.	l	I		

	indeces on MCAT:	from point of intersection. if sheet were there,	1 1 4 4 1 4 1	Notes from 6.24.08
velocity and magnetic field.	water- 1.3 glass- 1.5	image would appear on it.	hardest part is determining when value is + or -	all nitrates & sodium salts are water soluble
2 nd right hand rule: point thumb in direction of	glass- 1.5		when value is + of -	an infrates & sourum saits are water soluble
moving positive charge (v), point fingers in	plane-polarized light – filtered light w/ all E	Mirrors and Lenses		single bond length > double > triple
direction of magnetic field (B) palm will point		mirrors – convex and concave	·	
diagonally in direction of F.		lenses - converging, diverging.		given: $Pb(OH)2 \leftarrow \rightarrow Pb2+$ and $2OH-$
	light's dual nature – propegates like a wave,			if pH raised, rxn would shift left
$qvB = (mv^2) / r$	but has E transformative properties like a	concave looks like a cave, reverting back to		1 /
	particle.	cavement would be a divergement.		$\mathbf{P} = \mathbf{IV}$
$\mathbf{F} = \mathbf{i} \mathbf{I} \mathbf{B} \mathbf{s} \mathbf{i} \mathbf{n} \Phi$	1	č		
	angle of incidence measured from an	always assume light originates from object.		"proton" = H + = ion
	imaginary perpendicular line to the surface. Φ			
A changing magnetic field \rightarrow electric field.	of incedence is between line normal and ray of	thicker center converges		Photon $E \rightarrow$ ejected electron E
	light. Φ reflection is between normal line and			ionization energy reached. all extra energy is
changing magnetic flux \rightarrow emf E	deflected light. Φ refracted is the ray of light	assume spherical mirrors for MCAT.		for the electron to have after ejection.
	in new medium.			eg, if 12 eV required to eject, and photon is
$\mathbf{E} = -\Delta \boldsymbol{\Phi}$				15eV, e- has 3eV of KE.
Δt		light from horizontal rays reflected by concave		
Faraday's Law		mirrors to focus on a single point, focal point.		KE electron α Voltage
0	angle of reflection (same medium):			X · · · ·
Overall picture:	Φincidence = Φreflection	focal point α radius of curvature.		Xray emmission α Intensity
1) magnetic field is generated by moving		$\mathbf{f}_{\mathrm{mirror}} = \frac{1}{2} \mathbf{r}$		W = Fd
charge and; 2) moving charge experiences force when	angle of refraction (new medium):			w – Fu
moving through electric field.	$\mathbf{n}_1 \mathbf{sin} \Phi_1 = \mathbf{n}_2 \mathbf{sin} \Phi_2$	focal point is also affected by refractive		\uparrow KE α \uparrow evaporation
moving unough electric field.	Ephoton = hf	indices of lens and medium of lens. also		KL u evaporation
\rightarrow F = qvB	Ephoton – m	affected of radii of curvature of both sides.		$d = \frac{1}{2} at^2$
	higher frequencies, such as violet and blue	anceled of fault of curvature of both sides.		. , , , , , , , , , , , , , , , , , , ,
	light, have more E than lower f's.	power of a lens. in units of diopters (m ⁻¹):		Translational equilibrium = all F's cancel =
		$P_{lens} = 1/f$		acceleration is zero
	when light moves to higher n, Φ can be so			
Light and optics	great as to cause total internal reflection. \rightarrow	Ray diagrams are not useful for MCAT.		α particle decay = Helium ejection
	all photons reflected @ angle of reflection, no			
electromagnetic wave - traveling oscillation	refraction. "critical" angle.	overview of ray diagrams:		$\underline{\mathbf{d}}_{\mathrm{object}} = \underline{\mathbf{h}}_{\mathrm{object}}$
of electric and magnetic fields. transverse	_		In any double system, use first image as the	dimage himage
wave.	Diffraction - another type of wave-bending	convex mirror (object same side): image	object of the 2^{nd} .	
	phenomenon. light thru small slit. size of	behind, upright, smaller, not real.		$Cu(s) + H2SO4 \rightarrow SO2 + Cu +$
			for a convex mirror or diverging lens, f is	sulfur's oxi state went from $+6 \rightarrow +4$
space is constant, equal to ratio of magnitudes		behind is upright, larger, not real.	always negative.	
of electric field and magnetic field:	opening α larger the opening α greater bending		с <u>і і і с</u>	Power = work / time
	of wave	Diverging lens: object far side, image farside	for a concave mirror and converging lens, f is	Shout manied as the at an and her the
Light – tiny sliver of em spectrum. visible	Imagaz	is upright, smaller, and virtual	always positive.	Short period α short wavelength
light in wavelengths 390 to 700 nm $1 \text{nm} = 1 \text{x} 10^{-9} \text{m}$	Images mirrors reflect light; lenses refract light.	Converging lens: object far side, image	P = 1 = 1 + 1	Harmonic: 1 st 2 nd 3 rd
	minors remeet light, renses remact light.	farside, larger, upright, and virtual.	$\mathbf{P} = \frac{1}{\mathbf{f}} = \frac{1}{\mathbf{d}_i} + \frac{1}{\mathbf{d}_o}$	$\frac{\text{Harmonic:}}{\lambda_1} \frac{1^{\text{st}}}{\lambda_1} < \frac{2^{\text{nd}}}{\lambda_2} < \frac{3^{\text{rd}}}{\lambda_3}$
shorter wavelength α violet light \rightarrow UV	our mind doesn't account for light bending	inisiae, iniger, uprignt, and virtual.	- u ₁ u ₀	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		lateral magnification m – ratio of size of image		$f_1 > f_2 > f_3$
0		to size of object. h1 vs. h0		guitar harmonics always sound high
each wavelength has corresponding frequency	Person		$\mathbf{M} = -\underline{\mathbf{d}}_{i} = \underline{\mathbf{h}}_{i}$ $\overline{\mathbf{d}}_{o} = \mathbf{h}_{o}$	high pitch α high frequency
	water	$\mathbf{m} = \mathbf{\underline{-d}_i} = \mathbf{\underline{h}_i}$		
speed of light in vacuum is constant.		$\frac{1}{d_o}$ $\frac{h_o}{h_o}$	$\mathbf{f}_{\text{mirrors}} = \frac{1}{2} \mathbf{r}$	P α wavelength α harmonic number α 1/f
	real fish brain's fish			
from $c = f\lambda \rightarrow$		angular magnification:		harmonic – multiple of the original frequency.
$\mathbf{c} = \mathbf{f} \boldsymbol{\lambda}$				4 th harmonic is 16x natural frequency
light slower when propagating thru medium.	An image may or may not exist:	$\mathbf{m} \Phi = \underline{\Phi}_i$ Φ obj. to eye, front of lens	on MCAT would be microscope or teloscope:	as determined by 2 ⁿ
index of refraction	virtual image - does not exist outside of mind	Φ_{np} Φ obj. to eye, at near point		
	of observer; no light rays emanate from virtual		$\mathbf{M} = \mathbf{m}_1 \mathbf{m}_2$	$\lambda f = v = 3x10^8 m/s$ = speed of light
$\mathbf{n} = \mathbf{c} / \mathbf{v}$	image. no image would appear on paper. our	for any mirror or lens, distance of imge related		
when light crosses into new medium, f remains	reflection in a mirror. brain's fish above.	to focal length and distance of object:	$\mathbf{P}_{\rm eff} = \mathbf{P}_1 + \mathbf{P}_2$	voltage sources in parallel produce same
same, but λ changes.		1 - 1 + 1		output voltage as single source; but if in series, their voltages would be additive.
	real image – exists separately from obs. rays of light actually intersect and then emanate	$\frac{\mathbf{l}}{\mathbf{f}} = \frac{\mathbf{l}}{\mathbf{h}} + \frac{\mathbf{l}}{\mathbf{h}}$		men vonages would be additive.
	or right actuary intersect and then emanate	$\mathbf{I} = \mathbf{u}_0 = \mathbf{U}_i$	l	

	If rare gene, assume only 1 parent has it, and	van der walls, aka London dispersion	nor/epinephrine \rightarrow fight or flight / sympa	1
freezing pt depression is colligative:	that it's recessive.	α polarizability	response \rightarrow dilated pupils	
totally dependent on # of solute particles in	if P phosphorylates R then	α boiling point	responder a unated paper.	
water	P splits /uses ATP \rightarrow ADP, and R becomes	α number of electrons		Blood pressure:
	phosphorylated: R-(p)		IR peak around 1700 \rightarrow C=O double-bond.	depends on 2 things:
\uparrow molarity of solute $\alpha \downarrow Tm$	now activated.	32g O2 = 1 mol O2	C 1	1) Cardiac output = stroke volume x heart rate
¹ /2 equiv point (first flat part) – [Acid] and	to de-phosphorylate is to quickly deactivate	Doppler effect. As signal approaches,	fungal spores metabolically inactive, haploid.	2) resistance to blood flow
[Conj. base] are equal.	distal tubule – reabsorbs glucose.	frequency gets higher.	aldosterone \rightarrow Na+ reabsorption \rightarrow H20	
[conj. cube] are equal.		nequency gets inghen		anti-inflammatory drugs on a pt w/ septic
"reducing agent" \rightarrow causes reduction. eg, Fe.	\downarrow Hb Hg $\alpha \downarrow$ GFR rate $\alpha \uparrow$ reabsorption			shock:
		$\Delta \underline{\mathbf{f}} = -\underline{\mathbf{v}}$	impurities in any substance α melting (aka	risk \rightarrow decrease of endogenous antibacterial
	albumin $\uparrow \alpha$ hypertonic Hb \uparrow	f c	freezing) point depression α decreased	defense
BS	\rightarrow flow of H20 from tissue to bloodstream	where c is speed of the medium	intermolecular interactions. why? interrupts intermolecular attraction.	
B5	Protein such as pepsin operates well at pH of 2	Csound < Cradio	intermolecular attraction.	
all somatic cells in body have same DNA /	or 1.5, but if as low as pH 1, will be denatured	esound · enuno	\uparrow intermolecular strength $a \uparrow$ boiling point	
Chromosomes regardless of stage of life	and no longer operate.	"apparent loss of mass" = mass of fluid	eg, why when you add salt to a pot of water it	
	2	displaced	boils at a hotter temperature. because salt is	
cholesterol – precursor to steroid horomones	$PTH \downarrow \alpha \uparrow Ca^{2+}$		attracted to water.	
\rightarrow estrogen	Calciton(in) – brings Ca^{2+} in-to bone	"aammon ion affaat" activated colm of N-Cl	amines soluble in dilute agid (ag. dilute UCI)	
vasoconstriction of intestinal villi lacteals	Parathy(rid) – Ca^{2+} gotten rid from bone.	"common ion effect" – saturated soln, eg NaCl if you add any other soln that has	amines soluble in dilute acid (eg, dilute HCl). carboxylic acids soluble in dilute base.	
\rightarrow \downarrow fat absorption	r aramy(na) ca gotten na nom oone.	Na+ or Cl-, you're gonna get	ester \rightarrow hydrolysis \rightarrow ROH + ROOH	
·	edema caused by ↓ albumin, ↑ body tissue	precipitate		
crossing Tt x Tt	swelling.		DNA replicates in S phase.	
one would expect Mendelian ratio of 3::1 of		Resonant wavelength of pipe or tube		
tall to short plants	Kappacofigus	open pipe has resonant wavelength = $2xl$	saponification: ester + (NaOH) → Salt + (acid) → ROOH	
metabolism of aa's from proteins \rightarrow see	KPCOFiGuS	mechanical waves such as water/sound	(acid) 7 KOOH	
Nitrogen urine concentration $\uparrow \alpha$ starvation	→ relatedness	\rightarrow only Energy is propegated	molecular weight of cpds of varying structures	
-		electrons have dual energy/matter	should give a hint about the identity.	
starvation: carbs, lipids used up, start breaking		phenomenon		
down body proteins	formed. "dehydration"		lung inflation – possible because of negative	
C=O bond makes molecule more polar	$A \rightarrow B$	w/ fixed potential difference (voltage) between	pressure by suction.	
\uparrow polarity α BP \uparrow	removing pdt A as it is formed will cause a	cathode and anode, electric field α 1/L	antibiotic resistance can be innate bc of chance	
, polarity a Dr -	leftward shift		mutations, eg, E Coli not killed with a first	
chips, air bubbles break surface tension of		$\mathbf{E} = (\mathbf{V} - \mathbf{I}\mathbf{R}) / \mathbf{L}$	round of antibiotics for infection.	
liquid, preventing superheating during a	Imprinting – perception of object enhanced			
vacuum filtration	during critical development period.	electron $@$ cathode has V = to voltage in eV	E Coli live in colon, move b/w colon and	
Heat distillation flask @ slower rate \rightarrow better	Cyclohexane has lowest heat of combustion	incedent photons only affect # of electrons	appendix freely. outside of them are abdominal cavity.	
fractionation	among cyclo-anes bc highly stable chair	emitted, not their energies.	uouommur ouvity.	
	configuration.		Bacterial conjugation = recombination.	
Stereogenic carbon = chirality center	-	electron accelerates from anode to cathode.	ffjf	
diff makeup \rightarrow diff enantiomers	Steric hindrance \rightarrow bad nucleophile	n r ² n		
chiral if 4 diff constituents \rightarrow dbl bonded carbons are not able		$\mathbf{P} = \mathbf{I}^2 \mathbf{R}$ (amps)x(ohms) \rightarrow Watts	Interneuron synapses \rightarrow pain, efferent neurons to brain. Here are ealso the dorsal root	
to be chiral.	Practice test notes	(amps)x(omms) \rightarrow watts	ganglion attached to sensory neuron, feeds	
		electron ejections $\uparrow \alpha$ current flow (I) \uparrow	interneuron, interneuron tells the motor neuron	
Boiling point: when vapor pressure of liquid =			and effector to pull finger away from stove.	
surface pressure	review circuits, plain mirrors, soln chemistry,	photon frequency α speed of ejected e-		
DD g gurfees of light	e structure, sound, atomic, nuclear structure,	radiation amittad when -?- ! !:- 1	Bacteria versus viruses: bacteria can reproduce	
\downarrow BP α surface of liquid \downarrow	skip VR nat sciences and double check them, immune / circulatory systems, digestive	radiation emitted when e's \downarrow orbital	via fission.	
methyl ketone formation \rightarrow (+) iodoform test	enzymes.	currents in parallel resistors α 1/indiv resistors	$\sqrt{\text{recessive people in population}} = \# \text{ of}$	
,		r · · · · · · · · · · · · · · · · · · ·	recessive genes in all. the remainder are the #	
	tend to have 10 min at end of each section.	BS	of dominant genes in all. Hardy-weinberg	
acetone on the NMR – 6H's the same \rightarrow	mark liberally.	a-choline / morphine / heroin \rightarrow constricts	says # of heterozygotes is equal to	
singlet.	PS Φ of tilt most important in incline probs	pupils. "pinpoint" pupils diagnostic of opiate intoxification.	2 x (% of dominant genes alleles) x (% of recessive alleles)	
	v or the most important in menne proos	intoxinteation.	aka 2pq.	
	1	1	I FT	

Banding epimer - I diff chiral outer Lore pairs, TY bonds 2 divial cpds me / / require more e's neg charged rotate plane polspace_ Bight differently. anomer - ring clocure R ent blu e's 3 E) nucleus Resignance - Diff Ports all electrons epmaoptically marchie =>bondsmo chral centra #// - => anomeric Jutanism - addition carbon, removal of Hydroger (+)/(-) Lowest Grenzy Ghicose forms a low orbitul monts. we omaticity gavelie I new wiley, Stereo isoners. 4n+2 Tretrons alkares - subverted Buend - 2 e's have dias tweeners Dipole Monest evantion 5 orti > gavele > celipad lowe ______ Struct. isomers 1° 2° 3° positioned 6/w 2 oppositte. advantage of both attractive forces the contraction of the second cis/fras on a b Occuelo. REACH diff light CISHAS Rgroups & MWT & Top1 dipute single bond - 10 nover Molecolor 3 intra noteculue. reactivities Devide bund - 10, HT A ATER iso butane Brausching T & Top & Tm h-bretane triple bund - 10,2m ~ Ton Pipele <<< Concelent water-insoluble. Somer internet where E celipted) - rare except Availity - handedness low density, troater for CN, O, S. Coebon is chiraf F multigubstitudel Soluble in benzeve, Cay etc. + and P in ATP. when bunched to 24 USE Z/E system. HA 4 different atom weighterps Pi bunds prevent votation. Substituents. Me sh Ring Strain - Ofton cyclules. H. absolute anting Mux # of RZS. optically actore Hy bridications 2 duir > boat > chair + A Samers providing of atom - menget Most substituents sp - Lineue (180°) sp² - Trig Rumer (1200) H sp³ - Fetr chested (109-50) (5p³) - trig bijrami del (109) (5p³) (100) = 2" prefor equational. triple > double ? single band It chair twps, n = chiral wrears. auf Stage west eyvidavil becomes axial. vice versa. meso-split in 2.

NATILE alleyt haloger ally Oryavic Chun Index of diohed -こミル $-\dot{c}-\dot{c}-\dot{c}-\dot{c}$ Hydrogen R-OH Just basics needed how the MCAT-Defriercy etuer gen-diholide vic-diholide possible enaune IF of pairs of H's -----R-OR Lewis Dot Structure CR2 required to ye saturated. -c-c-c-c-R-C-NRH > basic formula. omine 1 1 XX hydroxyl alkoxy oxime inine R inine $(2n + 2) - \chi$ R-N-H It or D-total valence e's R-C=N-OH 2) | pair of e's > 1 bond 2 -OH -OR R-C=N-R -NEO neuriosetal herritisetal R-N-R Niteoso $n = C'; \chi = H$ R-C-OR R-C-OR 3) or range rest -N=0 R to satisfy duet octetrule n-propyl , Kisopropyl Key to proby mesul tosyl of aldehyde Me-CH2-CH2 Me-CH-Me kecognizing mest - le OS [:C=N:] n-buty isobuty! R - C - H turctional gops. Me R TR carebony a certy! Ketare Fisher Kropeetion alkare sec-buty toot-buty -ĉ- -č-Me R - C - ROH any anydride For them H---++ -C-R R-C-0-C-R cereboxylic acid H-+--H CH3 altere EUPAL ereyl benzyl R-C-OH O Omfirst C is one c = c'Neuman (rojection w/ most substitut ester aane verge st R-C-0-R Indrazine indrazone Cherin. # Substituents orched altyne N-N R=N-N emide R-C-NH2 alphabeti cu $-c \equiv c \frac{vinyl}{c=c} \quad \frac{vinylic}{c=c}$ H CH

$$\begin{array}{c} \label{eq:second} \end{tabular} \\ \end{$$

d-B Unsaturated Cerebonyls. Amines Derivatives of aumonic R Hot + SOCL2 w/ metryl keetine. Alder Conduction R I me a Hactivity 3 did band ... H-N-4 #-N-4 R-QU RNAY JJOHNHOD Susceptility of I H annonia R Q Z R Y -> ph cx3 R 10 anine to nucleophile. e HAHR ROOR KON RIL + RILH R-N-# $R + \overline{C}\chi_3$ Core boyylic Acids. (acid catalyced) 2° anime . R-1L OH R-OH H- OH Cueboxylic formic e to-+ HCX3 N can make 5-4 bod -may act as lewis $R - l_{a} - l_{b} - l_{b}$ (Hulutorn Rim) - may be nucleuphile -- can take 4th bund -> @ chang Me Off Off Azid Chloridesd Wittig Rxn. > nucleophiles act as weak bases. Benzoic $R - C_{L} - Cd - H$ EWER & basicity Behaves as and in Nu Solor Shi ketore -> alkere Estertication. EDG - + basicity ylide + PD Can R $\begin{array}{c} H \\ - \end{array} R - G_{1} - G_{2} - H \end{array}$ e-Ko++ROH 2° > 1° > annonia EUGGE and - C bacicity w/ EDt group-1 +++-~ 1 aerolity H R R aromatic annes -1 weak bases. R TOR make strong H - bonds $\# - C_c - R$ H-bond 2 TBP also works when on # R Ri R VMP be no crystall cattice. ~ ~ BP~ + H - Ce = 0H2 Soluble (aldal) Decueboxylation R Lu' RLOLR' lose (O2. + And =0 Heloyeus adel to R OH > R OL > A CO - - - - Me Me Keteres @ L-curbon in presence of base or aviel. (reaction try)

tas Chranules raphy Paper Chronatography Extraction Saponificution $force(N) = 1 ky \cdot m$ based on solubility due to gas passed one hyprid Solvert line hydrolysis of an similar poter thes liter under Lotunn. Engy(J) = IN-m basic condition ((Like clissohus like) -> form R-04 "O-ionponent Distillation 3 salt of me careboxy/ic acid. Pour (W) = 1 J/s separation based Organic layor + 0 -- Component 2 on vapor pressure. acqueous Churge (C) = 1 A . s 0 - mixture polar via show boiling, Layee. Triglycericle Doitmix. The cod w/ the Potential (V) = 1 J/c molecule of fat lower BP (higher VP) $R_f = \frac{d_i}{d_s}$ 5 streps will boit off and be captured. Resistra (12) = 1 V/A (1) strong ector. 3 FA moleules Polarizes arganic Layer - polar Janves - polar on glywal Volar noves slowly Lepaus torce $(F) = 1 \frac{C}{V}$ conduced in coul backbore. (attracted to poler poper) Mayertic Le Fueld (T) = IN 3) NuOH deanes glyceral backbon to form glycerine. Kenntts law -2) weak base. leave Rf = dist trauled by component impune mixture depotinates Boil's same man Cycles (Hz) = A·m s-1 streamy acids either of its List trauled by solvert pure comparents. (3) Nut joins Fatty polar corboxylic Waulergtn (2) = m or acids levie. acids to form) <-- 0 m/g tractional Vistillation 3 50ap (3) strong base. Some thing but nm reacts of weak Thin Layer chramatorody vapor is run thru note ules. glass bouds to penaining keide - gt 7 looves Same thing but wi iet cpd w/ higher vil ghywrol orr BP to conducise coated ylass back into soln. Amines leave Crystallization. coot leaves Purity 2 ease of arystalization ther. Phenol loaves. ileburgs male up of pure wester. exothermic for salts 3FA, hardly used in Tab.

Besure to cerite main idea @ beginning z end. as were as Au's store.	Acetal - think "protecting curbonyl"	sexual reproduction good for species of 1 equatic sation	ZWitterion - + d EDGARWAR Clipolar 1 X B prefixes	me IN The
Pa-read your	DD acts like HzD. Used to see where stuff	Sphase - doubling of DNA.	Stareschen of C-OR burd.	"inine"
outline 64 going on to attempt) questions- Skip humanities psgs until the	HCht 2	over morego mener division.	O anoneric curbon Diffurs@ C-1	Both are
end	Muscular 1 - contraction 1 - Neleases Ca ²⁺	Polyploidy - common in plants = bactering.	aa composition difference	R-NHZ => Both primary auines.
Beware of "simple" ausures.	from surcoplasmin neticulum. Blocking Ach-ase sincreases Ach in	 V binary fission (amitotic) 	KPCOFGS More less 8 processes of	Blood Less Dz, more CDz,
Grignard reagent	syrapse.	mever distribution	- Conjugation - sex - Transformation	pilus, plasmid genes fortilling & fuch
attacks carbonyls attacks carbonyls	Poisons ~ non- competitive inhibitors only way to remain is to	Heterozygote cross R.r x R.r	1	take up DNA from surrandings gares tx ferred
+ HO two p	inchease metabolic felimination rate.	2	Celluiurforganismali- movenent-	veinous blood
OH K	if a neceptor mutation -> membrane is offected.	Classic Jazz Bye Bye blackbird Colfran & Davir.	L'appragn 10'th diaphragn 10'th L'negative intropleural pressure	-than RV wall
favorite	mings A Billie Holida	H Churlie Parkere.	d'inspiration.	s contracting. 25mg Orzonnity

RV -> just to hungs Oxidation States Reptide Bionds if pka of LV -> entire rest of body. they 42PO4 - to HPO42-N 1 C terminus joined. F dways -1 If blood frow to is 6.7NH2 Grop (metal - always + ("teet - buty alrealys blocked Grp2 netal - aways + 2 and soln is onire If given formula => no flow of devent - always & buthered @ 8.7, Deon the structure the rich blood H - almostalways + Y ments a strance 0 - almostilways - 2 alls to take away 02 and Ň#3 Cl. Br. I - almost always it no influct of Breathing > 100:1 CU2 from bload rate) ratio of Sweat yronds -=> cavity welhave special channel, 10 breaths for in [HP042-]::[H2P04-] v=f2 TPO2 and XU2 theu skin sase acid. Makesserse-buffered @ sasie every 35 ticled usl. wanderigh is Virians me 800 ml (breath P decey - electron enission. Hepato-poncheas ("liver") $-\sigma = (3s^{-1})(1m)$ obligate parasites 150 ml (dead 150 ml (dead space) Z changes. nothing much smaller man enkaryotes $\mathcal{T} = \frac{1}{3} = .67$ \sim $KE_{avg} = \frac{m \sigma^2}{2}$ => 6500mC Freshair Digestive system need tissue to be grown. in arthropools. particle frequency each ninute fractives al-its civile most viral E=hc Instead of kidney to remove waste, produced directly Unpained = Radical Horac . $iF \mathcal{I} = 450nm$ insects use by txlation of & Treactivity. tubules save heavy calulation / stoich probs to the $\mathcal{E} = \frac{(6 \cdot 6 \times 10^{-34} \text{J.s})(3 \times 10^{8} \text{m/s})}{(45.0 \times 10^{-9} \text{m})}$ vikal nucleic acid. embryology -Entropy is state = 4.4 × 10-19 J (cruity) translation : RNA ->protein. transcription: DNAMENIA SEXN = Spot - Srcta (l2(g) more e-neg than I2(g) (s) Trats 27 yield. poucher mesocherm we do multiply think alphabetical cuetticentr. adding more Gallbladdor helps digest triaghyperides when the the (i has +2 w/ Central Doyna (# gas notes matter!) Cl2 than w/ I. O3 -> O2 1 entropy # a's of polt.

Mixing cutions? Ned litnus papie turns blue in Practice jost Notes Wile=Mg= Fived Subme ged g anions. E ne gost vity weight'z booyant Vfinided base. ionic cpds switch CVOSStheir partners. mel or Nisay centimal men of E evitted = proteen. Wile = M = fruid Vsub-sul. in 6-57g p : p 1 Sotating of They of complex fibu optics precipitute = RXN Light over long Udd # # Atomic $\frac{6.57}{2.62.84} = 0.025$ $nRT = P_1V_1 = P_2V_2$ number distances of no precip = no nxn minimal was of A =7 neters = Reflection Nonzelo Insulator - valence "total internal HCl + W3 -> (O200 LKsp ~/[J's of (ation/min net spin. reflection" e's tightly bound be main . to atoms. eg, AF H, CF= PVg cannot more + 1 precipitate easily bluctous. Nickel (II) soln AT & A KErcts Fully acid general PV=nRT has color be mula R = resistivity x A be unfilled Rn-COH bottom of powl, a weighted Galven has Ariabath company Ø d-orbitals. absorblight FA sattud be 7-15g Naz CO3 x0420 Ksp of An Bb to excite ei. Rn - CO2 Nat higher Trong = [AJa [BJ+ 7.15 1 40 286.15 ml mal. no kkn -> sol in unternewiew sopren ifreestre Patt M $M(OH)_2 = [M][OH]$ 4 FA's from triagly wich Ksp for Ac Bb of Solubility is Smul × 2 Net ions it are of C's was vertical furces = [ASª[B]⁵ insaturated =>isonerizati. [M] = Smil in twid. => 0.05 ml if cpd exceeds weight and actual ions = [OHT] = 25 ml this -> precipitate 3equirs Of receded to F2 only. (0.05) (6.02×10²³) = saperity a triaghyceral. 22 " [0] ion1. Proter 1 to all sicles KSP = 5(25)2 = 453 => 3FA groups.

KFLOFGS P = Q × VR sp conditione vascular if resistance Write down dawn washing w/ HzO v = E - iRHO Soluble Mpwitnes. KAPCOFGS. battury choices for "marked" ansi. $n_1 \Theta_1 = n_2 \Theta_2$ increased by SD% KARTCOPEOUS - X & and BP doubled Kevici all answers speek of sand ajcohexand Bio bove I blood Hep cot & Sue for My whether in still air hybridization 2 P = New W R R ZUR we be H of P=IR original. Kineticuly. 1000 (at in blowel controlled pott Formed fastur => Tosteoclast $f_{obs} = \frac{\nabla}{\nabla \pm \nabla_{sorv}} f$ sp² hybriclized Noticitor The A Cazt in the AVit C & Cazt than the mo Gentrolled pdt AG=AH-TAS (3 atoms) Hypertension Independent curred by of distance. vasoconstruction L PTH Aldoster are released by Ea < Ea Apde of smooth muscle de tar stood ressels -Ap = impulse adres al glouds ER - ontibodings hernodynamically high Cartin Hb synthesis. centraled. of Thet 2 AHO (FA+) X Culcitanin 1 to nenove 人个 the Hg equilib. trietny lanipe. wash with HU. 1CoFR M BPSystemic ormat R. auswers nonpolar-fat soluble cy clohexames more stable will use largest groups Atorine. J " " hot words" (ey, buty) go equatorial. Splitting of this neurby nerrover of PTH if this tails => hypertunition from passage. => hypocal cenia glonerulus: filtration of unic and. egi ett nuranucular microtubules, my toskeletal excitability. H is singlet BPJMGFRJ elevent -> cell shape CUT-pycimilines. cric acid - bird poor tangioteusin # Talilostorone Storeogenic C. 100 kocyte phago tytowis activity by shape danged to evalt a Ana a A A LOW ARE

Sapuritiation leren Morron PE Kz2 Leren Morron 2 Alkalinelalie Jonic Bond First 2 source w/ lust Breathings 7 Basic Solution Cleaning trighymole $\frac{1}{2} = \frac{1}{2} \left(\frac{kA^2}{2} \right)$ into its faitly acids H-bonding Requires base. Effective spring constant? if core patr on => & K = Eint/A2 eg Nall, Cut. $|cal = \frac{12}{1000}$ energation. N.D.F $F = -K\chi$ Radio signal 15 metabolism => culories when mass MiseB $C = 3 \times 10^8 \text{ m/s}.$ Specific heat in units two springs one Elycine (aa) can dicturbed. => Refective 2-spring J/(kg-K)satellite kept in orbit be of centripetal focu. Fort vs. > off existas 3 types of anions: constant. Chas X < Chas y => 2K Higher BP (>10%) (ow plt: H3N, -C4,-coott Calculate T (s) to = tomme high pit: 42 N-CH2 - CO-8 thas X will diffuse PH 7: Hz No-(12-000 $K(\frac{N}{m}); M(kg)$ r2 taster, be it has lower TH-bording LTTBP molar mass than Y. if mass quadrupled F=Ma Atomicradius conside Ea 7 and arbit radius ! N2 (g) + 3H2(q) = 2NH36 $k\left(\frac{k_{g}}{c}\right)$ LA it introduce a cabilyst Eionization. $S^{2} = (kg)(kg/S^{2})$ fa & T = 2 - 1 - 9 For a redox RXN the aunt of NH3 will remain the same to occur, E'must Sum of protons, T'X M K P = IV = Wattsbe positive for both Galvonic 3 164aic neutrions & electrons position in equilibrium In Strontiun - 90 Solely determined Beat-frequency L> sabtract 90 total meight 38 by (46 potes - Streets.) $f = \frac{1}{T} \cdot c_{i}$ Orcillating systems 2 diff fis protons usually have total Cutalyst speeds RXN \implies \ddagger_2 = 52 neutrons Roundtrip time for ball thrown upward by lowering Et E conserved EM where fravel slower then atmosphere than vacuum be at PE PE PE PE PE PE PE PE doesn't affect porition 38p+38e + 52N $t = \frac{2\tau}{9}$ # sped up V # amount - some \$ => 128 index of refraction. total.

Solid body in Rotational equilibrium Hooke's Law qV = 1/m-5-2 Saystseff's rule Astrona - Difficult exhaling when external Z it voltage is F = YALA Internal alkene ↑CO2 JpH below 7.4 → acidosis. sum to \emptyset . demeased. is more stude. ion moves => formed from internal halide if Length 's radius doled Newton's Laws Slower. D Low of Thertia Leukotreines \$ = = YAL -# protons = elevental 2) F=me * Neutrophils ? eisonophils Stoph & Strept trigger toxic shock eyndrome 3) action } reaction 22A 2L respond to... by & stimulating AL deineased 1 y factor of 2 Which is note Low Pressure exaggerated immune Soluble in IM Tlymph ~ Sublimation/ respanses. HCl than I M North 1 cytokines Deposition 2 Blymph arn anino acids comprise $\Rightarrow P_{b}(0H)_{2}$ Eisonophils 1 1° steucture of peptide. Sunlight dues not au2++SQ2+72levico- mast alls netlect significanty -> (uco) P32+ + 20H-Aron gasses, more if current is increased, RXN will go to the sight leuko- Brochid Va Sachillation afters muscle 1×105 strain A regid + # + 1) acid from solids. 5×104 strain B rey'd S×105 rey'd Spectroscopy -HzO (sourbe) used to identify Microvasular Electric power composition of materials. endothelium ter the over long KXn -> right Strain Ais zas distances "stopped up" (leChatelier) Bimoleular data potent asstrain B. Positive ions = E-field table implies $\frac{\gamma_{\text{MV}}}{I} = R$ Traund less Reventing bachecial EZ OR SnZ. ⁶Li synthesis: indling - add stop codor in yere when wall 6/w (The "two" stands Source 3 Detector tRNA +RNA +RNA +RNA + add repressor protein + o bind w/ operation work - add complementary strained to bind isotope. 6= to cut down on resistance. for Simulecular. ic reflected. # protons # newbross

new sighted (myopic) individual Vlight = C Nall + (d(NO3)~ to have lower $t = \sqrt{\frac{2h}{g}}$ The f; higher I may of distant, time to full. J= 1/2gh. $F_{B} = eVq$ object is focused Displacement Rxn. in front of retine Read controlly my probs mat requiring Diversiont PE to KE Cd Cl 2 precipitate lens correction. seen tricky. it object totally $prigh = \frac{m^2 \sigma^2}{2}$ if height is halved \rightarrow Sector eg, it you forcot immersed in 2 fuilds EXCEPTORA Stends to be -2 negative sign, etc. TIZN and SNT (u + HNQ, →NOg) 1/2 2gh = 22 Fixed acceluates. fixed free $pXq = F_{BI} = 5N$ Jgn = J r yg f32 = 12N e=0.7 Strip of Cer (neutral) instand of Jzyh transition metals. placed in (+1) (-1) AgNO360) glower by factor of UZ $\frac{12}{5} = \frac{l^2}{0.7}$ 3d electrons are the ones that band. new metal forms on strip Standing wave: Uxyqen (2.4)(0.7)=(2 equal amplitudes or 1420 solubility Cu is oxidized moving m and Ag+ reduced. 107≈ l2 2 1 powerty. oppgintern Assume a saturated A lace only has $\mathcal{I}_{2(6)} \longrightarrow \mathcal{I}_{2(6)}$ P Soln of Ca(OH)2. I made of VNOT colligntive but What happens Oscillation. DS 7Ø when we loom PE -> KE+ thermal ptt -=> (triction) monochromatic Joppershift. -> lower ptt. Kep is unchanged coherent when source sound Ower T solubilit - Momentum conserved but add'l (a (0H)z - Energy NOT asserved noves away from will dissolve. observer, appears

Jalkyl groups SER resurbes Digo Privity System. Cyclin protein 7 of stubilize cuebo catien Golgi three my per con jugation. Substiments in order of deministing atomic # dwing inter phase, Both are folded neubraine organiellos proteolysis in milosis NMR splitting I Triaglyceside an he of 19 \mathcal{N} N>C>H . hydrolized to form Ricoott Immune syr avoi de Donntield uptuld attacking own alls ### # stelevisones gigaral. $= 2^{n}$ Lipuses help hydrolyne futs 's curboxylic acid estoss where n = Chiral centers ، بر ایک بر ایک Diff rubstrades, similar linkages Jf vier penetrates when, gastric ; vier -> peritoreed cavity. fac Chromatography Antibodies muy be denationed in stomach ester vs. ether most 7 1 05 0-5 abundant reast abundant round at TLC: Leukocytes of Inflammation OH à risse à louise Artigeus on the police Rf man Suface of S.M. cells /protoirs andmost Enzymatic activity in stanach -> protein Digestion. 48.1+2(0-5) wadch and far teet alcohols react quickest Direction of cell differentiation signal: => 60/0 EXCEPTquestions from totipotent to w/ strong acids man-Maude Pian in her itar ce: querching of Civer require atos often via Mitosis lasbocations best to farm - incomplete peretrance - limited expense inity - polygunic disorder -) alcohols chousterol -> sex hermones alley no litos > peak @ 35.00

H fuloctat IOW BP BP & internal - furce molarity of weat intermoleurlace forces, prene cpl = $v = \frac{7}{T} = \left(\frac{m}{S}\right)$ expect von Dr Wunds H N TH expunded H H H A H not H-bonds (deusity) (woomi) (molus) or conalut Doppler Effect ·source tractrieral distillation 0 52 Ly decided upol has-Basicity & KL × f₃ Light is 400 to 700 m lowing BP than solid impurities. DST & Howle gas. 395 is new UV side. altrafast -> + + + +2 Vreal > Videal E structure : - S waveleugh Se ideal replects volume of mativ- gus muls. P = IVPhuse, phase equility. dereased atomic 's nuclear structure. f3's & increased Sound Meherence -Same Frequency. motion. E of H whom Nones. Fran air to glass Fivids Solids. ps e jumps , light slows down Sound speeds upup a shell. Electromagnetic everyy upatom Jos more mussive wave are , reneased -7 Agenss > Acir that electronsound presence waves 1F= I would change I more right Elevents in same group (aken column) longitudinul Sond's there air Indicutor charges is color depends on sound > sound solid air Light its pka or plcb -> similar properties relevin 6 eas on train trad maynet

Gneeter The vapor (nol STP gas 1 magnitod 25 errores -> p. Dsaud & metal & Tr pressure, gneiter Bransteel liquid Pro Donor air = 22.4LE = KW gr the rate of Switched closed on circuit. r 2 every oration. marge radiusof H-banding Sinternaleula-ELQI corvature h ROYGBIV · E ~ 12 3 focul lergtu 700 1 m 400 & Tmt V _____ > time Sion . P = lgh. ~ TEPT E force on pueticle independent of pueticle's speed. 2N can't be Adiabatic - P1 resultant of capid compression ptt = pka + by con buse vectors 7N ZIIN F 2 little heat 1055 ATT - other everyy ike PV work Cerpacitance(C) 2 A dinerges. Ksp for Polly phi = -log Ka. y trells us F=ma = Eq how much NH 4NO36 NHT NHT 10500 some light. Pb+w/ previp. Octahedral absorbed by autral metal Capacitoes in Base + Buffered solution when HCl less ar mirror, sories: overall less than it parallel plus 6 ligands becomes warm. added. ==> Slight (<0.1pt) in weas ey AIF63-Why is NaNozcep electron b/w povallel plates light troubs (decay basic - Arrhenius Berger slower w Lowis a fid accept NOT rets w/ water, atomic # ques up by 1. inanearing accelerates towards effectively forms OH jons in som puir uf ets. n. Why? the positive plate-=> (ight ubsorbed Mass ~ same. Growty is often -Reduction O annue & re-enitted a "vestoring " Off, group: able to Hydroeger Bord in water. it oligonucleotides nue elegraded too sy atomic structure 60th galvanic => ell ditheren Hati devise neder. v=FZ AND electrolytic less coordirated Entropy > Ø if AN OX, Ned CAT Why do oscillations persist? Energy conservation. Sol likes sturics. Sn 2ª preters # gaseous ># guseous polt for sets. 3° most stable It chromesoned uph'cution 2 x before tetrad => 4 hoy. sperm no stecics .

regative enal) of Free radical Metabolically active Hssue, such as muscle ... Serilogaryturic bere dback graph is Brown in Alon. coo-Straight lined-Good cardidute mypo & prot. Anulines pituitary C=0 of I withochor lain (ooks like Cutz. 65 ~ 1 wed for 02 To graph. Tyuraces) a 1 cupillaries <u>is:</u> 0 3° free cadical intermediate Attoger, but not Hypo Ant-Pit. (GmRH) -> // inhibit LH FSH Osmotic P : t - Other and a surviv diff 6/w Section tos chronafayrephy H-bunding ability mentos 6c area & % pdt solvert H to valently could to Carpass Thro 6 tool 1/2 1 gonads 1:2 =7 33% A e-neg element Methyl H moves => kefure O atom -80 Kowl . 67% B eg (OH) or (NH. estroyen HUMR of H H3C 200 Br H 1.CH3 CH3 M Negative back => dol bandet copillances 2 helix - 2 ory struck -> Rassine 40 diffusion. FSHLL proyect estroya L alcohal grp cell line /basal viability/basal GNRH T Blowd dot on. Veinous side of -> fretere => Singlet, / turctions. (Redox) copilment bed Both bacturia Septer, -> controls groups -> met third 3 eukoryotes them in introstitiant the plasma Memb. 29 # bunds Bore recorption Dihydroxyacture to Oxygen = demense in bus moss space Sno mitochand common to -> elon -alashed Ct204 no) ZR. antisensecturgs prevent RNA translation -Keture -curb. acteries, veins, Not m $\dot{c} = 0$ it Winhibits copillazies. Viasillate to maintain mRNA B'- CGAUAC-3' translation, acts on Ribosones. not all atories dilate for strict 3'- GCU AUG-5' isopenidity w/ blood D. LHZ OH

1 . .

:

1

}

$$\begin{array}{c} \label{eq:product} \hline \begin{array}{c} \mbox{Product} \\ \mbox{Ind} = 6.02 \mbox{Product} \\ \mbox{Ind} = 0.64 \mbox{ transformation} \\ \mbox{Ind} = 0.64 \mbox{ t$$

•

destructive interfrerence Copper in pennyhas W = Fd.Vasticle acculato HOAC lissoiatm of the state XG reutron - regligible louization in dramboe. $v_0 = v_{2gh}$. HOAC = H+ + DOC @ { ware covelent bonds for projectile Diffrerence only Because inchinged. 05 4 evergy deucity if earth's radius doubled and mass doubled [1+30+] = [OAc] 1800 single por ticle $= \sum_{a} \int_{a} \frac{[H_{s}O^{\dagger}]^{2}}{[H_{s}O^{\dagger}]^{2}}$ passing thru => 22 Encork multiwine Muss = PV g we be 'z as Champer has both can initiate large be atomic number (#protons) covalut 3, 1+ signals. déraminator is squine d ment interdeic acid, if i mizatim performent of trail is like stur 2~~ equidistart. Chenical K rcts most tatly acros. $(2)^{2}$ from more than behavier violently has polar head 1 mode vine. w cold water. Electric field 3 nonpolar fuil. Voltage in proportion also nost metallic of given in walts champer curse es That which is cuscade co signals poluced@ reduced is the oxidizing agent. hereur oxidizing/oxdized. K. My, Fe, Zn. nonpolar soherts 5V for D.D.3 on Separator of 3 cm. an oche wy not se Z meak to detect. (Residence then of Der zene Drethy 1 etur question / Curved trajectories => 160.7V I Maroto m JEP 2 osmolarity-> straight on + all dissolve 15M 62427.20 A because raelins V = 150/5M Call 27.20 Nacl hydrocarbus of arvature co be used to ID 166.7V = 166.7Nparticle

ideal gus Spatial resolution LG L THUFFman. Both back ? euks typridization at stacked => neglected base pairing USE ATP nultivine indovidual synthuse 6/w DNA chankernole when valume and internal forces J>U>F ribosomes Differ auternmed by Sequences. bact chromoson spacing of normal put one corcular (plasmide) g "I sener anode wines voles = rodents aka mice whereas cuk's @ peak height one Unean. seminitures tuber Op Epidvelynur at propertie 2 por ticle $a = -q, v = \emptyset$ transcription brighted reagent reads ether. ud have largest vas detime Saucleusanoche signal-Chrono sonal methic be of its withra Dz has beneuge 2t duge most smin to questest_ -> nutation or concir vag pla electron affin PV Lot Standing person. in the ETC WVIX * "Meso" Pelocod > Piland y terus both can mitotic Advisions of organia. be a cetylatire agente OH OH Column of blufert } tully p- ian tobes Slood has will have just nydrostatic pressure transmithe 2 distinct neleass cell size limit: cell cycles NMR signals L extracellulo f = pgh. SiiA y are . the -ctt_ and -Ott GGMS imp - tell into Syn bouton ×1 gran ity heerent - striated nothing steeled. fitzes. 29P.

Development Me chanisons That the either synth, Optic cop tuils Sex-linked adrenal regulate gene choose somentrecessive L> lens fails nedulla expression and That resembles => ex. of alls nucleophile. mostly sons complex and epinephrine affected. occur@ mony me generations inducing their tevels whin cell. Human bore me the neighbors to - regulating transcription of DNA - Cen²⁺)hydroxy-- pozy capetite - OH differentiate muscle cell me - post - transcriptional HNMR in medium RNA modification why is no expressing disease З lattute made? - modifying stability of ques important in No Potassim => no ATP present. nRNA & protein negolating normal Oppm in cytoplasm. phyliology : negume symmetrical ipd -> 2 signals Expression & external cures attered expression of disease genes in vestigent of @ least 1. 2 gene leads to clicease Geninal Schalide Decolorization w/ 2 equins alkoxide. Differentiated of BE in Distributed disorder alls express CCly => acetal different proteins Mich us neuro -Man de volifferentisted alls. XXX fibromatosis: presence of double bods all features arise RR =) transcript trou defects in moic - 1051 changes as cell different totes gene expression 1 2 R'O diffriencic - 2/3 OF OR' change in type of Anterior pituitry Multiple proteins (an be encoded by RKR tra script ACTH -scortisone a single gere TSH LH Charge in Syreof => evolutionery aduan tage protern synthesized.