BINARY SUBTRACTION USING 1'S AND 2'S COMPLEMENT

Now that we have learned to convert binary number to its $1 \hat{a} \epsilon^{\mathrm{TM}_{S}} \& 2 \hat{a} €^{\mathrm{TM}_{S}}$ complement, we will move to binary subtraction using them.

Remember always the number to be subtracted or negative number is converted to $1 \hat{a} €^{\mathrm{TM}_{\mathrm{S}}}$ or $2 \hat{a} €^{\mathrm{TM}_{S}}$ complement.

Subtraction using $1 \hat{a} \epsilon^{T M}$ s complement
A-B
(a) $\hat{\mathrm{A}} \mathrm{A}=1001010$
$B=1000010$
$1 \mathrm{a} \epsilon{ }^{\mathrm{TM}} \mathbf{S}_{\text {s }}$ complement of $\mathbf{B}=0111101$
Adding $1 \hat{a} €^{\mathrm{TM}_{\mathrm{S}}}$ complement of B to A

ANS $=1000$
(b) $\hat{\mathrm{A}} \mathrm{A}=1000010$
$B=1001010$

1 â $\epsilon^{T M}$ s complement of $B=0110101$
Adding $1 \hat{a} \epsilon^{\mathrm{TM}_{S}}$ complement of B to A

1000010
No carry
$\mathbf{+ 0 1 1 0 1 0 1}$

ANS $=-\left(1 \hat{a} \epsilon^{T^{T M}} \mathbf{S}\right.$ complement of $\left.\mathbf{1 1 1 0 1 1 1}\right)=\mathbf{- 1 0 0 0}$
We encountered two possible cases while subtracting using $1 \hat{a} €^{\mathrm{TM}_{S}}$ complement in above illustrations.

1. If there is any end carry, add it and sum obtained is the answer.
2. If there is no carry, answer is $\hat{a} €^{\prime}$ " $\left(1 \hat{a} €^{T M}\right.$ s complement of the sum obtained).

Subtraction using $2 \hat{a} \epsilon^{T M}$ s complement

Let us take the same values used in above illustrations.

A-B
(a) $\hat{\mathrm{A}} \mathrm{A}=\mathbf{1 0 0 1 0 1 0}$
$B=1000010$

Adding $2 \hat{a} \epsilon^{\mathrm{TM}_{\mathrm{S}}}$ complement of B to A

1001010
$+0111110$
End carry 1!0001000

ANS $=1000$
(b) $\hat{\mathrm{A}} \mathrm{A}=1000010$
$B=1001010$
$2 \hat{a} \epsilon^{T M}$ s complement of $\mathbf{B}=\mathbf{0 1 1 0 1 1 0}$
Adding $2 \hat{a} €^{\mathrm{TM}_{\mathrm{S}}}$ complement of B to A

```
            10000010
            +0110110
Nocarry 11111000
```

ANS $=-\left(\mathbf{2} \hat{a}^{\mathbf{T M}_{S}}\right.$ complement of $\mathbf{1 1 1 1 0 0 0)}=\mathbf{- 1 0 0 0}$
We encountered two possible cases while subtracting using $2 \hat{a} €^{\mathrm{TM}_{S}}$ complement in above illustrations.

1. If there is any end carry, just ignore it and sum obtained is the answer.
2. If there is no carry, answer is $\hat{\mathbf{a}} €^{\prime}$ " $\left(\mathbf{2} \hat{\mathbf{a}} €^{\mathbf{T M}} \mathbf{s}\right.$ complement of the sum obtained).

Source: http://www.knowelectronics.org/binary-subtraction-using-1s-and-2s-complement/

