ࡱ> OQN%` ybjbj s̟̟7 $ .(.(.(.((L K:)H+H+H+H+#,Be,,IIIIIII$Lh O J 0#,#,00 J H+H+J6660 H+ H+I60I66E| CGH+.) t.(5GFIJ0KYFO5O$CGCG4O wG\,-6K..,,, J J6,,,K0000 $ !$ !   A 3-D model of superfluid helium suitable for numerical analysis 1,2 Darve C., 2 Patankar N. A., 3 Van Sciver S. W. 1 Fermi National Accelerator Laboratory, Accelerator Division, Batavia, IL, USA 2 Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA 3 National High Magnetic Laboratory, Florida State University Tallahassee, FL, USA The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of HeliumII. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique. Introduction The phenomenological representation of superfluid helium (Helium II) in the two-fluid dynamics model permits us to derive a system of hyperbolic and parabolic partial differential equations to be used for a 3-D solution of the flow of Helium II. A set of convenient variables for the partial differential equations system is chosen to describe the Helium II hydrodynamic approximations. A macroscopic approach to the conservation equations is taken to model thermal counter-flow. Mathematical Formulation- System of PDE for the TwoFluid Model The mathematical formulation of liquid helium has been established for many years [1]. In the two-fluid model the mass, momentum and heat transfer of He II are interpreted in terms of the motion of two independent fluids, a normal one, with velocity, vn, and a superfluid one, with velocity, vs. The superfluid component is inviscid and carries no entropy, while the normal component is viscous, with dynamic viscosity, h, and carries the entropy, s. Using notations and conventions of Khalatnikov [2] and Roberts & Donnelly [3-4], we here take a macroscopic approach to the conservation equations of the two-fluid model, assuming local thermodynamic equilibrium, so that the state of Helium II as well as that of each of the two-fluid components can be described by two independent state variables (i.e. pressure p, and temperature T). Mass balance conservation The total mass density r of the fluid is given by the sum of the densities of the normal components and superfluid components, rn, and rs, respectively. The overall conservation equation of mass becomes:  EMBED Equation.3  (1) Momentum balance conservation To derive the equations of motion of the superfluid and normal components we start by postulating conservation of the total momentum carried by the two species, i.e.:  EMBED Equation.3  (2) where g is the acceleration of the gravity field and  EMBED Equation.3  is the stress tensor, which only receives contributions from the normal fluid and can be written as follows:  EMBED Equation.3  (3) Let us introduce w, the difference of normal and superfluid velocities and the thermodynamic potential, F as follows:  EMBED Equation.3  (4) The momentum equation for the superfluid can be written as:  EMBED Equation.3  (5) where Ft is the friction force associated with turbulence is given by the empirical expressions, proposed by Gorter and Mellink for counterflow situations [5-6]:  EMBED Equation.3  (6) where  EMBED Equation.3  is a function of T and, possibly, of w; and where F, the potential function is:  EMBED Equation.3  (7) with i is the internal energy, and s, the entropy. Hence, the equation of motion for the normal component is obtained by subtracting equation (5) from the conservation of the total momentum equation (2).  EMBED Equation.3  (8)  EMBED Equation.3  (9) In these two sets of equations the first and second term on the left hand side are the acceleration terms. The third term on the left hand side is the force due to the pressure gradient. The fourth term is the pressure originated by the thermomechanical effect, and demonstrates how a temperature gradient can generate a counterflow in the mixture. The fifth term originates from the mass exchange among the two fluids in He II. It is important to note that the orders of magnitude of the terms above can be very different. For small accelerations, and modest Mach numbers, the thermomechanical and turbulent force terms tend to dominate the balance in equations (8) and (9). At this point it is also interesting to note that the effect of the transformation of superfluid into normal fluid, and vice-versa, produces a term mw in the normal fluid equation (8), but not in the superfluid equation (9). This is a consequence of the assumption of conservation of total momentum (equation (2)) and of irrotational superfluid flow, equation (5). Energy balance conservation We turn now to the equation of energy conservation, using the conservation of the irreversible motion of the entropy [5]. A convenient form, derived from the conservation of the total energy density, is given by[4]:  EMBED Equation.3  (10) The first two terms on the left hand side of equation (10) represent the change in total energy density, i.e. the sum of the internal energy density and the specific kinetic energy of the two flows. We simplify the energy balance by subtracting the kinetic term from equation (10) and by subtracting the total continuity equation (Equation (1)) multiplied by i, leading to the final form of the internal energy conservation:  EMBED Equation.3  (11) Notice that several terms in equation (11) are non-standard. The term  EMBED Equation.3 , represents an internal heat convection through entropy transport. The terms  EMBED Equation.3  originate from the transformation of superfluid into normal fluid and vice versa. Finally, the term  EMBED Equation.3  represents the internal energy dissipation associated with turbulence. Closure of the PDE system The two-fluid model is completely described by equations (1) (total mass balance), (8) (normal fluid momentum balance), (9) (superfluid momentum balance), and (11) (internal energy balance). In addition we require a suitable equation of state, providing thermodynamic quantities as a function of two state variables. We choose pressure and temperature as state variables: EMBED Equation.3 , EMBED Equation.3 ,  EMBED Equation.3 , EMBED Equation.3 , k and h are function of (p,T). Equations in (p,vn,vs, T) Form The two-fluid flow phenomena can be analyzed as a set of hyperbolic and parabolic PDEs. The PDE hyperbolic class component is due to the normal component of the superfluid thermo- and hydro-dynamics while the parabolic one is due to the superfluid component behavior. The PDE under study is strongly non-linear due to the complexity of the interactions between the two types of fluids and the unique properties of the superfluid. The equations are complex, involve terms that are non-standard in nature, and contain terms that largely dominate the balances, e.g. the thermomechanical force or the mutual friction in the momentum balances. For this reason it is convenient to rearrange them and put them in a simplified form where pressure, velocities and temperature appear explicitly as variables in the derivatives. We refer to this choice as the (p, vn, vs, T) form of the PDE system. The main advantage is that these variables are the leading orders in all dominating terms of the balances, and treating them implicitly in the solution algorithm will largely improve the stability of the integration. To modify the equations as desired, however, we make the assumption that the thermodynamic state is independent on the composition and relative motion of the mixture of the two fluids. As shown by Roberts and Donnelly [4], this is not exact. Indeed, for the two-fluid system the internal energy i and thermodynamic potential F depend on the relative motion of the two fluids. The advantage is that standard thermodynamic relations can be used, and in particular the following hold:  EMBED Equation.3  (12)  EMBED Equation.3  (13)  EMBED Equation.3  (14) where f is the Gruneisen parameter, c, is the speed of the (first) sound, Cv is the specific heat at constant density, and h is the specific enthalpy. Using the conservation laws and the thermodynamic relations, the two-fluid flow can be modeled with associated PDEs. To simplify the 3-D problem, we will first study the case where all quadratic terms and small terms are zero. To modify the equations, we make the assumption that the thermodynamic state is independent of the composition and relative motion of the mixture of the two fluids. The contributions related explicitly to the mass exchange, m, are small when compared to other terms, and we can drop them from the balances; The energy dissipated by viscous dissipation is small compared to other sources of heat transport e.g. mutual friction can be treated as a source perturbation. All terms containing differentials of quantities other than the set of variables (p, vn, vs, T) are small compared to the terms containing the differentials of these variables. In other terms we can regard them as perturbations with respect to the leading terms of the equations; We assume that the variations of the Gruneisen parameter, f, are small, so that we can write:  EMBED Equation.3  (15) With the assumptions above it is finally possible to come to the set of approximate equations that we seek, given in Appendix I, where we show the time derivative term, the convective flux terms (gradient of the system variables), the diffusive terms (Laplacian of the system variables), the non-linear source terms (proportional to the system variables), the linear source terms, and the perturbations. Equation (16) governs the evolution of pressure. Equations (17) and (18) give the flow field in 3-D and Equation (19) governs the evolution of the temperature. application to PIV technique using a particle flow solver One motivation for developing a 3-D numerical model for superfluid Helium is driven by the need to validate experimental results obtained at National High Magnetic Field Laboratory (NHMFL). The velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique was observed [7-8]. Numerical analyses permit to decouple the normal and superfluid component velocities to examine experimental phenomena. Hence, NHMFL PIV results provide an ideal benchmark, which can be used to test the numerical 3-D code for the calculation of the velocity distribution in the two-fluid model. Particle tracks the normal component velocity (which has viscosity) in a thermal counter-flow channel. The normal and superfluid components of the physical thermal counter-flow channel problem can be modeled in terms of pressure, velocities and temperature, for a simple rectangular geometry simulating the thermal counter-flow channel. The numerical implementation in a 3-D solver of the resulting system of partial differential equations is possible using equations in (p, vn, vsT) form. Modeling of the normal and superfluid components can be done taking these eight degrees of freedom in the 3-D space. The formalism of the 3-D numerical solution is introduced in [9]. The boundary conditions of the physical problem assume non-slip conditions at the wall of the channel, hence the normal component velocity only is zero. Adiabatic and symmetrical conditions are use  $%12;<CDEHIQSTU`cefhtwxyzø{ohRMhRMH*mHsHhRMh{4mH sH hwTmH sH hRMhmH sH hRMH*mH sH hRMh1MmH sH hRMhE mH sH hRMhtmH sH hRMhRMH*mH sH hE hSRhE 5hSRh&5 hXR5 h1_5hSRhSR5 h&5 h5'DExy p q r     ) *   MgdQ|`gdWOgd$~gdrgdWOgdgdsyz{    p q r  , - < S d m    @ C G P      ( ÿÉhQ|hhh;hhhFH|~|~@BDFJLNPRmnopqļļ״כ׍׉~״hhB*phhEyhjhEHU j/< hUVmHnHujhUhB*phhzk6H*]hzk6OJQJ]hzkhNhh@R hxhx hx6 hQ|6hYhQ|hh*% .FGHIJ]^_`adewxܰܢܑ|n|b|ZhQ|B*phhB*OJQJphh56B*\]phhB*phj h%8h%8EHU!j%L h%8CJOJQJUVhQ|js hEHU$jo< hCJUVmHnHu h5hB*phh]wIh$hihjhUj/hEHUjqD hCJUV#HIefVX  fh~`gdWO %`gd gdC !`gd gd3gd %gd `gdWO !`gd]wI FHJLNTVX  "JDJdhj㻷·|rnfnbnZnjhzkUh*% hzkB*phhzkh B*H*phh 5B*phhWOjh EHU$jCg< h CJUVmHnHujh Uh B*phh h5\hijhEHU$jg< hCJUVmHnHuhjhUhB*phhB*ph"(*,.@BDzнЮЮԪԖyتԦtmf h6] hWOh h6jt!hEHU$jg< hCJUVmHnHujhUhLEOJQJhLEh h|y_6jh|y_EHUj<G h|y_UVjh|y_Uh|y_hWOhihzkjhzkUj2hzkEHUj;G hzkCJUV( !!!! " "`gdEygdt\gdgd3`gdt\gd %gd  !`gd]wI`gd `gdWO`gdWO  %`gd lom    < ? d g !!yhNB*phhhB*phhefuh%]mhN h6hLE h]jU2hEHU$jpo< hCJUVmHnHujt(hEHU$jbo< hCJUVmHnHujhUhB*phhihh|y_h/!E!!!!!!!!!!!!""""" " " "A"E""###_#b#r#s#######ðââÛzoh hhjhhUhhB*ph hNhQ|hNh6 hNhi hNhhijY;hEHU$j/o< hCJUVmHnHuhjhUhB*phhQ|B*phh>f>g>h>j>k>l>n>o>p>q>r>u>w>z>>??1????????pDpEp|p}ppüü͸͸ظjh+cU h+cH*Uh+c hk6H* hk5 hk6hk h; hkh~hh-Hhuyhah#6h@Rhk hJ-hXIhE=d to simulate the experimental channel. The normal fluid velocity, vn, of the heated surface is assumed by equation (20):  EMBED Equation.3  (20) where q is the heat generating the normal fluid velocity. The set of PDE derived from the conservation balances can therefore be used to simulate the experimental results. The main difficulty is that the PDE is strongly non-linear due to the complexity of the interactions between the two types of fluids. Conclusion A new Helium II hydrodynamic approximation was established based on the two-fluid model and the theory of Gorter-Mellink mutual friction. The equations are expressed in terms of variables (p, vn, vs, T). The validation of the numerical code by means of a comparison with the NHMFL experimental results is possible and on-going. A simple thermal counter-flow channel was modeled and results will identify the contribution of the two fluids. Acknowledgement We would like to thank Luca Bottura and Sylvie Fuzier for their precious guidance with this research. references 1. Feynman R.P, Application of quantum mechanics to liquid helium, Progress in Low Temperature Physics (1955), 1 17-53 2. Khalatnikov I.M., An Introduction to the Theory of Superfluidity, Frontiers in Physics Series, Benjamin, (1965) 3. Donnelly R.J., Cryogenic Fluid Dynamics, J. Phys: Condens. Matter (1999), 11 7783-7834 4. Roberts P.H., Donnelly R.J., Superfluid Mechanics, Ann. Rev. Fluid. Mechanics (1974), 6 179-225 5. Gorter C.J., Mellink J.H., On the Irreversible Processes in Liquid Helium II, Physica (1949), XV, 3-4 285-304 6. Van Sciver S. W., In: Helium Cryogenics, Plenum Press, New York, USA (1986) 231-238 7. Zhang T. and Van Sciver S.W. , Large-scale turbulent flow around a cylinder in counterflow superfluid 4He (He(II)) , Nature Physics (2005), 1 36-38 8. Fuzier S., Van Sciver S.W., Zhang T., PIV Measurement of He II Around a Cylinder, 24th Int. Conf. on Low Temperature Physics, LT24 (2006), 850 203-204 9. Bottura L., Darve C., Patankar, N. A., Van Sciver S. W., A method for the three-dimensional numerical simulation of SuperFluid, proceeding of the 25th Int. Conf. on Low Temperature Physics, LT25 (2008) Appendix Table I. Final system of Partial Differential Equations (PDE) for the thermodynamic state and 3-D flow of the normal- and superfluid components in Helium II  EMBED Equation.3  (16)  EMBED Equation.3  (17)  EMBED Equation.3  (18)  EMBED Equation.3  (19) ppppppppppGqcqgqqqqqqqqq rrcrdrerwrrrrrrrrrrrrrrrrsžźźŲɔ{t{tph- hlF6H* hlF5 hlF6 h; hlFhlFh_%ho& h; h;  h h hhB*phhefuB*phhjs h`huyhuyhJ-h%8h+c6h+cjh+cUjh>t@h+cEHU!j4'L h+cCJOJQJUV*sss!s"s+s3sssssssssssssssssssssssst t t ttttttt&t*t_tttttttttᶯ hRh_-h}lh*hRh* hRhLy hRht@2ss tttttttu udueuuuvAvWvivvȵȭh<hR>*mH sH h<hRmH sH h}lh}l>*h}lhR>* hRh#wh}lh}lh+>*hRhR>* hRhRhRh+>* hRhLy hRh+hR hRhy;vvvvvvvvvv wwww&w'w(w0w1w4w:w=wIwNwUwXwwwwwwwwwwwwwwwwwwwwwwwwwwwwwxعȦȹ߹ԗԹh{4h>>hIl hRh>>h}lh([>*hz7{ hRhz7{hRh([>* hRh([h}lh}l>*h}lhRh+>*h>t@ hRhR hRh+hR hRhy hRhRh+mH sH 6xxxx xQxxxxxxFyGyHyIyJy]y^y_y`yaybydyeygyhyiy|y}y»|t|ld`M$jʵo< hCJUVmHnHuhjhUh_-B*phhB*phhiB*phjhB*EHUph$j&o< hCJUVmHnHujhB*UphhB*ph h h_-h>t@B*phhQ|B*phhh hRhk3hRh([>* hRh([h>t@hrhRh>>xxxxxxFyGyHyfygyhyyyyyyyyy !gdXR  ;^gd_- z2gdXR ;gd_- !^`gd_-gdgdC^gd_-gd}y~yyyyyyyyyyyyyyyyyyyyyyyy魣 h hQ|jhEHU$jo< hCJUVmHnHujhEHU$jo< hCJUVmHnHuhB*phhhjhUjRhEHU6&P 1h:pC. A!"#$}%R 9&P 1h0:pA .!"#$% /Dd hDB  S A? 2r:e4puD `!mr:e4pH[xڍS=KA9XhAm KAP0 5j땖){+U "soI;;vo߼cD0$i 0$"QOHM'XR`#lf^tii}vxR>ا*@%/7ڵ- +P"@L Ԙޕ^6qḛcfYD9V:ZPȨ-W+Q;lY+`]~wĻ}cr M:Et dQs"iQ(>]FkFTa}6$:`}4k_tOENP=o |ʇzY7 `ݔcR1ZfC@liI(TOf}C +R {5WI*!Q<ا'/_K.#z;93;su{l~ojo'iޠy?‡. yt:>H :| КGN|.ઊS繀)KЃiqQLXA>Ր>-``LJ$݅kp0ߒBfi;P7Ș퀹0kPmFV.Ō;Y= 0iZ0c[^d_d_^)_rT?!г0a,֊G٘I?$R;]ǣNŗ#?E< ];Rۙ'ig.J1MEX,Y -y@Ɔq^P5$Xe7NKNҜUss1#­p:ȌFQE]$H) 3 yGԶ'꺄M8 cFPP9Yߪ ޺0MmJ?ji*OEV G"=(҆ *;eƷ_a֙ Ƒ].􈪋A* j:GUb!=ݕ y>:N( G\BʍƳ <`Ei㑏Q0uF/3ca0rtTSLX>)CcvW}VI`dFad1:hǮcV5=JcnjG*zy)Zirju3۲,dh8ѩa+ۥQ^ҝ$T.%!t0BXpm[69iWDc_>#*߃8VBΟr u8 (u/Ap$א c:ɍ ',FAVK0/B ",>@QO={8=_'DP ~̇?Ł ;*_U& ZsKk/ ~``GیLLJ% cF\a 2 DDd B  S A? 2Pk fGo `!Pk fGoxP`hRxcdd``$d@`,0*(e112BYpL $ lʹʛ27 27)? aR\<  X.Y(<`lbb˂D#%"Lr `0ec1c kX L@rUB.Sg1*CVt2z9h  hRxTn@Њ(FDhS*&qL$TBnԵ׉gnT)A'i7+V3=т&,˧~~[kE%|d5};[of'*;^Sy~EչtN02!Mbi L9 ݅`[pQ;h rWZHq`DcyCJbL`UbL D$4/uCv SE*\%_eo"5 Pv-QJtEQ[LM8pJL`J )javJLbMn!RhT8}GĨ;8!L beaX ?Oo63PE;: Td8vQd^)i^ƙJTZS)T {V7;7"¯eD^,`z}SQ 1LɭQkYTlMG =Q+o*?__0r٣ qHt M'ףGh׎PkBltŽDd  b  c $A? ?3"`?2i(ĬMl]u5E< `!=(ĬMl]u5`@`  xڥAKQnLI4D<=E&=z*"ԃZ0X04ErnA=Tz (OVRPf潗 ̛2` Ɩ)yšbCqQ|f.a(͗c5x‹L9vd Ľ(32dR{?es'J,{|\>7? 45_p^\EtÆZ/gOe$  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEGHIJKLMPSxTUVWYXZ\[]^_`acbdfeghijlkmnoprqsutvywz|{}~Root Entry FPXtR@?Data FWordDocumentsObjectPooltPXt_1009715357FttOle CompObjNObjInfo !$'(),/069:=@ABCDGJKLMPSTUVWXYZ]`abcdgjmpqty~FMicrosoft EquationDNQE Equation.3@ rt+rv()=0 FMicrosoft Equation 3.0 DS EqEquation Native \_1154839018 FttOle CompObj fuation Equation.39q70D " n v n + s v s ()"t+"" n v n v n + s v s v s ()+"p=""""+gObjInfo Equation Native  S_1013947280+SFttOle FMicrosoft EquationDNQE Equation.3 "t FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjNObjInfoEquation Native -_1277556147'{FttOle CompObjfObjInfoEquation Native 0 """="" 2 v n +13"""v n (){}FMicrosoft EquationDNQE Equation.3_1013440770FttOle CompObjNObjInfoEquation Native  M_1013438275FttOle "CompObj #N1 w=v n -v sFMicrosoft EquationDNQE Equation.3 r s v s t+r s v s ObjInfo!%Equation Native &_1192901616]$FttOle *v s +F=F t +r s g FMicrosoft Equation 3.0 DS Equation Equation.39qpo0? F t =A GM  s  n w CompObj#%+fObjInfo&-Equation Native ._1192901636)Ftt2 wppԢw A GMFMicrosoft EquationDNQE Equation.3Ole 1ObjInfo(*2Equation Native 3:_1013442783l-FttOle 4CompObj,.5NObjInfo/7Equation Native 8k F=i+pr-sT-r n 2r()w 2FMicrosoft EquationDNQE Equation.3@ r n v_1013947234g52FttOle ;CompObj13<NObjInfo4>Equation Native ?\_10139472487FttOle ECompObj68FN n t+r n v n v n +r n rp+r s sT+r s r n 2rw 2 =-"t-F t +r n g-mwFMicrosoft EquationDNQE Equation.3ObjInfo9HEquation Native I?_1013947439<FttOle N# r s v s t+r s v s v s +r s rp-r s sT-r s r n 2rw 2 =F t +r s gFMicrosoft EquationDNQE ECompObj;=ONObjInfo>QEquation Native R3_1013956047vAFttquation.3 tri+r n v n2 2+r s v s2 2()+riv+r n v n2 2v n +r s v s2 2v s ()+pv+r s sTw+r s r n 2rw 2 w-kT()=-"tv n ()+rgv+qFMicrosoft EquationDNQE Equation.3- rit+Ole [CompObj@B\NObjInfoC^Equation Native _Irvi+pv+Tr s sw+w 2 r s r n 2rw-m2()-F t w-kT()=-"tv n +qFMicrosoft EquationDNQE Equation.3_1013452599FFttOle eCompObjEGfNObjInfoHh% Tr s swFMicrosoft EquationDNQE Equation.3m w 2 Equation Native iA_1013452916KFttOle kCompObjJLlNObjInfoMnEquation Native o_1013452813DIPFttOle rr s r n 2rw-m2()FMicrosoft EquationDNQE Equation.3 -F t wCompObjOQsNObjInfoRuEquation Native v;_1192901500?"UFttOle wCompObjTVxfObjInfoWzEquation Native {) FMicrosoft Equation 3.0 DS Equation Equation.39qp   FMicrosoft Equation 3.0 DS Equation Equation.39q_1192901505ZFttOle |CompObjY[}fObjInfo\Equation Native 6_1192901512Xb_FttOle CompObj^`fp  n FMicrosoft Equation 3.0 DS Equation Equation.39qp Dr i FMicrosoft Equation 3.0 DS EqObjInfoaEquation Native )_1192901520dFttOle CompObjcefObjInfofEquation Native )_1013536617qiFttuation Equation.39qp ,T sFMicrosoft EquationDNQE Equation.3$ h=i+prOle CompObjhjNObjInfokEquation Native @_1013454965N0nFttOle CompObjmoNObjInfopFMicrosoft EquationDNQE Equation.3r di=pr-fC v T()drr+C v dTEquation Native _1013536563sFttOle CompObjrtNFMicrosoft EquationDNQE Equation.3b dr=1+fc 2 dp-frc 2 dhFMicrosoft EquationDNQE Equation.3ObjInfouEquation Native ~_1013949432:xFttOle CompObjwyNObjInfozEquation Native `_1277668916}FttD fkT()fkT() FMicrosoft Equation 3.0 DS Equation Equation.39q@^ v n =ɽ)iuR^Zz(zjIҭ6sߝ딺tI4]_Q:|=:^//Lqk.|E<9?hOj^4SW)un5 38KLyጘGmnX>;~T1'ݷ;ރaEHg N:D[s/ǧq{U| ݼ>pٵ_Q>Ƚ1#h].g}g;@ {2D?bDd LB  S A? 2caըE;Qrk^?[ `!7aըE;Qrk^<p xcdd`` @c00`XybzP## f K H A0i7dHo@penR~C%Ky30I] H+21,Pմ=LA $37 شV.K1pSu.7BLej 45HZ2[ @*wdڮ2| 5ۗqZy*Ŵ,JJy^VS?bN,T䈋1G.JH,G%l֛*}O헥 ˣyϛ/RB!R@*Ц&!)I,Vr^JQڹ2|9i@hšѪODW uv f vڝ[o澦7*l7rt;dg~{ہh`W $88n3:1I_e7z.`dgcg%K iaJiJajz"Dd DB   S A ? 2 hǿR갧hT `!` hǿR갧0+ xڕ+aǟ癙]Q$.Z$?ەr!%jrP.Qq('9(W")ex132ݷf;ݖȚD dGU5#`0jz2=$8@~MSg0/]Kb*&PY(kVYOPV{Fޖv́W5(H?FM?Vܕ=(ǑuJIv ԰P :2[`vb誶W6>jFvQVl0-].)]O_Vv]S_ C$$8Q+ xUˏDҒ֥* Fbmcq+QTEDOͱRZǶlǻRa9.BaS%q'&=w)\a@c'߂ ~8|"  u xqppnAkX\=|tpN`/uNGTg$,3ž=-Oಔy9g,EkhC,lIjWA Džm| Kt@xI[GM9J;W*0'ɢ QeaP'NΧĥv|G!=) P7 n]z /򥝰 woweЖϓ$ ]}ho\8oEGAkm|lvQU˪ oװ:,4{VDd |J   C A ? "2$5D>/m2v `!$5D>/m2R `0Zxcdd``^ @c112BYL%bpu(v讳~t8m$88xڕTKQZPP]*":tN " :x '졃G/# -a*Ouo U;So`|nF_^7Pd?)ڪn}2hO[_`u:G? 6 {~/vCt6$ͥfj2Dmp/W[U}jPgYUmD1_qNZ&ze],=ܦG`݇NK(:@ߠ0kʺ@,L5ue'┠l}AyWpU[@<=f"@vr[=)eV*o ąz ef(u-f.2~r,x0xJ0+o*_$^#{- tMܽY@G# e.SY *ŠTwk W0Oj\Y(XFj: epf,`\ofՍ⁄Q,^2@X<7@E ] 6A(L;J{dV'%0.UU~3?:6M<D2(Uv:Og-0(if[;SzA+< {ch޿-C/l0&JtǻoWtn2f9e3z ssApYk^uYMkeUʸ`-IEV}~BYUZr"oGi:(Cdw''dlg B dDpxWϏV,,**% am?< ZV V68h;nҢC+qz襜_zTv޳c$KHƙoofxc[?WHVsp@^Y*B79^W!XΑW \<n\Fp _UeK^kK~E~~bǔ*$BpT?cT.IW ɫd3gX%2Ka aL rO5W WJ__PpQ 9BZʫ'W)e2})YB`՗~EM; #k7S$.2>F6iJllX?3^1RVxex.qiWg@b_1pƺ['סvGiٯA5~85@UIh]ҐglJ烵&sfr7I!CHn^IY{~3n}*]jjo't2i4ݢCOPuy&ﵷ;n,exJ|j []( !O/Ox "u1󟹝;8lfDp$E$hV0hA @ 'fpwDc? M3L:4<4S)Lf%EXEfq;ʘϠx4sX'\[9JQjv ~v :lu:z/kvh?Cf&J~4n lnF?I$;A8 hN Ji{ħ){Ŀ?._Q]yQqztݝ@M3E;wGl¢gS)NuΝs sԖW/[x;Li A)r6^3 >B"5zMZjؤeبV]hp\LЙ9h3>i1oږ)m2f֜y~R29s\0k߸6j5Q34]ã u϶dpg @ZtR7xadX)Wȏ񯜟?7 I^u少V4TV;mN9.{\=*&D/ Dd lB  S A?  2n9=*.Sgv_J2 `!B9=*.Sgv_ 5pxڕMkAǟݙl[m}něJ"PĤMԛAK BţID ? Eu7t+yg쬠}i_P7=W $fѤ'HzBFQjDp=ɸ%גQ{T,VyE,\l7o!͒uۂ6*UjwUp<[M׮ejQ>a|)ҽjN)~UEWNL 0ʺA%JPP0Z }"K(mѓ,,QuU_/ )u|Քx\țCW&{k] /?@fY%jT .d(kY @fYOHG< x0xܗCM<tq{ 8#4 p@quB'G4S40o3_cշ(&`'mE&S+/~_BX5t WZw %%g8ru)~}lJLܣѣ]osGtCI4t. 1f89-Něg̒aNGձMQ~dt;@枋U< {$XZYi{˓P^m6w8llS4 QTj51 [„LnH$T]is(^2.d˨;F h y{U886os~n+Ѫ1[w2ÉZK(̮fQr ݐQeF2TS7Oij||*P}ܝ~5/* ͊'t)gŬ~Q¹g_B<x\ÖnE 4"gc2c+E/F3q&PAm},-Ns)c8=`c]Y7t'MzBljr,g WƇpVڦ|*k0Ml 5Sea3k>uӖ Ӟ7YhYu<חUaa*`U7*YFqUˮ7@~V.貌`ƼMF-9u= 5KG13x}5ckM˜Swڴi(irkN,bv^MYlb8Z_zZX:RWp3vv}MCZ0#iiURB/ůeMI{@; Nϓ)z$&*s9/O;堳X^W)ϗ=YN8ﳳrȎbmkGKqX>b5n3< fJc;ds_JGݶ Dd xB  S A?  2 qvB3 3$V3 ; `! qvB3 3$V3T 0}; qxڕ]lUϹt%P([k">)6*_FM4.iTRS 'CH M,ژHF>$$Â߰|R`$;wvIv39˔$r>O-$y̨J-Szr::ϋF9%o* ⍨Rğ!>XUP;}vMm[YU^jc]+bgt^ojoxu{FkjE(U[uKW4fO܏t nOSB_ToHp@GdJ]{)@G}TMWX ^oCoQgVe}zf=9PNa͡ 8a=.k^CYKbS+TnrVzzkm Aa=fes 6a PVm(Y֛ 6aMy{*sx>S&6+m %1~E3Ku)sgnə3m9X ^[b퉭b]w^:p5ؤйjႽKsqF `\hT*F@Y6]Du j>W!D &1*~B~3>!d0.Y6‡\E=fY%a2%hP`EWQ!*TW5ջ\9%^~]W_a͢ p{|ZtJ+-r pSR>=MFPOzg6gE(kxĭ F]@Z\7Pz<;bu)&XBܣ(SB7 (k^ @ӃREAX7 F3! z yO:OSMu) Ay|FG$@5( G3bsg`e Rq}C?-y h)C +?>N3F}; xXMlWomlc[RvqCPhCA(,Ee;물׎BJ51=@h{rD|r&\8T 5|u`x!ysdDG_ d]ԗX{^pw4p=@D rs:SͭkBty4wttТQzoxzjJDz8Ѱ%uhDJgB6Wp -zo"FuHspūQ=DxV}1Q*ԩ#/ar҇x4T()v񧘥ZN~X u¤QT،b}<%΢XQukT@~j_[#@'DI*XВ) : \jŸ4u< @:^48gq8"pKpEfꏋJWJWJhD ~glMF/˽:Er/.?F'C]wՅ]Ze _yuzIxYzu-+g,'@@ߟ[?d5{ ě~$[lN}8)n~\[k_{);K+{JU z4.rO5W}4n5[X"Ne|CnGׯ$$O7ankF?*W%`@k$ 7S0NcPw;?ae2nG񠝄 >aLni^o8wQW3 2e: ;`}m8n?N&pdH&)$"Seadu݌lwRm(%y9 G7SE7Oڃz^/0J.a'oj'p'"0cIg/Vf<-6|z~*F;l➶T(F>j!OV@ f(])3%zD}ĽT!1==+N)7iD鍑4|u|f<_P Fð&L4:¬}fhʁ2<iwg2՛n&Lp}؆xe9܂'XuX9:yj!dֳ(euU/kz Ztw>|'wVo-C}ƪe6R< 4~)^Zm|~ceU~=y#u >Dߡ(کU8y'[Vi"uLm(y3;(;'~?պkݤy׺ sh?H3Et*;[`o\p 7\/,UEzfeS-I'Y-g8NC ?==['Bg "tOxWKlEټ$&QrB$ξ)4(^'ػw**rz*TqHo\ʭ=W@pN ?vdf]YEzK9!҅:7X 9nSź9yP2e#'wBY"Oy2~xxH戼t-2#"7}׏zG2$1#3.RõE> rfu:!e*!q"8%ѩzڈq Ny^UON&_I;s7Z!_,!_(]B:_M&KK4kk0ҝBm{c ٞx-nM ʝ-Z!_htn-jn53Qk}f\]XiYˌp^βyW)dnA$mԟWac2rLWXkF욻c4Vt:,ܾ|wRMT=i1 JlG/چkئjؖEU93O]5:^\L7 $BgmezXsru+vfP!whݭ2KsΛ0eKx\Q` ͳ3?qt'D6i1ݰ탭۹ u}3u6e m#>MP9e9{(RSRBE9;⌤ө2%CHN\5uV2Dв^(ĕVJ 8EFY#8# :~3??+ж9U7/>Oƽ 㪥仮 1Q&Z>UngT'+70i G%ȉhcE)pДc[A% DQ͘#kmE;m^ۆ‹x XtWn$TЕ 2c O<6lKWvHDqenogԹf}i2M1xWÅ=/4\?OSga&:a\1d.dLE᝱ӄSJ&'IrUFZwTp .t"ݫǚVFIǜE˅M+ 7[06C7 M-f6-+i`TFbˍS^ȀŭݚH[BM=7n&֭  { $bZ tU4S@ pk n- -AT3 ,R}vC<d\-ėl)pxTn@i*!UEԎ&7@*JHN:kT.ڧ} n~ 4iG,Mk O:G <n+՛\S:g*]v40ِ ͠UYr `YkR]=G:<Մ(к~]ˎ/ʋæpz c>nGXM( Qtyݬж,mY4qᮍ5kjՄ{q$p(]{_aLc.z"m̉(.D;4hpȋ0uc om0MPI[ $>Q|u{)&KzN|?$~07G}<)ʪXyR #)/].t ?%hS!~ҫ2 IJϒLـ2wY `!*^>JϒLـxڕK@{iZ[ Xk\tXt1)ұ; N*NEł5IyM.|ݽ $!;Ȃj&_E;RQ {38FFI $q )<:n+mj Ի+Gfq ,f*[8oUB=obY$x4 VNzݨWw ہp7P]ƛnƀ+3G1v\wCXYIzˬg|椬e؆v y58yNu1)>bnK~`Lf5ev]>VOUT=P ^u袇U KU5 vug IY1AVIvYRV6y ?$J)z SKz.l>xzMoFLZ}C-MmnӨů#\"xUߋT>nNn)TҧId27>.h6 Iff TF}7O* *1Lm 3| {e/el?=`Q /}_`@F^sN<X`p9H\ѧx^u'p\W<%Q:+vX 64 |Akom52 hu"wٌr]AD7^oP: gH}}'5v>2C# Y"vDL_o3#hDF?UoA/"&ݛe0aDD,&M$>;HJI8Ӕ}z]s'ı}faUʪx#+J׶-x4Kr|q^dH7k,%؂LSgF%e6D|Ԉf*Ǩ֗2f8Mx#\&jC(H*C1i8xcC'}% >"u*#fў'Q0-Z|S/ 6$H|tі[F ˊIZzq+ꍤ`a'SNxpR'ɫ+N6Ib1:K,w#U9n/&R*Sz !|cu8bR P/r]sp!XwH<^࢑MӫQ &2(o+` *•\Id_xOf6O4,oA_\d_HRjaJW>#Fц}"כ̆+ܴqGߵIk|ՆQ=ǎ8rR^z ǣpJJY+OCCxX2luA(<xTn@;/@Q"!D%ienPJHN:wSJHHB Sp<7^'h];+!Xi㝙fa0zWgoSdw<2})*W#L4 aͪS˰q lPjmK5@]voYu%њO OB` X?J6֛8F9:@Y9wC1v:nʦ켠J=.cO1$jFʃDHePC +XOo ; %")Dc%(7cF*b8x!{cj-x *x߀=G_$G9,CHQ7Y:b'OyI2_(9b‘E1%V_4gԿf|Qۅ_%z~ 3B#2@ڡglQQl|8dZ%SPn,(Z{!i-8;9v;-MZQʢ80n v꤆ͥj- ϔGv4FFI)s=_Ge*@ŲnWoC>liDd J  C A? "2/ǔM߈WSya] e `!ǔM߈WSya]:Rxcdd`` @c112BYL%bpu @c112BYL%bpuDd J  C A? "2/(n8vwk-q h `!(n8vwk-q:Yxcdd`` @c112BYL%bpuq `!6Z$ָ xڍKP.IDRqs.hm'GBѢVusͨfKE^ĪQwϽwEHhkw0|(("{GG $u `LGb=<Է㫚2P uN2Yz&@>"AX5:F ],Wf< .92vEa !kBƊhC35u^Z!bS}t w^0JV01~՚Da^ E*d3zʬ9)@SʪIY̚"ameVC`=uuաyf3 ̒0c]͟CVҢtw*zI唂sQ\4Hx. i6ch84UYMR >фEiEε*>jk,CFb|:"xUoD~lM뒮*q@lzg^! ʡc+e{D)QN T#7E\.oflKN}}oެ{ p _+mE p4U|{z[_Mw mhs 8%ȿ2?VܦBb.P+9dm6l+UH ƹWr*hL&4Иgml䖴g{ҟބ,2/'^cҍw8H+_dSL7oi-D ZrrW(/m*QKiY$MO$^c g)y!`(fVi89cnߢ˦6dBdU#/dvVQ6nKa(?.&g4~X^lJx#BvJgg7ѫðIwE$qr8, Rթ_+Uexsc~@PN =B7r5z"yR@4Sq:T'}.Ru=EnraTKv:F^r}צ]|VxȧaO7De!R7R#&m݄&eVжGlgh7q$I ~q%\C?8-ϽԸE잻evL gByX YqŘ.цVZa媉Ʋ9ݐTCb6c.٭t# n΄ث4 3 {+ CVh;C_ ~ЬBNiXxUODҲJ=%63qRGb%Z$r^{jՊܖO q~Of\+5M)fn}hͭ1;'91|~oOw_X;cy]mط}vc@ujfw@cJ|%pNu?MDd @B  S A? 20X&7_*0  `!X&7_*0@' Cxcdd``bb``baV fxA,F^equ02Ȓcjl@?H @fOle CompObj|~fObjInfoEquation Native \q"s"TFMicrosoft EquationDNQE Equation.3 pt+r n v n +r s v s rp+r n c 2 v_1013956134 FttOle CompObjNObjInfoEquation Native _1013953994FttOle CompObjN n +fw 2 r s r n 2rv n +fTr s sv n +r s c 2 v s -fw 2 r s r n 2rv s -fTr s sv s --fkT()-fAr s r n w 2 wv n +fAr s r n w 2 wv s =fq-f"tv n -rc 2 v n r n r-rc 2 v s r s r-fTwr s s-fw 2 wr s r n 2rFMicrosoft EquationDNQE Equation.3 r n v n t+r n rp+r n v n v n +r s r n rwv n -r s r n rwv s +r s sT+Ar s r ObjInfoEquation Native _1013952135FttOle n w 2 v n -Ar s r n w 2 v s =-"t+r n gFMicrosoft EquationDNQE Equation.3 r s vCompObjNObjInfoEquation Native _1013956117Ftt s t+r s rp-r s r n rwv n +r s v s v s +r s r n rwv s -r s sT-Ar s r n w 2 v n +Ar s r n w 2 v s =r s gOle CompObjNObjInfoEquation Native  FMicrosoft EquationDNQE Equation.3 rC v Tt+r n fC v Tv n +w 2 r s r n 2rv n +Tr s sv n +r s fC v Tv s -w 2 r s r n 2rv s -Tr s sv s +rC v r n v n +r s v s rT--kT()-Ar s r n w 2 wv n +Ar s r n w 2 wv s =q-"tv-rfC v Tv n r n r-rfC v Tv s r s r-Twr s s-w 2 wr s r n 2rOh+'0 , <H h t  ZM\PrM \<  X.Y(005C7 iX?MedHc`!֍qb*#ԋ@SB2sSZC[$֭3HqebZK[C3BLm#֙ĺU% un˻QBT,bJuVLDy=)#11X6>n3>搒>Ӈ3j1Of0c&Cy~W^t:X*h' [xUAkF~Rn7Dv ,ay$&F-!P9ZEH]Xv/m9gmA!}3,I=` xCLo@QL5ެ'N')hnм_h@~Gߞ`?s"1r:ܼ/ԹH0irOH䆌NbH̪`lh!Rb5ǰ֏<#MFڨpp[~{V^ 4?5kp]u À(>rsKs^KPvZ̛qTmc9A$Z.n;&qPzT;ÎX~U8/3'9vzoRL ϋXck,Z@θOwQS%$4YP7Nfu:tFCdV[/0H HrdrV"5Mμ(°T*~r?Oҳd$"4 24_}U*{kB/C.N~a*KbeT.$H%{d괸>qIwyXHGAWo!]6LN*hJEp1Z^V\fh/ԥ{m2V%c߹̱EdǪH+tϵc]fߌޱmk\aZئa/|= : u ѩϺ8GuzK% [_^®'vv@inSuzGȷ7_譴Tm5Pwhߎhm S@wUv+McE1Dd b  c $A? ?3"`?2/UfNwSu@uʄ `!/UfNwSu@u e dmxڝR1K@}]ڴ1`D :N.im7Ǣ::8"% &|޻w94/`IJcbFl.Zlr f%ZINcj#yW p9ȕqHO 'cZcv@{\D5ΖޡAp GWsw[Koz;YGlCM6o'dA x.x-lU3Hgy}4*b4:n:yᗫ'm_g&u)γ(DRZ|!!JEƒ Fb@cBLF`Q,O;3:̜=YZg*F}Rc{#brgQsl.qϼ:}NgόٳPYkJWa\O>/dvt5~_رunfOڇzϵv}FL{_ tyZ}֫5U(ٸ}dz{FO1VujZmVXU9XYUЎ6O#2=+g{ЌSp])Q o=L;?f^yzA!֝j*c5Z0~:_C v /@,w5,,kbk=PmleV!Vw `k_ܯ-oQSlcHv)ʶBikg59Q.g#)V7 :WJnt+}bţ/6aLѥa.2N!FHj71Q5y& A/C!#*$5BQEì03K5aK0Tc%Hwƒ{7 ;Ndo$G<OZ"c$g$Tc%% DRF!IYuuDQTEfuDQ^e:SIEŠLJ%f S$8sE*Z%Q_aMT8EY, b"kr&O@/Oxf戩\^Q;i}BWuZDhV%i5EnVf?5k:/GS2ݕْwT #ZZm;xNLuŚ`Kw{:u)NvXNA=Wpmm< Q݁)l/`u./I돼3(V7bXgs͓IzWN ̑`MS3S{.s 9{. M"ǰD1[>|FtcR@Vh\NsKSgYxkog$bT5sձŴ Im>-xm)_-'ͯk$>/oA$;UH3~o*Ǽ+hsuRI@{fVpo1GiJ 9~])wԯ$|}(1k>,ԇAXVK=3+=kܣHkDdVr&M&`XWq4CpyC1iGjI-;ղ|- ?)N|CCufzI5-^2 VPYeQ xYoI$N9Ѳh룻"]h+-|$#{&("$|Ahp! BboEB,%C7Hy{l'{}go?X|-="~35^G"9 #/|~ yTY2G"bb\m-CȑR!=x67v8ᨊOR(L*Y>jwSb 5򄜞)D"x=OűV#7kT" u ɔE`גVwfv2/S[!R[Yك(LB"OblR5σ}fUzS^_l$F3@xw+YNYg6L?J$uJ '3_ ~J\|y9hV<׽rES_Z|\9)fY{/\嬣rvŸ»zyZUy9vzR4W ~y*X򽈾kp,enZN-,v-UOUק5NB75J5Jw*נ[/W~ʦWiz.nLO:Ikz?fN+*u.ERfYL.Gȳ:|Z&)GN&tW9ERVY6?ڹOO}싕.PI<*e1ϱ[+.GО:Wf$ q h1' |{8򪽂UHO}/S.:O|ٟ뿜y^= ٹ_? ݹ}fY|yre5Zj;?v6Gnh<,Sghod,R_r&=;͛Mr|>zBLkr]HR3@T0A=.6цMTr`-ι4"г(xEcaT,a2kQAT&@xߧZb58} H|?)32& D=&!0LA頀n> L`p!P 'fԘQ <)2oFQ'4C]DuvoȒSp>cpx \0e:dd݃V2@P%%A2i5^)ڋF4ʣ?^C'%x&1d</ 3U<\L*R@|1]07n4P(`Ae3m7J2od=-ÑϯlsRxCC+s_&~@A{@U2DL3IvȤ%_ZV3k/n<Ȯ&hx"\g&>6qnr',#h}DGw lcBtW"(jQ+L܂Z[b`a~׎Jwj;uپpbd?J#8rP\z{4sbh!@K*O:n>Hh$.t'nR$1d=|h Dd (lB  S A? 2 OIv9X  `! OIv9X>HdpxڕKhQϽ$mUk[VQZߏ*RDlk1VqmF$Q*+W P._4Sb?3s$99( *cr2K׈GQZfdXX*ˍRQxJg2FTA.o3`v1CR&KݧwQ3ODI^U}m-O/ j]5M6+ GS.P9QOL҄/ɨj*j@juteZg9 "GeYkP(z e7tPB(kG}I!}vU F%z3oFA}56 uؠb(k-ްAl( *H*d$amt@VO^u}K}l}Pq8$wgIw!o Jd - *** q= vx^SZ"ޯPGFYH4Y8jEŬsQV.oGYK%Q֝pCZZ&'#YhZOt'y<Eׯ[%M]n.GA.qk[c(kՊ{$P⭎譽oc*$zuD?c*Q&+^;WdNudNǽc-T;B'<ُ-ܧQ^j$O>{S(f5|dC+ _b*^ dpzxXMhW;ʎ`oZ, ԳQIk#`GQ׬<ZH݂d3sѓe9 2ne\3F ܇y/ŧ"pMgUq;D),TY B"xFL3U eӡ#^&-s#DPM&PS\Z nHvj0i "6~g &F31*D7c&k*\ \5~>'յ:(ʿ_JχJne0,y0gPt c=|,[JA" {}F8ҽgڱa?$^6N oqu-;3J3rQR0PRhr~rB lR| !-5 Dd $lB  S A? 2I F1xOr3Rh)<%  `! F1xOr3Rh)4**%EP-Z3YcjТf@A*iZ ZD`HDZRt4oty0;g~sϙE"^OTEa-QH/TT8w_ȍRQ 3 G#&ۭf;.u*7KGiOɹfϵ<ԔFE}TGU4HI*1>/y?VbU&hEY)FK>ɡ.cs;P5&(No 0:M4V,j1(G}D~VQ\Qμ;*wH󶣊ek7V^NsmǨE!+ˬeuWvemYgGy*/kŹ~@ 5 e娇4S]LhPD/Pf 'BYY[$~= kOÇ df~a]4ژwqf3P%mJ*7I!Y-f=Y&TYzfzzC~5AC|Xz@K*""P4Z";mCR;[^ey#j.Ԏt_}B-$wA6?ՒTIv.N숻&iKk{?1:h`e[DY̺eu޺$MudB:+e(>꤆ 쯃A0} n>AoKUZ)kw[)Je,@:zk[a[oAoUKu- 5!T&u?~ ːw{I^AYu4*蠬CC !z[ncq33~[p,xWkF~#;vS;vqkF[qIC -B ]x--vHS .NңҞ%B)r-饧o$4Z%vJ{{Y{kW8gNfO>5QwKxr8\&b?0pLñnc*; 96-yZx7n{mej=•`ʄicD2+vьlC7Md] dck2-[C]ƻ 풍l+w c;pUF)!t,;:?R1|SsbSX1#͊]rZQF]F躞#A{n)n6\MmiΝl3fencE~f3;[j3̳Ў\ bt [)ltas=NCƲLr;Xm;Xø&+t,Gr ݖ!LӘ!WB iLΉv9[\txn FfzK7$_^j^BA(̐N@mb;Cٟ m2eg>D(@5;< ~gBQVV$f/2q H9q `Qr(-d:U2 -rDd ,B  S A? 2k:L ?Tݯ `!k:L ?T 6nxڕklU9mv28`ccwc:uS"ˀA$Ƅ"QE"Q ! o$ A%F#hǀIm+b--͑ޞ.Xej;W}cWۻR嵏v'`:_uL] Mw?3VMUTn5 1UQgG恣ZujS-DX֑Ύz+:nvweR`^ߝok@HM`9"jekвʺ٪sZDYZ֟5e-0j`<ꥬueYbz֎۽i{}|uFt3/ɴ7=v D>q PrUyaW / AʺM5)k ֠.yPV_(6^F!dGțALJ1VR)|+aI8䃕bR""?)k/CdqW0(6~yhUP%VToTޝI~I{9d, zѦuQ'q'PS%o_(iLvzg>fIq`IY3!ZlY`8 !(8ʓ!i%. %rhVIX!kQ6!q0 Hee8( eaX)%xwQI(JJ*yJzVG}dQz`\gIZcGY;[ޝY]T`z;iH\ Q.ˆxQeCEK\O0$.-/ 3mϴB>hPoD^r :_z) :5bP $a] ^Zu!k\}JYA㺈ǵ]2d~4JB9P?U.X҅WPp,'slRG펔{鵰%86Q/*x#y̓:WC8yRH(H>ݳ7[gI}~1IfF5Hzk$<0Ҹ sk$V[ψJoJr[zs+!ɭ>ױ ѫ,+h\ٸ&qurMDAgyu͂Lq̙kzN옌ڞ=Vcjtr͍;[of;?I~S|"Ix\SF*JQWS1G9a( gDtMU=?0t>pMvռQꆦNo~/ί<*^9UㅱsU c wZo~zilkBEg_&Y+5]Rf ӹItz~^5|wT4^7t ϟLN' I%>=k~êJ:H ]GIR՚0fJxFaלfIEe,@efy_i Bn ¸Α ]K8\|ˁ[%(<;с+< VށF9Pdu=2BwuywC 32E <Vn xY_h\Y?fIMB %*̘W-MԵ AܙΝ&-В.bD"HDt|uϹ3d|~w{|__?GӏO'o|? .i{ އ|D,2k ɱ˷7v7 H|$O2:^~!d:yH~'~zN8d!ATlDK><@^\l" k@\,=nm(jyd=_V54RU GaSߵk1FQb8 ֟v⏙}{g~z ?W'NJGmES,~g>^|bY\\:HgnE{Rs!Q2&gLw%P%G.sc h7^ܣo4Os<z27/h~&c}w>/"PKjV7s,뚮<.}87p[/Ѫ3Yx:{g3lOh鼣g3E{[!֭^c>U6+&o?QTF4u:#+uiւ=M.X'=Aj'9F'M_d3MO${ <#1핉W | siNv;tKMC&l2S ?,MUO;{whl߯ȦzC(ed[cӶ9ʸى`:^nn n`]loF'Զ;u.͞ `;NB$ʁ=#x +!Dih﮷VcHRP2 5#kXh+s:au+[5 Jf4۩vU[Vkmn^s~1o'Nv (4"W=6~鴱چڠ:ˍvVਝX(P#/* m[z ]b?g:wډ }DT!CUڕvn҈9'Ccp_8lNUk:$)kLzܜ5}x dnӆ/| \{T>_qWߧCJ/ k@! TJS7c !B"t󃵍Nijm"U_8u' Tv5A V$]a }_auu?FJG]r]rWR#R BʆQ <>T.8Y*^ |ihnpʘp¨ZJ  5l3jK#)s,]/a%+MyCu]=~=u)  H#OyP%sqǰP!s뱩g#(dQTP 1(&`QpI}0_hQUc P#lEOɕ.򰉼 -YI V %+'Э|U hP :M%8X&J$C =Q&D&< ؆nRkgyH лTS|5Xp 5;7F^˽r 9C%|p]}EPe-|VȰ/.H8< %ô$=JJtԱ5| =7Նkxd3w5knc& pcSpm1>\ɒ4ӈ~ p{M{FK5B<~!(5[kZxZmUl.B=7y!C(ox|( '@%I 5Se'sc&9\  Ƈ2-U QQCW #+/ N~+_;[Xfe3UM2S,˾?zoeEf<8L~wA5 QϾ.yb?2uw۞8BeH&%>dA]-{E΢,"1e+hl4a ,%@&,q޺lV y 3e#?:J9:PoyL&|[z<ނ}Ƹ2i[bڻ+M1TableOSummaryInformation(DocumentSummaryInformation8dCompObjq8CRYOGENIC DESIGN FOR A LIQUID HYDROGEN ABSORBER SYSTEM  darveadmin Normal.dotcdarve3Microsoft Office Word@ @Q2@ +n@ +nSw/՜.+,04 hp  Fermilab Beams Divisione7' 8CRYOGENIC DESIGN FOR A LIQUID HYDROGEN ABSORBER SYSTEM Title  FMicrosoft Office Word Document MSWordDocWord.Document.89q     "f@f 3Normal $x#]x^`#a$ CJOJQJ_HaJmH sH tH V@V $~ Heading 1$@&^`;KH \^JaJ N@N r Heading 2$@&`>*\]^JaJV@V ( Heading 3$<@&5CJOJQJ\^JaJDA@D Default Paragraph FontViV  Table Normal :V 44 la (k(No List 4B@4 Body Text$a$@"@ Caption xx5CJ\aJRP@R Body Text 2$1$7$8$H$a$6CJ]aJ>Q@"> $, Body Text 3xCJaJRR@2R (Body Text Indent 2hdx^hTS@BT (Body Text Indent 3hx^hCJaJtORt 7**Style Body Text + Line spacing: 1.5 linesaJOb *Style Justified Left: 0.88" Right: 0.75" $8]8^`a$aJB@rB Header !d`bOb $~Style First line: 0"x]x^`aJOa WOBStyle Style Justified Left: 0.88" Right: 0.75" + First line: 0"]#]]^#`^O!^ t\header 2 - next$<]^mHsH$O$ k3spelle"O" k3grameO ([Style Title + Left: 0.05 cm+$47@& ]^`a$ CJ"KHOJQJ^JaJmH sH V>@V ([Title$<@&a$5CJ KHOJQJ\^JaJ BOB R reference^`CJe@ aHTML PreformattedU $ 2( Px 4 #\'*.25@9]^`a$CJOJQJ^JaJHH m Balloon Text!CJOJQJ^JaJ678DExypqr )*   MN } ~ a b  : ; W X ( ) E F jkHtu45*+KL o!p!S""#($@%%%%'''0(1(*+A-...../////11111222 2!22233j3k333B4C4445565556666666L7M7N7l7m7n777777777000000000000000000000000000000 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000%0%0%0%0%0%0%0%0%00% 0% 0 0 000000000000000000000000000000000000000000000000020000000000000000000Dypr * H5+KL o!S"@%%%%''0(1(*+A-.....////1k333B4C445565556N7700004;J00@0J000000J00 CJ00 J0 0 LJ0 0J0 0J0 0J0 0J0 0J00D J00J0 0J0 0J00%8J00"J0 0J0 0J0 0 J0 0J0 0 J00J00J0"0H00H00Z00J00J00H00J00J00J0&0Z0#0J00J000000J0)0*:J0)0J0)0J00J0 0 J00@000J0&0J0&0J0(0000z( !#u%F'/1"7f;pstvx}yy #$&')*,-/012357=>@ABDM "1 :sxy!%(+.46?Cy"~ b v x ; O Q ) = ?  +-ku>RT %%%...O7c7e7n7777777777:::::::::::::::::::::::::::::8@0(  B S  ? OLE_LINK6 OLE_LINK3 OLE_LINK4+''7J1171|>1T)1\-1<>1<1n111.1+1111D1ԛ1d1#1t)  BJP[[hlw4w4~446667     IOZfjoo|44446667    8*urn:schemas-microsoft-com:office:smarttagsCity9*urn:schemas-microsoft-com:office:smarttagsplace9*urn:schemas-microsoft-com:office:smarttagsStateB*urn:schemas-microsoft-com:office:smarttagscountry-region urn:schemas:contactsSn=*urn:schemas-microsoft-com:office:smarttags PlaceName= *urn:schemas-microsoft-com:office:smarttags PlaceType X INU]abkqyz{!,Q[IKS]z5@ #  23{3#&+=>@BJ9C "!$!!!}$$$$e%n%&&i(s(F)Q)))++z,|,~,,,,I.K.K0Y0000011112222E3L3333333"4)4K4Q4444445:5@5I5O5555566K6U6)7377y6@ F K 3+J ##--..2244733333333333333 ~ b ~  S X k %%3k33355O777ab78,m> =XJpL5#\-yhhh^h`OJQJo(hHh88^8`OJQJ^Jo(hHoh^`OJQJo(hHh  ^ `OJQJo(hHh  ^ `OJQJ^Jo(hHohxx^x`OJQJo(hHhHH^H`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHhhh^h`.h88^8`.hL^`L.h  ^ `.h  ^ `.hxLx^x`L.hHH^H`.h^`.hL^`L.h ^`OJQJo(h ^`OJQJo(oh pp^p`OJQJo(h @ @ ^@ `OJQJo(h ^`OJQJo(oh ^`OJQJo(h ^`OJQJo(h ^`OJQJo(oh PP^P`OJQJo(hhh^h`OJQJ^Jo(hHoh88^8`OJQJ^Jo(hHoh^`OJQJo(hHh  ^ `OJQJo(hHh  ^ `OJQJ^Jo(hHohxx^x`OJQJo(hHhHH^H`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHhh^h`.88^8`.^`.  ^ `.  ^ `.xx^x`.HH^H`.^`.^`.h hh^h`OJQJo(h 88^8`OJQJo(oh ^`OJQJo(h   ^ `OJQJo(h   ^ `OJQJo(oh xx^x`OJQJo(h HH^H`OJQJo(h ^`OJQJo(oh ^`OJQJo(m>y=5#p                                    F_}dZi½W d HW"         wo<`F<`^-E ; f*% Q p z a >>t@AfBC'ELE-HKgH]wIN+NWO *Q@RSRS([1_|y_jhIl%]mHuefu#wEyLy{z7{'I}wT;<EJ1Mk3HW6MALlFiI$~&J:(]$RMh$yY8m5sXRjsuy-f|Mx #6yYR t\ J-}l :&_-{`b#DzkR<r ;