ࡱ> lnk'` bjbj$$ 4BFF$LLLL4d$]KOKOKOH]J]J]J]J]J]J][^h`J]KOGKOKOKOJ]._]SSSKOBH]SKOH]SSV[@[ {LPD[ \4u]0]P[xMaS|Ma[Ma[LKOKOSKOKOKOKOKOJ]J]S KOKOKO]KOKOKOKO$$$$$$$$$_] The Working Cell Part II Worksheet Study the diagram below. Label the processes using the following terms: Oxidative Respiration, Lactic Acid Fermentation, Glycolysis, Alcoholic Fermentation, Krebs cycle and ETC  3. Write the number of ATP molecules produced by each process listed below. Then add up these numbers to get the total number of ATP molecules produced when one glucose molecule is broken down by cellular respiration. 4(2) ATP made in Glycolysis + 2 ATP made in Krebs cycle + 32 ATP made in the Electron Transport Chain = 36 ATP total for the breakdown of one glucose molecule during cellular respiration. Aerobic means with the use of oxygen whereas anaerobic means without the use of oxygen. 5. Fill in the data table Process Where does it occurAerobic or Anaerobic Reactants Products Step 1: Glycolysis Cytoplasm (Cytsol) Anaerobic Glucose + ATPATP, NADH & Pyruvic AcidStep 2 Oxidative Resp: Krebs CycleMitochondria Matirx Aerobic Pyruvic Acid + ATPATP, NADH, FADH2 and Carbon DioxideStep2: Oxidative Resp: ETCInner membrane of the Mitochondria AerobicNADH, FADH2, Oxygen ATP & H20Step 2: Alcoholic Fermentation Cytoplasm (Cytsol) AnaerobicC6H12O6 + 2ATP Pyruvic Acid + ATP Alcohol, CO2Step 2: Lactic Acid Fermentation Cytoplasm AnaerobicC6H12O6 + 2ATP Pyruvic Acid + ATP Lactic Acid, CO2 6. Most eukaryotic cells produce about 36 ATP molecules per glucose molecule. 7. What is the process by which glucose is converted into pyruvic acid? Glycolysis 8. At the beginning of oxidative respiration, pyruvic acid reacts with oxygen to form a molecule known as Acetyl CoA. 9. With every turn of the Krebs Cycle, how many ATP Molecules are made? 2, so each glucose produces 2 ATPs in the Krebs Cycle. 10. What is the primary waste product of the Krebs Cycle? CO2. What happens to this product? _you exhale it. 11. When pyruvic acid is converted into carbon dioxide and ethanol (alcohol), the process is called Alcoholic fermentation. 12. The electron transport chain is driven by two products of the Krebs Cycle NADH and FADH2. 13. Write the balanced chemical equation for cellular respiration. Label reactants and products. (reactants) C6H12O6 + 6O2 (products) 6CO2 + 6H2O + ATP (useable energy). 14. What do the molecules NADH and FADH2 transfer to the ETC? Electrons 15. What is the main purpose of the ETC? Production of ATPs (oxidative phosporytation) 16. Why is the oxygen important to the ETC? O2 pulls in Pyruvic Acid into the mitochondria, helps the breakdown of pyruvic acid and helps produce ATPs. 17. Write the equation for photosynthesis. Label each side of the equation as reactants and products. (reactants) 6CO2 + 6H2O + light energy (products) C6H12O6 + 6CO2 18. What is the relationship between photosynthesis and cellular respiration? The products of Cell resp. are the reactants of photosynthesis. The products of photosynthesis are the reactants of cellular resp. 19. What organism use alcoholic fermentation? Yeast 20. What type of fermentation do human muscle cells go through when exercising rapidly? Lactic Acid Fermentation Match the following terms with their meaning or purpose. Items can be used more than once. G 21. Molecule that stores and transports energy in the cell L 22. C6H12O6 K 23. C3H6O3 (1/2 a glucose molecule) M 24. CO2 N 25. gas that is the product of photosynthesis and is a reactant in cellular respiration M 26. gas that is produced as a waste product of cellular respiration and a reactant in photosynthesis E 27. organelle where cellular respiration occurs D 28. organelle where photosynthesis occurs A 29. location in cell where glycolysis and fermentation takes place K 30. glucose is broken down into two molecules called ___ ___ in the process called glycolysis J 31. green pigment in plants that absorbs light energy for plants to use F 32. uncharged battery H 33. term describing a process that requires oxygen to happen. B 34. term describing a process happens only in the absence of oxygen. G 35. has three phosphate groups. C 36. organisms such as plants that can make their own food. I 37. organisms like animals that can not make their own food, they must consume food to get energy. G 38. adenosine triphosphate. E 39. organelle where the energy in food is handed over ATP. I 40. mushrooms are classified as ___, because they live off of dead or decaying organisms to get energy F 41. has only two phosphate groups (has less energy). G 42. charged battery. "#$l   ) * + , 0   & ( ) C ˸vkckc[cSEcE*CJaJh/h/5>*CJaJh CJaJh+/CJaJh!CJaJh!h!CJaJh!5CJaJ%jh 5CJUaJmHnHu%jh/5CJUaJmHnHu%jh{5CJUaJmHnHu%jh!5CJUaJmHnHuh 5CJaJh h 5CJaJh h CJaJh hC?vhn5hC?vh 5#$l            ! " # $ % & ' ( gd!h^hgd  & Fgd gd $a$gd ( ) * + ,  p # $ > ? G H \ q r | } $Ifgd+/h^hgd+/gd+/ & Fgd+/h^hgd! hh^h`hgd+/ ^`gd+/gd!C D G p r u v   ' = > ? G H q r | } ߼߮ߝȝwnbnbnbnbbZh/CJaJhC?vh+/5CJaJhC?v5CJaJh/h+/5CJaJh/h/>*CJaJh+/h+/5>*CJaJh+/CJaJh!>*CJaJhC?vh!5>*CJaJh!h!5CJaJh/>*CJaJh/h!5>*CJaJh!CJaJh/h/5>*CJaJh/h/CJaJ# KBBBBBB $Ifgd+/kd$$Iflr/e"* t0644 layt+/      # $ G H [ \ v w         # $ 1 2 R T ^ _ i j k l n o p w x 89ܸh/>*CJaJhh/CJaJhh5>*CJaJhhCJaJhCJaJhC?vh+/5CJaJh/CJaJh+/CJaJ@    Bkdx$$Iflr/e"* t0644 layt+/ $Ifgd+/  # $ 7 H [ \ Bkd$$Iflr/e"* t0644 layt+/ $Ifgd+/\ m w $Ifgd+/  KBBBBBB $Ifgd+/kdh$$Iflr/e"* t0644 layt+/  # $ 1 2 F S Bkd$$Iflr/e"* t0644 layt+/ $Ifgd+/S T ^ _ i x $Ifgd+/ EFIDDDDDDgd+/kdX$$Iflr/e"* t0644 laytC?v9DF!"#>?{~+.}~ !"'(BCɻ᳻zlllllhha5>*CJaJ.jhha5>*CJUaJmHnHuhha5CJaJha>*CJaJhaha>*CJaJhaCJaJhha5>*CJaJhah/>*CJaJhh/5CJaJh/CJaJh/>*CJaJhh/5>*CJaJ*?@A-.BC23:;gd+/$%&()*012349;~~v~m~mahS+hS+5CJaJhS+>*CJaJh/CJaJhS+CJaJhaha>*CJaJhhS+5>*CJaJhhS+5>*CJaJ.jhhS+5>*CJUaJmHnHuhha5CJaJhha5>*CJaJhha5>*CJaJhaCJaJha>*CJaJ$  HNOPWļĪļļh!h/CJaJhS+h8CJaJ"jhC?vCJUaJmHnHuh8CJaJhS+CJaJ"jhC?vCJUaJmHnHuh/CJaJhS+hS+5CJaJhS+hS+5>*CJaJ O`UXAc#agd+/21h:p / =!"# $ % v$$If!vh55555#v#v:Vl t655yt+/v$$If!vh55555#v#v:Vl t655yt+/v$$If!vh55555#v#v:Vl t655yt+/v$$If!vh55555#v#v:Vl t655yt+/v$$If!vh55555#v#v:Vl t655yt+/z$$If!vh55555#v#v:Vl t655ytC?v@@@ NormalCJ_HaJmH sH tH DA@D Default Paragraph FontRi@R  Table Normal4 l4a (k@(No Listj@j +/ Table Grid7:V0B#$l !"#$%&'()*+,p#$>?GH\qr|}#$7H[\mw#$12FST^_ixEF?@A-.B C 2 3   : ;  O ` UXAc#a00 0000000000000000000000000000000 00000 00 0 00 00 0 00 00 00 00 0 0 0 00 00 00 00 0 00 0 00 0 00 0 00 00 00 00 00 0 00 00 00 00 00 0 00000000000000000000000000000000000000000000000000000000000#$lZ00Z00Z000Z00C 9(  \  S  8JL@R.CK-(     W? In the CytsolArial Black"`=6    #  vW? GlucoseArial Black"`6  lW? 1.Arial Black"`7("  5  lW? 2.Arial Black"`:  lW? 3.Arial Black"`9("   <("   ;   &W? ________ ATP (net)Arial Black"`1   ,W? ________Pyruvic acidsArial Black"`2NB   S D4NB  S D3  6W? Anaerobic (Doesn't use O)Arial Black"`8NB  S D0  ~W? Lactic AcidArial Black"`/  vW? AlcoholArial Black"`.  W? Carbon DioxideArial Black"`-NB  S D,NB  S D+NB  S D*NB  S D)NB  S D(  |W? In musclesArial Black"`'  W? In yeast cellsArial Black"`&(2    ~W? ________ 02Arial Black"`%NB  @ S D$ ! xW? _____H2OArial Black"`" " xW? _____ATPArial Black"`! # xW? _____CO2Arial Black"`  $ xW? _____ATPArial Black"`NB & S D ( BCDEF99U%X'T}<:303+kc5fAaoWI"@^:|,AD%/T5>?HM.vLI[y~zhF,O ; ,C $  : I a g o \ X9 D 8 +   : um Q   d) -) - = 7 A f  I DVM:7 w?bY|\ECZu_Xin |h4Pv,r0o  )?:o`]6m'dMNP|cJ1 n_4_&pFg@ ~5hBL?3D?p?4qQz7[EJKTdwgcWi/Tb     d S u) S I K D < 0 &y  = v s f Y H 9   g ] W I = )   # 4 D R a q    h h @  xDZUUKTF5K-L;<.'"116Pcak`M>lIL|s"_@ *68! WsR?s/ZVFbLG /4f @                                                                                                        ("   ) ~W? FADH2 NADHArial Black"`NB * S DNB , S D - ~W? _______NADHArial Black"`NB . S DHB / C DNB 0 S D 1 ( W? In the MitochondriaArial Black"` 2 lW? 4.Arial Black"` 3 \W? _______________ _______________ includes Krebs Cycle, ETC and chemiosmosis it uses oxygen so it is aerobic.Arial Black"`6 4    5 |W3? GlycolysisArial Black"` 6 *W3? Oxidative (Aerobic)Arial Black"` 7 2W3? Lactic Acid FermentationArial Black"` 8 *W3? Alcohol FermentationArial Black"` 9 nW3? ETCArial Black"`  ; jW3? 2Arial Black"`  < jW3? 2Arial Black"`  = jW3? 2Arial Black"`  > jW3? 1Arial Black"`  ? jW3? 6Arial Black"` @ jW3? 6Arial Black"` A jW3? 6Arial Black"` B lW3? 32Arial Black"`(2 G NB + S D  : ~W3? Krebs CycleArial Black"`NB H S D>NB I S D?, J  W? A. Cytoplasm B. Anaerobic C. Autotroph D. Chloroplast E. Mitochondria F. ADP G. ATP H. Aerobic I. Heterotroph J. Chloroplast K. Pyruvic Acid L. Glucose M. Carbon Dioxide N. OxygenArial Black"`A6 K   @B S  ?      O , pst:at+ptG70~tuv *tB$G&Ut@()tAest?( 8) t>s t;ES t<%oB}t=t93&4t8E%bt7^${t6I T t5=d Et4 h2t38~t2t1Rt0!h !et/z Y !Y t.P  t-; t*?St)P t&t(l 't&t$I*t#-  t"j$H(t!'V+7t+zt & @)t '7 * t4E"&tC:"tAtatS%&t%&2t$!p&t& E+t&oT+Pt&xr+Yt%t b>t  t z=. t  {ttl t_/t1tGtdt6dto_t S%t %trtH tIBtKv /+tJ!u)t#$+mqx*19Ct{$)  & Z a y ~ MW!$(pu7<tyv{ A 5 B  P W ` g UZ[dX]^cAFGJchir  #()2afgp33333333333333333333333333333333333333333333333333333>?GHqr|}iw   vE+EE"qeE@'Pa^`o( ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.PvE+EqeEL8                            $IbnC?v S+8!/a/{+/>G\q|#7[\w#12S^i@P@UnknownGz Times New Roman5Symbol3& z Arial"qh&&g  g ! 24d2QKX)? 2"The Working Cell Part II WorksheetStudentStudent   Oh+'0  ( H T `lt|$The Working Cell Part II WorksheetStudent Normal.dotStudent3Microsoft Office Word@ @\@\g՜.+,0 hp   HumbleISD  ' #The Working Cell Part II Worksheet Title  !#$%&'()+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\]^_`abdefghijmRoot Entry F৓oData "1Table*eaWordDocument4BSummaryInformation([DocumentSummaryInformation8cCompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q