

Effective Keyword Search in Relational Databases
Fang Liu, Clement Yu

Computer Science Department
University of Illinois at Chicago

{fliu1,yu}@cs.uic.edu

Weiyi Meng
Computer Science Department

Binghamton University
meng@cs.binghamton.edu

Abdur Chowdhury
Search & Navigation Group

America Online, Inc.
cabdur@aol.com

ABSTRACT
With the amount of available text data in relational databases
growing rapidly, the need for ordinary users to search such
information is dramatically increasing. Even though the major
RDBMSs have provided full-text search capabilities, they still
require users to have knowledge of the database schemas and use
a structured query language to search information. This search
model is complicated for most ordinary users. Inspired by the big
success of information retrieval (IR) style keyword search on the
web, keyword search in relational databases has recently emerged
as a new research topic. The differences between text databases
and relational databases result in three new challenges: (1)
Answers needed by users are not limited to individual tuples, but
results assembled from joining tuples from multiple tables are
used to form answers in the form of tuple trees. (2) A single score
for each answer (i.e. a tuple tree) is needed to estimate its
relevance to a given query. These scores are used to rank the most
relevant answers as high as possible. (3) Relational databases
have much richer structures than text databases. Existing IR
strategies are inadequate in ranking relational outputs. In this
paper, we propose a novel IR ranking strategy for effective
keyword search. We are the first that conducts comprehensive
experiments on search effectiveness using a real world database
and a set of keyword queries collected by a major search
company. Experimental results show that our strategy is
significantly better than existing strategies. Our approach can be
used both at the application level and be incorporated into a
RDBMS to support keyword-based search in relational databases.

1. INTRODUCTION
The amount of available structured data (in internet or intranet or
even on personal desktops) for ordinary users grows rapidly.
Besides data types such as number, date and time, structured
databases usually also contain a large amount of text data, such as
names of people, organizations and products, titles of books,
songs and movies, street addresses, descriptions or reviews of
products, contents of papers, and lyrics of songs, etc. The need for
ordinary users to find information from text in these databases is
dramatically increasing. The objective of this paper is to provide
effective search of text information in relational databases. We
take a lyrics database (Figure 1) as an example to illustrate the
problem. There are five tables in the lyrics database. Table Artist
has one text column: Name. Table Album has one text column:
Title. Table Song has two text columns: Title and Lyrics. The
tuples of Table Artist and those of Table Album have m:n
relationships (an album may be produced by multiple artists and

an artist may produce more than one album), and Table Aritst-
Album is the corresponding relationship table. Table Song-Album
is also a relationship table capturing the m:n relationships
between tuples of Album and Song (a song may be contained in
multiple albums and an album many contain more than one song).
Note that Table Aritst-Album and Table Aritst-Album do not have
other columns except their primary keys and foreign keys.

The traditional search model in relational databases requires users
to have knowledge of the database schema and to use a structured
query language such as SQL or QBE-based interfaces. Even
though most of the major RDBMSs have integrated full-text
search capabilities using relevance-based ranking strategies
developed in information retrieval (IR), they still have the above
two requirements for users. Suppose a user is looking for albums
titled “off the wall” and he/she cannot remember the exact title. A
typical SQL query is shown in Figure 2 and the tuple b2 is
expected to be one of the top ranked results. Obviously, this
model of search is too complicated for ordinary users.

With the tremendous success of web search engines, keyword
search has become the most popular search model for ordinary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2006, June 27-29, 2006, Chicago, Illinois, USA
Copyright 2006 ACM 1-59593-256-9/06/0006…$5.00

Artist (A)
ArtistID Name
a1 D12
a2 Eminem
a3 Code Red
a4 jojo

Album (B)
AlbumID Title
b1 D12 World
b2 Off the Wall
b3 jojo

Song (S)
SongID Title Lyrics
s1 How Come How come we don’t … by... more..
s2 The Kids And everyone should get along ...
s3 Leave(Get out) I've been waiting all day…

Figure 1: Lyrics Database Example

Artist-Album (AB)
AB-ID ArtistID AlbumID
ab1 a1 b1
ab2 a2 b1
ab3 a4 b3

Album-Song (BS)
BS-ID AlbumID SongID

bs1 b1 s1
bs2 b2 s2
bs3 b3 s3

Select * from Album B
Where Contains (B.title, ‘off wall’, 1) > 0
Order by score(1) desc

Figure 2: An Oracle SQL Example

Query 1: “off wall”
Query 2: “lyrics how come by D12”
Query 3: “album by D12 and Eminem”

Tuple Tree 1: 2b
Tuple Tree 2: 11111 sbsbaba ←→←→
Tuple Tree 3: 22111 aabbaba ←→←→

Figure 3: Queries and Tuple Trees

users. Users do not need to know the database schema or use a
structured query language. Instead, they submit a list of keywords
using a very simple interface, and a search engine returns ranked
documents based on relevance to the query from its text databases.
Therefore, it is extremely desirable to support the keyword search
model in relational databases. With such support, a user can avoid
writing a SQL query; and he/she can just submit a simple
keyword query “off wall” to the lyrics database.

Applying the keyword search techniques in text databases (IR) to
relational databases (DB) is a challenging task because the two
types of databases are different. First, in text databases, the basic
information units searched by users are documents. For a given
keyword query, IR systems compute a numeric score for each
document and rank the documents by this score. The top ranked
documents are returned as answers. In relational databases,
however, information is stored in the form of columns, tables and
primary key to foreign key relationships. The logical unit of
answers needed by users is not limited to an individual column
value or even an individual tuple; it may be multiple tuples joined
together. Consider Query 1 as shown in Figure 3. Tuple Tree 1 is
one desired answer (though the query and the text value are not
exactly matched). Note that, in Figure 3, an edge from a1 to ab1
denotes a primary key to foreign key relationship. For Query 2,
one desired answer is a joining tree of five tuples (Tuple Tree 2 as
shown in Figure 3). Note that the query matches both text
columns (title and lyrics) values in the tuple s1. For Query 3, one
desired answer is a joining tree of five tuples (Tuple Tree 3).
Second, effectiveness is a key factor for the success of keyword
search. Even in a medium sized database, there may be dozens of
candidate answers for an ordinary keyword query. Consider the
query “off wall” again. There exists many titles of songs, titles of
albums or lyrics of songs that contain both keywords “off” and
“wall”. Therefore, there are many tuple trees that can be answers
for the query. However, these answers are not equally useful to
the user. We need to rank the more relevant answers higher.
Otherwise, users will be discouraged to use keyword search. Note
that a key reason behind the tremendous success of web search
engines is that their ranking strategies are highly effective that,
for many queries, they can rank relevant web pages in the first ten
results out of billions of web pages. Due to the difference in the
basic answer unit between document searches and database
searches, in relational databases, we need to assign a single
ranking score for each tuple tree, which may consist of multiple
tuples with text columns, in order to rank the answers effectively.
The characteristics of text columns are usually diverse. For
example, some text columns such as people’s names and album
titles are very short, while other text columns such as song lyrics
are much longer. In contrast, in text databases, we only need to
compute a score for each single document. Thus, the ranking
strategy for relational databases needs to consider more factors
and is more complicated. Third, relational databases have much
richer structures than text databases. For a given query, we desire
answers to be returned with semantics. For example, for Query 2
and one answer Tuple Tree 2, it is quite obvious that the sub-
query “how come” is the Song title of the tuple s1, and the sub-
query “D12” is the Artist name of the tuple a1, although all
individual keywords (except “D12”) in the two queries are very
common words, and some individual keywords also appear in
other text values of Tuple Tree 2 (e.g., “D12” appears in the title
of b1, and “how” and “come” appear in lyrics of s1). We consider

the correspondences between sub-queries in a given query and
database columns in an answer as the semantics of the query in
the answer. In summary, in relational databases, we have three
key steps for processing a given keyword query. (1) Generate all
candidate answers, each of which is a tuple tree by joining tuples
from multiple tables. (2) Then compute a single score for each
answer. The scores should be defined in such a way so that the
most relevant answers are ranked as high as possible. (3) And
finally return answers with semantics.

Recently, keyword search on relational databases has merged.
DBXplorer [1], DISCOVER [10], BANKS [2], and Hristidis et al.
[11] are systems that support keyword search on relational
databases. For the first step, they generate tuple trees from
multiple tables as answers. The first three systems require an
answer containing all keywords in a query, while the last one only
requires an answer containing some but not necessarily all
keywords in the query. Efficiency has been the focus for the first
step [1, 2 10, 11]: rules are designed to avoid generation of
unnecessary tuple trees, and more efficient algorithms are
proposed to improve the time and space complexities. For the
second step, the first two systems use a very simple ranking
strategy: the answers are ranked in ascending order of the number
of joins involved in the tuple trees. When two tuple trees have the
same number of joins, their ranks are determined arbitrarily. Thus,
all tuple trees consisting of a single tuple are ranked ahead of all
tuples trees with joins. The ranking strategy of the BANKS
system is to combine two types of information in a tuple tree to
compute a score for ranking: a weight (similar to PageRank for
web pages) of each tuple, and a weight of each edge in the tuple
tree that measures how related the two tuples are. The strategy of
DBXplorer [1] and DISCOVER [10] and the strategy of BANKS
[2] for the second step do not utilize any state-of-the-art IR
ranking methods, which have been tremendously successful. In a
database that contains a large amount of text data, these strategies
will be shown not to work well. Hristidis et al. [11] propose a
strategy by applying IR-style ranking methods into the
computation of ranking scores in a straightforward manner. They
consider each text column as a collection and each value in the
text column as a document. A state-of-the-art IR ranking method
is used to compute a score between a given query and each text
column value in the tuple tree. A final score is obtained by
dividing the sum of all these scores by the number of tuples (i.e.
the number of joins plus 1) in the tree. However, they only
concentrate on the efficiency issue of the implementation of the
ranking strategy and do not conduct any experiments on the
effectiveness issue. In addition, our experimental results show that
their strategy ignores some important factors that are critical for
search effectiveness.

Our paper focuses on search effectiveness. We propose a novel
ranking strategy that ranks answers (tuple trees) effectively and
returns answers with basic semantics. This strategy can be used
both at the application level and be incorporated into a RDBMS to
support keyword search in relational databases. We adapt the
framework proposed in Hristidis et al. [11] to generate tuple trees
as answers for a given query. Efficiency issues are not
investigated in this paper. We emphasize that effectiveness of
keyword search of text data (in both text and structured databases)
is at least as important as efficiency.

Our key contributions are as follows:

1. We identify four new factors that are critical to the problem
of search effectiveness in relational databases.

2. We propose a novel ranking strategy to solve the
effectiveness problem. Answers are returned with basic
semantics.

3. We are the first to conduct comprehensive experiments for
the effectiveness problem.

4. Experimental results show that our strategy is significantly
better than existing works in effectiveness (77.4% better than
[11] and 16.3% better than Google1).

In Section 2, we briefly introduce the framework for generation of
answers (tuple trees) for keyword search in relational databases.
In Section 3, we briefly introduce the background of a recent IR
similarity function. In Section 4, we analyze new challenges for
keyword search in relational databases, identify new factors that
are critical to ranking effectiveness, and propose a novel ranking
strategy. In Section 5, we present experimental results to
demonstrate the effectiveness of our ranking strategy. Section 6
discusses related works. Section 7 draws the conclusion and
outlines directions for future work.

2. ANSWER GENERATION
In this section, we describe the framework for generating answers
for given keyword queries (a modification of [11]). Section 2.1
describes what an answer is for a keyword query in relational
databases. Section 2.2 gives an algorithm to generate answers.
2.1 Tuple Trees As Answers
We use a graph to model a database schema. A schema graph is
a directed graph SG. For each table Ri in the database, there is a
node in the schema graph. If there is a primary key to foreign key
relationship from the table Ri to the table Rj in the database, then
there is an edge from the node Ri to the node Rj in the schema
graph. Each table Ri has mi (mi>=0) text columns {ci

1, ci
2,…, ci

mi}.
Figure 4 shows a schema graph of the lyrics database (columns
are shown in Figure 1). A tuple tree T is a joining tree of tuples.
Each node ti in T is a tuple in the database. Suppose (Ri, Rj) is an
edge in the schema graph. Let ti ∈ Ri, tj ∈ Rj, and (ti join tj)∈ (Ri
join Rj). Then (ti, tj) is an edge in the tuple tree T. The size of a
tuple tree T is the number of tuples involved. Note that a single
tuple is the simplest tuple tree with size 1. A keyword query Q
consists of a list of keywords {k1, k2, … kn}. For a given query Q,
an answer must be a tuple tree T that satisfies the following
conditions: (1) every leaf node ti in T contains at least one
keyword in Q (more precisely, at least a text column value of the
tuple ti contains at least one keyword in Q and different leaf nodes
may contain the same keyword), and (2) each tuple only appears
at most once in the tuple tree. Note that a non-leaf node (a node
has two or more edges) may or may not contain any keyword.
This definition implies that (a) if an answer contains multiple
tuples, they must be joined together as a tree, (b) we assume the
OR semantics (i.e. an answer must contain at least one query
keyword) for answering a query, and (c) there is no redundancy,
because if we remove any leaf node, we will lose the
corresponding keyword match between the query and the node,
and if we remove any non-leaf node, the tuple tree becomes

1 Although Google retrieves from text databases (not from relational databases),

its big success necessitates a comparison.

disconnected. Take Tuple Tree 2 and Tuple Tree 3 in Section 1
as examples (also shown in Figure 5). In Tuple Tree 2, the leaf
nodes a1 contains the keyword “D12”, and s1 contains two
keywords “how” and “come” in Query 2. In Tuple Tree 3, leaf
nodes a1 and a2 contain the keywords “D12” and “Eminem” in
Query 3 respectively; the non-leaf node b1 also contains the
keyword “D12”. Note that we consider a tuple tree as an answer
as long as it satisfies the definition. An answer may or may not be
relevant to a given query.
2.2 Answer Graph to Generate Answers
In this section, we briefly describe an algorithm (a modification of
the algorithm described in [11]) to generate tuple trees as answers.
For a given keyword query Q, the query tuple set RQ of a table R
is defined as the set of all tuples in R that contain at least one
keyword in Q. For example, the query tuple sets of Table Artist
for Query 1, Query 2 and Query 3 are AQ1={}, AQ2={a1} and
AQ3={a1, a2} respectively. We define the free tuple set RF of a
table R as the set of all tuples in R. For example, the free query set
for Table Artist is AF={a1, a2, a3}. Implied from the definition of
an answer, for a given query Q, if a tuple tree T is an answer, then
each leaf node ti in Table Ri belongs to the query tuple set Ri

Q, and
each non-leaf node tj in Table Rj belongs to the free tuple set Rj

F.
We use RQorF to denote a tuple set, which may be either a query
tuple set or a free tuple set. Due to the existence of m:n
relationships (for example, an album may be produced by more
than one artist), tuple sets of the same table may appear more than
once in a join expression. If this happens, each occurrence of the
same tuple set is considered to be a different alias of the tuple set.
Now, we define an answer graph as a join expression on alias of
tuple sets that produces tuple trees as answers. An answer graph
is a directed graph AG of alias of tuple sets, where each leaf node
Ri

x,Q is the x-th alias of the query tuple set Ri
Q of the table Ri and

each non-leaf node Rj
y,F is the y-th alias of the free tuple set Rj

F of
the table Rj, and each edge (Ri

x,QorF,Rj
y,QorF) corresponds to an

edge (Ri, Rj) in the schema graph SG and this edge also
corresponds to a join clause “Ri

x,QorF join Rj
y,QorF on

Ri
x,QorF.PrimaryKey= Rj

y,QorF.ForeignKey”. We define the size of
an answer graph as the number of nodes. Obviously, the size of an
answer graph is the same as that of a tuple tree it produces. For
example, the Answer Graph 2 and Answer Graph 3 (as well as the

Figure 4: The Lyrics Database Schema Graph

Artist (A)

Album-Song(BS)

Album (B)

Artist-Album (AB)

Song (S)

11111 sbsbaba ←→←→ (Tuple Tree 2)

22111 aabbaba ←→←→ (Tuple Tree 3)

 Q Q SBSBABA FFF ←→←→ (Answer Graph 2)

AQ join ABF on (AQ.ArtistID = ABF.ArtistID) join BF on
(ABF.AlbumID =BF.AlbumID) join BSF on (BF.AlbumID =
BSF .AlbumID) join SQ on (BSF.SongID = SQ. SongID)

 Q2,,2,1 Q1, AABBABA FFF ←→←→ (Answer Graph 3)

…join.. Where (A1,Q.ArtistID != A2,Q.ArtistID) and
(AB1,F AB1,F AB-ID!= AB1,F.AB-ID)

Figure 5: Tuple Trees, Answer Graphs, Join Expressions

corresponding join expressions) that generate Tuple Tree 2 and
Tuple Tree 3 are shown in Figure 5 (If there is only one
occurrence of a tuple set, we omit the alias number). In Answer
Graph 3, there are two alias of tuple sets A1,Q and A2,Q for the
same query tuple set AQ of Table A. If there exists more than one
alias for a tuple set, in the corresponding join expression, we need
to add a condition such as “A1,Q.ArtistID != A2,Q.ArtistID” to avoid
producing tuple trees such as 11111 aabbaba ←→←→ , which
violates the second condition of the definition of an answer. If
there is an edge (Ri, Rj) in the schema graph SG, and n is the
maximum number of distinct tuples in the foreign table Rj that can
be joined with one tuple in the primary table Ri, then, in theory,
each tuple set of Ri may connect to n tuple sets of Rj in an answer
graph in order to produce all possible tuples trees, each of which
contains one tuple of Ri that is joined with at most n distinct
tuples of Rj. And the number of answer graphs is only data
bounded by the query and the database. Thus, we set up two
parameters, maxn (for each tuple set of a primary table, it is the
maximum number of tuple sets of a foreign table that can be
joined) and MAXN (the maximum number of tuple sets in an
answer graph) to avoid generating complicated but less
meaningful answer graphs. Note that, for a given query, there is
usually more than one answer graph. For example, besides
Answer Graph 2, AQ2 and SQ2 (SQ2={s1}) are also two answer
graphs for Query 2. Figure 6 gives a breadth-first search
algorithm to generate all answer graphs AGs for a given query Q
and a given schema graph SG. With answer graphs, it is rather
straightforward to produce tuple trees as answers by evaluating
the corresponding join expressions. It can be proved that the
answer graphs output by our algorithm can produce all and only
all answers (tuple trees) if we do not apply the constraints of
maxn and MAXN.

In summary, in order to generate answers for a given query, the
system first finds all tuple sets, then it generates all answer graphs
using the tuple sets and the schema graph, and finally, it produces

all tuple trees as answers by evaluating the join expressions in the
answer graphs. The efficiency issue of answer generation is not
the focus of this paper and will not be discussed.

3. BACKGROUND IN IR RANKING
Modern IR systems rank documents for a given query. The higher
a document is ranked, the more likely the document is relevant or
useful to the query. In Section 3.1 we describe how the
effectiveness of IR ranking is evaluated. The IR effectiveness
measures will be used in our experiments. In Section 3.2, we
introduce and discuss a recent IR similarity function and analyze
some critical factors that affect search effectiveness.
3.1 Effectiveness Measures in IR
In IR, there are many measures to evaluate effectiveness. 11-
point precision and recall (precision is the number of relevant
documents retrieved divided by the number of retrieved
documents, and recall is the number of relevant documents
retrieved divided by the number of relevant documents) is a
standard measure. At each of the 11 recall levels (0, 0.1, 0.2,…,1),
a precision value is computed. These 11 precisions are usually
plotted in a graph to illustrate the overall effectiveness as well as
the trade off between precision and recall. Mean average
precision (MAP) is another standard measure. A precision is
computed after each relevant document is retrieved. Then we
average all precision values to get a single number to measure the
overall effectiveness.
For ranking tasks in which users look for a single or a very small
set of target documents (such as homepage search and question
answering [19]) in a large collection, the reciprocal rank is
another popular measure. For a given query, the reciprocal rank is
1 divided by the rank at which the first correct answer is returned
or 0 if no correct answer is returned. For example, if the first
relevant document is ranked at 5, then the reciprocal rank is 1/5.
In IR experimentation, values of each of the above measures are
usually averaged over a set of queries to get a single number to
evaluate the effectiveness of an IR system. Note that “evaluation
of search effectiveness has been a cornerstone of IR” [18], and
effectiveness is one of the two (efficiency is the other one) most
important problems in IR. This paper is the first work that
conducts a comprehensive effectiveness evaluation on the
problem of keyword search in relational databases.
3.2 Ranking Model in IR
To rank documents, IR systems assign a score for each document
as an estimation of the document relevance to the given query.
The widely used model to compute such a score is the vector
space model [26]. Each text (both documents and queries) is
represented as a vector of terms, each of which may be an
individual keyword or a multi-word phrase. The vocabulary of
terms makes up a term space. Each term occupies a dimension in
the space. Each text (a document or a query) is represented as a
vector on this term space, and each item in the vector of a text has
a non-negative weight, which measures the importance of the
corresponding term k in the text. Thus, a similarity value between
a document vector D and a query vector Q can be computed as the
ranking score.

Formula 1 shows the inner product (dot product) function to
compute the similarity. Weighting a term in a document (the
weight(k, D) component in Formula 1) is the most critical
problem in computing similarity values. Formula 2 shows the

Input: query Q, schema graph SG, maxn, MAXN
Output: a set of answer graphs S
1. Generate all non-empty query tuple sets {R1

Q, R2
Q,…Rn

Q } and all non-
empty free tuple sets {R1

F, R2
F,…Rn

F } for Q. Add the two sets of tuple sets
into a queue E. Note that, in the following steps, these tuple sets are
considered as symbols.
2. While E is not empty {

Pop the head h from E.
If h violates the constraints of MAXN and maxn, then h is discarded
Else {

If h is a valid answer graph+, then add it to S.
For each Ri

Q or F in h
For each Rj that is adjacent to Ri in SG {

Add Rj
Q with an edge into h to get a new h1.

Add Rj
F with an edge into h to get a new h2.

If h1 is not in E, then push it into the end of E.
If h2 is not in E, then push it into the end of E.

}
}

}
3. For each graph of tuple sets in S, if there is more than one occurrence for
any tuple set, give these occurrences different alias names.
4. Return S.
+Note that whether an h is a valid answer graph is determined by the
definition of an answer graph, as well as the two parameters maxn and
MAXN.

Figure 6: Algorithm for Answer Graph Generation

pivoted normalization weighting method [17, 18], which is one of
the most widely used weighting methods in IR. Note that,
conceptually, we put the idf component into Formula 2 but not
into Formula 1. The weight of a term in a document is determined
by the following three factors.

z Term Frequency (tf in Formula 2.1): the number of
occurrences of a term in a document. Intuitively, the more a
term occurs in a document, the higher the weight of the term
should be. However, the same term may occur many times in
a long document, and the importance of a term should not be
linearly dependent on the raw tf when tf is rather large. It has
been accepted in IR that the raw tf should be dampened.
Formula 2.1 applies the log function twice to normalize the
raw tf to get ntf.

z Document Frequency (df in Formula 2.2): the number of
documents that a term occurs in a collection. By intuition, in a
collection, the more documents a term appears in, the worse
discriminator it is, and it should be assigned a smaller weight.
Formula 2.2 shows the inverse document frequency (idf)
weighting method to normalize df: dividing the total number
of documents (N in Formula 2.2) by (df+1) and then applying
the log function

z Document Length (dl in Formula 2.3): the length of a
document in bytes or in number of terms contained in the
document. Because longer documents contain more terms and
higher term frequencies, longer documents tend to have
higher inner product values for a given query. Formula 2.3
provides a normalization to reduce the term weights in long
documents, where avgdl is the average document length in
the collection, and s is a constant and is usually set to 0.2.

Weighting a term in a query (the weight(k, Q) component in
Formula 1) is rather simple: We use raw term frequency (qtf) in
the query. Note that normalization on the above three factors has
significantly improved search effectiveness in IR than the simple
tf*idf weighting methods [18].

4. NOVEL RANKING STRATEGY FOR
RELATIONAL DATABASES
In this section, we propose a novel ranking strategy for effective
keyword search in relational databases. In IR, a document is a
basic information unit stored in a text database; and it is also the
basic unit of answers needed by users. A similarity value between
a given query and a document is computed to rank documents.
However, the basic text information unit stored in a relational
database is a text column value, while the basic unit of answers
needed by users is a tuple tree, which is assembled by joining
multiple tuples, each of which may contain zero, one or multiple
text column values (each text column value is considered as a
document). A similarity value between a given query and a tuple

tree needs to be computed to rank tuple trees. This value has two
factors: similarity contributed from each text column value in the
tuple tree, and a combination of all these contributions. Let T be a
tuple tree and {D1, D2, …, Dm} be all text column values in T. We
define each text column value Di as a document and T as a
super-document. Then we can compute a similarity value
between the query Q and the super-document T as shown in
Formula 3 to rank tuple trees. The similarity is the dot product of
the query vector and the super-document vector. The method of
weighting a term in the query, weight(k,Q), still uses the term’s
raw qtf (term frequency in the query). Our focus is on weight(k,T),
the weight of a term k in a super-document T.

In Section 4.1, we introduce the ranking strategy proposed by
Hristidis et al. [11]. In Section 4.2, we identify four important
factors that affect search effectiveness and propose a novel term
weighting strategy. Section 4.3 identifies the schema term
problem and proposes a solution. Section 4.4 proposes phrase-
based and concept-based search models that improve
effectiveness and can return semantics.
4.1 Ranking Strategy in Related Work
The weighting method in Hristidis et al. [11] considers each text
column as a collection, and uses the standard IR weighting
method as shown in Formula 2 to compute a weight for each term
k in each document Di. Then, as shown in Formula 4, each weight

is normalized (divided by size(T), i.e. the number of tuples in T).
The weights of the term in all documents are summed to obtain
the term weight in the super-document T. Formula 4 identifies and
deals with a new factor, size(T), that affects similarity. However,
more factors need to be considered.
4.2 Four Normalizations
We identify four important factors that affect search effectiveness
and propose a novel term weighting strategy as shown by
Formulas 5.1 and 5.2. Formula 5.1 computes a term’s weight in a
document Di, and Formula 5.2 computes the same term’s weight

in the tuple tree T. ntf is still computed using Formula 2.1; Nsize(T)
is a new tuple tree normalization factor (see Section 4.2.1 and
Formula 6); ndl is a new document length normalization factor
(Section 4.2.2 and Formula 7); idfg is a new inverted document
frequency weight (Section 4.2.3 and Formula 8); Comb() is a new
function to combine term weights in documents into a term
weight in a tuple tree (Section 4.2.4 and Formula 9).

4.2.1 Tuple Tree Size Normalization
The tuple tree size factor, size(T), is similar to the document
length (dl) factor discussed in Section 3.2 in the following sense:
a tuple tree with more tuples tends to contain more terms and
higher term frequencies. However, using the raw size(T) as shown
in Formula 4 can be sub-optimal, especially for a complex query
whose relevant answers are tuple trees involving multiple tuples,

∑
∈

=
DQk

DkweightQkweightDQSim
,

),(*),(),((1)

idf
ndl
ntf

Dkweight ∗=),((2)

))ln(1ln(1 tfntf ++= (2.1)

1
ln

+
=

df
Nidf (2.2)

avgdl
dlssndl ∗+−=)1((2.3)

∑
∈

=
TQk

TkweightQkweightTQSim
,

),(*),(),((3)

∑
∈

=
TD

i
i

TsizeDkweightTkweight)(/),(),((4)

)(*
*),(

TNsizendl
idfntfDkweight

g

i = (5.1)

()),(),...,,()(1, mDkweightDkweightCombTkweight = (5.2)

each of which contains a subset of the query keywords. Consider
the 26th query Q (“jojo leave lyrics”) in the appendix and the
example in Figure 1. A relevant answer is a tuple tree

333 sbsb ←→ . Let us call it T3. Let T4 be the single-node tuple
tree that only contains the tuple b3, which contains the keyword
“jojo”, and T5 be the single-node tuple tree that only contains the
tuple s3, which contains the keyword “leave”. Both T4 and T5 are
answers for the query under OR semantics, but they are not as
relevant as T3 to the query. Suppose weight(“jojo”,b3) = w1 and
weight(“leave”,s3) = w2 (all other weights are zeros). Then
Sim(Q,T4) = w1, Sim(Q,T5) = w2 and Sim(Q,T3) = (w1+w2)/3.
Obviously, at least one of T4 and T5 will be ranked ahead of T3 (if
we ignore the tie situation), and this ranking is ineffective because
T3 should be ranked higher than both T4 and T5. Thus, size(T)
should be normalized. We borrow the Formula 2.3 for document
length normalization to tuple tree size normalization: the weight
of a term in a document is divided by Nsize(T) as shown in
Formula 5.1 and Formula 6 instead of the raw size(T). For

document length normalization, the avgdl is averaged on all
documents in the collection. Thus, one way to compute avgsize is
to generate all possible answer graphs using the algorithm
described in Figure 6 by using a pseudo query Qp and assuming
all query tuple sets and all free tuple sets are non-empty, and then
average the sizes of all the answer graphs With this normalization,
the new similarity values for T3, T4 and T5 become w1, w2 and
(w1+w2)/1.15 respectively. As a result, using Nsize(T), T5 is
much more likely to be ranked ahead of both T3 and T4 than using
the raw size(T). Note that this normalization is independent of any
keyword in the query and any document in the tuple tree.

4.2.2 Document Length Normalization Reconsidered
When we logically combine multiple documents into one super-
document T, the document length factor needs to be reconsidered
because collections (i.e. text columns) have their own avgdl
values, which may be very different. Take Query 2 as an example.
In the answer Tuple Tree 2, the keywords “how” and “come”
occur in both DTitle (i.e. the Title column value in the tuple s1) and
DLyrics (i.e. the Lyrics column value in the tuple s1). The original
document length normalization is within each collection (we call
each such collection a local collection which corresponds to a
text column). If both the length of DTitle and the length of DLyrics
are equal to the avgdl values (3.21 and 239 as shown in Table 1)
in Title and Lyrics respectively, then the ndl values computed by
Formula 2.3 are 1 for both documents, while DLyrics is more than
70 times longer than that of DTitle. However, we desire a smaller
weight of a term in the longer document. Therefore, besides the
original intra-collection normalization (Formula 2.3), we must
consider a new normalization on the average document lengths of
local collections (inter-collection document length
normalizations). One possible solution might be merging all the
collections into a global collection and using a single global
avgdl. For the above example, the global avgdl is 116 (see Table
1 for details), and the ndl values for DTitle and DLyrics become 0.81
and 1.21 respectively, which are more reasonable values.
However, this solution can cause another problem due to the large
diversity in avgdl values in different collections. In our example,
the global avgdl (116) is dominated by the very long text column

Lyrics (239). Normalizations on short columns are lost as shown
in the following new example. Consider the two documents (i.e.
two text column values) in tuples a1 and b1 (we call them Da1 and
Db1) as shown in Figure 1. Both Da1 and Db1 contain the keyword
“D12”; the length of Da1 is 1 and the length of Db1 is 2. And their
ndl values are 0.8022 and 0.803 respectively. If “D12” occurs in
another document whose length is 10, its ndl is 0.817. This
example shows that this solution fails in the intra document length
normalization in the following way: For two different text
columns of very different average lengths, which are much
shorter than the global avgdl, their ndl values differ very little.
However, we desire significant difference between them.

We propose Formula 7 to consider both intra-collection and inter-
collection document length normalization: (1) we still maintain a
local collection for each text column and use Formula 2.3 for
intra-collection normalizations, and (2) then we normalize the

local avgdl for the local collection using 1+ln(avgdl). This
formula can solve the problems shown in the above two examples.
The new ndl values computed using Formula 7 for the keyword
“how” in a song title document DTitle and a song lyrics document
DLyrics (suppose their lengths are equal to their own avgdls)
become 2.17 and 6.48 respectively3. Thus, the term weight in the
long document becomes smaller. The new ndl values for the
keyword “D12” in Da1 and Db1 (see Table 1 for their avgdl values)
are 1.484 and 1.88 respectively. If “D12” occurs in a document
whose length and avgdl are both 10, the new ndl value is 3.3.
They are more reasonable normalizations. Note that this
normalization is independent on any keyword in the query.

4.2.3 Document Frequency Normalization
Collections have different vocabularies, and term distributions are
different. Document frequency normalization also has the
problem of local vs. global collections. For example, in the
collection of Name of Artist, terms that are people names have
high document frequencies. However, document frequencies of
these terms are usually low in the collection of Lyrics of Song. In
addition, the total numbers of documents in Name of Artist is
much smaller than that in Lyrics of Song. Thus, for a term that is a
person’s name, its idf value in Name of Artist is usually smaller
than that in Lyrics of Song. If this term appears in 1/100 of the
documents in Name of Artist, and 1/1000 of the documents in
Lyrics of Song, then its idf values in the two collections are 4.6
and 6.9 respectively. Furthermore, even in a rather large relational
database, some tables may have a small number of tuples, and
document frequency statistics in columns of these tables become
unreliable. Therefore, we propose to use global document
frequency statistics. The idfg as shown in Formula 8 remains the
same as that in Formula 2.2 except we use global statistics, where

2 0.802=(1-s)+s*1/116, where s is 0.2, and 116 is the global avgdl.

Computations for 0.803 and 0.817 are similar.
3 2.17=1 * (1+ln(3.21)), and 6.48= 1 * (1+ln(239))

1
ln

+
= g

g
g

df
Nidf (8)

avgsize
TsizessTNsize)()1()(∗+−= (6)

())ln(1*)1(avgdl
avgdl

dlssndl +







∗+−= (7)

dfg
 is the global document frequency of the term (number of

documents in the whole database, i.e. all text column values, that
the term occurs), and Ng is the total number of documents (i.e. the
total number of text columns values) in the whole database.

4.2.4 Inter-Document Weight Normalization
With the above three normalizations, the term weight in a
document Di in T is computed as shown in Formula 5.1, where ntf
(normalized term frequency) is computed by Formula 2.1, idf
(inverted document frequency) is computed by Formula 8, ndl
(normalized document length) is computed by Formula 7, and
Nsize(T) (normalized tuple tree size) is computed by Formula 6.
For Comb(), we can simply sum up the term weights in all of the
documents in T. However, a term tends to appear more frequently
in a T with a larger size. We use Formula 9 to normalize weight(k,

T), where maxWgt is the maximum weight(k, Di) and sumWgt is
the sum of weight(k, Di) for all Di in T. The idea behind Formula
9 is borrowed from term frequency normalization (Formula 2.1):
We consider the maxWgt as one unit of term frequency and
sumWgt/ maxWgt as the total term frequency.

4.3 Schema Terms in Query
 Another new problem for keyword search in relational databases
is that user queries usually contain two types of terms. The first
type is terms that are matched with text column values, and we
call them value terms. The second type is terms that are matched
with the names of text columns, tables and databases, and we call
them schema terms. For example, the keyword “lyrics” in Query
2 and the keyword “album” in Query 3 are both schema terms.
Schema terms usually do not occur in text values; thus the weight
of such a schema term in relevant tuple tress is usually 0.
However, if a text value happens to contain some schema terms,
the weights of such schema terms are non-zeroes. One example is
a query “lusher the singer's lyrics to burn”. There happens to be a
song titled “The Singer”, and it is ranked top 1 for the query.
Obviously, this is not what the user wants. The relevant one
should be the song titled “Burn” by the artist “Usher”. Although
the keyword “singer” matches the name of the attribute Artist, the
text column values in this answer do not contain “singer”. The
weight of “singer” in this answer is 0, which causes the problem
of the relevant answer having a lower similarity value. We use a
simple method to solve this problem. For each text column, each
table and the database, we identify a set of synonyms that are
their names. For example, we generate {“artist”, “band”, “singer”}
for the table Artist, {“album”} for the table Album, {“song”} for
the table Song, {“lyrics”} for the column Lyrics, etc. For these
schema terms, besides their global document frequency values
based on their occurrences in text column values, we also assign a
schema-based document frequency value for each of them: for a
schema term k, if it is a synonym of a text column or a synonym
of table containing one text column, we assign the largest
document frequency value among all terms in the local collection
that corresponds to the text column to k, and if it is a synonym of
a table containing more than one text column, we assign the

4 1.48=((1-s)+s* (1/1.89))*(1+ln(1.89)), where 1.89 is avgdl of Artist.Name

and s is 0.2. Computations for 1.88 and 3.3 are similar.

largest document frequency value in the collection that
corresponds to a union of all the text columns in the table to k.
Thus, if k is a schema term in a given query, k does not occur in a
tuple tree T (i.e., its term frequency is 0) but k corresponds to the
name of a table or a column involved in T, then weight(k, T)
computed by Formula 5.2 is 0. However, we now assume that the
term frequency of a schema term k in each of its corresponding
text columns involved in T be 1, and its dfg be its schema-based
document frequency. Thus, we can get a weight(k, T)>0. If k is a
schema term, k occurs in Di of T, and k corresponds to the text
column of Di or the table containing Di, then we compute two
values of weight(k, Di), one is computed by considering k as a
value term and the other is computed by considering k as a
schema term. Then we choose the larger weight as the final
weight(k, Di) because we assume that each term in the query has
only one meaning. For the above example, the final similarity
value between the query and the first answer remains unchanged,
however the similarity value between the query and the second
answer is increased because the term “singer” has a non-zero
weight and the second answer becomes top 1 now. The
identification of schema terms needs manual work or can be done
semi-automatically using WordNet [25]. However, the workload
is rather trivial because (1) the number of schema terms is small
(only 6 schema terms {“artist”, “band”, “singer”, “album”, “song”,
“lyrics”} are used by users in lyrics search), (2) a well designed
database should have information (i.e. schema descriptions) that
helps generate these schema terms.
4.4 Phrase-based Ranking
 Research in IR [14] has shown that phrase-based search can
improve effectiveness. Google [15] also utilizes proximity
information. In relational databases, many text columns are name
entities and favor proximity and phrase search. Consider the sub-
query “how come” in Query 2. It is a title of a song and should be
considered to be a phrase. Another example is “Code Red”, a
name of an artist (band). Although both keywords are common
words, the phrases have specific meanings. To identify phrases
from a query, Liu et al. [14] use natural language software and a
dictionary to analyze the query. Instead, we only utilize term
position information in documents (term position information is
stored in the inverted indexes), without using any additional
source. Whether a sub-query of a query is a phrase is tuple tree
dependent. If a sub-query of Q, P={ki,ki+1,..kj}, where i<j, appears
in a document D, and ki-1 does not appear in an adjacent location
to ki in this occurrence of P in D, and kj+1 does not appear in an
adjacent location to kj in this occurrence of P in D, then we define
it as an occurrence of the phrase P in D. We modify Formula 5.1
into Formula 10 to compute weight(P,D), the weight of a phrase P
in a document D. Since the tuple tree size and document length
normalizations are independent to any query keyword, the
denominator remains unchanged. The numerator is replaced by
npf*idf. For the idf component, we assume that idf of a phrase is
the sum of the idfs of all the individual keywords in the phrase for
computational simplicity (Formula 10.2). For npf (normalized
phrase frequency), the same term frequency normalization
function (Formula 10.1) is used for a phrase (pf is phrase
frequency in Di); in addition, we add a new normalization factor
to boost the adjacency of the words in a phrase: 1+ln(length(P)),
where length(P) is the number of keywords in P. For example, a
phrase with two words is 1.7 times more important than the sum
of individual term weights when they do not form a phrase.



















++=

Wgt
sumWgtWgtComb
max

ln1ln1*max() (9)

The definition of an occurrence of P in D causes a new problem,
which is illustrated by the following example. Suppose Q={1, 2, 3,
4} and a document D in T is {.. 1, 2, 3 .. 2, 3, 4 .. 2, 3, 4 .. 1, 2 ..
1 ..}. By the definition, we have phrases {1, 2, 3}, {2, 3, 4} and {1,
2} in D, and their pfs are 1, 2 and 1 respectively. However, {1, 2,
3} and {2, 3, 4} overlap and neither of them contains the other one.
We assume that each occurrence of a phrase or of a keyword in a
given query have a unique meaning in a tuple tree. Thus, we only
allow one of {1, 2, 3} and {2, 3, 4} to be a phrase for a tuple tree.
We propose an algorithm (Figure 7) to re-identify phrases in a
document. For example, if the phrase weight of {1, 2, 3} is higher,
the output of the algorithm is {1, 2, 3}, {1, 2} and {2, 3}. Their pfs
are 1, 1 and 2 respectively. If the phrase weight of {2, 3, 4} is
higher, the output is {2, 3, 4} and {2, 3}. Their pfs are 2 and 1
respectively. Then we use Formula 10 for phrases and Formula
5.1 for individual keywords to compute the final weight(Q,T).

 A phrase may contain shorter phrases or individual keywords,
and their weights are computed independently. If we sum them up,
we may have a problem that is similar to the inter-document
weight normalization problem (Section 4.2.4). For phrases, we
slightly modify Formula 9 to borrow the idea of the inter-
document weight normalization. When we match a query against
documents, we should always do maximal matching, i.e. maximal
phrases. For a given query Q and an answer T, we first identify
the set of phrases and keywords in T that are not contained in any
longer phrases. We call this set a concept set (CQ) in Q against T.
Then for each concept c (either a phrase or a keyword) in CQ,
maxWgt(c) is computed as the maximum weight(c, Di) over all Di
in T, and sumWgt(c) is the sum of all weight(p’, Di), where p’ is c,
or any shorter phrase or keyword contained in c and Di is a
document in T. Suppose c has the maximum weight in Di, then we
(1) use maxWgt(c) as the concept weight of c in T, and then (2)
bind c to the column of Di, (the semantics of the concept c is
bound to the text column of Di). To avoid assigning a column to a
single word concept that has a high document frequency and
appears in a long document, we set a threshold th. If
maxWgt(c)<th, we do not assign the column to c. For example,
the keyword “by” in Query 2 has a high df and occurs in a long
document (a Lyrics column value in tuple s1), and it has a small
maxWgt value, thus we do not assign Song.Lyrics to it. However,
we assign Artist.Name to the concept “D12” and “Song.Title” to
the concept “how come”. Thus, a phrase model can return
answers with semantics (i.e. the correspondences between
concepts in the queries and the columns in the database).

For a query with multiple terms (such as Query 3), a document
that contains only some highly weighted terms (due to high idf
and/or high term frequencies even we have done tf normalization
and/or short document length) may be ranked higher than a
document that contains all moderately weighted terms. We want
to rank the latter document higher. Our strategy is to use Concept
ranking model, which is based on Phrase model. For each concept
ci in CQ (described in the above paragraph), we compute a

weight(ci, Dj) using Formula 5.1 if ci is a keyword, and using
Formula 10 if ci is a phrase. The only exception is that we drop
the 1+ln(1+ln(tf)) component from both formulas because we
only take into consideration whether a concept appears but not its
term frequency according to [14]. Then we choose the maximum
weight(ci, Dj) as weight(ci, T), and sum up all these concept
weights to obtain a concept similarity value Sim(CQ, T). The
similarity between a tuple tree T and a query Q becomes a tuple
(Sim(CQ,T), Sim(Q,T)). The first component is the concept
similarity and the second component is the term similarity
computed by Formula 5.1 and Formula 9 respectively. For two
tuple trees T1 and T2 and a given query Q, if (1) Sim(CQ, T1) >
sim(CQ,T2), or (2) Sim(CQ,T1)=Sim(CQ,T2) and Sim(Q,T1) > Sim(Q,
T2), then T1 is ranked higher than T2.

5. EXPERIMENTAL RESULTS
Section 5.1 describes the data set. Section 5.2 introduces
evaluation measures and the setups for comparison. Section 5.3
reports and discusses experimental results on search effectiveness.

5.1 Data Set
Database: We use a lyrics database in our experiments. It is
reported in [20] that lyrics search is one of the most popular
search in various major search engines. We crawled an entire
lyrics web site in Aug. 2005, and converted the data into a
relational database whose schema is shown in Figure 3. There are
more than 177K songs in the database. Table 1 gives basic
statistics of the database. We do not stem words and do not use
stop word except “the”.

 Query Set: We use a set of 50 queries for evaluation. These
queries are obtained from a subset of a one-week period user
query log on a commercial search engine. By using IP addresses
and short durations between the times when queries are submitted,
we detect that a sequence of queries are submitted by the same
users, and each such query is a small variant of the next query in
the sequence. By analyzing such queries, the intentions of the
users can be found out. This allows us to make relevance
assessments of the retrieved results relative to the queries. We
randomly choose 50 lyrics queries from the query log (see
Appendix for the 50 queries). For each query, we identify a set of

Input: query Q, tuple tree T={D1, D2, ..Dn}
Output: phrase occurrence set C

1. Use the definition to identify all phrases {P1,..Pn} in T. Put them into C0.
2. While C0 is not empty {

2.1 Move the set of longest phrases from C0 to a new set L.
2.2 While L is not empty {

If there is no overlapped phrases in L {
Add L to C. Move each phrase that is contained in any phrase in
L from C0 to C.

}
Else {

2.2.1 Choose Pi, Dj such that weight(Pi,Dj) has the maximum
weight in L. Move Pi from L to C.
2.2.2 For each Pk in L or C0 that overlaps with Pi {

2.2.2.1 Move Pk out of L or C0.
2.2.2.2 Break Pk into two parts. One is a sub-phrase or a
keyword contained in Pi, and put it into C if it is a phrase.
The other one is the remaining part; and put it into C0 if it
is a phrase.
2.2.2.3 Move all phrases contained in Pk from C0 to C.

} } } }
3. Return C.

Figure 7: Phrase Identification Algorithm

)(*
*),(

TNsizendl
idfnpfDPweight i = (10)

() ()))(ln(1*))ln(1ln(1 Plengthpfnpf +++= (10.1)

∑
∈ +

=

Pk kg

g

df

Nidf)
1

ln((10.2)

relevant answers (tuple trees) in the crawled lyrics database using
pooled relevance judgment: we do retrieval using many different
methods including Google; for each method, we obtain the top 10
answers and then we get the union of the sets of the top 10
answers; then we judge the relevance for each of the answers in
the union. This way of relevant judgment is used in TREC [9].
There are totally 135 relevant answers (2.7 per query on the
average). The maximum number of relevant documents for a
query is 14, and the minimum number is 1. The average length of
a query is 6.7; the maximum length is 20 and the minimum length
is 2. The average length of such queries is substantially larger
than that of typical Internet queries, but in order to specify artists,
songs and lyrics, the longer lengths are needed. We further
classify them into two sets: simple queries (with only one non-
schema concept) and complex queries (with two or more non-
schema concepts, and they are underlined in Appendix). Each set
contains 25 queries. We expect that our ranking strategy work
better on complex queries than on simple queries. We also note
that all our queries contain schema terms.
5.2 Measures and Comparison Setup
We use 4 measures to evaluate the different aspects of search
effectiveness. (1) Number of top-1 answers that are relevant. (2)
Reciprocal rank. They measure how good the system is to return
one relevant answer. (3) 11-point precision/recall and (4) MAP
(see Section 3.1 for Measures 2, 3 and 4). They measure the
overall effectiveness for top10 answers in our experiments (other
topk numbers have very similar results). Result comparison serves
two purposes: investigating how different factors in our ranking
strategy affect search effectiveness, and comparing our ranking
strategy with related work to demonstrate its superiority.

The comparison is conducted on three dimensions. (1) Whether
the system identifies schema terms (Section 4.3). (2) The four
normalization factors described in Section 4.2. (3) The four search
models. The first model (All-Word) assumes AND semantics (i.e.
an answer must contain all keywords) and ranks answers by
number of tuples in the tree in ascending order. The second one
(Keyword) assumes OR semantics and uses IR style ranking. But
it only considers individual keywords in queries. The third one
(Phrase) also considers phrases in queries. The last one (Concept)
is a Phrase model that uses concept-based ranking.
5.3 Results and Discussion on Effectiveness
5.3.1 Identification of Schema Terms
Table 2 gives the reciprocal rank values for all the four models
(with all four normalizations) with (w/s) and without (w/o)
identification of schema terms. The percentage of improvement
(imp) of the run with this factor over the run without this factor is
also reported. These values are also reported for complex and
simple queries respectively. The results show that identifying
schema terms is extremely important for All-Word search model,
because it assumes an AND semantics and schema terms are not
usually contained in values. This factor seems to have marginal
effect on other models (only slight improvement for Concept
model on complex queries and Keyword model for all) because in
Lyrics database, occurrences of schema terms in values are rare.

Schema terms rarely form phrases, so it has no effect on Phrase
model. In the following sections, all runs use schema terms
identification if not otherwise specified.

5.3.2 Four New Normalizations
We give four tables (Tables 3-6) to show how each new
normalization factor improves keyword search effectiveness using
three search models (Keyword, Phrase, and Concept). Table 7
shows how all the new factors improve the overall effectiveness.

Table 3 gives reciprocal rank values for all the three models (with
all other three normalizations) with (w/s) tree size normalization
and without (w/o) it (but using the simple normalization in
Formula 4). The results show that this factor has tremendously
significant effect for all three models on complex queries, because
the relevant answers (Size(T) > 1) are normalized too much even
though we use (Size(T)+1)/2 instead of Size(T) [11] in the
experiments. It is also not surprising that it has little affect on
simple queries, whose answers contain only single tuples and
should be ranked higher than all multi-tuple trees.

Table 4 gives reciprocal rank values for all the last three models
(with all other three normalizations) with (w/s) our document
length normalization and without (w/o) it. The results show that
this factor is also very critical for all three models on all queries.

Table 1: Lyrics Database Statistics

Column # of doc avgdl
Artist.Name 3,691 1.89
Album.Title 15,160 2.67
Song.Title 177,231 3.21

Song.Lyrics 177,231 239

Table 2: Identifying Schema Terms
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o imp

Concept 0.871 0.850 2.5% 0.900 0.856 5.1% 0.833 0.844 -1.3%
Phrase 0.790 0.794 -0.5% 0.828 0.828 0.0% 0.752 0.759 -1%

Keyword 0.696 0.662 5.1% 0.799 0.763 4.7% 0.594 0.560 6.1%
All-Word 0.245 0.020 - 0.316 0.000 - 0.158 0.040 -

Table 5: Document Frequency Normalization
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o imp

Concept 0.871 0.708 23.0% 0.900 0.807 11.5% 0.833 0.600 38.8%
Phrase 0.790 0.676 16.9% 0.828 0.779 6.3% 0.752 0.573 31.2%

Keyword 0.696 0.685 1.6% 0.799 0.824 -3.0% 0.594 0.548 8.4%

Table 6: Inter-Document Weight Normalization
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o imp

Concept 0.871 0.871 0.0% 0.900 0.898 0.2% 0.833 0.844 -1.3%
Phrase 0.790 0.680 16.2% 0.828 0.756 9.5% 0.752 0.604 24.5%

Keyword 0.696 0.591 17.8% 0.799 0.685 16.6% 0.594 0.497 19.5%

Table 7: Combining All Normalizations
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o imp

Concept 0.871 0.358 143.3% 0.900 0.068 1224% 0.833 0.648 28.5%
Phrase 0.790 0.351 125.1% 0.828 0.076 989% 0.752 0.627 19.9%

Keyword 0.696 0.248 180.6% 0.799 0.060 1232% 0.594 0.438 35.6%

Table 4: Document Length Normalizations
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o imp

Concept 0.871 0.488 78.3% 0.900 0.395 228% 0.833 0.581 42.9%
Phrase 0.790 0.585 35.0% 0.828 0.454 82.4% 0.752 0.715 4.9%

Keyword 0.696 0.492 40.2% 0.799 0.477 33.0% 0.594 0.507 17.2%

Table 3: Tree Size Normalization
All Complex Simple Model w/s w/o imp w/s w/o imp w/s w/o imp

Concept 0.871 0.511 70.5% 0.900 0.178 406% 0.833 0.844 -1.3%
Phrase 0.790 0.444 77.9% 0.828 0.129 536% 0.752 0.759 -1%

Keyword 0.696 0.357 93.3% 0.799 0.124 537% 0.594 0.589 0.8%

This factor affects the complex queries more than simple queries
because it deals with diverse types (in terms of the document
length) of columns. This factor also affects Concept and Phrase
models more than Keyword model for complex queries because
the first two models boast the weights of long phrases, and longer
documents tend to contain more and longer phrases.

Table 5 gives the reciprocal rank values for all the last three
models (with all other three normalizations) with (w/s) our
document frequency normalization and without (w/o) it. It
significantly affects Concept and Phrase models on all queries. It
has little effect on Keyword model when all other three
normalizations have been applied. The results also show that this
factor affects simple queries more than complex queries.

Table 6 gives the reciprocal rank values for all the last three
models (with all other three normalizations) with (w/s) our inter-
document weight normalization and without (w/o) it. The results
show that this factor significantly affects Phrase and Keyword
models but less significantly than the tree size and the document
length factor. It does not improve effectiveness on Concept model
because this model ranks answers with concept similarity in the
first order and this factor has no effect on the concept similarity
(we always use maxWgt).

Finally, we use Table 7 to demonstrate the overall improvement
by comparing models with all the four normalization factors to
the same models without any of them. Without any of the four
normalizations, all models perform very poorly on complex
queries. These normalizations also improve simple queries, but
less significantly. We conclude that (1) all these four
normalization factors are critical to search effectiveness, (2) the
first two factors improve search effectiveness more significantly
than the last two, (3) and these normalization affect complex
queries more than simple queries.

5.3.3 Four Models and Related Work
In Figure 8 and Table 8, Concept, Phrase and Keyword are
models that use identification of schema terms with all four
normalizations and with OR semantics. Figure 8 shows the 11-
point precision/recall graph for the four models with all
normalizations and with identification of schema terms. MAP
values are also given (following the labels). Table 8 also gives
results of related work. Concept2 is the model that does not
identify schema terms. Related1 is the All-Word model with
identification of schema terms; it is used as an upper bound for
the method used in DBXplorer [1] and DISCOVER [10].
Related2 is the Keyword model with identification of schema
terms and without any of the four new normalizations; it is used
as an upper bound for the method used in Hristidis et al. [11] with
OR semantics. We also report results of Keyworda (i.e. the
Keyword model with AND semantics) and Related2a (i.e. the
Related2 model with AND semantics, which is used as an upper
bound for the method in Hristidis et al. [11] with AND semantics).
We also compare our results against that obtained by Google. We
note again that Google retrieves from text databases instead of
relational databases. To evaluate search effectiveness of Google,
we submitted each query to Google. Among its top 10 results, we
identified the first relevant web page as follows. (1) Based on our
relevant assessment, if the relevant answer is a tuple tree with a
single tuple, and if a Google result is a web page with the same
information as the tuple, then it is relevant. (2) If the relevant

answer is a tuple tree with both an Artist tuple and an Album tuple,
and if a Google result is a web page with the same information as
the Album tuple (this web page usually contains Artist
information), then it is relevant. (3) If the relevant answer is a
tuple tree with a Song tuple and one or more Artist and/or Album
tuples, and if a Google result is a web page with the same
information as the Song tuple (this web page usually contains
both Album and Artist information), then it is relevant. We do not
use the MAP measure in Table 8 due to two reasons: (1) it is
highly correlated with the reciprocal rank measure (R-Rank in
Table 8) in our experiments, and (2) Google has many copies of
lyrics databases from different web sites, and the same answers
are often returned multiple times. We also report the number of
top-1 answers that are relevant (#Rel in Table 8).

The results show that Related1 [1, 10] and Related2 [11] are not
as effective as our method. The comparison between Related2 and
Related2a5 shows that, for the ranking method used in Hristidis et
al. [11] (Formula 4 in this paper), AND semantics yields
significant improvement over OR semantics, especially for
complex queries (0.428 vs 0.06). The reason is that AND
semantics tends to exclude tuple trees containing only one tuple
(the ranking scores of these tuple trees using OR semantics are
high due to their small size) which contains only a subset of the
query keywords (thus they are less relevant). For example, for
Related2 (OR semantics) all three relevant answers for the 26th
query are ranked below the top 10 results; all the top 10 answers
are tuple trees that only contain individual tuples and a subset of
the query keywords. For Related2a (AND semantics), most of the
top 10 results in Related2 are excluded because they do not
contain all keywords, and among the top 10 results, two are
relevant answers that contain multiple tuples. The comparison
between Keyword and Keyworda shows that, for our ranking
method (Formulas 5.1 and 5.2), OR semantics yields significant

5 For both Related2 and Related2a, the results of not using schema terms are

less effective than those of using schema terms, so they are not reported.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R e c a l l

P
r
e
c
i
s
i
o
n

Concept (0.8)

Phrase(0.716)

Keyword (0.601)

All-Word(0.23)

Figure 8: 11-pt Precision/Recall and MAPs for 4 Models

Table 8: Model and Related Work Comparison
All Complex Simple Model # Rel R-Rank # Rel R-Rank # Rel R-Rank

Concept 39 0.871 20 0.900 19 0.833
Concept2 40 0.850 20 0.856 20 0.844

Phrase 35 0.790 18 0.828 17 0.752
Keyword 32 0.696 18 0.799 14 0.594
Keyworda 29 0.615 13 0.552 16 0.678
[Related1] 8 0.245 6 0.316 2 0.158
[Related2] 10 0.248 1 0.060 9 0.438
[Related2a] 21 0.491 9 0.428 12 0.554
[Google] 34 0.749 15 0.709 19 0.788

improvement over AND semantics. The comparison between
Keyword and Related2, and that between Keyworda and
Related2a show that our ranking method yields significant
improvement for both OR semantics (181%) and AND semantics
(25.3%) over the ranking method in Hristidis et al. [11]. Concept
and Phrase models outperform Google on all queries. Our best
result (Concept2) has a 16.3% improvement over Google and
77.4% over the best (Related2a) of Hristidis et al. [11]. Even
when we do not consider schema terms (without any manual work
involved), the improvement is 13.5%. From the point view of IR
effectiveness, these improvements are significant. For complex
queries whose answers are assembled by joining tuples from
different tables, all three models outperform Google (26.9% for
Concept, 20.7% for Concept2, 16.8% for Phrase, and 12.7% for
Keyword) more significantly than for simple queries. And the
improvement over Google on simple queries is less significant.
We conclude that (1) in terms of search effectiveness, Concept >
Phrase > Keyword > All-Word, and (2) our ranking strategy
outperforms related work in keyword search in relational
databases very significantly and outperforms the state-of-the-art
IR method (Google) significantly.

6. RELATED WORK
Keyword search in relational databases [1, 2, 10, 11] has recently
emerged as a new research topic. DBXplorer [1], DISCOVER
[10], Hristidis et al. [11] and BANKS [2] are systems that support
free-form keyword search on relational databases. They return
tuple trees as answers for a given keyword query. One focus of
the above works is to generate tuple trees efficiently. DBXplorer,
DISCOVER and Hristidis et al. [1, 10, 11] construct a set of join
expressions (called answer graph in our paper) for a given query,
and then evaluate these join expressions to produce tuple trees.
BANKS [2] finds all tuple trees from the data graph directly using
a Steiner tree algorithm. In the data graph, they use PageRank
style methods to assign weights to tuples and assign weights to
edges between tuples. DBXplorer [1], DISCOVER [10] and
BANKS [2] assume AND semantics for an answer. To rank
answers, they either [1,10] simply use the number of joins in the
tuple trees or [2] use a combination of tuple weights and edge
weights in a tuple tree without any IR-style ranking method.
Hristidis et al. [11] assume OR semantics for answers. To rank
answers, they incorporate the IR relevance ranking in a
straightforward manner. Many new factors that are critical to
search effectiveness are not investigated. Goldman et al. [7]
propose a very simple query language with two sets of keywords:
Find set and Near set. Two result sets of database objects are
obtained for the two sets of keywords. Then the Find result set is
re-ranked using distance information between the two sets. Luo et
al. [9] combine non-text data values with keyword search on text
columns. They concentrate on the efficiency issue of integrating
inverted indexes with non-text values. Our work differs from all
the above works in three aspects. (1) All of the above works focus
on the efficiency issue, not on search effectiveness, which is as
important as the efficiency in keyword search, if it is not more
important. The only work that mentions effectiveness is BANKS,
but they only use 6 queries without any standard evaluation.
ObjectRank [3] uses an authority-based ranking strategy for
keyword search in relational database. They return individual
tuples instead of tuple trees as answers. The ranking score for a
tuple is a combination of its ObjectRank value and term
frequencies of the query keywords. On effectiveness, they only

report non-standard effectiveness measures with two queries. In
contrast, we conduct comprehensive experiments using a real
database and real user queries with standard evaluation results. (2)
Among the above related works, they either do not use IR style
ranking at all, or they use it without sufficient consideration of
effectiveness (e.g. [11]). In contrast, we propose a novel IR style
ranking strategy for the new problem, which is very effective. (3)
None returns answers with semantics as we do.

Another different but related research topic is keyword search in
XML databases [6, 8, 13]. Florescu et al. [6] extend an XML
query language with keyword search. They do not use IR style
ranking. XRANK [8] returns XML document fragments as
answers. To rank answers, they combine the granularity,
hyperlink and keyword proximity information with simple IR
style ranking. Both Florescu et al. [6] and XRANK [8] require
users to know the XML schema and use a structured query
language. Li et al. [13] propose a schema-free query language for
XML, but it is still not structure-free. Kaushik et al. [12] propose
an approach to integrating inverted indexes with structured
indexes to support more efficient keyword search in XML.
Besides the difference between relational and XML databases,
none of the above work is for free-form keyword search, and they
either incorporate IR-style ranking in a straightforward manner
without considering the critical factors in this paper or do not
incorporate IR ranking at all. XSEarch [5] proposes a free form
keyword query language on XML. To rank answers, which are
trees of XML nodes, they combine a simple tf*idf IR ranking with
the size of the tree and the node relationship information. This
work only gives examples (but without experimental results) on
search effectiveness.

Keyword search has been extensively studied in IR [17, 18, 27]
and web search [4, 21]. Sacks-Davis et al. [16] tackle a similar
problem with ours from IR’s point of view. They investigate
indexing methods to support structures in documents. But they do
not propose new ranking strategy for the new problem. Recently,
link structures [15] have been successfully incorporated with IR
ranking in web search. [2, 3, 7, 8] use link structures in the
relational or XML databases. The usage of link structures is
orthogonal to the usage of IR ranking. We will incorporate link
structures in keyword search in our future work.

Major RDBMSs [22, 23, 24] have incorporated IR ranking
strategies into their full-text search. However, attribute names
must be specified for keywords in SQL queries; free form
keyword search is not supported. Our work can be applied into
the core of a RDBMS to support free form keyword search
(without specifying attribute names). Many web search engines
and enterprise search engines are built on structured databases.
For example, Google [21] provides product search (froogle),
academic paper search (Google scholar), and etc. Amazon.com
provides book and product search. Dealtime.com provides
product comparison service. IMDB.com has a form-based query
interface to search movie information. Although technical details
of how they process queries with keywords are absent, experience
implies that they do not fully utilize the combination of text data
and the database structures. Our work can be applied into these
applications to improve search effectiveness.
7. CONCLUSION AND FUTURE WORK
Keyword search allows non-expert users to find text information
in relational databases with much more flexibilities. In this paper,

we proposed a novel ranking strategy for effective keyword
search in relational databases. A given keyword query is
processed in three steps. (1) The system generates all answers
(tuple trees) for the query. (2) The system computes a ranking
score for each answer and ranks them. (3) Finally, topk answers
are returned with semantics.

Our ranking strategy is novel. It identifies and uses four new
normalization factors that are critical to search effectiveness: (1)
tuple tree size normalization, (2) document length normalization,
(3) document frequency normalization and (4) inter-document
weight normalization. Schema terms are identified and are
processed differently from value terms. Our strategy also uses
phrase-based and concept-based models to improve search
effectiveness further. And the concept-based model can also
return answers with semantics. Comprehensive experiments were
conducted using a real world lyrics database and a set of queries
collected by a major search engine. Standard evaluation results
were reported. The results show that: (1) all the four new
normalization factors are critical to search effectiveness (the first
two factors improve effectiveness more significantly than the last
two, and they improve effectiveness more significantly on
complex queries than on simple queries); (2) phrase-based search
and concept-based search improve effectiveness significantly; (3)
our strategy is significantly better than related works and
significantly outperforms Google. Our approach not only can be
used at the application level for keyword search in relational
databases, but also can be incorporated into the core of a RDBMS.

We plan to utilize link structures (primary key to foreign key
relationships as well as some hidden join conditions), and some
non-text columns (for example, user review rates on a product,
box-office income of a movie, and whether an actor won an Oscar

award) in the relational databases along with pure text data. By
combining these three pieces of information, we hope to improve
search effectiveness further. Furthermore, we plan to investigate
the efficiency issue. Finally, we plan to conduct experiments with
more real world databases (for example, movie databases,
academic paper databases, product databases and job databases)
and more user queries.
8. ACKNOWLEDGEMENTS
This work is supported in part by NSF grants: IIS-0208434 and
IIS-0208574. We thank the anonymous reviewers and Prof.
Yannis Papakonstantinou for helpful comments. We thank AOL
for providing web search query logs.

9. REFERENCES
[1] S Agrawal, S Chaudhuri, G Das: DBXplorer: A system for keyword-based

search over relational databases. ICDE 2002
[2] G. Bhalotia, A. Hulgeri, C. Nakhey, S. Chakrabarti, and S. Sudarshan.

Keyword searching and browsing in databases using BANKS. ICDE 2002
[3] A. Balmin, V. Hristidis,Y. Papakonstantinou: Authority Based Keyword

Queries in Databases using ObjectRank. VLDB 2004
[4] S. Brin and L. Page. The anatomy of a large-scale hypertextual web

search engine. WWW 1998
[5] S. Cohen, Jonathan Mamou, Yaron Kanza, Yehoshua Sagiv: XSEarch: A

Semantic Search Engine for XML. VLDB 2003
[6] D. Florescu, I. Manolescu, and D. Kossmann. Integrating keyword search

into XML query processing. WWW 2000.
[7] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-

Molina. Proximity Search in Databases. VLDB 1998.
[8] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked

keyword search over XML documents. SIGMOD 2003.
[9] L. Guo,J. Shanmugasundaram, K. Beyer, E. Shekita:Efficient Inverted

Lists and Query Algorithms for Structured Value Ranking in Update-
Intensive Relational Databases. ICDE 2005

[10] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in
relational databases. VLDB 2002.

[11] V. Hristidis,L. Gravano,Y. Papakonstantinou:Efficient IR-Style Keyword
Search over Relational Databases.VLDB 2003

[12] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan. On
the integration of structure indexes and inverted lists. SIGMOD 2004

[13] Y. Li, Cong Yu, H. V. Jagadish: Schema-Free XQuery. VLDB 2004
[14] S. Liu, F. Liu, C. T. Yu, Weiyi Meng: An effective approach to document

retrieval via utilizing WordNet and recognizing phrases. SIGIR 2004.
[15] L. Page, S. Brin, R. Motwani and T. Winograd. The PageRank Citation

Ranking: Bringing Order to the Web, Technical Report, 1998
[16] R. Sacks-Davis, Tuong Dao, James A. Thom, Justin Zobel Indexing

documents for queries on structure, content and attributes. ISDM 1997
[17] A. Singhal, Chris Buckley, Mandar Mitra: Pivoted Document Length

Normalization. SIGIR 1996
[18] A. Singhal. Modern information retrieval: A brief overview. IEEE Data

Eng. Bull. 24(4), 2001
[19] E. M. Voorhees. Overview of the TREC-9 Question Answering Track.

TREC 2000
[20] Pew Internet & American Life Project Report: Search Engine Users,

2005. www.pewinternet.org/pdfs/PIP_Searchengine_users.pd
[21] Google. www.google.com/ 2005
[22] DB2 Text Information Extender. 2005
http://www.ibm.com/software/data/db2/extenders/textinformation/index.html
[23] Micorsoft SQL Server 2000. www.microsoft.com/sql/ 2005
[24] MySQL. dev.mysql.com/doc/mysql/en/Fulltext_Search.html.
[25] G. A. Miller. WordNet: A lexical database for English. CACM,

38(11):39--41, 1995.
[26] G. Salton and M. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, 1983
[27] D. Grossman and O. Frieder, Information Retrieval: Algorithms and

Heuristics, Springer Publishers, 2nd Edition 2004

Appendix: 50 Queries (Complex and Simple)
1 to me lyrics by lionel richie 2 inner smile texas lyrics
3 lionel richie lyrics 4 lionel richie lyrics you mean more to me
5 avril lavigne lyrics for the album under this skin
6 avril lavigne lyrics 7 lyrics to and all i can taste is this moment
8 when i said i do lyrics 9 when i say i do lyrics
10 when i say i do lyrics clint black
11 clint black and wife when i say i do lyrics
12 Hanson i don't know lyrics 13 lyrics woman's worth
14 lyrics maxwell woman's worth 15 lyrics maxwell a woman's work
16 lyrics for how come by D12 17 usher the singer's lyrics to burn
18 lyrics that go "you ran me off the road..you're no longer laughing..i am not

drowning fast enough" 19 ashlee simpson lyrics
20 lyrics to the songs on simpson's debut album "autobiography"
21 lyrics to rascal flatts moving on 22 lyrics to hanson wheres the love
23 christina millian-dip it low lyrics 24 christina milian-dip it low lyrics
25 Lil Jon "Get Low Remix" lyrics 26 jojo-leave lyrics
27 lyrics to ribbon in the sky 28 slow motion lyrics
29 i like that lyrics 30 the way i am lyrics
31 i'm just me and thats all i can be lyrics
32 this yo song ma lyrics 33 get no better lyrics
34 the games have all changed since i been around lyrics
35 cassidy lyrics
36 though i have to find all the answers to my question lyrics
37 run right through me lyrics 38 never ever have felt so low lyrics
39 i keep searching lyrics 40 have you ever felt so low lyrics
41 all the vocabulary runs through my head lyrics
42 lyrics to shania twains song my heart only breaks when its beating
43 lyrics to ashlee simpsons song pieces of me
44 lyrics to amazed by lonestar 45 lyrics to I believe by Fantasia
46 lyrics to soundtrack to Cradle to the Grave
47 lyrics to focus on the Cradle to the Grave
48 lyrics to talk about our love by brandy
49 edwin mccain lyrics 50 edwin mccain lyrics better when I'm older

