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ABSTRACT 
With the amount of available text data in relational databases 
growing rapidly, the need for ordinary users to search such 
information is dramatically increasing. Even though the major 
RDBMSs have provided full-text search capabilities, they still 
require users to have knowledge of the database schemas and use 
a structured query language to search information. This search 
model is complicated for most ordinary users. Inspired by the big 
success of information retrieval (IR) style keyword search on the 
web, keyword search in relational databases has recently emerged 
as a new research topic. The differences between text databases 
and relational databases result in three new challenges: (1) 
Answers needed by users are not limited to individual tuples, but 
results assembled from joining tuples from multiple tables are 
used to form answers in the form of tuple trees. (2) A single score 
for each answer (i.e. a tuple tree) is needed to estimate its 
relevance to a given query. These scores are used to rank the most 
relevant answers as high as possible. (3) Relational databases 
have much richer structures than text databases. Existing IR 
strategies are inadequate in ranking relational outputs.  In this 
paper, we propose a novel IR ranking strategy for effective 
keyword search. We are the first that conducts comprehensive 
experiments on search effectiveness using a real world database 
and a set of keyword queries collected by a major search 
company. Experimental results show that our strategy is 
significantly better than existing strategies. Our approach can be 
used both at the application level and be incorporated into a 
RDBMS to support keyword-based search in relational databases. 

1. INTRODUCTION 
The amount of available structured data (in internet or intranet or 
even on personal desktops) for ordinary users grows rapidly. 
Besides data types such as number, date and time, structured 
databases usually also contain a large amount of text data, such as 
names of people, organizations and products, titles of books, 
songs and movies, street addresses, descriptions or reviews of 
products, contents of papers, and lyrics of songs, etc. The need for 
ordinary users to find information from text in these databases is 
dramatically increasing. The objective of this paper is to provide 
effective search of text information in relational databases. We 
take a lyrics database (Figure 1) as an example to illustrate the 
problem. There are five tables in the lyrics database. Table Artist 
has one text column: Name. Table Album has one text column: 
Title. Table Song has two text columns: Title and Lyrics. The 
tuples of Table Artist and those of Table Album have m:n 
relationships (an album may be produced by multiple artists and 

an artist may produce more than one album), and Table Aritst-
Album is the corresponding relationship table. Table Song-Album 
is also a relationship table capturing the m:n relationships 
between tuples of Album and Song (a song may be contained in 
multiple albums and an album many contain more than one song). 
Note that Table Aritst-Album and Table Aritst-Album do not have 
other columns except their primary keys and foreign keys.  

 

 

 

 

 

 

 

 

 

 

 

The traditional search model in relational databases requires users 
to have knowledge of the database schema and to use a structured 
query language such as SQL or QBE-based interfaces. Even 
though most of the major RDBMSs have integrated full-text 
search capabilities using relevance-based ranking strategies 
developed in information retrieval (IR), they still have the above 
two requirements for users. Suppose a user is looking for albums 
titled “off the wall” and he/she cannot remember the exact title. A 
typical SQL query is shown in Figure 2 and the tuple b2 is 
expected to be one of the top ranked results. Obviously, this 
model of search is too complicated for ordinary users. 

With the tremendous success of web search engines, keyword 
search has become the most popular search model for ordinary 
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Artist (A) 
ArtistID Name 
a1 D12 
a2 Eminem
a3 Code Red
a4 jojo 

Album (B) 
AlbumID Title 
b1 D12 World 
b2 Off the Wall 
b3 jojo 

Song (S) 
SongID Title Lyrics 
s1 How Come How come we don’t … by...  more..  
s2 The Kids And everyone should get along ... 
s3 Leave(Get out) I've been waiting all day… 

Figure 1: Lyrics Database Example 

Artist-Album (AB) 
AB-ID ArtistID AlbumID
ab1 a1 b1 
ab2 a2 b1 
ab3 a4 b3 

Album-Song (BS) 
BS-ID AlbumID SongID

bs1 b1 s1 
bs2 b2 s2 
bs3 b3 s3 

 

Select * from Album B 
Where Contains (B.title, ‘off wall’, 1) > 0 
Order by score(1) desc 

Figure 2: An Oracle SQL Example 

Query 1:     “off wall” 
Query 2:     “lyrics how come by D12” 
Query 3:     “album by D12 and Eminem” 

Tuple Tree 1: 2b  
Tuple Tree 2: 11111 sbsbaba ←→←→  
Tuple Tree 3: 22111 aabbaba ←→←→  

Figure 3: Queries and Tuple Trees 



 

users. Users do not need to know the database schema or use a 
structured query language. Instead, they submit a list of keywords 
using a very simple interface, and a search engine returns ranked 
documents based on relevance to the query from its text databases. 
Therefore, it is extremely desirable to support the keyword search 
model in relational databases. With such support, a user can avoid 
writing a SQL query; and he/she can just submit a simple 
keyword query “off wall” to the lyrics database.  

Applying the keyword search techniques in text databases (IR) to 
relational databases (DB) is a challenging task because the two 
types of databases are different. First, in text databases, the basic 
information units searched by users are documents. For a given 
keyword query, IR systems compute a numeric score for each 
document and rank the documents by this score. The top ranked 
documents are returned as answers. In relational databases, 
however, information is stored in the form of columns, tables and 
primary key to foreign key relationships. The logical unit of 
answers needed by users is not limited to an individual column 
value or even an individual tuple; it may be multiple tuples joined 
together. Consider Query 1 as shown in Figure 3. Tuple Tree 1 is 
one desired answer (though the query and the text value are not 
exactly matched). Note that, in Figure 3, an edge from a1 to ab1 
denotes a primary key to foreign key relationship. For Query 2, 
one desired answer is a joining tree of five tuples (Tuple Tree 2 as 
shown in Figure 3). Note that the query matches both text 
columns (title and lyrics) values in the tuple s1. For Query 3, one 
desired answer is a joining tree of five tuples (Tuple Tree 3). 
Second, effectiveness is a key factor for the success of keyword 
search. Even in a medium sized database, there may be dozens of 
candidate answers for an ordinary keyword query.  Consider the 
query “off wall” again. There exists many titles of songs, titles of 
albums or lyrics of songs that contain both keywords “off” and 
“wall”. Therefore, there are many tuple trees that can be answers 
for the query. However, these answers are not equally useful to 
the user. We need to rank the more relevant answers higher. 
Otherwise, users will be discouraged to use keyword search. Note 
that a key reason behind the tremendous success of web search 
engines is that their ranking strategies are highly effective that, 
for many queries, they can rank relevant web pages in the first ten 
results out of billions of web pages. Due to the difference in the 
basic answer unit between document searches and database 
searches, in relational databases, we need to assign a single 
ranking score for each tuple tree, which may consist of multiple 
tuples with text columns, in order to rank the answers effectively. 
The characteristics of text columns are usually diverse. For 
example, some text columns such as people’s names and album 
titles are very short, while other text columns such as song lyrics 
are much longer. In contrast, in text databases, we only need to 
compute a score for each single document. Thus, the ranking 
strategy for relational databases needs to consider more factors 
and is more complicated. Third, relational databases have much 
richer structures than text databases. For a given query, we desire 
answers to be returned with semantics. For example, for Query 2 
and one answer Tuple Tree 2, it is quite obvious that the sub-
query “how come” is the Song title of the tuple s1, and the sub-
query “D12” is the Artist name of the tuple a1, although all 
individual keywords (except “D12”) in the two queries are very 
common words, and some individual keywords also appear in 
other text values of Tuple Tree 2 (e.g., “D12” appears in the title 
of b1, and “how” and “come” appear in lyrics of s1). We consider 

the correspondences between sub-queries in a given query and 
database columns in an answer as the semantics of the query in 
the answer. In summary, in relational databases, we have three 
key steps for processing a given keyword query. (1) Generate all 
candidate answers, each of which is a tuple tree by joining tuples 
from multiple tables. (2) Then compute a single score for each 
answer. The scores should be defined in such a way so that the 
most relevant answers are ranked as high as possible. (3) And 
finally return answers with semantics. 

Recently, keyword search on relational databases has merged. 
DBXplorer [1], DISCOVER [10], BANKS [2], and Hristidis et al. 
[11] are systems that support keyword search on relational 
databases. For the first step, they generate tuple trees from 
multiple tables as answers. The first three systems require an 
answer containing all keywords in a query, while the last one only 
requires an answer containing some but not necessarily all 
keywords in the query. Efficiency has been the focus for the first 
step [1, 2 10, 11]: rules are designed to avoid generation of 
unnecessary tuple trees, and more efficient algorithms are 
proposed to improve the time and space complexities.  For the 
second step, the first two systems use a very simple ranking 
strategy: the answers are ranked in ascending order of the number 
of joins involved in the tuple trees. When two tuple trees have the 
same number of joins, their ranks are determined arbitrarily. Thus, 
all tuple trees consisting of a single tuple are ranked ahead of all 
tuples trees with joins. The ranking strategy of the BANKS 
system is to combine two types of information in a tuple tree to 
compute a score for ranking: a weight (similar to PageRank for 
web pages) of each tuple, and a weight of each edge in the tuple 
tree that measures how related the two tuples are. The strategy of 
DBXplorer [1] and DISCOVER [10] and the strategy of BANKS 
[2] for the second step do not utilize any state-of-the-art IR 
ranking methods, which have been tremendously successful. In a 
database that contains a large amount of text data, these strategies 
will be shown not to work well. Hristidis et al. [11] propose a 
strategy by applying IR-style ranking methods into the 
computation of ranking scores in a straightforward manner. They 
consider each text column as a collection and each value in the 
text column as a document. A state-of-the-art IR ranking method 
is used to compute a score between a given query and each text 
column value in the tuple tree. A final score is obtained by 
dividing the sum of all these scores by the number of tuples (i.e. 
the number of joins plus 1) in the tree. However, they only 
concentrate on the efficiency issue of the implementation of the 
ranking strategy and do not conduct any experiments on the 
effectiveness issue. In addition, our experimental results show that 
their strategy ignores some important factors that are critical for 
search effectiveness.  

Our paper focuses on search effectiveness. We propose a novel 
ranking strategy that ranks answers (tuple trees) effectively and 
returns answers with basic semantics. This strategy can be used 
both at the application level and be incorporated into a RDBMS to 
support keyword search in relational databases. We adapt the 
framework proposed in Hristidis et al. [11] to generate tuple trees 
as answers for a given query. Efficiency issues are not 
investigated in this paper. We emphasize that effectiveness of 
keyword search of text data (in both text and structured databases) 
is at least as important as efficiency.  

Our key contributions are as follows: 



 

1. We identify four new factors that are critical to the problem 
of search effectiveness in relational databases. 

2. We propose a novel ranking strategy to solve the 
effectiveness problem. Answers are returned with basic 
semantics. 

3. We are the first to conduct comprehensive experiments for 
the effectiveness problem. 

4. Experimental results show that our strategy is significantly 
better than existing works in effectiveness (77.4% better than 
[11] and 16.3% better than Google1).   

In Section 2, we briefly introduce the framework for generation of 
answers (tuple trees) for keyword search in relational databases. 
In Section 3, we briefly introduce the background of a recent IR 
similarity function. In Section 4, we analyze new challenges for 
keyword search in relational databases, identify new factors that 
are critical to ranking effectiveness, and propose a novel ranking 
strategy. In Section 5, we present experimental results to 
demonstrate the effectiveness of our ranking strategy. Section 6 
discusses related works. Section 7 draws the conclusion and 
outlines directions for future work.  

2. ANSWER GENERATION 
In this section, we describe the framework for generating answers 
for given keyword queries (a modification of [11]).  Section 2.1 
describes what an answer is for a keyword query in relational 
databases. Section 2.2 gives an algorithm to generate answers.  
2.1 Tuple Trees As Answers 
We use a graph to model a database schema. A schema graph is 
a directed graph SG. For each table Ri in the database, there is a 
node in the schema graph. If there is a primary key to foreign key 
relationship from the table Ri to the table Rj in the database, then 
there is an edge from the node Ri to the node Rj in the schema 
graph. Each table Ri has mi (mi>=0) text columns {ci

1, ci
2,…, ci

mi}. 
Figure 4 shows a schema graph of the lyrics database (columns 
are shown in Figure 1). A tuple tree T is a joining tree of tuples. 
Each node ti in T is a tuple in the database. Suppose (Ri, Rj) is an 
edge in the schema graph. Let ti ∈  Ri, tj ∈  Rj, and (ti join tj)∈ (Ri 
join Rj). Then (ti, tj) is an edge in the tuple tree T.  The size of a 
tuple tree T is the number of tuples involved. Note that a single 
tuple is the simplest tuple tree with size 1. A keyword query Q 
consists of a list of keywords {k1, k2, … kn}. For a given query Q, 
an answer must be a tuple tree T that satisfies the following 
conditions: (1) every leaf node ti in T contains at least one 
keyword in Q (more precisely, at least a text column value of the 
tuple ti contains at least one keyword in Q and different leaf nodes 
may contain the same keyword), and (2) each tuple only appears 
at most once in the tuple tree. Note that a non-leaf node (a node 
has two or more edges) may or may not contain any keyword. 
This definition implies that  (a) if an answer contains multiple 
tuples, they must be joined together as a tree, (b) we assume the 
OR semantics (i.e. an answer must contain at least one query 
keyword) for answering a query, and (c) there is no redundancy, 
because if we remove any leaf node, we will lose the 
corresponding keyword match between the query and the node, 
and if we remove any non-leaf node, the tuple tree becomes 

                                                                 
1 Although Google retrieves from text databases (not from relational databases), 

its big success necessitates a comparison. 

disconnected.  Take Tuple Tree 2 and Tuple Tree 3 in Section 1 
as examples (also shown in Figure 5). In Tuple Tree 2, the leaf 
nodes a1 contains the keyword “D12”, and s1 contains two 
keywords “how” and “come” in Query 2.  In Tuple Tree 3, leaf 
nodes a1 and a2 contain the keywords “D12” and  “Eminem” in 
Query 3 respectively; the non-leaf node b1 also contains the 
keyword “D12”. Note that we consider a tuple tree as an answer 
as long as it satisfies the definition. An answer may or may not be 
relevant to a given query.  
2.2 Answer Graph to Generate Answers 
In this section, we briefly describe an algorithm (a modification of 
the algorithm described in [11]) to generate tuple trees as answers. 
For a given keyword query Q, the query tuple set RQ of a table R 
is defined as the set of all tuples in R that contain at least one 
keyword in Q.  For example, the query tuple sets of Table Artist 
for Query 1, Query 2 and Query 3 are AQ1={}, AQ2={a1} and 
AQ3={a1, a2} respectively. We define the free tuple set RF of a 
table R as the set of all tuples in R. For example, the free query set 
for Table Artist is AF={a1, a2, a3}. Implied from the definition of 
an answer, for a given query Q, if a tuple tree T is an answer, then 
each leaf node ti in Table Ri belongs to the query tuple set Ri

Q, and 
each non-leaf node tj in Table Rj belongs to the free tuple set Rj

F. 
We use RQorF to denote a tuple set, which may be either a query 
tuple set or a free tuple set. Due to the existence of m:n 
relationships (for example, an album may be produced by more 
than one artist), tuple sets of the same table may appear more than 
once in a join expression. If this happens, each occurrence of the 
same tuple set is considered to be a different alias of the tuple set. 
Now, we define an answer graph as a join expression on alias of 
tuple sets that produces tuple trees as answers. An answer graph 
is a directed graph AG of alias of tuple sets, where each leaf node 
Ri

x,Q is the x-th alias of the query tuple set Ri
Q of the table Ri and 

each non-leaf node Rj
y,F is the y-th alias of the free tuple set Rj

F of 
the table Rj, and each edge (Ri

x,QorF,Rj
y,QorF) corresponds to an 

edge (Ri, Rj) in the schema graph SG and this edge also 
corresponds to a join clause “Ri

x,QorF join Rj
y,QorF on 

Ri
x,QorF.PrimaryKey= Rj

y,QorF.ForeignKey”. We define the size of 
an answer graph as the number of nodes. Obviously, the size of an 
answer graph is the same as that of a tuple tree it produces. For 
example, the Answer Graph 2 and Answer Graph 3 (as well as the 

Figure 4: The Lyrics Database Schema Graph 

Artist (A)

Album-Song(BS)

Album (B)

Artist-Album (AB)

Song (S)

11111 sbsbaba ←→←→                           (Tuple Tree 2) 

22111 aabbaba ←→←→                             (Tuple Tree 3) 

 Q Q SBSBABA FFF ←→←→               (Answer Graph 2)

AQ join ABF on (AQ.ArtistID = ABF.ArtistID) join BF on 
(ABF.AlbumID =BF.AlbumID) join BSF on (BF.AlbumID = 
BSF .AlbumID)  join SQ on (BSF.SongID = SQ. SongID) 

 Q2,,2,1 Q1, AABBABA FFF ←→←→       (Answer Graph 3)

…join.. Where (A1,Q.ArtistID != A2,Q.ArtistID) and  
(AB1,F AB1,F AB-ID!= AB1,F.AB-ID)  

Figure 5: Tuple Trees, Answer Graphs, Join Expressions



 

corresponding join expressions) that generate Tuple Tree 2 and 
Tuple Tree 3 are shown in Figure 5 (If there is only one 
occurrence of a tuple set, we omit the alias number). In Answer 
Graph 3, there are two alias of tuple sets A1,Q and A2,Q for the 
same query tuple set AQ of Table A. If there exists more than one 
alias for a tuple set, in the corresponding join expression, we need 
to add a condition such as  “A1,Q.ArtistID != A2,Q.ArtistID” to avoid 
producing tuple trees such as 11111 aabbaba ←→←→ , which 
violates the second condition of the definition of an answer. If 
there is an edge (Ri, Rj) in the schema graph SG, and n is the 
maximum number of distinct tuples in the foreign table Rj that can 
be joined with one tuple in the primary table Ri, then, in theory, 
each tuple set of Ri may connect to n tuple sets of Rj in an answer 
graph in order to produce all possible tuples trees, each of which 
contains one tuple of Ri that is joined with at most n distinct 
tuples of Rj. And the number of answer graphs is only data 
bounded by the query and the database. Thus, we set up two 
parameters, maxn (for each tuple set of a primary table, it is the 
maximum number of tuple sets of a foreign table that can be 
joined) and MAXN (the maximum number of tuple sets in an 
answer graph) to avoid generating complicated but less 
meaningful answer graphs. Note that, for a given query, there is 
usually more than one answer graph. For example, besides 
Answer Graph 2, AQ2 and SQ2 (SQ2={s1}) are also two answer 
graphs for Query 2. Figure 6 gives a breadth-first search 
algorithm to generate all answer graphs AGs for a given query Q 
and a given schema graph SG. With answer graphs, it is rather 
straightforward to produce tuple trees as answers by evaluating 
the corresponding join expressions. It can be proved that the 
answer graphs output by our algorithm can produce all and only 
all answers (tuple trees) if we do not apply the constraints of 
maxn and MAXN.    

In summary, in order to generate answers for a given query, the 
system first finds all tuple sets, then it generates all answer graphs 
using the tuple sets and the schema graph, and finally, it produces 

all tuple trees as answers by evaluating the join expressions in the 
answer graphs. The efficiency issue of answer generation is not 
the focus of this paper and will not be discussed. 

3. BACKGROUND IN IR RANKING  
Modern IR systems rank documents for a given query. The higher 
a document is ranked, the more likely the document is relevant or 
useful to the query. In Section 3.1 we describe how the 
effectiveness of IR ranking is evaluated. The IR effectiveness 
measures will be used in our experiments. In Section 3.2, we 
introduce and discuss a recent IR similarity function and analyze 
some critical factors that affect search effectiveness.  
3.1 Effectiveness Measures in IR 
In IR, there are many measures to evaluate effectiveness. 11-
point precision and recall (precision is the number of relevant 
documents retrieved divided by the number of retrieved 
documents, and recall is the number of relevant documents 
retrieved divided by the number of relevant documents) is a 
standard measure. At each of the 11 recall levels (0, 0.1, 0.2,…,1), 
a precision value is computed. These 11 precisions are usually 
plotted in a graph to illustrate the overall effectiveness as well as 
the trade off between precision and recall. Mean average 
precision (MAP) is another standard measure. A precision is 
computed after each relevant document is retrieved. Then we 
average all precision values to get a single number to measure the 
overall effectiveness.  
For ranking tasks in which users look for a single or a very small 
set of target documents (such as homepage search and question 
answering [19]) in a large collection, the reciprocal rank is 
another popular measure. For a given query, the reciprocal rank is 
1 divided by the rank at which the first correct answer is returned 
or 0 if no correct answer is returned. For example, if the first 
relevant document is ranked at 5, then the reciprocal rank is 1/5. 
In IR experimentation, values of each of the above measures are 
usually averaged over a set of queries to get a single number to 
evaluate the effectiveness of an IR system. Note that “evaluation 
of search effectiveness has been a cornerstone of IR” [18], and 
effectiveness is one of the two (efficiency is the other one) most 
important problems in IR. This paper is the first work that 
conducts a comprehensive effectiveness evaluation on the 
problem of keyword search in relational databases.  
3.2 Ranking Model in IR 
To rank documents, IR systems assign a score for each document 
as an estimation of the document relevance to the given query. 
The widely used model to compute such a score is the vector 
space model [26]. Each text (both documents and queries) is 
represented as a vector of terms, each of which may be an 
individual keyword or a multi-word phrase. The vocabulary of 
terms makes up a term space. Each term occupies a dimension in 
the space. Each text (a document or a query) is represented as a 
vector on this term space, and each item in the vector of a text has 
a non-negative weight, which measures the importance of the 
corresponding term k in the text. Thus, a similarity value between 
a document vector D and a query vector Q can be computed as the 
ranking score.  

Formula 1 shows the inner product (dot product) function to 
compute the similarity. Weighting a term in a document (the 
weight(k, D) component in Formula 1) is the most critical 
problem in computing similarity values. Formula 2 shows the 

Input: query Q, schema graph SG, maxn, MAXN 
Output: a set of answer graphs S 
1.  Generate all non-empty query tuple sets {R1

Q, R2
Q,…Rn

Q } and all non-
empty free tuple sets {R1

F, R2
F,…Rn

F } for Q. Add the two sets of tuple sets
into a queue E. Note that, in the following steps, these tuple sets are
considered as symbols. 
2.  While E is not empty { 

Pop the head h from E. 
If h violates the constraints of MAXN and maxn, then h is discarded 
Else { 

If h is a valid answer graph+, then add it to S. 
For each Ri

Q or F in h 
For each Rj that is adjacent to Ri in SG { 

Add Rj
Q with an edge into h to get a new h1. 

Add Rj
F with an edge into h to get a new h2. 

If h1 is not in E, then push it into the end of E. 
If h2 is not in E, then push it into the end of E. 

} 
} 

} 
3. For each graph of tuple sets in S, if there is more than one occurrence for
any tuple set, give these occurrences different alias names.  
4. Return S. 
+Note that whether an h is a valid answer graph is determined by the
definition of an answer graph, as well as the two parameters maxn and 
MAXN.  

Figure 6: Algorithm for Answer Graph Generation 



 

pivoted normalization weighting method [17, 18], which is one of 
the most widely used weighting methods in IR. Note that, 
conceptually, we put the idf component into Formula 2 but not 
into Formula 1. The weight of a term in a document is determined 
by the following three factors.  

z Term Frequency (tf in Formula 2.1): the number of 
occurrences of a term in a document. Intuitively, the more a 
term occurs in a document, the higher the weight of the term 
should be. However, the same term may occur many times in 
a long document, and the importance of a term should not be 
linearly dependent on the raw tf when tf is rather large. It has 
been accepted in IR that the raw tf should be dampened. 
Formula 2.1 applies the log function twice to normalize the 
raw tf to get ntf. 

z Document Frequency (df in Formula 2.2): the number of 
documents that a term occurs in a collection. By intuition, in a 
collection, the more documents a term appears in, the worse 
discriminator it is, and it should be assigned a smaller weight. 
Formula 2.2 shows the inverse document frequency (idf) 
weighting method to normalize df: dividing the total number 
of documents (N in Formula 2.2) by (df+1) and then applying 
the log function   

z Document Length (dl in Formula 2.3): the length of a 
document in bytes or in number of terms contained in the 
document. Because longer documents contain more terms and 
higher term frequencies, longer documents tend to have 
higher inner product values for a given query. Formula 2.3 
provides a normalization to reduce the term weights in long 
documents, where avgdl is the average document length in 
the collection, and s is a constant and is usually set to 0.2.   

Weighting a term in a query (the weight(k, Q) component in 
Formula 1) is rather simple: We use  raw term frequency (qtf) in 
the query. Note that normalization on the above three factors has 
significantly improved search effectiveness in IR than the simple 
tf*idf weighting methods [18].  

4. NOVEL RANKING STRATEGY FOR 
RELATIONAL DATABASES 
In this section, we propose a novel ranking strategy for effective 
keyword search in relational databases. In IR, a document is a 
basic information unit stored in a text database; and it is also the 
basic unit of answers needed by users. A similarity value between 
a given query and a document is computed to rank documents. 
However, the basic text information unit stored in a relational 
database is a text column value, while the basic unit of answers 
needed by users is a tuple tree, which is assembled by joining 
multiple tuples, each of which may contain zero, one or multiple 
text column values (each text column value is considered as a 
document). A similarity value between a given query and a tuple 

tree needs to be computed to rank tuple trees. This value has two 
factors: similarity contributed from each text column value in the 
tuple tree, and a combination of all these contributions. Let T be a 
tuple tree and {D1, D2, …, Dm} be all text column values in T.  We 
define each text column value Di as a document and T as a 
super-document. Then we can compute a similarity value 
between the query Q and the super-document T as shown in 
Formula 3 to rank tuple trees. The similarity is the dot product of 
the query vector and the super-document vector. The method of 
weighting a term in the query, weight(k,Q), still uses the term’s 
raw qtf (term frequency in the query). Our focus is on weight(k,T), 
the weight of a term k in a super-document T.  

In Section 4.1, we introduce the ranking strategy proposed by 
Hristidis et al. [11]. In Section 4.2, we identify four important 
factors that affect search effectiveness and propose a novel term 
weighting strategy. Section 4.3 identifies the schema term 
problem and proposes a solution. Section 4.4 proposes phrase-
based and concept-based search models that improve 
effectiveness and can return semantics. 
4.1 Ranking Strategy in Related Work  
The weighting method in Hristidis et al. [11] considers each text 
column as a collection, and uses the standard IR weighting 
method as shown in Formula 2 to compute a weight for each term 
k in each document Di. Then, as shown in Formula 4, each weight 

is normalized (divided by size(T), i.e. the number of tuples in T). 
The weights of the term in all documents are summed to obtain 
the term weight in the super-document T. Formula 4 identifies and 
deals with a new factor, size(T), that affects similarity. However, 
more factors need to be considered.  
4.2 Four Normalizations  
We identify four important factors that affect search effectiveness 
and propose a novel term weighting strategy as shown by 
Formulas 5.1 and 5.2.  Formula 5.1 computes a term’s weight in a 
document Di, and Formula 5.2 computes the same term’s weight 

in the tuple tree T. ntf is still computed using Formula 2.1; Nsize(T) 
is a new tuple tree normalization factor (see Section 4.2.1 and 
Formula 6); ndl is a new document length normalization factor 
(Section 4.2.2 and Formula 7); idfg is a new inverted document 
frequency weight (Section 4.2.3 and Formula 8);  Comb() is a new 
function to combine term weights in documents into a term 
weight in a tuple tree (Section 4.2.4 and Formula 9).  

4.2.1 Tuple Tree Size Normalization  
The tuple tree size factor, size(T), is similar to the document 
length (dl) factor discussed in Section 3.2 in the following sense: 
a tuple tree with more tuples tends to contain more terms and 
higher term frequencies. However, using the raw size(T) as shown 
in Formula 4 can be sub-optimal, especially for a complex query 
whose relevant answers are tuple trees involving multiple tuples, 
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each of which contains a subset of the query keywords. Consider 
the 26th query Q (“jojo leave lyrics”) in the appendix and the 
example in Figure 1. A relevant answer is a tuple tree 

333 sbsb ←→ . Let us call it T3. Let T4 be the single-node tuple 
tree that only contains the tuple b3, which contains the keyword 
“jojo”, and T5 be the single-node tuple tree that only contains the 
tuple s3, which contains the keyword “leave”. Both T4 and T5 are 
answers for the query under OR semantics, but they are not as 
relevant as T3 to the query. Suppose weight(“jojo”,b3) = w1 and 
weight(“leave”,s3) = w2 (all other weights are zeros). Then 
Sim(Q,T4) = w1, Sim(Q,T5) = w2 and Sim(Q,T3) = (w1+w2)/3. 
Obviously, at least one of T4 and T5 will be ranked ahead of T3 (if 
we ignore the tie situation), and this ranking is ineffective because 
T3 should be ranked higher than both T4 and T5. Thus, size(T) 
should be normalized. We borrow the Formula 2.3 for document 
length normalization to tuple tree size normalization: the weight 
of a term in a document is divided by Nsize(T) as shown in 
Formula 5.1 and Formula 6 instead of the raw size(T). For 

document length normalization, the avgdl is averaged on all 
documents in the collection. Thus, one way to compute avgsize is 
to generate all possible answer graphs using the algorithm 
described in Figure 6 by using a pseudo query Qp and assuming 
all query tuple sets and all free tuple sets are non-empty, and then 
average the sizes of all the answer graphs With this normalization, 
the new similarity values for T3, T4 and T5 become w1, w2 and 
(w1+w2)/1.15 respectively. As a result, using Nsize(T), T5 is 
much more likely to be ranked ahead of both T3 and T4 than using 
the raw size(T). Note that this normalization is independent of any 
keyword in the query and any document in the tuple tree.  

4.2.2 Document Length Normalization Reconsidered 
When we logically combine multiple documents into one super-
document T, the document length factor needs to be reconsidered 
because collections (i.e. text columns) have their own avgdl 
values, which may be very different. Take Query 2 as an example. 
In the answer Tuple Tree 2, the keywords “how” and “come” 
occur in both DTitle (i.e. the Title column value in the tuple s1) and 
DLyrics (i.e. the Lyrics column value in the tuple s1). The original 
document length normalization is within each collection (we call 
each such collection a local collection which corresponds to a 
text column). If both the length of DTitle and the length of DLyrics 
are equal to the avgdl values (3.21 and 239 as shown in Table 1) 
in Title and Lyrics respectively, then the ndl values computed by 
Formula 2.3 are 1 for both documents, while DLyrics is more than 
70 times longer than that of DTitle. However, we desire a smaller 
weight of a term in the longer document. Therefore, besides the 
original intra-collection normalization (Formula 2.3), we must 
consider a new normalization on the average document lengths of 
local collections (inter-collection document length 
normalizations). One possible solution might be merging all the 
collections into a global collection and using a single global 
avgdl. For the above example, the global avgdl is 116 (see Table 
1 for details), and the ndl values for DTitle and DLyrics become 0.81 
and 1.21 respectively, which are more reasonable values. 
However, this solution can cause another problem due to the large 
diversity in avgdl values in different collections. In our example, 
the global avgdl (116) is dominated by the very long text column 

Lyrics (239). Normalizations on short columns are lost as shown 
in the following new example. Consider the two documents (i.e. 
two text column values) in tuples a1 and b1 (we call them Da1 and 
Db1) as shown in Figure 1. Both Da1 and Db1 contain the keyword 
“D12”; the length of Da1 is 1 and the length of Db1 is 2. And their 
ndl values are 0.8022 and 0.803 respectively. If “D12” occurs in 
another document whose length is 10, its ndl is 0.817. This 
example shows that this solution fails in the intra document length 
normalization in the following way: For two different text 
columns of very different average lengths, which are much 
shorter than the global avgdl, their ndl values differ very little. 
However, we desire significant difference between them.  

We propose Formula 7 to consider both intra-collection and inter-
collection document length normalization: (1) we still maintain a 
local collection for each text column and use Formula 2.3 for 
intra-collection normalizations, and (2) then we normalize the 

local avgdl for the local collection using 1+ln(avgdl). This 
formula can solve the problems shown in the above two examples. 
The new ndl values computed using Formula 7 for the keyword 
“how” in a song title document DTitle and a song lyrics document 
DLyrics (suppose their lengths are equal to their own avgdls) 
become 2.17 and 6.48 respectively3. Thus, the term weight in the 
long document becomes smaller. The new ndl values for the 
keyword “D12” in Da1 and Db1 (see Table 1 for their avgdl values) 
are 1.484 and 1.88 respectively. If “D12” occurs in a document 
whose length and avgdl are both 10, the new ndl value is 3.3. 
They are more reasonable normalizations. Note that this 
normalization is independent on any keyword in the query. 

4.2.3 Document Frequency Normalization  
Collections have different vocabularies, and term distributions are 
different. Document frequency normalization also has the 
problem of local vs. global collections. For example, in the 
collection of Name of Artist, terms that are people names have 
high document frequencies. However, document frequencies of 
these terms are usually low in the collection of Lyrics of Song. In 
addition, the total numbers of documents in Name of Artist is 
much smaller than that in Lyrics of Song. Thus, for a term that is a 
person’s name, its idf value in Name of Artist is usually smaller 
than that in Lyrics of Song. If this term appears in 1/100 of the 
documents in Name of Artist, and 1/1000 of the documents in 
Lyrics of Song, then its idf values in the two collections are 4.6 
and 6.9 respectively. Furthermore, even in a rather large relational 
database, some tables may have a small number of tuples, and 
document frequency statistics in columns of these tables become 
unreliable.  Therefore, we propose to use global document 
frequency statistics. The idfg as shown in Formula 8 remains the 
same as that in Formula 2.2 except we use global statistics, where 

                                                                 
2  0.802=(1-s)+s*1/116, where s is 0.2, and 116 is the global avgdl. 

Computations for 0.803 and 0.817 are similar.  
3 2.17=1 * (1+ln(3.21)), and 6.48= 1 * (1+ln(239)) 
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dfg
 is the global document frequency of the term (number of 

documents in the whole database, i.e. all text column values, that 
the term occurs), and Ng is the total number of documents (i.e. the 
total number of text columns values) in the whole database. 

4.2.4 Inter-Document Weight Normalization  
With the above three normalizations, the term weight in a 
document Di in T is computed as shown in Formula 5.1, where ntf 
(normalized term frequency) is computed by Formula 2.1, idf  
(inverted document frequency) is computed by Formula 8, ndl 
(normalized document length) is computed by Formula 7, and 
Nsize(T) (normalized tuple tree size) is computed by Formula 6. 
For Comb(), we can simply sum up the term weights in all of the 
documents in T. However, a term tends to appear more frequently 
in a T with a larger size. We use Formula 9 to normalize weight(k, 

T), where maxWgt is the maximum weight(k, Di) and sumWgt is 
the sum of weight(k, Di) for all Di in T. The idea behind Formula 
9 is borrowed from term frequency normalization (Formula 2.1): 
We consider the maxWgt as one unit of term frequency and 
sumWgt/ maxWgt as the total term frequency.  

4.3 Schema Terms in Query 
 Another new problem for keyword search in relational databases 
is that user queries usually contain two types of terms. The first 
type is terms that are matched with text column values, and we 
call them value terms. The second type is terms that are matched 
with the names of text columns, tables and databases, and we call 
them schema terms. For example, the keyword “lyrics” in Query 
2 and the keyword “album” in Query 3 are both schema terms. 
Schema terms usually do not occur in text values; thus the weight 
of such a schema term in relevant tuple tress is usually 0. 
However, if a text value happens to contain some schema terms, 
the weights of such schema terms are non-zeroes. One example is 
a query “lusher the singer's lyrics to burn”. There happens to be a 
song titled “The Singer”, and it is ranked top 1 for the query. 
Obviously, this is not what the user wants. The relevant one 
should be the song titled “Burn” by the artist “Usher”. Although 
the keyword “singer” matches the name of the attribute Artist, the 
text column values in this answer do not contain “singer”. The 
weight of “singer” in this answer is 0, which causes the problem 
of the relevant answer having a lower similarity value. We use a 
simple method to solve this problem. For each text column, each 
table and the database, we identify a set of synonyms that are 
their names. For example, we generate {“artist”, “band”, “singer”} 
for the table Artist, {“album”} for the table Album, {“song”} for 
the table Song, {“lyrics”} for the column Lyrics, etc. For these 
schema terms, besides their global document frequency values 
based on their occurrences in text column values, we also assign a 
schema-based document frequency value for each of them: for a 
schema term k, if it is a synonym of a text column or a synonym 
of table containing one text column, we assign the largest 
document frequency value among all terms in the local collection 
that corresponds to the text column to k, and if it is a synonym of 
a table containing more than one text column, we assign the 

                                                                                                           
4 1.48=((1-s)+s* (1/1.89))*(1+ln(1.89)), where 1.89 is avgdl of Artist.Name 

and s is 0.2.  Computations for 1.88 and 3.3 are similar.  

largest document frequency value in the collection that 
corresponds to a union of all the text columns in the table to k. 
Thus, if k is a schema term in a given query, k does not occur in a 
tuple tree T (i.e., its term frequency is 0) but k corresponds to the 
name of a table or a column involved in T, then weight(k, T) 
computed by Formula 5.2 is 0. However, we now assume that the 
term frequency of a schema term k in each of its corresponding 
text columns involved in T be 1, and its dfg  be its schema-based 
document frequency. Thus, we can get a weight(k, T)>0. If k is a 
schema term, k occurs in Di of T, and k corresponds to the text 
column of Di or the table containing Di, then we compute two 
values of weight(k, Di), one is computed by considering k as a 
value term and the other is computed by considering k as a 
schema term. Then we choose the larger weight as the final 
weight(k, Di) because we assume that each term in the query has 
only one meaning. For the above example, the final similarity 
value between the query and the first answer remains unchanged, 
however the similarity value between the query and the second 
answer is increased because the term “singer” has a non-zero 
weight and the second answer becomes top 1 now. The 
identification of schema terms needs manual work or can be done 
semi-automatically using WordNet [25]. However, the workload 
is rather trivial because (1) the number of schema terms is small 
(only 6 schema terms {“artist”, “band”, “singer”, “album”, “song”, 
“lyrics”} are used by users in lyrics search), (2) a well designed 
database should have information (i.e. schema descriptions) that 
helps generate these schema terms.  
4.4 Phrase-based Ranking 
 Research in IR [14] has shown that phrase-based search can 
improve effectiveness. Google [15] also utilizes proximity 
information. In relational databases, many text columns are name 
entities and favor proximity and phrase search. Consider the sub-
query “how come” in Query 2. It is a title of a song and should be 
considered to be a phrase. Another example is “Code Red”, a 
name of an artist (band). Although both keywords are common 
words, the phrases have specific meanings. To identify phrases 
from a query, Liu et al. [14] use natural language software and a 
dictionary to analyze the query. Instead, we only utilize term 
position information in documents (term position information is 
stored in the inverted indexes), without using any additional 
source. Whether a sub-query of a query is a phrase is tuple tree 
dependent. If a sub-query of Q, P={ki,ki+1,..kj}, where i<j, appears 
in a document D, and ki-1 does not appear in an adjacent location 
to ki in this occurrence of  P in D, and kj+1 does not appear in an 
adjacent location to kj in this occurrence of P in D, then we define 
it as an occurrence of the phrase P in D. We modify Formula 5.1 
into Formula 10 to compute weight(P,D), the weight of a phrase P 
in a document D. Since the tuple tree size and document length 
normalizations are independent to any query keyword, the 
denominator remains unchanged. The numerator is replaced by 
npf*idf. For the idf component, we assume that idf of a phrase is 
the sum of the idfs of all the individual keywords in the phrase for 
computational simplicity (Formula 10.2). For npf (normalized 
phrase frequency), the same term frequency normalization 
function (Formula 10.1) is used for a phrase (pf is phrase 
frequency in Di); in addition, we add a new normalization factor 
to boost the adjacency of the words in a phrase: 1+ln(length(P)), 
where length(P) is the number of keywords in P.  For example, a 
phrase with two words is 1.7 times more important than the sum 
of individual term weights when they do not form a phrase.  
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The definition of an occurrence of P in D causes a new problem, 
which is illustrated by the following example. Suppose Q={1, 2, 3, 
4} and a document D in T is {.. 1, 2, 3 .. 2, 3, 4 .. 2, 3, 4 .. 1, 2 .. 
1 ..}. By the definition, we have phrases {1, 2, 3}, {2, 3, 4} and {1, 
2} in D, and their pfs are 1, 2 and 1 respectively.  However, {1, 2, 
3} and {2, 3, 4} overlap and neither of them contains the other one. 
We assume that each occurrence of a phrase or of a keyword in a 
given query have a unique meaning in a tuple tree. Thus, we only 
allow one of {1, 2, 3} and {2, 3, 4} to be a phrase for a tuple tree. 
We propose an algorithm (Figure 7) to re-identify phrases in a 
document. For example, if the phrase weight of {1, 2, 3} is higher, 
the output of the algorithm is {1, 2, 3}, {1, 2} and {2, 3}. Their pfs 
are 1, 1 and 2 respectively. If the phrase weight of {2, 3, 4} is 
higher, the output is {2, 3, 4} and {2, 3}. Their pfs are 2 and 1 
respectively. Then we use Formula 10 for phrases and Formula 
5.1 for individual keywords to compute the final weight(Q,T). 

 A phrase may contain shorter phrases or individual keywords, 
and their weights are computed independently. If we sum them up, 
we may have a problem that is similar to the inter-document 
weight normalization problem (Section 4.2.4). For phrases, we 
slightly modify Formula 9 to borrow the idea of the inter-
document weight normalization. When we match a query against 
documents, we should always do maximal matching, i.e. maximal 
phrases. For a given query Q and an answer T, we first identify 
the set of phrases and keywords in T that are not contained in any 
longer phrases. We call this set a concept set (CQ) in Q against T. 
Then for each concept c (either a phrase or a keyword) in CQ, 
maxWgt(c) is computed as the maximum weight(c, Di) over all Di 
in T, and sumWgt(c) is the sum of all weight(p’, Di), where p’ is c, 
or any shorter phrase or keyword contained in c and Di is a 
document in T. Suppose c has the maximum weight in Di, then we 
(1) use maxWgt(c) as the concept weight of c in T, and then (2) 
bind c to the column of Di, (the semantics of the concept c is 
bound to the text column of Di).  To avoid assigning a column to a 
single word concept that has a high document frequency and 
appears in a long document, we set a threshold th. If 
maxWgt(c)<th, we do not assign the column to c. For example, 
the keyword “by” in Query 2 has a high df and occurs in a long 
document (a Lyrics column value in tuple s1), and it has a small 
maxWgt value, thus we do not assign Song.Lyrics to it. However, 
we assign Artist.Name to the concept “D12” and “Song.Title” to 
the concept “how come”. Thus, a phrase model can return 
answers with semantics (i.e. the correspondences between 
concepts in the queries and the columns in the database). 

For a query with multiple terms (such as Query 3), a document 
that contains only some highly weighted terms (due to high idf 
and/or high term frequencies even we have done tf normalization 
and/or short document length) may be ranked higher than a 
document that contains all moderately weighted terms.  We want 
to rank the latter document higher. Our strategy is to use Concept 
ranking model, which is based on Phrase model. For each concept 
ci in CQ (described in the above paragraph), we compute a 

weight(ci, Dj) using Formula 5.1 if ci is a keyword, and using 
Formula 10 if ci is a phrase. The only exception is that we drop 
the 1+ln(1+ln(tf)) component from both formulas because we 
only take into consideration  whether a concept appears but not its 
term frequency according to [14]. Then we choose the maximum 
weight(ci, Dj) as weight(ci, T), and sum up all these concept 
weights to obtain a concept similarity value Sim(CQ, T). The 
similarity between a tuple tree T and a query Q becomes a tuple 
(Sim(CQ,T), Sim(Q,T)). The first component is the concept 
similarity and the second component is the term similarity 
computed by Formula 5.1 and Formula 9 respectively. For two 
tuple trees T1 and T2 and a given query Q, if (1) Sim(CQ, T1) > 
sim(CQ,T2), or (2) Sim(CQ,T1)=Sim(CQ,T2) and Sim(Q,T1) > Sim(Q, 
T2), then T1 is ranked higher than T2.  

5. EXPERIMENTAL RESULTS 
Section 5.1 describes the data set. Section 5.2 introduces 
evaluation measures and the setups for comparison. Section 5.3 
reports and discusses experimental results on search effectiveness.   

5.1 Data Set 
Database: We use a lyrics database in our experiments. It is 
reported in [20] that lyrics search is one of the most popular 
search in various major search engines. We crawled an entire 
lyrics web site in Aug. 2005, and converted the data into a 
relational database whose schema is shown in Figure 3. There are 
more than 177K songs in the database. Table 1 gives basic 
statistics of the database. We do not stem words and do not use 
stop word except “the”.   

 Query Set: We use a set of 50 queries for evaluation. These 
queries are obtained from a subset of a one-week period user 
query log on a commercial search engine. By using IP addresses 
and short durations between the times when queries are submitted, 
we detect that a sequence of queries are submitted by the same 
users, and each such query is a small variant of the next query in 
the sequence. By analyzing such queries, the intentions of the 
users can be found out. This allows us to make relevance 
assessments of the retrieved results relative to the queries. We 
randomly choose 50 lyrics queries from the query log (see 
Appendix for the 50 queries). For each query, we identify a set of 

Input: query Q, tuple tree T={D1, D2, ..Dn} 
Output: phrase occurrence set C 

1.  Use the definition to identify all phrases {P1,..Pn} in T. Put them into C0. 
2. While C0 is not empty { 

2.1  Move the set of longest phrases from C0 to a new set L. 
2.2 While L is not empty { 

If there is no overlapped phrases in L {  
Add L to C. Move each phrase that is contained in any phrase in 
L from C0 to C.  

} 
Else {  

2.2.1 Choose Pi, Dj such that weight(Pi,Dj) has the maximum 
weight in L. Move Pi from L to C. 
2.2.2 For each Pk in L or C0 that overlaps with Pi { 

2.2.2.1 Move Pk out of L or C0.  
2.2.2.2 Break Pk into two parts. One is a sub-phrase or a 
keyword contained in Pi, and put it into C if it is a phrase. 
The other one is the remaining part; and put it into C0 if it 
is a phrase.  
2.2.2.3 Move all phrases contained in Pk from C0 to C.  

}      }      }      } 
3. Return C. 

Figure 7: Phrase Identification Algorithm 
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relevant answers (tuple trees) in the crawled lyrics database using 
pooled relevance judgment: we do retrieval using many different 
methods including Google; for each method, we obtain the top 10 
answers and then we get the union of the sets of the top 10 
answers; then we judge the relevance for each of the answers in 
the union. This way of relevant judgment is used in TREC [9].  
There are totally 135 relevant answers (2.7 per query on the 
average). The maximum number of relevant documents for a 
query is 14, and the minimum number is 1. The average length of 
a query is 6.7; the maximum length is 20 and the minimum length 
is 2. The average length of such queries is substantially larger 
than that of typical Internet queries, but in order to specify artists, 
songs and lyrics, the longer lengths are needed.  We further 
classify them into two sets: simple queries (with only one non-
schema concept) and complex queries (with two or more non-
schema concepts, and they are underlined in Appendix). Each set 
contains 25 queries. We expect that our ranking strategy work 
better on complex queries than on simple queries. We also note 
that all our queries contain schema terms.  
5.2 Measures and Comparison Setup  
We use 4 measures to evaluate the different aspects of search 
effectiveness. (1) Number of top-1 answers that are relevant. (2) 
Reciprocal rank. They measure how good the system is to return 
one relevant answer. (3) 11-point precision/recall and (4) MAP  
(see Section 3.1 for Measures 2, 3 and 4). They measure the 
overall effectiveness for top10 answers in our experiments (other 
topk numbers have very similar results). Result comparison serves 
two purposes: investigating how different factors in our ranking 
strategy affect search effectiveness, and comparing our ranking 
strategy with related work to demonstrate its superiority.  

The comparison is conducted on three dimensions. (1) Whether 
the system identifies schema terms (Section 4.3).  (2) The four 
normalization factors described in Section 4.2. (3) The four search 
models. The first model (All-Word) assumes AND semantics (i.e. 
an answer must contain all keywords) and ranks answers by 
number of tuples in the tree in ascending order. The second one 
(Keyword) assumes OR semantics and uses IR style ranking. But 
it only considers individual keywords in queries. The third one 
(Phrase) also considers phrases in queries. The last one (Concept) 
is a Phrase model that uses concept-based ranking.  
5.3 Results and Discussion on Effectiveness 
5.3.1 Identification of Schema Terms  
Table 2 gives the reciprocal rank values for all the four models 
(with all four normalizations) with (w/s) and without (w/o) 
identification of schema terms. The percentage of improvement 
(imp) of the run with this factor over the run without this factor is 
also reported.  These values are also reported for complex and 
simple queries respectively. The results show that identifying 
schema terms is extremely important for All-Word search model, 
because it assumes an AND semantics and schema terms are not 
usually contained in values. This factor seems to have marginal 
effect on other models (only slight improvement for Concept 
model on complex queries and Keyword model for all) because in 
Lyrics database, occurrences of schema terms in values are rare. 

Schema terms rarely form phrases, so it has no effect on Phrase 
model. In the following sections, all runs use schema terms 
identification if not otherwise specified.  

5.3.2 Four New Normalizations  
We give four tables (Tables 3-6) to show how each new 
normalization factor improves keyword search effectiveness using 
three search models (Keyword, Phrase, and Concept). Table 7 
shows how all the new factors improve the overall effectiveness.  

Table 3 gives reciprocal rank values for all the three models (with 
all other three normalizations) with (w/s) tree size normalization 
and without (w/o) it (but using the simple normalization in 
Formula 4). The results show that this factor has tremendously 
significant effect for all three models on complex queries, because 
the relevant answers (Size(T) > 1) are normalized too much even 
though we use (Size(T)+1)/2 instead of Size(T) [11] in the 
experiments. It is also not surprising that it has little affect on 
simple queries, whose answers contain only single tuples and 
should be ranked higher than all multi-tuple trees.  

Table 4 gives reciprocal rank values for all the last three models 
(with all other three normalizations) with (w/s) our document 
length normalization and without (w/o) it. The results show that 
this factor is also very critical for all three models on all queries. 

Table 1: Lyrics Database Statistics 

Column # of doc avgdl 
Artist.Name 3,691 1.89 
Album.Title 15,160 2.67 
Song.Title 177,231 3.21 

Song.Lyrics 177,231 239 

Table 2: Identifying Schema Terms 
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o imp

Concept 0.871 0.850 2.5% 0.900 0.856 5.1% 0.833 0.844 -1.3%
Phrase 0.790 0.794 -0.5% 0.828 0.828 0.0% 0.752 0.759 -1%

Keyword 0.696 0.662 5.1% 0.799 0.763 4.7% 0.594 0.560 6.1%
All-Word 0.245 0.020 - 0.316 0.000 - 0.158 0.040 - 

 

Table 5: Document Frequency Normalization 
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o  imp

Concept 0.871 0.708 23.0% 0.900 0.807 11.5% 0.833 0.600 38.8%
Phrase 0.790 0.676 16.9% 0.828 0.779 6.3% 0.752 0.573 31.2%

Keyword 0.696 0.685 1.6% 0.799 0.824 -3.0% 0.594 0.548 8.4%

Table 6: Inter-Document Weight Normalization 
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o  imp

Concept 0.871 0.871 0.0% 0.900 0.898 0.2% 0.833 0.844 -1.3%
Phrase 0.790 0.680 16.2% 0.828 0.756 9.5% 0.752 0.604 24.5%

Keyword 0.696 0.591 17.8% 0.799 0.685 16.6% 0.594 0.497 19.5%

Table 7: Combining All Normalizations 
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o  imp

Concept 0.871 0.358 143.3% 0.900 0.068 1224% 0.833 0.648 28.5%
Phrase 0.790 0.351 125.1% 0.828 0.076 989% 0.752 0.627 19.9%

Keyword 0.696 0.248 180.6% 0.799 0.060 1232% 0.594 0.438 35.6%

Table 4: Document Length Normalizations 
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o  imp

Concept 0.871 0.488 78.3% 0.900 0.395 228% 0.833 0.581 42.9%
Phrase 0.790 0.585 35.0% 0.828 0.454 82.4% 0.752 0.715 4.9%

Keyword 0.696 0.492 40.2% 0.799 0.477 33.0% 0.594 0.507 17.2%

Table 3: Tree Size Normalization 
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o  imp

Concept 0.871 0.511 70.5% 0.900 0.178 406% 0.833 0.844 -1.3%
Phrase 0.790 0.444 77.9% 0.828 0.129 536% 0.752 0.759 -1%

Keyword 0.696 0.357 93.3% 0.799 0.124 537% 0.594 0.589 0.8%



 

This factor affects the complex queries more than simple queries 
because it deals with diverse types (in terms of the document 
length) of columns. This factor also affects Concept and Phrase 
models more than Keyword model for complex queries because 
the first two models boast the weights of long phrases, and longer 
documents tend to contain more and longer phrases.  

Table 5 gives the reciprocal rank values for all the last three 
models (with all other three normalizations) with (w/s) our 
document frequency normalization and without (w/o) it. It 
significantly affects Concept and Phrase models on all queries. It 
has little effect on Keyword model when all other three 
normalizations have been applied. The results also show that this 
factor affects simple queries more than complex queries.  

Table 6 gives the reciprocal rank values for all the last three 
models (with all other three normalizations) with (w/s) our inter-
document weight normalization and without (w/o) it.  The results 
show that this factor significantly affects Phrase and Keyword 
models but less significantly than the tree size and the document 
length factor. It does not improve effectiveness on Concept model 
because this model ranks answers with concept similarity in the 
first order and this factor has no effect on the concept similarity 
(we always use maxWgt).  

Finally, we use Table 7 to demonstrate the overall improvement 
by comparing models with all the four normalization factors to 
the same models without any of them. Without any of the four 
normalizations, all models perform very poorly on complex 
queries. These normalizations also improve simple queries, but 
less significantly. We conclude that (1) all these four 
normalization factors are critical to search effectiveness, (2) the 
first two factors improve search effectiveness more significantly 
than the last two, (3) and these normalization affect complex 
queries more than simple queries. 

5.3.3 Four Models and Related Work  
In Figure 8 and Table 8, Concept, Phrase and Keyword are 
models that use identification of schema terms with all four 
normalizations and with OR semantics. Figure 8 shows the 11-
point precision/recall graph for the four models with all 
normalizations and with identification of schema terms. MAP 
values are also given (following the labels).  Table 8 also gives 
results of related work. Concept2 is the model that does not 
identify schema terms. Related1 is the All-Word model with 
identification of schema terms; it is used as an upper bound for 
the method used in DBXplorer [1] and DISCOVER [10]. 
Related2 is the Keyword model with identification of schema 
terms and without any of the four new normalizations; it is used 
as an upper bound for the method used in Hristidis et al. [11] with 
OR semantics. We also report results of Keyworda (i.e. the 
Keyword model with AND semantics) and Related2a (i.e. the 
Related2 model with AND semantics, which is used as an upper 
bound for the method in Hristidis et al. [11] with AND semantics). 
We also compare our results against that obtained by Google. We 
note again that Google retrieves from text databases instead of 
relational databases. To evaluate search effectiveness of Google, 
we submitted each query to Google. Among its top 10 results, we 
identified the first relevant web page as follows. (1) Based on our 
relevant assessment, if the relevant answer is a tuple tree with a 
single tuple, and if a Google result is a web page with the same 
information as the tuple, then it is relevant. (2) If the relevant 

answer is a tuple tree with both an Artist tuple and an Album tuple, 
and if a Google result is a web page with the same information as 
the Album tuple (this web page usually contains Artist 
information), then it is relevant. (3) If the relevant answer is a 
tuple tree with a Song tuple and one or more Artist and/or Album 
tuples, and if a Google result is a web page with the same 
information as the Song tuple (this web page usually contains 
both Album and Artist information), then it is relevant. We do not 
use the MAP measure in Table 8 due to two reasons: (1) it is 
highly correlated with the reciprocal rank measure (R-Rank in 
Table 8) in our experiments, and (2) Google has many copies of 
lyrics databases from different web sites, and the same answers 
are often returned multiple times. We also report the number of 
top-1 answers that are relevant (#Rel in Table 8).  

The results show that Related1 [1, 10] and Related2 [11] are not 
as effective as our method. The comparison between Related2 and 
Related2a5 shows that, for the ranking method used in Hristidis et 
al. [11] (Formula 4 in this paper), AND semantics yields 
significant improvement over OR semantics, especially for 
complex queries (0.428 vs 0.06). The reason is that AND 
semantics tends to exclude tuple trees containing only one tuple 
(the ranking scores of these tuple trees using OR semantics are 
high due to their small size) which contains only a subset of the 
query keywords (thus they are less relevant). For example, for 
Related2 (OR semantics) all three relevant answers for the 26th 
query are ranked below the top 10 results; all the top 10 answers 
are tuple trees that only contain individual tuples and a subset of 
the query keywords. For Related2a (AND semantics), most of the 
top 10 results in Related2 are excluded because they do not 
contain all keywords, and among the top 10 results, two are 
relevant answers that contain multiple tuples. The comparison 
between Keyword and Keyworda shows that, for our ranking 
method (Formulas 5.1 and 5.2), OR semantics yields significant 
                                                                 
5 For both Related2 and Related2a, the results of not using schema terms are 

less effective than those of using schema terms, so they are not reported. 
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Figure 8: 11-pt Precision/Recall and MAPs for 4 Models

Table 8: Model and Related Work Comparison 
All Complex Simple Model # Rel R-Rank # Rel R-Rank # Rel R-Rank

Concept 39 0.871 20 0.900 19 0.833
Concept2 40 0.850 20 0.856 20 0.844

Phrase 35 0.790 18 0.828 17 0.752
Keyword 32 0.696 18 0.799 14 0.594
Keyworda 29 0.615 13 0.552 16 0.678
[Related1] 8 0.245 6 0.316 2 0.158
[Related2] 10 0.248 1 0.060 9 0.438
[Related2a] 21 0.491 9 0.428 12 0.554
[Google] 34 0.749 15 0.709 19 0.788



 

improvement over AND semantics. The comparison between 
Keyword and Related2, and that between Keyworda and 
Related2a show that our ranking method yields significant 
improvement for both OR semantics (181%) and AND semantics 
(25.3%) over the ranking method in Hristidis et al. [11]. Concept 
and Phrase models outperform Google on all queries. Our best 
result (Concept2) has a 16.3% improvement over Google and 
77.4% over the best (Related2a) of Hristidis et al. [11]. Even 
when we do not consider schema terms (without any manual work 
involved), the improvement is 13.5%. From the point view of IR 
effectiveness, these improvements are significant. For complex 
queries whose answers are assembled by joining tuples from 
different tables, all three models outperform Google (26.9% for 
Concept, 20.7% for Concept2, 16.8% for Phrase, and 12.7% for 
Keyword) more significantly than for simple queries. And the 
improvement over Google on simple queries is less significant. 
We conclude that (1) in terms of search effectiveness, Concept > 
Phrase > Keyword > All-Word, and (2) our ranking strategy 
outperforms related work in keyword search in relational 
databases very significantly and outperforms the state-of-the-art 
IR method (Google) significantly.   

6. RELATED WORK 
Keyword search in relational databases [1, 2, 10, 11] has recently 
emerged as a new research topic. DBXplorer [1], DISCOVER 
[10], Hristidis et al. [11] and BANKS [2] are systems that support 
free-form keyword search on relational databases. They return 
tuple trees as answers for a given keyword query. One focus of 
the above works is to generate tuple trees efficiently. DBXplorer, 
DISCOVER and Hristidis et al. [1, 10, 11] construct a set of join 
expressions (called answer graph in our paper) for a given query, 
and then evaluate these join expressions to produce tuple trees. 
BANKS [2] finds all tuple trees from the data graph directly using 
a Steiner tree algorithm. In the data graph, they use PageRank 
style methods to assign weights to tuples and assign weights to 
edges between tuples. DBXplorer [1], DISCOVER [10] and 
BANKS [2] assume AND semantics for an answer. To rank 
answers, they either [1,10] simply use the number of joins in the 
tuple trees or [2] use a combination of tuple weights and edge 
weights in a tuple tree without any IR-style ranking method. 
Hristidis et al. [11] assume OR semantics for answers. To rank 
answers, they incorporate the IR relevance ranking in a 
straightforward manner. Many new factors that are critical to 
search effectiveness are not investigated. Goldman et al. [7] 
propose a very simple query language with two sets of keywords: 
Find set and Near set. Two result sets of database objects are 
obtained for the two sets of keywords. Then the Find result set is 
re-ranked using distance information between the two sets. Luo et 
al. [9] combine non-text data values with keyword search on text 
columns. They concentrate on the efficiency issue of integrating 
inverted indexes with non-text values. Our work differs from all 
the above works in three aspects. (1) All of the above works focus 
on the efficiency issue, not on search effectiveness, which is as 
important as the efficiency in keyword search, if it is not more 
important. The only work that mentions effectiveness is BANKS, 
but they only use 6 queries without any standard evaluation. 
ObjectRank [3] uses an authority-based ranking strategy for 
keyword search in relational database. They return individual 
tuples instead of tuple trees as answers. The ranking score for a 
tuple is a combination of its ObjectRank value and term 
frequencies of the query keywords. On effectiveness, they only 

report non-standard effectiveness measures with two queries. In 
contrast, we conduct comprehensive experiments using a real 
database and real user queries with standard evaluation results. (2) 
Among the above related works, they either do not use IR style 
ranking at all, or they use it without sufficient consideration of 
effectiveness (e.g. [11]). In contrast, we propose a novel IR style 
ranking strategy for the new problem, which is very effective. (3) 
None returns answers with semantics as we do. 

Another different but related research topic is keyword search in 
XML databases [6, 8, 13]. Florescu et al. [6] extend an XML 
query language with keyword search. They do not use IR style 
ranking. XRANK [8] returns XML document fragments as 
answers. To rank answers, they combine the granularity, 
hyperlink and keyword proximity information with simple IR 
style ranking. Both Florescu et al. [6] and XRANK [8] require 
users to know the XML schema and use a structured query 
language. Li et al. [13] propose a schema-free query language for 
XML, but it is still not structure-free. Kaushik et al. [12] propose 
an approach to integrating inverted indexes with structured 
indexes to support more efficient keyword search in XML. 
Besides the difference between relational and XML databases, 
none of the above work is for free-form keyword search, and they 
either incorporate IR-style ranking in a straightforward manner 
without considering the critical factors in this paper or do not 
incorporate IR ranking at all. XSEarch [5] proposes a free form 
keyword query language on XML. To rank answers, which are 
trees of XML nodes, they combine a simple tf*idf IR ranking with 
the size of the tree and the node relationship information. This 
work only gives examples (but without experimental results) on 
search effectiveness.  

Keyword search has been extensively studied in IR [17, 18, 27] 
and web search [4, 21].  Sacks-Davis et al. [16] tackle a similar 
problem with ours from IR’s point of view. They investigate 
indexing methods to support structures in documents. But they do 
not propose new ranking strategy for the new problem. Recently, 
link structures [15] have been successfully incorporated with IR 
ranking in web search. [2, 3, 7, 8] use link structures in the 
relational or XML databases. The usage of link structures is 
orthogonal to the usage of IR ranking. We will incorporate link 
structures in keyword search in our future work.  

Major RDBMSs [22, 23, 24] have incorporated IR ranking 
strategies into their full-text search. However, attribute names 
must be specified for keywords in SQL queries; free form 
keyword search is not supported. Our work can be applied into 
the core of a RDBMS to support free form keyword search 
(without specifying attribute names). Many web search engines 
and enterprise search engines are built on structured databases. 
For example, Google [21] provides product search (froogle), 
academic paper search (Google scholar), and etc. Amazon.com 
provides book and product search. Dealtime.com provides 
product comparison service. IMDB.com has a form-based query 
interface to search movie information. Although technical details 
of how they process queries with keywords are absent, experience 
implies that they do not fully utilize the combination of text data 
and the database structures. Our work can be applied into these 
applications to improve search effectiveness.     
7. CONCLUSION AND FUTURE WORK  
Keyword search allows non-expert users to find text information 
in relational databases with much more flexibilities. In this paper, 



 

we proposed a novel ranking strategy for effective keyword 
search in relational databases. A given keyword query is 
processed in three steps. (1) The system generates all answers 
(tuple trees) for the query.  (2) The system computes a ranking 
score for each answer and ranks them. (3) Finally, topk answers 
are returned with semantics.  

Our ranking strategy is novel. It identifies and uses four new 
normalization factors that are critical to search effectiveness: (1) 
tuple tree size normalization, (2) document length normalization, 
(3) document frequency normalization and (4) inter-document 
weight normalization. Schema terms are identified and are 
processed differently from value terms. Our strategy also uses 
phrase-based and concept-based models to improve search 
effectiveness further. And the concept-based model can also 
return answers with semantics. Comprehensive experiments were 
conducted using a real world lyrics database and a set of queries 
collected by a major search engine. Standard evaluation results 
were reported. The results show that: (1) all the four new 
normalization factors are critical to search effectiveness (the first 
two factors improve effectiveness more significantly than the last 
two, and they improve effectiveness more significantly on 
complex queries than on simple queries); (2) phrase-based search 
and concept-based search improve effectiveness significantly; (3) 
our strategy is significantly better than related works and 
significantly outperforms Google. Our approach not only can be 
used at the application level for keyword search in relational 
databases, but also can be incorporated into the core of a RDBMS.  

We plan to utilize link structures (primary key to foreign key 
relationships as well as some hidden join conditions), and some 
non-text columns (for example, user review rates on a product, 
box-office income of a movie, and whether an actor won an Oscar 

award) in the relational databases along with pure text data. By 
combining these three pieces of information, we hope to improve 
search effectiveness further. Furthermore, we plan to investigate 
the efficiency issue. Finally, we plan to conduct experiments with 
more real world databases (for example, movie databases, 
academic paper databases, product databases and job databases) 
and more user queries.  
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Appendix: 50 Queries (Complex and Simple) 
1 to me lyrics by lionel richie            2 inner smile texas lyrics 
3 lionel richie lyrics                           4 lionel richie lyrics you mean more to me
5 avril lavigne lyrics for the album under this skin 
6 avril lavigne lyrics                          7 lyrics to and all i can taste is this moment
8 when i said i do lyrics                     9 when i say i do lyrics 
10 when i say i do lyrics clint black 
11 clint black and wife when i say i do lyrics 
12 Hanson i don't know lyrics           13 lyrics woman's worth 
14 lyrics maxwell woman's worth     15 lyrics maxwell a woman's work 
16 lyrics for how come by D12         17 usher the singer's lyrics to burn 
18 lyrics that go "you ran me off the road..you're no longer laughing..i am not

drowning fast enough"                  19 ashlee simpson lyrics 
20 lyrics to the songs on simpson's debut album "autobiography" 
21 lyrics to rascal flatts moving on     22 lyrics to hanson wheres the love 
23 christina millian-dip it low lyrics   24 christina milian-dip it low lyrics 
25 Lil Jon "Get Low Remix" lyrics     26 jojo-leave lyrics 
27 lyrics to ribbon in the sky              28 slow motion lyrics 
29 i like that lyrics                              30 the way i am lyrics 
31 i'm just me and thats all i can be lyrics 
32 this yo song ma lyrics                     33 get no better lyrics 
34 the games have all changed since i been around lyrics 
35 cassidy lyrics 
36 though i have to find all the answers to my question lyrics 
37 run right through me lyrics              38 never ever have felt so low lyrics 
39 i keep searching lyrics                     40 have you ever felt so low lyrics 
41 all the vocabulary runs through my head lyrics 
42 lyrics to shania twains song my heart only breaks when its beating 
43 lyrics to ashlee simpsons song pieces of me 
44 lyrics to amazed by lonestar             45 lyrics to I believe by Fantasia 
46 lyrics to soundtrack to Cradle to the Grave 
47 lyrics to focus on the Cradle to the Grave 
48 lyrics to talk about our love by brandy 
49 edwin mccain lyrics                   50 edwin mccain lyrics better when I'm older


