ࡱ>  He?@ABCDEFGy|Y bjbjWW ==T{Cj]  VVV|%"0=4d=d=>F4z݉$+QVmD0Fmm+d=>%m<d=V>m. +|V >!D͑KhߪChemistry 832 XE "Chemistry 832" : Solid State Structural Methods XE "Solid State Structural Methods"  Outline Notes XE "Outline Notes"  for the Spring 2000 Class XE "Spring 2000 Class"  Dr. Allen D. Hunter XE "Allen D. Hunter"  Youngstown State University XE "Youngstown State University"  Department of Chemistry XE "Department of Chemistry"  March 17th, 2000 Edition of Notes (i.e., Rough Draft to the end of Topic V) XE "Edition of Notes"   Table of Contents XE "Table of Contents"  Table of Major Topics XE "Table of Major Topics"   TOC \o "1-1"  Chemistry 832: Solid State Structural Methods  PAGEREF _Toc477941987 \h 1 Table of Contents  PAGEREF _Toc477941988 \h 2 Topic I: Introduction to Chemistry 832  PAGEREF _Toc477941989 \h 13 Topic II: X-Ray Diffractometers  PAGEREF _Toc477941990 \h 30 Topic III: Single Crystals  PAGEREF _Toc477941991 \h 45 Topic IV: Diffraction by Crystals  PAGEREF _Toc477941992 \h 76 Topic V: Symmetry  PAGEREF _Toc477941993 \h 107 Topic VI: Physical Properties of Crystals  PAGEREF _Toc477941994 \h 157 Topic VII: Image Generation from Diffracted Waves  PAGEREF _Toc477941995 \h 162 Topic VIII: Amplitudes of Diffracted Waves  PAGEREF _Toc477941996 \h 173 Topic IX: Phases of Diffracted Waves  PAGEREF _Toc477941997 \h 181 Topic X: Electron Density Maps  PAGEREF _Toc477941998 \h 190 Topic XI: Least Squares Refinement  PAGEREF _Toc477941999 \h 195 Topic XII: Crystal and Diffraction Data  PAGEREF _Toc477942000 \h 201 Topic XIII: Atomic Coordinates and Molecular Structures  PAGEREF _Toc477942001 \h 203 Topic XIV: Absolute Structures  PAGEREF _Toc477942002 \h 211 Topic XV: Crystallographic Publications: Preparation and Analysis  PAGEREF _Toc477942003 \h 216 Topic XVI: Special Topics  PAGEREF _Toc477942004 \h 220 Index of Topics and Vocabulary  PAGEREF _Toc477942005 \h 221  Complete Table of Contents XE "Complete Table of Contents"   TOC \o "1-3" Chemistry 832: Solid State Structural Methods  PAGEREF _Toc477943164 \h 1 Table of Contents  PAGEREF _Toc477943165 \h 2 Section 01: Table of Major Topics  PAGEREF _Toc477943166 \h 2 Section 02: Complete Table of Contents  PAGEREF _Toc477943167 \h 3 Topic I: Introduction to Chemistry 832  PAGEREF _Toc477943168 \h 13 Section 01: What is Chemistry 832?  PAGEREF _Toc477943169 \h 14 Part a: Chemistry 832 Goals and Objectives  PAGEREF _Toc477943170 \h 14 Part b: Chemistry 832 Syllabus  PAGEREF _Toc477943171 \h 14 Part c: Chemistry 832 Resources  PAGEREF _Toc477943172 \h 14 Section 02: What Can Diffraction Methods Tell Us  PAGEREF _Toc477943173 \h 17 Section 03: Speed and Cost  PAGEREF _Toc477943174 \h 18 Section 04: What is a Single Crystal and Why is it Important?  PAGEREF _Toc477943175 \h 19 Part a: Single Crystal  PAGEREF _Toc477943176 \h 19 Part b: Unit Cell  PAGEREF _Toc477943177 \h 20 Part c: Unit cells and diffraction data  PAGEREF _Toc477943178 \h 21 Section 05: Block Diagram of an X-Ray Diffractometer  PAGEREF _Toc477943179 \h 22 Section 06: X-Ray Generator  PAGEREF _Toc477943180 \h 23 Part a: Goniometer  PAGEREF _Toc477943181 \h 24 Part b: Detector  PAGEREF _Toc477943182 \h 24 Section 07: Basic Steps in X-Ray Diffraction Data Collection  PAGEREF _Toc477943183 \h 25 Section 08: Basic Steps in X-Ray Diffraction Data Analysis  PAGEREF _Toc477943184 \h 27 Part a: Data Analysis can be quite routine through impossibly difficult  PAGEREF _Toc477943185 \h 27 Part b: The Phase Problem  PAGEREF _Toc477943186 \h 27 Section 09: Main Steps in Data Analysis  PAGEREF _Toc477943187 \h 28 Part a: Procedural Steps  PAGEREF _Toc477943188 \h 28 Part b: Flow Chart for a Typical Structure Solution  PAGEREF _Toc477943189 \h 29 Topic II: X-Ray Diffractometers  PAGEREF _Toc477943190 \h 30 Section 01: What are X-Rays?  PAGEREF _Toc477943191 \h 31 Part a: Wavelengths of X-Rays  PAGEREF _Toc477943192 \h 31 Part b: Why are these Wavelengths chosen?  PAGEREF _Toc477943193 \h 31 Section 02: X-Ray Generators  PAGEREF _Toc477943194 \h 32 Part a: X-Ray Lasers  PAGEREF _Toc477943195 \h 32 Part b: Conventional X-Ray Tubes  PAGEREF _Toc477943196 \h 32 Part c: Rotating Anode Generators  PAGEREF _Toc477943197 \h 33 Part d: Synchrotron Sources  PAGEREF _Toc477943198 \h 34 Section 03: X-Ray Monochromators  PAGEREF _Toc477943199 \h 35 Part a: Foil Filters (Ni foil)  PAGEREF _Toc477943200 \h 35 Part b: Crystal (Graphite) Monochromators  PAGEREF _Toc477943201 \h 35 Part c: Focusing Mirrors  PAGEREF _Toc477943202 \h 35 Section 04: X-Ray Collimators  PAGEREF _Toc477943203 \h 36 Part a: Graphite Crystal Monochromators and Pin Holes in Tubes  PAGEREF _Toc477943204 \h 36 Part b: Focusing Mirrors  PAGEREF _Toc477943205 \h 36 Section 05: Goniometers  PAGEREF _Toc477943206 \h 37 Section 06: Low Temperature System  PAGEREF _Toc477943207 \h 38 Section 07: X-Ray Detectors  PAGEREF _Toc477943208 \h 39 Part a: Serial Detectors  PAGEREF _Toc477943209 \h 39 Part b: Film Based Area Detectors  PAGEREF _Toc477943210 \h 40 Part c: Multi-Wire Area Detectors  PAGEREF _Toc477943211 \h 41 Part d: CCD Detectors  PAGEREF _Toc477943212 \h 42 Part e: Imaging Plate Detectors  PAGEREF _Toc477943213 \h 43 Section 08: X-Ray Absorption in the Diffractometer  PAGEREF _Toc477943214 \h 44 Part a: Air  PAGEREF _Toc477943215 \h 44 Part b: Windows  PAGEREF _Toc477943216 \h 44 Part c: Sample, Glue, Fiber & Capillary  PAGEREF _Toc477943217 \h 44 Topic III: Single Crystals  PAGEREF _Toc477943218 \h 45 Section 01: Perfect Crystals?  PAGEREF _Toc477943219 \h 46 Section 02: Growing Single Crystals  PAGEREF _Toc477943220 \h 47 Part a: General principles of growing single crystals  PAGEREF _Toc477943221 \h 49 Part b: Proven Methods for growing crystals  PAGEREF _Toc477943222 \h 52 Part c: What to do when proven methods fail  PAGEREF _Toc477943223 \h 64 Section 03: The Unit Cell  PAGEREF _Toc477943224 \h 69 Section 04: Crystal Shapes  PAGEREF _Toc477943225 \h 70 Part a: Crystal Growth and Shapes  PAGEREF _Toc477943226 \h 70 Part b: Indexing Crystal Faces  PAGEREF _Toc477943227 \h 74 Part c: The Crystal Lattice  PAGEREF _Toc477943228 \h 75 Topic IV: Diffraction by Crystals  PAGEREF _Toc477943229 \h 76 Section 01: Waves  PAGEREF _Toc477943230 \h 77 Part a: Generic Waves  PAGEREF _Toc477943231 \h 77 Part b: Water Waves  PAGEREF _Toc477943232 \h 78 Part c: Light Waves  PAGEREF _Toc477943233 \h 83 Section 02: Diffraction in Two Dimensions  PAGEREF _Toc477943234 \h 84 Part a: Diffraction Pattern from a Single Slit  PAGEREF _Toc477943235 \h 84 Part b: Diffraction Patterns from Two or More Slits  PAGEREF _Toc477943236 \h 85 Part c: Diffraction Patterns from Arrays of Slits  PAGEREF _Toc477943237 \h 86 Part d: Diffraction by Slits vs. Diffraction by Objects  PAGEREF _Toc477943238 \h 87 Section 03: Diffraction in Three Dimensions  PAGEREF _Toc477943239 \h 88 Part a: Laser Light Show  PAGEREF _Toc477943240 \h 88 Part b: The Influences of Object Patterns  PAGEREF _Toc477943241 \h 89 Part c: Quantum Mechanical Basketball  PAGEREF _Toc477943242 \h 90 Part d: The Influences of Objects, Periodicity, Array Size, and Disorder on Diffraction Patterns  PAGEREF _Toc477943243 \h 91 Section 04: X-Ray Diffraction  PAGEREF _Toc477943244 \h 93 Part a: What Diffracts X-Rays?  PAGEREF _Toc477943245 \h 93 Part b: The 180 Phase Shift for X-Rays  PAGEREF _Toc477943246 \h 93 Part c: Atomic Scattering Factors for X-Rays  PAGEREF _Toc477943247 \h 94 Section 05: Neutron Diffraction  PAGEREF _Toc477943248 \h 97 Part a: What Diffracts Neutrons?  PAGEREF _Toc477943249 \h 97 Part b: Atomic Scattering Factors for Neutrons  PAGEREF _Toc477943250 \h 97 Section 06: Braggs Law  PAGEREF _Toc477943251 \h 98 Part a: The Experimental Truth  PAGEREF _Toc477943252 \h 98 Part b: The Myth Taught in General Chemistry  PAGEREF _Toc477943253 \h 99 Part c: The Truth About Braggs Law  PAGEREF _Toc477943254 \h 100 Part d: Which planes are we talking about?  PAGEREF _Toc477943255 \h 101 Part e: Getting Unit Cell Parameters from Interplanar Spacings  PAGEREF _Toc477943256 \h 103 Section 07: Anomalous Scattering  PAGEREF _Toc477943257 \h 104 Part a: The Origins of Anomalous Scattering  PAGEREF _Toc477943258 \h 104 Part b: Anomalous Scattering and Neutrons  PAGEREF _Toc477943259 \h 105 Part c: Anomalous Scattering and X-Rays  PAGEREF _Toc477943260 \h 105 Section 08: The Ewald Sphere  PAGEREF _Toc477943261 \h 106 Topic V: Symmetry  PAGEREF _Toc477943262 \h 107 Section 01: Introduction to Symmetry  PAGEREF _Toc477943263 \h 108 Part a: Origin and Choice of the Unit Cell  PAGEREF _Toc477943264 \h 109 Part b: Symmetry Operations  PAGEREF _Toc477943265 \h 110 Part c: Point Groups  PAGEREF _Toc477943266 \h 111 Part d: Space Groups  PAGEREF _Toc477943267 \h 112 Section 02: Point Symmetry Operations  PAGEREF _Toc477943268 \h 113 Part a: Rotation Axes  PAGEREF _Toc477943269 \h 114 Part b: Mirror Planes  PAGEREF _Toc477943270 \h 117 Part c: Inversion Centers  PAGEREF _Toc477943271 \h 118 Part d: Rotary Inversion Axes  PAGEREF _Toc477943272 \h 119 Part e: Point Groups and Chiral Molecules  PAGEREF _Toc477943273 \h 122 Section 03: Hermann-Mauguin vs. Schoenflies Symbols  PAGEREF _Toc477943274 \h 123 Section 04: Symmetries of Regularly Repeating Objects  PAGEREF _Toc477943275 \h 125 Section 05: Crystal Systems ( Space Groups  PAGEREF _Toc477943276 \h 126 Part a: The 7 Crystal Systems  PAGEREF _Toc477943277 \h 126 Part b: Centering of Unit Cells  PAGEREF _Toc477943278 \h 130 Part c: The 14 Bravais Lattices  PAGEREF _Toc477943279 \h 133 Part d: The 230 Space Groups  PAGEREF _Toc477943280 \h 134 Section 06: Three Dimensional Symmetry Operations  PAGEREF _Toc477943281 \h 135 Part a: Translations  PAGEREF _Toc477943282 \h 135 Part b: Screw Axes  PAGEREF _Toc477943283 \h 136 Part c: Glide Planes  PAGEREF _Toc477943284 \h 138 Part d: Symmetry in some Real Crystals  PAGEREF _Toc477943285 \h 139 Part e: Review of Crystal Systems ( Space Groups  PAGEREF _Toc477943286 \h 140 Section 07: Symmetry in the Diffraction Pattern  PAGEREF _Toc477943287 \h 141 Part a: Equivalent Positions  PAGEREF _Toc477943288 \h 141 Part b: Friedel's Law  PAGEREF _Toc477943289 \h 142 Part c: Symmetry of Packing ( Symmetry of Diffraction Pattern  PAGEREF _Toc477943290 \h 143 Part d: Laue Symmetry  PAGEREF _Toc477943291 \h 144 Part e: Examples of Using Laue Symmetry to Determine Crystal System:  PAGEREF _Toc477943292 \h 145 Diffraction Data, Unit Cell Parameters, and the Crystal System  PAGEREF _Toc477943293 \h 146 Section 08: Space Group Determination from Diffraction Data  PAGEREF _Toc477943294 \h 147 Part a: Systematic Absences ( Centering  PAGEREF _Toc477943295 \h 148 Part b: Systematic Absences ( Translational Symmetry  PAGEREF _Toc477943296 \h 150 Part c: Laue (Crystal System) Determination  PAGEREF _Toc477943297 \h 153 Part d: Bravais Determination  PAGEREF _Toc477943298 \h 154 Part e: Space Group Determination  PAGEREF _Toc477943299 \h 155 Part f: Space Group Ambiguity  PAGEREF _Toc477943300 \h 156 Topic VI: Physical Properties of Crystals  PAGEREF _Toc477943301 \h 157 Section 01: Mechanical Properties of Crystals  PAGEREF _Toc477943302 \h 158 Part a: Hardness of Crystals  PAGEREF _Toc477943303 \h 158 Part b: Cleavage of Crystals  PAGEREF _Toc477943304 \h 158 Section 02: Optical Properties of Crystals  PAGEREF _Toc477943305 \h 159 Part a: The Nature of Light  PAGEREF _Toc477943306 \h 159 Part b: Isotropic and Anisotropic Crystals  PAGEREF _Toc477943307 \h 159 Part c: Pleochromism  PAGEREF _Toc477943308 \h 159 Part d: Refraction of Light  PAGEREF _Toc477943309 \h 159 Part e: Birefringence of Light  PAGEREF _Toc477943310 \h 159 Part f: Polarization of Light  PAGEREF _Toc477943311 \h 159 Part g: Optical Activity and Crystals  PAGEREF _Toc477943312 \h 159 Section 03: Electrical Effects of Crystals  PAGEREF _Toc477943313 \h 160 Part a: Piezoelectric Effects  PAGEREF _Toc477943314 \h 160 Part b: Pyroelectric Effects  PAGEREF _Toc477943315 \h 160 Part c: Non-Linear Optical Phenomenon  PAGEREF _Toc477943316 \h 160 Section 04: Chemical Effects of Crystal Form  PAGEREF _Toc477943317 \h 161 Part a: Crystal Forms and Chemical Reactivity  PAGEREF _Toc477943318 \h 161 Part b: Different Faces Different Reactions  PAGEREF _Toc477943319 \h 161 Part c: Crystal Forms and Explosive Power  PAGEREF _Toc477943320 \h 161 Topic VII: Image Generation from Diffracted Waves  PAGEREF _Toc477943321 \h 162 Section 01: Waves  PAGEREF _Toc477943322 \h 163 Part a: Amplitudes of Waves  PAGEREF _Toc477943323 \h 163 Part b: Lengths of Waves  PAGEREF _Toc477943324 \h 163 Part c: Phase Angles of Waves  PAGEREF _Toc477943325 \h 163 Part d: Summing Waves  PAGEREF _Toc477943326 \h 163 Section 02: Fourier Series  PAGEREF _Toc477943327 \h 164 Part a: Periodic Electron Density in Crystals  PAGEREF _Toc477943328 \h 164 Part b: Baron Fouriers Theorem  PAGEREF _Toc477943329 \h 164 Part c: Fourier Analysis  PAGEREF _Toc477943330 \h 164 Part d: Fourier Synthesis  PAGEREF _Toc477943331 \h 164 Section 03: Electron Density Calculations  PAGEREF _Toc477943332 \h 165 Part a: Electron Density is Periodic  PAGEREF _Toc477943333 \h 165 Part b: Equation for Electron Density as a Function of Structure Factors  PAGEREF _Toc477943334 \h 165 Part c: hkl values and Crystal Planes  PAGEREF _Toc477943335 \h 165 Section 04: Fourier Transforms  PAGEREF _Toc477943336 \h 165 Part a: Equation for Structure Factors as a Function of Electron Density  PAGEREF _Toc477943337 \h 165 Part b: Relationship Between Real and Reciprocal Space  PAGEREF _Toc477943338 \h 165 Part c: Summary of the Diffraction Structure Process  PAGEREF _Toc477943339 \h 165 Section 05: X-Ray Scattering Factors of Electrons in Orbitals  PAGEREF _Toc477943340 \h 166 Part a: Electron Distribution Curves for Orbitals  PAGEREF _Toc477943341 \h 166 Part b: Electron Scattering Curves for Orbitals  PAGEREF _Toc477943342 \h 166 Section 06: Neutron Scattering Factors of Nuclei  PAGEREF _Toc477943343 \h 167 Section 07: Kinematic and Dynamic Diffraction  PAGEREF _Toc477943344 \h 168 Part a: Mosaic Blocks  PAGEREF _Toc477943345 \h 168 Part b: Kinematic Diffraction  PAGEREF _Toc477943346 \h 168 Part c: Dynamic Diffraction  PAGEREF _Toc477943347 \h 168 Section 08: Extinction  PAGEREF _Toc477943348 \h 169 Part a: Primary Extinction  PAGEREF _Toc477943349 \h 169 Part b: Secondary Extinction  PAGEREF _Toc477943350 \h 169 Part c: Renninger Effect and Double Reflections  PAGEREF _Toc477943351 \h 169 Section 09: Structure Factors  PAGEREF _Toc477943352 \h 170 Part a: Structure Factor Amplitudes  PAGEREF _Toc477943353 \h 170 Section 10: Displacement Parameters  PAGEREF _Toc477943354 \h 171 Part a: Vibration of Atoms in a Lattice  PAGEREF _Toc477943355 \h 171 Part b: Disorder of Atoms and Molecules in a Lattice  PAGEREF _Toc477943356 \h 171 Part c: Isotropic Displacement Parameters  PAGEREF _Toc477943357 \h 171 Part d: Simple Anisotropic Displacement Parameters  PAGEREF _Toc477943358 \h 171 Part e: Quadrupole Displacement Parameters and Evaluations of the Shapes of Electron Clouds  PAGEREF _Toc477943359 \h 171 Section 11: Anomalous Scattering  PAGEREF _Toc477943360 \h 172 Part a: Absorption Coefficients as a Function of Wavelength  PAGEREF _Toc477943361 \h 172 Part b: MAD Phasing of Protein Data  PAGEREF _Toc477943362 \h 172 Part c: Anomalous Scattering  PAGEREF _Toc477943363 \h 172 Topic VIII: Amplitudes of Diffracted Waves  PAGEREF _Toc477943364 \h 173 Section 01: Intensities of Diffracted Beams  PAGEREF _Toc477943365 \h 174 Part a: Equation for Intensities of Diffracted Beams  PAGEREF _Toc477943366 \h 174 Part b: Lorenz Factor  PAGEREF _Toc477943367 \h 174 Part c: Polarization Factor  PAGEREF _Toc477943368 \h 174 Part d: Absorption Factor  PAGEREF _Toc477943369 \h 174 Part e: Effects of Wavelength of Measured Intensities  PAGEREF _Toc477943370 \h 174 Section 02: X-Ray Sources  PAGEREF _Toc477943371 \h 175 Part a: X-Ray Spectrum of an X-Ray Tube  PAGEREF _Toc477943372 \h 175 Part b: Monochromatic X-Rays  PAGEREF _Toc477943373 \h 175 Part c: X-Ray Sources  PAGEREF _Toc477943374 \h 175 Section 03: X-Ray Detectors  PAGEREF _Toc477943375 \h 176 Part a: Scintillation Counters  PAGEREF _Toc477943376 \h 176 Part b: Beam Stop  PAGEREF _Toc477943377 \h 176 Part c: Area Detectors  PAGEREF _Toc477943378 \h 176 Section 04: Automated Diffractometers  PAGEREF _Toc477943379 \h 177 Section 05: Effects of Temperatures on Collected Diffraction Data  PAGEREF _Toc477943380 \h 178 Section 06: Peak Profiles  PAGEREF _Toc477943381 \h 179 Section 07: Data Reduction  PAGEREF _Toc477943382 \h 180 Topic IX: Phases of Diffracted Waves  PAGEREF _Toc477943383 \h 181 Section 01: Electron Density Distributions vs. Structure Factors and Phases  PAGEREF _Toc477943384 \h 182 Part a: Flow Diagram  PAGEREF _Toc477943385 \h 182 Part b: With Known Structures  PAGEREF _Toc477943386 \h 182 Part c: Non-Centrosymmetric Space Groups  PAGEREF _Toc477943387 \h 182 Part d: Centrosymmetric Space Groups  PAGEREF _Toc477943388 \h 182 Section 02: Common Methods for Estimating Phase Angles  PAGEREF _Toc477943389 \h 183 Part a: The Role of Advances in Computers, Theory, and Software  PAGEREF _Toc477943390 \h 183 Part b: Direct Methods  PAGEREF _Toc477943391 \h 183 Part c: Patterson Methods  PAGEREF _Toc477943392 \h 183 Part d: Isostructural Crystals  PAGEREF _Toc477943393 \h 183 Part e: Multiple Bragg Diffraction  PAGEREF _Toc477943394 \h 183 Part f: Shake and Bake  PAGEREF _Toc477943395 \h 183 Section 03: Direct Methods  PAGEREF _Toc477943396 \h 184 Part a: Statistical Tools  PAGEREF _Toc477943397 \h 184 Part b: Mathematics of Phase Relationships  PAGEREF _Toc477943398 \h 184 Part c: Inequalities  PAGEREF _Toc477943399 \h 184 Part d: Where Works Best  PAGEREF _Toc477943400 \h 184 Section 04: Patterson Methods  PAGEREF _Toc477943401 \h 185 Part a: The Patterson Function  PAGEREF _Toc477943402 \h 185 Part b: Patterson Maps  PAGEREF _Toc477943403 \h 185 Part c: Where Works Best  PAGEREF _Toc477943404 \h 185 Part d: Heavy Atom Methods  PAGEREF _Toc477943405 \h 185 Section 05: Isomorphous Replacement  PAGEREF _Toc477943406 \h 186 Part a: Proteins: The Problem Structures  PAGEREF _Toc477943407 \h 186 Part b: Metal Salts  PAGEREF _Toc477943408 \h 186 Part c: Unnatural Amino Acids  PAGEREF _Toc477943409 \h 186 Part d: Related Protein Structures  PAGEREF _Toc477943410 \h 186 Section 06: MAD Phasing of Proteins  PAGEREF _Toc477943411 \h 188 Section 07: Shake and Bake  PAGEREF _Toc477943412 \h 189 Topic X: Electron Density Maps  PAGEREF _Toc477943413 \h 190 Section 01: Electron Density Function  PAGEREF _Toc477943414 \h 191 Section 02: Electron Density Maps  PAGEREF _Toc477943415 \h 192 Part a: General Features of Maps  PAGEREF _Toc477943416 \h 192 Part b: P(obs) Map  PAGEREF _Toc477943417 \h 192 Part c: F(calc) Map  PAGEREF _Toc477943418 \h 192 Part d: Difference Electron Density Maps  PAGEREF _Toc477943419 \h 192 Part e: Deformation Density Maps  PAGEREF _Toc477943420 \h 192 Section 03: Resolution  PAGEREF _Toc477943421 \h 193 Part a: Conventional Definition  PAGEREF _Toc477943422 \h 193 Part b: Effects of Wavelength on Resolution and Intensities  PAGEREF _Toc477943423 \h 193 Part c: Mo Resolution  PAGEREF _Toc477943424 \h 193 Part d: Cu Resolution  PAGEREF _Toc477943425 \h 193 Part e: Ag and Synchrotron Data  PAGEREF _Toc477943426 \h 193 Part f: Effects of Resolution on the Structure  PAGEREF _Toc477943427 \h 193 Section 04: Angles of Data Collection and Series Termination Errors  PAGEREF _Toc477943428 \h 194 Topic XI: Least Squares Refinement  PAGEREF _Toc477943429 \h 195 Section 01: What is Least Squares Refinement?  PAGEREF _Toc477943430 \h 196 Part a: The Mathematics of Least Squares Refinement  PAGEREF _Toc477943431 \h 196 Part b: Qualitative Picture of Least Squares Refinement  PAGEREF _Toc477943432 \h 196 Section 02: Precision vs. Accuracy  PAGEREF _Toc477943433 \h 197 Part a: Precision  PAGEREF _Toc477943434 \h 197 Part b: Accuracy  PAGEREF _Toc477943435 \h 197 Part c: Random vs. Systematic Errors  PAGEREF _Toc477943436 \h 197 Part d: Gaussian Distribution Function  PAGEREF _Toc477943437 \h 197 Part e: Estimated Standard Deviations  PAGEREF _Toc477943438 \h 197 Section 03: Constraints  PAGEREF _Toc477943439 \h 198 Section 04: Restraints  PAGEREF _Toc477943440 \h 199 Section 05: Global vs. Local Minima in Solution  PAGEREF _Toc477943441 \h 200 Topic XII: Crystal and Diffraction Data  PAGEREF _Toc477943442 \h 201 Section 01: The Standard Table  PAGEREF _Toc477943443 \h 202 Topic XIII: Atomic Coordinates and Molecular Structures  PAGEREF _Toc477943444 \h 203 Section 01: Molecular Geometries  PAGEREF _Toc477943445 \h 204 Part a: From xyz Coordinates to Bond Lengths, Bond Angles, etc.  PAGEREF _Toc477943446 \h 204 Part b: Vibrational Motion  PAGEREF _Toc477943447 \h 204 Part c: Fractional Coordinates  PAGEREF _Toc477943448 \h 204 Part d: Orthogonal Coordinates  PAGEREF _Toc477943449 \h 204 Part e: Complete Molecules?  PAGEREF _Toc477943450 \h 204 Section 02: Atomic Connectivities  PAGEREF _Toc477943451 \h 205 Part a: Derivation of Atomic Connectivity Tables  PAGEREF _Toc477943452 \h 205 Part b: International Tables for Typical Bond Distances  PAGEREF _Toc477943453 \h 205 Part c: Bond Lengths  PAGEREF _Toc477943454 \h 205 Section 03: Molecules in the Unit Cell and Z  PAGEREF _Toc477943455 \h 206 Section 04: Estimated Standard Deviations  PAGEREF _Toc477943456 \h 207 Part a: ESD Formula  PAGEREF _Toc477943457 \h 207 Part b: When are two values different?  PAGEREF _Toc477943458 \h 207 Part c: ESDs and Reliability of Data  PAGEREF _Toc477943459 \h 207 Section 05: Torsion Angles  PAGEREF _Toc477943460 \h 208 Section 06: Molecular and Macromolecular Conformations  PAGEREF _Toc477943461 \h 209 Section 07: Atomic and Molecular Displacements  PAGEREF _Toc477943462 \h 210 Part a: Vibration Effects in Crystals  PAGEREF _Toc477943463 \h 210 Part b: Representations of Displacement Parameters  PAGEREF _Toc477943464 \h 210 Part c: Effects of Displacements on Molecular Geometries  PAGEREF _Toc477943465 \h 210 Part d: Uses of Anisotropic Displacement Parameters  PAGEREF _Toc477943466 \h 210 Topic XIV: Absolute Structures  PAGEREF _Toc477943467 \h 211 Section 01: Chirality of Molecules  PAGEREF _Toc477943468 \h 212 Section 02: Optical Activity and Chiral Molecules  PAGEREF _Toc477943469 \h 213 Section 03: Anomalous Dispersion Measurements  PAGEREF _Toc477943470 \h 214 Section 04: Uses of Anomalous Dispersion  PAGEREF _Toc477943471 \h 215 Topic XV: Crystallographic Publications: Preparation and Analysis  PAGEREF _Toc477943472 \h 216 Section 01: Crystallographic Data Bases  PAGEREF _Toc477943473 \h 217 Section 02: Crystallographic Papers  PAGEREF _Toc477943474 \h 218 Section 03: Comparing Structures  PAGEREF _Toc477943475 \h 219 Topic XVI: Special Topics  PAGEREF _Toc477943476 \h 220 Index of Topics and Vocabulary  PAGEREF _Toc477943477 \h 221  Introduction to Chemistry 832 XE "Introduction to Chemistry 832"  Based primarily on: Chapter 1 XE "Chapter 1"  (G, L, & R, pages 1-31) A. D. Hunters YSU Structure Solution Manual Other materials available (or referenced) on my WEB Site Chapters 1 XE "Chapters 1"  and Chapter 2 XE "Chapter 2"  of G, L, & R need to be read on your own by the next class Ask Students: XE "Ask Students\:"  What do you know about the Application of Diffraction Methods to Solving Chemical Problems? XE "Application of Diffraction Methods to Solving Chemical Problems?"  What is Chemistry 832 XE "What is Chemistry 832" ?? Chemistry 832 Goals and Objectives XE "Chemistry 832 Goals and Objectives"  See the Chemistry 832 Goals and Objectives Handout XE "Goals and Objectives Handout" , available on my WEB Site Chemistry 832 Syllabus XE "Chemistry 832 Syllabus"  See the Chemistry 832 Syllabus for Spring 2000 XE "Syllabus for Spring 2000" , available on my WEB Site Chemistry 832 Resources XE "Chemistry 832 Resources"  Texts and Monographs XE "Texts and Monographs"  See the list of reference materials: Crystallography-Diffraction Methods Texts List XE "Crystallography-Diffraction Methods Texts List" , available on my WEB Site The Lab Manuals XE "Lab Manual"  Copes are available in the Diffraction Lab XE "Diffraction Lab"  or may be borrowed from Dr. Hunter The Structure Solution Guide XE "Structure Solution Guide"  Copies are available as .pdf files for those who want their own, one is kept in each of the Diffraction Lab XE "Diffraction Lab"  and NT Lab XE "NT Lab" s, and may be borrowed from Dr. Hunter The NT Lab XE "NT Lab"  This lab is equipped with a dozen Windows NT computers XE "Windows NT computers" , each loaded with all of the software needed for this course. It is available to Chemistry Majors (and other privileged undergraduates) and Graduate Students. To use this lab, you need to get an NT identity and password from Ray. The WEB XE "WEB"  Numerous excellent teaching materials on diffraction methods are available on the WEB, I will place links to some starting sites on my WEB page. The Diffractometer Lab XE "Diffractometer Lab"  This lab is equipped with two Bruker AXS XE "Bruker AXS"  P4 Diffractometers XE "P4 Diffractometers" . The southern instrument is equipped with a Cu X-Ray source XE "Cu X-Ray source"  and is usually used for powder studies. The northern instrument is equipped with a Mo X-Ray source XE "Mo X-Ray source"  and is our main single crystal instrument. The two PCs in this lab each control one of the diffractometers What Can Diffraction Methods Tell Us XE "What Can Diffraction Methods Tell Us"  Diffraction methods can tell us much useful information about crystalline samples, including: The size and shape of the repeating unit XE "repeating unit"  (unit cell XE "unit cell" ) of the crystal Overall molecular structures XE "molecular structures"  Bond lengths, angles, torsions, etc. Atomic motion and disorder XE "Atomic motion and disorder"  Intermolecular interactions XE "Intermolecular interactions"  Speed and Cost XE "Speed and Cost"  One generation ago, a single crystal study could take up most of a PhD and consequently was a rarely used technique Now, a routine single crystal study XE "routine single crystal study"  is both quick and relatively inexpensive 1 second to 1 week for data collection XE "data collection"  1 hour to several days to solve the data A few hundred to a few thousand dollars for a small molecule, about ten to a hundred times more for a routine protein What is a Single Crystal and Why is it Important? XE "What is a Single Crystal and Why is it Important"  Single Crystal XE "Single Crystal"  Graphics from Text XE "Graphics from Text" : Figure 1.3 XE "Figure 1.3" , page 5; single crystals of Quartz XE "Quartz"  and Ammonium Dihydrogen Phosphate XE "Ammonium Dihydrogen Phosphate"  (NLO material XE "NLO material" ) Growing crystals XE "Growing crystals"  is typically slowest and most unpredictable part of experiment Long distance order XE "Long distance order"  from one side to the other Defects in th crystal XE "Defects in th crystal"  effect quality of data Unit Cell XE "Unit Cell"  Repeating motif of crystal XE "Repeating motif of crystal"  Bricks XE "Bricks"  in the wall Includes both dimensions and symmetry Made up of imaginary lattice points XE "lattice points"  Contains complete unique part(s) of molecules (sometimes more than one copy) Unit cells and diffraction data XE "Unit cells and diffraction data"  The more unit cells XE "unit cells"  in the crystal the better the data quality The less disorder XE "disorder"  the better the data quality Graphics from Text XE "Graphics from Text" : Figure 1.6 XE "Figure 1.6" , page 14; Unit cells of NaCl XE "NaCl"  and KCl XE "KCl"  Graphics from Text XE "Graphics from Text" : Figures 1.7 and 1.8 XE "Figures 1.7 and 1.8" , pages 17 and 18; Crystal structures of Diamond XE "Diamond"  and Graphite XE "Graphite"  Graphics from Text XE "Graphics from Text" : Figures 1.9 - 1.11 XE "Figures 1.9 - 1.11" , pages 19 - 21; Crystal structures of Hexamethylbenzene XE "Hexamethylbenzene" , Hexachlorocyclohexane XE "Hexachlorocyclohexane" , and Steroids XE "Steroids"  as representative examples of early diffraction results Block Diagram of an X-Ray Diffractometer XE "Block Diagram of an X-Ray Diffractometer"   EMBED Word.Picture.8  Graphics from Text XE "Graphics from Text" : Figure 1.5 XE "Figure 1.5" , page 11; Texts diagram of an X-Ray Diffractometer XE "X-Ray Diffractometer"  X-Ray Generator XE "X-Ray Generator"  Needs to produce intense X-ray beam XE "X-ray beam"  Needs to produce monochromatic X-ray beam XE "monochromatic X-ray beam"  Needs to produce collimated X-ray beam XE "collimated X-ray beam"  Goniometer XE "Goniometer"  Allows one to place a sample at a precisely controlled orientation in 3D space XE "orientation in 3D space"  Under computer control Detector XE "Detector"  Allows one to measure the intensity of diffracted X-ray beams XE "intensity of diffracted X-ray beams"  as a function of diffraction angle XE "diffraction angle"  Basic Steps in X-Ray Diffraction Data Collection XE "Basic Steps in X-Ray Diffraction Data Collection"  Grow Single Crystal XE "Grow Single Crystal"  Mount Single Crystal XE "Mount Single Crystal"  on Diffractometer Evaluate Crystal Quality XE "Crystal Quality"  Collect Unit Cell information XE "Unit Cell information"  and Space Group information XE "Space Group information"  Collect Diffraction Data XE "Diffraction Data"  Collect Absorption Data XE "Absorption Data"  Solve Structure XE "Solve Structure"  Graphics from Text XE "Graphics from Text" : Figure 3.11 XE "Figure 3.11" , page 89; Relationship of Crystallographic Data to Structural Data XE "Relationship of Crystallographic Data to Structural Data"  Prepare Structural Data for Publication XE "Structural Data for Publication"  Basic Steps in X-Ray Diffraction Data Analysis XE "Basic Steps in X-Ray Diffraction Data Analysis"  Data Analysis can be quite routine through impossibly difficult XE "Data Analysis can be quite routine through impossibly difficult"  Quality of Raw Data XE "Quality of Raw Data"  Advances? Theory Advances XE "Theory Advances"  Software Advances XE "Software Advances"  Computer Advances XE "Computer Advances"  Synergy of these changes The Phase Problem XE "The Phase Problem"  Which is more important, Knowing the Intensities XE "Knowing the Intensities"  or Knowing the Phases XE "Knowing the Phases"  of the Diffracted beams XE "Diffracted beams" ? Data ( Solution Relationship XE "Data ( Solution Relationship"  Experiment ( Intensity Information XE "Intensity Information"  + Phase Information XE "Phase Information"  (( Results ( Atomic Positions XE "Atomic Positions"  + Atomic Sizes/Shapes XE "Atomic Sizes/Shapes"  Main Steps in Data Analysis XE "Main Steps in Data Analysis"  Procedural Steps XE "Procedural Steps"  Process the Raw Data XE "Process the Raw Data"  (XPREP XE "XPREP" ) Determine Space Group XE "Space Group"  Do Absorption Corrections XE "Absorption Corrections"  Determine an Initial Starting Solution XE "Initial Starting Solution"  (XS) Use one of the tricks to find at least one atom at near its actual position This will give you the first phase information XE "phase information"  Evaluate the Trial Structure XE "Trial Structure" (s) (XP XE "XP" ) and Refine XE "Refine"  the Trial Structure(s) (XL XE "XL" ) Evaluate the Final Answer Prepare the Data for Publication XE "Data for Publication"  Flow Chart for a Typical Structure Solution XE "Flow Chart for a Typical Structure Solution"    Data Collection and Data Reduction Data Reduction XE "Data Reduction" , Space Group Determination XE "Space Group Determination" , and Absorption Correction XE "Absorption Correction"  Cycle until good trial solution found  Generate Trial Solutions XE "Generate Trial Solutions"  Analysis of trial Solutions XE "Analysis of trial Solutions"  Cycle until the refined solution goes to convergence  Structure Refinement XE "Structure Refinement"  Analysis of Refined Solutions XE "Analysis of Refined Solutions"  Final Plots for Publication XE "Final Plots for Publication"  Final Tables for Publication XE "Final Tables for Publication"  X-Ray Diffractometers XE "X-Ray Diffractometers"  Based primarily on: Chapter 7 XE "Chapter 7"  (G, L, & R, pages 225-279) Other materials available (or referenced) on my WEB Site A. D. Hunters YSU Structure Solution Manual The Instruments in the Diffraction Lab. Ask Students: XE "Ask Students\:"  What do you know about X-Ray Diffractometers XE "X-Ray Diffractometers" ?  EMBED Word.Picture.8  What are X-Rays? XE "What are X-Rays?"  Wavelengths of X-Rays XE "Wavelengths of X-Rays"  Typically 0.5 to 2.0 ( Limited by X-Ray Generation Capabilities (i.e., target metal) Limited by Available X-Ray Flux XE "X-Ray Flux"  1.54 ( for Cu Targets XE "Cu Targets"  0.71 ( for Mo Targets XE "Mo Targets"  0.49 ( on Ag Targets XE "Ag Targets"  Tunable Wavelengths on Synchrotron Sources XE "Synchrotron Sources"  Why are these Wavelengths chosen XE "Why are these Wavelengths chosen" ? They match intermolecular distances XE "intermolecular distances"  X-Ray Generators XE "X-Ray Generators"  X-Ray Lasers XE "X-Ray Lasers"  Conventional X-Ray Tubes XE "Conventional X-Ray Tubes"  Cathode XE "Cathode"  (Tungsten Filament XE "Tungsten Filament" ) Provides electrons Slowly boils off Tungsten Vapor XE "Tungsten Vapor"  and this contaminates Metal Target and leads to filament breakage Accelerator Plates XE "Accelerator Plates"  Metal Target XE "Metal Target"  (Anode XE "Anode" ) Determines Wavelength distribution XE "Wavelength distribution"  of X-Rays Must be an excellent conductor of heat Up to 3,000 Watts Cooling System XE "Cooling System"  Limiting variable on tube output Causes most operating problems Transports heat to a heat sink XE "heat sink"  Rotating Anode Generators XE "Rotating Anode Generators"  Designed to overcome the cooling limitations of Conventional Anodes XE "Conventional Anodes"  Their Anode XE "Anode"  is a Rotating Cylinder XE "Rotating Cylinder"  of the Target Metal Rated Power Limits XE "Rated Power Limits"  typically 12 to 18 kW Normally run at 6 to 10 kW to reduce maintenance Maintenance Problems XE "Maintenance Problems"  Seals have to deal with high voltages XE "high voltages" , high vacuum XE "high vacuum" , and high speeds XE "high speeds"  Filaments XE "Filaments"  need to be changes every couple of months Vacuum System maintenance XE "Vacuum System maintenance"  Purchase and Operating Costs XE "Costs"   XE "Purchase Costs"  XE "Operating Costs"  Synchrotron Sources XE "Synchrotron Sources"  National Level Facilities costing hundreds of millions or even a Billion Dollars Rely on wasted energy of rotating particle beam XE "rotating particle beam"  Early machines collected stray radiation from bending magnets XE "bending magnets"  (broad band) Current machines also use Wiglers XE "Wiglers"  to generate tunable radiation XE "tunable radiation"  Advanced Light Source XE "Advanced Light Source" , ALS XE "ALS" , at the National Lab in Berkeley XE "Berkeley"  Advanced Photon Source XE "Advanced Photon Source" , APS XE "APS" , at the National Lab in Chicago XE "Chicago"  X-Ray Monochromators XE "X-Ray Monochromators"  Needed to reduce radiation to a single wavelength XE "single wavelength"  without unduly reducing the intensity Foil Filters (Ni foil) XE "Foil Filters (Ni foil)"  Ni foil XE "Ni foil"  Crystal (Graphite) Monochromators XE "Crystal (Graphite) Monochromators"  Large Graphite Single Crystal XE "Graphite Single Crystal"  Focusing Mirrors XE "Focusing Mirrors"  Highest Photon Yields XE "Photon Yields"  Catch a larger spread of X-rays from the tube X-Ray Collimators XE "X-Ray Collimators"  Graphite Crystal Monochromators and Pin Holes in Tubes XE "Graphite Crystal Monochromators and Pin Holes in Tubes"  Focusing Mirrors XE "Focusing Mirrors"  Much higher photon yields XE "photon yields"  Goniometers XE "Goniometers"  Manual Goniometers XE "Manual Goniometers"  on Picker Machines XE "Picker Machines"  Automated Goniometers XE "Automated Goniometers"  4 Circle Goniometers XE "4 Circle Goniometers"  on our P4 XE "P4" s Kappa Geometry Goniometers XE "Kappa Geometry Goniometers"  Serial Detectors XE "Serial Detectors"  vs. Area Detectors XE "Area Detectors"  Full computer control Extremely precise machining Digital stepper motors XE "stepper motors"  Goniometer Heads XE "Goniometer Heads"  Low Temperature System XE "Low Temperature System"  Why low temperatures? Data intensity at high angles XE "Data intensity at high angles"  Smaller Displacement Parameters XE "Displacement Parameters"  Slower crystal decomposition XE "crystal decomposition"  Decomposition from X-Ray Beam XE "Decomposition from X-Ray Beam"  Decomposition from heat XE "Decomposition from heat"  Decomposition from air XE "Decomposition from air"  Limitations Icing Liquid N2 Systems XE "Liquid N2 Systems"  to -150 C Liquid He Systems XE "Liquid He Systems"  to 15 - 20 K X-Ray Detectors XE "X-Ray Detectors"  Serial Detectors XE "Serial Detectors"  Scintillation Counters XE "Scintillation Counters"  Excellent dynamic range XE "dynamic range"  Low cost Highly reliable Only one reflection at a time and therefore long data collection times The Multiplex Advantage XE "Multiplex Advantage"  Film Based Area Detectors XE "Film Based Area Detectors"  Oldest type of X-Ray Detector XE "X-Ray Detector"  Multiple layers of film Visual estimation of intensities XE "Visual estimation of intensities"  using Densiometer XE "Densiometer"  Modern automated intensity readings Multi-Wire Area Detectors XE "Multi-Wire Area Detectors"  X-1000 XE "X-1000"  Multi-Wire Detector XE "Multi-Wire Detector"  on Cu Machine XE "Cu Machine"  in Lab Grid of wires (512 by 512 or 1024 by 1024) Xe gas ionization XE "Xe gas ionization"  Be Windows XE "Be Windows"  Poor Dynamic Range XE "Dynamic Range"  Low Cost First major automated route for collecting Protein data XE "Protein data"  Good for collecting Powder Data XE "Powder Data"  CCD Detectors XE "CCD Detectors"  Developed by DOD and Astronomers The current State of the Art XE "State of the Art"  for Small Molecules XE "Small Molecules"  and Synchrotron data XE "Synchrotron data"  Chip sizes XE "Chip sizes"  range from 1k x 1k to 4k x 4k pixels and several cm on an edge Fiber Optic Taper XE "Fiber Optic Taper"  normally used to increase data collection area to about 10 cm x 10 cm Data collected for 30 seconds to several minutes per frame and then read out to computer (this almost instantly) A Phosphor XE "Phosphor"  (tailored for the wavelength(s) of interest) converts the impinging X-rays to multiple visible light photons XE "visible light photons"  (what is counted by the CCD chip XE "CCD chip" ) Moderately expensive but price coming down rapidly Significantly more maintenance than a serial detector Good dynamic range XE "dynamic range"  CCD chip needs to be cryocooled XE "cryocooled"  to function Imaging Plate Detectors XE "Imaging Plate Detectors"  The detector of choice for most current protein diffraction studies XE "protein diffraction studies"  Very large data collection areas XE "data collection areas" , typically 30 cm x 30 cm This is especially important for large unit cells XE "large unit cells"  X-rays strike a large Storage Phosphor XE "Storage Phosphor"  (frame times can be up to tens of minutes) Data read out by training an IR laser XE "IR laser"  onto each pixel which causes optical photons XE "optical photons"  to be released Data read out times XE "Data read out times"  can be several minutes as this is done in a serial fashion In compensation, many Imaging Plate systems XE "Imaging Plate systems"  have two phosphor screens and one is collecting data while the other is reading it out Prices similar to CCD systems Dynamic range XE "Dynamic range"  smaller but data collection area XE "data collection area"  larger X-Ray Absorption in the Diffractometer XE "X-Ray Absorption in the Diffractometer"  Air XE "Air"  Not a problem for short wavelength XE "wavelength"  radiation such as Mo XE "Mo"  or Ag XE "Ag"  A significant problem for Cu XE "Cu" , especially with large unit cell parameters where crystal to detector distances are large Use a He beam path XE "He beam path"  Windows XE "Windows"  Typically use Be windows XE "Be windows"  on detectors and X-ray tubes XE "X-ray tubes"  May also use plastic films around He beam paths, etc. Sample, Glue, Fiber & Capillary XE "Sample, Glue, Fiber & Capillary"  Larger samples with heavy atoms can absorb significantly Glue XE "Glue"  used to mount the sample, any beam that passes through the mounting fiber, and any capillary XE "capillary"  glass can absorb significantly, especially for Cu radiation XE "Cu radiation"  Single Crystals XE "Single Crystals"  Based primarily on Chapter 2 XE "Chapter 2"  (G, L, & R, pages 33-71). Crystal Growth Strategies based primarily on Chapter XIV XE "Chapter XIV"  in Allen Hunters YSU Structure Analysis Lab Manual XE "Structure Analysis Lab Manual" , SALM XE "SALM" , page 240 - 247 Ask Students: XE "Ask Students\:"  What do you know about Single Crystals XE "Single Crystals"  Perfect Crystals XE "Perfect Crystals" ? Single Crystals XE "Single Crystals"  Have long range order XE "long range order"  Like bricks in a wall XE "bricks in a wall"  One distinct orientation XE "orientation"  Typically a single degree or so of disorder across macroscopic dimensions XE "disorder across macroscopic dimensions"  Graphics from Text XE "Graphics from Text" : Figures 2.1 - 2.3 XE "Figures 2.1 - 2.3" , pages 34 - 36; Electron Micrograph XE "Electron Micrograph"  pictures of three Virus Crystals XE "Virus Crystals"  Graphics from Text XE "Graphics from Text" : Figure 2.4 XE "Figure 2.4" , page 37; Scanning Tunneling Microscope XE "Scanning Tunneling Microscope" , STM XE "STM" , images of Gallium Arsenide XE "Gallium Arsenide" , GaAs XE "GaAs" , Single Crystals Growing Single Crystals XE "Growing Single Crystals"  Stages of Crystal Growth XE "Stages of Crystal Growth"  Nucleation XE "Nucleation"  The key step Deposition on Surfaces XE "Deposition on Surfaces"  of Individual Molecules Requires a Saturated Solution XE "Saturated Solution"  Requires that surface have similar metric parameters to the molecules being deposited Graphics from Text XE "Graphics from Text" : Figure 2.6 XE "Figure 2.6" , page 42; Sites of crystal growth XE "crystal growth"  on a crystal surface XE "crystal surface"  Graphics from Text XE "Graphics from Text" : Figure 2.8 XE "Figure 2.8" , page 48; Some methods of growing single crystals XE "growing single crystals"  Crystal Growing Strategies XE "Crystal Growing Strategies"  from Chapter XIV in Allen Hunters YSU Structure Analysis Lab Manual XE "Allen Hunters YSU Structure Analysis Lab Manual" , SALM XE "SALM" , as a Separate Handout available from: You Must Print out this Handout Modified Chapter XIV of ADH's Structure Analysis Lab Manual XE "Structure Analysis Lab Manual" , SALM XE "SALM" : Growing Single Crystals Suitable for Diffraction Analysis XE "Growing Single Crystals Suitable for Diffraction Analysis" : In Color: HYPERLINK "http://www.as.ysu.edu/~adhunter/Teaching/Chem832/ADHChXIV.doc"137KB.doc,  HYPERLINK "http://www.as.ysu.edu/~adhunter/Teaching/Chem832/ADHChXIV.pdf" 63KB.pdf Black and white:  HYPERLINK "http://www.as.ysu.edu/~adhunter/Teaching/Chem832/ADHChXIVbw.doc" 143KB.doc,  HYPERLINK "http://www.as.ysu.edu/~adhunter/Teaching/Chem832/ADHChXIV.pdf" 62KB.pdf General principles of growing single crystals XE "General principles of growing single crystals"  General view: Art rather than Science XE "Art rather than Science"  Green Thumb XE "Green Thumb"  Rational approach informed by understanding Rates of Crystal Growth XE "Rates of Crystal Growth"  Slower is better XE "Slower is better"  Typically takes days to a week General Conditions for Crystal Growth XE "General Conditions for Crystal Growth"  Best Conditions Constant temperatures XE "Constant temperatures"  Minimal vibration Dark (often seems to help, especially avoid direct sunlight) Impatience is the Enemy XE "Impatience is the Enemy"  Convection XE "Convection"  is bad and should be suppressed Viscous solvents XE "Viscous solvents"  Low Thermal Expansion Coefficient XE "Thermal Expansion Coefficient" , dependence of density on temperature Narrower tubes XE "Narrower tubes"  Dont check crystallizations too often Solvent Properties and Saturated Solutions XE "Solvent Properties and Saturated Solutions"  Grow crystals from Saturated Solutions XE "Saturated Solutions"  Like a bears porridge XE "bears porridge" , concentration at saturation must be just right Systematically explore solubility Master Several Favorite Methods XE "Master Several Favorite Methods"  Success increases with experience One learns to read subtle signals Find a few methods and master them Proven Methods for growing crystals XE "Proven Methods for growing crystals"  The most common methods Crystallization by Slow Evaporation XE "Crystallization by Slow Evaporation"  Most popular method Works most easily with air stable materials Slow solvent evaporation XE "solvent evaporation"  is the key Crystallization by Cooling XE "Crystallization by Cooling"  My personal favorite, alone or in combinations Solubility typically decreases with temperature Cool saturated solution XE "saturated solution"  of sample Freezer for organics/inorganics Furnace for extended solids Crystallization Using Mixed Solvents and Solvent Diffusion in the Gas Phase XE "Crystallization Using Mixed Solvents and Solvent Diffusion in the Gas Phase"  Use a mixture of solvents XE "mixture of solvents"  to obtain the correct level of solubility Mixed Solvents XE "Mixed Solvents"  One solvent is moderately good for the compound Contains dissolved sample near saturation One solvent is moderately bad for the compound The two solvents must be fully miscible The sample is fully dissolved in the better solvent and then through various means the concentration of the second, poorer, solvent is increased Allow the two solvents to mix using a very slow solvent pump XE "solvent pump"  or dropwise solvent addition XE "dropwise solvent addition"  Allow the better solvent to evaporate XE "evaporate"  out of the system Allow one or both of the solvents to diffuse XE "diffuse"  into the other via the gas phase Typically takes longer and requires a moderately volatile solvent XE "volatile solvent"  Crystallization by Solvent Layering XE "Crystallization by Solvent Layering"  Solvent Layering XE "Solvent Layering"  One solvent is moderately good for the compound Contains dissolved sample near saturation One solvent is moderately bad for the compound The two solvents must be fully miscible XE "miscible"  Layer one on top of the other Crystallization by Diffusion Through Capillaries and Gels XE "Crystallization by Diffusion Through Capillaries and Gels"  Diffusion through a narrow capillary XE "capillary" , constriction in the tube, or a gel One solvent is moderately good for the compound Contains dissolved sample near saturation One solvent is moderately bad for the compound The two solvents must be fully miscible The sample is fully dissolved in the better solvent and then through various means the concentration of the second, poorer, solvent is increased Crystallization From Melts XE "Crystallization From Melts"  Requires that the sample be thermally stable at the requisite melting point of the Melt XE "Melt"  Used industrially to grow single crystals used in the electronics industry, e.g. Single crystal Silicon XE "Silicon" , Gallium Arsenide XE "Gallium Arsenide" , etc. Used to grow single crystals of high temperature extended solids, e.g. Minerals XE "Minerals"  such as Diamond XE "Diamond"  and Quartz XE "Quartz"  in nature Metal oxides XE "Metal oxides"  in Dr. Wagners group Some work has been done on using low temperature ionic liquids XE "ionic liquids"  (which may melt near room temperature) to apply this approach to less thermally stable ionic materials Crystallization by Sublimation XE "Crystallization by Sublimation"  The compound must be sufficiently volatile at accessible pressures (vacuum XE "vacuum" s) Can be assisted by using heating of the sample and cooling of the receiver Works best with the most volatile materials XE "volatile materials"  (typically quite nonpolar), e.g. Naphthalene XE "Naphthalene"  Ferrocene XE "Ferrocene"  Cr(CO)6 XE "Cr(CO)6"  Crystallization Using Combinations XE "Crystallization Using Combinations"  In Terminator II, Judgement Day XE "Terminator II, Judgement Day" , the boy is trying to teach Arnold Swartzenager, the Terminator, how to act more human He first teaches him individual colloquial expression He then tells him he can, like, use combos Arnold gets the idea and comes up with Hasta La Vista - Baby (forgive my Spanish) Like Arnold, dont be afraid to use combinations XE "combinations" , combos XE "combos" , that your experience and intuition suggest, e.g. My favorite method is to layer the solution and then place it in the freezer Syntheses In Situ XE "Syntheses In Situ"  Reactions at the Interface of Two Solutions XE "Interface of Two Solutions"  Can be at a boundary between to immiscible layers XE "immiscible layers"  Can be at a capillary XE "capillary"  junction between the same solvent The starting materials are each dissolved in one solution The product is insoluble in neither It precipitates at the solution boundary Works even for thermally unstable materials Can be done with an electrochemical source XE "electrochemical source"  as one reagent The Magic of NMR Tubes XE "The Magic of NMR Tubes"  An amazingly large number of single crystals are grow in NMR tubes XE "NMR tubes"  so always check them before cleaning. Why is this true? NMR Tubes are: Typically very clean Have few nucleation sites XE "nucleation sites"  on their walls (no scratches) Thin and this suppresses convention The plastic caps XE "plastic caps"  have a very low permeability to most organic solvents that lets them evaporate out slowly over weeks or months Chemists run at near saturation to get the strongest signal Chemists use their cleanest samples for NMR to get the prettiest pictures for their bosses and themselves Chemists, as a Rule, are Lazy They do not clean their tubes for months in dark quiet spot and let them sit around undisturbed in spots the boss cant see and they dont have to look at: perfect crystallization conditions Other Chance Methods XE "Other Chance Methods"  Dont look a gift horse XE "gift horse"  in the mouth and keep a close watch: dirty old flasks you have been avoiding washing in old bottles of samples in anything that might hold a sample What to do when proven methods fail XE "What to do when proven methods fail"  Purify Your Material XE "Purify Your Material"  Impure materials XE "Impure materials"  greatly impede crystallization XE "crystallization" , especially the formation of single crystals If you crystallization doesnt work: Further purify the sample Keep the best solids and use them to start the next round Seed Crystals XE "Seed Crystals"  Crystals grow by the addition of individual molecules to a surface having a similar structure Crystals can be grown using Seed Crystals XE "Seed Crystals"  of your sample that were too small for diffraction analysis Seed crystals are often produced accidentally from solutions splashed on the side walls of flasks The Role of Extraneous Materials XE "The Role of Extraneous Materials"  Interestingly, if one uses too clean of procedures (hard to do in practice) it is much harder for crystals to grow, they typically need a seeding/patterning agent XE "seeding/patterning agent" , often provided accidentally Dust XE "Dust" , dandruff XE "dandruff" , and grease XE "grease"  Scratches XE "Scratches"  and defects in the container walls Surface treatments XE "Surface treatments"  of the container walls Try, Try Again XE "Try, Try Again"  When All Else Fails, Persistence Pays Off XE "Persistence Pays Off"  Sequential crystal growing strategies XE "Sequential crystal growing strategies"  Systematic approaches to growing single crystals XE "Systematic approaches to growing single crystals"  and the exploration of crystallization: the multiplex advantage XE "multiplex advantage"  Learning from Protein Crystallographers XE "Protein Crystallographers"  Make Derivatives XE "Derivatives"  They synthetic chemists best friend Solvates XE "Solvates"  and Crystallization Agents XE "Crystallization Agents"  Packing / Interacting solvents such as: Water XE "Water"  or Alcohols XE "Alcohols"  Benzene XE "Benzene"  Chlorocarbons XE "Chlorocarbons"  Inclusion Compounds XE "Inclusion Compounds"  and Supramolecular Complexes XE "Supramolecular Complexes"  Thiourea XE "Thiourea" , SC(NH2)2 XE "SC(NH2)2" , Channel Compounds XE "Channel Compounds"  Calix[n]Arenes XE "Calix[n]Arenes"  Cyclodextrins XE "Cyclodextrins"  Porphyrins XE "Porphyrins"  The Unit Cell XE "The Unit Cell"  Graphics from Text XE "Graphics from Text" : Figure 2.5 XE "Figure 2.5" , page 38; Unit Cell Axial Lengths XE "Unit Cell Axial Lengths"  and Unit Cell Angles XE "Unit Cell Angles"  Axial naming XE "Axial naming"  follows the right hand rule XE "right hand rule"  The three axial vectors XE "axial vectors"  define a Parallelepiped XE "Parallelepiped"  The lengths can be the same or different Range from a few Angstroms to thousands of Angstroms The angle can be the same or different Often are not 90  Crystal Shapes XE "Crystal Shapes"  Crystal Growth and Shapes XE "Crystal Growth and Shapes"  Crystal Habits and Morphology XE "Crystal Habits and Morphology"  The relative rates that molecules are deposited onto the surface of growing crystals determines the final shape of the crystal This final shape for a particular unit cell is referred to as: The Morphology of the Crystal XE "Morphology of the Crystal"  The Habit of the Crystal XE "Habit of the Crystal"  These external forms are hard to directly relate to unit cell parameters Graphics from Text XE "Graphics from Text" : Figure 2.7 XE "Figure 2.7" , page 44; The relationship of crystal faces XE "crystal faces"  to the rates of face growth XE "rates of face growth"  Polymorphism and Isomorphism XE "Polymorphism and Isomorphism"  Some molecules are found with several different unit cells (typically because the energies of packing are similar and small changes in crystallization conditions favor one over the others) These different forms are know as Polymorphs XE "Polymorphs"  and this behavior is know as Polymorphism XE "Polymorphism"  Graphics from Text XE "Graphics from Text" : Figure 2.14 XE "Figure 2.14" , pages 58 - 61; Variations of crystal shapes XE "crystal shapes"  (crystal habits XE "crystal habits" ) from the same cubic unit cells XE "cubic unit cells"  Isomorphism XE "Isomorphism"  occurs when two different molecules crystallize in apparently identical crystals Isomorphic Crystals XE "Isomorphic Crystals"  typically have similar: Crystal Shapes XE "Crystal Shapes"  Unit Cell Dimensions XE "Unit Cell Dimensions"  Similar molecular structures Similar molecular compositions With enough similarity can grow mixed crystals via Isomorphic Replacement XE "Isomorphic Replacement" , e.g. Very common in minerals XE "minerals"  Mixed isotope compounds V(CO)6 XE "V(CO)6"  in Cr(CO)6 XE "Cr(CO)6"  Chromium Alum XE "Chromium Alum"  in Potash Alum XE "Potash Alum"  Isomorphous Replacement XE "Isomorphous Replacement"  in Protein Diffraction Studies XE "Protein Diffraction Studies"  using heavy atom salts, unnatural amino acids, etc. Alums XE "Alums" , (M1)2(SO4).(M3)2(SO4)3.24H20 XE "(M1)2(SO4).(M3)2(SO4)3.24H20"  M1 = K XE "K"  or NH4 XE "NH4"  M3 = Al+3 XE "Al+3"  or Cr+3 XE "Cr+3"  Form large octahedral crystals XE "octahedral crystals"  by evaporating water solutions Potash Alum XE "Potash Alum" , K2(SO4).Al2(SO4)3.24H20 XE "K2(SO4).Al2(SO4)3.24H20"  Colorless Air Stable Chromium Alum XE "Chromium Alum" , K2(SO4).Cr2(SO4)3.24H20 XE "K2(SO4).Cr2(SO4)3.24H20"  Deep Purple Decays in Air Isomorphic Replacement XE "Isomorphic Replacement"  Layered Alums XE "Layered Alums"  Mixed Alums XE "Mixed Alums"  Indexing Crystal Faces XE "Indexing Crystal Faces"  Very widely done in geology XE "geology"  as a way of identifying minerals XE "minerals"  Contact Goniometer XE "Contact Goniometer"  (two hinged straight edges used to measure angles) Graphics from Text XE "Graphics from Text" : Figure 2.10 XE "Figure 2.10" , page 52; Diagram of a Contact Goniometer XE "Contact Goniometer"  Indexing Crystal Faces XE "Indexing Crystal Faces"  The xyz face of a crystal is Parallel to all of the xyz planes in the crystal Intersects to axes of the unit cell at 1/x, 1/y, and 1/z Examples: 100 Face 134 Face Good Exam Type Question Graphics from Text XE "Graphics from Text" : Figure 2.11 and 2.12 XE "Figure 2.11 and 2.12" , page 53 and 54; Indexing Crystal Faces The Crystal Lattice XE "The Crystal Lattice"  The Crystal Lattice XE "Crystal Lattice"  is an imaginary three dimensional array of points, lattice points XE "lattice points" , that repeats to give the three dimensional order of the crystal When convoluted XE "convoluted"  with the unit cell contents, it build the full three dimensional structure of the crystal Graphics from Text XE "Graphics from Text" : Figures 2.15 and 2.16 XE "Figures 2.15 and 2.16" , pages 62 and 63; The crystal lattice XE "crystal lattice"  and real crystals Diffraction by Crystals XE "Diffraction by Crystals"  Based primarily on Chapter 3 XE "Chapter 3"  (G, L, & R, pages 73-103). Ask Students: XE "Ask Students\:"  What do you know about the Process of Diffraction of Waves XE " Diffraction of Waves" ? Graphics from Text XE "Graphics from Text" : Figure 1.2 XE "Figure 1.2" , page 4; Image Generation in Optical Microscopy and X-Ray Diffraction XE "Image Generation in Optical Microscopy and X-Ray Diffraction"   EMBED Word.Picture.8  Waves XE "Waves"  Generic Waves XE "Generic Waves"  Parameters that define a wave: Wavelength XE "Wavelength" , l XE "l"  In Diffraction is typically near 1 ( (Frequency XE "Frequency" , n XE "n"  (remember: C = l n)) Amplitude XE "Amplitude" , A XE "A"  Relative Phase XE "Relative Phase" , ( XE "("  Graphics from Text XE "Graphics from Text" : Figure 3.1 XE "Figure 3.1" , page 75; The Amplitude XE "Amplitude" , A XE "A" , Wavelength XE "Wavelength" , l XE "l" , and Relative Phase XE "Relative Phase" , ( XE "(" , of a Sinusoidal Wave XE "Sinusoidal Wave"  Water Waves XE "Water Waves"  Apply your intuition/real world experience/Physics to thinking about planar waves, such as water waves, moving through holes in a barrier (breakwater XE "breakwater" ) Note: The same thing happens when they go through a field of poles in the water Non-parallel sets of waves on open water XE "Non-parallel sets of waves on open water"  Areas of unexpectedly high and low amplitudes (can be very dangerous to boaters) ( Constructive Interference XE "Constructive Interference"  Destructive Interference XE "Destructive Interference"  Parallel waves passing through a hole in a breakwater XE "Parallel waves passing through a hole in a breakwater"  Areas of unexpectedly high and low amplitudes (can be very dangerous to boats at dock) ( Constructive Interference XE "Constructive Interference"  Destructive Interference XE "Destructive Interference"  Graphics from Text XE "Graphics from Text" : Figure 3.2a XE "Figure 3.2a" , page 76; Spreading of Plane Waves passing through a slit XE "Plane Waves passing through a slit"  Parallel waves passing through two holes in a breakwater XE "Parallel waves passing through two holes in a breakwater"  Areas of unexpectedly high and low amplitudes ( Constructive Interference XE "Constructive Interference"  Destructive Interference XE "Destructive Interference"  Graphics from Text XE "Graphics from Text" : Figure 3.2b XE "Figure 3.2b" , page 76; Spreading of Plane Waves passing through two slits XE "Plane Waves passing through two slits"  Parallel waves passing through two holes of varying spacings XE "Parallel waves passing through two holes of varying spacings"  The further apart the slits are the closer together will be the sites of constructive and destructive interference Graphics from Text XE "Graphics from Text" : Figure 3.2b and c XE "Figure 3.2b and c" , page 76; Effects of slit spacing XE "slit spacing"  on interference pattern Light Waves XE "Light Waves"  Graphics from Text XE "Graphics from Text" : Figure 1.4 XE "Figure 1.4" , page 9; Diffraction of light through a fine metal mesh sieve XE "metal mesh sieve"  Note the wavelength does not change Constructive Interference XE "Constructive Interference"  and Destructive Interference XE "Destructive Interference"  Graphics from Text XE "Graphics from Text" : Figures 1.1 and 3.3 XE "Figures 1.1 and 3.3" , pages 3 and 77; Constructive and Destructive Superposition of Waves  XE "Constructive and Destructive Superposition of Waves"  Diffraction in Two Dimensions XE "Diffraction in Two Dimensions"  Diffraction Pattern from a Single Slit XE "Diffraction Pattern from a Single Slit"  Influence of Slit Width on Diffraction Pattern XE "Influence of Slit Width on Diffraction Pattern"  Narrow Slits ( Wide patterns XE "Narrow Slits ( Wide patterns"  Wide Slits ( Narrow patterns XE "Wide Slits ( Narrow patterns"  Note: the inverse relationship characteristic of diffraction Graphics from Text XE "Graphics from Text" : Figure 3.5 XE "Figure 3.5" , page 79; Diffraction Patterns of a Single Slit XE "Diffraction Patterns of a Single Slit"  Reason for the Observed Diffraction Pattern Shapes XE "Reason for the Observed Diffraction Pattern Shapes"  Constructive and Destructive Interference from light coming through different parts of the slit Graphics from Text XE "Graphics from Text" : Figure 3.6 XE "Figure 3.6" , page 80; Reason for the Diffraction Patterns of a Single Slit XE "Diffraction Patterns of a Single Slit"  Diffraction Patterns from Two or More Slits XE "Diffraction Patterns from Two or More Slits"  Much like with water waves, pairs of slits give rise to interference patterns. Influence of Slit Spacing XE "Influence of Slit Spacing"  Wide spacing of slits leads to closely spaced maxima Close spacing of slits leads to widely space maxima Graphics from Text XE "Graphics from Text" : Figure 3.6 XE "Figure 3.6" , page 80; Diffraction Pattern Spacing XE "Diffraction Pattern Spacing"  from Larger and Smaller Spacings of Slits XE "Spacings of Slits"  Diffraction Patterns from Arrays of Slits XE "Diffraction Patterns from Arrays of Slits"  The overall influences of slit width and pattern are a convolution of the influences of slit width and slit spacing Slit Width ( Overall Envelope of Diffraction Pattern XE "Slit Width ( Overall Envelope of Diffraction Pattern"  Slit Spacing ( Spacing of Maxima within that Envelope XE "Slit Spacing ( Spacing of Maxima within that Envelope"  Graphics from Text XE "Graphics from Text" : Figure 3.6 XE "Figure 3.6" , page 80; Diffraction Pattern Spacing from Arrays of Slits XE "Diffraction Pattern Spacing from Arrays of Slits"  Diffraction by Slits vs. Diffraction by Objects XE "Diffraction by Slits vs. Diffraction by Objects"  These discussions have focused on models of slits in walls They also work equally well with objects that cause the bending, for example: A field of Telephone Poles XE "Telephone Poles"  planted in a lake for water waves A pattern of glass or plastic rods for light waves Diffraction in Three Dimensions XE "Diffraction in Three Dimensions"  Laser Light Show XE "Laser Light Show"  Diffraction patterns form by shining light through two dimensional patterns and projected onto a screen Laser Light Show: Laser Pointer XE "Laser Pointer"  and ICE Slides XE "ICE Slides"  Graphics from Text XE "Graphics from Text" : Figure 3.7 XE "Figure 3.7" , page 82; Diffraction Patterns from Arrays of Points on a Slide XE "Diffraction Patterns from Arrays of Points on a Slide"  The Influences of Object Patterns XE "The Influences of Object Patterns"  It is most apparent that there is a reciprocal relationship XE "reciprocal relationship"  between the diffracting array and the observed pattern A square array ( a square pattern A rectangular array ( a rectangular pattern rotated 90 A hexagonal array ( a hexagonal pattern A closely spaced array ( a widely spaced pattern A widely spaced array ( a closely spaced pattern Hence the origin of the term Reciprocal Space XE "Reciprocal Space"  Quantum Mechanical Basketball XE "Quantum Mechanical Basketball"  Influences of the patterns on the court on who in the stands will get hit Influences of the player orientation, size, and shape on who in the stands will be hit  The Influences of Objects, Periodicity, Array Size, and Disorder on Diffraction Patterns XE "The Influences of Objects, Periodicity, Array Size, and Disorder on Diffraction Patterns"  Objects in the Array XE "Objects in the Array"  The size, shapes, and orientations or the objects in the array ( a continuously varying intensity of diffracted light This is like a topographic map XE "topographic map"  Pattern of the Array XE "Pattern of the Array"  The periodicity of the pattern determines the angles at which diffracted beams will be observable and hence set a mask XE "mask"  over which the continuously varying intensity pattern can be sampled This is like a piece of paper with holes punched out of it through which one looks at a topographic map XE "topographic map"  Size of the Array XE "Size of the Array"  The more objects in the array: the narrower will be each beam of light the stronger will be the total diffracted beam Disorder of the Array XE "Disorder of the Array"  The more disordered (both dynamically and statically) the array the weaker will be the diffracted beams at higher diffraction angles X-Ray Diffraction XE "X-Ray Diffraction"  What Diffracts X-Rays? XE "What Diffracts X-Rays?"  X-rays are diffracted by electrons XE "electrons"  not the nucleus so an X-ray structure solution tells you where the electrons are in the sample not where the centers of the atoms are The 180 Phase Shift for X-Rays XE "The 180 Phase Shift for X-Rays"  When a wave is reflected (e.g., a water wave off of a wall or a light wave off of a mirror) that wave gets a 180 phase shift relative to the incoming wave The same 180 Phase Shift XE "180 Phase Shift"  is typical for X-ray diffraction Graphics from Text XE "Graphics from Text" : Figure 3.8 XE "Figure 3.8" , page 84; the Phase Shift during X-Ray Scattering XE "Phase Shift during X-Ray Scattering"  Atomic Scattering Factors for X-Rays XE "Atomic Scattering Factors for X-Rays"  Since X-ray are diffracted by electrons XE "X-ray are diffracted by electrons" , the size and shape of the electron cloud will influence the diffracted intensity Graphics from Text XE "Graphics from Text" : Figure 3.12 XE "Figure 3.12" , page 90; The relationship of Relative Object Size and Wavelength to High Angle Scattering of Waves  XE "High Angle Scattering of Waves"  Graphics from Text XE "Graphics from Text" : Figure 3.13a XE "Figure 3.13a" , page 91 and Table 3.2 XE "Table 3.2"  page 92; Some Atomic Scattering Factors and Atomic Scattering Curves for X-Rays Maximum Atomic Scattering Factor, ASF XE "Maximum Atomic Scattering Factor, ASF"  More total electrons corresponds to a stronger diffracting ability Thus, the maximum Atomic Scattering Factor XE "Atomic Scattering Factor" , ASF XE "ASF" , will follow the order W > Mo > Cr, etc., O-2 >O- > O The maximum ASF value XE "maximum ASF value"  for an atom/ion is equal to the total number of electrons Because ASF is determined by the electron cloud and not by the nuclear composition, it is largely independent of the isotope XE "isotope"  Shapes of the Atomic Scattering Factor Curves XE "Shapes of the Atomic Scattering Factor Curves"  The size of the atom strongly influences the angular dependence of the diffracted intensity XE "angular dependence of the diffracted intensity"  As with slit width effects, this is due to destructive interference between X-rays scattered from different parts of the electron cloud With the same total number of electrons, larger atoms drop off more quickly (i.e., due to Zeff XE "Zeff" ) The effects of different orbitals can be calculated to give calculated ASF curves Because atoms are large with respect to the size of X-rays, X-Ray ASF curves drop off fairly rapidly and one tends not to see a lot of diffracted intensity at high angles ASF curves are typically plotted as ASF vs. sinq/l XE "sinq/l"  and are thus useful for all X-ray wavelengths Neutron Diffraction XE "Neutron Diffraction"  What Diffracts Neutrons? XE "What Diffracts Neutrons?"  Neutrons are diffracted by nuclei XE "nuclei"  Atomic Scattering Factors for Neutrons XE "Atomic Scattering Factors for Neutrons"  Neutrons XE "Neutrons"  used for diffraction have a wavelength of about 1 ( while nuclei have diameters of about 10-4 and therefore act a point diffraction objects This means that their scattered intensity is largely independent of angle Because it is nuclei that do the scattering, Neutron ASF XE "Neutron ASF"  values are different for different isotope XE "isotope"  However, they are independent of the charge on the atom/ion Graphics from Text XE "Graphics from Text" : Figure 3.13b XE "Figure 3.13b" , page 91 and Table 3.2 XE "Table 3.2" , page 92; Atomic Scatting Factors for Neutrons XE "Atomic Scatting Factors for Neutrons"  Braggs Law XE "Braggs Law"  The Experimental Truth XE "The Experimental Truth"  Braggs Law XE "Braggs Law"  states for diffraction to occur it is observed experimentally that: n l = 2 d sinq XE "n l = 2 d sinq"  Where n ( Any integer XE "n ( Any integer" , 0, 1, 2, 3, 4, etc. l ( The Wavelength of Diffracted Light XE "l ( The Wavelength of Diffracted Light"  d ( The Interplanar Spacing XE "d ( The Interplanar Spacing"  q ( The Angle between the Incident Ray and the Planes XE "q ( The Angle between the Incident Ray and the Planes"  The Myth Taught in General Chemistry XE "The Myth Taught in General Chemistry"  Diffraction Off of Planes gives Bragg s Law XE "Bragg s Law"  (may mention this is due to constructive and destructive interference)  Graphics from Text XE "Graphics from Text" : Figure 3.10b XE "Figure 3.10b" , page 87; Diffraction off of Planes The Truth About Braggs Law XE "The Truth About Braggs Law"  Graphics from Text XE "Graphics from Text" : Figure 3.9 XE "Figure 3.9" , page 85; Conditions for Diffraction so as to get Constructive Interference XE "Constructive Interference"  - Relating Diffraction Through Slits XE "Diffraction Through Slits"  to Diffraction off of Planes XE "Diffraction off of Planes"  Graphics from Text XE "Graphics from Text" : Figures 3.10a and b XE "Figures 3.10a and b" , pages 86 and 87; Interference and Braggs Law XE "Interference and Braggs Law"  Which planes are we talking about? XE "Which planes are we talking about?"  Diagram of planes from a section of crystal Graphics from Text XE "Graphics from Text" : Figure 2.12 XE "Figure 2.12" , page 34; the Indexing of Crystal Faces XE "Indexing of Crystal Faces"  The minimum incidence angle XE "incidence angle"  ( reflections off of pairs of planes that are one layer apart and would be the 1 0 0 reflections The next angle ( reflections off to pairs of planes two layers apart and would be referred to as the 2 0 0 reflection The third smallest angle ( reflections off to pairs of planes three layers apart and would be referred to as the 3 0 0 reflection Thus the 1 0 0, the 2 0 0, the 3 0 0, etc., reflections all come off of a set of parallel planes that intersect the x axis but not the y and z axes Getting Unit Cell Parameters from Interplanar Spacings XE "Getting Unit Cell Parameters from Interplanar Spacings"  Once one measures the observed angles of a dozen or so reflections, it is an exercise in geometry to calculate the unit cell parameters XE "unit cell parameters"  Obviously the more accurate the angles (and the larger the number) the more accurate will be the unit cell parameters Graphics from Text XE "Graphics from Text" : Table 3.1 XE "Table 3.1" , page 88; Obtaining Unit Cell Dimensions XE "Unit Cell Dimensions"  from dhkl Values XE "dhkl Values"  Anomalous Scattering XE "Anomalous Scattering"  The Origins of Anomalous Scattering XE "The Origins of Anomalous Scattering"  Upon diffraction from an array of atoms, most of the time the phase shift is approximately 180 In the ideal case, the absorption of radiation by an element increases smoothly with increasing wavelength Occasionally, when the incident radiation is similar in energy to the energy required to excite or ionize a bound electron, there will be a spike in the absorption curve called an Absorption Edge XE "Absorption Edge"  Graphics from Text XE "Graphics from Text" : Figure 6.23 XE "Figure 6.23" , page 219; Absorption Curves for some representative atoms XE "Absorption Curves for some representative atoms"  If the wavelength of the incident radiation is near the absorption edge of an element then the phase shift is likely to be significantly different than 180, more later Anomalous Scattering and Neutrons XE "Anomalous Scattering and Neutrons"  For neutrons, anomalous scattering is dependent on the isotope one uses and can be used to readily distinguish isotopes XE "isotopes"  in different positions Graphics from Text XE "Graphics from Text" : Table 3.2 XE "Table 3.2" , page 92; Atomic Scattering Factor Table including an example of Anomalous Scattering for 6Li Anomalous Scattering and X-Rays XE "Anomalous Scattering and X-Rays"  As we will see later, this is very important for X-rays both in helping to estimate phases of complex molecules such as proteins and in absolute structure determinations XE "absolute structure determinations"  where anomalous scattering XE "anomalous scattering"  makes reflection h k l ( -h -k -l XE "h k l ( -h -k -l"  The Ewald Sphere XE "The Ewald Sphere"  The Ewald Sphere XE "Ewald Sphere"  is a way of thinking about when a crystal will be at the right orientation for a reflection to occur Graphics from Text XE "Graphics from Text" : Figure 3.17 XE "Figure 3.17" , pages 98 and 99, The Origin of the Ewald Sphere XE "Ewald Sphere"  Symmetry XE "Symmetry"  Based primarily on: Chapter 4 XE "Chapter 4"  (G, L, & R, pages 105-141) XSCANS Tutorial Guide and Reference Guide XE "XSCANS Tutorial Guide and Reference Guide"  (Bruker-AXS XE "Bruker-AXS" ) The International Tables XE "International Tables"  (Symmetry and Space Group Determination Sections) Software Package: Crystallographic CourseWare XE "Crystallographic CourseWare"  (M. Kastner XE "M. Kastner" , Bucknell University XE "Bucknell University" ): An exceptionally useful and user friendly package to learn about symmetry and many aspects of diffraction methods Ask Students: XE "Ask Students\:"  What do you know about Symmetry XE "Symmetry" ? Introduction to Symmetry XE "Introduction to Symmetry"  Symmetry XE "Symmetry"  tell us about patterns in shapes in a very concise way and is very important in interpreting crystallographic data We will not be discussing symmetry in detail in 2000 (but will in the Semester version of the course) but will look at some high points Origin and Choice of the Unit Cell XE "Origin of the Unit Cell"  The Origin of the Unit Cell XE "Origin of the Unit Cell"  is entirely arbitrary but for the sake of simplicity it is usually chosen as the point of highest symmetry in the unit cell Note: The molecule(s) in the unit cell do not have to be in the center and in fact are often split between adjacent unit cells For each lattice, one can choose an infinite number of unit cells The only criterion is that, when duplicated side by side, the unit cell must reproduce the structure of the whole crystals The unit cell can be chosen with different sizes and shapes The Primitive Unit Cell XE "The Primitive Unit Cell"  is the smallest unit cell possible with its angles being as close to 90 as possible Graphics from Text XE "Graphics from Text" : Figures 4.1a and b XE "Figures 4.1a and b" , pages 106 and 107; Examples of Choices of Unit Cells XE "Choices of Unit Cells"  Symmetry Operations XE "Symmetry Operations"  Symmetry operations are geometric activities that convert an object back into itself It can be a point, a line, or a plane Graphics from Text XE "Graphics from Text" : Figure 4.2 XE "Figure 4.2" , page 108; The Symmetry of Benzene XE "Benzene"  Graphics from Text XE "Graphics from Text" : Table 4.1 XE "Table 4.1" , page 116; Table of Symmetry Operations XE "Table of Symmetry Operations"  Point Groups XE "Point Groups"  Point Groups are a collection of symmetry operations characteristic of an object that is fixed in space These are widely used in Physical Chemistry XE "Physical Chemistry"  and Spectroscopy XE "Spectroscopy"  to simplify calculations and predict spectra There are 32 Unique Point Groups XE "32 Unique Point Groups"  relevant to the Crystalline State Space Groups XE "Space Groups"  Space Groups are a collection of Symmetry Operations XE "Symmetry Operations"  characteristic of an object that is arranged periodically in space These are widely used in Solid State Chemistry XE "Solid State Chemistry"  and Materials Science XE "Materials Science"  to simplify calculations and understand extended solids There are 230 Unique Space Groups XE "230 Unique Space Groups"  Some of these are very commonly found while others have yet to be observed in nature Point Symmetry Operations XE "Point Symmetry Operations"  Point Symmetry Operations are a symmetry elements characteristic of an individual object No Translational Symmetry Operations XE "Translational Symmetry Operations"  are allowed Rotation Axes XE "Rotation Axes"  Rotation Axes occur when one rotates an object about a line passing through its center A n-fold rotation rotates an object through 360/n XE "360/n"  leaving the object unchanged n=1 ( A Onefold Rotation XE "Onefold Rotation"  rotates the object through 360 This rotation is also referred to as the Identity Operation XE "Identity Operation"  n=2 ( A Twofold Rotation XE "Twofold Rotation"  rotates the object through 180 Graphics from Text XE "Graphics from Text" : Figure 4.3 XE "Figure 4.3" , page 110; Two Fold Rotation Axes XE "Two Fold Rotation Axes"   n=3 ( A Threefold Rotation XE "Threefold Rotation"  rotates the object through 120 n=4 ( A Fourfold Rotation XE "Fourfold Rotation"  rotates the object through 90 n=5 ( A Fivefold Rotation XE "Fivefold Rotation"  rotates the object through 72 This is allowed in individual molecules but not allowed in crystalline materials n=6 ( A Sixfold Rotation XE "A Sixfold Rotation"  rotates the object through 60 Mirror Planes XE "Mirror Planes"  A Mirror Plane converts an object into its Mirror Image XE "Mirror Image"  Objects may have more than one mirror planes in them  Graphics from Text XE "Graphics from Text" : Figure 4.4 XE "Figure 4.4" , page 111; Mirror Planes XE "Mirror Planes"  Inversion Centers XE "Inversion Centers"  An Inversion Center turns a molecule inside out XE "inside out"  It is often referred to as i XE "i"  or as 1bar XE "1bar"   Graphics from Text XE "Graphics from Text" : Figure 4.5 XE "Figure 4.5" , page 112; Center of Symmetry XE "Center of Symmetry"  Rotary Inversion Axes XE "Rotary Inversion Axes"  A Rotatory Inversion Axis XE "Rotatory Inversion Axis"  is a Rotation by 360/n followed by an inversion across a center of symmetry A n-fold rotation rotates an object through 360/n XE "360/n"  followed by inversion leaving the object unchanged n=1 ( A Onefold Rotatory Inversion XE "Onefold Rotatory Inversion"  rotates the object through 360 and then inverts it This rotation is the same as the Inversion Center XE "Inversion Center"  This is referred to as 1bar n=2 ( A Twofold Rotatory Inversion XE "Twofold Rotatory Inversion"  rotates the object through 180 and then inverts it This is referred to as 2bar This is equivalent to a Mirror Plane XE "Mirror Plane"  Graphics from Text XE "Graphics from Text" : Figure 4.6 XE "Figure 4.6" , pages 113 and 114; Twofold Rotatory Inversion Axis XE "Twofold Rotatory Inversion Axis"  n=3 ( A Threefold Rotatory Inversion XE "Threefold Rotatory Inversion"  rotates the object through 120 and then inverts it This is referred to as 3bar XE "3bar"  n=4 ( A Fourfold Rotatory Inversion XE "Fourfold Rotatory Inversion"  rotates the object through 90 and then inverts it This is referred to as 4bar XE "4bar"  n=5 ( A Fivefold Rotatory Inversion XE "Fivefold Rotatory Inversion"  rotates the object through 72 and then inverts it This is referred to as 5bar XE "5bar"  This is allowed in individual molecules but not allowed in crystalline materials n=6 ( A Sixfold Rotatory Inversion XE "Sixfold Rotatory Inversion"  rotates the object through 60 and then inverts it This is referred to as 6bar XE "6bar"  Point Groups and Chiral Molecules XE "Point Groups and Chiral Molecules"  Proper Symmetry Operations XE "Proper Symmetry Operations"  Proper Symmetry Operations do not change the handedness of objects XE "handedness of objects"  Translations XE "Translations"  Rotations XE "Rotations"  Improper Symmetry Operations XE "Improper Symmetry Operations"  Improper Symmetry Operations do change the handedness of objects XE "handedness of objects"  (i.e., they convert it to its mirror image XE "mirror image" ) Reflections XE "Reflections"  Inversions XE "Inversions"  Point Groups and Handedness XE "Point Groups and Handedness"  If a molecule is Chiral XE "Chiral" , it can never be in a Point Group XE "Point Group"  that includes Improper Symmetry Operations XE "Improper Symmetry Operations"  because they would then be superimposable on their mirror image XE "mirror image"  Hermann-Mauguin vs. Schoenflies Symbols XE "Hermann-Mauguin vs. Schoenflies Symbols"  Point Groups XE "Point Groups"  can be indicated by one of two systems of nomenclature Schoenflies XE "Schoenflies"  is what is used most commonly by Chemists XE "Chemists"  such as Spectroscopists XE "Spectroscopists"  Hermann-Mauguin XE "Hermann-Mauguin"  is used by Crystallographers XE "Crystallographers"  Graphics from Text XE "Graphics from Text" : Table 4.1 XE "Table 4.1" , page 116; Conversions from Schoenflies XE "Schoenflies"  to Hermann-Mauguin XE "Hermann-Mauguin"  Symbols for Point Groups XE "Point Groups"  Graphics from Text XE "Graphics from Text" : Figure 4.7 XE "Figure 4.7" , page 117; The Symmetry of a Cube XE "Cube"  Rotation XE "Rotation"  Rotation + Perpendicular Reflections XE "Perpendicular Reflections"  Rotation + Plane(s) Through the Axis XE "Plane(s) Through the Axis"  Rotatory Inversion XE "Rotatory Inversion"  Rotation (n) + n Perpendicular Twofold Axes XE "Perpendicular Twofold Axes"  Rotation (n) + n Perpendicular Twofold Axes + Perpendicular Reflections Rotation (n) + n Perpendicular 2 Fold Axes + Perpendicular Reflections XE "Perpendicular Reflections"  + Diagonal XE "Diagonal"  Cubic Space Groups XE "Cubic Space Groups"  Symmetries of Regularly Repeating Objects XE "Symmetries of Regularly Repeating Objects"  Crystallographic Point Groups XE "Crystallographic Point Groups"  (i.e., those in solids) must leave the whole crystal unchanged As a consequence only 2, 3, 4, and 6 fold symmetries are allowed (Fivefold Symmetry XE "Fivefold Symmetry" ) is forbidden As a consequence, there are only 32 Allowed Point Groups XE "32 Allowed Point Groups"  in the Crystalline State XE "Crystalline State"  Graphics from Text XE "Graphics from Text" : Figure 4.8 XE "Figure 4.8" , page 119; Fivefold Symmetry XE "Fivefold Symmetry"  vs. Threefold, Fourfold, and Sixfold Symmetry XE "Sixfold Symmetry"  Crystal Systems ( Space Groups XE "Crystal Systems ( Space Groups"  The 7 Crystal Systems XE "The 7 Crystal Systems"  The Seven Crystal Systems XE "Seven Crystal Systems"  are characterized by their Lattice Symmetries XE "Lattice Symmetries"  (which also constrain their allowed unit cell axial lengths and angles) Graphics from Text XE "Graphics from Text" : Table 4.2 XE "Table 4.2" , page 120; The Seven Crystal Systems XE "Seven Crystal Systems"  Triclinic XE "Triclinic"  Symmetry is the Identity or Inversion Lattice (Laue) Symmetry ( 1bar XE "1bar"  a ( b ( c XE "a ( b ( c"  a ( ( ( g XE "a ( ( ( g"  Monoclinic XE "Monoclinic"  Symmetry is a single Twofold Rotation or Rotatory Inversion XE "Twofold Rotation or Rotatory Inversion"  axis along b Lattice (Laue) Symmetry ( 2/m XE "2/m"  a ( b ( c XE "a ( b ( c"  a = g = 90 XE "a = g = 90"  ( ( 90 XE "( ( 90"  Orthorhombic XE "Orthorhombic"  Symmetry is three mutually perpendicular Twofold Rotation or Rotatory Inversion axes XE "Twofold Rotation or Rotatory Inversion axes"  along a, b, and c Lattice (Laue) Symmetry ( mmm XE "mmm"  a ( b ( c XE "a ( b ( c"  a = ( = g = 90 XE "a = ( = g = 90"  Tetragonal XE "Tetragonal"  Symmetry is a single Fourfold Rotation or Rotatory Inversion axis XE "Fourfold Rotation or Rotatory Inversion axis"  along c A  face stretched cube XE "face stretched cube"  Lattice (Laue) Symmetry ( 4/mmm XE "4/mmm"  a = b ( c XE "a = b ( c"  a = ( = g = 90 XE "a = ( = g = 90"  Cubic XE "Cubic"  Symmetry is four Threefold axes along a+b+c XE "a+b+c" , -a+b+c XE "-a+b+c" , a-b+c XE "a-b+c" , and -a-b+c XE "-a-b+c"  Lattice (Laue) Symmetry ( m3m XE "m3m"  a = b = c XE "a = b = c"  a = ( = g = 90 XE "a = ( = g = 90"  Trigonal XE "Trigonal"  Symmetry is a single Threefold Rotation or Rotatory Inversion axis XE "Threefold Rotation or Rotatory Inversion axis"  along a+b+c XE "a+b+c"  A  corner stretched cube Lattice (Laue) Symmetry ( 3(bar)m XE "3(bar)m"  a = b = c XE "a = b = c"  a = ( = 90  XE "a = ( = 90 " Table in Text Incorrect??? g ( 90 XE "g ( 90" , g < 120 XE "g < 120"  Table in Text Incorrect??? Hexagonal XE "Hexagonal"  Symmetry is a single Sixfold Rotation or Rotatory Inversion axis XE "Sixfold Rotation or Rotatory Inversion axis"  along c Lattice (Laue) Symmetry ( 6/mmm XE "6/mmm"  a = b ( c XE "a = b ( c"  a = ( = 90  XE "a = ( = 90 "  g = 120 XE "g = 120"  Centering of Unit Cells XE "Centering of Unit Cells"  Centering XE "Centering"  relates to how many lattice points are in each unit cell and where are any additional lattice points located There are four possible types: P XE "P" , (C XE "C" , A XE "A" , or B XE "B" ), I XE "I" , and F XE "F"  (plus R XE "R" ) When Primitive Centering XE "Primitive Centering"  is found with the Trigonal Crystal System XE "Trigonal Crystal System" , this is referred to as Primitive Rhombohedral XE "Primitive Rhombohedral" , R XE "R" , rather than Primitive, P, Centering Graphics from Text XE "Graphics from Text" : Table 4.3 XE "Table 4.3" , page 121; Diagrams at the bottom of the table of the five types of Centering XE "Centering"  Primitive Centering XE "Primitive Centering"  The Primitive Unit Cell XE "Primitive Unit Cell"  contains only a single lattice point XE "lattice point"  (at its corners (the other centerings have this same corner lattice point)) This means that each unit cell has only 1 lattice point This type of centering is designated as P XE "P"  When Primitive Centering is found with the Trigonal Crystal System, this is referred to as Primitive Rhombohedral, R, rather than Primitive, P, Centering Body Centered XE "Body Centered"  The Body Centered Unit Cell XE "Body Centered Unit Cell"  contains a second lattice point at the center of the unit cell This means that each unit cell has 2 lattice points This type of centering is designated as I XE "I"  Face Centered XE "Face Centered"  The Face Centered Unit Cell XE "Face Centered Unit Cell"  contains a second lattice point in the middle of two opposite faces of the unit cell This means that each unit cell has 2 lattice points This may be the C XE "C" , A XE "A" , or B XE "B"  faces This type of centering is designated as C All Face Centered XE "All Face Centered"  The All Face Centered Unit Cell XE "All Face Centered Unit Cell"  contains centering on all faces This means that each unit cell has 4 lattice points This type of centering is designated as F XE "F"  The 14 Bravais Lattices XE "The 14 Bravais Lattices"  If one combines the 7 Crystal Systems XE "7 Crystal Systems"  with the 4 Types of Centering XE "4 Types of Centering" , there are only 14 combinations consistent with three dimensional ordered arrays These are referred to as the 14 Bravais Lattices XE "14 Bravais Lattices"  Each is associated with two to seven unique Crystallographic Point Groups XE "Crystallographic Point Groups"  7 Crystal Systems XE "7 Crystal Systems"  + 4 Centering Types XE "4 Centering Types"  ( 14 Bravais Lattices XE "14 Bravais Lattices"  Graphics from Text XE "Graphics from Text" : Table 4.3 XE "Table 4.3" , page 121; The 14 Bravais Lattices XE "14 Bravais Lattices" , 32 Crystallographic Point Groups XE "32 Crystallographic Point Groups"  (Crystal Classes XE "Crystal Classes" ), and Some Representative Space Groups XE "Space Groups"  Graphics from Text XE "Graphics from Text" : Figure 4.9 XE "Figure 4.9" , page 122; The 14 Bravais Lattices XE "14 Bravais Lattices"  (7 Primitive XE "Primitive"  and 7 Nonprimitive XE "Nonprimitive" ) The 230 Space Groups XE "The 230 Space Groups"  The 32 Crystallographic Point Groups XE "32 Crystallographic Point Groups"  must fit into the Symmetries of the 14 Bravais Lattices XE "14 Bravais Lattices"  Each Crystallographic Point Group is used only once They must be consistent with translational symmetry This produces the 230 Crystallographic Space Groups XE "230 Crystallographic Space Groups"  14 Bravais Lattices XE "14 Bravais Lattices"  + 32 Crystallographic Point Groups XE "32 Crystallographic Point Groups"  ( 230 Crystallographic Space Groups XE "230 Crystallographic Space Groups"  Graphics from Text XE "Graphics from Text" : Table 4.3 XE "Table 4.3" , page 121; The 14 Bravais Lattices XE "14 Bravais Lattices" , 32 Crystallographic Point Groups XE "32 Crystallographic Point Groups"  (Crystal Classes XE "Crystal Classes" ), and Some Representative Space Groups XE "Space Groups"  Three Dimensional Symmetry Operations XE "Three Dimensional Symmetry Operations"  With crystalline arrays, additional symmetry elements that involve translations are introduced Translations XE "Translations"  Straight Translations must be present to get a lattice and occur in each dimension to build up the three dimensional lattice from the unit cell contents Graphics from Text XE "Graphics from Text" : Figure 4.10 XE "Figure 4.10" , page 123; Translational Symmetry XE "Translational Symmetry"  Screw Axes XE "Screw Axes"  Screw Axes involve translations some small fraction of the unit cell length while rotating around an axis The symbol for a Screw axis is nq XE "nq"  n tells us the amount of rotation (i.e., 360/n XE "360/n" ) q tells us the fraction of the unit cell translated (i.e., a q/n translation, thus 43 involves a 3/4 translation) This does not change the handedness XE "handedness"  of objects A 41 screw axis XE "41 screw axis"  involves a 90 rotation while moving 1/4 the way along the unit cell length A 42 screw axis XE "42 screw axis"  involves a 90 rotation while moving 2/4 (1/2) the way along the unit cell length A 43 screw axis XE "43 screw axis"  involves a 90 rotation while moving 3/4 the way along the unit cell length Note: 41 and 43 are equivalent (i.e., referred to as enantiomorphic XE "enantiomorphic" ) Graphics from Text XE "Graphics from Text" : Figure 4.11 XE "Figure 4.11" , page 124; A Twofold Screw Axis XE "Twofold Screw Axis"  Graphics from Text XE "Graphics from Text" : Figure 4.13 XE "Figure 4.13" , page 126; The Relationship Between Symmetry Operations XE "Symmetry Operations"  with and without a Translation XE "Translation" , the Relationship between a Twofold Rotation Axis XE "Twofold Rotation Axis"  and a Twofold Screw Axis XE "Twofold Screw Axis"  Glide Planes XE "Glide Planes"  Glide Planes involve translations some small fraction of the unit cell length while inverting through the mirror plane a Glides XE "a Glides" , b Glides XE "b Glides" , and c Glides XE "c Glides"  involve a a/2 XE "a/2" , b/2 XE "b/2" , and c/2 XE "c/2"  axis translation i.e., a Glide XE "a Glide"  involves a translation 1/2 of the length of the a axis and reflection through a plane Graphics from Text XE "Graphics from Text" : Figure 4.12 XE "Figure 4.12" , page 125; A Glide Plane XE "Glide Plane"  n Glides XE "n Glides"  involve a translation 1/2 the length of the diagonal 1/2(b+c) XE "1/2(b+c)" , 1/2(c+a) XE "1/2(c+a)" , or 1/2(a+b) XE "1/2(a+b)"  d Glides XE "d Glides"  involve a translation 1/4 the length of the diagonal 1/4(b(c) XE "1/4(b(c)" , 1/4(c(a) XE "1/4(c(a)" , or 1/4(a(b) XE "1/4(a(b)"  Graphics from Text XE "Graphics from Text" : Figure 4.13 XE "Figure 4.13" , page 126; The Relationship Between Symmetry Operations XE "Symmetry Operations"  with and without a Translation XE "Translation" , the Relationship between a Mirror Plane and XE "Mirror Plane and"  a Glide Plane XE "Glide Plane"  Symmetry in some Real Crystals XE "Symmetry in some Real Crystals"  Graphics from Text XE "Graphics from Text" : Figures 4.14a and b XE "Figures 4.14a and b" , pages 129 and 130; The Symmetry found (and Equivalent Positions) in Hydrated Citric Acid XE "Citric Acid"  and Anhydrous Citric Acid Crystals Review of Crystal Systems ( Space Groups XE "Review of Crystal Systems ( Space Groups"  7 Crystal Systems XE "7 Crystal Systems"  + 4 Centering Types XE "4 Centering Types"  ( ( ( 14 Bravais Lattices XE "14 Bravais Lattices"  + 32 Crystallographic Point Groups XE "32 Crystallographic Point Groups"  ( ( (Translational Symmetry XE "Translational Symmetry" ) ( 230 Crystallographic Space Groups XE "230 Crystallographic Space Groups"  Symmetry in the Diffraction Pattern XE "Symmetry in the Diffraction Pattern"  Equivalent Positions XE "Equivalent Positions"  The Asymmetric Unit XE "Asymmetric Unit"  is the smallest unit from which the actions of the Space Group Symmetry XE "Space Group Symmetry"  will produce the entire contents of the crystal When the complete set of Space Group Symmetry Elements XE "Space Group Symmetry Elements"  acts upon the Asymmetric Unit each position x y z in the asymmetric unit may be converted into other Equivalent Positions XE "Equivalent Positions"  within the Unit Cell XE "Unit Cell"  Graphics from Text XE "Graphics from Text" : Table 4.4 XE "Table 4.4" , page 128; Table of Equivalent Positions XE "Equivalent Positions"  in some Common Space Groups Graphics from Text XE "Graphics from Text" : Figures 4.14a and b XE "Figures 4.14a and b" , pages 129 and 130; The Symmetry found (and Equivalent Positions) in Hydrated Citric Acid and Anhydrous Citric Acid Crystals Friedel's Law XE "Friedel's Law"  It commonly occurs that not all reflections in the data set have different intensities, rather we often see in Friedel Symmetry XE "Friedel Symmetry"  that sets of reflections have exactly equal intensities For many crystals, the intensity pattern in the data is exactly Centrosymmetric This is called Friedels Law which states I(h k l) = I(-h -k -l) XE "I(h k l) = I(-h -k -l)"  This means that in these cases one half of the data should be an exact duplicate of the other The only exceptions to Friedels Law occur when one or more atoms in the structure Anomalous Scatterers XE "Anomalous Scatterers"  (from which one may deduce Absolute Configurations XE "Absolute Configurations" ) Graphics from Text XE "Graphics from Text" : Figure 4.15 XE "Figure 4.15" , page 131; An example to Illustrate Friedel Symmetry in Diffraction Data XE "Friedel Symmetry in Diffraction Data"  Symmetry of Packing ( Symmetry of Diffraction Pattern XE "Symmetry of Packing ( Symmetry of Diffraction Pattern"  All of the Symmetry of Crystal Packing XE "Crystal Packing"  will be reflected (in an inverse manner) in the Symmetry of the Diffracted Data XE "Diffracted Data"  Thus, from the Symmetry of the Diffracted Data we can infer the Symmetry of the Crystal Packing This is how one determines the Space Group XE "Space Group"  and even some structural information Laue Symmetry XE "Laue Symmetry"  Laue Symmetry is all of the Symmetry of the Diffracted Data XE "Diffracted Data"  other than Friedel Symmetry XE "Friedel Symmetry"  This extra symmetry can be used to reduce the amount of data collected or help to be sure of the Crystal System XE "Crystal System"  (i.e., the axial lengths and angle are not enough because they may be accidentally these values) Graphics from Text XE "Graphics from Text" : Figure 4.16 XE "Figure 4.16" , page 131; An example to Illustrate the Fourfold Laue Symmetry in Diffraction Data XE "Fourfold Laue Symmetry in Diffraction Data"  Examples of Using Laue Symmetry to Determine Crystal System XE "Examples of Using Laue Symmetry to Determine Crystal System" : Graphics from Text XE "Graphics from Text" : Figure 4.17 XE "Figure 4.17" , page 132; Laue Symmetry XE "Laue Symmetry"  in the Diffraction Data of Monoclinic XE "Monoclinic"  and Orthorhombic XE "Orthorhombic"  Crystals Monoclinic Crystals XE "Monoclinic Crystals"  will have: I(h k l) = I(-h k -l) XE "I(h k l) = I(-h k -l)"  But I(h k l) ( I(-h k l) XE "I(h k l) ( I(-h k l)"  [Of course from Friedel XE "Friedel"  I(h k l) = I(-h -k -l) XE "I(h k l) = I(-h -k -l)" ] Orthorhombic Crystals XE "Orthorhombic Crystals"  (three mutually perpendicular Twofold Axes XE "Twofold Axes" ) will have: I(h k l) = I(-h k l) = I(h -k l) = I( h k -l) XE "I(h k l) = I(-h k l) = I(h -k l) = I( h k -l)"  Therefore is one observes that I(h k l) = I(-h k l) XE "I(h k l) = I(-h k l)"  (within statistical error for a representative collection of reflections) then we can be certain a crystal is really Orthorhombic XE "Orthorhombic"  and not just a Monoclinic XE "Monoclinic"  Crystal that just happens to have ( = 90 XE "( = 90"  Diffraction Data, Unit Cell Parameters, and the Crystal System XE "Diffraction Data, Unit Cell Parameters, and the Crystal System"  The Laue Symmetry of the Diffraction Data XE "Laue Symmetry of the Diffraction Data" , and not the Unit Cell Dimensions XE "Unit Cell Dimensions" , is the best way to Determine the Crystal System XE "Crystal System"  (see example above) Space Group Determination from Diffraction Data XE "Space Group Determination from Diffraction Data"  In 2000 we will not look at this in detail due to time limitations but you do need to be familiar with the general principles Graphics from Text XE "Graphics from Text" : Figure 4.18 XE "Figure 4.18" , page 133; Three examples to Illustrate the use of Symmetry in Diffraction Data to Determine Space Groups XE "Symmetry in Diffraction Data to Determine Space Groups"  Systematic Absences ( Centering XE "Systematic Absences ( Centering"  Centering as Translational Symmetry XE "Centering as Translational Symmetry"  Centering XE "Centering"  of Unit Cells XE "Unit Cells"  leads to easily predicted changes in the diffraction data The different Lattice Points XE "Lattice Points"  in a Nonprimitive Unit Cell XE "Nonprimitive Unit Cell"  can be thought of as a type of Translational Symmetry XE "Translational Symmetry"  Example: A Centering XE "Example\: A Centering"  Thus A Centering XE "A Centering"  can be thought of as a translation of the Corner Lattice Point XE "Corner Lattice Point"  from the corners of the unit cell half way up both the b and c axes to give the second Lattice Pont in the middle of the A Face XE "A Face"  This is stated as a b/2 + c/2 XE "b/2 + c/2"  Translation This Translation means that all reflections having the Sum of the k and l indices being odd will be Systematically Absent XE "Systematically Absent"  This is stated as a k = l odd Systematic Absence XE "k = l odd Systematic Absence"  Getting Centering from Systematic Absences XE "Getting Centering from Systematic Absences"  These absences will be found in all of the data whatever the values of h k and l (i.e., none have to be zero) No general absences ( P Centering  XE "P Centering "  (no translation) k + l odd absent XE "k + l odd absent"  ( A Centering XE "A Centering"  (b/2 + c/2 translation XE "b/2 + c/2 translation" ) l + h odd absent XE "l + h odd absent"  ( B Centering XE "B Centering"  (c/2 + a/2 translation XE "c/2 + a/2 translation" ) h + k odd absent XE "h + k odd absent"  ( C Centering XE "C Centering"  (a/2 + b/2 translation XE "a/2 + b/2 translation" ) h k l two odd or two even absent XE "h k l two odd or two even absent"  (all odd or all even present) ( F Centering XE "F Centering"  ((a + b)/2 XE "(a + b)/2" , (b + c)/2 XE "(b + c)/2" , and (a + c)/2 XE "(a + c)/2"  translations) h + k + l odd absent XE "h + k + l odd absent"  ( I Centering XE "I Centering"  ((a + b + c)/2 translation XE "(a + b + c)/2 translation" ) Graphics from Text XE "Graphics from Text" : Table 4.5 XE "Table 4.5" , page 134; Examples of Using Systematic Absence Data XE "Systematic Absence Data"  to Determine Centering (Bravais Lattice) Information XE "Centering (Bravais Lattice) Information"  Systematic Absences ( Translational Symmetry XE "Systematic Absences ( Translational Symmetry"  Systematic Absences when One or Two Indices are Zero XE "Systematic Absences when One or Two Indices are Zero"  Translational Symmetry XE "Translational Symmetry"  gives rise to Systematic Absences XE "Systematic Absences"  that are observed when either one or two of the indices are zero Graphics from Text XE "Graphics from Text" : Table 4.5 XE "Table 4.5" , page 134; Examples of Using Systematic Absence Data XE "Systematic Absence Data"  to Determine Translational Symmetry Elements XE "Translational Symmetry Elements"  (Screw Axes XE "Screw Axes"  and Glide Planes XE "Glide Planes" ) A complete listing of these rules is given in the International Tables XE "International Tables"  Screw Axis Determinations from Systematic Absences XE "Screw Axis Determinations from Systematic Absences"  A Twofold Screw Axis XE "Twofold Screw Axis" , 21 XE "21" , along a will make h 0 0 be systematically absent when h is an odd number due to the a/2 translation A Twofold Screw Axis, 21, along b will make 0 k 0 be systematically absent when k is an odd number due to the b/2 translation A Twofold Screw Axis, 21, along c will make 0 0 l be systematically absent when l is an odd number due to the c/2 translation A Threefold Screw Axis XE "Threefold Screw Axis" , 31 XE "31"  or 32 XE "32" , along c will make 0 0 l be systematically absent when l = 3n + 1 XE "l = 3n + 1"  or l = 3n + 2 XE "l = 3n + 2"  due to the c/3 or a 2c/3 translation Glide Plane Determinations from Systematic Absences XE "Glide Plane Determinations from Systematic Absences"  A Glide Plane XE "Glide Plane"  Perpendicular to axis a translating along b, b glide, will make 0 k l be systematically absent when k is an odd number due to the b/2 translation A Glide Plane Perpendicular to axis a translating along c, c glide, will make 0 k l be systematically absent when l is an odd number due to the c/2 translation Laue (Crystal System) Determination XE "Laue (Crystal System) Determination"  When one collects the full diffraction data in either tabular or graphical form, one can look for Patterns in Equivalent Intensities of the Diffraction Data and from these determine the Laue Symmetry (i.e., the Crystal System XE "Crystal System" ; Triclinic XE "Triclinic" , Monoclinic XE "Monoclinic" , Orthorhombic XE "Orthorhombic" , Tetragonal XE "Tetragonal" , Cubic XE "Cubic" , Trigonal XE "Trigonal" , and Hexagonal XE "Hexagonal" ) This can initially be done by looking at a representative set of reflection intensities Graphics from Text XE "Graphics from Text" : Table 4.2 XE "Table 4.2" , page 120; The Seven Crystal Systems XE "Seven Crystal Systems"  Bravais Determination XE "Bravais Determination"  When one collects the full diffraction data in either tabular or graphical form, one can look for Systematic Absences XE "Systematic Absences"  and from these deduce the various types of Translational Symmetry XE "Translational Symmetry"  present This can initially be done by looking at a representative set of reflection intensities From the General Systematic Absences XE "General Systematic Absences"  (i.e., for all non-zero values of h k and l) one can deduce the Centering Type XE "Centering Type"  from the 4 unique possibilities (i.e., P XE "P" , A XE "A" , B XE "B" , C XE "C" , F XE "F" , or I XE "I" ) From the Crystal System XE "Crystal System"  and Centering Type XE "Centering Type"  information one gets which of the 14 Bravais Lattice Types XE "14 Bravais Lattice Types"  one has Graphics from Text XE "Graphics from Text" : Table 4.3 XE "Table 4.3"  and Figure 4.9 XE "Figure 4.9" , pages 121 and 122; The Fourteen Bravais Lattice Types XE "Fourteen Bravais Lattice Types"  (and their associated Point Groups XE "Point Groups"  as well as some representative Space Groups XE "Space Groups" ) Space Group Determination XE "Space Group Determination"  When one collects the full diffraction data in either tabular or graphical form, one can look for Systematic Absences XE "Systematic Absences"  in the data for cases when one or two of the Indices are zero XE "Indices are zero"  (i.e., h 0 0 XE "h 0 0" , 0 k 0 XE "0 k 0" , 0 0 l XE "0 0 l" , h k 0 XE "h k 0" , h 0 l XE "h 0 l" , and 0 k l XE "0 k l" ) and from these deduce the various types of Translational Symmetry XE "Translational Symmetry"  present (i.e., Screw Axes XE "Screw Axes"  and Glide Planes XE "Glide Planes"  present (symmetry of the Point Group)) This really needs to be done with a fairly complete data set but one can get a good idea but just collecting these Special Classes of Reflections XE "Special Classes of Reflections"  From this information one can reduce the possible choices of 230 Space Groups XE "230 Space Groups"  to (ideally) one or a few Graphics from Text XE "Graphics from Text" : Table 4.6 XE "Table 4.6" , page 135; Space Groups and the Symmetry Elements of Objects in Them XE "Space Groups and the Symmetry Elements of Objects in Them"  Space Group Ambiguity XE "Space Group Ambiguity"  When two or more Space Groups fit, you have a Space Group Ambiguity XE "Space Group Ambiguity"  (which often revolves around whether you have a Center of Symmetry XE "Center of Symmetry" ; which must be resolved otherwise) Physical Properties of Crystals XE "Physical Properties of Crystals"  Based primarily on Chapter 5 XE "Chapter 5"  (G, L, & R, pages 143-183). Ask Students: XE "Ask Students\:"  What do you know about the Physical Properties of Crystals XE "Physical Properties of Crystals" ? Mechanical Properties of Crystals XE "Mechanical Properties of Crystals"  Hardness of Crystals XE "Hardness of Crystals"  Cleavage of Crystals XE "Cleavage of Crystals"  Optical Properties of Crystals XE "Optical Properties of Crystals"  The Nature of Light XE "The Nature of Light"  Isotropic and Anisotropic Crystals XE "Isotropic and Anisotropic Crystals"  Pleochromism XE "Pleochromism"  Refraction of Light XE "Refraction of Light"  Birefringence of Light XE "Birefringence of Light"  Polarization of Light XE "Polarization of Light"  Optical Activity and Crystals XE "Optical Activity and Crystals"  Electrical Effects of Crystals XE "Electrical Effects of Crystals"  Piezoelectric Effects XE "Piezoelectric Effects"  Pyroelectric Effects XE "Pyroelectric Effects"  Non-Linear Optical Phenomenon XE "Non-Linear Optical Phenomenon"  Chemical Effects of Crystal Form XE "Chemical Effects of Crystal Form"  Crystal Forms and Chemical Reactivity XE "Crystal Forms and Chemical Reactivity"  Different Faces Different Reactions XE "Different Faces Different Reactions"  Crystal Forms and Explosive Power XE "Crystal Forms and Explosive Power"  Image Generation from Diffracted Waves XE "Image Generation from Diffracted Waves"  Based primarily on Chapter 6 XE "Chapter 6"  (G, L, & R, pages 185-223). Ask Students: XE "Ask Students\:"  What do you know about How an Optical Microscope Works XE "Optical Microscope Works" ? Ask Students: XE "Ask Students\:"  What do you know about How X-Ray Diffraction Data XE "Diffraction Data"  is Transformed into Structural Information XE "Structural Information" ? Graphics from Text XE "Graphics from Text" : Figure 1.2, page 4; Imaging object using microscopes and diffraction methods Waves XE "Waves"  Amplitudes of Waves XE "Amplitudes of Waves"  Lengths of Waves XE "Lengths of Waves"  Phase Angles of Waves XE "Phase Angles of Waves"  Summing Waves XE "Summing Waves"  Graphics from Text XE "Graphics from Text" : Figure 1.1, page 3; Effect of relative phases when summing waves Fourier Series XE "Fourier Series"  Periodic Electron Density in Crystals XE "Periodic Electron Density in Crystals"  Baron Fouriers Theorem XE "Baron Fouriers Theorem"  Fourier Analysis XE "Fourier Analysis"  Fourier Synthesis XE "Fourier Synthesis"  Electron Density Calculations XE "Electron Density Calculations"  Electron Density is Periodic XE "Electron Density is Periodic"  Equation for Electron Density as a Function of Structure Factors XE "Equation for Electron Density as a Function of Structure Factors"  hkl values and Crystal Planes XE "hkl values and Crystal Planes"  Fourier Transforms XE "Fourier Transforms"  Equation for Structure Factors as a Function of Electron Density XE "Equation for Structure Factors as a Function of Electron Density"  Relationship Between Real and Reciprocal Space XE "Relationship Between Real and Reciprocal Space"  Summary of the Diffraction Structure Process XE "Summary of the Diffraction Structure Process"  X-Ray Scattering Factors of Electrons in Orbitals XE "X-Ray Scattering Factors of Electrons in Orbitals"  Electron Distribution Curves for Orbitals XE "Electron Distribution Curves for Orbitals"  Electron Scattering Curves for Orbitals XE "Electron Scattering Curves for Orbitals"  Neutron Scattering Factors of Nuclei XE "Neutron Scattering Factors of Nuclei"  Kinematic and Dynamic Diffraction XE "Kinematic and Dynamic Diffraction"  Mosaic Blocks XE "Mosaic Blocks"  Kinematic Diffraction XE "Kinematic Diffraction"  Dynamic Diffraction XE "Dynamic Diffraction"  Extinction XE "Extinction"  Primary Extinction XE "Primary Extinction"  Secondary Extinction XE "Secondary Extinction"  Renninger Effect and Double Reflections XE "Renninger Effect and Double Reflections"  Structure Factors XE "Structure Factors"  Structure Factor Amplitudes XE "Structure Factor Amplitudes"  Displacement Parameters XE "Displacement Parameters"  Vibration of Atoms in a Lattice XE "Vibration of Atoms in a Lattice"  Disorder of Atoms and Molecules in a Lattice XE "Disorder of Atoms and Molecules in a Lattice"  Isotropic Displacement Parameters XE "Isotropic Displacement Parameters"  Simple Anisotropic Displacement Parameters XE "Simple Anisotropic Displacement Parameters"  Quadrupole Displacement Parameters and Evaluations of the Shapes of Electron Clouds XE "Quadrupole Displacement Parameters and Evaluations of the Shapes of Electron Clouds"  Anomalous Scattering XE "Anomalous Scattering"  Absorption Coefficients as a Function of Wavelength XE "Absorption Coefficients as a Function of Wavelength"  MAD Phasing of Protein Data XE "MAD Phasing of Protein Data"  Anomalous Scattering XE "Anomalous Scattering"  Amplitudes of Diffracted Waves XE "Amplitudes of Diffracted Waves"  Based primarily on Chapter 7 XE "Chapter 7"  (G, L, & R, pages 225-279). Ask Students: XE "Ask Students\:"  What do you know about How the Amplitudes of Diffracted Waves XE "Amplitudes of Diffracted Waves"  are Related to Crystal Structures XE "Crystal Structures"  and Molecular Structures XE "Molecular Structures" ? Intensities of Diffracted Beams XE "Intensities of Diffracted Beams"  Equation for Intensities of Diffracted Beams XE "Equation for Intensities of Diffracted Beams"  Lorenz Factor XE "Lorenz Factor"  Polarization Factor XE "Polarization Factor"  Absorption Factor XE "Absorption Factor"  Effects of Wavelength of Measured Intensities XE "Effects of Wavelength of Measured Intensities"  X-Ray Sources XE "X-Ray Sources"  X-Ray Spectrum of an X-Ray Tube XE "X-Ray Spectrum of an X-Ray Tube"  Monochromatic X-Rays XE "Monochromatic X-Rays"  X-Ray Sources XE "X-Ray Sources"  X-Ray Detectors XE "X-Ray Detectors"  Scintillation Counters XE "Scintillation Counters"  Beam Stop XE "Beam Stop"  Area Detectors XE "Area Detectors"  Automated Diffractometers XE "Automated Diffractometers"  Effects of Temperatures on Collected Diffraction Data XE "Effects of Temperatures on Collected Diffraction Data"  Peak Profiles XE "Peak Profiles"  Data Reduction XE "Data Reduction"  Phases of Diffracted Waves XE "Phases of Diffracted Waves"  Based primarily on Chapter 8 XE "Chapter 8"  (G, L, & R, pages 281-343). Ask Students: XE "Ask Students\:"  What do you know about How the Phases of Diffracted Waves XE "Phases of Diffracted Waves"  are Related to Crystal Structures XE "Crystal Structures"  and Molecular Structures XE "Molecular Structures" ? Electron Density Distributions vs. Structure Factors and Phases XE "Electron Density Distributions vs. Structure Factors and Phases"  Flow Diagram XE "Flow Diagram"  With Known Structures XE "With Known Structures"  Non-Centrosymmetric Space Groups XE "Non-Centrosymmetric Space Groups"  Centrosymmetric Space Groups XE "Centrosymmetric Space Groups"  Common Methods for Estimating Phase Angles XE "Common Methods for Estimating Phase Angles"  The Role of Advances in Computers, Theory, and Software XE "The Role of Advances in Computers, Theory, and Software"  Direct Methods XE "Direct Methods"  Patterson Methods XE "Patterson Methods"  Isostructural Crystals XE "Isostructural Crystals"  Multiple Bragg Diffraction XE "Multiple Bragg Diffraction"  Shake and Bake XE "Shake and Bake"  Direct Methods XE "Direct Methods"  Statistical Tools XE "Statistical Tools"  Mathematics of Phase Relationships XE "Mathematics of Phase Relationships"  Inequalities XE "Inequalities"  Where Works Best XE "Where Works Best"  Patterson Methods XE "Patterson Methods"  The Patterson Function XE "The Patterson Function"  Patterson Maps XE "Patterson Maps"  Where Works Best XE "Where Works Best"  Heavy Atom Methods XE "Heavy Atom Methods"  Isomorphous Replacement XE "Isomorphous Replacement"  Proteins: The Problem Structures XE "Proteins\: The Problem Structures"  Metal Salts XE "Metal Salts"  Unnatural Amino Acids XE "Unnatural Amino Acids"  Related Protein Structures XE "Related Protein Structures"  MAD Phasing of Proteins XE "MAD Phasing of Proteins"  Shake and Bake XE "Shake and Bake"  Electron Density Maps XE "Electron Density Maps"  Based primarily on Chapter 9 XE "Chapter 9"  (G, L, & R, pages 345-387). Ask Students: XE "Ask Students\:"  What do you know about the Relationship of Electron Density Maps XE "Electron Density Maps"  to Molecular Structures XE "Molecular Structures" ? Electron Density Function XE "Electron Density Function"  Electron Density Maps XE "Electron Density Maps"  General Features of Maps XE "General Features of Maps"  P(obs) Map XE "P(obs) Map"  F(calc) Map XE "F(calc) Map"  Difference Electron Density Maps XE "Difference Electron Density Maps"  Deformation Density Maps XE "Deformation Density Maps"  Resolution XE "Resolution"  Conventional Definition XE "Conventional Definition"  Effects of Wavelength on Resolution and Intensities XE "Effects of Wavelength on Resolution and Intensities"  Mo Resolution XE "Mo Resolution"  Cu Resolution XE "Cu Resolution"  Ag and Synchrotron Data XE "Ag and Synchrotron Data"  Effects of Resolution on the Structure XE "Effects of Resolution on the Structure"  Angles of Data Collection and Series Termination Errors XE "Angles of Data Collection and Series Termination Errors"  Least Squares Refinement XE "Least Squares Refinement"  Based primarily on Chapter 10 XE "Chapter 10"  (G, L, & R, pages 389-411). Ask Students: XE "Ask Students\:"  What do you know about How Least Squares Refinement XE "Least Squares Refinement"  Works? What is Least Squares Refinement XE "What is Least Squares Refinement" ? The Mathematics of Least Squares Refinement XE "The Mathematics of Least Squares Refinement"  Qualitative Picture of Least Squares Refinement XE "Qualitative Picture of Least Squares Refinement"  Precision vs. Accuracy XE "Precision vs. Accuracy"  Precision XE "Precision"  Accuracy XE "Accuracy"  Random vs. Systematic Errors XE "Random vs. Systematic Errors"  Gaussian Distribution Function XE "Gaussian Distribution Function"  Estimated Standard Deviations XE "Estimated Standard Deviations"  Constraints XE "Constraints"  Restraints XE "Restraints"  Global vs. Local Minima in Solution XE "Global vs. Local Minima in Solution"  Crystal and Diffraction Data XE "Crystal and Diffraction Data"  Based primarily on Literature References Ask Students: XE "Ask Students\:"  What do you know about How to Interpret Tables of Crystal and Diffraction XE "Tables of Crystal and Diffraction"  Data? The Standard Table XE "The Standard Table"  Atomic Coordinates and Molecular Structures XE "Atomic Coordinates and Molecular Structures"  Based primarily on Chapters 11 to 13 XE "Chapters 11 to 13"  (G, L, & R, pages 413-571). Ask Students: XE "Ask Students\:"  What do you know about How one Interprets Raw Crystallographic Data XE "Raw Crystallographic Data"  to Get Molecular Structure Information XE "Molecular Structure Information" ? Molecular Geometries XE "Molecular Geometries"  From xyz Coordinates to Bond Lengths, Bond Angles, etc. XE "From xyz Coordinates to Bond Lengths, Bond Angles, etc."  Vibrational Motion XE "Vibrational Motion"  Fractional Coordinates XE "Fractional Coordinates"  Orthogonal Coordinates XE "Orthogonal Coordinates"  Complete Molecules XE "Complete Molecules" ? Atomic Connectivities XE "Atomic Connectivities"  Derivation of Atomic Connectivity Tables XE "Derivation of Atomic Connectivity Tables"  International Tables for Typical Bond Distances XE "International Tables for Typical Bond Distances"  Bond Lengths XE "Bond Lengths"  Molecules in the Unit Cell and Z XE "Molecules in the Unit Cell and Z"  Estimated Standard Deviations XE "Estimated Standard Deviations"  ESD Formula XE "ESD Formula"  When are two values different XE "When are two values different" ? ESDs and Reliability of Data XE "ESDs and Reliability of Data"  Torsion Angles XE "Torsion Angles"  Molecular and Macromolecular Conformations XE "Molecular and Macromolecular Conformations"  Atomic and Molecular Displacements XE "Atomic and Molecular Displacements"  Vibration Effects in Crystals XE "Vibration Effects in Crystals"  Representations of Displacement Parameters XE "Representations of Displacement Parameters"  Effects of Displacements on Molecular Geometries XE "Effects of Displacements on Molecular Geometries"  Uses of Anisotropic Displacement Parameters XE "Uses of Anisotropic Displacement Parameters"  Absolute Structures XE "Absolute Structures"  Based primarily on Chapter 14 XE "Chapter 14"  (G, L, & R, pages 573-625). Ask Students: XE "Ask Students\:"  What do you know about How the Absolute Structures of Molecules XE "Absolute Structures of Molecules"  are Determined? Chirality of Molecules XE "Chirality of Molecules"  Optical Activity and Chiral Molecules XE "Optical Activity and Chiral Molecules"  Anomalous Dispersion Measurements XE "Anomalous Dispersion Measurements"  Uses of Anomalous Dispersion XE "Uses of Anomalous Dispersion"  Crystallographic Publications: Preparation and Analysis XE "Crystallographic Publications\: Preparation and Analysis"  Based primarily on Chapter 16 XE "Chapter 16"  (G, L, & R, pages 689-729). Ask Students: XE "Ask Students\:"  What do you know about Using the Crystallographic Literature XE "Crystallographic Literature" ? Crystallographic Data Bases XE "Crystallographic Data Bases"  Crystallographic Papers XE "Crystallographic Papers"  Comparing Structures XE "Comparing Structures"  Special Topics XE "Special Topics"  Index of Topics and Vocabulary XE "Index of Topics and Vocabulary"   INDEX \e " " \h "A" \c "2"  # ( 77 ( = 90 145 ( ( 90 127 ( (a + b + c)/2 translation 149 (a + b)/2 149 (a + c)/2 149 (b + c)/2 149 (M1)2(SO4).(M3)2(SO4)3.24H20 73 0 0 0 l 155 0 k 0 155 0 k l 155 1 1/2(a+b) 138 1/2(b+c) 138 1/2(c+a) 138 1/4(a(b) 138 1/4(b(c) 138 1/4(c(a) 138 14 Bravais Lattice Types 154 14 Bravais Lattices 133, 134, 140 180 Phase Shift 93 1bar 118, 126 2 2/m 127 21 151 230 Crystallographic Space Groups 134, 140 230 Space Groups 155 230 Unique Space Groups 112 3 3(bar)m 129 31 151 32 151 32 Allowed Point Groups 125 32 Crystallographic Point Groups 133, 134, 140 32 Unique Point Groups 111 360/n 136 360/n 114, 119 3bar 120 4 4 Centering Types 133, 140 4 Circle Goniometers 37 4 Types of Centering 133 4/mmm 128 41 screw axis 137 42 screw axis 137 43 screw axis 137 4bar 120 5 5bar 121 6 6/mmm 129 6bar 121 7 7 Crystal Systems 133, 140 A A 77, 130, 132, 154 a ( b ( c 126, 127 a = b ( c 128, 129 a = b = c 128, 129 A Centering 148, 149 A Face 148 a Glide 138 a Glides 138 A Sixfold Rotation 116 a/2 138 a/2 + b/2 translation 149 a+b+c 128, 129 -a+b+c 128 a-b+c 128 -a-b+c 128 Absolute Configurations 142 absolute structure determinations 105 Absolute Structures 211 Absolute Structures of Molecules 211 Absorption Coefficients as a Function of Wavelength 172 Absorption Correction 29 Absorption Corrections 28 Absorption Curves for some representative atoms 104 Absorption Data 25 Absorption Edge 104 Absorption Factor 174 Accelerator Plates 32 Accuracy 197 Advanced Light Source 34 Advanced Photon Source 34 Ag 44 Ag and Synchrotron Data 193 Ag Targets 31 Air 44 Al+3 73 Alcohols 68 All Face Centered 132 All Face Centered Unit Cell 132 Allen D. Hunter 1 Allen Hunters YSU Structure Analysis Lab Manual 48 ALS 34 Alums 73 Ammonium Dihydrogen Phosphate 19 Amplitude 77 Amplitudes of Diffracted Waves 173 Amplitudes of Waves 163 Analysis of Refined Solutions 29 Analysis of trial Solutions 29 Angles of Data Collection and Series Termination Errors 194 angular dependence of the diffracted intensity 96 Anode 32, 33 Anomalous Dispersion Measurements 214 Anomalous Scatterers 142 anomalous scattering 105 Anomalous Scattering 104, 172 Anomalous Scattering and Neutrons 105 Anomalous Scattering and X-Rays 105 Application of Diffraction Methods to Solving Chemical Problems? 13 APS 34 Area Detectors 37, 176 Art rather than Science 49 ASF 95 Ask Students: 13, 30, 45, 76, 107, 157, 162, 173, 181, 190, 195, 201, 203, 211, 216 Asymmetric Unit 141 Atomic and Molecular Displacements 210 Atomic Connectivities 205 Atomic Coordinates and Molecular Structures 203 Atomic motion and disorder 17 Atomic Positions 27 Atomic Scattering Factor 95 Atomic Scattering Factors for Neutrons 97 Atomic Scattering Factors for X-Rays 94 Atomic Scatting Factors for Neutrons 97 Atomic Sizes/Shapes 27 Automated Diffractometers 177 Automated Goniometers 37 Axial naming 69 axial vectors 69 B B 130, 132, 154 B Centering 149 b Glides 138 b/2 138 b/2 + c/2 148 b/2 + c/2 translation 149 Baron Fouriers Theorem 164 Basic Steps in X-Ray Diffraction Data Analysis 27 Basic Steps in X-Ray Diffraction Data Collection 25 Be windows 44 Be Windows 41 Beam Stop 176 bears porridge 51 bending magnets 34 Benzene 68, 110 Berkeley 34 Birefringence of Light 159 Block Diagram of an X-Ray Diffractometer 22 Body Centered 131 Body Centered Unit Cell 131 Bond Lengths 205 Braggs Law 98, 99 Bravais Determination 154 breakwater 78 Bricks 20 bricks in a wall 46 Bruker AXS 16 Bruker-AXS 107 Bucknell University 107 C C 130, 132, 154 C Centering 149 c Glides 138 c/2 138 c/2 + a/2 translation 149 Calix[n]Arenes 68 capillary 44, 56, 60 Cathode 32 CCD chip 42 CCD Detectors 42 Center of Symmetry 118, 156 Centering 130, 148 Centering (Bravais Lattice) Information 149 Centering as Translational Symmetry 148 Centering of Unit Cells 130 Centering Type 154 Centrosymmetric Space Groups 182 Channel Compounds 68 Chapter 1 13 Chapter 10 195 Chapter 14 211 Chapter 16 216 Chapter 2 13, 45 Chapter 3 76 Chapter 4 107 Chapter 5 157 Chapter 6 162 Chapter 7 30, 173 Chapter 8 181 Chapter 9 190 Chapter XIV 45 Chapters 1 13 Chapters 11 to 13 203 Chemical Effects of Crystal Form 161 Chemistry 832 1 Chemistry 832 Goals and Objectives 14 Chemistry 832 Resources 14 Chemistry 832 Syllabus 14 Chemists 123 Chicago 34 Chip sizes 42 Chiral 122 Chirality of Molecules 212 Chlorocarbons 68 Choices of Unit Cells 109 Chromium Alum 72, 73 Citric Acid 139 Cleavage of Crystals 158 collimated X-ray beam 23 combinations 59 combos 59 Common Methods for Estimating Phase Angles 183 Comparing Structures 219 Complete Molecules 204 Complete Table of Contents 3 Computer Advances 27 Constant temperatures 50 Constraints 198 Constructive and Destructive Superposition of Waves 83 Constructive Interference 79, 80, 81, 83, 100 Contact Goniometer 74 Convection 50 Conventional Anodes 33 Conventional Definition 193 Conventional X-Ray Tubes 32 convoluted 75 Cooling System 32 Corner Lattice Point 148 Costs 33 Cr(CO)6 58, 72 Cr+3 73 cryocooled 42 Crystal (Graphite) Monochromators 35 Crystal and Diffraction Data 201 Crystal Classes 133, 134 crystal decomposition 38 crystal faces 70 Crystal Forms and Chemical Reactivity 161 Crystal Forms and Explosive Power 161 Crystal Growing Strategies 48 crystal growth 47 Crystal Growth and Shapes 70 crystal habits 71 Crystal Habits and Morphology 70 crystal lattice 75 Crystal Lattice 75 Crystal Packing 143 Crystal Quality 25 crystal shapes 71 Crystal Shapes 70, 72 Crystal Structure Analysis for Chemists and Biologists 1 Crystal Structures 173, 181 crystal surface 47 Crystal System 144, 146, 153, 154 Crystal Systems ( Space Groups 126 Crystalline State 125 crystallization 64 Crystallization Agents 68 Crystallization by Cooling 52 Crystallization by Diffusion Through Capillaries and Gels 56 Crystallization by Slow Evaporation 52 Crystallization by Solvent Layering 55 Crystallization by Sublimation 58 Crystallization From Melts 57 Crystallization Using Combinations 59 Crystallization Using Mixed Solvents and Solvent Diffusion in the Gas Phase 53 Crystallographers 123 Crystallographic CourseWare 107 Crystallographic Data Bases 217 Crystallographic Literature 216 Crystallographic Papers 218 Crystallographic Point Groups 125, 133 Crystallographic Publications: Preparation and Analysis 216 Crystallography-Diffraction Methods Texts List 14 Cu 44 Cu Machine 41 Cu radiation 44 Cu Resolution 193 Cu Targets 31 Cu X-Ray source 16 Cube 123 Cubic 128, 153 Cubic Space Groups 124 cubic unit cells 71 Cyclodextrins 68 D d ( The Interplanar Spacing 98 d Glides 138 dandruff 66 Data ( Solution Relationship 27 Data Analysis can be quite routine through impossibly difficult 27 data collection 18 data collection area 43 data collection areas 43 Data for Publication 28 Data intensity at high angles 38 Data read out times 43 Data Reduction 29, 180 Decomposition from air 38 Decomposition from heat 38 Decomposition from X-Ray Beam 38 Defects in th crystal 19 Deformation Density Maps 192 Densiometer 40 Department of Chemistry 1 Deposition on Surfaces 47 Derivation of Atomic Connectivity Tables 205 Derivatives 67 Destructive Interference 79, 80, 81, 83 Detector 24 dhkl Values 103 Diagonal 124 Diamond 21, 57 Difference Electron Density Maps 192 Different Faces Different Reactions 161 Diffracted beams 27 Diffracted Data 143, 144 diffraction angle 24 Diffraction by Crystals 76 Diffraction by Slits vs. Diffraction by Objects 87 Diffraction Data 25, 162 Diffraction Data, Unit Cell Parameters, and the Crystal System 146 Diffraction in Three Dimensions 88 Diffraction in Two Dimensions 84 Diffraction Lab 14, 15 Diffraction of Waves 76 Diffraction off of Planes 100 Diffraction Pattern from a Single Slit 84 Diffraction Pattern Spacing 85 Diffraction Pattern Spacing from Arrays of Slits 86 Diffraction Patterns from Arrays of Points on a Slide 88 Diffraction Patterns from Arrays of Slits 86 Diffraction Patterns from Two or More Slits 85 Diffraction Patterns of a Single Slit 84 Diffraction Through Slits 100 Diffractometer Lab 16 diffuse 54 Direct Methods 183, 184 disorder 21 disorder across macroscopic dimensions 46 Disorder of Atoms and Molecules in a Lattice 171 Disorder of the Array 92 Displacement Parameters 38, 171 dropwise solvent addition 53 Dust 66 Dynamic Diffraction 168 dynamic range 39, 42 Dynamic range 43 Dynamic Range 41 E Edition of Notes 1 Effects of Displacements on Molecular Geometries 210 Effects of Resolution on the Structure 193 Effects of Temperatures on Collected Diffraction Data 178 Effects of Wavelength of Measured Intensities 174 Effects of Wavelength on Resolution and Intensities 193 Electrical Effects of Crystals 160 electrochemical source 60 Electron Density Calculations 165 Electron Density Distributions vs. Structure Factors and Phases 182 Electron Density Function 191 Electron Density is Periodic 165 Electron Density Maps 190, 192 Electron Distribution Curves for Orbitals 166 Electron Micrograph 46 Electron Scattering Curves for Orbitals 166 electrons 93 enantiomorphic 137 Equation for Electron Density as a Function of Structure Factors 165 Equation for Intensities of Diffracted Beams 174 Equation for Structure Factors as a Function of Electron Density 165 Equivalent Positions 141 ESD Formula 207 ESDs and Reliability of Data 207 Estimated Standard Deviations 197, 207 evaporate 53 Ewald Sphere 106 Example: A Centering 148 Examples of Using Laue Symmetry to Determine Crystal System 145 Extinction 169 F F 130, 132, 154 F Centering 149 F(calc) Map 192 Face Centered 132 Face Centered Unit Cell 132 face stretched cube 128 Ferrocene 58 Fiber Optic Taper 42 Figure 1.2 76 Figure 1.3 19 Figure 1.4 83 Figure 1.5 22 Figure 1.6 21 Figure 2.10 74 Figure 2.11 and 2.12 74 Figure 2.12 101 Figure 2.14 71 Figure 2.4 46 Figure 2.5 69 Figure 2.6 47 Figure 2.7 70 Figure 2.8 47 Figure 3.1 77 Figure 3.10b 99 Figure 3.11 26 Figure 3.12 94 Figure 3.13a 94 Figure 3.13b 97 Figure 3.17 106 Figure 3.2a 80 Figure 3.2b 81 Figure 3.2b and c 82 Figure 3.5 84 Figure 3.6 84, 85, 86 Figure 3.7 88 Figure 3.8 93 Figure 3.9 100 Figure 4.10 135 Figure 4.11 137 Figure 4.12 138 Figure 4.13 137, 138 Figure 4.15 142 Figure 4.16 144 Figure 4.17 145 Figure 4.18 147 Figure 4.2 110 Figure 4.3 115 Figure 4.4 117 Figure 4.5 118 Figure 4.6 120 Figure 4.7 123 Figure 4.8 125 Figure 4.9 133, 154 Figure 6.23 104 Figures 1.1 and 3.3 83 Figures 1.7 and 1.8 21 Figures 1.9 - 1.11 21 Figures 2.1 - 2.3 46 Figures 2.15 and 2.16 75 Figures 3.10a and b 100 Figures 4.14a and b 139, 141 Figures 4.1a and b 109 Filaments 33 Film Based Area Detectors 40 Final Plots for Publication 29 Final Tables for Publication 29 Fivefold Rotation 116 Fivefold Rotatory Inversion 121 Fivefold Symmetry 125 Flow Chart for a Typical Structure Solution 29 Flow Diagram 182 Focusing Mirrors 35, 36 Foil Filters (Ni foil) 35 Fourfold Laue Symmetry in Diffraction Data 144 Fourfold Rotation 116 Fourfold Rotation or Rotatory Inversion axis 128 Fourfold Rotatory Inversion 120 Fourier Analysis 164 Fourier Series 164 Fourier Synthesis 164 Fourier Transforms 165 Fourteen Bravais Lattice Types 154 Fractional Coordinates 204 Frequency 77 Friedel 145 Friedel Symmetry 142, 144 Friedel Symmetry in Diffraction Data 142 Friedel's Law 142 From xyz Coordinates to Bond Lengths, Bond Angles, etc. 204 G GaAs 46 Gallium Arsenide 46, 57 Gaussian Distribution Function 197 General Conditions for Crystal Growth 50 General Features of Maps 192 General principles of growing single crystals 49 General Systematic Absences 154 Generate Trial Solutions 29 Generic Waves 77 geology 74 Getting Centering from Systematic Absences 149 Getting Unit Cell Parameters from Interplanar Spacings 103 gift horse 63 Glide Plane 138, 152 Glide Plane Determinations from Systematic Absences 152 Glide Planes 138, 150, 155 Global vs. Local Minima in Solution 200 Glue 44 Goals and Objectives Handout 14 Goniometer 24 Goniometer Heads 37 Goniometers 37 Graphics from Text 19, 21, 22, 26, 46, 47, 69, 70, 71, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 88, 93, 94, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110, 115, 117, 118, 120, 123, 125, 126, 130, 133, 134, 135, 137, 138, 139, 141, 142, 144, 145, 147, 149, 150, 153, 154, 155, 162, 163 Graphite 21 Graphite Crystal Monochromators and Pin Holes in Tubes 36 Graphite Single Crystal 35 grease 66 Green Thumb 49 Grow Single Crystal 25 Growing crystals 19 growing single crystals 47 Growing Single Crystals 47 Growing Single Crystals Suitable for Diffraction Analysis 48 H h + k odd absent 149 h + k + l odd absent 149 h 0 0 155 h 0 l 155 h k 0 155 h k l two odd or two even absent 149 h k l ( -h -k -l 105 Habit of the Crystal 70 handedness 136 handedness of objects 122 Hardness of Crystals 158 He beam path 44 heat sink 32 Heavy Atom Methods 185 Hermann-Mauguin 123 Hermann-Mauguin vs. Schoenflies Symbols 123 Hexachlorocyclohexane 21 Hexagonal 129, 153 Hexamethylbenzene 21 High Angle Scattering of Waves 94 high speeds 33 high vacuum 33 high voltages 33 hkl values and Crystal Planes 165 I i 118 I 130, 131, 154 I Centering 149 I(h k l) ( I(-h k l) 145 I(h k l) = I(-h k l) 145 I(h k l) = I(-h k -l) 145 I(h k l) = I(-h -k -l) 142, 145 I(h k l) = I(-h k l) = I(h -k l) = I( h k -l) 145 ICE Slides 88 Identity Operation 114 Image Generation from Diffracted Waves 162 Image Generation in Optical Microscopy and X-Ray Diffraction 76 Imaging Plate Detectors 43 Imaging Plate systems 43 immiscible layers 60 Impatience is the Enemy 50 Improper Symmetry Operations 122 Impure materials 64 incidence angle 102 Inclusion Compounds 68 Index of Topics and Vocabulary 221 Indexing Crystal Faces 74 Indexing of Crystal Faces 101 Indices are zero 155 Inequalities 184 Influence of Slit Spacing 85 Influence of Slit Width on Diffraction Pattern 84 Initial Starting Solution 28 inside out 118 Intensities of Diffracted Beams 174 Intensity Information 27 intensity of diffracted X-ray beams 24 Interface of Two Solutions 60 Interference and Braggs Law 100 intermolecular distances 31 Intermolecular interactions 17 International Tables 107, 150 International Tables for Typical Bond Distances 205 Introduction to Chemistry 832 13 Introduction to Symmetry 108 Inversion Center 119 Inversion Centers 118 Inversions 122 ionic liquids 57 IR laser 43 Isomorphic Crystals 72 Isomorphic Replacement 72, 73 Isomorphism 72 Isomorphous Replacement 72, 186 Isostructural Crystals 183 isotope 95, 97 isotopes 105 Isotropic and Anisotropic Crystals 159 Isotropic Displacement Parameters 171 J J. P. Glusker 1 K K 73 k + l odd absent 149 k = l odd Systematic Absence 148 K2(SO4).Al2(SO4)3.24H20 73 K2(SO4).Cr2(SO4)3.24H20 73 Kappa Geometry Goniometers 37 KCl 21 Kinematic and Dynamic Diffraction 168 Kinematic Diffraction 168 Knowing the Intensities 27 Knowing the Phases 27 L l + h odd absent 149 l = 3n + 1 151 l = 3n + 2 151 Lab Manual 14 large unit cells 43 Laser Light Show 88 Laser Pointer 88 lattice point 131 lattice points 20, 75 Lattice Points 148 Lattice Symmetries 126 Laue (Crystal System) Determination 153 Laue Symmetry 144, 145 Laue Symmetry of the Diffraction Data 146 Layered Alums 73 Least Squares Refinement 195 Lengths of Waves 163 Light Waves 83 Liquid He Systems 38 Liquid N2 Systems 38 Long distance order 19 long range order 46 Lorenz Factor 174 Low Temperature System 38 M M. Kastner 107 M. Lewis 1 M. Rossi 1 m3m 128 MAD Phasing of Protein Data 172 MAD Phasing of Proteins 188 Main Steps in Data Analysis 28 Maintenance Problems 33 Manual Goniometers 37 mask 91 Master Several Favorite Methods 51 Materials Science 112 Mathematics of Phase Relationships 184 maximum ASF value 95 Maximum Atomic Scattering Factor, ASF 95 Mechanical Properties of Crystals 158 Melt 57 metal mesh sieve 83 Metal oxides 57 Metal Salts 186 Metal Target 32 minerals 72, 74 Minerals 57 mirror image 122 Mirror Image 117 Mirror Plane 120 Mirror Plane and 138 Mirror Planes 117 miscible 55 Mixed Alums 73 Mixed Solvents 53 mixture of solvents 53 mmm 127 Mo 44 Mo Resolution 193 Mo Targets 31 Mo X-Ray source 16 Molecular and Macromolecular Conformations 209 Molecular Geometries 204 Molecular Structure Information 203 molecular structures 17 Molecular Structures 173, 181, 190 Molecules in the Unit Cell and Z 206 monochromatic X-ray beam 23 Monochromatic X-Rays 175 Monoclinic 127, 145, 153 Monoclinic Crystals 145 Morphology of the Crystal 70 Mosaic Blocks 168 Mount Single Crystal 25 Multiple Bragg Diffraction 183 multiplex advantage 67 Multiplex Advantage 39 Multi-Wire Area Detectors 41 Multi-Wire Detector 41 N n ( Any integer 98 n Glides 138 n l = 2 d sinq 98 NaCl 21 Naphthalene 58 Narrow Slits ( Wide patterns 84 Narrower tubes 50 Neutron ASF 97 Neutron Diffraction 97 Neutron Scattering Factors of Nuclei 167 Neutrons 97 NH4 73 Ni foil 35 NLO material 19 NMR tubes 61 Non-Centrosymmetric Space Groups 182 Non-Linear Optical Phenomenon 160 Non-parallel sets of waves on open water 79 Nonprimitive 133 Nonprimitive Unit Cell 148 nq 136 NT Lab 15 Nucleation 47 nucleation sites 61 nuclei 97 O Objects in the Array 91 octahedral crystals 73 Onefold Rotation 114 Onefold Rotatory Inversion 119 Operating Costs 33 Optical Activity and Chiral Molecules 213 Optical Activity and Crystals 159 Optical Microscope Works 162 optical photons 43 Optical Properties of Crystals 159 orientation 46 orientation in 3D space 24 Origin of the Unit Cell 109 Orthogonal Coordinates 204 Orthorhombic 127, 145, 153 Orthorhombic Crystals 145 Other Chance Methods 63 Outline Notes 1 P P 130, 131, 154 P Centering 149 P(obs) Map 192 P4 37 P4 Diffractometers 16 Parallel waves passing through a hole in a breakwater 80 Parallel waves passing through two holes in a breakwater 81 Parallel waves passing through two holes of varying spacings 82 Parallelepiped 69 Pattern of the Array 91 Patterson Maps 185 Patterson Methods 183, 185 Peak Profiles 179 Perfect Crystals 46 Periodic Electron Density in Crystals 164 Perpendicular Reflections 124 Perpendicular Twofold Axes 124 Persistence Pays Off 67 Phase Angles of Waves 163 phase information 28 Phase Information 27 Phase Shift during X-Ray Scattering 93 Phases of Diffracted Waves 181 Phosphor 42 photon yields 36 Photon Yields 35 Physical Chemistry 111 Physical Properties of Crystals 157 Picker Machines 37 Piezoelectric Effects 160 Plane Waves passing through a slit 80 Plane Waves passing through two slits 81 Plane(s) Through the Axis 124 plastic caps 61 Pleochromism 159 Point Group 122 Point Groups 111, 123, 154 Point Groups and Chiral Molecules 122 Point Groups and Handedness 122 Point Symmetry Operations 113 Polarization Factor 174 Polarization of Light 159 Polymorphism 71 Polymorphism and Isomorphism 71 Polymorphs 71 Porphyrins 68 Potash Alum 72, 73 Powder Data 41 Precision 197 Precision vs. Accuracy 197 Primary Extinction 169 Primitive 133 Primitive Centering 130, 131 Primitive Rhombohedral 130 Primitive Unit Cell 131 Procedural Steps 28 Process the Raw Data 28 Proper Symmetry Operations 122 Protein Crystallographers 67 Protein data 41 protein diffraction studies 43 Protein Diffraction Studies 72 Proteins: The Problem Structures 186 Proven Methods for growing crystals 52 Purchase Costs 33 Purify Your Material 64 Pyroelectric Effects 160 Q Quadrupole Displacement Parameters and Evaluations of the Shapes of Electron Clouds 171 Qualitative Picture of Least Squares Refinement 196 Quality of Raw Data 27 Quantum Mechanical Basketball 90 Quartz 19, 57 R R 130 Random vs. Systematic Errors 197 Rated Power Limits 33 Rates of Crystal Growth 49 rates of face growth 70 Raw Crystallographic Data 203 Reason for the Observed Diffraction Pattern Shapes 84 reciprocal relationship 89 Reciprocal Space 89 Refine 28 Reflections 122 Refraction of Light 159 Related Protein Structures 186 Relationship Between Real and Reciprocal Space 165 Relationship of Crystallographic Data to Structural Data 26 Relative Phase 77 Renninger Effect and Double Reflections 169 Repeating motif of crystal 20 repeating unit 17 Representations of Displacement Parameters 210 Resolution 193 Restraints 199 Review of Crystal Systems ( Space Groups 140 right hand rule 69 Rotary Inversion Axes 119 Rotating Anode Generators 33 Rotating Cylinder 33 rotating particle beam 34 Rotation 124 Rotation Axes 114 Rotations 122 Rotatory Inversion 124 Rotatory Inversion Axis 119 routine single crystal study 18 S SALM 45, 48 Sample, Glue, Fiber & Capillary 44 saturated solution 52 Saturated Solution 47 Saturated Solutions 51 SC(NH2)2 68 Scanning Tunneling Microscope 46 Schoenflies 123 Scintillation Counters 39, 176 Scratches 66 Screw Axes 136, 150, 155 Screw Axis Determinations from Systematic Absences 151 Secondary Extinction 169 Seed Crystals 65 seeding/patterning agent 66 Sequential crystal growing strategies 67 Serial Detectors 37, 39 Seven Crystal Systems 126, 153 Shake and Bake 183, 189 Shapes of the Atomic Scattering Factor Curves 96 Silicon 57 Simple Anisotropic Displacement Parameters 171 Single Crystal 19 Single Crystals 45, 46 single wavelength 35 Sinusoidal Wave 77 sinq/l 96 Sixfold Rotation or Rotatory Inversion axis 129 Sixfold Rotatory Inversion 121 Sixfold Symmetry 125 Size of the Array 92 slit spacing 82 Slit Spacing ( Spacing of Maxima within that Envelope 86 Slit Width ( Overall Envelope of Diffraction Pattern 86 Slower is better 49 Small Molecules 42 Software Advances 27 Solid State Chemistry 112 Solid State Structural Methods 1 Solvates 68 Solve Structure 26 solvent evaporation 52 Solvent Layering 55 Solvent Properties and Saturated Solutions 51 solvent pump 53 Space Group 28, 143 Space Group Ambiguity 156 Space Group Determination 29, 155 Space Group Determination from Diffraction Data 147 Space Group information 25 Space Group Symmetry 141 Space Group Symmetry Elements 141 Space Groups 112, 133, 134, 154 Space Groups and the Symmetry Elements of Objects in Them 155 Spacings of Slits 85 Special Classes of Reflections 155 Special Topics 220 Spectroscopists 123 Spectroscopy 111 Speed and Cost 18 Spring 2000 Class 1 Stages of Crystal Growth 47 State of the Art 42 Statistical Tools 184 stepper motors 37 Steroids 21 STM 46 Storage Phosphor 43 Structural Data for Publication 26 Structural Information 162 Structure Analysis Lab Manual 45, 48 Structure Factor Amplitudes 170 Structure Factors 170 Structure Refinement 29 Structure Solution Guide 15 Summary of the Diffraction Structure Process 165 Summing Waves 163 Supramolecular Complexes 68 Surface treatments 66 Syllabus for Spring 2000 14 Symmetries of Regularly Repeating Objects 125 Symmetry 107, 108 Symmetry in Diffraction Data to Determine Space Groups 147 Symmetry in some Real Crystals 139 Symmetry in the Diffraction Pattern 141 Symmetry of Packing ( Symmetry of Diffraction Pattern 143 Symmetry Operations 110, 112, 137, 138 Synchrotron data 42 Synchrotron Sources 31, 34 Syntheses In Situ 60 Systematic Absence Data 149, 150 Systematic Absences 150, 154, 155 Systematic Absences ( Centering 148 Systematic Absences ( Translational Symmetry 150 Systematic Absences when One or Two Indices are Zero 150 Systematic approaches to growing single crystals 67 Systematically Absent 148 T Table 3.1 103 Table 3.2 94, 97, 105 Table 4.1 110, 123 Table 4.2 126, 153 Table 4.3 130, 133, 134, 154 Table 4.4 141 Table 4.5 149, 150 Table 4.6 155 Table of Contents 2 Table of Major Topics 2 Table of Symmetry Operations 110 Tables of Crystal and Diffraction 201 Telephone Poles 87 Terminator II, Judgement Day 59 Tetragonal 128, 153 Texts and Monographs 14 The 14 Bravais Lattices 133 The 180 Phase Shift for X-Rays 93 The 230 Space Groups 134 The 7 Crystal Systems 126 The Crystal Lattice 75 The Ewald Sphere 106 The Experimental Truth 98 The Influences of Object Patterns 89 The Influences of Objects, Periodicity, Array Size, and Disorder on Diffraction Patterns 91 The Magic of NMR Tubes 61 The Mathematics of Least Squares Refinement 196 The Myth Taught in General Chemistry 99 The Nature of Light 159 The Origins of Anomalous Scattering 104 The Patterson Function 185 The Phase Problem 27 The Primitive Unit Cell 109 The Role of Advances in Computers, Theory, and Software 183 The Role of Extraneous Materials 66 The Standard Table 202 The Truth About Braggs Law 100 The Unit Cell 69 Theory Advances 27 Thermal Expansion Coefficient 50 Thiourea 68 Three Dimensional Symmetry Operations 135 Threefold Rotation 116 Threefold Rotation or Rotatory Inversion axis 129 Threefold Rotatory Inversion 120 Threefold Screw Axis 151 topographic map 91 Torsion Angles 208 Translation 137, 138 Translational Symmetry 135, 140, 148, 150, 154, 155 Translational Symmetry Elements 150 Translational Symmetry Operations 113 Translations 122, 135 Trial Structure 28 Triclinic 126, 153 Trigonal 129, 153 Trigonal Crystal System 130 Try, Try Again 67 tunable radiation 34 Tungsten Filament 32 Tungsten Vapor 32 Two Fold Rotation Axes 115 Twofold Axes 145 Twofold Rotation 115 Twofold Rotation Axis 137 Twofold Rotation or Rotatory Inversion 127 Twofold Rotation or Rotatory Inversion axes 127 Twofold Rotatory Inversion 120 Twofold Rotatory Inversion Axis 120 Twofold Screw Axis 137, 151 U unit cell 17 Unit Cell 20, 141 Unit Cell Angles 69 Unit Cell Axial Lengths 69 Unit Cell Dimensions 72, 103, 146 Unit Cell information 25 unit cell parameters 103 unit cells 21 Unit Cells 148 Unit cells and diffraction data 21 Unnatural Amino Acids 186 Uses of Anisotropic Displacement Parameters 210 Uses of Anomalous Dispersion 215 V V(CO)6 72 vacuum 58 Vacuum System maintenance 33 VCH Publishers 1 Vibration Effects in Crystals 210 Vibration of Atoms in a Lattice 171 Vibrational Motion 204 Virus Crystals 46 Viscous solvents 50 visible light photons 42 Visual estimation of intensities 40 volatile materials 58 volatile solvent 54 W Water 68 Water Waves 78 wavelength 44 Wavelength 77 Wavelength distribution 32 Wavelengths of X-Rays 31 Waves 77, 163 WEB 15 What are X-Rays? 31 What Can Diffraction Methods Tell Us 17 What Diffracts Neutrons? 97 What Diffracts X-Rays? 93 What is a Single Crystal and Why is it Important 19 What is Chemistry 832 14 What is Least Squares Refinement 196 What to do when proven methods fail 64 When are two values different 207 Where Works Best 184, 185 Which planes are we talking about? 101 Why are these Wavelengths chosen 31 Wide Slits ( Narrow patterns 84 Wiglers 34 Windows 44 Windows NT computers 15 With Known Structures 182 X X-1000 41 Xe gas ionization 41 XL 28 XP 28 XPREP 28 X-Ray Absorption in the Diffractometer 44 X-ray are diffracted by electrons 94 X-ray beam 23 X-Ray Collimators 36 X-Ray Detector 40 X-Ray Detectors 39, 176 X-Ray Diffraction 93 X-Ray Diffractometer 22 X-Ray Diffractometers 30 X-Ray Flux 31 X-Ray Generator 23 X-Ray Generators 32 X-Ray Lasers 32 X-Ray Monochromators 35 X-Ray Scattering Factors of Electrons in Orbitals 166 X-Ray Sources 175 X-Ray Spectrum of an X-Ray Tube 175 X-ray tubes 44 XSCANS Tutorial Guide and Reference Guide 107 Y Youngstown State University 1 Z Zeff 96 a a ( ( ( g 126 a = ( = 90 129 a = ( = 90 129 a = ( = g = 90 127, 128 a = g = 90 127 g g ( 90 129 g < 120 129 g = 120 129 l l 77 l ( The Wavelength of Diffracted Light 98 n n 77 q q ( The Angle between the Incident Ray and the Planes 98   Based partially on the text: Crystal Structure Analysis for Chemists and Biologists XE "Crystal Structure Analysis for Chemists and Biologists"  by J. P. Glusker XE "J. P. Glusker" , M. Lewis XE "M. Lewis" , and M. Rossi XE "M. Rossi" , VCH Publishers XE "VCH Publishers" , New York, NY, (1994. Unless otherwise noted, chapter and page references are to this text. PAGE  PAGE 113 Chemistry 832: Solid State Structural Methods, Dr. Hunter (2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University  FILENAME \p \* MERGEFORMAT G:\TEACHING\832\eee Spring 2000, Chem 832\Chemistry 832 Outline Notes for Overhead\Chem 832.Outline Notes.S2000.011.doc  EMBED ChemDraw.Document.5.0   EMBED ChemDraw.Document.5.0   EMBED ChemDraw.Document.5.0   EMBED ChemDraw.Document.5.0   EMBED ChemDraw.Document.5.0   EMBED ChemDraw.Document.5.0   EMBED ChemDraw.Document.5.0   EMBED ChemDraw.Document.5.0   EMBED ChemDraw.Document.5.0   EMBED ChemDraw.Document.5.0    "#CDIgijklyz .01IJOfhisu4578FGHw jU jUB* H*B* jB* UB* j0JDB*UB*jB*UB*B*jB*UB*Hkljk6HSR: { 8+)$d%%d'kljk6HSR: { d E ż{vqlgb]X]B\0s8k8 ++.)/%r%%%%:%;%%'"wx  23MNOQRno01KLMPQj~UjUjUjUjUj UjU jUjB*UjB*UB* jB*UA  3 4 5 8 9 Y Z t u v y z     B C ] ^ _ b c      # $ > ? @ C D E d e f jB*UB*jUjfUjUjlUjUjrUjUjxU jUjUB{ d E & X ) m :'_1n 8    ! " # $ % 8 9 S T U V W z {  # $ % ' ( L M g h i k l jUjNUjUjTUjUjZUjU5 j5U jU jUB* jB*Uj`B*U> & X ) m :'_1n22{ K½|wrmhc^Y>WWX*bO`1c8K  { 45689kl!"#%&>?YZ[]^qr+,-/0MNhj0!Uj Uj6 UjUj<UjUjBUjUjHU jUDhijlm,-.01mn,-.01Z[uvwyz{j%UB* j%Uj$Uj$Uj#Uj$#Uj"Uj*"U jUj!UC22{ KQ IP)b`  *+EFGIJhi 01KLMOPfg  ()CDEGHjw*Uj)Uj})Uj)Uj(Uj(Uj'Uj 'Uj&U jUj&UCQ IP)b`oR-z>Ŀ~ytoje`[K\7sn)l'`9s@}8v!Hjk/0JKLNOno #$%'(AB\]^`aj.Uj_.Uj-Uje-Uj,Ujk,U5j+Ujq+Uj*U jUE?@Z[\^_NOijkmn{|jA3Uj2UjG2Uj1UjM1Uj0UjS0Uj/UjY/U jUD`oR-z>At`X 12LMNPQpq  '()+,YZtuvxy89:<=`a{|}j#8Uj7Uj)7Uj6Uj/6Uj5Uj55Uj4Uj;4U jUj3UC !;<=?@STnoprs?@Z[\^_j=Uj<Uj <Uj;Uj;Uj:Uj:Uj9Uj9Uj8U jUCAt`X8 L!!!t"## $[$$$"%h%%&Y&&&Ŀ~ytoje`[VGT'u=Q1)tH!78RSTVW  2 3 4 6 7 b c } ~  +!,!F!G!H!J!K!j!k!!!!!!!!!!!!!""OJQJjjAUj@Ujp@Uj?Ujv?Uj>Uj|>Uj=Uj=U jUD8 L!!!t"## $[$$$"%h%%&Y&&&='|'''D((( "2"4"h"j"l"p"r"""### ##P#R########$$$ $ $:$;$U$V$W$Y$Z$s$t$$$$$$$$$$$$$%%%%% %!%F%G%a%b%c%f%g%%%%%jLFUjEUjREUjDUjXDUjCUj^CUjBUjdBUjAU jUC%%%%%%&&&&&7&8&R&S&T&W&X&&&&&&&&&&&&&&&''6'7'8';'<'Z'['u'v'w'z'{'''''''''''''''"(#(=(>(?(B(C(`(a({(jJUj4JUjIUj:IUjHUj@HUjGUjFGUjFU jUE&='|'''D((((8)p)))$*p**+k+++/,n,,,.-e--.S...*/b//Ŀ~ytoje`[M\JAD??w-k3r!{(|(}((((((((((((((((())1)2)3)6)7)N)O)i)j)k)n)o)))))))))))))))*****"*#*N*O*i*j*k*n*o********jOUjOUjNUjNUjMUj"MUjLUj(LUjKU jUj.KUC((8)p)))$*p**+k+++/,n,,,.-e--.S...*/b//*000***+++++:+;+I+J+d+e+f+i+j+++++++++++++++ ,,(,),*,-,.,L,M,g,h,i,l,m,,,,,,,,,,,,,,, - -'-(-)-,---C-D-^-jSUj{SUjRUjRUjRUjQUj QUjPU jjPU jUD^-_-`-c-d----------------.1.2.L.M.N.Q.R.p.q.............../ /#/$/%/(/)/@/A/[/\/]/`/a////////0 0#0j]XUjWUjcWUjVUjiVUjUUjoUU jjTU jUjuTUC#0$0%0(0)0f0g0000000000000000011"1#1$1'1(1U1V1p1q1r1u1v1111111111111112242526292:2e2f222222222j\UjE\Uj[UjK[UjZUjQZUjYU jjWYU jUjXUC/*000)1w111;2223U333-4d444#5k55576667l77 8@8~888Ŀ~ytoje`[1oC0xD K Z(t8'!0)1w111;2223U333-4d444#5k55576667l77 8@8  2222222333333343N3O3P3S3T333333333333333 4 4&4'4(4+4,4B4C4]4^4_4b4c44444444444444455555!5"5jaUj'aUj`Uj-`Uj_Uj3_Uj^Uj9^Uj]U jUj?]UC"5I5J5d5e5f5i5j555555555555555660616265666]6^6x6y6z6}6~666666666677777J7K7e7f7g7j7k777777777788jfUj fUjeUjeUjdUjdUjcUjcUjbUj!bU jUC88 8 88898:8;8>8?8\8]8w8x8y8|8}88888888888888899*9+9,9/909L9M9g9h9i9l9m999999999999999::4:5:6:9:::U:V:p:jjUjnjUjiUjtiUjhUjzhUjgUjgUjgU jUE@8~88819n99:;:w:: ;u;;;i<<=y==>r>>>:?x???-@@819n99:;:w:: ;u;;;i<<=y==>r>>>:?x???-@@@AKAAA8BBĿ~ytoje`[wd07u=6F:8tA~!p:q:r:u:v::::::::::;;;; ;S;T;n;o;p;s;t;;;;;;;;;;;;;;;G<H<b<c<d<g<h<<<<<<<<<<=====W=X=r=s=t=w=x=joUjPoUjnUjVnUjmUj\mUjlUjblUjkU jUjhkUCx==========>>>>>P>Q>k>l>m>p>q>>>>>>>>>>>>>>>??3?4?5?8?9?V?W?q?r?s?v?w??????????????? @ @&@'@jtUj2tUjsUj8sUjrUj>rUjqUjDqUjpUjJpU jUC'@(@+@,@]@^@x@y@z@}@~@@@@@@@@@@@@AAA)A*ADAEAFAIAJAsAtAAAAAAAAAAAAABB1B2B3B6B7BkBlBBBBBBBBCCC C C,C-CGCjyUjxUjxUjwUj wUjvUj&vUjuUj,uU jUE@@AKAAA8BB CNCCC1D~DD#E[EEE-FiFFF*GhGGGH^H B CNCCC1D~DD#E[EEE-FiFFF*GhGGGH^HHH;III'JgJJJRKKKĿ~ytoje`[]H-tQGFT1~a"!GCHCICLCMCCCCCCCCCCCCCCCDD*D+D,D/D0D\D]DwDxDyD|D}DDDDDDDDEEEEE!E"E9E:ETEUEVEYEZEwExEEEEEEEEEEEEEj}Ujy}Uj|Uj|Uj|Uj{Uj{UjzUjzU jUjyUCE F F&F'F(F+F,FGFHFbFcFdFgFhFFFFFFFFFFFFFFFG G#G$G%G(G)GFGGGaGbGcGfGgGGGGGGGGGGGGGGGGGHHHHHN?NYNZN[N^N_NNNNNNNNNNNNNNNNNOOOOO0O1OKOLOMOPOQOvOwOOOOOOOOOOOOOOOPPjUjUjUjUj UjUjUjUjUjU jUCPPPP7P8PRPSPTPWPXP|P}PPPPPPPPPPPPPPQQQQQ Q@QAQ[Q\Q]Q`QaQQQQQQQQQQQQQQQRR*R+R,R/R0RDRER_R`RaRdReRzR{RRjfUjUjlUjUjrUjUjxUjUj~U jUEOPYPPP!QbQQQ1RfRRR*ScSST;TsTTUlUUVWVVV*W]W RRRRRRRRRRRRS S#S$S%S(S)SASBS\S]S^SaSbSSSSSSSSSSSSSTTTT4T5T6T9T:TQTRTlTmTnTqTrTTTTTTTTTTTUUUUjHUj˙UjNUjјUjTUjחUjZUjݖUj`U jUjUC;TsTTUlUUVWVVV*W]WWW5XoXXXDYYY"ZZZ[C[[[\r\\\D]z]Ŀ~ytoje`[k=.l+в*k@z´ RXC<t!UJUKUeUfUgUjUkUUUUUUUUUUUUUUV5V6VPVQVRVUVVVVVVVVVVVVVVVVVW W#W$W%W(W)W;WY?YBYCYcYdY~YYYYYYYYYYYYZZZZZ Z!ZbZcZ}Z~ZZZZZZZjUjUjUjUjUjUjUj$UjU jUEZZZZZZZZZZ[[!["[<[=[>[A[B[_[`[z[{[|[[[[[[[[[[[[\\\\\P\Q\k\l\m\p\q\\\\\\\\\\\\\\\"]#]=]>]?]B]C]jqUjUjwUjUj}UjUjUjUjU jUj UCC]X]Y]s]t]u]x]y]]]]]]]]]]^^^^ ^%^&^@^A^B^E^F^~^^^^^^^^^^^^^^__2_3_4_7_8_l_m_____________``8`9`jSUj֬UjYUjܫUj_UjUjeUjUjkUjU jUCz]] ^G^^^9___?```aiaabbbbb'chcjckclccccc'd`dadĿzpf\W) <E  <r  <   ; ) ,  +D +E+GĩMF/pƬ!vh59___?```aiaabbbbb'chcjckclccccc'd`daddd<;), & F + 9`:`=`>`^`_`y`z`{`~```````````aaaaaGaHabacadagahaaaaaaaaaabbbbb@bAb[b\b]b`babbbbbbbbbbbbbbbcc cjUj;UjUjAUjįUjGUjʮUjMUjЭU jUE c!c"c%c&c'cEcFcGcacbcccfcgchciccccccccccccc&d'd(d`dadkdldqd{d}d~dddddddddddddde\e]ebeeeeeeeeff+f,fCf_f`fefѳѷB* jB* UB* B*B* jB* UB*  jUj5>*B* CJUmHjUB* jUj5UFadddeeee-ffff@gAgyggPhQhuhhhiiiɿ{vlb]SID)b<'  ;e  ;f<  ;  )<  ;  9g   g)`;  9   )@;  9  8  )4)5 @);   deeee-ffff@gAgyggPhQhuhhhiiii7k8kLkkkl ; & F8<;98)@efffffffffgg g"g$g%gXgYgwgxgygggggggggggh2h4h5hUh`hahfhphrhshhhhhhhhhhhhiiiviiiiiiiiiiiiiiiiiiiiiiij1j2j7jKjMjNj*B* 6>*B* jUB* jB* UB* Wlm ninno5osooooOppq)qq r2rsssstt t>t|tttB9);8<pppppppppqqqq r rrr0r1rDrEr^r_rkrlr}r~rrrrrrrrrrrrrrrrss sssss.s/s4sDsFsGssssssssssssttt*t+t;ttXtYt^txtzt{tttttttttttt jU6>*B* B* jB* UZq)qq r2rsssstt t>t|tttuNuOuuuuǽ}si_ZLB=)e;  &9P   P);  %;\  $;  #;  ";  !9   ));_  ;  ;  ) B9  8   <  <  tttuoupuuuuuuuuuuuuuv v v v=v>vWvXvdvevvvwvvvvvvvvvvvvvvvvvvvvvww>wEwFwKwRwTwUwZwbwcwhwpwrwswwwwwwwwww x xx x"x#x%x:x;x@xUxWxXx^xfxgxlxtxB* jUjB* UB* \tuNuOuuuu*v+vvvtwuwx y y(y)y*yyy(zszzzzG{^{+8B9);u*v+vvvtwuwx y y(y)y*yyy(zszzzzG{^{_{y{zndZUG9i   i<[;r  ,;  +9  );U  *;  );  (8   B))++8   B B B B B$)%;d  'txvxwxxx y y y y$y%y&y'y  7;x  69  8    ;,  5)- B);  4;;@  3)A;s  2)t;  1);  0);d  /)e;  .8L   L;  -R|||||||||||||||||| }}} }/}1}2}<}Q}R}W}l}n}o}t}}}}}}}}}}}}}}}}}} ~~~~!~"~'~6~8~9~;~N~O~h~i~v~w~~~~~~~  78=\^_MNObB* jB* UB* jU\bch{}~€ÀȀـۀ܀ 45MNh́ρЁ؁  %*+ACDEQRUjkpǂ j j j  jB* jB* jUB* B* jB* UR݀ "#OEF(iۃ>?ۄ$%Żxmh^SHC9<  C)=  B=  A<  @)=d  ?=  ><  =9  8D   D)d+j+);   <;  ;9=   =);  :;  9;  8݀ "#OEF(iۃ>?ۄ$%ʅ˅ j< & F=<8) H+$ H9);ǂȂʂڂۂ $&'DEghiyzÃăƃ˃̃уփ؃ك$:<=Lefk  "#$2ABGVXY^`afhjkqwx} jUB* jB* UB*  jZׅ56hixyz†І҆ӆՆ+,HIKMmsz{|ׇ؇݇4<=>STYmop jU jUCJjCJU jqUCJ jU jUB* jB* UB* Mʅ˅ jklz{ՆJKLMms|}þ{vqlgb]XS  N  O  P  Q  R         S      R 4  [  i  jk  z  ~        9   <  E)<,  D<-jklz{ՆJKLMms|}ϰS$R$$d$ $$l F f!$d$ d$   d$ H$ H$@4>?qrstuˈ &hHt $d$ d$ d$   $$l F f!$d$4>?qrstuˈ &hijk&T|Ŀzpf\R<  J<E  I<  H<  G;  F),   +       >  N  OP                         MɈʈˈ #$%BCHdfghÉ̉Ήω&SϊЊ 45KLhiԋދB*  j jUjr9 CJUVmH jOUB*B* jB* UB* jU j^CJU jCJUCJjCJUCJ jU>hijk&T|} 6j6،fhD98+@<;),+$$ @ $$lFf!|} 6j6،fhDo̎%ĺugbTJ?=  T<  S9   )8'   ';  R9W   W);  Q;  P;  O;D  N;w  M;  L;  K9  8`  `+ @)ދߋ.24@BDL`blЌԌ֌,.8^bd "#(@BCUVmn{|ʎˎ̎ӎԎَ 6DEJ jU j * *OJQJ jOJQJB*  jB* jB* URDo̎%̏Qxѐ!^cǒI < & F;>=<)98JXZ[ȏʏˏ؏ُޏ&',CEF ;<\]őʑˑБՑבؑޑ 127IKLÒŒƒǒߒ jUB* jB* UB* \%̏Qxѐ!^cǒI~yoj`VQG=<Z  d;  c<<  b;  a);b  `)c;  _9#   #=  ^=  ]=  \<  [>  Z=A  Y=  X<Y  W<  V=m  U "#)45:EGHIRSXacdȓʓ˓ #%&';<VWŔ۔ܔ)89>MOPxĕƕǕɕޕߕ jUB* jB* UB* \I̓'X^ȕɕ@A]^qgbVLG99    ;;  o9Z  Z;[;  n8   ;  m;;^  l)_<  k<,  j;}  i)~;  h9   <*;U  g;  f)<  e̓'X^ȕɕ@A]^78b8 ; & F8<9< & F;) &./4<>?AWX]suvx{|͖Ζ "356]^tuΗϗ35689HINO`ajwx}Иј"#`acd55 jUB* jB* UB* Y78bbcޙ9:oI_`{vlbXND?<^<t  y<  x<  w<N  v;  u;;  t8   ;  s9[   [;9  )8   <  r;  q9   ;v;  pbcޙ9:oI_`|՛ "f%]= < & F<; ; & F89)8dstyzəʙܙݙޙ  %467:OPUjlmњҚך #127EGHћӛԛ՛ B* jB* UB* 5 jUZ`|՛ "f%]ޞ2ŻwmcYTF:9  8P   P)C<~  <  <  ;  <=x  =  =  </  <o  <  ~;  }8   ;  |)<A  {;]  z "?@EbdefnœÜȜݜߜ!#$<=BY[\styŝƝΝНѝ68Bdhjlrtڞܞ.02^`j̟Ο jUOJQJ B* H*B* H*B* jB* UB* V]ޞ2]Ϡ\Ѣ98)<; < & F=2]Ϡ\ѢĿvlbXND:;  ;  <  <*  <U  ;  9   );  ;v  ;  ;  9   );  ;Y  ;i  ;r  ;  ;  Ο؟atuz͠Πޠ<=Bbdefkwx}ˡ̡0237ABGQSTâ͢ϢТѢ֢.:;@LNOB* jUB* jB* UB* [ѢPˣ[*uަHAm8<9);Pˣ[*uަHAŻug]SI?5;Q  ;  <  ;_  ;  9   <~  <  <  <  <  <[  <  <*  <  <  9   )-;a  ;  Odopuף)+,1ABGWYZ[efkuwxɤʤϤ#$)>@AZbchprs'(-79:;`aħŧʧB* jUB* jB* UB* [ $&'brsxȨʨ˨"*,-KZ[`oqr356̪ΪϪܪ =>klpq{|ūǫȫͫϫѫҫ֫ث٫ޫ jUB* B* jB* U\m}f:;Ź~toaWMG?:),   ) ;  ;  9   )U;  ;  9   );  ;  ;  9  8   )3;  ;  <[  <  m}f:;̯ͯ23_<8@,);9 lxy~ŬϬѬҬZ[ƭʭ̭ͭ!*+09;<lxy~ˮԮծڮ/:;@KMNeB* jB* UB* jUB* B* jB* UV̯ͯ23_`afghܳ~ytfaWMB=n  <  ;  )8'   ')) B)- B)<   ;M  )N<}  <  ;  8\  \) @);  );  گۯ .01DE\]_not˰̰Ѱ6\]bͱα $&':HIN\^_stղֲ۲B* jUB* jB* U\`afghܳV=>56VuͷJɹ+d$=<;8B) ().>@ACGHMQSTسڳ۳#9;<asty!"34HVW\jlmsʵ˵׵ص"9;<> jUB* B* jB* U\V=>56VuͷJɹʹ˹͹1wúĺŻ~rh^TOCU   ) ;6  <V  ;  9  )+ +  + R +  + ' + F + f)g;^  )_ B)K B)=  =  <  >XY^xz{ƶ 6Vuķȷʷ˷ͷ EGHTUcdenoqrǹȹ/ jUjOUj^UjqU0JTjU jU5>*B* jB* UB* Jɹʹ˹͹1wúĺ&EF߻./gϼ=c>=U)<;9 & F )d+$$Tl.!/0?VW\suvwۺܺ "$%&lmƻۻݻ޻/FGLcefqrw˼ͼμϼӼ=KLQ_abc)+,4CDIXB* jB* UB* jU\&EF߻./gϼ=c-øujeWMB7=A  =  <  UB   B)=j  >*  >  >  =f  <  )=  =  ="  <  U   )=  <  c-;^ǿȿ,X6sQ;9<U)=XZ[ξϾ]pqv;MNSeghOPWjkpJVW\hjko#$)023B* B* jUjB* U\;^ǿȿ,X6sͿsi_UJ?:)=  =  <c  <  <  U   )0<p  <  <  U  );  9    =  =  <  U   )Q1`U,\ǽxni[QF<>  =2  <  U   )G>  =g  )=  ==D  )>)  >Q  >  ?  >  =  =   U   1`U,\ ?n<U = & F)?>=(*+,GH=>CD]^ef-45:ACDFVW\lno().:<=155 jUB* B* jB* UY ?n'(gvw·yoj`UPF;=  <  )=@  <[  )\<  U6   6)o=  =  =  >  =y  <  UQ   Q)=p  =  =  n'(gvwTUYi <U)=TUYi ^_ɾ{qf[PKA<  )=T  =  =  <  U   )=  =  =  <  )=  <  UL   L) <  )=B  12WX,-2DFGituz ,-2NPQPQij| B* H*jB* H*UB* H*B* jB* UB*  jUT ^_;<=>kP_`%4IS>U<)=;<=>kP_`%4Iøzlb]SH>>  =9  <M  )N<  U  )+<  )>  >  =  =  =X  =  <  U    )))=p  !*,-./4JLMwxRbchxz{ &',68945PQRbchxz{ij~  jUB* B* jB* U\IS` R ɾvh\RMC8=  #<?  ")@<  !U  9   =  =  =  <  U  )!>  =c  )+>  >  >g  >  >  ` R Z[[\  9<U=)> Z[[\ 34st)*~FĺwtqcYVLI?<<  .=<  -<  ,U   <J  +)K<  *)<  )<  (U   <  ')<|  &)}<  %Ut   t)=  $ #$)/124=>CLNOt %'()*OPUz|}~().ACDTmns jUB* jB* UB* \34st)*~F1Y6>=U )<F1Y6)*Żynkhc^PKE B)8   ))=  ;=  :=7  9=  8<j  7k>  6>  5>  4=  3<  2=  1<  0=  /-/0Y^_diklpxy~2456>?DLNOQVWXYZ_defgijl}~ B* H*jB* H*UB* H*B* B* jB* UW)*=@dh.Z[YZU9 & F )d<;B8) ='(<=VWcduv$%*9;<GTUZgijt`bdf*,hj jUmHOJQJ jUB* jB* UB* W=@dh.Z[YZ$g$½~sh]XRD:<  GU7   7 B)=K  F=  E=  D<<  C)=<  BU  9  8[   [)=  A<  @=A  ?<  >;  =;C  < no "#ABefFPQV`bc!"'578:HIN\^_o !&9;<UcdiwB* jUjB* UB* \Z$g$ U{Z>j(>)=<UB$ U{Z>j{peZOE;>  W>  V=  U=H  T=  S=  R=  Q=  P<  O)=  N=  M=  L=  K<  J)<   I) B)=7  Hwyz45:PRSiqrw*+0GIJNijoB* H* B* H*jB* H*UB* H*B* B* jB* UU  !&')*.01279:<=?@CEGHMOQSTXZ\]bdfhiujB* H*UjB* H*UH* B* H* B* H*B* jB* UB* H*B* B* H*O 4ABGTVWYZ[^_`acdghijknopqvwx{|}~ B* H* B* H*B* H*B* H*B* B* jB* UWj(34&]7¸|rh^YOE:=!  g<?  f;u  e<v<   d<k  c;  b9   >  a>  `=  _)>  ^>  ]='  \)>  [>  Z=  Y)>X  X(34&]7pz-^$% < & F<;9=)>"$%&=>[\qxy~./4FHIVW\gijB*jB*UB* jUB* B* jB* UV7pz-^$%VWXY]^6R´{snd_YTJE+;  r) @|)};  q),   ) ) B;  p);  o) ;  n9   <  m>  l>  k>  j=  i=  h,AB\]bqrw*45:DFG+,1@BCDUpq=>Z[^pqvB* jB* UB* B* jB* U jUB* B*jB*UB*QVWXY]^6Rgb29=<9 & F8+@,B;)24567NOPQXYeftu^`dvxOJQJ jOJQJB* OJQJjB* OJQJU B* OJQJ jU j<Ujr9 CJUVmH jOUB* jB* UB* B*jB*UB*>Rgb2['()ɿyth^SHC>))=  }=5  |<  {U  )<5  z;  y9   ) B)@<s  x<  w<  v=  u<  t;  s9  8  (*.02NPZvz| 02Pbdn ",HB* OJQJ B* OJQJ jU jfB* OJQJjB* OJQJU jfB* OJQJB* 6B* j6B* U6B* jB* UB* BHLNRTV`bfhv)*YZ #%&'_`023MNSkmnopļB*jB*UB*jB*UmHjB* UmH j jUB* B*  jfB* jfB* jB* UH['()5o$H9BB< & F=U)<)5o$HƸzpe`ZTN@;)9   B< B= B?<V=  <}  U   )E=  =  =  <  U   =u  =  =  <  ~U    "#]^ &',DFGHI[\uvAB  &':;@QSTjvw|jB*UmH j jUB* jB* UB* B*B*jB*UQ ./DTUZjlmo  #$=>STYlno67^_$%356B  jB* jB* B* jB* UB* B*jB*UB* jURop87ycd23O;9=U9 & F8B<;)op87ycd23þupjeWLGA B)=f  U   )T B)<  <W  <  )U  9  8   ) B<  )<  )<9  ):;  BCSTYdeuwxy45:_abFG`amnMNX Y r s                   L M } ~    ' ( - 8 9 a  jU  jB* B* jB* UB* jB* WO D E ! "   e      B C   ½{vh^YOE;<  <   ;[  )\;  9U   U)> BG)I<  </  ;  9   )$ B)[<  <  UO  O<P;  9    D E ! "   e      B C   de8;9B)<U < & Fa c d r s                ' ( 3 c d i                ;<bcuv,./>?DNPQRSefAB*B*jB*UB* jU  jB* B* jB* B* jB* UPdeRSl!Tþxnd_UPKFA))));;  <<<m  <  <  <  <   ;  9   )5 B))l)m;  )9  )8u   u))RSl!Tg~+ ; & F8 < & F<;9B)ABjk56(*Ttv|}5DEJY[\st MNfg jUOJQJ jB* jB* UB*  jUVg~&]^_Z'PɻxmhZPE:=s  =  <  U   )=i  <  Ud   d))=  <  UE  E9   )+;;;q  ;  9   ~&]^_Z'P:;hiH(*;98)=<U:;hiH(*@A89:  ƺytf\WRLF@ B, BT B)) ;  9   )U B);  ;  9   ));  9  )8   )G<  UB   B))DF(*NP<>?fgLMfgtu   ' ( A B P Q d e | }    B* OJQJ B* OJQJ OJQJ jUOJQJB* jB* UB* R*@A89:    6!y! "v"###j##$$D%%&&"'8=<U;9)B  !!4!5!!!!!!!!!!!!!!!"""""!"""'"8":";""""""####3#4#h#i########$$$$$$$$$6&<&>&@&B&D&N&T&V&X&Z&^&`&&B* OJQJjB* OJQJU B* OJQJ B* H*jB* H*UB* H*H*B* jB* U jUB* I   6!y! "v"###j##$$D%%&&"'&'''ʿ|qfaSNB8;  9  )8   )=R  =  =O  =  =D  <  U<   <)r)s=  =5  =  <  U`  `)5)6&&' 'V'X''''''''''%(&(S(T(U(](^(c(k(m(n(((((r)})~)))))))))))))**6*7*E*F*Y*Z*q*r*************+++6+7+9+D+E+J+U+W+X++,,,, B* OJQJH* jB* jB* UB*  jUS"'&''''U((E)) * **++8+9++H,T,,z--...//O0>+8B<;9)''U((E)) * **++8+9++H,T,,z--.../}si_UPK=9   ))>f  >  >  >9  <?  +e;  )9  )8Y   Y B)<2  <  <  ;  9a   a),,$,(,*,>,@,D,F,H,T,X,Z,r,t,~,,,,,,,,,,--&-(-*-,-r-v-x-~---------------.d.f.p.r.t.v.....2/4///////0 jU jB* OJQJ jB* OJQJ B* OJQJ  jB* jB* U jB* B* B* OJQJB* jB* OJQJUD//O0Q0R000 1 1K2L23O3|3}3~3444%5&555>6?6@6½|rmc^TOJ))<V  )W<  )<R  )S<  <  ))<  9A   A B|) B)9y   y B B!)")$;  )000O0P0d0e0~000000000011116171C1D1U1V1111111111112 2 22(2)2.2G2I2J2L2M2_2`2y2z222222222222#3$3M3N3O3P3~33333333333B*jB*UB* jUB* B* jU jUmHjB* UQO0Q0R000 1 1K2L23O3|3}3~3444%5&555>6?6@66\7778;<9B)3333333444$4344494H4J4K4L4M4444%5&5?5@55w6x666*7>7?7D7X7Z7[77778 8 88828F8G8L8`8b8c8i8j8m8t8u8z8{8~8888888888 99::"<1<2<7<F<OJQJ B* H*B* H* jU jB*B* jB* jB* UB* B*jB*UN@66\77788889:::K< ==>>?@@@ǹ{qcYOJE)i)j<  ;  9h   h<D  )E;  ;  ;O  )P;  9  8    8)J Bm)n<  ;  9   88889:::K< ==>>?@@@@5B`BaBBBCCCCB<;;988 & Fh)F<H<I<K<]<^<c<u<w<x<<<<<<<<<<< = = = =>>`>b>>>???????? @@@%@'@(@3@4@9@B@D@E@@@@@@@@vAAAAAAAAAAAAAA BBBBB!B'B(B  jB* jB* B*H* jUOJQJB* B* B*jB*UB*jB* UN@@5B`BaBBBCCCCCCCChDDEE?FzFGGGſzpkeYOJ@;7  )8;  8F  F @);  ;  ;  ;  ;  ),   )i )j)k BH)I;  )8O   O;  9   (B1B3B4BFBGB^B_BeBqBrBwBBBBBCCC'C(C:C;C`ClCmCrC~CCCCCCCCCCCCCCCCDDDDDFDGDIDSDTDYDcDeDfDlDDDDDDDDDDEE E!E#E-E.E3E=E?E@EBEUEVE[EnEpEqEEE FB* jB* UB* B* jUjB* UB* VCCCCChDDEE?FzFGGGGGHH IIPIIJ(K*KFLwLL<98@;;), F F,F-FJHJvJzJ|J KK*KNKPKZK~KKKKKKKKKL'L(L-LBLDLELFLZL[LuLvLLMM MMM M,M-M2MM?M[MbMcMhMoMqMrMsMtMMB*jB*UB*OJQJB* jB* UB*  jUTGGGHH IIPIIJ(K*KFLwLLLLsMtM N NNNNNǽxsidZUPKFA)5)7)8)9):;  );S  )T<z  ;  9   ;  )<  <  <A  ;  );  );  9  )LLLsMtM N NNNNNN6NN8OOOORPQIQQQQQQ8RRR8=9;)<MMMMMMMMMMMMMMMMN N N N N!N4N5NNNNNNNNNNNNO O OBOXOYO^OtOvOwOxOOOOOOOOOO P PPkPPPPPPPPPPPPPPQ(Q)Q.QEQGQHQQQQQ;R\R]RB* jUB* jB* UB* B*B*jB*UUNN6NN8OOOORPQIQQQQQQ8RRRRRSSʼvlb]XLB=);  9   ) )<i  ;  8   )))=R  <  <I  ;  9   )y<  <u  ;  9,   ,)4]RbRRRRRRRR>STTTTTTT TdTfTlTTTTTTTTTRUvUxUUUUUUUUUUUVVVRVTVVVzV|VVVVVVVVVVVW2W4W>WjWnWpWrWtWvWWûû jUB*jB*UB*OJQJ jB* OJQJjB* OJQJU B* OJQJB* jUjB* UB* FRRRSS\TUUUVVrWtW$X&XXXtYZZZZZ [[\ \ \ \\+=<;9)S\TUUUVVrWtW$X&XXXtYZZZZZ [[\ \ \ \¸{vh^TOJE)V+W)Y<  ;  9   )Z)[<  )=  <  )<  )<q  )r='  <  )=  <$  ;  WWWWWWWWW X"X.X0X6XXXZXdXXXXXXXXXYY Y.Y2Y4YpYrY Z"Z$ZHZJZTZxZ|Z~ZZZZZ[ [b[z[|[[[[[\ \ \\\$\6\8\9\E\F\K\U\W\X\d\q\r\w\\\\\\\\\B*jB*UB* jU jUOJQJB* jB* UB*  jQ \\\\\\;]=]>]?]]]]]___`|aaabbvk`[QF=q  <  )=   =T  <  ;C  <D;  9   ));K  )L+M)O<  ;  9   ));U  \\\\\;]=]>]?]]]]]___`|aaabbXczcddde=< & F+<;9)\\\\\\\\]]]]] ]!])]-].]3]7]9]:];]<]?]Q]R]W]i]k]l]x]y]~]]]]]]]]]]]]]]]]]*^,^6^d^h^j^^^`_j_l_n_x_______`6`ʾ jB* OJQJjB* OJQJU B* OJQJOJQJ jUB*jB*UB* jUB* jB* UB* F6`8`B`v`z`|```(aHaJaTataxazaaaaaabU9<)=fFgNgPgZgbgfghgtgvg|ggggggg6h8hhhhhhhhbidijiiiiiii j"jzjjjjjjjjj8k:kpkrkkk lll$l9l;l* jUOJQJ jB* jB* UB* Wk=l_l{l|ll^m~mmmmn8oop|p\q]qqqqqŻ|rh^YOJE;<  !))<  )<c  <  <N  ;  8c   c<  U   )>  >  <  U   )#>?  >a  <  GmHmMmYm[m\m^mimjmomzm|m}mmmmmmmmmmmmmmmmnnnn%n&n+n6n8n9nHndnenjnnnnnnnnnnnnoo6o7o8oDoEoJoVoXoYoooooooooooooooopp pppppp,p-p2pApCpDp jUB* B* jB* U\n8oop|p\q]qqqqqq>r?rrrrrssOsPssstbttauu)<;8DpPpapbpgpxpzp{p|ppppppppppppppppppqqqqqq*q,q-q:qFqGqLqXqZq[q\q]qoqpquqqqqqqqqqqqqqqqqqqqqqqqqqqrrr!r:rr?rrrrrssOsPssstbttauuuvvvwwĿukf\WRD?)8   )J)K;  ,)<  +<   *;  )8=   =<  () <  ')<  &)<)  %)*<X  $)Y<  #)<  ")rrrrrrrrrsss}ssssssssssssssssssttttt/t0t`tatbttttttt'u8u9u>uOuQuRuuuuuuuuuuuuuuuuvvvvvv'v(v-v7v9v:vFvWvXv]vnvpvqvB*jB*UB* jUB* jB* UB* Vuuvvvww8wxxxxxxxy8z:zxzh{{{4|d|f||}4~l~<U98;)qvvvvvvvvvvvvvvvwwww6w7w}4~l~~~~bFHprƂNPŻvlb]OE;<R  F<  EUA   A)<%  D<A  C<k  B<  AUE   E)<  @<  ?<.  ><b  =<  <U   )<  ;<  :<C  9n~t~v~|~~~~~~~~~~~~~~~~&~&(2X\^ʀ̀ЀҀ܀ "(*0>BDFRTز  jB* jB*  jjB* U jU  jbB* B* B* OJQJjB* OJQJU B* OJQJ jbB* B* Fl~~~~bFHprƂNPD|Іʇ&^ֈU)<TlnƁȁҁ܁  *48:FRT^jnp‚ĂƂ҂Ԃ؂ڂ(*028FJLNbd  p  jbB* jB* OJQJU jbB* B* OJQJ B* OJQJ jB* jB* UB* jUKptv"$.<@BDPRVXbnptxz|~…ҹҒҹ j *B* OJQJ * *B* jb *B*  *B*  *B* OJQJj *B* OJQJU jb *B*  *B*  *B* OJQJB* OJQJ B* OJQJB* jB*B* B* jB* U4D|Іʇ&^ֈH-`aMŻ{qfaWRF<<  TU   )U<  S)=  R<>  Q;  P96   6<  O<  N<9  M<g  L<  KU   )]<  J<  I<  H<8  G $&*:<FVZ\`Ȇ̆ΆІPR\ "$248:DPRVZ\^`fhnvļļļīļ踠ĚĕĚ jbB* B* OJQJ jB* OJQJ jB* OJQJ jB* jB* UB*  * *B* *B* OJQJ *OJQJj *B* OJQJU *B* OJQJ j *B* OJQJ6vxΈ҈ԈֈDFHZ\fx|~LMNSTVWZ[\abdeghinoqrwxy~ùùùùùù 6B* j6B* U6B* jB* U jU B* OJQJB*  jbB* B* B* OJQJjB* OJQJUGֈH-`aMSTUy(\]HߐCU)=<;9͊Ίӊ023Lbch~Njȋ͋ߋDMNS\^_`uvŒČŌ݌ jUB*jB*UB*6B* jB* UB* 6B* j6B* U6B* NMSTUy(\]HߐCwǽtid_QG<=(  `<  _U   ))=  ^=#  ]=W  \<  [U   )=C  Z=w  Y<  XU   )e)f=  W=  V=  U,-FGbcwx}PQRWXZ[klXYZ_`bcefglmopuvw|}ĐŐݐސ!"Ǒȑ6B* B* jB* UB* jU6 6B* j6B* UTCwqrΓГ;<CN+-y)d++d<;9)=wqrΓГ;<CN+ɿukaWMHC+c)d<  j<  i<*  h;  g9   ;s  f)t;  e)+++=+><  d<  c;  b9   ))))=  a $&'1EFK_abђ-JKPmoprʓ͓̓ΓϓГ+-.9:?HJK[notҔԔՔה%B*jB*UB* jB* jB* UB* W%&+79:;<NOTfhiuv{ĕƕǕ˕ԕՕڕ  %&ABGghmȖɖΖ`Ɨٗۗܗ')*+,-N j jUB* B*jB*UB*B* jB* UT+-yz kl'(ٛ^BƞȞ~tj_TJ@<K  t<  s=   r=J  q<w  p;  o9   ));D  n)E;  m9K  K)L;  l8p   p)Z)[)\;  k)++NOTuwxyzØĘԘ%&+KMNP_`etvwݙޙ  xy(:;@RTUbchsuvśƛכ؛ĜƜȜB* H* jUB*jB*UB*B* B* jB* UTyz kl'(ٛ^BƞȞ >=<98;)ȜʜԜ֜؜ܜޜ2<>HRVX\tΞОҞ02ΟПڟܟޟ ̠ΠР   238JLB*jB*UB*B* H*H*OJQJjB* UB* B* H*B* jB* H*UO 'C34֦צ&yzɿxmh^ShID)n;  =  <  ;=  <  ~;=M  }=  |<f  {;  z9   ;  y;  x)>  w<^  v)_<  u)LMZ[`kmn|¢Ԣ֢ע016IKL`klq|~̣Σϣ֣%&¤ǤɤϤѤҤؤ٤ 6B* 6B* jUB* jB* UB* B*B*jB*UR 'C34֦צ&yzOP +$ H@ +$); & F=<9;   "%&+.01IKPQVX]_`ɥʥϥ$/12345<=BCJLMB*jB*UB*6B* B* jB* UB* 6B* U¦æĦŦʦΦϦЦѦҦԦզצئߦ&*+,-./489:;<>?AEFGHIJOSTUVWYZ_cdefghmqrstuwxzjB*UB*  jB* jB* 6B* B* 6B* B* jB* URŧǧȧ0;<ALNOl|}רب)+,ABGZ\]ȩʩ˩=>MNQbchy{|  j j jUB* jB* UB* B*jB*UB*SOP58svëīūH  %&vj`[QL);   ) ;  9  8b   b)0+1+~++++>+A+D+G++9   )))));  9   ʪ˪Ъ  134679:<RSXnpqtuw«ë*+FGL[\aprsլ׬ج#@AFcef̭ !#$&8B* jUB* B*  jjB* UX58svëīūH  %&ӮԮկ)d;98)+ +$ H r +$ H  +$ H@ N  +$ H@ 89>PRS^_dmopӮԮ/12ӯԯDTUZjlm#9:?UWXY  %9;<Xopu̲ͲҲݲ߲)*/SUV jUB* jB* UB* B*B*jB*UV&ӮԮկ"#YZW̳stԴմ9:vlg]XNI);  );  );  9n   n;  )<  <V  +W++<  ;   ) ;  9   ;B  )C;  "#YZW̳stԴմ9:_жѶ)L)9)d++d<;Vlmʳ˳  KZ[`oqrHI]^εϵԵIWX]kmnѶ  Hrsx&');<AB*jB*UB*B* jB* UB*  j jU jS:_жѶ)Lƾ/ɻukf\VQG98a   a;x  )y 9z;  )<  ;  )<  <&  <[  ;  );~  9   );i  )j<R  ;  9   ASUVcditvw¸̸͸Ҹܸ޸߸#$)<>?Labg|~ǹιϹԹ۹ݹ޹߹,-2GIJiuv{  jB* jB* B* jB* UB* B*jB*UB*Tƾ/A|}=U98)9 & F;)d<ĺźʺ/05IKL»λϻԻ "fhrtv')*8LMRfhi 5B* j5B* U5B* 5 jUB* OJQJ  jbB* jB* OJQJU B* OJQJ jbB* B* B* jB* UDžƾ-.ƿؿڿۿ0fgl?@AJKPY[\`jkpz|} #%&F\]bxz{  j jB* jB* UB* B*jB*UB* jU5R/A|}KŻzpk]SHC9<  )=  <  U   )>+  <  )=  <  U+   +)u<9  <  U  9  )) ;  );  -/0bwx}IJ+-./012<=BCMOPRghm 6B* 6B*  j jUB* jB* UB* VK   K^_9)d=<U)>   K^_\Ŀ}se[VLG=<m  )n<  )<  U   <  )<  )<  U  9   <  )<1  )2<'  )(<  )<1  )2   $5789:;<FGLMWYZ\qrw  ().79:<EFKTVW]fgluwxB*B* 6B* jB* UB* 6B*  jY-.3EGHSTYbde 56MNgh  ')*9LMRegh  j jUB*jB*UB*B* 6B* B* 6B*  jjB* UO*+0GIJXwx}-.3GIJK~vw_styH* B* H*jB* H*UB* H* jUB* jB* UB* B*jB*UB*N_\]LMrsi2PK;9U)<\]LMrsi2PK{vh^TJ@<Q  <x  <  ;  9   ))<  <  ;  9   )6)7)8)9):<  )<  U   )<  ) #%&<=gh<JKP^`aclmr{}~ jUjB* U B* H*B* jB* H*UB* H*B* T $-/012NO #$)?AB,:;@NPQyz{ 6B* j6B* U6B* jUB*jB*UB*B* jB* UB* N  !"E]^c{}~ *+0NPQB*jB*UB*B* jB* UB* 6B* j6B* U6B* RQhtuzk~    !#().3568=>CHJKMRSX]_`fklqvxy  jUB* jB* UB* B*[ VWfg~xsid^YMH)8  )v @j)k;  ),  ))));  9_   _)f;8  )9;  );u  )v;  9   <   VWfg~#$V8@,);9+-. O_`euwx#$)bdef|}-?@EWYZ%&;<xyB* jB* UB* jUB*jB*UB*B* B* jB* UP!"89TUuv*+>?TUop !ABgh89`a*+ST}~VWvwB* jB* UB*  jU\#$V@Aqr"ij½{vhcUGc8`   `9x   x)9   )9   9   )98   8)9   )9  )8,   ,9   )9  @Aqr"ijbc UV8)9bc UVyz67˿}xrmgb\PK?9  )8  B)D @) @\)];  ),  )9   )9_   _)9  )8k   k9P   P)9   Vyz67$%YZ~jk98B@;),w34IJcd  "#:;WXgh|};<hi>?]^  ,-QRgh  =>st  CDop jUb$%YZ~jk@A|n`[OJ<9w   w)9  )8[   [9   9J   J)9   )9  )8h   h B9Y   Y)9   )9   )@ASTuvEFNO'9)8STuvEFNOvhcUPD?)9  )8   )8[   [95   5)9  )8~   ~9   )9E   E9  )8   )9   )vp !LMqr  %&23DEYZst,-JKmnRSvwTUSTqr%.B* jU`'FGuv./oTU˿zlg[VHC59   )9}   })9  )8  9  )8U   U9~   ~)9   )9  )8/   /9X   X)9   'FGuv./oTUUV9)8UV]^]^  ǻytni]XLG)9  )8l  l) @l)m;  ),  )9   )9[   [)9  )8  9n   n)9   )]^]^  /0`a`a98@;),./4=?@kl  $%>?Z[~ -.CD^_rs78^_uv"#34DEZ[vw  12CDY jUB* jB* U\ /0`a`a56Ƹse`TOA<)9   )9  )8   9^   ^)9   )9  )8   9   )9   )9.   .)9S   S56\34[\]jk PQ@;,8)96\34[\]jk ´wrfaSN@;)9   )9S   S)9v  v)w8|  |) @t)u;  ),  ))8   )8   81   18n   n9   YZxy  HIjk!"hiwx  *+NO|}'(89NObc{|*+@ATUmnB* B* jB* UB*  jU[PQ)*PQ}~BCopȺ񝏊|ni]OJ<9\   \)9   9  )8B   B9]   ])9   ))9   )9'   ')9  )8    )9   )*PQ}~BCop ;<rs8)9   !9:RSpq ,-OPxy )*HIZ[pq[\xy"#=>]^jkB* jB* UB*  jU\ ;<rs./z{Ķ蕐}ql^YKF)9Y   Y)9z   z)9  )8h   h)9I   I9t   t)9   )9  )8O   O)98   8)./z{JKrs$%_@;,89)JKrs$%_`~ƾtfaSN@9O   O)9p   p)9   9  8   8  )D)E @~);  ),  )8   )8M   M)9$   $_`~%DE}~89qrABC~;,89)k|}#$01BC\]{|!"67PQop?@\]|}&'FGrs./ef~ B* jB* UB* jU\%DE}~89qrABC~OɻykfaYTJE? @v)w;  ),  ))8   9   9   9   )96   6)9   )9  )8N   N9   )OPQg  ` a     7 8 9 : } ~ ,98)@OPQg  ` a     Ƹ|ni[MH:8|   |)8   9   )9M   M)9   )9   )9  )8   9R   R)9  )8  )})~  8 9 ^ _ ~              5 6 W X { |       @ A \ ] v w            H I ^ _         - . I J           ()AB_`tu B* jB* UB*  jU\ 7 8 9 : } ~   H I x y z { | }   : ;   K L   ztocWR)9  8e  e)$ @B)C;  ),  )))))8  )` @);  ),  )))8]   ]~   H I x y z { | }   : ;   K L     *+ab9,8@);   *+ab!">?_`ٽxjeWRFA)9  )8   )8   9   )9o   o)9  )8   9   9   )9$   $)9S   S!">?_`pqde089) QR<=JK]^}~<=no01bc./GHbcx@Akl-.MNqrB* jB* UB*  jU\`pqde0123deƸ|ni[VQLD?),  )))9   )9    )9k   k)9  )8    )8l   l)8   )9S   S)9   0123deRST/0stu=> B8@;,)eRST/0stu=> BC½{vpk_ZLG)8l   l)8  )x @7)8;  ),  ))8   )8Q   Q)8   )8  )`)a @);    KLab!"@AXYtu"$.0:<>@HTV jB* OJQJ jbB* OJQJ B* OJQJB* jbB*  jfB* OJQJ5mH jUB*jB*UB*B* jB* UB*  jUBBCvw":RV&*>RfjH Q +d',8)Cvw":RV&*>Rfj@Blv,\ $6:N`d:dz  ) 3 > Z HQ+ +'),  )82   2T (*4>HR\hjrtvxz6@f.Bbl B* OJQJ jB* 6B* 5B* H*B* H*B* Zj@Blv,Q H Xv,T\"$,8:DNVbd "&:Pdpz~    $  jB* 6B* B* OJQJB* H*B* 5\,\ $6:N`d:dz  ) Q H $ ) . 3 9 > U Z { !$!(!W!\!k!o!~!!!!!!!!!""&"("*"."6"P"k"p""""""""""""####$$$)$=$$$$$$% %#%'%*%%%&!&%&5&9&Q&&&&&''')'-':'?'@'A'Q'R'\'a'c'i'n'q'v'''6B* 5B* B* H*B* _) 3 > Z     !(!\!o!!!!!!!!""&".":"P"p"""""H Z     !(!\!o!!!!!!!!""&".":"P"p"""""""#/#P#o####$)$B$`$$$$$ %'%.%%%%%&%&9&U&&&&&''-'>'@'Q'a'n'v''''' (.(<(J(](p(((((())%)?)M)W)k)y)))))))))*QHc"""#/#P#o####$)$B$`$$$$$ %'%.%%%%%&%&9&U&&H &&&&''-'>'@'Q'a'n'v''''' (.(<(J(](p(((((()Q H '' (*(.(8(J(Y(](l(p(w(((((?)I)M)S)W)g)k)u)y))))))))))))))))))** ** *$*,*A*S*]*f*p****+%+)+2+6+@+E+O+T+^+c+l+t+}++++++++++++++++++,1,>,,,,,,,B*B* 6B* 5B* `))%)?)M)W)k)y)))))))))**$*0*A*]*p*****+)+Q H **$*0*A*]*p*****+)+6+E+T+c+t++++++++++ ,1,A,g,,,,,,,,,-(-8-Q-j-z-----....>.u....../$/6/O/X/g/o/}/////000V0t00000001#151K1111112!2;2Y22223$3J33Hd)+6+E+T+c+t++++++++++ ,1,A,g,,,,,,,,,-(-8-H ,,,,,,-- -(-3-Q-f-j-v-z--...*.>.q.u......../ /$/2/6/J/O/T/X/^/_/g/i/k/o/y//////0V0p0t000000000 111#111K111111111 222!272333333+4H444445 jB* H*B* H*B* ^8-Q-j-z-----....>.u....../$/6/O/X/g/o/}/////H /000V0t00000001#151K1111112!2;2Y22223$3J3H J333334+4R444444455 5/5F5Z5k5m586R6j6607V77Q H 33334+4R444444455 5/5F5Z5k5m586R6j6607V77778,8C8]8x8888889?9N9v9999999:(:=:X:::: ;+;B;Z;x;;;;.<[<<<<<< ==@=q======= >> >3>h>>>>7?Z?t????@8@f@}@QHc44444455555/5A5F5V5Z5g5l5m5o5660686:6H6R6b6j6t6v6607N7V7~77777788(8C8Y8]8t8x8888888889?9J9N9f9999999999 :::(:9:::+;:;Z;s;;;;;;*<B* H*B* jB* 6B* B* OJQJ jB* OJQJ5B* W7778,8C8]8x8888889?9N9v9999999:(:=:X::::H : ;+;B;Z;x;;;;.<[<<<<<< ==@=q======= >> >Q H *<<<<<<<<< ===<========== > >>> >0>Z?p?f@y@@@@@AABB|B}B~BBBBBBBBBBCCC C2C3>h>>>>7?Z?t????@8@f@}@@@@A?AAAAAABB,BlBH }@@@@A?AAAAAABB,BlB{B}BBBBBBBCC$C2C@CNC\CkCCCCCCCCCCDD$D4DDDTDcDrDDDDDDDDDEE+E;EKE[EjEyEEEEEEEEEF,FAFZFrFFFFFFG%GEG[GGGGGGHCHcHxHHHHHHQHclB{B}BBBBBBBCC$C2C@CNC\CkCCCCCCCCCCDD$DQ H $D4DDDTDcDrDDDDDDDDDEE+E;EKE[EjEyEEEEEEEEEH EEEEEEEEEEAFVFrFFFFFFG G%G@GEGVGGGGGG HH>HCH^HHHHHI III)IMIIIIII\JwJJJK(K,K7KKKKKKL5M=M{MMMMMMMMMMMMNINNNON`NeNyN~NNNNNNNNNNNNN jB* 5B* B*`EF,FAFZFrFFFFFFG%GEG[GGGGGGHCHcHxHHHHHHIH HII)IRIdIIIIIIJ+J\J|JJJJJK,KAKyKKKKKKLL5MAM{MMMMMMMNMNONeN~NNNNNNNNO1OAONOeOyOOOOOPP&P7PYP[PbPsPPPPPP!Q/QFQqQQQQQR6RJR^RuRRRRRRSESbSqSSSSSQHcII)IRIdIIIIIIJ+J\J|JJJJJK,KAKyKKKKKKLLQ H L5MAM{MMMMMMMNMNONeN~NNNNNNNNO1OAONOeOyOOQ H NNNNNO1O=OAOJOeOtOOOOOOOOPPPP"P&P3PZP[P\PbPcPsPtP~PPPPPPPPPPPPQ!Q+Q/QAQqQQQQQQQR6RFRJRYR^RqRuRRRRRRES^SbSlSSSSSSSSTT,T0TKTOTcTTT UUU&U*U2UB* jB* 6B* 5B* _OOOOPP&P7PYP[PbPsPPPPPP!Q/QFQqQQQQQR6RJR^RQ H ^RuRRRRRRSESbSqSSSSST0TOTmTTTTT UU*U6UMUkUzUH ST0TOTmTTTTT UU*U6UMUkUzUUUUUUV V0V2V7VMVnVVVVVV W$W:WZeZzZZZZZZ[[%[1[B[S[d[y[[[[[[[[[[\?\QHc2U6UIUMUcUkUvUzUUUUUUV V-V1V2V3V7VHVMViVnVoVpVsVtVuVvVxVyV|V}V~VVVVVVVVVVVVVVVVVVVVVVVVVVV W W$W6W;W^@^N^X^\^^^r^t^|^^^^ B* OJQJ6B* jB* 5B* ]Z(Z>ZeZzZZZZZZ[[%[1[B[S[d[y[[[[[[[[[[\?\X\H ?\X\|\\\\\]*]B]_]q]]]]]]^^>^X^|^^^^_,_Z_____``6`X``````````aa4aSafaaaaabb/bKbfbbbbbbbbbbcKcccccdd1dEdodddddde/eNeZeke|eeeee f3fQfafrffQHcX\|\\\\\]*]B]_]q]]]]]]^^>^X^|^^^^_,_Z___Q H ^^^^^^__$_________`` ``````````````````aaa/a4aNaSabaaabbb+bfbrbbbbbbbbbbbbbbcccodddddddddee+eNeVeZegekexe|eeeeef f6B* B*5B* H* jB* B* ]___``6`X``````````aa4aSafaaaaabb/bKbQ H KbfbbbbbbbbbbcKcccccdd1dEdodddddde/eQ H /eNeZeke|eeeee f3fQfafrfffffgg3gCgcgqgggggggH  f/f3fLfQf]frf}f3g?gcgmgqg{ggggggggh h"h'h:h?hOhShghhhhhhhhhAiOiiij%jJjPjYjZj[jjjjjk5k9kIkMkSkWkbkk l llKlelilwllllm?mPmTmjmnmvmmmmmmmmmmmmmn1n5nGn 6>*B*  j6B* 5B* ^ffffgg3gCgcgqgggggggg h'h?hShkhhhhhhiAiSikiiiij)jJjXjZj`jjjjjjk9kMkWkgkkkk llKlil{lllllm"m?mTmnm{mmmmmmmmn5nKnbnnnnnnnno4oEoaooooop*ppppq*qQHcgg h'h?hShkhhhhhhiAiSikiiiij)jJjXjZj`jjjjjQ H jjk9kMkWkgkkkk llKlil{lllllm"m?mTmnm{mmmmmmH mmmn5nKnbnnnnnnnno4oEoaooooop*ppppq*q>qH Q GnKn^nbngnhninjnnnnnnnnnnEo]oaoooooop"pppq"q*q0q2q4q6q>qqqqqqr$r(r5r6r]rarlrmrrrrrrrrrrr ssss+s/sBsFsVssssst3t7tKtPtmttttttuu*u/u;uRucufu~uB*B* jB* B* OJQJB* H*B* \*q>qqqrr(rarrrrrrss/sFsZsssssst7tPtrttttuu/u@uRufuuuuuuuuv#vHvhv~vvvvvw'wCwqwwww xCxjx~xxxxxyFyyyyyyyzz6zDzWzezyzzzzz {{7{S{8|j||||*}t}~0~`~QHc>qqqrr(rarrrrrrss/sFsZsssssst7tPtrttttuH uu/u@uRufuuuuuuuuv#vHvhv~vvvvvw'wCwqwwww xH ~uuuuuuuuuuuuv#v@vvvv ww#w'w?wwwxxjxzx~xxxxxxyy)y*yyyyyyyyyzzz"z6z?zDzMzWz`zzzzzz{{3{||~&8=joπڀ7<]bnxOJQJB*5 jB* _ xCxjx~xxxxxyFyyyyyyyzz6zDzWzezyzzzzz {{Q H {7{S{8|j||||*}t}~0~`~~~~~~Pt&=oH `~~~~~~Pt&=oπ<bx́ށ5F[uЂ/1>PdӃ-]~„1E^ƅԅ$+?gц6Xr݇ %'1QHcoπ<bx́ށ5F[uЂ/1>Q H xǁށ05AFV[pu˂Ђ%01:P`d{΃Ӄ݃-1AEZ^~ƅЅԅޅ$'ȇɇه݇&'-1BFHLNRW jB* B* H*5B* `>PdӃ-]~„1E^Q H ƅԅ$+?gц6Xr݇ %'1FLQ H 1FLR[͈߈ $=K^rЉ *Ɗʊڊފ@rȋFJVŽΌҌԌ89$'( +QH@LR[͈߈ $=K^rЉ *ƊʊڊފQ H W͈ۈ  =G "*|Ȋʊ̊Ҋڊ܊ފ $&,6@BHJP^rtzȋ؋>FH jB*  j *B* OJQJ jb *B*  *B*  *B* OJQJ jbB* jB* B* OJQJB* H*B* 5B* L@rȋFJVŽΌҌԌ8 hd h&`#$:d++dQ H HJLVXZ\^`Č̌ΌЌԌ֌~"$%'/05=?@FNOT\^_aopu9:"#CJ jCJ0JmH0J j0JU jB* jB* U j0JDU jUmH jB* B* B* OJQJ5H89$%&'(KLopېܐ#$GHk H$ d H$#()GHIJLMklmnpqאِؐڐܐݐ !"$%CDEFHIghjyz< UV jҘUjtxz< UV jwUjy< UV jsUjYx< UV jZUjx< UV jAUjx< UV j7Ujix< UV jcUjux< UV jTUjx< UV jU4hijlm jhUj&{z< UV jU jU kl+& 00;&P/ =!"#$%& 00;&P/ =!"#$%& 00;&P/ =!"#$%& 00;&P/ =!"#$%& 00;&P/ =!"#$%& 00;&P/ =!"#$%) 0 00;&P/ =!"#$%- 0 00;&P/ =!"#$% P) 0 00;&P/ =!"#$%`!_ !/ngg屒5_p4<3- xXlUW9޽vX0A%.}Et6Җl!a=&/ hfdl0Шc0#aMY!1lDMsݗΟ?=1 ~, `1X{|2j%!QnrP>%}#UܳԪֻ:#)%_#/쾞U`jkIۍZ%o6UL/SYcm:q \>ئ7?YcmXkr:֦&h|i=ͨY|Ybį0k u ?xhGWw:/sh^J{̟ V8gRX7iNU8 ϖz[߂N$r=rnȯ:qyBJPW*{e0Ӡ)^+NMۏqu]&kKoLq{*?#_ys1G.Cs?czO--YEG <:һtxڂF\A0hU̓ WDe!9ʄ9v@?+^9ʄ9z!De}wSBHT&̱|K$\}o0X!`Z1xsDe?'yiB2Ѽ(ݔN[m͖ȟG-640hz٢fS\,]PX1:LS~aIp3ws# "bJoz `OU3_TbAᘇmu4b;IbY X8L3ĺ*1({j h?T3FbwQ;0ljNJ YVU|٭ضwf4m6rD#r(WsC0 !v ҕX[3I q#0z9ރyAl'cu=8t Szы=Ϡqn% F% )4A\ʠ5wK$<2MEr3 Z$e088IL N03T[W$dF0 -/2Mm>}H IEɎ0 9$zڐTI^Rh_oh컊d!*" @B%U8 IuɆ0 iɐjg8Ck٘ͣR@pcV*Fe*s ?Tf)T.R x:R)*:\ˊސ." !yV~嗊d!+"LXo`PX2`HU/_ңCJoћ~zo5h^5rHO=3X*Y?'n,&0tzZ75$/Lfbj;8Y0=$5܉coN tON7A/|au;1X yBRP{\of6 W]|`mcl4kj㳱:rT`0LToVu>\!^ -WR3;VW;x-eC }вp#1uGl;*lKӊ|8WuYIUiYj;W"GTGpl𮙗ulhQIjxkD|0]q%5[&V;aPRug{!/]OŸ&ow.o#\ VGfϢ%\"xߜ  u0o&a~gn馥.[͘k3&BݕBh% \>L*1˟D!ut7dT8N {JݍK]b6WojԅZׅsq KZYֽ&9|LY{+OwaOBaMYwu{p"a yY-rd v|RF\vb]nYk>Yꔻp#[7e\^팓*U-kTو:|pz>`сR~ڮwì6~HA1lXnCN$۬lǡ7co?-o%/Wq}9eVtݳr1jtBze|/]LhQ:dEC }k?Eq韐b3M`!y{9,S=^$;-~ M:yx]wTU{s}ZtU $J<+IIB@ V۷Έ-g~`f<|rwŁ\nݛ\ߪTΩl*II ] ^7m.1xJ7&7-;ZtSItQ Z&RwlD?)G-x:?zڵJq>d']mtq@NݮƽM1W!?^Wi1E&^ִ^ 4CoR#Z^?{3+ݽ9 йaVjն+߂k[cޞTJ pȍb-_[-o=.hPJpWAVETh:H'MOTM0޿F\lm`N??G9C- #ƹQ>ܵ1ќI!:'K;isL~X| rr,\.:ɝt(xQR   2Я_L*1vrQ t?1里rz!k>4S*1yQ 4=#&MM ^CGSw-9j[M=^AW\V`jA[Yz^ gcUnʖoL h丹9^B4Ms<|`m;KN?*0'j 9g;E9GZ#ףyVy}9W3llQ^9 |fI8]*y1 ; 'Gq!Ixur`Um ÞkA^hΪ=4FJQe@%(TZ蘔ٗ[3.:9n}]Ӝ#SL*:@E՘Ot~R~n./8?* `ڏb`)ݿn ,yN[+_oM]%/YxseNE/$? ~ 89n"Z+R4?8J|  3MTc^.&pQԜI!{\㹟 -4Ɵ~~&1 u1Exs 9JijeypגsȪoÏI7о_,.dgk'xo ސ{*>e/p^cӬc [~Mcby( *9vr^tFk4,&9dKq,rh+dP^l͠1y,3;9~L)k4oi\:s_2q\s=~8Y\s/,'dqv8g³L+*1vr<9]4Vvr|NfƃI^6<FL,7}ŇaAX|X;<9GMiaNNvk ,1Gq.3u]\<_2o z 6aw2F嚮k[?=F7^bc o~HvxUNkm9~؆֠-Ze={vꗢ {JQ1%K)PJo◰\;)OOJiTY0+N.vNט9i |O^Q+w- stFztr J'u/Epsl V\-_# UQqs-+ʱ@1sSrҍj0vr7Cl>,&qr<՘f}pY#asT.n :9nm)[#3c9%-2 k''UMo(rF;Yma1 |?G7i8 BAϲW먘ՒEa7P T/&ȵ9/sVs|r<AMMg!?x6k6cqE㖂w;P96CgӓԿXbVKggہrd丹6bˈ.# A[GA{}Mטaw~y!˨GvN_w9l}*o^{Wﱌ2ge_y`ۧ{ Vʔ[=+YJ;J;lЎy̙ga\|}@MT"ƹgA)zVE-%:Xͽ@5W]u qkKmKFO#LfONNW[dnkVN:h{Ӷ皡=zNfOFms2>a!ەЧ<\Ւ}~{{o:9>agd[xÀ󸞑)M}}x{1vr|>3.eVϸd{=*EKg|FOt 6Y-y6Y%$ȵQKFmh ^zF&F\H瑫%/,K௤ۺqz>䐥B>h8wy q*R EE[qKanvwfvf6ݝY%*ʥ8Er(*:DGBP8w:rxyy?3\8sIvS Gם9ן6dh #Lgg 4Q8ԽUqNIic,{;yZA=t>[s9aOΙ9g;O돟9?>FYxMڀX?'wEsrp*BW%P9gηw4Q|Esmⴀrb̟wE\ͷp13i4N8;py>8,BNkP8zǽ:KZ80Yok,ŠkU>t?+Od`Ob1Y_փ S{~d cX( EB?օ\ԅ&>kz,j ֭df[y-ՙ S+DV.kb*(XwUZ}a1W$k8k gSkYXk,8+X/53YYk8KZ XVY[Yk#8۰(X?us=UθVyY`qJUXLU1u-Y X8 #XjZIb`Nb`eaLpXLe VRX= 0EP\ZjY#Yk08 qSd=ZO3'kYK%zXk!8KZ(X+>g-WdmgMj`'ga, UrEWVuZU5GͬUFX\VdZՍT NO_bdlpzaq-XEdZ܏U` #q X\ d=Zy 5WYk&8aq5S!Z·X\-Ud}Zk+Y߱pj` (k1,~k]p{ ,.'*ֺ X\]Z1~; `b<)q g!#k% +Qɂ#+Z^pBX V>Y}X+XVGZ#,YYp^J3pJz.8a%]?6pJ7YY[p`%[Y!pc%i?O]MD,' V_[^c rb6ԵvjuzYmoH y`9^mU;Wa(e6n2l˧n{6Ht>9loRގeI9>B4JYsT{հ|]QV-]51Y-X8-|H:%=Xn/Xdd4p|&X*ƞst{ d=Z3 &hp&bz`M#k&k=,,_?/XV^QjXk9i!@7%8[RvkѻWv|pD`]]2ֺ˱XVn`kiE5Ք6XD7.dyY6p|XD&XdV8,3JXnp`}` &QzXD?,XO,kg %Z/ / [dZ YEBYcpb`}MֿYk8۱$Xs}E*2Zhex:Yaj"`#f֪ N#, V+Z-iEtKNV*ku' nCV/7٬K|}k<}?Eg ' h, $gLâz`&5֚|,g >d,Ǣz`&k=kK,W 6g¢z`$:ίXT ֵ.bǧ<}1-o jֺkBՄBVgj mXTYa򃓁E_dZpƢ:"Xz0kYYk$8ObQ=Rw֚΋XTOydZsYE\ZFǬO^*Xkgkk'Y{Yk8!XGRap( Ves9U jXTWr8+kZ;ktu=@ׄ81Y-X8-H:Օ: ++lJ'+iՇB NV{  55IX-XɚZi:Y|pcz` 3Z*@/dma l M!@:ufrg.*>X6WX/&[75ZX/붝lN|Rfʶ9:^K˧^=.=Y'dX6 af,8kY2E>8oc}Kˬ5X'XSza (c 2c55~X(XX+ N&aiVNO YmjZ)4&Eu-k56  V p.¦`'kUM6þ;n,lZBF ,l *VjpcaZ!kk-u,l L,paa3K&5&3 I5A5 &Xda"pzcaS$XdV8iXVW:V7p:`aMZX8ϫiMKZg=MM,l ֥V$TYPTc D~l&Q(8Z;Xk/8۱kx_do2c!II2X|,Xo5,d5^Y,d^qdbBf`=Hz,dd.N>2w V,08^,d‚Չ,\B`B܀̭UYjp.Bj,qHj:9똆wXӼY[X{pB{ Ut&4Y+l'EX|q‚f`-& Zx'M 5'N 95q5XLfVj̃5af8Yde8}tB NK7ՍNX.X-ɺZK7YWV}pja馾`U#B֪Ne,T,E$҉wIҍ}I IZ'~:TiƫLo݆?MӤC=a9^m=&^'f~c}ٷM˘ ׃%O']=P:j`v8{K{}oTXkl mg&#|t 57Xk 8 ]"Xzf3 ق5q5XNad=Zp*&/klLr V.8A,`sYVjXf;b~VdssZւUڬU0/X2U2Ku1,szX~~pvb~ds6͂ Y\༏JZH?-pa~`DXk8S1!XOy| 0}J&^ @o =dV?p zV&8o3 YXvpR0]uk5Fo 5d]Zum X 8l*UX+`5L=qv-kg泻kYkXk#81(XzV:YsXk81] Xz355ώȊ p1$Xc>b>GV:81Mdf|`5"zj N}g VMZl-Deg+ aZ?c;Gtݏ[;Z;ٝ)kgy:ۥdZy eg%kk%k f V6YA'FVGa^+`]Z%lcc[ V=qۀyl}F4n1.X,i6`$%X-XJIZ'~;UwI}% ˉnÏk4ˉn I}z-{άϑΙ8G#KgY9g3qv:ZGtlYy/kY9m/Xs;ӱ2"Dc/Q22c)le{m5/YF-DD#k&"[QB)q>s1*Z!÷l3Iz?GeMKUkoff;n<5޷FvF,߲&n@[$ڍ~b5-lNt#ZھeNcmf; 7zʷl3I:]bmf; 7:ffC63˝+Y߲r'F@gZ|63p#Y;eNbmf; 7zŚ[$=ٍ)ZAmf6pHV߲̆u7u_ηl3a_+[ٰFY߲?H-3e{ "n$2+޷l{a:߲r'Oya7ύ} Yy‘C>'LQZB[c[A+l--׷NO ;C{@"vd5jVCupA\/&T3X,Z 88c~`Mƚܧ@)L8' (l ?(΅|-X3VB6ʍiWCV\Kcm{uFz[.W!5Ѻ:+\uvpXG!CW];Y.Z ++`m2u7ܯt?\۰X@~VnભpKw`v\!Z nXU\E*߇qy\r V1ֶph͆SIE7VecyvEj<J@5զ< {zw(4WVs|X--NOWչ R3@;aDZ@Gjt0W5ՋT1?DWX׽XX#hՂa|^q`5X?x%0 L^qĬ9XHJ,^( Yih[/Ɯ¬ Zo9 +|̫[kn;~l[hc(W%g`v:D+9y~] xXqhq~5ҹb>5{2?a^q=ϟ;HLq9JgSt9U{&[OCEs醳.;k+ygcl{uOɁt!Xk(\AeVRIcͧ <* ( *f$QJT*Pq̿Z㩂Z-ua4U"LTXh%p]Hz0jEՍBՀBЅ"НC_z3;RKju-5v$ VszQgju!LPGtʘUVui ԧ4XH>c0׍i @à` *C8 iPILcus qg@`Dk!ץrb+XDZ/Z@k!`یuw?#w auLA"X񤱎[%9ug[<שS!XGcCy~<]x E8"XڂwD݁ȝkVc/:a6\kB 0?.ܸ\ç%Dw;,k>kqXQ$ξs8EF5E C0G V_|X=Plw bOl)c5ъ`2g!w; V YMhb'lV^iE8[aCa1VX/ w8V%YphJ}3`wUgt,ȝbiʇQg>l.\yp!_phEWav˯$17.Z.gorp >~U΄{*g/pp_3 ~YhcgOppa`+B:E,~sxTv/u٭pwo`m6_ vpg@k&ZWrV6ZEOK yYhyi6go9۹sH X?;u'Z;g^r )G|c hLΞvNR?s}ً#|\Nfo: mrs]檣}FT}CݫN;Q`}k`%gtv 'OMѺ|ُ-g|*XZ@388?uPL2C8 0SekgJދB*T~&Xo=\W`;~;s+r]U^ު2 N%cuP/VM{ګW ] U$Z. & B jZ֫\v }uTj.Ձ@5PO(oJ^\ B5*-ZCn4UoA 5 VA5Xjh纩Gy$(,XYƊS,>Y@V5r bcᵞd-;J/ mٟxez¯^em/~G{{[m/[~M %0nqIg : 3>%^g]O`#]me/hg^=ƫG[ GY,{A 9;{p!.TeTN|8Y5TLqI%q =ퟹWkysh=C8۟*@z VOIRuz{r3n 5:g[QR}#ƊPs csΆF)*>s!1V=m 9[>Dq7GEs=:cu>O}7^V,gh8>KQc͝88Mħi J{OToREk2>4 iO<L]am]݂p;~{k^1(?'xU$Xiݳ !bh6f5,(Zyh gcayi` 4C,4VR`*G)ը/VAk+VulGo`M.X!˽j9#*ݘ Vz/KĖՔ8Uj"X/ccղܞ^l J/aGzEb/cU~Ճr`oʠwbI|SSwF V!o|_z q6R~@YlP]8Gp&tm9X [#XN^=ںu͟xnp l밆WcEk3l3a+IsaA~^:#n? I޳i:J9p9ЭpXheVn>g'i>u w:1k봆˹Z 7?4X̚J/ރwQKk&w1k:lj&grP Ο Ύ>-(+Xc Dʨ7};a$?+uNs"JsJ_`pJ3+8OX9c秾vg"|. kXkG+[2ٟ/(,oZ#'yWҟ| eaRueqc%0'.Ìϵz+NO.'Jce}Ҫ'b:FFqLX^OV0نK3=wX냲WrQ_Ijcn)kyUo_6c'ż7𝇞X?e5KH]_ RQ|*N}o9^;kA~/iJZpovf{ok3KZ7p/{{K3.)!+I]3[xAYEQIe^!ʪ`xD]2Xw( l7jK-lOs ZvˠQa{jK)p;] _kۀ{Mj P\ 3*=bqo.sAoC½alu.W3z$/INcc^BwA |3T~؁Έ^;Őgv`fΕ΀`X?h ",y믽UB1x %{pY>.|L ڇT{Ӌ}*`#f쳭NJhl@OvzZoZ+Z.jelkkAk::xk& jPk(aV_ZՏ:X4Z4a5V]_1Zu՘­UתV9ttU%bz*VAtt'{ұnJ?+֟2:XZ}_e$\@GׯČ꿬uc:CX:G:HX[ڊZttm%eZNqW}YhMEG,zZ}hek,a`}`Q8z[.CXVKttEwZVZ5AXUתVittU&GU*V:9±~] `%~weΣ2a)a._>DG'Zk|Z k򵖢5]K k&Z :+V54tt&DkZIhŢ+w_Y:YjkV$ZIXUת>aUV)_"Z%U %UnqYy$\M`Z?u]?:kG0:kCtt#Zkm@k%:6"k&:4kM5] k^,JV_kZ5Y_;ZE] Zj.ꪒUתC:V _ZUBVA:  p+g x>Y.u]Kk򵎡u]U>Bk:>"ZkZKl;l_k!ZGG5 :Z|hEGTʰVV :2 kꃎxlVͯ.Z }hEsS kZ5ѪZ*.jWYBE+3Ǻk"'tt9wo⟷!P$Vi𭽟^3ξK 2pCſ݁r3+=)%!-SCSRݹߋ ~OY}tJ&C%7ra7yW^66||3=a3l>ߕ'c>\y|+O|?3y& @'52xEGxl /|Gd7mԣ2o yA?h Qox2.mc&6o E{{>͟||ͳ<?< ]LB>H lG6"G= ]|ntINk4p{Albs>H64^}&mirͽ MNW64^}&mi$Uo׈$6clG$6_j7xAZo}}G$S&? {!CsB&\KA`{߇w>f+ 0*\z.me ,f9Eo.s*qSX'cg]yr 3y*),q,͕bK&&@g6'-ۏO'MrzImOXgn6w<7Y9̺1b}˜ŚxlĘXWˢӿ]\yoga]yj 3yY2w&GP#yr?UB_t_1EazVeb\ǥ|eb-\g\\_7_++u 57;:&>ΛsvwaW]vns Q~VԃzVXo+r%6+2p90U1+3(V/f<.055,ڕ(弿>`w$";iSv9.W(Ř{X23qtfECXwXi#LV-8œ#QH/gI6y@qgDmKٙGQemICvh@@@P"4ao@EJT(D2 Q12 ㌈:/U]$ONsOߪ.V?_+bŏ/[15=;[9{+%q*"oO+tJ|߸JHgQQr2a_/w[UtS'pC.߻ܪ1hiW9w796Ut4'ZdY 5,+O߁Q}f OY̭}fN/;NmfYe_d[l+N3g^J?>]= - Z@ XM}?qS-J؊ׯj[ <`%k | ǃ yLXz=JZ,kvڮu#fķK Q˶Ѷu5s_VVy6]ZvSgQ b&g OqC!s~%g\K8mHcY%3!/Pw!qVPis3%@FWZ9.]"$^tAt BSE$.$hHhk5h؛y2%C|jFՄ|4T&"5%긦@2P9Z"m&$Őf! .1kCjJ̚ĬL@k]tzBj:AqӼEWRWtu# BkOVЖB3}4贆U+@Z%ָe[GZD!Y^MNHf5[ɒYlLcUGt!D]6Nj5F׉ tvk1ժ%B:t]pEh' :]T+E\A.]t]q@WZJMz0 $^HGv-)1{3Ĝ rF;L+!}D]_2WhhO\C/fy:_h_ :@xJ- E%^%nG5aoK!=rT $HB92Db!f.3%O9*\tЍ;yX\/K!E7 20:Bh:QK\Ӎu4t>t@/cO[em E7 \B20ƭRq~;2֫I.! \BAg -lCnE..e`[Idbo2Bx5X#tWAJ̥\LCyբXJt-G@{բ˸Bt9dV+ +W{rO +:>tVCGqdV[վvF]gܳT"d zf>(e rG2Mqd\CZa'!7Ftk]ktT6DtBnZtu[]m[!|pz[|4謇ΎK\!Эut/j=)Ȩ;OUMӱ Si:J =Rqļ Ibn"f 3 -ZߩrJmFjW4@ft[-B7B7z74tקۊЭBhj^ۊnm lsGQxLӱRx)/BvHLvAwT,&<yPt;B+ZxvMGT4AqBwh)>S-t EW2_jj=ɨj?{ O0#* y#x Gb!^f4t/Y^e4@^tO{ѕj ψitϒ }y3/6MG9y\_ Y :/AٓUgBt샼(нЗ|xɭSRW۸ }[~ :A1]wE6p/zZj!7k?s rTWt zl!Ȉy| =@uL ;ct]WZ>Fw |=(CG~ԛy2|}!Bh9 =Y;b/!D9ø~=aZHfԗaɶU:O|E\uDg GLqrDb!7co!GE c较5m:}Vt}G~~'k\~<*@?qlٶ'B!뿠?2[gZ06'qCS-e %Z89.1WfWZ\rBt b%gvߐE?z?â O\OBSпjEqNCNOtplCO2pʭsR-Q9Dl+bDlTMJ=R,g!' :v1l3xhѕjq"]xtx.AD.6CIАμA>]$>t"j5SE+S,$t\k@# D3z^(8k%)% (l`MHG2MQ *&db5Ekj.WF#꒐кBS6W,4H} Ѡ/64]tp=ȗFn^˨=Gt9FmW ȹI3MGHL'f39Aնp)2Н҆D7sfi# #,m툙L:@lYȆ]:B;pL -: õ37s6@.:z!Ў>t.v1zFWȅ"\A/e"Z/J3,mtjFOHw#Cb fOf 3Z ]OtY -^}voLF>]?\@ Ag L%n }V%`F]YMͅ(dQ,m AtB3J!d(tYWz6ArE7PtáC.O嗥an8:\`hבYԧeБBh Ş,m\&FhZZc5f6A򼚰12#,mL9L$эG7dDZ,mLLDtTdcp͜鐩>4\ӄNѠ3:ݫK3!n3|VeIf^A6 !>?ِ8(JBbf&s2^n6.n69Be3K nd`>th!yYXzX\ : ؓu"+FЅ ,td~ w}Jd{%d!cZ] Yb Q+]Wc!*RwF8g9dY2r_ /\#z.WCVq_k:N_ waɀrM5tU]r-zd_j~XO.8}z;t9ͿiW[ٶܬ/amilmwvUP(`W/=P1vk]vvG];9Pcw#v7TXvNWNEﰻ 5:Umu1vU;zKz-7VW3zMJ}3&v2-8@Ɣz-ݕٸu[ )W-(Anu[;clPBȦY h/+w06i &:V­vᆫ;{qI~YoHmT3N7of)itmpqdS&K#o3J8W(w,{=ԾWTnl/mhlsT֫rVl7?ll۱`{iv6/zK}weދ6GL3'pTT2I=.Mtb:Ikm+q欨ݪo>t_4"m~t[Eh%ZFWQ?hդ1ZEK&8fрm7SM;e;kQO>QE#)+'/MA;@yq€HVH_t9ң%FHҷa dI.M:ed9}06r 3>'D7)ѷ_LMF})z fVHLzǤjH0v%QT܄$ꤓ4 Ⱦ$$H5@ MYB@A"Hd؄Gg1d$!N련8{qdS|_ݺo{ꪊk4E1 w/K/%~Y/+}~Y32GN?q+Zǭ$~c]^g7f"H>N㼝cenc{߻cwho~9hx&aw/XsOU/z;XKF:nԺ=`I{q?2R ~UP*x~\Q?5j.9`~ڽHjP6Tc2Ibm$1^~&FF~5o7}HjH$+爝ZB̳$vÏ8 n%+ϒX~kpog8](m 1 ")sc:!"Si0 ? ދ~< \f~Q|=?|FR.((h8<e83yߢ>pfƀ33_4s5A| x<51?M Oc7 |gp2M)*,&/ o2 h*Mg~8Å 3?A4qgWi6Jsh.sD<4f~wg?!)/"!RZ"_?`. |(# YK6 E+p 3;i` GJ'I@f/" )5`{h-@53 "Ip;gnOh##"v8܍6E$?HΤp>F}KR!Ƣ>8ڏu1"'cD`OO&?ERb3?HQcyt~EXF/o+0tF1N7`dLkmQQO: >\wu8qHĕ)rqkێ}ݑ!' B>I9a1:#^E2=th=G˯tck "D 8$d1hZS%rz%x%FU#&'jjB5w5zWM?ב";8X 4#pD^tx H2.@WF}`,pUQ 5\kpjp-AP_0LKJQP ."gf@ % h dl E;杀pSB` P s p8 \**6?~:"G pAm@.,+Gr@p oonκIQ )O/_ ֔QcHit+GmJY}M1.et+͔f+cLz$pj]ʓs[rҬxJxۤj#u-e/v$|ƖnC-;?6 XEDF BnwjO*E@՟h[g"16ͻgNߴzjD϶qf%Tf @ƽ,e#>z]WN2/uߴ,s-i9 ziŁ8hrOs'wX&ߊ:j X&GM@:ػNS6Ӧ^7 NjN,éYBQlܙmms&m n"ֺ!/hTe^l6U+7{ Gt\?,aɒI枠K vͤUbZĎWM¬73,ڼ cŨZ<$W0pі+|J qҨ.a5AХP$cJ6$ sİJL~Yx!H&KTEW_ÌDk%Lu _ï o+j* k[c@T4U_m Xѕ Սt`d]u*Ig$ ԪIG4)RTUTꪱV9GW(]x&VKX+=9LA Ja9Dǚ\5k& -e0-4Xr O 1c]: [gʀ? QVIiM1TM[%VZTWIQ]~LIeQ'b5UdL4 8,=],.T VI@_t1wUM&Z%V"TZ4$h96泱r}.W7ίI9 Ǔt&THUbesIYfdfdfeTg3Ur &rvUJE\CjLU UJfUX@&%V$쯡AnҺauXy `iXJkp0YP]ڬ9* 8?M6cMibc6] *gf|'3X!WE GQ!F!e UاIcXd}X&+I9I9ae0Uaz>.y:&;sҗ* *җ*zI39lҗ\nkOI}+ $UxN!@ &UrEHêI$0Z( Rmf0EY:NNשR &w`{]/_RJܥꭦR/Rlj ep3h6*" žCWdO.`Z x&Ub%.U)|'._K/*q¬ͭ͠'tM)]M+\ąs&U|Cj+ʀ? _j[%e3Kfr* }QQ]Z.Uߤ[OU}RT\UE_!e w xWk$ 2@&gP-4}4V!ž^_S."ɏh9B{"*6BD -b#EPZV4Qf:˒cN.rSźEIpʞdƊDMlUp.6Q4?-㧂Pn͛!9tME3k/'0th.{X4=:DX6J#]UĶmO[% I 49̼JGDT!]t$tK{.*tL:Y%c?٤衙Y%KΓ/Yx.cGy~uD͙^{^"[3o֎l1H(. R@*䫂e 9J{sĈǜK;Bjp&T!O3ɵJuUћ'ť1zʒKs.Uqhz$hΏ^;^LLX%ִK;M ťBK<ʴ+4%f0]l1WZ>e,ɞ;T;S,>dXӮLd(?JE[[m85Nw] ']րXSvѡAGʟÉ+o'ەU?e/ ڭeEbO58uglݷx(.\wJٳ{ZiGuȥ4PKuPio}Z*.~1c‰Y3 a-<TZW/MĬ)C - woiGq(4byE/.bM]RAli+1rK=_4yS-w9H30,˓0dsdQlQRB#l:&e-bڍE{%J8nxGGI[d};Ů)H)_3pGZg)Fԍ:ח"FٰXi)w@}Z*_w`S3h鼑3(GKGpiN9GYYsqekDvqٕ7^u'"*Q14.OlquM8 oH#bw&Qݝ!8ZݢeNY qs9?tV =X_>/==sF];[eQ*,|(?{){2!jlǦXVSeܙVUqV(hXYJA)ReGERVhTv(("!BU"&H$Dc<3ps?8=^}ӊ37A/>'5IMof4,aAKfj:,GB2xV]oAJ PgҠfgifeL}PFkTuXc ru&d:pdSPjAndA5W4Gu\c@FX:tY8l uu;@eB725ԁcZҏA+kgqv XN ;A%t#SM,C ҡ@6vst jnZ%L@ L#}:$Yk{^PIܯ.8XGֆāc:=AOSB72$:FI1٠,$C$)tt=ݖY%ú>dՄd7PvQbtv-IU=gdqN8話,Kb'&${N8MN8af:pLOP)?6 Jg>@2Gb} u ywHe!L.,|IjwĞA3dĆN0ҁ?66J'u} ȳ&7$rތ y#}'Yk{Iy+%0 nI8&_@vܐ|$IC# $qa,C~ll()dF@Rh SNH{fԬ|$5i.g A9jlB$bnԁcL$xP8ЍUu0&`:uI.&ccb'y(P{ Ju;Cr"(S3fGLLR3{9P^eltv;j3u}=s1$g\ |e>3l[ $MNAY х\NðgC͵v(I2jJjPΨR@ԁckAndT%k^V)md:A_Lث-*g^uE|>$@u=S5G}OYy܄3+A9h6:*Anu:noY@7 P|L%<#}*š~7 >K4쫬.$kl()$4.vœcud* ɷ@G:goaϼQ{2~##o6qk[SLH ʣy|s̓C[iX揄}˫X>bhkJ;I#mg~qkE,GVFnrmѼ*IȻb lީ~!>wDj!}H湟M?폼=ݽeR=Տ< b`!kaQڕnF;:@g:x{{gzvowY;) z:>A/9, w ! j`*1eQ%%&ZQR_!*AQLLOTooz>3Z GqB1F6bĐ L7 Kբs^#ӃZ!/Fa>l?X(k6̷1 G y`Ex?x;|fM1/3R6 K&VqqCLѷ4ׅNJt6|B /O5OenN@Mq2qNs8zSL|~3iݸ UŠA<*NvYvi mO馶SV.wCv#PQdԍ]p 4zhObX TI:H2R< &zR u=iQ5kq4)Гuzyy*G =)YG#RCj ѤBOJ9R7*Rk֬T &zR u-URׯT &zR u 5l@M *dA̔Qڶmq4)ГuaYFET &zR uO+4^xOhRP'%RWiR7*R{T &zR 5LQz<IA#H ")jH]tS8TI:EQ!ldרgF \nuhz2ZW E9|mQaYϿM*V|FE~V@ |[^kF֨Er FE~L A0*_w"۽|Q'_i7d5F3Vj"g}B")M^@~ Q?Gb4}F>* c|M20*FE~kSJN~b2}}&g]Q^+Wϟed5e>\M5 Fhm5M\<$/hҦ3#י/mٶ@d`w>; ==F<̓y1kZc0PFbd0kW{a {Xec ,NdXbStt1RAjY|"À3e\w046 Ud }.[V.1YFWC4RAE,bgrzK¶{ go{qY3!>c{3ݣټvF/-𵥑G uYl0,8ű,>U*ޏ,Nl[ɶgܽnh8հ9ۭfsn;2.ɿm_xl{/; RPmG3zmnSmK;7wXs5>م%Sӳmeֹ3LkGJfiLCŨ]Τ음ָ fw=PN*oR_cWdn~HqIbOKC^\bcg]T@S?wE1B# N{b cS]7MӷMo&WC߁Rv^3 neqkJwʥRƊ%-;O?.$bMv1YnuUz_:U'ʗW]^'،GʼD?UU<;D+$ƪӥ^Fv{Gz~2,˻?E;s|GΏom爒rj2E?3縒D3̆y_'6Hu]^tj^.P]W5I|w#i^AɉFT5{.v?3T~{Nz2@i'=G %[,MOs)Xiڕ|6cqLH?!4BL^F>*c`$Kj"F٬FGL 7i(=cO=+5=*N? AlNzwzzՓMSS6@Ĉ@`M;I5l&LੀM+@Ĉ@`I1M橀M "IaIj2e"5{lOhRO HRױP6*R Ѥ "֑&ykC +Vx*`GxRXGlT֬Y㩀M "IaIZ`=Cjڵ Ѥ "֑Ƴz(Ԇ <IAD<)#IcP6*R7nT&񤰎$5Qڼyv4)'u$ٻR[nT&񤰎$lToM "IaIj ۍQz7<IAD<)#I5hp ݻw{*`GxRXGQڷov4)'u$+؛(Cy*`GxRXGv~RT&񤰎$5Q:zv4)'u$e"uqOhRO HR#؟!uIOhRO HR9GԩS<IAD<)#I]Q=IAD<)#I gQ!uOhRO HRuU=IAD<)#I alTz{{=IAD<)#Iղ6Ɛt钧v4)'u$jMM1<IAD<)#IUQ6*RPpzh pmtg M'(+xjn{39u>4O]VaRkxRyӌ$}gWb6LO+cAk_ )U'IaIj4E٨H8pGM_u()U'IaIj;g[ǐRqI:֑F3()U'IAse"ㄓu5)#I`54A )U'IaI*zP6*R:N8)\Q׃d+N qԤ$5۠1TupR&u$:ve"ㄓu5)=HqQRqI:֑j CgbH8pGM HRK#ƐRqI:$8_lTu?\)`s#Xne(WX+ܨrHo$a>m|^/Gl8cqIfTѧL*%ψ~Z'z)lUQ GJ:y$9n8u>=YY"Դ*:ύݜ#lňEN+:\f坙K/[|݄ u>.tp x%ӝ#)vˤ 7 7Fs;kSrFs,0w9g<>;fRL؋;kf+'nh aUXd.+r DŽHID|hG"9a;}P Wv*bcyTr*O]tZDm;%n%ͧ(6w/?MIiꆉ{en+uiʻETR^> aؽ*'vXza֌up͖>Χo )%t\ϘĶIR W׉IA$$ByִY3%Uoh[{k`۝qfȢ*"mS wNS>_3&]٩5Oe֌ w}i񇨇 -[23UvoflVO3VJsVEY=!V\mYZs!;*1Y\%U$wf&Ur}a WdM!{x)sI9 Nz {Vve*hTZ܋Y E Y"{oq(êOnÍU~Dk m֦[H)fN|M-\ՒσB^ߢ y$J~FLx'cn[F M4]LdrVb`!-D8c67Dlh(33 x czgo;",h(?  AъQQArB?K‰DTHBi2h A73fgzT_߯73;< Nb!|h>+Z V8ST 7Bw/.XFtǍxZъH6T'ds8*6Z8lh'"gs8HIՄlui6c'Eu4w+b)['IQM8@qI:TgsOqI:Ѥ|I)['IQM FVlj'E8vRzM_J eēu;)IWj_@Vlj'E8vRTG:]"H8hN*\FVlj'E8vRTG)vo luxRc'Eu4bFVlj'E8vRzMwdc#eēu;)Iu}|Y)['IQM*'EqI:TgE|JqI:ѤN|y)['IQM$dc#eēu;p=ϦJqI:Ѥ:"Oq줨&U+llluxRc'tI66R:N<)ZDZ:T{w-_@Vlj'E8vRTGllluxRc'TM$)['IQMBM}_M eēu;)IeFuJ eēu;p=&-6llu0Z):+֫C5E f&HźB])Ɩ3gw=霢8y5;(sVB*(ΚXogϊso6#f5cǿf#?oÊ%cFm}k~ğƿ8V7]Rq~7bG3^/O!z1Tc 1To(_;ɂU<'Y1y?70W"/3to"oUNfW8? :>Dul-lwŬ|-m1;/2-1#+k`bsOt+ Z+z7oQơZ cw*5 u9zww% cF/){طNݠ=o_G2}]?iʠ 3r?pTh:3ُea/fO݇okei3Bb LR7Oua)w^2 IaW p.^2M<mgN'-;TOy&`9aڡ 3YWs]e*v(6Lpf+ry u[02C yL/g'*^yr͹Xh3S]PHB0[7͹\>$RgV Jb v ZQ?qR7O4I  "q*X`IIh}̣ ?DwJRc_޸t0.Ur'ބaʂqnq'sv;xL0u+~쁕6MEЋB:Ox"@,"LE 73,ATA)D2@[l:T"وH/"{}Rer K'b!p_2jhx y> @:)g=86~ST|I玣ң:nu![kfY3oCڍJRp?aD5WTuU@25_UaF>Pn6=KTA=H;w̿]񿉄Ckyҏ,(lpW_cƈ7?hbnA\yAɎ_xg解-*X6˔PkNJȰcgrZZZ$1d^'(u<+ _x%^Z{c Fz_ޗ[+` Are(P*QV>]W/;.u 1yO?̀j( }YcYg@fi_r!Ye~6›bGOwaM@#PPGը7؎sG] 2*pɨFw1ޟv#:]3&bbt\ jD~ړno-.{o,#?ޖYkĭ:2bt5gU7C kٜXQH;Z6_zk*H=}(]eEN֫>EckV={o@/ |_ڭg-w\ȴkjBz6a-'\Kϟc]Quw9b̡Bǒ)+r$;PyDz#y0/V{-s-vbZ ey/KNrljs3I*!V!ifN>.<xUAV,՛GGgTNqrc/_HKtG#_:֯Zy9\|U캱jqkF6Hi/Sc5xl><\qrR,BOJHF*w q 6NNEI>hԤI ''"dw<hHM>]qrR,BOJHCɃ y 6NNEI>8/e"h"I=)#u5K %K6NNEI>oQo)իW 6NNEI>YҐڸqpaXuQڲepaX::A {NqrR,BOJH u R/paXڇI٨HرCqrR,BOJH}ڐ7RpaX+jMAjH޽[qrR,BOJHE%d=:! 6NNEI>=XFEj߾}…bzRGj7*"a 6NNEI>@FE…bzRGϨ)وhH:tHqrR,BOJHM訆T<.lГ}x&Ssu$XrWԓVƚ:zu}0fR}珪SsU'"ǻҷ'SsUGM*f$~LCJU '%qԤdQRqIu5)#ΒR:N8)&XrX!ㄓ8jRGj=QRqIu5)#BCJU '%qԤAn6k NJ )U'\Q} #`NJI>R6*R:N8)&XrYHxXCJU '%qԤdmҐ 6lRss1ػ5iH٤>i!UM!^FE*8 znhHEsQ!2^ _K+eύRʍ?g#ϤTVSBu VrWbk|&KR~6hT^'p#YJ|W5{ƒ'ENKԬF<&YEAi+ Iuӓ0GI0 'NaM6B_2>>Od(|r;= 0942c rKK+^8[&Ns=5>[x]f43s2.bFZ "O4ϢzJ}՗p/)1G~+7>> D@E{ 67zi@DBc~c@BBgSB_+LOB?%p^;:; H $aӛTo"N;"3~#>!tB }U@g|Wp]q0%1F(7xзJF x? c 3~HV9{za5W 9GB8% !@_/xW\qzx!@o !@?/=п sC9W\#qPmC8n#~MBr,/ FxП %v9|ʛ;v}9[gLya̦ϴ+m q6fa/ߨl}#v_]K#bB߰/1MV(N!g+s &r57lعݰF:!t7stq}ög c,'Ҍc6 jN_*tXYlpLq>g4A<8F E~3L te>ĪTT՟}I7^&@gz[(+1WGosVp 6עȣ[5o(ĝYAuGrZ38[GqʁntǙp4<șҸsz;*WW8J 2g~&ǝ=CUWJm18YU\t3sp.w𨬚NPՀ+\YI\89ܹwUy\Ϥ3 I.2뵪O#[R-g|^nyNmg^C>/? {̽?IovU#>sK½Q1qV 9AH5bPvX>kO{.\i!2cP^ȕ|PCX@87QVz87ʅ"ѝoJR*{ߤQ'ɨ%ϨDu܊Gp/\U66:mqnŝ[ 瑎%`\g|9pjViT#}|8쿈 sΎi9nFH~IN7]4}ո֘ E_d/>FgvV7.zB:zA~ s+=5UpM#ߋC *]hU.?K/ifMJkjWnC֤[(κ(4: *dLZKUف s]ʐKw s+ͷ>~>] ny^zɶm9}ݠ*c%NH*U=Pm V#/p+4FWyrOgi2e ?:^-&?)Sf[b=6Ǟw_"^2sp-Kyo{ݏʾ?'!x:X@2g,ݞ/!'(2ܟ|mVb9Y8]z6#E3IBmdR[~(tJ 3RW"EWɗP|I$8^7-)/]dL nflؙ:է]rйnT[R.KJ ,M|T?Rvy*OWuBY GH%I)HDNZn+E)P)I<}?D;֟Z~z~Vo B-X\oYnՊɛ˽cʼخ8zb#(~x܌-OW豀FzOu?,~]}GQ SqWf ƸkϝMT||^XgpO?QY=%~4mBc ڳQYeJ{r\I`DnNhAc{vDY*Ÿ561~'_OhY2Ycj#op`>ͩvMaRɍ Q?;?1?ڝ;Wהe[`*r6 U|5紒S*Gޤ* y0?S|oBGcU|򣚟ijPoU|;R WfVf?5"wd~L*Cޭ@V\㻚Tw!?8gxyfٽU_-(**ʆVC=4?spVC͟ #_GBj,gοUs?Ѽ:.XL03?2y&M=!<4-kbhP У|fh-tY/هoζwsO"]w򻳅Hsi;8K32%zn+{.ck?T!R[x 6Sxʚ-k W" 8ŶP`;.Dx@$-f}́GcO8Yc!T\|DMYP'ځQh!ek@UeHF2ZSج7) UVSEqPr,OI!$.1\\X3ous!ILE!iRĐ eԖ22,?QRqQ(bK˶hs~TI99KS$W$*-G嘶 %YNr\HBZN(uʲUL*#N$" է$u?UׅMUobRMn$w3ۆ 󻈅%s˔lT3Gzf1+4wB=OFר|%}qߔ$HK濩QH#SjD U R:&RNl94E~B<'͊4U:iRN+'fEB>s$7/r?U^a ymx$PVjq'Ⅎډbu-[3''`Ӷ\U@5*TI*7,2S*+kJa4e62ʕSn,U,Ks4`]_xt3emgIDrr\ CSg&4~ dWn~/g@?c3oLD4 D"mRz`b7,yF]5a7Kb3]5ggc?펬-vOp.:npN]uu_uYԩt~'<`DkߢQl9X'0CQ7bX7yZy4qzxpjM#B^%b5bv ;`ݱGRu{ivu3ֽɉ8y]Urw\#Ϋ]mȮQJ ͆h yi'K._ƻ݁z6X L9>ݠ£?n¸zeE7hdjʃ¼R_x7nivb@Cmȷ<1yX{Դg+7#w0I]nʻo+]̻(^:tP/C1R~Q-@6{a2 #^d@{Sx`DU xLƘ~ԍ11Y# ނg޿Eke9ڏal\d_߶߯ Y?~rYÏU.gS9b+LdSaьs1qMfy7z1|K|Q<@Gg c ;Mh뻜;i;CVzAS~ g@k<ݽ=}k^3{WtX" Qq2>%XQI9^1&X`9rfX'/ؿ=bLسcS "cB ͣB.&gX;!_?屌|i喣sK_/kh/}E`!E5vF "9*aiWSPNx\ tUE{@"{B h# V!E5¾" ZmN/oȠ#(C 2b;=G]љu3_꾺Ut<7|_ջ #C(va+k/CZ_1fو΂ZW׫Kܯ\"V>G[ 3+J\YRsYY)VJJKPj…> 3+J 3+J 3+JcꙕhTøEYR|JER*TAܜR~JER*T<˹P?YY)VJJ݇T1)W_,PϬXD+H3J}> 3+J w#ҸLq|ᶻun7n m}"c/ w[VaÎ}kYVq˲U37$׬j[^[k\WƃOMP#Rez%# @+ix;^/D+3ix'^ϱF+ixAgkg4|1;TVlA*{C?LJ\AK"oG+aiJ~[FR|ޯ$_ JqjQǣTw>ޢQmhWhǑ߀_%ߣߪ;Ve ZMpSx@E>#?h6?Wc>Go@{|-->Pw>ެGj4;ɍ_ڪ\uHKz%I??oixKjmTzsL Ws'}|Y s$hr C*ެz%ަz%~Vߪ*s0@6*G RvN+51BNY6Mp*>M#J|&FMWiZ19hBnChƺ:C5jhېQ[GB_,xBxw&^m߲ pql^dP0FDb6My9$奅bބQmWY_.zaFV"}6.‹yMx GEPZտQZUEV574Q_ѱm%az#aIx'A]fHf7${gKYQܟ +0/#0/̮@(gGsrʑ@\kyM$ƙc93*|#yQb>˙ss|)"*$_a̅™&zr@'+b =柪vQ'Y,Vau/\fub+-.qv~ɼ!G*FaQho[lv %lX?z}A|`-ٱ&o@ూځ8~$ n1?4]q@JE 4Y*nr`[..Te¡z\ @ƒAA.T=CmAz @ 3(c;v5W( a=@c}VXɷ,j}zKnrLX}[-Ն[ b?ZW+d(۴O0j7Td;5 -:]_m&7ZhB8L~wm]29anu z? Mly{],ӈD#xg^N4\ K#&ɮ$^D,28@T0VyF0 uw4<)-.u|qzS *zz1 xȮ<6V.a΢9cQ//|{jz0kvoTg}5oWܫc1] e/v 濳g#k?USE k?}KU_Z1d.{%3Z7];Vd~h>ZT҂W{,e.>cij )RvteG DIkQ*QuvM^nDY{k'ʏy DK݇zk~}*^{Y{([Q x1ȕK /&ĕSxI\>v*;xgX؆mW9Oל,Xٽ /KaYY^=8`dIQVӰ\V !vLge)`eO9VveܥyB&zgIIOh=P1:[ta70-8jOOC РOܧ΋Wɢ}w#k-=mUkWw%sa=3qg;-L}陪&nyg_:L_ZBpϾ%NWNJ10'uS#;Ogx+ 8@9܌ Hb%5;CM!u  dnnz &?A&fiKj7 ^ q{(t6RMt}#A~d6~&P3TOctq ru3dppu r W03U@Ɔ&FV3P4kD"ձ1ccC3e4bqcGRDž&Rlj"Tv!BQ 0X5(Ƌ4uF@1~:>V`3_2E`!i n$`H=4 /ATBEXx E#3?3niPWESAp c͈x ̬.93; px ".ʵDFfUVe{^TDY] 1f/c1%CRWi5/g_ټo2>\*mȟ:c/^d-ƘE9?G d[5c"k ż?{,ނ2rƲd~\mTe~{]?|o:7;7؇4>D<Gby]-XlOZ[lޠ'=[WSUTֵ[,!{8%.w"8KQw"x>7^9 b\@Kqby,ՈW9cQG >a\9 #D/~Uca81x+L`zyˍ4X^KޏKKzR]j\.շ Aڳ}v6o7OsRjT V?VaVaYfM 5]-OV0t̜z%o5]n0ZMC0j-I[-O_aoprC۠gdž>d*YnGb IQ A~hI\5vʵx$3NZ76c41{a;mܔK<`1Ox<`R2`U:An JV9JɚM-*l`U}TbWxE?!dJS8# fɚ/*Y+p26xoVW%xSz j VF%k> "+X/Vw_OE؁M؂/+X`d}{prKܠ`킿I~8dĝpw)XdsJ< [Sx\ !+SL4-L7E 3+YP3K-:bB-$k+Y-` Β5+Y0e*5 WFᰆ4Pna8$Lk~8Sz*YЏݱz,`_IV ޭd͇mB l|P,zTEMZ'‡ WJ1~&xob~ /JN<|Kϰ^ xS%uBڵWXoVk%l}%k$ !E P~ Jck`;,WɚC"kX@^WÒuPAi')f^g%k]3T`iA9`@H Cɲ]hv`Cd5fJVft( h-Y픬Vt/iGt/)I0Gd6z)Y]G2z} (L{øZyKZ` ];]۱|{cs67Y68G/io{Ʒa;nq3snN[+8>w>+n|u$Ess|XnT0랯^3)A"}6a#1tZm<5*Xಚ'ee8<늤ĺ8]:%e%ytTJ,dTE8XTcU%e!VwF䱆'e $ֿ $Uu#fkaR֝ĺ8<ݩ`-X+&=ֺZOV*X<Ï5Y#ה>N|s,t>^XnN,_iAN/O r8!b[׃ [d*تCV ,Uej!s~Yo0y=8{̍2 S=wfގZ'TqaJy8̇v~gTqzp?jdwq̳Ohf޳&雬5-tVIŗ놮匜>caS([:NZw{%)} ֤P,+r`mb3Y2A_ǸOOf\'$y K;m}w }RW?.\C>p>pܸOOΟsgt[}־ R|[XT (k6~FT\P0ogD շ4ǫn᷍e5Xopq:3oW8o˘b{ zƥ*xUhǍER;%K+UlxB >`=p0Aߙq_0\*V)k6,Vy~ RWէ&8qogT=+1ZJX؀Ypy>݂R<?c+`p_W#mmƥc@W=yvy^?R ՟?3-hU4-%FO W,Ʀ-%x>q-xkV[v.u s<\04Rͥf&K8hU[RY o:cwvT :?bj(<5fte6+G|n!~2E"f\cu&~TRg)M=#Y 1*=jSDCGJk˾YX&yQeZ[u@LħdѭE8ƈQS ygS'4hQM`t&٣nR@wMA w# !Q-iĔjXRl/Pt0%XQIزJdj@OF2u#Q:Lo &]Ru0h=]jRo2U6&26rHԤ2_Xjsexky$_j.HMXÒ/RgƖIMϯPohNֈZJMwBz6-ek{EeR2H7i%7EKY6#f8#-5&RDr&K$9[ƞ+ْXFqIM/WFdEH=a _f 8Zg5svL>՜(ynEJ"ρud܌4>Ԟ.6gO3݊>?Sڣ9 eG4!ӨWB&#; BY>̺ScASV9 D(qP54"%XyR *4h ^cYJL y_ *.0K?ZO'2ք}¥\)\AAFLZyvAJt)WF}k4Mz{VJ6 m7RX. ߑ nti(~t 6+v^(W)  !CVs'J'AG i7\=yN2fH:IHH4!cM0vǻ_-GUkE*O'Ϝʧ Z47{%:`DّUwKC(䈔TIHJ:2eGTD]B$ډ+ 1,z9g֔6t@';%/ʎLC@Z}-ׂɺNmtTJe7P:Ar;2#=e_8kkAb :WY %՝A T'Kdu ]'1փ^j n)i,@TS6d#^ʵ 6|}ToE>y?W=צ]=_2NdTΡz9Ջr+DŽ鬡\>${BW0Ӌ |tŽpc6ub:Mf/zO9R7gڵTtcEW kM7O\m%|&Fk^KF/yxck` Z;/4Y(V0?SB,O[p%-Zs1y֕/ SW(2yp N<0A9ߓr?tRnSN/))O4ߡC۰BfUeˢrޱTJ(<;s7TQ/;Ҽ/;ژIz8~R h\cEVf?-eZ:1Ш(|}?s$L_% jL'Ik1bU tRPVY4t$Z .HWDTE ]؍"dцjH9͛obv}s=3 D˞Rۆ[@zcJ1pѪi[;9,.x]Xڑ-Vhw)/,Fh$n)"/ʁQ|4)ϚhjEZo,@89Uj&ԭwSS8")|nq ^hMK„lz+/PSK8St8B-L%%c;cP?9Du_0 S*~LUDeܽzjԏδ6jTZME.2s)]JzwAeZ$OO&wyd ПL<<`Ÿ(uϑ; ~Pmxħe'heo%Y7/x;,d[ji*w/PQT)'㱹o)zFQo}=qEŌLQag#w$즔2)BK 1~ _]"Df꿎C$=1fm {M~C^AE[hC[5Ρ}S.R_x6'7oiF"9%u%%p9\SyF{@davb찍]rK0hu-6wP]I;>_'{Jhz[_i?Oϭ_h.eWp9km=x]lwVЇTr"&0:UF4 9޼3urHr:xճdWX0-IYȨk_9kD6TGãur) G{NjM̞dS\ ch76+vZ:Cٹ0-j"M{:Fchq0y}S}_}sr:Uuܾj qhM' bi(P[ nr[ֆ~PBVw4Bj)47ԂPAFlnhʰ ',~o=iñѭ#GY22bơ=g qO}O$s^H=CԟS0z#&O=E^Y z~IwamTH(C˜W_R޿y1޽#A`Ȝ׽ %W^J YMIĤk.FsV)fh)=uOc- UᗱWUX z"ʎHorKȍgwmx 7IbqE%0b"D1ؼ9:Ň><324hOGs3PŒz~nVl!Kf[G\7RCTI)#c95Vo6~ήe9²jUkNL >KPDG{Vd2 ;AC[X1ObIĚIw TctX_bXs%uXi&Xg<D~a-DaBŊP`=xa=GMXEy1?ZD'XIZ%:_Ê:iVPK_J}Pk~+VR ^ZCgXYZ3}jajbMtUGkC/\+c}GMI7.uBܪcMR-ż0]4XL}1V7&aq|3':VKɿTh3u.GX Xq_gj:p̃XQ Vt9R."v0nBDN<#b ҆!+T`PXj#X# ߄U8 NQ&IzĚ~^؛t/;`MwM;pa=X F&k : ~k87 BJT߼}>ASJ2נ^ܿ>-hcEF )+"{?Y򮆭סV 8նԝ",Z[n} a-6t#DVZE'4Lt'W lXtи@E4Un2<8E:5GW 1ъW}< DpZU!MaC+<{!Jk\oFnGsN᳹;܉'s[ncEw8pY~\-YtAԇsGе<0:~[U3Lڵ!<{OsN6_u8'p?ͫ%Tn?6iFэ|h&onOgȕO7*ncLU YX bzz.)Sz8BOiX5Ik ptwmbUzK!)ևho%XGK ^`Rz`Por2,7S3 M:-)j !=낤X$b#`u.KXGHwwɲb] #tk58)V. #fcU&* *`&$ź XG6 Vuo,4`Š9ZnuIpמ^:u+s^{:kN=&-עw܄_Υ=[*˰f8`N2{fgE/(s^exS捪Wܤk-lQv,+miH˿?"ki"I,s>[AM[\y-K݊3 c@sT{/Gg:ػfbl6zq*_9ػ34ma}U\g=/rcq?TU?8>hh(STF/شlSk;Z˯'tOզQmMd57C=ԃdWdnT(ko)drb(>V%Ϥ'u;Psv"Nez 92|/!:;țұ샶췣pjUG?֫J[:6W vQ-X(ݛfYB{O<{J~,ޜ𛳷q<սh.Jz},W;z6IϡǃU$omSw(\.kWCrjF}]-mA^bTB?WmxgF&c>7o#tQkSZ2ݛ.W4!TJM}|'OkEx[NK.-v*ӃBoA~6JH S2F9Ÿ)~l0)CB2Q| I^yEN\+=XDkTTX8Omp#9;aq kN.qpsX1XL{Y֭sɚkpjF'X-(k`.P˞.K }cmpӖzc=uW@|fQͮbW+GgkMprcTcџ7fӵ$cz̀~1rT58#zCFT{Z2%&8߁WQv(ҎsDV΀+يߕslZA!{IƩr|iM[ P7zQ k\rͩ=<'P7{J?dVvmoӽ~u*tyIa-Uɇs4_H%s`c|x&= p&I^!9xdݗd޶>y%H,xA^6z˱Nu"-ӹ7}ǒ 9{A9*JE:cq*O6"{FwOэdk>F_TC2N=`hrl('{thU\yV:%;'䑈ļs\?nYB{3Ȃc7}ǒ! 9{A:JJeo5j*NG d5dR_jyk=]";C8j/OXXўO1}D"Y$s~j(vrtV\6ziBOOHy-k.)|(/`<+kF(6ly4[Q*vDVzT(J+nF67TG|8$c-q9bA:>rtIl]WrĂ{teӭ۵GWU E<|vME; 3*v($X8AT"Ђ$L $yiI,g ℔[wk9$[ 'yq\z4*9pẗ́\>ylF[*`?l_+VX ߸:6_YG\4 6غE,f#.?or5W.r}YG6d3C7`?n5yNbBQ'FIWs A~۹h@LqEqLc˘.8<p>lvtuj?qL1Pzݛ\TGGpꞍ(,:xgf|mաV[?^ùru?V}˩G[Vu\AzYypy<42ЇAo'?4'mg/|KZ;Boq_b >s2 d?0f'.Pthb#udhlw܁H}D3Z+ߋ l? -}!?J]"ArU7s.F6JGgҗ)^sA~s ;;0<#{2 ჈\?7svdt{CAZX h$C_@O/)M`6XrXYArw?F=}VK_E\u~%._XC3qulqut kmؙnlxmAsuT^?:ԺJԺ&J{N6tH"8SHnV6ϹK{"(| ˾QH !f7mFt S%h?DOE=:NU F1ɵ}&$I>a{Xu23"9"tXGȫl9d+P:Mz3P>N';Nr~!n *{-"'CzqJ" 8$^CNgGQ_~ʉGz%{G}M V{,IeKƺًo'a}sSoo])]<9A k{a~XywS-&sǰ3u@]J 8@\mս hVdVBuρfΤv΢;-lJ1[W 7ڤƞVGՊoaSML>f2rCfB/19Leh'#|,VCGbuf:K\O\8k2GzvrXX&O):g^+9Kl*+MFӛ9F)Ie4p$(M"s>ʞ[VȻpQwc}RwsNotN vvl,X)יr}r}ʴ+mtAue65X֮ 8錯kuaX̹F8@SձQթkXkntck R]<> $^kqYYb}Z_c V6tHREUZ!A |fv'PDϱ“{ kunL袈k % )OIs|"1z,1oXE}̉9CKrUVk|7!Ϳ/5zHTfٱʧpri>NG;^r /B:c(sV]YϢ=aEjzʵˉӮUz++/ ${> e)m[S{ڝb􍟙D2o,y*=G==H>?rEu `V1F`(`DÝ~цmL/89% \CL<ݪKjL/3ι[=h [_f6G$[{7fd# 7.1Bbu Br?9ِ2| bʹN\FNd)g8_KXtm)f${ ')]/#}51<,Dƶ@C7,M\{ŞRrWak+ɵW#e~"$#Iq#$cm̂u6#PvfYȡ22?EdGo=8 7͜)wK7 cvlL"2Z͞sH~7l^^^͡X<~8:۫~8W9"5Z JcSinznlxmAsuJ,N?.^[?W\{)8WŪXS|Ya{4{:2u?ijy>'4Q:u'&E`BSf6qLew;/c*Prʃ /e /vg/^?KsH͝Ožutt\.] ˮP1AW'`?8a `LSw2r{EK\X V 0m%5A9.Nm-l}Lك[ma}s3ewMH;ɹӹBP4H\gNv'dOAfB/3&r;G֦ fjԎudVH/# 1gP=|ai^v.)MTJ=R_T͜;DH:e{t8^x{ r5w_{N6xF{z4z V~8ɻNWSTlstPG݇]?Wo\e\]Zvpk^[\m8$iɵ\m)j2Ժ$} `e3?q$6*$F:u'j#*$7 ܬscFDS[aa&-Y1݊A$R1!Ol'9բOrUV穄|!'[ ٲ@/bW8est"3A$gx=ET\!\1z{2u8I$vR]65rJӽVQwe yQAzYy2˾_r5^g|$? ;?}s}LA}Ńc:.|>Vz P1A ^4F^nX x Vnԝ^цhc2,{ 5`ۮKjL=HgНm{c<7w:SfﰾtBۋsAbu|dY B&Y2lg9o 3qo/ Zhm2Zpx6h@XR+XDru/YJnlm'*{܅\EHF:s<"$cmºBZ(UX-T#wKCqY)SJkYw"[ pz3_\οSQl$^sȑS&b&ˠ9Ti-$~ñO>Z .:w:ur%4lcSKhJ76{jĥ>Hr5W.jiW`:+s7f~~wm8 tBx&6Y{Y ˚T9Ĵ7_V$0O$T\H%~oZ]k\{kB9%iU@rUVT"Dϕ@/[&wKɝ=$:sQ*wC EAs*E\p&kIG%zP&Oz%[>&+=̲a%B?39sHg[WJzx|~BDžAXvLü勻.x^ JuNu)jNGnh5 %jUP`ۡLjl,3?3]oI?dzPיdhsUC8s!Nu<+k[\@L/Ͼ\}5lqF\3J \50kx*bo-G,븵@|`:r[>\\][|hz[sr7lUrK mڪYm٬`m5Wxl񈁫Isղ\QETs\M*آ\ (0pݥrYEl5Gsd3C54\` \S4dk*x.UTEk<5<l15Jsr[6p \' $a:rO-gu<*׻k/xQ{\{X7[o^\ϳ\=٦`ӚQk3xQfWja:Ӭ`WBsY+آ*dS`"/4,2)b\9,W.xlkIsrt[0p]`g-.f.$rqk 5<l15\sr0r:*8b8`0iOY^T,gPsg=[0pbϛ \5.kxzlUsma[r= [\\s@ \i},~U~5MQś͵lYs=ruQ[t:4<- 4ph8U r[4 < (6p-\w\`\5Z[,0p\7\33]3 \4ו,5B.\\3I \5Y,Quux) ׉,XǕY2pjOYC9`CY<>x+#@ǼvH~Dq{ ,ו\!IWI\kYKsB.1p\aϙ I:5Ls 4tpfK$xO,קH!Ik?\gB7p^gk Izգ\Bv5,<-͵OB: \5+rՂ\!I"͵*VzHRk溛Z<$-7pٚk.˕ $fh㫪5g?gZU_>Z}-D:dHEPa X:8U8&{3sc>'=g9L%>uFO :܉u$pS#:;J|~P־K:Pvqn>绹k‰Uϕ>Ck=p*5'֫y^_ Zesb=Gkkp+pcef:樿sj NIj'u@`Ur'0)+ VO'V)p.Q ֟X]'%>u:ىup~g`k~:8R1XXUlub}|,n~t>FLcmubP'`} 8(gXoWXoe%>+kZz8O*sX R'#Y`grbl%>5`:6%>5`ubMεJ|>!kpbUgW`3XW8r%>`]ĺ8+EXgӝX4%>?'Du$tV0XXNG%M7V[Uj)';SBouc4&yyzkԉ 8(w ֛NOډ"pUVNyXW`-2X9^%>_Ug9T%>#okVܠ`6X#XcSc~Njz8.΅J|~iVG'ֹ9K :щu*pNPS2XG8/+L 6YDFK~j~j u~VNʅ 8߶"yzщ 8_*Vn Vгډ|V ϗ6NE"myTz+t#$f/ٽr#Oҵl}us}'];,Kעl2CfKvgur[~IZG> ӵ3|{#iGѥ_#Wėo;ⶺ.3͖ߤ1᧐U)Z~PEr="|Au:˨awau-TҫgZTQ QIx t- WtLeO|cYVt~$te oϰ5PYԣr:OGp }V%h ƯYo9YkQ׬L|Y9auTVL4@ 3zI1TQc oE=V%rNע3[ngN6X ];(QuIc6Z| _gZDZK>Vh7gqhB:=**E#ZGk㻨W,:zJ UdxTUۨב' ءu^gi{]o,RGeDZַgD=Ex-+_TxXs }niQk>U 1{O ֊Ax[T41SýLw{3,fn+3ubEfXMкe?VF"3Y1菙Ͱ¾c+Ě+:;U}1PCSGЩWRKzިyx1CWc_X;stXHtt|U#M#6ֲ:N:>͢t،>ibsOݬP<]ݠCuPo*vgcwVluUZϮEtλZ:.CWOLj)sIP}2݂nOs+f5U7tr~/E]++]W#U~No ;67nkk8 3z$Z5uԵ TKjgt :`So;e-[ӌ-?z=6_ŏˇ؃P'_Ag%hU{ͨnB ]ʥ啦Nuw]&ѭU}Nk7koF-wbD&5 edo?Rr<[F'宾c'GkIiq246{)o66{O޴5LF46;ymo~+LlYmB*IBԤc%uZovKkZ LA?iHF)9=ZCN{%t@ C祘Ոm!:|xWk.Z:Hm+Jp:#;d?ZǯqXcCv=J] vE~v`i;6].K0sKpnr;i7ڿbT]88?(a}O} .%-|&,Gʫ[}&ܸZoA,\:jمnJjgi53kLe `'[/6=R}>𬍚1.K笿(FEO,hltbViKa\:ݕ2wyz +Cѭ*2q` lZup(p0|VC-Ajb PS?sO:J$h쒵SqWϱS#=N4cs8L=7Vo-f2٩k{gx30mkv?jbUIz&-o5YgΝW~J9tw:-N*aduy CXB ?Gt60/)'F#=u8ޫG4q]t6{tO?9&svSO]Q9dx[%2w<᜜ՊӼI⿼qwu|N6t"lZup7C>+Q=U$QbJ{r%k$㮞cFkɟClτ =7Vo-f2z5Ħy+o5$= QYܿK4uE,mkQ9*{8;V:>'+E:r".œ|uSNtX ىK:#;d{9CTs\?qUm1DAUX u>jt|C`k(h7?UWmRj-=z]Xa/Y{xĬZs?mj g֘zɮl=[x{l.ñS+Juzw_vqAcӼXUoI[MK>v|F$ՇeFJX -h}x茄TBgjAע@8 F?{پ%}/;!7!.ό}2׊gN7W+s|ޙQ_FTdIb@Jе »IbPf|+h"t9Adgֵ&DH릜+ZqM:T$1:>M6F9Yy硶VZ9)3[e@Ay9Z_!nNodLе}qg^`s㶖kO>JQ줁a)GߨZ4i(KS=imᶖob 1^r;}T:j޻>C*^z~.36`RBע2trwZV8 dL:ycҭ7nC>G:*7D fx=kdҽ)%kgi\Z!67VǛvKxb-f3ՙV4ou&V[!jVuFKT64URKkZ}Ű@uәmg iP8ȶ0>t^ M~˰*[.`HZǝב=ז1.Cr={Q~^o]:= ICHI="O?c$rҀw%ވ:~-41CwVmF {3ʴSx; /nݼ$zNly@Mwmg3$XO&OTIUHy}mi{͍Z&>etI}M:6__n|3V]g*=s 3Wz.kI4c O^r&=o1(huz{p+tΧV:vft/e'n7?vtuøaTwWx{6x+F9r[ ノ^1:NNxXM59@T]6hA7:כsԈb-iϱ5;N&f5fRɛLxb-ilvޙ?^70i^/o+bUIz&-o*yls|Yhm%5aĴ,x` !SX ty)feCcʴoo-?zKs!sK.G/.]BY&eaNUz'{qC, O!/DnG.IwD#.tQ ;_L^ژeCU @:.sӌKe+ûGtͩf^yQJ9w=鈞,܂}R+&I7GʫY;M:m߱q[˵N.y&MwN@m+Of_-'Ԫ<vN1?sQSo;e-2flK8?כxUyoeXEjHT@;#` b @w@`w]w]]˪`eݦ.{}7g@^Hߜ[νs:٢d]~-bzP`STY WURĝRWZˌ>UUf׾HQWT"K/)_W`D>ňqQC:󨘝ཎ=pl _)K\jk}G-͹߿#dIהźO(WsTo'`t&[Iﺺv^u;fnjΖDKJobOuӟJ>7;\S}C,V/{-fA{?1kɥWC{Hr.{kLyY~.cN7wkݶ<~Gz674Ls|Sl|6[Gfht㰘v1]11Cy]Q1ʘ}a{Ȏ<|wiS}CsKs}b;k-#]ˍfGG\Ͷ|(TO~Tn]ZϑU73엋_*zI?lwUQUլվ-5r[qZs$zH7ly\Ժ#+Fs|ATTarIj-^rNx2z+w&kܮ\~)MԼlQEW(ÖE/Q;ǥbYTSU]eK99J:$:*~ſO=^]WD8af|fyb!DyYཎ=2]Rv}(Jo%U;L{2\7=7 jddQz+ Ϋng[M2XvI[YInU\d=zowf'Y;Eߖ_l-^3DL\yz2WC]vq7.{%:h8{"[j-JC#Tm{`qQ#z[9H-#_B|SXPll1%bػbʘ";";8}ޱVG,Jw,4Id1d[qk%<5WkeՖ$k&=Ҝh].woh,14{L\'+EOH(j-3F ƿk=zQe=ʴqQN؛mkWUg )vILK\W뙾zKsnWOzn~kXE)5<.~."ve򸨱>-*l_gƅ~4.Gu&IhՂC}t;8( 6 RO3pB)u{Q߄a kSu uҿI /{ qbodV^/kPV hO_цnAk:8>؁ېm iC ?vp`OR93j˯<[>ް l`os|ڐ{m0m*FNj өsMXbo;yu[6nbj(^tqC0ET#@p?A#Q {r*3 +:( ɣ*F+hgaD˟{:壣 E.,z&U@@]9 ;s̀rQvQP 8C dW:Tmh e4ܚgar°qEpd3*l9~V޽EdCf4R7*u NrLܐscū89D|ѐi".5ݸA' blhȍEC r%aL#)E-Fh7nkH*@ʱjwQܵk@L芈s*ц>0+CDt%9upNLX۹gy*/zA\ -*D1_]\ad(~Τn"OH:h.glI!R'$%0IbPHuT 8#Bo\\b8K >!gK!QH-9ݢ\1t~1|7bbSbЂ`]q;~"a\(^-):չ\ˁ^"v^ q1;''GZ*zn@usbE/bOJЍ޽.ΈMB{& bQz#i;h{h=MLc7C벖ǴVͤAo! 3 vm7z>j=wBv!ֲ z'ˆ!sGhc],V{7ihWhhc+Mw<+mmF9)[A-XW-͙vmZVz/%[zbWVYJ@[~n9m7?Y^uhKv::&?#$֕3#+b:C:Ɣp?] rqc,JCQ)}'YWOB0 }tI *WáCIxbG@U;6: UcrFAGWgx8e,hH q$ Q1шbG$)$ c\ɚA"dJ59HXDx|ƘzOAd [I5l2Θ[Ԋ;2MC?7trN^)LWAC΀Nc N̈́΂ ̈́Ά$] ]E:٣OAgB琮΃>E|\ֲuX6TOC1g@@]}t 4 J3Ѕ,Jب.>VPhU*gKXJB*\=}t'6ڱˠ1Uˡ)_e_w[ r]MAR[r&u|зo06Mֲwo1 +ۤ_CC@!=.W@!}ݣfZ ,&3BZVDz}[6毡Ū~}[w?BrXJ韠Tg9_b=CYJ?I~ڱ~T~ 3_YnϡT_C>+P>&GkX$_A1"ayWr ׺o!=r|kb|kaT~߹g7J7n2 oLB;kY LA iuh 迠?րքOҚZ@E埡%/ПX*ПY6T1WWz #/ɵA(:&4(v4(8H!(JŬցFCXJA@EQ+&ꉭ-(j_-TVV`*z S *ڠUoagT\H%W熿U 9n%I5H|5IuHUW Z \HSRݕ {Ԃc9!5];SR˕G!eRI3b#(APvGv[!CcH[A[Co^Ǵ Fe7Ao`Zz#i;h{h=MЛuIc@xVlF۠ևJ3ۡUlh} ٘A6`߆;H;@;Br!˳лب mVPihcUSL;AA66erڌ'%9[_c`bd*z-j{[崂ܧmrZCw%&W崁r%O|wUo ic_y,+Y#hi+bb!\9'OH{OXW]Ni.DְT:㌎Oڼ5e ewwv&vvaZVQ &@@{B{>H٣=ٌTA{&s_CeڇeCڗy4ah?O:::0˕GX> F1#l>bվzD` ֲ!*\=L}:ڱCO0UàO~eB ^Ļ 8p-ے\іCxK2 2RǤt! $@Fʁ1Ѯ g,$Sm,gd+)1G!6gӭN$RvSeDxeI LSYJ@'1] L] B ::t4::tGgBgAg.Ά$],ֲ} :eC;:9 :U·%Mf@<+OC<+]uب.>VP"3ЅL3IEeϰUPZM"M&CU;Y*v)49賬_: /Ted!YI.pI,%Q:&&$ KFBĬ钆~!+=r2 tICL&$]4YҲ8$;]  ( AEQAz ( F PCbF`QQ]b?svr9w{f};OxoX+s'e`PEgBB(]>U>>t >-]C]G tl.Dgd2/B.Fy He6b5ߥ52@Ś~En@ 25WFCUlyts}}^ŚEtҍK *їQ0s j_Jeu|*RRkuUկ{oy`I"7mjMoyU5*/joyCxZoy~6 |&/D{clD6xcmEa0qc`=݌l䠳ԙ nqow?-ߦf 򿃼IvL򿋼],)he? 8w{&&zʛmHнYtVzHg]6%>IM$qyN2Xlˋ8,Z:]zUF$5I0$'$JϚA;f:I󿳴;K|@-gM~XH2[l#&vt$$q]t>,/$7IޤbI&d$$zsٯI|"Yv>3GggD"~7e ,#k$q_lq 3~ L_Wt~]zaq_-ιPW-Z GsИhMGKF|Z=G=# .z/,ZZohĖC˪0G3Ԙ/D+T7-/VPse\4SͳЊjTF+#h2z5YҋѪheh5: fUEbk5glMR[ 5ZGI;X+_:HmOyr>% x8^C]ҸXJH]W*vH>R+$d!R$ip"$j'1# \ t zW7HIyY "vgv{0@{ BF/G/Sm$\j1z5h_ z%>m6Vdn6m6s lbj6L-j}ЫlkmC[W2mh[vhuG۪Xs^u@)툶WvB;`3Q/69cخhh775;իT\[t󄫛=^=*tojW{#=TAzy5\*1 }F?}}&\0bEz5,qus԰h˚t=rHfwsz(t4z#z1M *ћE7Cǣ7G'E'-t zzF&mѾA@ѱ1FoSM 5;j!*;CŚ#x':D$4ѻ;5抎ލޥfҜy0&v8z4O;j1ՄDF!#<)po^y8cQ^8ގ3(2U F0FLD^$dWIMb{I2d4.:]ދޣt!:2W"t*:Et1'-@GK4ѸO@WdN]> 7Y >Ta}Ƽ}}PŚ~A].CEVse#j>>Feq}}LŚIqQJi,g Ց9ꠘ]} 9F*5ϠO~O~Q+OH~dW"_쭚{En)p-Fz,Aydqjn?K%/C UscE{f.$VПC}?.݂nEW)}}^e6"B6%яЗE?B/nGw+їEULЕ[}n 5ľf }CCt55AW@?Fע\]Qlt=Vt:F *֜W JwBft: fB7~}ݬ9cARjbEV}}G>8=X_oA"[]Y9#Jŕ~qwzՋY鮆|Ji|l*1ۑ]ɻ7#_ ?FRODvR{԰%R>TF?nڅ=b?E?=~RzTe6L\([%Z$z =~~!OFTdJo_עG|cFe6ߣߪ0ASc>EW=>t+??y6OIŚWg_Tf`_/w7u|z@]k/jAϤ4!/Oo S=47FwC"G}9aS#9Ub!G;lr?j@wؤD̿qLĩaRN9Խ!n;C;Ih4RZMB♍РjhM@ѐh &EkT4Yd*Lf M\V9 Tf[-fEԘ15B9hL͕tgsԨA4Z-byQz>Z-2-f`ZN/6-9c+sLկЊ_l+v]jUFdd^JHeb/[Rŋ߯Tu`jb5jD &Rݕ}~6+cgZ4't%O |+sg"NI[*%-j{YYA9_&ݞCQ#C/P2S B/ 9h"4K m Zǧgd27D/Do̗ UfT͆r25h#k\+ m^hJ5Fը6C#h9TŚLiw4m2mPGUhhG_l+:m^ĶA[~E[~;QڡmpGzWu@y創H{5[^LAHgWAɫtA:{%~"9jwCx5HW%l԰JaFf']fw{7s !z7F{*A{FF{+^BWBGkDGckѾ=|zO=#zZ<_ u#|c^e6770ތި<ޤbM7AǢ\ޢ@V5*4:by5M8vtlt: fEPלwC\t]蝪԰ahn(]ğ %Gyc{EF y^ ##*1!oyg 2Wm萷<ƌCƄ屽RR1;Z~$,w?ߔvd@q^Y?hZzUO=No|ʹ1`WGuOo]~~vvsB25~'޺a;j[Ou^Zszk[n,Sh= K>Z{qa{TZO9øui ϸz=܃tZO;ø1AZq3h= Ƹo3iIP~^gkE1n^mlzi}~7lo=ntŮƶi*ԮGzJP N(( ُo :hnP6=UځUќi%/e^[%Go@?? YU"ZΝT vdoK(<9%x>᫲fI}bӜ*ΰJh9?R.4&eTʵMΏTs2SJ[ίHee8WE{?;DHJt'u2 cEe ܉?wFy+Ud{S/Xg/SU/Y o|/mw@VR dML@VmԒ2צ]oO]}1&JK''IٞX1{ONL8, 9?Jֈ p>F)'g8??$GJ:8VFԪyv{&ֹ3<ެDJ=}u ˶VH*l;mce:g[+7oƁV<~u< +?99j-n2dQ!);ղ͵2(wYw?d冝0Ga[ oZKǬ =F;Kv99OP0=VYڕ2ѝerS9}M9 O:grԛs&#F?|]FsgD&[gT~)ѯtT~5Z,*_Ux?wl@sy+6Osoʬ_wXd^Uc#o?}I8:w 'v4:)e/):_ye^^\~^Y鏠A&0wэrSy0i^cg.KoDhK K%Wu䕕d.3)?T-rx FaK`Rye}^^Qe΀n2q s(w_z*ey]d~5hS?~*o1DߣÒOF'jt}pbT!<~Ռ3h;ϏԊjkGO&#R7^ߑB|GkcYܯ#_}=;zfth;w*O6z@qfÃ[EfĎ4Y5z}A95&8F ީ:|?) (!:PaķF:l_~'o~-[O`o_Twÿ2Nǹ;ğ.w$}?SO;N@J은/0Pװf|pMZu ]8yɯSNCâ3 gtw!p.wsA2NsS`=<D8x0ZCD5 >|C/|qØWx8Z_]x$HQܩEe=0Vscd5.RSTx:< ]x&\R xfsL5 D]lx.>OM5z*2 ^H/"~:|)ZJ1|W_x1qKWJԷ_]j|רiF_R2XrWẏ.|'WKᵼ\+= 8%>^$~ $~ZxI~ᇉ~yÏa7Hy'` ?_c#W@+Uk^Z#^ßJWW*k;.FV7=&u3WLo'}RV6>@$~ |-{ & a^hGV'?3;+__}o_~94xn[b.b0|6;G4a"ܖqboNEt{v(' wF ;Gs'ܕ݈μ…hp/|Rw_Xt?y ` o£' <a ix;(vN'cIE_D_LFx2ZS2Tx1^⦳=RLX,³K}sԳ9xzNmWb^ _^T[V|zIf_plxľ\m1:#ĿDzY& HM+|3Z~m#nW}KE߉_.rkY?r&/o|7;wYg*ľ'ّJF좟"764Zϰ3}L>g/q[Wy"v#^b',e旺_E_5rog11 vOO~Nwc/;e_C] HCER/qw»࿰+j wu}G7j^8qbOa.:ħaNgD?KS!p2p94E ؅+2ē/u_8G:!\n]!|nē1OG&6nKp;n:? wbY}ot旺ρEw/ Gw|~s]x(|>'0|'<'('<9 #_ǒOx'X` KŒ%Ut8g W pE"Jp%PWW5AeU1 A Hi UQ'EU&*k`LrI|>o8]"G-~E\m~-TCR5-TǶh xz)Ou@}%և/@ `{D)``Q~zL{E)JWqxR|GىD=^ݠGb7oxS z>C =|}G!>"#bcێm;z;Sb?C-oi?ߣ~5^~P_/>=+Vwd~ӓuN&3QᲹdsg&& ;G19Ĕƥee剭y|]c]ں*3@T7F7U@.ulM5A7A7#9Z>lI 42@&( ʁ*j:.)8 4A -hT@{tA!z~?A`#(0D0L@fy`>X%J\[mv]z(y(><  I< E*x [!l_/n߀}`?8 ~GQpNuWll z@glʀ P(j3A> F1h֠w]υpޞpO=Q?t=@/=1 ڂv=7 t=@/=`샱6PƜ'1`qLtF==]0I6 lb砗E*}Xx,W\0WzXJl+DD!FtCߧׂb}?p+XB?obp^muu臉}Y?O9[<_֏S+^*?s b׭C}>???#ssD|ez?%ޯ4x ...x|vvcۍލ}c{> _9ԇ1SApTK߁c@8~ "`d2BPc^*JA 4P& PT آآ(Lb̓A h&hA6&A{tAlu@w@w& z`3@08t@w78}~Pz`p0Hl##;:(+{?D,{X*.@?HԙUܘ}5"igobffoM۟SVYcAN^v2dzb3exג%3s?Oy]A;:+)GRC[r_d61jd2 oyBڛnty$yZ8ݎ7q/KDفDE%cKN@>;diY J,mu;N,u{=+U(lL}*SSI>b<tGvʶ_JSh|KPqV+oW`ZJ}BgK4uWR]nNƪ/JiDd"UF;Z_-ȅzL2ֳ.2γ<=ѳLԓ CcC\Yy&鋴S#'+^I;C[ƅKc]xǹr,(3 攇-[Vp(ѫ,UZwN8E)ZU#^r} Cnna5GowtJNb)wuS5AAr`<%S nɧٙՂ2N)[僂J**Oi?%_Dw5]qwMY~,K,?=˟/"_wmHY1gn̉pI s2١_ tT?]Õ~;tpIXGεwsNk{6:(.`繉yfVmNfϻ#ՐD|MZ{mjC:%K]R/Y O4yS%ѦTՈ2fR:/T ~ {צ0 dYbYC<ː\rn0^&@w1gJ;48/p*uW6q`;/I0HYJKtX|Gzcc%ZۓU\YmšN0ӢⵚP-Z!ZTݢ{`NrgUeg,-r8һঘt:Nsi,~i,ڭsm=!Ivҝ]  Y,wb^{b/8ϳo]Bcֆa8'4 ?x pud+/u彾w_GC}e}{OnWByĒjkg(XMYJ*)m'cL]kDw;65=jZx+7<˫Xy7<[۞{MBzИ1ۘƉw?*/]19[xh~|/p-yͩQ٧ |:WÑ ;v[f;`=yޱ4̒ fC%:E+\xcsV)td f}{8!8p)=OϞg9bHs#8phOB ~89_C~#xw'[uGX|GzccV.v%s0ї׻^soJJ鼸WtQo*HMs#yRճT)R\#Q/.YjDjF,[P|_)x[%4ztȚ3#N}o+|\۲cwVį|C.ZՕ\EiJ*.j>팵KdH.j>tڳk[)--=[ =KR,=H^䏺Qe"'S՞u7"EgQdzķ,J,"=2'r^{Lwd'N */܈S#g+g鮜se-g,#ܱ3wOyI<;Y|:xYiWRYeX=Z{PʴE>)3Oמb)OSRr,S^RqmՑ2靔iY{Ss5N4sfZ=pc̓ikmS4y[ƔvIiӲHwrifFk@2\ϤlHtr>u<4CkI04s[ޖqvO="rY#zS]2&95HmX[-: ֤GsխWaC^i5kֲyAV- 5KU>+#N"+h!] 3)Odȡ{[ĺjf!ʓ_[F(0eȤo73` |+Y3\VlNA y"V E'8yE-p2Dvm2bTϣ<ۨɐO{[ĺjf3Ӕ!vxǨπUW"3*yV@K+qX+C,vQ( y{5v1Pld(+=M=etz9,pƌ8wQNJh[o>V=\) YFq kueǓZ-"b;VW-ӣWWh3h5'[MhGӛg=~y]GUN.P cx~bPzb/uU6w<$ami{ k>hfȯ|:ֺ=Лl'yu{ɐb|uvvR$lvR^ޠu}zi|uoCY}7)Cp}{wPg:;at]$`-ރ޵T'!J?3 ;@Aʓ`ww ӎ7>{N!U3~(ψwս e]ܣ Ͽ /}+Й L>t:b6}}}lB5NS'CՕΰ">5((OM0J&hǸv}LOMP?(Ϥwս= e]< ck /|+3kCoX.@Xm<ϱ6}} S5C켓!3agQ![c>My |(,qzS@f6K< N]WFe} ]|2:R,;þ > ԡޱ,U:]Ag'N{{xKh X+䮳 ?,wJ=况o?#QDd + %<  C A2Ф9S= D@`!Ф9S= Ŝ8( #j8Ox[ xU}n;t%t$$(([!$) :P@d! Ƞ0(:((* pDy|O||:<+UT'ʚ;:sN\M4:D'2%8a8"Wʏx+7/>WEm%$x"}UUUԞLOL{IO_+ ̌cPQO6x\X2|Mn-)L@fC@D5>+$ +?մ +վN>Ƙh,;Q,J,J4>M t[db zyrZ۷ 53}KJTk9ݪx2rrQ2 =ש+x#F09LG6z\Yqd~-:e> Ƶz榋5Y]I;zC,]A4GJñVj] ۍȺWG4cEzOX̊M`Q5Tf:`YD `t RLu5ff^bo VЌVdͼt#Ji|MOM`iZ̽'uԯӈڑRZ5*u|jbeSIMcYbӿ]{xñVSWtc4FC߆9 hk9«.oӢ.NGf+߷ovk_*,2TAFL.uyo&'(q =שz,#lz~Tґn&yϠ %o \Ǭ.V*jЃVv(}*7je;^&.W}&IaL~,Ƴ4fR{ywҴ󮻜kܡoЗL.˅WKy(Y֊yi|"F.KrQ4ïЭ'9̼a1zԺ2cibXw3|QjJ66ks)ȎK*k`Dٻ%XV+XIn9VLV*S%i-DY5TyqbRZ6ɑ'a@~`˗ovkuU_^zSoqɴb隘LD3U3dKtmÏZ85XO CQN`;w~ibέVvNHkRC,]ie?-"H!WI!O<Ը&5mm3j;t(/1؆ovz8J A%FuRg[̇żXx=,Im^z ֣P#T(hz~T;;J &w ށǤfVvcU-qe:d9|kn7~̅BhNRf);YM[̧l;tlnU/` `D@Vn4.heF|K< Jc-/&qi"͞a+Q 8ộml#[5:ZڎuMqe-PGjñVnTe`tOEnR^zff=N,cN[ۨ&IvdkFKݭqg_~c߃Xb@MncVv*pxodj{xr! ?BD[\tOCe s״|wbku%%*}[gy{T=*)gui;Bfc\sdzƒih.L[:_L?jxǥ>}Oo Ů#un,v!.xyɋ] DzZz0V^fJ+]n"Du>N"^N9uPZ;ϒXɓ89$5vʭUMnzXCS韍Rzh{4ږ5x-{zϚ ]/6"#y##Uvh CٛZv;)^ /5l!CǎzǙ2HdTUI9ߪMS)ZI<»򑁃z6kA>X BOWYdաu;ӾB=u:d)_9FwEf}I |t]]"D{%z˒Dq ΤnI G {owqϡ_/z'$ >Z|֛LpwCp;ŠL? NJ{eޛyɺ C;*S<]y ssmNe_{L ki⚸JnFk,m} < }ެŅ+o{bmÏCv$ڦH)'tW"OjG)FJ^ׇE<}/H~P=b{ڵ KvױFt#m7˷Gm/~3۷-yxGD$' ?ݟ+ffu8 ?Ygḟ'/,#à];)rz謴=xNVMC?"=sf{\~TI['Zܶ& Gs!'1t'?m0},f` vܸ_׸YkWek""k®^iY">/$LA_&&&\4X8Yy`c=/[̗ߤ~5\sYwwR]|}9&v_=_L%Ԡ@qzHh(zТdQx>`2,
v4Ҟaf\ƹI^ $E`OBR9G:"a``:p@2`#$ 8H0vy x#0x3Σ.[I <Ȭ+p2sr5 \C@='p2>$ γ~rs<\N z2 > ,nB ()"_% >>sr4w8>s d  |#31Čvsď:&B$J0!GNꖋE! P$_~i"hVU,& h}DyK _Toc477941987}DyK _Toc477941988}DyK _Toc477941989}DyK _Toc477941990}DyK _Toc477941991}DyK _Toc477941992}DyK _Toc477941993}DyK _Toc477941994}DyK _Toc477941995}DyK _Toc477941996}DyK _Toc477941997}DyK _Toc477941998}DyK _Toc477941999}DyK _Toc477942000}DyK _Toc477942001}DyK _Toc477942002}DyK _Toc477942003}DyK _Toc477942004}DyK _Toc477942005}DyK _Toc477943164}DyK _Toc477943165}DyK _Toc477943166}DyK _Toc477943167}DyK _Toc477943168}DyK _Toc477943169}DyK _Toc477943170}DyK _Toc477943171}DyK _Toc477943172}DyK _Toc477943173}DyK _Toc477943174}DyK _Toc477943175}DyK _Toc477943176}DyK _Toc477943177}DyK _Toc477943178}DyK _Toc477943179}DyK _Toc477943180}DyK _Toc477943181}DyK _Toc477943182}DyK _Toc477943183}DyK _Toc477943184}DyK _Toc477943185}DyK _Toc477943186}DyK _Toc477943187}DyK _Toc477943188}DyK _Toc477943189}DyK _Toc477943190}DyK _Toc477943191}DyK _Toc477943192}DyK _Toc477943193}DyK _Toc477943194}DyK _Toc477943195}DyK _Toc477943196}DyK _Toc477943197}DyK _Toc477943198}DyK _Toc477943199}DyK _Toc477943200}DyK _Toc477943201}DyK _Toc477943202}DyK _Toc477943203}DyK _Toc477943204}DyK _Toc477943205}DyK _Toc477943206}DyK _Toc477943207}DyK _Toc477943208}DyK _Toc477943209}DyK _Toc477943210}DyK _Toc477943211}DyK _Toc477943212}DyK _Toc477943213}DyK _Toc477943214}DyK _Toc477943215}DyK _Toc477943216}DyK _Toc477943217}DyK _Toc477943218}DyK _Toc477943219}DyK _Toc477943220}DyK _Toc477943221}DyK _Toc477943222}DyK _Toc477943223}DyK _Toc477943224}DyK _Toc477943225}DyK _Toc477943226}DyK _Toc477943227}DyK _Toc477943228}DyK _Toc477943229}DyK _Toc477943230}DyK _Toc477943231}DyK _Toc477943232}DyK _Toc477943233}DyK _Toc477943234}DyK _Toc477943235}DyK _Toc477943236}DyK _Toc477943237}DyK _Toc477943238}DyK _Toc477943239}DyK _Toc477943240}DyK _Toc477943241}DyK _Toc477943242}DyK _Toc477943243}DyK _Toc477943244}DyK _Toc477943245}DyK _Toc477943246}DyK _Toc477943247}DyK _Toc477943248}DyK _Toc477943249}DyK _Toc477943250}DyK _Toc477943251}DyK _Toc477943252}DyK _Toc477943253}DyK _Toc477943254}DyK _Toc477943255}DyK _Toc477943256}DyK _Toc477943257}DyK _Toc477943258}DyK _Toc477943259}DyK _Toc477943260}DyK _Toc477943261}DyK _Toc477943262}DyK _Toc477943263}DyK _Toc477943264}DyK _Toc477943265}DyK _Toc477943266}DyK _Toc477943267}DyK _Toc477943268}DyK _Toc477943269}DyK _Toc477943270}DyK _Toc477943271}DyK _Toc477943272}DyK _Toc477943273}DyK _Toc477943274}DyK _Toc477943275}DyK _Toc477943276}DyK _Toc477943277}DyK _Toc477943278}DyK _Toc477943279}DyK _Toc477943280}DyK _Toc477943281}DyK _Toc477943282}DyK _Toc477943283}DyK _Toc477943284}DyK _Toc477943285}DyK _Toc477943286}DyK _Toc477943287}DyK _Toc477943288}DyK _Toc477943289}DyK _Toc477943290}DyK _Toc477943291}DyK _Toc477943292}DyK _Toc477943293}DyK _Toc477943294}DyK _Toc477943295}DyK _Toc477943296}DyK _Toc477943297}DyK _Toc477943298}DyK _Toc477943299}DyK _Toc477943300}DyK _Toc477943301}DyK _Toc477943302}DyK _Toc477943303}DyK _Toc477943304}DyK _Toc477943305}DyK _Toc477943306}DyK _Toc477943307}DyK _Toc477943308}DyK _Toc477943309}DyK _Toc477943310}DyK _Toc477943311}DyK _Toc477943312}DyK _Toc477943313}DyK _Toc477943314}DyK _Toc477943315}DyK _Toc477943316}DyK _Toc477943317}DyK _Toc477943318}DyK _Toc477943319}DyK _Toc477943320}DyK _Toc477943321}DyK _Toc477943322}DyK _Toc477943323}DyK _Toc477943324}DyK _Toc477943325}DyK _Toc477943326}DyK _Toc477943327}DyK _Toc477943328}DyK _Toc477943329}DyK _Toc477943330}DyK _Toc477943331}DyK _Toc477943332}DyK _Toc477943333}DyK _Toc477943334}DyK _Toc477943335}DyK _Toc477943336}DyK _Toc477943337}DyK _Toc477943338}DyK _Toc477943339}DyK _Toc477943340}DyK _Toc477943341}DyK _Toc477943342}DyK _Toc477943343}DyK _Toc477943344}DyK _Toc477943345}DyK _Toc477943346}DyK _Toc477943347}DyK _Toc477943348}DyK _Toc477943349}DyK _Toc477943350}DyK _Toc477943351}DyK _Toc477943352}DyK _Toc477943353}DyK _Toc477943354}DyK _Toc477943355}DyK _Toc477943356}DyK _Toc477943357}DyK _Toc477943358}DyK _Toc477943359}DyK _Toc477943360}DyK _Toc477943361}DyK _Toc477943362}DyK _Toc477943363}DyK _Toc477943364}DyK _Toc477943365}DyK _Toc477943366}DyK _Toc477943367}DyK _Toc477943368}DyK _Toc477943369}DyK _Toc477943370}DyK _Toc477943371}DyK _Toc477943372}DyK _Toc477943373}DyK _Toc477943374}DyK _Toc477943375}DyK _Toc477943376}DyK _Toc477943377}DyK _Toc477943378}DyK _Toc477943379}DyK _Toc477943380}DyK _Toc477943381}DyK _Toc477943382}DyK _Toc477943383}DyK _Toc477943384}DyK _Toc477943385}DyK _Toc477943386}DyK _Toc477943387}DyK _Toc477943388}DyK _Toc477943389}DyK _Toc477943390}DyK _Toc477943391}DyK _Toc477943392}DyK _Toc477943393}DyK _Toc477943394}DyK _Toc477943395}DyK _Toc477943396}DyK _Toc477943397}DyK _Toc477943398}DyK _Toc477943399}DyK _Toc477943400}DyK _Toc477943401}DyK _Toc477943402}DyK _Toc477943403}DyK _Toc477943404}DyK _Toc477943405}DyK _Toc477943406}DyK _Toc477943407}DyK _Toc477943408}DyK _Toc477943409}DyK _Toc477943410}DyK _Toc477943411}DyK _Toc477943412}DyK _Toc477943413}DyK _Toc477943414}DyK _Toc477943415}DyK _Toc477943416}DyK _Toc477943417}DyK _Toc477943418}DyK _Toc477943419}DyK _Toc477943420}DyK _Toc477943421}DyK _Toc477943422}DyK _Toc477943423}DyK _Toc477943424}DyK _Toc477943425}DyK _Toc477943426}DyK _Toc477943427}DyK _Toc477943428}DyK _Toc477943429}DyK _Toc477943430}DyK _Toc477943431}DyK _Toc477943432}DyK _Toc477943433}DyK _Toc477943434}DyK _Toc477943435}DyK _Toc477943436}DyK _Toc477943437}DyK _Toc477943438}DyK _Toc477943439}DyK _Toc477943440}DyK _Toc477943441}DyK _Toc477943442}DyK _Toc477943443}DyK _Toc477943444}DyK _Toc477943445}DyK _Toc477943446}DyK _Toc477943447}DyK _Toc477943448}DyK _Toc477943449}DyK _Toc477943450}DyK _Toc477943451}DyK _Toc477943452}DyK _Toc477943453}DyK _Toc477943454}DyK _Toc477943455}DyK _Toc477943456}DyK _Toc477943457}DyK _Toc477943458}DyK _Toc477943459}DyK _Toc477943460}DyK _Toc477943461}DyK _Toc477943462}DyK _Toc477943463}DyK _Toc477943464}DyK _Toc477943465}DyK _Toc477943466}DyK _Toc477943467}DyK _Toc477943468}DyK _Toc477943469}DyK _Toc477943470}DyK _Toc477943471}DyK _Toc477943472}DyK _Toc477943473}DyK _Toc477943474}DyK _Toc477943475}DyK _Toc477943476}DyK _Toc477943477Dds>BB  S A? 2<^K2Bs@`!<^K2B  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>IgKLMNOPQRSTUVWXYZ[\]^_`abcdijklmnoprstuvwx{|}~Root Entry? F@Pp ͑fVData 5WordDocument>ObjectPoolA^͑p ͑_970040946 FIw͑Iw͑1TableJ:5CompObjhObjInfo [2@2Normal $dCJmH X@X Heading 1 $$ & Fd<@&5CJKHOJQJ:@q: Heading 2$$ & F@&>*:@: Heading 3$ & F@&5>*:@: Heading 4$ & F@&6>*R@R Heading 5)$ & F@& p@ H(#@@@@@AB>*H@H Heading 6 $ & F@& H(#@@AB68@8 Heading 7$ & F@&5<A@<Default Paragraph Font,@,Header  HH$0 @0Footer  HH$CJ &)@& Page NumberHO"H References!$0d H$NO2NBulk Paragraph $d H$0@0TOC 2d $ 0@0TOC 3d $ 0@0TOC 4d $ 0@0TOC 5d $ :@:TOC 1$d $ 5;CJ@TOC 7v & F $ @d>T@.CJ>OQ>Style1  @& 6>*CJOJQJkH0@0TOC 6d $ "&0;GP^@/543210."&0;GP^a@  ``@'@? 3]`}!!8656@!55F!(     BCDEF @`3  BCDEF @`2  BCDEF @`1  BCDEF @`0  BCDEF @`/  BCDEF @`.  BCDEF @`-   BCDEF @`,   B@C+DEF"@-+@@`+   B,C<DEF"<5*,<@`*   B5C$DEF& .5$$@`)   B(C-DEF&&-- !(&@`(  BC`DEF"`V`@`'  BCKDEF&!KK @!K@`&  BCeDEF"eSe@`%  BC:DEF"(:$!(@`$  BC)DEF")  @`#  B~CDEF"/SZ'~6/@`"  BuCvDEFu@>27vu@ @`!  B'CUDEF'U U'U @`   B]CDEF C] @`  B&CUDEF&?&U @`  B]CDEF]] @`  BC`DEFN`N @`  BGCDEF5G5 @`  BCDEFr @`  BRCDEFRRR @`  BCJDEFJ5 @`  BSCDEFS= @`  BCJDEFJJ @`   B[CDEF,,[, @`HB ! C B " 3  # B[CDEF,,[, @`HB $ C B % 3  & B[CDEF,,[, @`HB ' C B ( 3   ) BCDEF=0/> @` HB * C   + BCDEF @`  , BjCDEFjM,kdj @` 2 - BbENG!HmIJQ, 5p`Tb$/cO5p`Tb$/cOb$/cOr . 6 r / 6 r 0 6 r 1 6 r 2 6 r 3 6 r 4 6 r 5 6 B S  ?-  !"#$%&'()*+,-./0123@/ :t5` ;T ~t4y Px }t3:t2 *t1,t0, %t. *Wt-J t, q t+" q .t*- | #t) Gt(^p)t'ef%t&9t%^ip t$elf t#9 :t"^pt!eft 9wt 7tOt3OOt 73Ot ttDt4 t4 Z^tW?^t?tkdtqtFc tM eFtiQ FtM tQ/t 6t J t C o t /o t p t p ,t ,tp,tA St A t tAt45KA22l  0 Chapter .0.p0.@ 0)0()0()0()0()P0()@@ @GTimes New Roman5Symbol3& Arial"h*Â*+$04   !"#$'*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTWZ[\]^_`abcdefghijklmnopqrsvyz{|}~  FMicrosoft Word Picture MSWordDocWord.Picture.89q !mA. CS ChemDraw DrawingChemDraw Interchange FormatChemDraw.Document.5.09qVjCD0100ChemDraw 5.0Outline NoteObjectPool Iw͑Iw͑WordDocumenth0SummaryInformation( qDocumentSummaryInformation8zY @bjbjWW 0==5_]8@ Lf2ll@///C2E2E2E2E2E2E235*E2!/)///E2)0 "l)0)0)0/XC2/C2)0)0)0#2^C2` )0;2 PAGE  PAGE   FILENAME \p \* MERGEFORMAT Picture in 5.1 Manual for DOS.F98.003.doc  FILENAME \p \* MERGEFORMAT Picture in 5.1 Manual for DOS.F98.003.doc Monochromator and Collimator q 2 Detector Beam Stop Goniometer Crystal X-Ray Source hjlxz|$&*,df%'.0<@B*CJOJQJhnH B*CJhnH mH jU0J j0JU jUmH(j|~(*&'d H$h&`#$ H$j?'/0=>?@ H$. 00;&PN N!"#W$W%Oh+'0L    ,4<Dssss Normal.dotorm2rmMicrosoft Word 8.0@Ik@Y@+`_՜.+,D՜.+,8 hp  YSU Chemistry44j  Title 6> _PID_GUIDAN{79C9284B-64EE-11D2-8045-00104B732CD0}_1014532120!mA. `x͑`x͑Ole CompObj ~ObjInfoCONTENTSQ_1014541685!mA. {͑@d}͑Ole %CompObj&~s Graphics.3a.cdx Sd2  F5 $$$$xx  `  x  U Hg(  d'`0ArialTimes New RomanSymbol! x   fs%  Is%  I    x                xU UZ  y[[b  z   a  b    cnhn   ! MMsڢ   ! Zf͡   ! m&  a|v|  g  b}     fLf     f     ]f !mA. CS ChemDraw DrawingChemDraw Interchange FormatChemDraw.Document.5.09qObjInfo(CONTENTS) _1014542185 !mA. ͑ ͑Ole UVjCD0100ChemDraw 5.0Outline Notes Graphics.4a.cdx.V2  F5 $$$$xx  `  x  U Hg(  d'`$ArialTimes New Roman? 2 {Y @ W ~ A z   B     ZPZ    C  .~  &u  D ZPY Z      X %     X     6 Later!E  &? F  e G  f H! "  f?# !!"$ "    X&;&!I% #& $Z' %%&J( &) ' * (()K+ )b, *- ++,L. ,?/ -&70 ../1 /    X2 0  3 1  4 2  5 3  ||6 4  c3&n37 5  8 6  9 7  : 8  ; 9  1Z1< :$Constructive InteferencerLiLr= ;$Destrcutive InterferenceMM> <   !mA. CS ChemDraw DrawingChemDraw Interchange FormatChemDraw.Document.5.09q 45`@x{lEgwfgv VVPy($-P+ %HmqV@) AFMh4 Ĩ(gA  h0#"+~{ܵLf~죋xi/l6O65#t|'TUQήˣxΠ h}63+mտŏY.! d+ BL& J殴]Ybb˚Z MϛeC}Ω5 s]l}5Ѯ53=}kZqn.~G?pL%WԫF9~sjF+1q~%-Z?mOj>u;r)\^|a8bf$6c<X#rQ:A b5#kDJ:QAG]2sJ3]&̂rHxo1GS:A  Uޢ$ R8*ݦ_R'UUU)e2LM I+d5LVK2%8\U+{V/j"3 ?oLJ)zA J~4J2 9$D@$3f2T!J2FG}ADCcA)z@}5Fw>.ohjf %Y񝏥|\ʷc_4b4b6JK'%)Q49}e#QXP ꣠~M)nJ=BƂR;bqX7v*  X .(ߕwCnA3v-QEqPP?,v+BA-4)Tһ&4ٕF u?OZqY0(P8B=N%ݍ1R'E"Tlcp4Oo %(慡1)֭0A!Dm4D-i@I٦[V8(17`|˙&?pXh%P2%Opg/Q:A b}vlaPPN`,JR hI*@8(ýy}7 f3eo|:J={07A%sz3Ebc1J®WcqQ;δ:.d=i +›F'tKo օߌa-ѡWt܌.}4z'G: g7(mhJFovhL=[!;vo%gf{jS4ɣg oNk}κtÇ|;mwX}{y+)Cnd'WEqP球{!wNMs.:;X.5@|aeYsڊ~#E5a[Vb6rE{O.bODZػLt".ff^J!>?|A^YɚSĆ|֗bw!]p׍gHN#-A<jUfw~$7O{1'SI$*x՘]hUϽ$&m5X*i4ݖ.)E6VA >  Enmϙ{;iه ?gΐIT8/?)DpAS\Ux-G:HFU˳bS\^VQ}+ߟP}C-GZF&@2y0+@ +Ҙsb˸NxF~/TJ4Ch@)ʎwH'ug&ء`z&EWRЧ zz5oGTѝ&#,y+zj{޽W6VGno!k}`}:<hgE砯CSkq_#'aS},ǵ9骂YXn&qZ`6#?-V[lɺ>> =Uy\zn0spE!k Xp,r~^1X?Z‰`W"Wy'ŝ=+T"wq=>9ܧ3$wqW%fZX܋?/4߿T-p~JԾ׊+FfbZdnI[T՜5R$:+QE5pKרR\2kԔQE 5jި&5,FM7%mƪ3b5jU&oԨT}2QJPշI1[R65TOVLcM)}iI s?X/dU/`·28_V^&{' ڻSY(2,˝ЗHrgI 2,˝eXrNp8˞HsT,rg'9%,~(3/ܗߣZעv0_D߰/)ދ0ڰ_ s25M>3;nc10Cr]3ee6fۆ]q?A%Vp^%{%&N>C/Ww礨) O)W oo R̻{..@pBCdzU##6:@y]@ ó@Mǁ. |C@yn ż6jk{&^(g{{&gKdbRz"v~RI1bn'?)Gr7[eOxaTwTXF|aT̛+b0*>lx H1bR?!I1bn'Oy!b~b)P~C}M~?7P~C}߷7}Yb-@l\VmjB|[~JZDd )7<  C A29,J")Ի8 @`!9,J")Ի8 :U> )lx՘klTE>ض VXb@T)h+hb -~'H0M4aciR" FcRQ4#`hs瞹enc6oϙ3g6 ` <_)}݇ Etp>[jeσ,_U@ pͰ(jz1ֲ+jls:13K00cZ" Ј>W@D+㮁|7|/Bq =8Y,.>ng|[ĉ{ʉ au`l{$Ÿ/UrUBU* W{.|8 ~ڪN`->G 9JӥsΠױ|'gSa׹; [fAA_c m, 52 k=Jghho6P@" UDu%Mp^03vf|əq=c3b@33ԆVlXz'ee̞~V+Z̺ܞgMoIm4l8[{]~|V(T]e._u;E./o_"Y~8ɫ~JJ2TMM 8  2Lt"Os:WUq}zr E~y'<5_EOO{@Ew&}F^"{0Ǐ,}PE`TτϨD#F~ܪ"$=~䅗UdFLK;&E/߿O5x ? '+J>Tt2!税u9 2sg1g8)2QF91'9p59AT^1^NO[^[&9#nzA2Q y9UX7LꦺVcD&u90R1~U { !o ˳o|/ť}l?6F*+$@Jd8ߎS^ȁR/ŭKTl{^fKd/Q+^{iɶGBxe d}DK9`/GK(u,cAVQʸ^=ȝšf'4;!5{M4N22ۡ]Ԭl󚽡Ydk1(vn@kXMܔ鱇}2+*dZ괋ӂH1_.GC7)74G-sUl;-8iՄsjoGqr0UoAm@R[ǀ뚷)9)4R<y7)I17bn'Os b曀_9 FQ1 bߨ0*r b-ר0*o{%ż!όoSai'Os?)RM)@JAA4/<£wn)<[:XYR;%KceI1_c,)ʒb׼H1Ub^& D[yRϥsM?W*Rjs1q밇]ЬlsG-|vkf_ifI@W|ǭowA럞,ݿy*ZDdWef<  C A2;ǕDI&%Ѡ$3t@`!ǕDI&%Ѡ$3t,O CS,(}-xZklU>βRZj ]*VD@ L(B@i J@kDA#1"?61 Ą bWRϙsRvc| nCos͙sEC +"JQ>& 3Èeɘlz-k"G mZh__}Sɒ::,Wqٜ F(; Ђ:-xUrx#mU*0 ÚbJDa(PVd@vQuuW/XR TESڑ Lk^6䦋|^{O5KaμP9/hX5Ȼyxa/Oz̓~`(2[w=o[mZy .u~(!A%x>5ִ(M뢊_.CŢ\v34G<D/r5E陡{"7bZSMEL>hZf32>֭53-b{3g1CufF&f]93<ȔcnOΌ̊I̜p:(!dۛ3jMPFf]3{Ilo@VOFJf=bZMSܻIfޘSO칥(3BūPR|G /\t|s%X^eɏ]>OOpFƝ>;'ׇ[)>3҇6n9)#kpWD98=1y)z:s_9|>҇w9W^y6/|[/͏OO^)~|jݼ뾴s|cpx񑷾'od>SG3Sj v IŘcǀU\yjiE{6q 1gL=z"&?韕5&wj-ԋ'B.Ƨtf+9J9]\L4LV/su1: hm/UQd5 >i?/sI/7y8nZf&5δe],*쿅运и~1.rC(ruލ:RZˠynnl3ֲZvֲ3 eOXQZHP'k-A)Z#RGDDߣcIEV?f$"یcὸ~p7|uXc:X^Dc3#kw7S;`aScUƖ:Xuo+j1{t݋؈yb_tཞh-@ky-ཞh-oדGAk!BG@k Ht^=`d{#)ϗ+ᠵP(h-TAk!e Z )`-y"h-@k٢:+ T1^Aadz%'tpϏdi0x[=?!HƓaH-_di3o4>6➦χ)C4MN4L4|J͐_Rj,W Y_ , ,ݚ!ΰ^OH DdW <  C A2ЉpIL߾f@`!^ЉpIL߾.CG\.(}-,xYklU>wnweז Xψ %,4 6ckh 11 I}|Dc4&f51IQqQCϙ{ϝY^E;;9#YT?KcYc%\实 >!Vk.o)kX)u0g=k  3M 0CKc6O>'xg!;\RM F};@zV [mH;^v< W N(Ӗs8]Fsg< yςAX&4,SZl$X@Ր[ )/ A8Q-YɓBVX?OOA>egBOpF?7_YS^j2&aP曊9% 9筊9IwdIż E'2]ybހW4|sZS1Ȝ e.$3Xo78%C`PU%O LjA8 "ݙ]#{i^ɓ)z+ iz:X jfJ@35GPS*Y&,4Cp4cn>zLQI#{ln&)9+mT`̓165Cn&&{ !äݦ|pgUw>8(6 +O_&WR](&p vwur9Յb[U\6?gʷOke^sDX/yxOa5.9omkR8I,tM fʿ u|];k2b3U̞ft\}ʉLbWf>=s1g(9Iu-3b:1gK7f"5qNhA&+31}:tZglÜ}*'2]ybÜ78'2]Ywʉsʼ~ݜ|їS1gL zqYwkV Dl<kٍ#G9BIӇ D4ci2Xy䨕'P1e$Mg5 f5gx[jlOy gt]Dz ]51ۅɱMQc s|[xi]۴.Lݦ wa<ݦ war^ nf0ǧ.fLé{ng2̸9SHM!7Ēs~",Cݨ;QPJ`W7朘-@h<e2S7]²߽aɼΨsp' LyT Ut(b@;5> 1"c/F4(b|n~ūt6IC[D^ȁ=]XQ{c1;j/c6{y*j/UbQ{y,(j/Q^h$9`/Q#r^G_5`sFr@2r \Zr tQ{!|+j/@ziQ{!eTsY<*DH\}ot׎0fYEڧI|H&e9"&Hm?ESĸ?ESĸ?E{"Ɨk@#$^,_eQ//j2E Eh-"'j Px}ʏק 2_kܡUkɁڋ.+`, 9`/">2OGQ{^G䀽D={zOvͺggbcG}&Zn5g8c{Tcj Ūfl4vHch%[`lXck-v/5p&Fęs$MEg|o(bzߛ"?{SD-7E1"_)97EvlzDdJ <  C A2QS+9j8mh@`!`QS+9j8mjCHYf(.x՘_h[Uǿ&M5KYfbW !c۠4{-ciG2D DӾ E|*X+L@q wvii '~9D pBH JycFETkh|A{7DZw`/,?Fu<<FSɞ\FO'6BQM;^]w-~.FWӝہ/V-;<;||dvxhҋ_yȯ45]z^nM&G4f({u*@Et"FWqݻN 3.C=ۃ7i,&ϢZjMşqqQJ?`_ǽ g1NScWhlT1,;O4Wv++?\pꕕQΐ++bS̪ȫy^眯 Īʷƍr^Yp(/jdUǕ7y3]kr(er2X~Oo9"ܐx \õ7^ <+}&YnWsxaK.¼Ю]n]n/Zt#^Tˑ Gd dR}K;/GxXhi-MAfT'nuh{a+}nϖ!a=g>;lsXX{Xذe-7j\a;\a/Xe?kn:V{C\VU}O4>h2u{ʃ!!p$|~p$SsHU#Y[G{#s$<#A Hx'8>{S>Ĭ?w-,\+ǽ_ŀ/g_uSˣ'r;;'jrgmHxL ς#;Ua9*~3 Ӆ ;rw1.DdW{y<   C A2UܶtG4#@`!UܶtG4#pHxAhAyIk4J-`$u%;M;h[跹!ɺwiV])U7Gnޯ16`3& CfXdΗU#li$?~&r eO=~N*iZ_EOIܴD? Vlaz>U]NhB]WB4kr~+!CQ9Q?((GE9?/GErȺD9H|u_:ƯC~!_G+!_E34sQnFDPg`VO]{3ODdX<   C A 2d!_1,@`!d!_1,6N~vX+ xWMh\U>_2ؘN2c,UCSM- &,eH't4kCPBE,RRA,ڕ!E8"b<}@S!|;gsϹ $P9i 7}RY}4,l­6YOAѩya:a_L\t$=;X!!J4+&F00!EhӜRF+o+2QV(Jӎ7r񡈌r 2aeDFC>s| cOMP>gq|OKUN>KԺiݚYȕ-8ruVSTO֍M&ÿͬROT ,Qb[ ",(O!R8q~GY$4<(-Zr F(e Z&r[ d} +0ZGˀ葧8浦wK>x+]2p>l*BB   S A ?  2<^K2BF@`!<^K2B 45`@x{lEgwfgv VVPy($-P+ %HmqV@) AFMh4 Ĩ(gA  h0#"+~{ܵLf~죋xi/l6O65#t|'TUQήˣxΠ h}63+mտŏY.! d+ BL& J殴]Ybb˚Z MϛeC}Ω5 s]l}5Ѯ53=}kZqn.~G?pL%WԫF9~sjF+1q~%-Z?mOj>u;r)\^|a8bf$6c<X#rQ:A b5#kDJ:QAG]2sJ3]&̂rHxo1GS:A  Uޢ$ R8*ݦ_R'UUU)e2LM I+d5LVK2%8\U+{V/j"3 ?oLJ)zA J~4J2 9$D@$3f2T!J2FG}ADCcA)z@}5Fw>.ohjf %Y񝏥|\ʷc_4b4b6JK'%)Q49}e#QXP ꣠~M)nJ=BƂR;bqX7v*  X .(ߕwCnA3v-QEqPP?,v+BA-4)Tһ&4ٕF u?OZqY0(P8B=N%ݍ1R'E"Tlcp4Oo %(慡1)֭0A!Dm4D-i@I٦[V8(17`|˙&?pXh%P2%Opg/Q:A b}vlaPPN`,JR hI*@8(ýy}7 f3eo|:J={07A%sz3Ebc1J®WcqQ;δ:.d=i +›F'tKo օߌa-ѡWt܌.}4z'G: g7(mhJFovhL=[!;vo%gf{jS4ɣg oNk}κtÇ|;mwX}{y+)Cnd'WEqP球{!wNMs.:;X.5@|aeYsڊ~#E5a[Vb6rE{O.bODZػLt".ff^J!>?|A^YɚSĆ|֗bw!]p׍gHN#-A<jUfw~$7O{1'SIu;r)\^|a8bf$6c<X#rQ:A b5#kDJ:QAG]2sJ3]&̂rHxo1GS:A  Uޢ$ R8*ݦ_R'UUU)e2LM I+d5LVK2%8\U+{V/j"3 ?oLJ)zA J~4J2 9$D@$3f2T!J2FG}ADCcA)z@}5Fw>.ohjf %Y񝏥|\ʷc_4b4b6JK'%)Q49}e#QXP ꣠~M)nJ=BƂR;bqX7v*  X .(ߕwCnA3v-QEqPP?,v+BA-4)Tһ&4ٕF u?OZqY0(P8B=N%ݍ1R'E"Tlcp4Oo %(慡1)֭0A!Dm4D-i@I٦[V8(17`|˙&?pXh%P2%Opg/Q:A b}vlaPPN`,JR hI*@8(ýy}7 f3eo|:J={07A%sz3Ebc1J®WcqQ;δ:.d=i +›F'tKo օߌa-ѡWt܌.}4z'G: g7(mhJFovhL=[!;vo%gf{jS4ɣg oNk}κtÇ|;mwX}{y+)Cnd'WEqP球{!wNMs.:;X.5@|aeYsڊ~#E5a[Vb6rE{O.bODZػLt".ff^J!>?|A^YɚSĆ|֗bw!]p׍gHN#-A<jUfw~$7O{1'SIWEm%$x"}UUUԞLOL{IO_+ ̌cPQO6x\X2|Mn-)L@fC@D5>+$ +?մ +վN>Ƙh,;Q,J,J4>M t[db zyrZ۷ 53}KJTk9ݪx2rrQ2 =ש+x#F09LG6z\Yqd~-:e> Ƶz榋5Y]I;zC,]A4GJñVj] ۍȺWG4cEzOX̊M`Q5Tf:`YD `t RLu5ff^bo VЌVdͼt#Ji|MOM`iZ̽'uԯӈڑRZ5*u|jbeSIMcYbӿ]{xñVSWtc4FC߆9 hk9«.oӢ.NGf+߷ovk_*,2TAFL.uyo&'(q =שz,#lz~Tґn&yϠ %o \Ǭ.V*jЃVv(}*7je;^&.W}&IaL~,Ƴ4fR{ywҴ󮻜kܡoЗL.˅WKy(Y֊yi|"F.KrQ4ïЭ'9̼a1zԺ2cibXw3|QjJ66ks)ȎK*k`Dٻ%XV+XIn9VLV*S%i-DY5TyqbRZ6ɑ'a@~`˗ovkuU_^zSoqɴb隘LD3U3dKtmÏZ85XO CQN`;w~ibέVvNHkRC,]ie?-"H!WI!O<Ը&5mm3j;t(/1؆ovz8J A%FuRg[̇żXx=,Im^z ֣P#T(hz~T;;J &w ށǤfVvcU-qe:d9|kn7~̅BhNRf);YM[̧l;tlnU/` `D@Vn4.heF|K< Jc-/&qi"͞a+Q 8ộml#[5:ZڎuMqe-PGjñVnTe`tOEnR^zff=N,cN[ۨ&IvdkFKݭqg_~c߃Xb@MncVv*pxodj{xr! ?BD[\tOCe s״|wbku%%*}[gy{T=*)gui;Bfc\sdzƒih.L[:_L?jxǥ>}Oo Ů#un,v!.xyɋ] DzZz0V^fJ+]n"Du>N"^N9uPZ;ϒXɓ89$5vʭUMnzXCS韍Rzh{4ږ5x-{zϚ ]/6"#y##Uvh CٛZv;)^ /5l!CǎzǙ2HdTUI9ߪMS)ZI<»򑁃z6kA>X BOWYdաu;ӾB=u:d)_9FwEf}I |t]]"D{%z˒Dq ΤnI G {owqϡ_/z'$ >Z|֛LpwCp;ŠL? NJ{eޛyɺ C;*S<]y ssmNe_{L ki⚸JnFk,m} < }ެŅ+o{bmÏCv$ڦH)'tW"OjG)FJ^ׇE<}/H~P=b{ڵ KvױFt#m7˷Gm/~3۷-yxGD$' ?ݟ+ffu8 ?Ygḟ'/,#à];)rz謴=xNVMC?"=sf{\~TI['Zܶ& Gs!'1t'?m0},f` vܸ_׸YkWek""k®^iY">/$LA_&&&\4X8Yy`c=/[̗ߤ~5\sYwwR]|}9&v_=_L%Ԡ@qzHh(zТdQx>`2,
v4Ҟaf\ƹI^ $E`OBR9G:"a``:p@2`#$ 8H0vy x#0x3Σ.[I <Ȭ+p2sr5 \C@='p2>$ γ~rs<\N z2 > ,nB ()"_% >>sr4w8>s d  |#31Čvsď:&B$J0!GNꖋE! P$_~i"hVU,& h Dd40  # A2 !/ngg屒g @`!_ !/ngg屒5_p4<3- xXlUW9޽vX0A%.}Et6Җl!a=&/ hfdl0Шc0#aMY!1lDMsݗΟ?=1 ~, `1X{|2j%!QnrP>%}#UܳԪֻ:#)%_#/쾞U`jkIۍZ%o6UL/SYcm:q \>ئ7?YcmXkr:֦&h|i=ͨY|Ybį0k u ?xhGWw:/sh^J{̟ V8gRX7iNU8 ϖz[߂N$r=rnȯ:qyBJPW*{e0Ӡ)^+NMۏqu]&kKoLq{*?#_ys1G.Cs?czO--YEG <:һtxڂF\A0hU̓ WDe!9ʄ9v@?+^9ʄ9z!De}wSBHT&̱|K$\}o0X!`Z1xsDe?'yiB2Ѽ(ݔN[m͖ȟG-640hz٢fS\,]PX1:LS~aIp3ws# "bJoz `OU3_TbAᘇmu4b;IbY X8L3ĺ*1({j h?T3FbwQ;0ljNJ YVU|٭ضwf4m6rD#r(WsC0 !v ҕX[3I q#0z9ރyAl'cu=8t Szы=Ϡqn% F% )4A\ʠ5wK$<2MEr3 Z$e088IL N03T[W$dF0 -/2Mm>}H IEɎ0 9$zڐTI^Rh_oh컊d!*" @B%U8 IuɆ0 iɐjg8Ck٘ͣR@pcV*Fe*s ?Tf)T.R x:R)*:\ˊސ." !yV~嗊d!+"LXo`PX2`HU/_ңCJoћ~zo5h^5rHO=3X*Y?'n,&0tzZ75$/Lfbj;8Y0=$5܉coN tON7A/|au;1X yBRP{\of6 W]|`mcl4kj㳱:rT`0LToVu>\!^ -WR3;VW;x-eC }вp#1uGl;*lKӊ|8WuYIUiYj;W"GTGpl𮙗ulhQIjxkD|0]q%5[&V;aPRug{!/]OŸ&ow.o#\ VGfϢ%\"xߜ  u0o&a~gn馥.[͘k3&BݕBh% \>L*1˟D!ut7dT8N {JݍK]b6WojԅZׅsq KZYֽ&9|LY{+OwaOBaMYwu{p"a yY-rd v|RF\vb]nYk>Yꔻp#[7e\^팓*U-kTو:|pz>`сR~ڮwì6~HA1lXnCN$۬lǡ7co?-o%/Wq}9eVtݳr1jtBze|/]LhQ:dEC }k?Eq韐b3M=Dd 0  # A2 $P72 0#'@`! $P72 0#* QF[x̝ |E{UI H!rG8,yaEY@/ޟv#:]3&bbt\ jD~ړno-.{o,#?ޖYkĭ:2bt5gU7C kٜXQH;Z6_zk*H=}(]eEN֫>EckV={o@/ |_ڭg-w\ȴkjBz6a-'\Kϟc]Quw9b̡Bǒ)+r$;PyDz#y0/V{-s-vbZ ey/KNrljs3I*!V!ifN>.<xUAV,՛GGgTNqrc/_HKtG#_:֯Zy9\|U캱jqkF6Hi/Sc5xl><\qrR,BOJHF*w q 6NNEI>hԤI ''"dw<hHM>]qrR,BOJHCɃ y 6NNEI>8/e"h"I=)#u5K %K6NNEI>oQo)իW 6NNEI>YҐڸqpaXuQڲepaX::A {NqrR,BOJH u R/paXڇI٨HرCqrR,BOJH}ڐ7RpaX+jMAjH޽[qrR,BOJHE%d=:! 6NNEI>=XFEj߾}…bzRGj7*"a 6NNEI>@FE…bzRGϨ)وhH:tHqrR,BOJHM訆T<.lГ}x&Ssu$XrWԓVƚ:zu}0fR}珪SsU'"ǻҷ'SsUGM*f$~LCJU '%qԤdQRqIu5)#ΒR:N8)&XrX!ㄓ8jRGj=QRqIu5)#BCJU '%qԤAn6k NJ )U'\Q} #`NJI>R6*R:N8)&XrYHxXCJU '%qԤdmҐ 6lRss1ػ5iH٤>i!UM!^FE*8 znhHEsQ!2^ _K+eύRʍ?g#ϤTVSBu VrWbk|&KR~6hT^'p#YJ|W5{ƒ'ENKԬF<&YEAi+ Iuӓ0GI0 'NaM6B_2>>Od(|r;= 0942c rKK+^8[&Ns=5>[x]f43s2.bFZ "O4ϢzJ}՗p/)1G~+7>> D@E{ 67zi@DBc~c@BBgSB_+LOB?%p^;:; H $aӛTo"N;"3~#>!tB }U@g|Wp]q0%1F(7xзJF x? c 3~HV9{za5W 9GB8% !@_/xW\qzx!@o !@?/=п sC9W\#qPmC8n#~MBr,/ FxП %v9|ʛ;v}9[gLya̦ϴ+m q6fa/ߨl}#v_]K#bB߰/1MV(N!g+s &r57lعݰF:!t7stq}ög c,'Ҍc6 jN_*tXYlpLq>g4A<8F E~3L te>ĪTT՟}I7^&@gz[(+1WGosVp 6עȣ[5o(ĝYAuGrZ38[GqʁntǙp4<șҸsz;*WW8J 2g~&ǝ=CUWJm18YU\t3sp.w𨬚NPՀ+\YI\89ܹwUy\Ϥ3 I.2뵪O#[R-g|^nyNmg^C>/? {̽?IovU#>sK½Q1qV 9AH5bPvX>kO{.\i!2cP^ȕ|PCX@87QVz87ʅ"ѝoJR*{ߤQ'ɨ%ϨDu܊Gp/\U66:mqnŝ[ 瑎%`\g|9pjViT#}|8쿈 sΎi9nFH~IN7]4}ո֘ E_d/>FgvV7.zB:zA~ s+=5UpM#ߋC *]hU.?K/ifMJkjWnC֤[(κ(4: *dLZKUف s]ʐKw s+ͷ>~>] ny^zɶm9}ݠ*c%NH*U=Pm V#/p+4FWyrOgi2e ?CompObjV~ObjInfoXCONTENTSY_1014543623!mA. `͑͑VjCD0100ChemDraw 5.0Outline Notes Graphics.4b.cdx+12  F5 $$$$xx  `  x  U Hg(  d'`$ArialTimes New Roman  2Z Z ! 2} } " /   #  2      $  25  5      XP Direction of Travel x[% 2 & &    Breakwaterc Breakwaterk5l   !    ! -   ! ZQ3   ! t   ! ڙ !mA. CS ChemDraw DrawingChemDraw Interchange FormatChemDraw.Document.5.09qOle tCompObju~ObjInfowCONTENTSxg VjCD0100ChemDraw 5.0Outline Notes Graphics.4c.cdx2  F5 $$$$xx  `  x  U Hg(  dd'`$ArialTimes New Roman7 +F F 8 +i i 9 (   :  +      ;  +!  !      X< Direction of Travel dG BreakwaterL Breakwaterq;r< *  =   > 9     !    !    ! ڪ!   ! :M"   ! 9# !  ! ]$ "  ! % #  ! & $  CC' %  B B( &  HH) '  RR* (  RR+ )  ==, *  ==- +    p. ,    &n/ -    Q so0 .    )fp1 /    zSo2 00 0 03 11 0 04 22 0 0PGP5 3-1 0 02)26 4-2 0 0 !mA. CS ChemDraw DrawingChemDraw_1014551496*"!mA. @͑@͑Ole CompObj!#~ObjInfo$ Interchange FormatChemDraw.Document.5.09qVjCD0100ChemDraw 5.0Outline Notes Graphics.4d.cdx=?2  F5 $$$$xx  `  x  U Hg(  d'`CONTENTS _1014552665'!mA. ͑|͑Ole CompObj&(~0ArialTimes New RomanSymbol? Z & @ -Z - A Z 3  B  -013         3C     @  JB ! M="  !# !f$ "#3 1 C    $fD    " <-   " <-  d  dg^g planejj plane'ij* planeij% #  ! @& $  ! 2@@=' %  ! 3ڵZ( &  ! @L38) '  ! &* (  ! 3+ ) ,qCDK, * ,q- + ,q. , ,q/ -  " <@@40 .  " <s5M1 / x:/4/:42 0 x:4:4 2 d  5 3*sinq = x/dJAJ$6 4+2dsinq = 2xe]f*7 52x = nly!8 65 nl = 2dsinq.9 7    dm: 8    j; 9    MRZ;m< :    5S= ;    ͽ> <    _͹y !mA. CS ChemDraw DrawingChemDraw Interchange FormatChemDraw.Document.5.09q !mA. CS ChemDraw DrawingChemDraw Interchange FormatChemDraw.Document.5.09qObjInfo)CONTENTS~m_1014565114%4,!mA. @8͑@8͑Ole       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^}bcdefghijklmnopqrstuvwxyz{~VjCD0100ChemDraw 5.0Outline Notes Graphics.4e.cdx+2  F5 $$$$xxM&  `r  x  U Hg(  d'`0ArialTimes New RomanSymbol @01 k  Zr  y@ .  4     M      w     " <w   ! @x   ! 3   ! ftq{   ! xq3   ! f&&   ! ͌    " <ڪ   " <Zڑu     RZQB5      MZ34     {     @N tf => >?! >@"  =@# !=A$ "BC% #CD& $DE' %E( &>D) '?E* (AC+ )>E, *=D- +B. ,=C/ -EF0 .DF1 /CF2 0F3 1BF4 2?5 3G6 4BG7 5AB8 6@G9 7?@: 8?G; 9AG< :@A= ;My> <Myf? ={f@ >MA ?{B @&wC AtD BZsE CtfF DpG E}H F@tbI GghJ HhiK IhjL JgjM KgkN LlmO MmnP NnoQ OHoR PhnS QioT RkmU ShoV TgnW UHlX VgmY WopZ Xnp[ Ymp\ ZHp] [lp^ \Hi_ ]Hq` ^lqa _klb `jqc aijd biqe ckqf djkg exskh fxdi g{bj h@hk i{sml jvskm k@tsmn lr@ho m@tbp np@hq o|@hr p@tZ:s qt ru sv tw ux vy wz x{ yr| z} {~ | } ~ r     r  r r        xC x< {Z: ? {D vC @tD r? @tZ: p? |? @t                                x x& {  s { v @t rs @t  ps |s @t                               x& x {  {& v& @t& r @t p | f                                         3  3 ڽ 33 3 f3  f &  @c 9: :; :< 9< 9=  >?! ?@"  @A# !A$ ":@% #;A& $=?' %:A( &9@) '>* (9?+ )AB, *@B- +?B. ,B/ ->B0 .;1 /C2 0>C3 1=>4 2<C5 3;<6 4;C7 5=C8 6<=9 7l: 8e; 9c< :h= ;n> <l? =@n@ >ͯhA ?@cB @hC AhD Bͱ3;E CcdF DdeG EdfH FcfI GcgJ HhiK IijL JjkM KDkN LdjO MekP NgiQ OdkR PcjS QDhT RciU SklV TjlW UilX VDlY WhlZ XDe[ YDm\ Zhm] [gh^ \fm_ ]ef` ^ema _gmb `fgc aMCd bM =e c3;f dMf@g eEh f&Ci gͱEj hZf@k iͱ3;l jf@m kf@n lͱo mp nq or ps qt ru sv tw unx vy wz x{ y| z} {n~ | } ~  n  n n        M M  M  & ͱ Z ͱ   f                               &  3 ڽ 3& & f&  f &  xf+ x   Mf+ M@   ds    q@rlr  qr3smssw  qs  qZ@  x  xs  dM  M>Z  D  K MM  &      @%Qss6     `3NQ4     ZNff^     f!& MG                               Kf K &N R3 &Nf If MGf E3 MG  C3 O3 F@c  '(  ()   (*   '*   '+  ,-  -. ./ / (. )/ +- (/ '. , '- /0 .0 -0 0 ,0 ) 1  ,1! +,"  *1# !)*$ ")1% #+1& $*+' %@Kk( &@Kse) 'M@c* (@Ri+ )Mm, *Ik- +Fm. ,MEi/ -F@c0 .Bi1 /Oi2 0F:3 1QR4 2RS5 3RT6 4QT7 5QU8 6VW9 7WX: 8XY; 92Y< :RX= ;SY> <UW? =RY@ >QXA ?2VB @QWC AYZD BXZE CWZF D2ZG EVZH F2SI G2[J HV[K IUVL JT[M KSTN LS[O MU[P NTUQ O@KCR P@K=S QM:T R@R@@U SMsEV TICW UFsEX VME@@Y WF:Z XB@@[ YO@@\ ZFs] [vw^ \wx_ ]wy` ^vya _vzb `{|c a|}d b}~e c\~f dw}g ex~h fz|i gw~j hv}k i\{l jv|m k\xn l\o m{p nz{q oyr pxys qxt rzu syzv t@K&w u@Kx vMsy w@Rz xM&{ yI&| zF&} {ME~ |Fs }O ~F                               @K @K& M @R& M I F ME& F B& O&                                f f3  Z  3  s   & c                               l f c @fi n l n Mfi c fi fi M;       ! "# #$ $% % $  %  !#   %   $   "  #  %& $& #& & "&  ' "' !"  '   ' !'  ! ͈ D ͈= &;  ͏@! & F"   D# !M F$ "@% #M;& $ @' %@( &Ms) 'GH* (HI+ )HJ, *GJ- +GK. ,LM/ -MN0 .NO1 /(O2 0HN3 1IO4 2KM5 3HO6 4GN7 5(L8 6GM9 7OP: 8NP; 9MP< :(P= ;LP> <(I? =(Q@ >LQA ?KLB @JQC AIJD BIQE CKQF DJKG E͈H F͈I G&sJ H͏K I&L JM KMN LO MMsP N Q OR PMS QqrT RrsU SrtV TqtW UquX VvwY WwxZ Xxy[ YRy\ Zrx] [sy^ \uw_ ]ry` ^qxa _Rvb `qwc ayzd bxze cwzf dRzg evzh fRsi gR{j hv{k iuvl jt{m kstn ls{o mu{p ntuq ofr pf&s qMt rZu sv t3w ux vsy wMz x{ y&| z  Z<J} {  -3J3~ |   J }  fIs ~  =K   3/K   "K   3J   =K   3/K   "K   3J   =iKi   3/hKh   "iKi   3qJg   ;@I@   3-?I?    @I@   3HH>:^-&?)Sf[b=6Ǟw_"^2sp-Kyo{ݏʾ?'!x:X@2g,ݞ/!'(2ܟ|mVb9Y8]z6#E3IBmdR[~(tJ 3RW"EWɗP|I$8^7-)/]dL nflؙ:է]rйnT[R.KJ ,M|T?Rvy*OWuBY GH%I)HDNZn+E)P)I<}?D;֟Z~z~Vo B-X\oYnՊɛ˽cʼخ8zb#(~x܌-OW豀FzOu?,~]}GQ SqWf ƸkϝMT||^XgpO?QY=%~4mBc ڳQYeJ{r\I`DnNhAc{vDY*Ÿ561~'_OhY2Ycj#op`>ͩvMaRɍ Q?;?1?ڝ;Wהe[`*r6 U|5紒S*Gޤ* y0?S|oBGcU|򣚟ijPoU|;R WfVf?5"wd~L*Cޭ@V\㻚Tw!?8gxyfٽU_-(**ʆVC=4?spVC͟ #_GBj,gοUs?Ѽ:.XL03?2y&M=!<4-kbhP У|fh-tY/هoζwsO"]w򻳅Hsi;8K32%zn+{.ck?T!R[x 6Sxʚ-k W" 8ŶP`;.Dx@$-f}́GcO8Yc!T\|DMYP'ځQh!ek@UeHF2ZSج7) UVSEqPr,OI!$.1\\X3ous!ILE!iRĐ eԖ22,?QRqQ(bK˶hs~TI99KS$W$*-G嘶 %YNr\HBZN(uʲUL*#N$" է$u?UׅMUobRMn$w3ۆ 󻈅%s˔lT3Gzf1+4wB=OFר|%}qߔ$HK濩QH#SjD U R:&RNl94E~B<'͊4U:iRN+'fEB>s$7/r?U^a ymx$PVjq'Ⅎډbu-[3''`Ӷ\U@5*TI*7,2S*+kJa4e62ʕSn,U,Ks4`]_xt3emgIDrr\ CSg&4~ dWn~/g@?c3oLD4 D"mRz`b7,yF]5a7Kb3]5ggc?펬-vOp.:npN]uu_uYԩt~'<`DkߢQl9X'0CQ7bX7yZy4qzxpjM#B^%b5bv ;`ݱGRu{ivu3ֽɉ8y]Urw\#Ϋ]mȮQJ ͆h yi'K._ƻ݁z6X L9>ݠ£?n¸zeE7hdjʃ¼R_x7nivb@Cmȷ<1yX{Դg+7#w0I]nʻo+]̻(^:tP/C1R~Q-@6{a2 #^d@{Sx`DU xLƘ~ԍ11Y# ނg޿Eke9ڏal\d_߶߯ Y?~rYÏU.gS9b+LdSaьs1qMfy7z1|K|Q<@Gg c ;Mh뻜;i;CVzAS~ g@k<ݽ=}k^3{WtX" Qq2>%XQI9^1&X`9rfX'/ؿ=bLسcS "cB ͣB.&gX;!_?屌|i喣sK_/kh/}EDd|!0  # A2q5vF "9MC@`!E5vF "9*aiWSPNx\ tUE{@"{B h# V!E5¾" ZmN/oȠ#(C 2b;=G]љu3_꾺Ut<7|_ջ #C(va+k/CZ_1fو΂ZW׫Kܯ\"V>G[ 3+J\YRsYY)VJJKPj…> 3+J 3+J 3+JcꙕhTøEYR|JER*TAܜR~JER*T<˹P?YY)VJJ݇T1)W_,PϬXD+H3J}> 3+J w#ҸLq|ᶻun7n m}"c/ w[VaÎ}kYVq˲U37$׬j[^[k\WƃOMP#Rez%# @+ix;^/D+3ix'^ϱF+ixAgkg4|1;TVlA*{C?LJ\AK"oG+aiJ~[FR|ޯ$_ JqjQǣTw>ޢQmhWhǑ߀_%ߣߪ;Ve ZMpSx@E>#?h6?Wc>Go@{|-->Pw>ެGj4;ɍ_ڪ\uHKz%I??oixKjmTzsL Ws'}|Y s$hr C*ެz%ަz%~Vߪ*s0@6*G RvN+51BNY6Mp*>M#J|&FMWiZ19hBnChƺ:C5jhېQ[GB_,xBxw&^m߲ pql^dP0FDb6My9$奅bބQmWY_.zaFV"}6.‹yMx GEPZտQZUEV574Q_ѱm%az#aIx'A]fHf7${gKYQܟ +0/#0/̮@(gGsrʑ@\kyM$ƙc93*|#yQb>˙ss|)"*$_a̅™&zr@'+b =柪vQ'Y,Vau/\fub+-.qv~ɼ!G*FaQho[lv %lX?z}A|`-ٱ&o@ూځ8~$ n1?4]q@JE 4Y*nr`[..Te¡z\ @ƒAA.T=CmAz @ 3(c;v5W( a=@c}VXɷ,j}zKnrLX}[-Ն[ b?ZW+d(۴O0j7Td;5 -:]_m&7ZhB8L~wm]29anu z? Mly{],ӈD#xg^N4\ K#&ɮ$^D,28@T0VyF0 uw4<)-.u|qzS *zz1 xȮ<6V.a΢9cQ//|{jz0kvoTg}5oWܫc1] e/v 濳g#k?USE k?}KU_Z1d.{%3Z7];Vd~h>ZT҂W{,e.>cij )RvteG DIkQ*QuvM^nDY{k'ʏy DK݇zk~}*^{Y{([Q x1ȕK /&ĕSxI\>v*;xgX؆mW9Oל,Xٽ /KaYY^=8`dIQVӰ\V !vLge)`eO9VveܥyB&zgIIOh=P1:[ta70-8jOOC РOܧ΋Wɢ}w#k-=mUkWw%sa=3qg;-L}陪&nyg_:L_ZBpϾ%NWNJ10'uS#;Ogx+ 8@9܌ Hb%5;CM!u  dnnz &?A&fiKj7 ^ q{(t6RMt}#A~d6~&P3TOctq ru3dppu r W03U@Ɔ&FV3P4kD"ձ1ccC3e4bqcGRDž&Rlj"Tv!BQ 0X5(Ƌ4uF@1~:>V`3_2E:Dd!  0  # A 2i n$` }\@`!i n$`H=4 /ATBEXx E#3?3niPWESAp c͈x ̬.93; px ".ʵDFfUVe{^TDY] 1f/c1%CRWi5/g_ټo2>\*mȟ:c/^d-ƘE9?G d[5c"k ż?{,ނ2rƲd~\mTe~{]?|o:7;7؇4>D<Gby]-XlOZ[lޠ'=[WSUTֵ[,!{8%.w"8KQw"x>7^9 b\@Kqby,ՈW9cQG >a\9 #D/~Uca81x+L`zyˍ4X^KޏKKzR]j\.շ Aڳ}v6o7OsRjT V?VaVaYfM 5]-OV0t̜z%o5]n0ZMC0j-I[-O_aoprC۠gdž>d*YnGb IQ A~hI\5vʵx$3NZ76c41{a;mܔK<`1Ox<`R2`U:An JV9JɚM-*l`U}TbWxE?!dJS8# fɚ/*Y+p26xoVW%xSz j VF%k> "+X/Vw_OE؁M؂/+X`d}{prKܠ`킿I~8dĝpw)XdsJ< [Sx\ !+SL4-L7E 3+YP3K-:bB-$k+Y-` Β5+Y0e*5 WFᰆ4Pna8$Lk~8Sz*YЏݱz,`_IV ޭd͇mB l|P,zTEMZ'‡ WJ1~&xob~ /JN<|Kϰ^ xS%uBڵWXoVk%l}%k$ !E P~ Jck`;,WɚC"kX@^WÒuPAi')f^g%k]3T`iA9`@H Cɲ]hv`Cd5fJVft( h-Y픬Vt/iGt/)I0Gd6z)Y]G2z} (L{øZyKZ` ];]۱|{cs67Y68G/io{Ʒa;nq3snN[+8>w>+n|u$Ess|XnT0랯^3)A"}6a#1tZm<5*Xಚ'ee8<늤ĺ8]:%e%ytTJ,dTE8XTcU%e!VwF䱆'e $ֿ $Uu#fkaR֝ĺ8<ݩ`-X+&=ֺZOV*X<Ï5Y#ה>N|s,t>^XnN,_iAN/O r8!b[׃ [d*تCV ,Uej!s~Yo0y=8{̍2 S=wfގZ'TqaJy8̇v~gTqzp?jdwq̳Ohf޳&雬5-tVIŗ놮匜>caS([:NZw{%)} ֤P,+r`mb3Y2A_ǸOOf\'$y K;m}w }RW?.\C>p>pܸOOΟsgt[}־ R|[XT (k6~FT\P0ogD շ4ǫn᷍e5Xopq:3oW8o˘b{ zƥ*xUhǍER;%K+UlxB >`=p0Aߙq_0\*V)k6,Vy~ RWէ&8qogT=+1ZJX؀Ypy>݂R<?c+`p_W#mmƥc@W=yvy^?R ՟?3-hU4-%FO W,Ʀ-%x>q-xkV[v.u s<\04Rͥf&K8hU[RY o:cwvT :?bj(<5fte6+G|n!~2E"f\cu&~TRg)M=#Y 1*=jSDCGJk˾YX&yQeZ[u@LħdѭE8ƈQS ygS'4hQM`t&٣nR@wMA w# !Q-iĔjXRl/Pt0%XQIزJdj@OF2u#Q:Lo &]Ru0h=]jRo2U6&26rHԤ2_Xjsexky$_j.HMXÒ/RgƖIMϯPohNֈZJMwBz6-ek{EeR2H7i%7EKY6#f8#-5&RDr&K$9[ƞ+ْXFqIM/WFdEH=a _f 8Zg5svL>՜(ynEJ"ρud܌4>Ԟ.6gO3݊>?Sڣ9 eG4!ӨWB&#; BY>̺ScASV9 D(qP54"%XyR *4h ^cYJL y_ *.0K?ZO'2ք}¥\)\AAFLZyvAJt)WF}k4Mz{VJ6 m7RX. ߑ nti(~t 6+v^(W)  !CVs'J'AG i7\=yN2fH:IHH4!cM0vǻ_-GUkE*O'Ϝʧ Z47{%:`DّUwKC(䈔TIHJ:2eGTD]B$ډ+ 1,z9g֔6t@';%/ʎLC@Z}-ׂɺNmtTJe7P:Ar;2#=e_8kkAb :WY %՝A T'Kdu ]'1փ^j n)i,@TS6d#^ʵ 6|}ToE>y?W=צ]=_2NdTΡz9Ջr+DŽ鬡\>${BW0Ӌ |tŽpc6ub:Mf/zO9R7gڵTtcEW kM7O\m%|&Fk^KF/yxck` Z;/4Y(V0?SB,O[p%-Zs1y֕/ SW(2yp N<0A9ߓr?tRnSN/))O4ߡC۰BfUeˢrޱTJ(<;s7TQ/;Ҽ/;ژIz8~R h\cEVf?-eZ:1Ш(|}?s$L_% jL'Ik1bU tRPVY4t$Z .HWDTE ]؍"dцjH9͛obv}s=3 D˞Rۆ[@zcJ1pѪi[;9,.x]Xڑ-Vhw)/,Fh$n)"/ʁQ|4)ϚhjEZo,@89Uj&ԭwSS8")|nq ^hMK„lz+/PSK8St8B-L%%c;cP?9Du_0 S*~LUDeܽzjԏδ6jTZME.2s)]JzwAeZ$OO&wyd ПL<<`Ÿ(uϑ; ~Pmxħe'heo%Y7/x;,d[ji*w/PQT)'㱹o)zFQo}=qEŌLQag#w$즔2)BK 1~ _]"Df꿎C$=1fm {M~C^AE[hC[5Ρ}S.R_x6'7oiF"9%u%%p9\SyF{@davb찍]rK0hu-6wP]I;>_'{Jhz[_i?Oϭ_h.eWp9km=x]lwVЇTr"&0:UF4 9޼3urHr:xճdWX0-IYȨk_9kD6TGãur) G{NjM̞dS\ ch76+vZ:Cٹ0-j"M{:Fchq0y}S}_}sr:Uuܾj qhM' bi(P[ nr[ֆ~PBVw4Bj)47ԂPAFlnhʰ ',~o=iñѭ#GY22bơ=g qO}O$s^H=CԟS0z#&O=E^Y z~IwamTH(C˜W_R޿y1޽#A`Ȝ׽ %W^J YMIĤk.FsV)fh)=uOc- UᗱWUX z"ʎHorKȍgwmx 7IbqE%0b"D1ؼ9:Ň><324hOGs3PŒz~nVl!Kf[G\7RCTI)#c95Vo6~ήe9²jUkNL >KPDG{Vd2 ;AC[X1ObIĚIw TctX_bXs%uXi&Xg<D~a-DaBŊP`=xa=GMXEy1?ZD'XIZ%:_Ê:iVPK_J}Pk~+VR ^ZCgXYZ3}jajbMtUGkC/\+c}GMI7.uBܪcMR-ż0]4XL}1V7&aq|3':VKɿTh3u.GX Xq_gj:p̃XQ Vt9R."v0nBDN<#b ҆!+T`PXj#X# ߄U8 NQ&IzĚ~^؛t/;`MwM;pa=X F&k : ~k87 BJT߼}>ASJ2נ^ܿ>-hcEF )+"{?Y򮆭סV 8նԝ",Z[n} a-6t#DVZE'4Lt'W lXtи@E4Un2<8E:5GW 1ъW}< DpZU!MaC+<{!Jk\oFnGsN᳹;܉'s[ncEw8pY~\-YtAԇsGе<0:~[U3Lڵ!<{OsN6_u8'p?ͫ%Tn?6iFэ|h&onOgȕO7*ncLU YX bzz.)Sz8BOiX5Ik ptwmbUzK!)ևho%XGK ^`Rz`Por2,7S3 M:-)j !=낤X$b#`u.KXGHwwɲb] #tk58)V. #fcU&* *`&$ź XG6 Vuo,4`Š9ZnuIpמ^:u+s^{:kN=&-עw܄_Υ=[*˰f8`N2{fgE/(s^exS捪Wܤk-lQv,+miH˿?"ki"I,s>[AM[\y-K݊3 c@sT{/Gg:ػfbl6zq*_9ػ34ma}U\g=/rcq?TU?8>hh(STF/شlSk;Z˯'tOզQmMd57C=ԃdWdnT(ko)drb(>V%Ϥ'u;Psv"Nez 92|/!:;țұ샶췣pjUG?֫J[:6W vQ-X(ݛfYB{O<{J~,ޜ𛳷q<սh.Jz},W;z6IϡǃU$omSw(\.kWCrjF}]-mA^bTB?WmxgF&c>7o#tQkSZ2ݛ.W4!TJM}|'OkEx[NK.-v*ӃBoA~6JH S2F9Ÿ)~l0)CB2Q| I^yEN\+=XDkTTX8Omp#9;aq kN.qpsX1XL{Y֭sɚkpjF'X-(k`.P˞.K }cmpӖzc=uW@|fQͮbW+GgkMprcTcџ7fӵ$cz̀~1rT58#zCFT{Z2%&8߁WQv(ҎsDV΀+يߕslZA!{IƩr|iM[ P7zQ k\rͩ=<'P7{J?dVvmoӽ~u*tyIa-Uɇs4_H%s`c|x&= p&I^!9xdݗd޶>y%H,xA^6z˱Nu"-ӹ7}ǒ 9{A9*JE:cq*O6"{FwOэdk>F_TC2N=`hrl('{thU\yV:%;'䑈ļs\?nYB{3Ȃc7}ǒ! 9{A:JJeo5j*NG d5dR_jyk=]";C8j/OXXўO1}D"Y$s~j(vrtV\6ziBOOHy-k.)|(/`<+kF(6ly4[Q*vDVzT(J+nF67TG|8$c-q9bA:>rtIl]WrĂ{teӭ۵GWU E<|vME; 3*v($X8AT"Ђ$L $yiI,g ℔[wk9$[ 'yq\z4*9pẗ́\>ylF[*`?l_+VX ߸:6_YG\4 6غE,f#.?or5W.r}YG6d3C7`?n5yNbBQ'FIWs A~۹h@LqEqLc˘.8<p>lvtuj?qL1Pzݛ\TGGpꞍ(,:xgf|mաV[?^ùru?V}˩G[Vu\AzYypy<42ЇAo'?4'mg/|KZ;Boq_b >s2 d?0f'.Pthb#udhlw܁H}D3Z+ߋ l? -}!?J]"ArU7s.F6JGgҗ)^sA~s ;;0<#{2 ჈\?7svdt{CAZX h$C_@O/)M`6XrXYArw?F=}VK_E\u~%._XC3qulqut kmؙnlxmAsuT^?:ԺJԺ&J{N6tH"8SHnV6ϹK{"(| ˾QH !f7mFt S%h?DOE=:NU F1ɵ}&$I>a{Xu23"9"tXGȫl9d+P:Mz3P>N';Nr~!n *{-"'CzqJ" 8$^CNgGQ_~ʉGz%{G}M V{,IeKƺًo'a}sSoo])]<9A k{a~XywS-&sǰ3u@]J 8@\mս hVdVBuρfΤv΢;-lJ1[W 7ڤƞVGՊoaSML>f2rCfB/19Leh'#|,VCGbuf:K\O\8k2GzvrXX&O):g^+9Kl*+MFӛ9F)Ie4p$(M"s>ʞ[VȻpQwc}RwsNotN vvl,X)יr}r}ʴ+mtAue65X֮ 8錯kuaX̹F8@SձQթkXkntck R]<> $^kqYYb}Z_c V6tHREUZ!A |fv'PDϱ“{ kunL袈k % )OIs|"1z,1oXE}̉9CKrUVk|7!Ϳ/5zHTfٱʧpri>NG;^r /B:c(sV]YϢ=aEjzʵˉӮUz++/ ${> e)m[S{ڝb􍟙D2o,y*=G==H>?rEu `V1F`(`DÝ~цmL/89% \CL<ݪKjL/3ι[=h [_f6G$[{7fd# 7.1Bbu Br?9ِ2| bʹN\FNd)g8_KXtm)f${ ')]/#}51<,Dƶ@C7,M\{ŞRrWak+ɵW#e~"$#Iq#$cm̂u6#PvfYȡ22?EdGo=8 7͜)wK7 cvlL"2Z͞sH~7l^^^͡X<~8:۫~8W9"5Z JcSinznlxmAsuJ,N?.^[?W\{)8WŪXS|Ya{4{:2u?ijy>'4Q:u'&E`BSf6qLew;/c*Prʃ /e /vg/^?KsH͝Ožutt\.] ˮP1AW'`?8a `LSw2r{EK\X V 0m%5A9.Nm-l}Lك[ma}s3ewMH;ɹӹBP4H\gNv'dOAfB/3&r;G֦ fjԎudVH/# 1gP=|ai^v.)MTJ=R_T͜;DH:e{t8^x{ r5w_{N6xF{z4z V~8ɻNWSTlstPG݇]?Wo\e\]Zvpk^[\m8$iɵ\m)j2Ժ$} `e3?q$6*$F:u'j#*$7 ܬscFDS[aa&-Y1݊A$R1!Ol'9բOrUV穄|!'[ ٲ@/bW8est"3A$gx=ET\!\1z{2u8I$vR]65rJӽVQwe yQAzYy2˾_r5^g|$? ;?}s}LA}Ńc:.|>Vz P1A ^4F^nX x Vnԝ^цhc2,{ 5`ۮKjL=HgНm{c<7w:SfﰾtBۋsAbu|dY B&Y2lg9o 3qo/ Zhm2Zpx6h@XR+XDru/YJnlm'*{܅\EHF:s<"$cmºBZ(UX-T#wKCqY)SJkYw"[ pz3_\οSQl$^sȑS&b&ˠ9Ti-$~ñO>Z .:w:ur%4lcSKhJ76{jĥ>Hr5W.jiW`:+s7f~~wm8 tBx&6Y{Y ˚T9Ĵ7_V$0O$T\H%~oZ]k\{kB9%iU@rUVT"Dϕ@/[&wKɝ=$:sQ*wC EAs*E\p&kIG%zP&Oz%[>&+=̲a%B?39sHg[WJzx|~BDžAXvLü勻.x^ JuNu)jNGnh5 %jUP`ۡLjl,3?3]oI?dzPיdhsUC8s!Nu<+k[\@L/Ͼ\}5lqF\3J \50kx*bo-G,븵@|`:r[>\\][|hz[sr7lUrK mڪYm٬`m5Wxl񈁫Isղ\QETs\M*آ\ (0pݥrYEl5Gsd3C54\` \S4dk*x.UTEk<5<l15Jsr[6p \' $a:rO-gu<*׻k/xQ{\{X7[o^\ϳ\=٦`ӚQk3xQfWja:Ӭ`WBsY+آ*dS`"/4,2)b\9,W.xlkIsrt[0p]`g-.f.$rqk 5<l15\sr0r:*8b8`0iOY^T,gPsg=[0pbϛ \5.kxzlUsma[r= [\\s@ \i},~U~5MQś͵lYs=ruQ[t:4<- 4ph8U r[4 < (6p-\w\`\5Z[,0p\7\33]3 \4ו,5B.\\3I \5Y,Quux) ׉,XǕY2pjOYC9`CY<>x+#@ǼvH~Dq{ ,ו\!IWI\kYKsB.1p\aϙ I:5Ls 4tpfK$xO,קH!Ik?\gB7p^gk Izգ\Bv5,<-͵OB: \5+rՂ\!I"͵*VzHRk溛Z<$-7pٚk.˕ $fh㫪5g?gZU_>Z}-D:dHEPa X:8U8&{3sc>'=g9L%>uFO :܉u$pS#:;J|~P־K:Pvqn>绹k‰Uϕ>Ck=p*5'֫y^_ Zesb=Gkkp+pcef:樿sj NIj'u@`Ur'0)+ VO'V)p.Q ֟X]'%>u:ىup~g`k~:8R1XXUlub}|,n~t>FLcmubP'`} 8(gXoWXoe%>+kZz8O*sX R'#Y`grbl%>5`:6%>5`ubMεJ|>!kpbUgW`3XW8r%>`]ĺ8+EXgӝX4%>?'Du$tV0XXNG%M7V[Uj)';SBouc4&yyzkԉ 8(w ֛NOډ"pUVNyXW`-2X9^%>_Ug9T%>#okVܠ`6X#XcSc~Njz8.΅J|~iVG'ֹ9K :щu*pNPS2XG8/+L 6YDFK~j~j u~VNʅ 8߶"yzщ 8_*Vn Vгډ|V ϗ6NE"myTz+t#$f/ٽr#Oҵl}us}'];,Kעl2CfKvgur[~IZG> ӵ3|{#iGѥ_#Wėo;ⶺ.3͖ߤ1᧐U)Z~PEr="|Au:˨awau-TҫgZTQ QIx t- WtLeO|cYVt~$te oϰ5PYԣr:OGp }V%h ƯYo9YkQ׬L|Y9auTVL4@ 3zI1TQc oE=V%rNע3[ngN6X ];(QuIc6Z| _gZDZK>Vh7gqhB:=**E#ZGk㻨W,:zJ UdxTUۨב' ءu^gi{]o,RGeDZַgD=Ex-+_TxXs }niQk>U 1{O ֊Ax[T41SýLw{3,fn+3ubEfXMкe?VF"3Y1菙Ͱ¾c+Ě+:;U}1PCSGЩWRKzިyx1CWc_X;stXHtt|U#M#6ֲ:N:>͢t،>ibsOݬP<]ݠCuPo*vgcwVluUZϮEtλZ:.CWOLj)sIP}2݂nOs+f5U7tr~/E]++]W#U~No ;67nkk8 3z$Z5uԵ TKjgt :`So;e-[ӌ-?z=6_ŏˇ؃P'_Ag%hU{ͨnB ]ʥ啦Nuw]&ѭU}Nk7koF-wbD&5 edo?Rr<[F'宾c'GkIiq246{)o66{O޴5LF46;ymo~+LlYmB*IBԤc%uZovKkZ LA?iHF)9=ZCN{%t@ C祘Ոm!:|xWk.Z:Hm+Jp:#;d?ZǯqXcCv=J] vE~v`i;6].K0sKpnr;i7ڿbT]88?(a}O} .%-|&,Gʫ[}&ܸZoA,\:jمnJjgi53kLe `'[/6=R}>𬍚1.K笿(FEO,hltbViKa\:ݕ2wyz +Cѭ*2q` lZup(p0|VC-Ajb PS?sO:J$h쒵SqWϱS#=N4cs8L=7Vo-f2٩k{gx30mkv?jbUIz&-o5YgΝW~J9tw:-N*aduy CXB ?Gt60/)'F#=u8ޫG4q]t6{tO?9&svSO]Q9dx[%2w<᜜ՊӼI⿼qwu|N6t"lZup7C>+Q=U$QbJ{r%k$㮞cFkɟClτ =7Vo-f2z5Ħy+o5$= QYܿK4uE,mkQ9*{8;V:>'+E:r".œ|uSNtX ىK:#;d{9CTs\?qUm1DAUX u>jt|C`k(h7?UWmRj-=z]Xa/Y{xĬZs?mj g֘zɮl=[x{l.ñS+Juzw_ <&wf9? =s 1@ >s<A ??@B @MGC A@BD B|ZOE CBDF D>?G E&w&EH F>GI GDGJ HkBK IGJL J@JM KͨrN LZjO M&vP NNOQ OMR POQS QT RQSU SMNV Tͨs~W UMVX VSVY WsZ{Z XVY[ YOY\ Zͨ] [M^ \_ ]]^` ^Ma _^`b `c a`bd b\]e cͨsf d\eg ebeh fsZi gehj h^hk i l jͱm kͱn llmo mp nmoq oZr poqs qklt ru sktv tqtw ux vtwy wmwz x{ yͱZ| zͱ& } {{|~ |Z }|~ ~Z ~ z{  z  f  | 38 Z0 &<  ZZF  N   3sD   ͞fA   3Zr j u  Z  M   3~   {   3f    Z  M   3       3Z 3&  M     s   f   Z 3 3     Z   &       s8 0 ;  F  fZN   &D   3 A    q 3Mi 3u  @      f}   Zz     3M 3  @      f   M       s    f                 &          Z &   M  f    s   &Z   @7  M/! ;"   !# !fME$ "!#% # M& $#%' % ( &@sC) '(* (%(+ )Z@, *(+- +!+. ,=Zr/ -&Fj0 .&Fu1 //02 0L3 1024 2CM5 3246 4./7 5=}8 6.79 747: 8s2{; 97:< :0:= ;=f> <&F? =&Fs@ >>?A ?LB @?AC ACMD BACE C=>F D=G E=FH FCFI Gs2J HFIK I?IL J>M KFZN LFO MMNP NLMQ ONPR PZDS QPRT RLMU S>MV TLUW URUX V&3fY WUXZ XNX[ Y>Z\ ZF] [F ^ \\]_ ]L` ^]_a _ZDZb `_ac a[\d b>e c[df dadg e&3 h fdgi g]gj h@?s8k iG0l jG;m kkln lfMFo mlnp n EZNq onpr pjks q@?Dt rjsu spsv t3 Aw usvx vlvy w|az x}f{ yyz| za} {Zd~ ||} }a ~Zse  Ma Zd  Ba fCse  1 0 0 Planelzfm̀ 2 0 0 Planelͪl 3 0 0 Planemfm3͑ 4 0 0 PlanemfmM͑ 5 0 0 PlaneHoBoMH ] M\  _ _  3_( ,M[  dY Yc  b [  1 1 0 Plane\ZM>f[f 1 1 0 Plane] f@] 1 1 0 Plane]f@] 1 1 0 Plane&_&-A3*^3F 1 1 0 Plane@a&^C3[`3w               xMM  y3f3 Axis System fM3 bft [ft  0 1 0 Planeef_e     X Z&xa  щZ 'Ե;e ^P; $:Nq-].iF]:p%僑JwU{Q?r#|Vhkd+cXK~?\N>vqAcӼXUoI[MK>v|F$ՇeFJX -h}x茄TBgjAע@8 F?{پ%}/;!7!.ό}2׊gN7W+s|ޙQ_FTdIb@Jе »IbPf|+h"t9Adgֵ&DH릜+ZqM:T$1:>M6F9Yy硶VZ9)3[e@Ay9Z_!nNodLе}qg^`s㶖kO>JQ줁a)GߨZ4i(KS=imᶖob 1^r;}T:j޻>C*^z~.36`RBע2trwZV8 dL:ycҭ7nC>G:*7D fx=kdҽ)%kgi\Z!67VǛvKxb-f3ՙV4ou&V[!jVuFKT64URKkZ}Ű@uәmg iP8ȶ0>t^ M~˰*[.`HZǝב=ז1.Cr={Q~^o]:= ICHI="O?c$rҀw%ވ:~-41CwVmF {3ʴSx; /nݼ$zNly@Mwmg3$XO&OTIUHy}mi{͍Z&>etI}M:6__n|3V]g*=s 3Wz.kI4c O^r&=o1(huz{p+tΧV:vft/e'n7?vtuøaTwWx{6x+F9r[ ノ^1:NNxXM59@T]6hA7:כsԈb-iϱ5;N&f5fRɛLxb-ilvޙ?^70i^/o+bUIz&-o*yls|Yhm%5aĴ,x` !SX ty)feCcʴoo-?zKs!sK.G/.]BY&eaNUz'{qC, O!/DnG.IwD#.tQ ;_L^ژeCU @:.sӌKe+ûGtͩf^yQJ9w=鈞,܂}R+&I7GʫY;M:m߱q[˵N.y&MwN@m+Of_-'Ԫ<vN1?sQSo;e-2flK8?כxUyoeXEjHT@;#` b @w@`w]w]]˪`eݦ.{}7g@^Hߜ[νs:٢d]~-bzP`STY WURĝRWZˌ>UUf׾HQWT"K/)_W`D>ňqQC:󨘝ཎ=pl _)K\jk}G-͹߿#dIהźO(WsTo'`t&[Iﺺv^u;fnjΖDKJobOuӟJ>7;\S}C,V/{-fA{?1kɥWC{Hr.{kLyY~.cN7wkݶ<~Gz674Ls|Sl|6[Gfht㰘v1]11Cy]Q1ʘ}a{Ȏ<|wiS}CsKs}b;k-#]ˍfGG\Ͷ|(TO~Tn]ZϑU73엋_*zI?lwUQUլվ-5r[qZs$zH7ly\Ժ#+Fs|ATTarIj-^rNx2z+w&kܮ\~)MԼlQEW(ÖE/Q;ǥbYTSU]eK99J:$:*~ſO=^]WD8af|fyb!DyYཎ=2]Rv}(Jo%U;L{2\7=7 jddQz+ Ϋng[M2XvI[YInU\d=zowf'Y;Eߖ_l-^3DL\yz2WC]vq7.{%:h8{"[j-JC#Tm{`qQ#z[9H-#_B|SXPll1%bػbʘ";";8}ޱVG,Jw,4Id1d[qk%<5WkeՖ$k&=Ҝh].woh,14{L\'+EOH(j-3F ƿk=zQe=ʴqQN؛mkWUg )vILK\W뙾zKsnWOzn~kXE)5<.~."ve򸨱>-*l_gƅ~4.Gu&IhՂC}t;8( 6 RO3pB)u{Q߄a kSu uҿI /{ qbodV^/kPV hO_цnAk:8>؁ېm iC ?vp`OR93j˯<[>ް l`os|ڐ{m0m*FNj өsMXbo;yu[6nbj(^tqC0ET#@p?A#Q {r*3 +:( ɣ*F+hgaD˟{:壣 E.,z&U@@]9 ;s̀rQvQP 8C dW:Tmh e4ܚgar°qEpd3*l9~V޽EdCf4R7*u NrLܐscū89D|ѐi".5ݸA' blhȍEC r%aL#)E-Fh7nkH*@ʱjwQܵk@L芈s*ц>0+CDt%9upNLX۹gy*/zA\ -*D1_]\ad(~Τn"OH:h.glI!R'$%0IbPHuT 8#Bo\\b8K >!gK!QH-9ݢ\1t~1|7bbSbЂ`]q;~"a\(^-):չ\ˁ^"v^ q1;''GZ*zn@usbE/bOJЍ޽.ΈMB{& bQz#i;h{h=MLc7C벖ǴVͤAo! 3 vm7z>j=wBv!ֲ z'ˆ!sGhc],V{7ihWhhc+Mw<+mmF9)[A-XW-͙vmZVz/%[zbWVYJ@[~n9m7?Y^uhKv::&?#$֕3#+b:C:Ɣp?] rqc,JCQ)}'YWOB0 }tI *WáCIxbG@U;6: UcrFAGWgx8e,hH q$ Q1шbG$)$ c\ɚA"dJ59HXDx|ƘzOAd [I5l2Θ[Ԋ;2MC?7trN^)LWAC΀Nc N̈́΂ ̈́Ά$] ]E:٣OAgB琮΃>E|\ֲuX6TOC1g@@]}t 4 J3Ѕ,Jب.>VPhU*gKXJB*\=}t'6ڱˠ1Uˡ)_e_w[ r]MAR[r&u|зo06Mֲwo1 +ۤ_CC@!=.W@!}ݣfZ ,&3BZVDz}[6毡Ū~}[w?BrXJ韠Tg9_b=CYJ?I~ڱ~T~ 3_YnϡT_C>+P>&GkX$_A1"ayWr ׺o!=r|kb|kaT~߹g7J7n2 oLB;kY LA iuh 迠?րքOҚZ@E埡%/ПX*ПY6T1WWz #/ɵA(:&4(v4(8H!(JŬցFCXJA@EQ+&ꉭ-(j_-TVV`*z S *ڠUoagT\H%W熿U 9n%I5H|5IuHUW Z \HSRݕ {Ԃc9!5];SR˕G!eRI3b#(APvGv[!CcH[A[Co^Ǵ Fe7Ao`Zz#i;h{h=MЛuIc@xVlF۠ևJ3ۡUlh} ٘A6`߆;H;@;Br!˳лب mVPihcUSL;AA66erڌ'%9[_c`bd*z-j{[崂ܧmrZCw%&W崁r%O|wUo ic_y,+Y#hi+bb!\9'OH{OXW]Ni.DְT:㌎Oڼ5e ewwv&vvaZVQ &@@{B{>H٣=ٌTA{&s_CeڇeCڗy4ah?O:::0˕GX> F1#l>bվzD` ֲ!*\=L}:ڱCO0UàO~eB ^Ļ 8p-ے\іCxK2 2RǤt! $@Fʁ1Ѯ g,$Sm,gd+)1G!6gӭN$RvSeDxeI LSYJ@'1] L] B ::t4::tGgBgAg.Ά$],ֲ} :eC;:9 :U·%Mf@<+OC<+]uب.>VP"3ЅL3IEeϰUPZM"M&CU;Y*v)49賬_: /Ted!YI.pI,%Q:&&$ KFBĬ钆~!+=r2 tICL&$]4YҲ8$;]  ( AEQAz ( F PCbF`QQ]b?svr9w{f};OxoX+s'e`PEgBB(]>U>>t >-]C]G tl.Dgd2/B.Fy He6b5ߥ52@Ś~En@ 25WFCUlyts}}^ŚEtҍK *їQ0s j_Jeu|*RRkuUկ{oy`I"7mjMoyU5*/joyCxZoy~6 |&/D{clD6xcmEa0qc`=݌l䠳ԙ nqow?-ߦf 򿃼IvL򿋼],)he? 8w{&&zʛmHнYtVzHg]6%>IM$qyN2Xlˋ8,Z:]zUF$5I0$'$JϚA;f:I󿳴;K|@-gM~XH2[l#&vt$$q]t>,/$7IޤbI&d$$zsٯI|"Yv>3GggD"~7e ,#k$q_lq 3~ L_Wt~]zaq_-ιPW-Z GsИhMGKF|Z=G=# .z/,ZZohĖC˪0G3Ԙ/D+T7-/VPse\4SͳЊjTF+#h2z5YҋѪheh5: fUEbk5glMR[ 5ZGI;X+_:HmOyr>% x8^C]ҸXJH]W*vH>R+$d!R$ip"$j'1# \ t zW7HIyY "vgv{0@{ BF/G/Sm$\j1z5h_ z%>m6Vdn6m6s lbj6L-j}ЫlkmC[W2mh[vhuG۪Xs^u@)툶WvB;`3Q/69cخhh775;իT\[t󄫛=^=*tojW{#=TAzy5\*1 }F?}}&\0bEz5,qus԰h˚t=rHfwsz(t4z#z1M *ћE7Cǣ7G'E'-t zzF&mѾA@ѱ1FoSM 5;j!*;CŚ#x':D$4ѻ;5抎ލޥfҜy0&v8z4O;j1ՄDF!#<)po^y8cQ^8ގ3(2U F0FLD^$dWIMb{I2d4.:]ދޣt!:2W"t*:Et1'-@GK4ѸO@WdN]> 7Y >Ta}Ƽ}}PŚ~A].CEVse#j>>Feq}}LŚIqQJi,g Ց9ꠘ]} 9F*5ϠO~O~Q+OH~dW"_쭚{En)p-Fz,Aydqjn?K%/C UscE{f.$VПC}?.݂nEW)}}^e6"B6%яЗE?B/nGw+їEULЕ[}n 5ľf }CCt55AW@?Fע\]Qlt=Vt:F *֜W JwBft: fB7~}ݬ9cARjbEV}}G>8=X_oA"[]Y9#Jŕ~qwzՋY鮆|Ji|l*1ۑ]ɻ7#_ ?FRODvR{԰%R>TF?nڅ=b?E?=~RzTe6L\([%Z$z =~~!OFTdJo_עG|cFe6ߣߪ0ASc>EW=>t+??y6OIŚWg_Tf`_/w7u|z@]k/jAϤ4!/Oo S=47FwC"G}9aS#9Ub!G;lr?j@wؤD̿qLĩaRN9Խ!n;C;Ih4RZMB♍РjhM@ѐh &EkT4Yd*Lf M\V9 Tf[-fEԘ15B9hL͕tgsԨA4Z-byQz>Z-2-f`ZN/6-9c+sLկЊ_l+v]jUFdd^JHeb/[Rŋ߯Tu`jb5jD &Rݕ}~6+cgZ4't%O |+sg"NI[*%-j{YYA9_&ݞCQ#C/P2S B/ 9h"4K m Zǧgd27D/Do̗ UfT͆r25h#k\+ m^hJ5Fը6C#h9TŚLiw4m2mPGUhhG_l+:m^ĶA[~E[~;QڡmpGzWu@y創H{5[^LAHgWAɫtA:{%~"9jwCx5HW%l԰JaFf']fw{7s !z7F{*A{FF{+^BWBGkDGckѾ=|zO=#zZ<_ u#|c^e6770ތި<ޤbM7AǢ\ޢ@V5*4:by5M8vtlt: fEPלwC\t]蝪԰ahn(]ğ %Gyc{EF y^ ##*1!oyg 2Wm萷<ƌCƄ屽RR1;Z~$,w?ߔvd@q^Y?hZzUO=No|ʹ1`WGuOo]~~vvsB25~'޺a;j[Ou^Zszk[n,Sh= K>Z{qa{TZO9øui ϸz=܃tZO;ø1AZq3h= Ƹo3iIP~^gkE1n^mlzi}~7lo=ntŮƶi*ԮGzJP N(( ُo :hnP6=UځUќi%/e^[%Go@?? YU"ZΝT vdoK(<9%x>᫲fI}bӜ*ΰJh9?R.4&eTʵMΏTs2SJ[ίHee8WE{?;DHJt'u2 cEe ܉?wFy+Ud{S/Xg/SU/Y o|/mw@VR dML@VmԒ2צ]oO]}1&JK''IٞX1{ONL8, 9?Jֈ p>F)'g8??$GJ:8VFԪyv{&ֹ3<ެDJ=}u ˶VH*l;mce:g[+7oƁV<~u< +?99j-n2dQ!);ղ͵2(wYw?d冝0Ga[ oZKǬ =F;Kv99OP0=VYڕ2ѝerS9}M9 O:grԛs&#F?|]FsgD&[gT~)ѯtT~5Z,*_Ux?wl@sy+6Osoʬ_wXd^Uc#o?}I8:w 'v4:)e/):_ye^^\~^Y鏠A&0wэrSy0i^cg.KoDhK K%Wu䕕d.3)?T-rx FaK`Rye}^^Qe΀n2q s(w_z*ey]d~5hS?~*o1DߣÒOF'jt}pbT!<~Ռ3h;ϏԊjkGO&#R7^ߑB|GkcYܯ#_}=;zfth;w*O6z@qfÃ[EfĎ4Y5z}A95&8F ީ:|?) (!:PaķF:l_~'o~-[O`o_Twÿ2Nǹ;ğ.w$}?SO;N@J은/0Pװf|pMZu ]8yɯSNCâ3 gtw!p.wsA2NsS`=<D8x0ZCD5 >|C/|qØWx8Z_]x$HQܩEe=0Vscd5.RSTx:< ]x&\R xfsL5 D]lx.>OM5z*2 ^H/"~:|)ZJ1|W_x1qKWJԷ_]j|רiF_R2XrWẏ.|'WKᵼ\+= 8%>^$~ $~ZxI~ᇉ~yÏa7Hy'` ?_c#W@+Uk^Z#^ßJWW*k;.FV7=&u3WLo'}RV6>@$~ |-{ & a^hGV'?3;+__}o_~94xn[b.b0|6;G4a"ܖqboNEt{v(' wF ;Gs'ܕ݈μ…hp/|Rw_Xt?y ` o£' <a ix;(vN'cIE_D_LFx2ZS2Tx1^⦳=RLX,³K}sԳ9xzNmWb^ _^T[V|zIf_plxľ\m1:#ĿDzY& HM+|3Z~m#nW}KE߉_.rkY?r&/o|7;wYg*ľ'ّJF좟"764Zϰ3}L>g/q[Wy"v#^b',e旺_E_5rog11 vOO~Nwc/;e_C] HCER/qw»࿰+j wu}G7j^8qbOa.:ħaNgD?KS!p2p94E ؅+2ē/u_8G:!\n]!|nē1OG&6nKp;n:? wbY}ot旺ρEw/ Gw|~s]x(|>'0|'<'('<9 #_ǒOx'X` KŒ%Ut8g W pE"Jp%PWW5AeU1 A Hi UQ'EU&*k`LrI|>o8]"G-~E\m~-TCR5-TǶh xz)Ou@}%և/@ `{D)``Q~zL{E)JWqxR|GىD=^ݠGb7oxS z>C =|}G!>"#bcێm;z;Sb?C-oi?ߣ~5^~P_/>=+Vwd~ӓuN&3QᲹdsg&& ;G19Ĕƥee剭y|]c]ں*3@T7F7U@.ulM5A7A7#9Z>lI 42@&( ʁ*j:.)8 4A -hT@{tA!z~?A`#(0D0L@fy`>X%J\[mv]z(y(><  I< E*x [!l_/n߀}`?8 ~GQpNuWll z@glʀ P(j3A> F1h֠w]υpޞpO=Q?t=@/=1 ڂv=7 t=@/=`샱6PƜ'1`qLtF==]0I6 lb砗E*}Xx,W\0WzXJl+DD!FtCߧׂb}?p+XB?obp^muu臉}Y?O9[<_֏S+^*?s b׭C}>???#ssD|ez?%ޯ4x ...x|vvcۍލ}c{> _9ԇ1SApTK߁c@8~ "`d2BPc^*JA 4P& PT آآ(Lb̓A h&hA6&A{tAlu@w@w& z`3@08t@w78}~Pz`p0Hl##;:(+{?D,{X*.@?HԙUܘ}5"igobffoM۟SVYcAN^v2dzb3exג%3s?Oy]A;:+)GRC[r_d61jd2 oyBڛnty$yZ8ݎ7q/KDفDE%cKN@>;diY J,mu;N,u{=+U(lL}*SSI>b<tGvʶ_JSh|KPqV+oW`ZJ}BgK4uWR]nNƪ/JiDd"UF;Z_-ȅzL2ֳ.2γ<=ѳLԓ CcC\Yy&鋴S#'+^I;C[ƅKc]xǹr,(3 攇-[Vp(ѫ,UZwN8E)ZU#^r} Cnna5GowtJNb)wuS5AAr`<%S nɧٙՂ2N)[僂J**Oi?%_Dw5]qwMY~,K,?=˟/"_wmHY1gn̉pI s2١_ tT?]Õ~;tpIXGεwsNk{6:(.`繉yfVmNfϻ#ՐD|MZ{mjC:%K]R/Y O4yS%ѦTՈ2fR:/T ~ {צ0 dYbYC<ː\rn0^&@w1gJ;48/p*uW6q`;/I0HYJKtX|Gzcc%ZۓU\YmšN0ӢⵚP-Z!ZTݢ{`NrgUeg,-r8һঘt:Nsi,~i,ڭsm=!Ivҝ]  Y,wb^{b/8ϳo]Bcֆa8'4 ?x pud+/u彾w_GC}e}{OnWByĒjkg(XMYJ*)m'cL]kDw;65=jZx+7<˫Xy7<[۞{MBzИ1ۘƉw?*/]19[xh~|/p-yͩQ٧ |:WÑ ;v[f;`=yޱ4̒ fC%:E+\xcsV)td f}{8!8p)=OϞg9bHs#8phOB ~89_C~#xw'[uGX|GzccV.v%s0ї׻^soJJ鼸WtQo*HMs#yRճT)R\#Q/.YjDjF,[P|_)x[%4ztȚ3#N}o+|\۲cwVį|C.ZՕ\EiJ*.j>팵KdH.j>tڳk[)--=[ =KR,=H^䏺Qe"'S՞u7"EgQdzķ,J,"=2'r^{Lwd'N */܈S#g+g鮜se-g,#ܱ3wOyI<;Y|:xYiWRYeX=Z{PʴE>)3Oמb)OSRr,S^RqmՑ2靔iY{Ss5N4sfZ=pc̓ikmS4y[ƔvIiӲHwrifFk@2\ϤlHtr>u<4CkI04s[ޖqvO="rY#zS]2&95HmX[-: ֤GsխWaC^i5kֲyAV- 5KU>+#N"+h!] 3)Odȡ{[ĺjf!ʓ_[F(0eȤo73` |+Y3\VlNA y"V E'8yE-p2Dvm2bTϣ<ۨɐO{[ĺjf3Ӕ!vxǨπUW"3*yV@K+qX+C,vQ( y{5v1Pld(+=M=etz9,pƌ8wQNJh[o>V=\) YFq kueǓZ-"b;VW-ӣWWh3h5'[MhGӛg=~y]GUN.P cx~bPzb/uU6w<$ami{ k>hfȯ|:ֺ=Лl'yu{ɐb|uvvR$lvR^ޠu}zi|uoCY}7)Cp}{wPg:;at]$`-ރ޵T'!J?3 ;@Aʓ`ww ӎ7>{N!U3~(ψwս e]ܣ Ͽ /}+Й L>t:b6}}}lB5NS'CՕΰ">5((OM0J&hǸv}LOMP?(Ϥwս= e]< ck /|+3kCoX.@Xm<ϱ6}} S5C켓!3agQ![c>My |(,qzS@f6K< N]WFe} ]|2:R,;þ > ԡޱ,U:]Ag'N{{xKh X+䮳 ?,wJ=况o?#Q[Ddl0  # A2׀y{9,S=^$;`!y{9,S=^$;-~ M:yx]wTU{s}ZtU $J<+IIB@ V۷Έ-g~`f<|rwŁ\nݛ\ߪTΩl*II ] ^7m.1xJ7&7-;ZtSItQ Z&RwlD?)G-x:?zڵJq>d']mtq@NݮƽM1W!?^Wi1E&^ִ^ 4CoR#Z^?{3+ݽ9 йaVjն+߂k[cޞTJ pȍb-_[-o=.hPJpWAVETh:H'MOTM0޿F\lm`N??G9C- #ƹQ>ܵ1ќI!:'K;isL~X| rr,\.:ɝt(xQR   2Я_L*1vrQ t?1里rz!k>4S*1yQ 4=#&MM ^CGSw-9j[M=^AW\V`jA[Yz^ gcUnʖoL h丹9^B4Ms<|`m;KN?*0'j 9g;E9GZ#ףyVy}9W3llQ^9 |fI8]*y1 ; 'Gq!Ixur`Um ÞkA^hΪ=4FJQe@%(TZ蘔ٗ[3.:9n}]Ӝ#SL*:@E՘Ot~R~n./8?* `ڏb`)ݿn ,yN[+_oM]%/YxseNE/$? ~ 89n"Z+R4?8J|  3MTc^.&pQԜI!{\㹟 -4Ɵ~~&1 u1Exs 9JijeypגsȪoÏI7о_,.dgk'xo ސ{*>e/p^cӬc [~Mcby( *9vr^tFk4,&9dKq,rh+dP^l͠1y,3;9~L)k4oi\:s_2q\s=~8Y\s/,'dqv8g³L+*1vr<9]4Vvr|NfƃI^6<FL,7}ŇaAX|X;<9GMiaNNvk ,1Gq.3u]\<_2o z 6aw2F嚮k[?=F7^bc o~HvxUNkm9~؆֠-Ze={vꗢ {JQ1%K)PJo◰\;)OOJiTY0+N.vNט9i |O^Q+w- stFztr J'u/Epsl V\-_# UQqs-+ʱ@1sSrҍj0vr7Cl>,&qr<՘f}pY#asT.n :9nm)[#3c9%-2 k''UMo(rF;Yma1 |?G7i8 BAϲW먘ՒEa7P T/&ȵ9/sVs|r<AMMg!?x6k6cqE㖂w;P96CgӓԿXbVKggہrd丹6bˈ.# A[GA{}Mטaw~y!˨GvN_w9l}*o^{Wﱌ2ge_y`ۧ{ Vʔ[=+YJ;J;lЎy̙ga\|}@MT"ƹgA)zVE-%:Xͽ@5W]u qkKmKFO#LfONNW[dnkVN:h{Ӷ皡=zNfOFms2>a!ەЧ<\Ւ}~{{o:9>agd[xÀ󸞑)M}}x{1vr|>3.eVϸd{=*EKg|FOt 6Y-y6Y%$ȵQKFmh ^zF&F\H瑫%/,K௤ۺqz>䐥B>h8wy q*R EE[qKanvwfvf6ݝY%*ʥ8Er(*:DGBP8w:rxyy?3\8sIvS Gם9ן6dh #Lgg 4Q8ԽUqNIic,{;yZA=t>[s9aOΙ9g;O돟9?>FYxMڀX?'wEsrp*BW%P9gηw4Q|Esmⴀrb̟wE\ͷp13i4N8;py>8,BNkP8zǽ:KZ80Yok,ŠkU>t?+Od`Ob1Y_փ S{~d cX( EB?օ\ԅ&>kz,j ֭df[y-ՙ S+DV.kb*(XwUZ}a1W$k8k gSkYXk,8+X/53YYk8KZ XVY[Yk#8۰(X?us=UθVyY`qJUXLU1u-Y X8 #XjZIb`Nb`eaLpXLe VRX= 0EP\ZjY#Yk08 qSd=ZO3'kYK%zXk!8KZ(X+>g-WdmgMj`'ga, UrEWVuZU5GͬUFX\VdZՍT NO_bdlpzaq-XEdZ܏U` #q X\ d=Zy 5WYk&8aq5S!Z·X\-Ud}Zk+Y߱pj` (k1,~k]p{ ,.'*ֺ X\]Z1~; `b<)q g!#k% +Qɂ#+Z^pBX V>Y}X+XVGZ#,YYp^J3pJz.8a%]?6pJ7YY[p`%[Y!pc%i?O]MD,' V_[^c rb6ԵvjuzYmoH yOle CompObj02~ObjInfo3CONTENTS      #&'()*+,-./0123456789;<=>?@ACDEFGHIJKLMNOPQRSTUW$$$xx  `  x``g(``dd'`$ArialTimes New Roman     C^   !    // h@h180oN?N   ss   KK hx y zbb h-x -y z12e *hTwofold Rotation about z axis {]D  hz>6>     -|-M     N.N     @O:,O   x\3V3\8   y2,5  zKKP !mA. CS ChemDraw DrawingChemDraw Interchange FormatChemDraw.Document.5.09q_1014659583/96!mA. ͑@m͑Ole CompObj57~ObjInfo8CONTENTS_1014659878;!mA. p5͑p5͑Ole !CompObj:<"~VjCD0100ChemDraw 5.0Outline Notes Graphics.5a.cdxcx|2  F5 $$$$xx  `  x``g(``dd'`$ArialTimes New Roman      cc hx y zzz hx -y zNN| hA Mirror Plane ;/|e     TT]     +^U^     k@R`  xx8r8x=  yYS\  z&[ [&`&  g  fD ! l"  !# !!$ " xztz% # zm$g$m) !mA. CS ChemDraw DrawingChemDraw Interchange FormatChemDraw.Document.5.09qVjCD0100ChemDraw 5.0Outline Notes Graphics.5b.cdx#A-K2  F5 $    !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrst`9^mU;Wa(e6n2l˧n{6Ht>9loRގeI9>B4JYsT{հ|]QV-]51Y-X8-|H:%=Xn/Xdd4p|&X*ƞst{ d=Z3 &hp&bz`M#k&k=,,_?/XV^QjXk9i!@7%8[RvkѻWv|pD`]]2ֺ˱XVn`kiE5Ք6XD7.dyY6p|XD&XdV8,3JXnp`}` &QzXD?,XO,kg %Z/ / [dZ YEBYcpb`}MֿYk8۱$Xs}E*2Zhex:Yaj"`#f֪ N#, V+Z-iEtKNV*ku' nCV/7٬K|}k<}?Eg ' h, $gLâz`&5֚|,g >d,Ǣz`&k=kK,W 6g¢z`$:ίXT ֵ.bǧ<}1-o jֺkBՄBVgj mXTYa򃓁E_dZpƢ:"Xz0kYYk$8ObQ=Rw֚΋XTOydZsYE\ZFǬO^*Xkgkk'Y{Yk8!XGRap( Ves9U jXTWr8+kZ;ktu=@ׄ81Y-X8-H:Օ: ++lJ'+iՇB NV{  55IX-XɚZi:Y|pcz` 3Z*@/dma l M!@:ufrg.*>X6WX/&[75ZX/붝lN|Rfʶ9:^K˧^=.=Y'dX6 af,8kY2E>8oc}Kˬ5X'XSza (c 2c55~X(XX+ N&aiVNO YmjZ)4&Eu-k56  V p.¦`'kUM6þ;n,lZBF ,l *VjpcaZ!kk-u,l L,paa3K&5&3 I5A5 &Xda"pzcaS$XdV8iXVW:V7p:`aMZX8ϫiMKZg=MM,l ֥V$TYPTc D~l&Q(8Z;Xk/8۱kx_do2c!II2X|,Xo5,d5^Y,d^qdbBf`=Hz,dd.N>2w V,08^,d‚Չ,\B`B܀̭UYjp.Bj,qHj:9똆wXӼY[X{pB{ Ut&4Y+l'EX|q‚f`-& Zx'M 5'N 95q5XLfVj̃5af8Yde8}tB NK7ՍNX.X-ɺZK7YWV}pja馾`U#B֪Ne,T,E$҉wIҍ}I IZ'~:TiƫLo݆?MӤC=a9^m=&^'f~c}ٷM˘ ׃%O']=P:j`v8{K{}oTXkl mg&#|t 57Xk 8 ]"Xzf3 ق5q5XNad=Zp*&/klLr V.8A,`sYVjXf;b~VdssZւUڬU0/X2U2Ku1,szX~~pvb~ds6͂ Y\༏JZH?-pa~`DXk8S1!XOy| 0}J&^ @o =dV?p zV&8o3 YXvpR0]uk5Fo 5d]Zum X 8l*UX+`5L=qv-kg泻kYkXk#81(XzV:YsXk81] Xz355ώȊ p1$Xc>b>GV:81Mdf|`5"zj N}g VMZl-Deg+ aZ?c;Gtݏ[;Z;ٝ)kgy:ۥdZy eg%kk%k f V6YA'FVGa^+`]Z%lcc[ V=qۀyl}F4n1.X,i6`$%X-XJIZ'~;UwI}% ˉnÏk4ˉn I}z-{άϑΙ8G#KgY9g3qv:ZGtlYy/kY9m/Xs;ӱ2"Dc/Q22c)le{m5/YF-DD#k&"[QB)q>s1*Z!÷l3Iz?GeMKUkoff;n<5޷FvF,߲&n@[$ڍ~b5-lNt#ZھeNcmf; 7zʷl3I:]bmf; 7:ffC63˝+Y߲r'F@gZ|63p#Y;eNbmf; 7zŚ[$=ٍ)ZAmf6pHV߲̆u7u_ηl3a_+[ٰFY߲?H-3e{ "n$2+޷l{a:߲r'Oya7ύ} Yy‘C>'LQZB[c[A+l--׷NO ;C{@"vd5jVCupA\/&T3X,Z 88c~`Mƚܧ@)L8' (l ?(΅|-X3VB6ʍiWCV\Kcm{uFz[.W!5Ѻ:+\uvpXG!CW];Y.Z ++`m2u7ܯt?\۰X@~VnભpKw`v\!Z nXU\E*߇qy\r V1ֶph͆SIE7VecyvEj<J@5զ< {zw(4WVs|X--NOWչ R3@;aDZ@Gjt0W5ՋT1?DWX׽XX#hՂa|^q`5X?x%0 L^qĬ9XHJ,^( Yih[/Ɯ¬ Zo9 +|̫[kn;~l[hc(W%g`v:D+9y~] xXqhq~5ҹb>5{2?a^q=ϟ;HLq9JgSt9U{&[OCEs醳.;k+ygcl{uOɁt!Xk(\AeVRIcͧ <* ( *f$QJT*Pq̿Z㩂Z-ua4U"LTXh%p]Hz0jEՍBՀBЅ"НC_z3;RKju-5v$ VszQgju!LPGtʘUVui ԧ4XH>c0׍i @à` *C8 iPILcus qg@`Dk!ץrb+XDZ/Z@k!`یuw?#w auLA"X񤱎[%9ug[<שS!XGcCy~<]x E8"XڂwD݁ȝkVc/:a6\kB 0?.ܸ\ç%Dw;,k>kqXQ$ξs8EF5E C0G V_|X=Plw bOl)c5ъ`2g!w; V YMhb'lV^iE8[aCa1VX/ w8V%YphJ}3`wUgt,ȝbiʇQg>l.\yp!_phEWav˯$17.Z.gorp >~U΄{*g/pp_3 ~YhcgOppa`+B:E,~sxTv/u٭pwo`m6_ vpg@k&ZWrV6ZEOK yYhyi6go9۹sH X?;u'Z;g^r )G|c hLΞvNR?s}ً#|\Nfo: mrs]檣}FT}CݫN;Q`}k`%gtv 'OMѺ|ُ-g|*XZ@388?uPL2C8 0SekgJދB*T~&Xo=\W`;~;s+r]U^ު2 N%cuP/VM{ګW ] U$Z. & B jZ֫\v }uTj.Ձ@5PO(oJ^\ B5*-ZCn4UoA 5 VA5Xjh纩Gy$(,XYƊS,>Y@V5r bcᵞd-;J/ mٟxez¯^em/~G{{[m/[~M %0nqIg : 3>%^g]O`#]me/hg^=ƫG[ GY,{A 9;{p!.TeTN|8Y5TLqI%q =ퟹWkysh=C8۟*@z VOIRuz{r3n 5:g[QR}#ƊPs csΆF)*>s!1V=m 9[>Dq7GEs=:cu>O}7^V,gh8>KQc͝88Mħi J{OToREk2>4 iO<L]am]݂p;~{k^1(?'xU$Xiݳ !bh6f5,(Zyh gcayi` 4C,4VR`*G)ը/VAk+VulGo`M.X!˽j9#*ݘ Vz/KĖՔ8Uj"X/ccղܞ^l J/aGzEb/cU~Ճr`oʠwbI|SSwF V!o|_z q6R~@YlP]8Gp&tm9X [#XN^=ںu͟xnp l밆WcEk3l3a+IsaA~^:#n? I޳i:J9p9ЭpXheVn>g'i>u w:1k봆˹Z 7?4X̚J/ރwQKk&w1k:lj&grP Ο Ύ>-(+Xc Dʨ7};a$?+uNs"JsJ_`pJ3+8OX9c秾vg"|. kXkG+[2ٟ/(,oZ#'yWҟ| eaRueqc%0'.Ìϵz+NO.'Jce}Ҫ'b:FFqLX^OV0نK3=wX냲WrQ_Ijcn)kyUo_6c'ż7𝇞X?e5KH]_ RQ|*N}o9^;kA~/iJZpovf{ok3KZ7p/{{K3.)!+I]3[xAYEQIe^!ʪ`xD]2Xw( l7jK-lOs ZvˠQa{jK)p;] _kۀ{Mj P\ 3*=bqo.sAoC½alu.W3z$/INcc^BwA |3T~؁Έ^;Őgv`fΕ΀`X?h ",y믽UB1x %{pY>.|L ڇT{Ӌ}*`#f쳭NJhl@OvzZoZ+Z.jelkkAk::xk& jPk(aV_ZՏ:X4Z4a5V]_1Zu՘­UתV9ttU%bz*VAtt'{ұnJ?+֟2:XZ}_e$\@GׯČ꿬uc:CX:G:HX[ڊZttm%eZNqW}YhMEG,zZ}hek,a`}`Q8z[.CXVKttEwZVZ5AXUתVittU&GU*V:9±~] `%~weΣ2a)a._>DG'Zk|Z k򵖢5]K k&Z :+V54tt&DkZIhŢ+w_Y:YjkV$ZIXUת>aUV)_"Z%U %UnqYy$\M`Z?u]?:kG0:kCtt#Zkm@k%:6"k&:4kM5] k^,JV_kZ5Y_;ZE] Zj.ꪒUתC:V _ZUBVA:  p+g x>Y.u]Kk򵎡u]U>Bk:>"ZkZKl;l_k!ZGG5 :Z|hEGTʰVV :2 kꃎxlVͯ.Z }hEsS kZ5ѪZ*.jWYBE+3Ǻk"'tt9wo⟷!P$Vi𭽟^3ξK 2pCſ݁r3+=)%!-SCSRݹߋ ~OY}tJ&C%7ra7yW^66||3=a3l>ߕ'c>\y|+O|?3y& @'52xEGxl /|Gd7mԣ2o yA?h Qox2.mc&6o E{{>͟||ͳ<?< ]LB>H lG6"G= ]|ntINk4p{Albs>H64^}&mirͽ MNW64^}&mi$Uo׈$6clG$6_j7xAZo}}G$S&? {!CsB&\KA`{߇w>f+ 0*\z.me ,f9Eo.s*qSX'cg]yr 3y*),q,͕bK&&@g6'-ۏO'MrzImOXgn6w<7Y9̺1b}˜ŚxlĘXWˢӿ]\yoga]yj 3yY2w&GP#yr?UB_t_1EazVeb\ǥ|eb-\g\\_7_++u 57;:&>ΛsvwaW]vns Q~VԃzVXo+r%6+2p90U1+3(V/f<.055,ڕ(弿>`w$";iSv9.W(Ř{X23qtfECXwXi#LV-8œ#QH/gI6y@qgDmKٙGQemICvh@@@P"4ao@EJT(D2 Q12 ㌈:/U]$ONsOߪ.V?_+bŏ/[15=;[9{+%q*"oO+tJ|߸JHgQQr2a_/w[UtS'pC.߻ܪ1hiW9w796Ut4'ZdY 5,+O߁Q}f OY̭}fN/;NmfYe_d[l+N3g^J?>]= - Z@ XM}?qS-J؊ׯj[ <`%k | ǃ yLXz=JZ,kvڮu#fķK Q˶Ѷu5s_VVy6]ZvSgQ b&g OqC!s~%g\K8mHcY%3!/Pw!qVPis3%@FWZ9.]"$^tAt BSE$.$hHhk5h؛y2%C|jFՄ|4T&"5%긦@2P9Z"m&$Őf! .1kCjJ̚ĬL@k]tzBj:AqӼEWRWtu# BkOVЖB3}4贆U+@Z%ָe[GZD!Y^MNHf5[ɒYlLcUGt!D]6Nj5F׉ tvk1ժ%B:t]pEh' :]T+E\A.]t]q@WZJMz0 $^HGv-)1{3Ĝ rF;L+!}D]_2WhhO\C/fy:_h_ :@xJ- E%^%nG5aoK!=rT $HB92Db!f.3%O9*\tЍ;yX\/K!E7 20:Bh:QK\Ӎu4t>t@/cO[em E7 \B20ƭRq~;2֫I.! \BAg -lCnE..e`[Idbo2Bx5X#tWAJ̥\LCyբXJt-G@{բ˸Bt9dV+ +W{rO +:>tVCGqdV[վvF]gܳT"d zf>(e rG2Mqd\CZa'!7Ftk]ktT6DtBnZtu[]m[!|pz[|4謇ΎK\!Эut/j=)Ȩ;OUMӱ Si:J =Rqļ Ibn"f 3 -ZߩrJmFjW4@ft[-B7B7z74tקۊЭBhj^ۊnm lsGQxLӱRx)/BvHLvAwT,&<yPt;B+ZxvMGT4AqBwh)>S-t EW2_jj=ɨj?{ O0#* y#x Gb!^f4t/Y^e4@^tO{ѕj ψitϒ }y3/6MG9y\_ Y :/AٓUgBt샼(нЗ|xɭSRW۸ }[~ :A1]wE6p/zZj!7k?s rTWt zl!Ȉy| =@uL ;ct]WZ>Fw |=(CG~ԛy2|}!Bh9 =Y;b/!D9ø~=aZHfԗaɶU:O|E\uDg GLqrDb!7co!GE c较5m:}Vt}G~~'k\~<*@?qlٶ'B!뿠?2[gZ06'qCS-e %Z89.1WfWZ\rBt b%gvߐE?z?â O\OBSпjEqNCNOtplCO2pʭsR-Q9Dl+bDlTMJ=R,g!' :v1l3xhѕjq"]xtx.AD.6CIАμA>]$>t"j5SE+S,$t\k@# D3z^(8k%)% (l`MHG2MQ *&db5Ekj.WF#꒐кBS6W,4H} Ѡ/64]tp=ȗFn^˨=Gt9FmW ȹI3MGHL'f39Aնp)2Н҆D7sfi# #,m툙L:@lYȆ]:B;pL -: õ37s6@.:z!Ў>t.v1zFWȅ"\A/e"Z/J3,mtjFOHw#Cb fOf 3Z ]OtY -^}voLF>]?\@ Ag L%n }V%`F]YMͅ(dQ,m AtB3J!d(tYWz6ArE7PtáC.O嗥an8:\`hבYԧeБBh Ş,m\&FhZZc5f6A򼚰12#,mL9L$эG7dDZ,mLLDtTdcp͜鐩>4\ӄNѠ3:ݫK3!n3|VeIf^A6 !>?ِ8(JBbf&s2^n6.n69Be3K nd`>th!yYXzX\ : ؓu"+FЅ ,td~ w}Jd{%d!cZ] Yb Q+]Wc!*RwF8g9dY2r_ /\#z.WCVq_k:N_ waɀrM5tU]r-zd_j~XO.8}z;t9ͿiW[ٶܬ/amilmwvUP(`W/=P1vk]vvG];9Pcw#v7TXvNWNEﰻ 5:Umu1vU;zKz-7VW3zMJ}3&v2-8@Ɣz-ݕٸu[ )W-(Anu[;clPBȦY h/+w06i &:V­vᆫ;{qI~YoHmT3N7of)itmpqdS&K#o3J8W(w,{=ԾWTnl/mhlsT֫rVl7?ll۱`{iv6/zK}weދ6GL3'pTT2I=.Mtb:Ikm+q欨ݪo>t_4"m~t[Eh%ZFWQ?hդ1ZEK&8fрm7SM;e;kQO>QE#)+'/MA;@yq€HVH_t9ң%FHҷa dI.M:ed9}06r 3>'D7)ѷ_LMF})z fVHLzǤjH0v%QT܄$ꤓ4 Ⱦ$$H5@ MYB@A"Hd؄Gg1d$!N련8{qdS|_ݺo{ꪊk4E1 w/K/%~Y/+}~Y32GN?q+Zǭ$~c]^g7f"H>N㼝cenc{߻cwho~9hx&aw/XsOU/z;XKF:nԺ=`I{q?2R ~UP*x~\Q?5j.9`~ڽHjP6Tc2Ibm$1^~&FF~5o7}HjH$+爝ZB̳$vÏ8 n%+ϒX~kpog8](m 1 ")sc:!"Si0 ? ދ~< \f~Q|=?|FR.((h8<e83yߢ>pfƀ33_4s5A| x<51?M Oc7 |gp2M)*,&/ o2 h*Mg~8Å 3?A4qgWi6Jsh.sD<4f~wg?!)/"!RZ"_?`. |(# YK6 E+p 3;i` GJ'I@f/" )5`{h-@53 "Ip;gnOh##"v8܍6E$?HΤp>F}KR!Ƣ>8ڏu1"'cD`OO&?ERb3?HQcyt~EXF/o+0tF1N7`dLkmQQO: >\wu8qHĕ)rqkێ}ݑ!' B>I9a1:#^E2=th=G˯tck "D 8$d1hZS%rz%x%FU#&'jjB5w5zWM?ב";8X 4#pD^tx H2.@WF}`,pUQ 5\kpjp-AP_0LKJQP ."gf@ % h dl E;杀pSB` P s p8 \**6?~:"G pAm@.,+Gr@p oonκIQ )O/_ ֔QcHit+GmJY}M1.et+͔f+cLz$pj]ʓs[rҬxJxۤj#u-e/v$|ƖnC-;?6 XEDF BnwjO*E@՟h[g"16ͻgNߴzjD϶qf%Tf @ƽ,e#>z]WN2/uߴ,s-i9 ziŁ8hrOs'wX&ߊ:j X&GM@:ػNS6Ӧ^7 NjN,éYBQlܙmms&m n"ֺ!/hTe^l6U+7{ Gt\?,aɒI枠K vͤUbZĎWM¬73,ڼ cŨZ<$W0pі+|J qҨ.a5AХP$cJ6$ sİJL~Yx!H&KTEW_ÌDk%Lu _ï o+j* k[c@T4U_m Xѕ Սt`d]u*Ig$ ԪIG4)RTUTꪱV9GW(]x&VKX+=9LA Ja9Dǚ\5k& -e0-4Xr O 1c]: [gʀ? QVIiM1TM[%VZTWIQ]~LIeQ'b5UdL4 8,=],.T VI@_t1wUM&Z%V"TZ4$h96泱r}.W7ίI9 Ǔt&THUbesIYfdfdfeTg3Ur &rvUJE\CjLU UJfUX@&%V$쯡AnҺauXy `iXJkp0YP]ڬ9* 8?M6cMibc6] *gf|'3X!WE GQ!F!e UاIcXd}X&+I9I9ae0Uaz>.y:&;sҗ* *җ*zI39lҗ\nkOI}+ $UxN!@ &UrEHêI$0Z( Rmf0EY:NNשR &w`{]/_RJܥꭦR/Rlj ep3h6*" žCWdO.`Z x&Ub%.U)|'._K/*q¬ͭ͠'tM)]M+\ąs&U|Cj+ʀ? _j[%e3Kfr* }QQ]Z.Uߤ[OU}RT\UE_!e w xWk$ 2@&gP-4}4V!ž^_S."ɏh9B{"*6BD -b#EPZV4Qf:˒cN.rSźEIpʞdƊDMlUp.6Q4?-㧂Pn͛!9tME3k/'0th.{X4=:DX6J#]UĶmO[% I 49̼JGDT!]t$tK{.*tL:Y%c?٤衙Y%KΓ/Yx.cGy~uD͙^{^"[3o֎l1H(. R@*䫂e 9J{sĈǜK;Bjp&T!O3ɵJuUћ'ť1zʒKs.Uqhz$hΏ^;^LLX%ִK;M ťBK<ʴ+4%f0]l1WZ>e,ɞ;T;S,>dXӮLd(?JE[[m85Nw] ']րXSvѡAGʟÉ+o'ەU?e/ ڭeEbO58uglݷx(.\wJٳ{ZiGuȥ4PKuPio}Z*.~1c‰Y3 a-<TZW/MĬ)C - woiGq(4byE/.bM]RAli+1rK=_4yS-w9H30,˓0dsdQlQRB#l:&e-bڍE{%J8nxGGI[d};Ů)H)_3pGZg)Fԍ:ח"FٰXi)w@}Z*_w`S3h鼑3(GKGpiN9GYYsqekDvqٕ7^u'"*Q14.OlquM8 oH#bw&Qݝ!8ZݢeNY qs9?tV =X_>/==sF];[eQ*,|(?{){2!jlǦXVSeܙVUqV(hXYJA)ReGERVhTv(("!BU"&H$Dc<3ps?8=^}ӊ37A/>'5IMof4,aAKfj:,GB2xV]oAJ PgҠfgifeL}PFkTuXc ru&d:pdSPjAndA5W4Gu\c@FX:tY8l uu;@eB725ԁcZҏA+kgqv XN ;A%t#SM,C ҡ@6vst jnZ%L@ L#}:$Yk{^PIܯ.8XGֆāc:=AOSB72$:FI1٠,$C$)tt=ݖY%ú>dՄd7PvQbtv-IU=gdqN8話,Kb'&${N8MN8af:pLOP)?6 Jg>@2Gb} u ywHe!L.,|IjwĞA3dĆN0ҁ?66J'u} ȳ&7$rތ y#}'Yk{Iy+%0 nI8&_@vܐ|$IC# $qa,C~ll()dF@Rh SNH{fԬ|$5i.g A9jlB$bnԁcL$xP8ЍUu0&`:uI.&ccb'y(P{ Ju;Cr"(S3fGLLR3{9P^eltv;j3u}=s1$g\ |e>3l[ $MNAY х\NðgC͵v(I2jJjPΨR@ԁckAndT%k^V)md:A_Lث-*g^uE|>$@u=S5G}OYy܄3+A9h6:*Anu:noY@7 P|L%<#}*š~7 >K4쫬.$kl()$4.vœcud* ɷ@G:goaϼQ{2~##o6qk[SLH ʣy|s̓C[iX揄}˫X>bhkJ;I#mg~qkE,GVFnrmѼ*IȻb lީ~!>wDj!}H湟M?폼=ݽeR=Տ< bDd,,0  # A2IkaQڕn%ݩA`!kaQڕnF;:@g:x{{gzvowY;) z:>A/9, w ! j`*1eQ%%&ZQR_!*AQLLOTooz>3Z GqB1F6bĐ L7 Kբs^#ӃZ!/Fa>l?X(k6̷1 G y`Ex?x;|fM1/3R6 K&VqqCLѷ4ׅNJt6|B /O5OenN@Mq2qNs8zSL|~3iݸ UŠA<*NvYvi mO馶SV.wCv#PQdԍ]p 4zhObX TI:H2R< &zR u=iQ5kq4)Гuzyy*G =)YG#RCj ѤBOJ9R7*Rk֬T &zR u-URׯT &zR u 5l@M *dA̔Qڶmq4)ГuaYFET &zR uO+4^xOhRP'%RWiR7*R{T &zR 5LQz<IA#H ")jH]tS8TI:EQ!ldרgF \nuhz2ZW E9|mQaYϿM*V|FE~V@ |[^kF֨Er FE~L A0*_w"۽|Q'_i7d5F3Vj"g}B")M^@~ Q?Gb4}F>* c|M20*FE~kSJN~b2}}&g]Q^+Wϟed5e>\M5 Fhm5M\<$/hҦ3#י/mٶ@d`w>; ==F<̓y1kZc0PFbd0kW{a {Xec ,NdXbStt1RAjY|"À3e\w046 Ud }.[V.1YFWC4RAE,bgrzK¶{ go{qY3!>c{3ݣټvF/-𵥑G uYl0,8ű,>U*ޏ,Nl[ɶgܽnh8հ9ۭfsn;2.ɿm_xl{/; RPmG3zmnSmK;7wXs5>م%Sӳmeֹ3LkGJfiLCŨ]Τ음ָ fw=PN*oR_cWdn~HqIbOKC^\bcg]T@S?wE1B# N{b cS]7MӷMo&WC߁Rv^3 neqkJwʥRƊ%-;O?.$bMv1YnuUz_:U'ʗW]^'،GʼD?UU<;D+$ƪӥ^Fv{Gz~2,˻?E;s|GΏom爒rj2E?3縒D3̆y_'6Hu]^tj^.P]W5I|w#i^AɉFT5{.v?3T~{Nz2@i'=G %[,MOs)Xiڕ|6cqLH?!4BL^F>*c`$Kj"F٬FGL 7i(=cO=+5=*N? AlNzwzzՓMSS6@Ĉ@`M;I5l&LੀM+@Ĉ@`I1M橀M "IaIj2e"5{lOhRO HRױP6*R Ѥ "֑&ykC +Vx*`GxRXGlT֬Y㩀M "IaIZ`=Cjڵ Ѥ "֑Ƴz(Ԇ <IAD<)#IcP6*R7nT&񤰎$5Qڼyv4)'u$ٻR[nT&񤰎$lToM "IaIj ۍQz7<IAD<)#I5hp ݻw{*`GxRXGQڷov4)'u$+؛(Cy*`GxRXGv~RT&񤰎$5Q:zv4)'u$e"uqOhRO HR#؟!uIOhRO HR9GԩS<IAD<)#I]Q=IAD<)#I gQ!uOhRO HRuU=IAD<)#I alTz{{=IAD<)#Iղ6Ɛt钧v4)'u$jMM1<IAD<)#IUQ6*RPpzh pmtg M'(+xjn{39u>4O]VaRkxRyӌ$}gWb6LO+cAk_ )U'IaIj4E٨H8pGM_u()U'IaIj;g[ǐRqI:֑F3()U'IAse"ㄓu5)#I`54A )U'IaI*zP6*R:N8)\Q׃d+N qԤ$5۠1TupR&u$:ve"ㄓu5)=HqQRqI:֑j CgbH8pGM HRK#ƐRqI:$8_lTu?\)`s#Xne(WX+ܨrHo$a>m|^/Gl8cqIfTѧL*%ψ~Z'z)lUQ GJ:y$9n8u>=YY"Դ*:ύݜ#lňEN+:\f坙K/[|݄ u>.tp x%ӝ#)vˤ 7 7Fs;kSrFs,0w9ObjInfo=$CONTENTS%1TableSummaryInformation(@:$$$xx  `  x``g(``dd'`$ArialTimes New Roman   SS   b*j* hx y zBCf h-x -y -zI hAn Inversion Center 0%[               &  x*%+   y    z   *     XdOh+'0 , H T ` lxOutine Notes for Chemistry 832iutiAllen D. Hunterlle Normal.dotnDr. Allen D. Hunter2. Microsoft Word 8.0@F#g<>;fRL؋;kf+'nh aUXd.+r DŽHID|hG"9a;}P Wv*bcyTr*O]tZDm;%n%ͧ(6w/?MIiꆉ{en+uiʻETR^> aؽ*'vXza֌up͖>Χo )%t\ϘĶIR W׉IA$$ByִY3%Uoh[{k`۝qfȢ*"mS wNS>_3&]٩5Oe֌ w}i񇨇 -[23UvoflVO3VJsVEY=!V\mYZs!;*1Y\%U$wf&Ur}a WdM!{x)sI9 Nz {Vve*hTZ܋Y E Y"{oq(êOnÍU~Dk m֦[H)fN|M-\ՒσB^ߢ y$J~FLx'cn[F M4]LdrVbDd0   # A2I-D8c%sA`!-D8c67Dlh(33 x czgo;",h(?  AъQQArB?K‰DTHBi2h A73fgzT_߯73;< Nb!|h>+Z V8ST 7Bw/.XFtǍxZъH6T'ds8*6Z8lh'"gs8HIՄlui6c'Eu4w+b)['IQM8@qI:TgsOqI:Ѥ|I)['IQM FVlj'E8vRzM_J eēu;)IWj_@Vlj'E8vRTG:]"H8hN*\FVlj'E8vRTG)vo luxRc'Eu4bFVlj'E8vRzMwdc#eēu;)Iu}|Y)['IQM*'EqI:TgE|JqI:ѤN|y)['IQM$dc#eēu;p=ϦJqI:Ѥ:"Oq줨&U+llluxRc'tI66R:N<)ZDZ:T{w-_@Vlj'E8vRTGllluxRc'TM$)['IQMBM}_M eēu;)IeFuJ eēu;p=&-6llu0Z):+֫C5E f&HźB])Ɩ3gw=霢8y5;(sVB*(ΚXogϊso6#f5cǿf#?oÊ%cFm}k~ğƿ8V7]Rq~7bG3^/O!z1Tc 1To(_;ɂU<'Y1y?70W"/3to"oUNfW8? :>Dul-lwŬ|-m1;/2-1#+k`bsOt+ Z+z7oQơZ cw*5 u9zww% cF/){طNݠ=o_G2}]?iʠ 3r?pTh:3ُea/fO݇okei3Bb LR7Oua)w^2 IaW p.^2M<mgN'-;TOy&`9aڡ 3YWs]e*v(6Lpf+ry u[02C yL/g'*^yr͹Xh3S]PHB0[7͹\>$RgV Jb v ZQ?qR7O4I  "q*X`IIh}̣ ?DwJRc_޸t0.Ur'ބaʂqnq'sv;xL0u+~쁕6MEЋB:Ox"@,"LE 73,ATA)D2@[l:T"وH/"{}Rer K'b!p_2jhx y> @:)g=86~ST|I玣ң:nu![kfY3oCڍJRp?aD5WTuU@25_UaF>Pn6=KTA=H;w̿]񿉄Ckyҏ,(lpW_cƈ7?hbnA\yAɎ_xg解-*X6˔PkNJȰcgrZZZ$1d^'(u<+ _x%^Z{c Fz_ޗ[+` Are(P*QV>]W/;.u 1yO?̀j( }YcYg@fi_r!Ye~6›bGOwaM@#PPGը7؎sG] 2*pɨFw1http://www.as.ysu.edu/~adhunter/Teaching/Chem832/ADHChXIV.pdfip@http://www.as.ysu.edu/~adhunter/Teaching/Chem832/ADHChXIVbw.doc >http://www.as.ysu.edu/~adhunter/Teaching/Chem832/ADHChXIV.pdf>http://www.as.ysu.edu/~adhunter/Teaching/Chem832/ADHChXIV.doc  FMicrosoft Word Document MSWordDocWord.Document.89qX [D@DNormal$d H$ B*CJmH 66 Heading 1$@& 5>*KH:q: Heading 2$$ & F@&>*22 Heading 3$@&5>*:: Heading 4$ & F @&6>*\\ Heading 5*$ & Fdh@& pH$@@AB 5;>*CJFF Heading 6$ & F @& H(#@AB688 Heading 7$ & F @&5HH Heading 8 & F <@&6CJOJQJJ J Heading 9 & F <@&56CJOJQJ<A@<Default Paragraph Font,@,Header  HH$0 @0Footer  HH$CJ &)@& Page NumberH"H References!$0d H$N2NBulk Paragraph $d H$N@NTOC 2($ d<< H$$ >*B* mHT@TTOC 3)$@d<< H$ 5>*B* mH44TOC 4$ H$CJ44TOC 5$ H$CJN@NTOC 1$$d<< H$$ 5>*B* mH44TOC 7$ H$CJ>Q>Style1  @& 6>*CJOJQJkH44TOC 6$ H$CJ::Normal CompactdCJJJON TOC 1#dxx H$$ B* 66Style2   >*B*CJ ZOZON Point Form 1" & F8@& h8@@B*CJ HH ON Heading 1 $ & F pB*CJ BOBON Point Form 2!@& BO"BON Point Form 3"@& p>O!2>ON Point Form 4#p B1BBON Point Form 5$ p NORN Title ON1%@& B*KHOJQJDbD Title ON2&$  5>*B*CJ HOrH Title ON3'$@&  5>*B* CJ @>@@Title($<@&5CJ KHOJQJ@O@ ON Body Text )$ B*CJ ,, ON Heading 2*POPON Equation-Graphics+$ CJ NON 832 Heading 1, & F@& p 5>*B* CJ (q(N Title3-CJ(a(N Title2.CJ(Q(N Title1/CJ>>N Equation-Graphics0CJ.. N Body Text1CJ4A"4N Point Form 52CJ4124N Point Form 43CJ4!B4N Point Form 34CJ4R4N Point Form 25CJ4b4N Point Form 16CJ.r. N Heading 17CJNON 832 Heading 28 & F@& p 5>*B* CJ NON 832 Heading 39 & F@& p 5>*B* CJ 2@2 Footnote Text:CJ>O>832 ON Point Form 1;@& >O>832 ON Point Form 2<@& :O!:832 ON Point Form 3=>O1>832 ON Point Form 4>@& FOF832 ON Point Form 5?  XOX832 ON 1 Ask Students@ & F@& @ B* PP832 ON 2 Ask StudentsAp p VO"V832 ON 1 Graphics from Text B B*R!2R832 ON 2 Graphics from Text Cp8&@A8Footnote ReferenceH*44TOC 8E$ H$CJ>b>832 Table of ContentsF44TOC 9G$ H$CJJ @JIndex 1!H$d H$ CJmH< <Index 2I$ H$CJ< <Index 3J$ H$CJ< <Index 4K$ H$CJ<<Index 5L$ H$CJ<<Index 6M$ H$CJ<<Index 7N$ H$CJ<<Index 8O$ H$CJ<<Index 9P$p H$CJ\!@\ Index Heading!Q$$dxx  56CJmHT@"T Comment Text"Rd pH$@@@ABB*CJRP@2R Body Text 2!S$d pH$@@@ABB*CJ(U@A( Hyperlink>*B*RORR 832 Heading 4U & F@& H8 5>* B*8V@a8FollowedHyperlink>*B* 8Yr8 Document MapW-D OJQJ?Xz}$Hl Dhi?X  $Hl Dhil  F^E> /T?X  ( P x     J TT@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@BBBBBBBBBBBBBBBBBBEw hH"%{(*^-#02"58p:x='@GCEXHKKMPRUWZC]9` cefkpttxR|bǂދJ d ΟO>/X1wHBa A &,03F<(B FM]RW\6`fGmDprqvy |n~Tpv%NȜL8VAQwp.Yk  $ ',4*<EN2UX^ fGn~uxWH#h  !#%&)*-0379;>@BEGILNQTUXZ\^`bceghjkmorsuwy{|}  { `(0@8@^HO]W9_dlt^{݀jhD]Ѣmɹcn Z(~*"'O08CLR\enul~ֈCy _V'_~ 0Bj,) "&))+8-/J37: >lB$DEILO^RzUWZX\_Kb/egjm>qu x{o>L8k "'+/258<ADHKOSW[_flpvz  &/8BK;Tz]adiquy{|%I`2I F$j7R) '/@6@GNS \bkqw}Mw+&:/\ 6O  `eCZ *3}@HS?\f*q`~1   $(,.146:=?CFJMPRVY]adinqtx~7Fw 2NQn0LP48YuyB^b#?Ce"$8TVz $ ' L h k  5 8 k  " % > Z ] q  , / M i l  - 0 m -0Zvy*FIh0LOf (DGj/KNn$'A]`?[^Njm{1MPp (+Yux9<`| <?Sor?[^7SV36b~+GJjA]`03Mil < @ m !-!1!_!{!!!!!!""4"P"T"h"""""""##:#V#Z#q####### $$($D$H$`$|$$$$$$$$(%D%H%~%%%%%%#&?&C&c&&&&&&&''&'B'F'z'''''''(((9(=(f(((((( )')+)J)f)j))))))**6*:******+@+\+`++++++,/,K,O,o,,,,,,,--?-[-_------- .).-.Z.v.z.....///8/">&>d>>>>>>>? ?6?R?V???????@/@3@Q@m@q@@@@@AA!A=AAAkAAAAAAAAB BGBGgGGGGGGGGGH5H9HfHHHHHHHHHI4I8IYIuIyIIIIIII J&J*JPJlJpJJJJJJJK-K1KVKrKvKKKKKKKL6L:LbL~LLLLLLM MM:M>MTMpMtMMMMMMNN7N;N]NyN}NNNNNOO+OGOKOmOOOOOO$P@PDPiPPPPPPQ+Q/QiQQQQQQQQRR1R5R\RxR|RRRRR S S'SCSGS`S|SSSSSSTT=TYT]TTTTTTT>>>>U|||ss::^^wwHH__``mm~~ mm#jk.@v \]!lleg  8 8 ++00bb77o!$&&-'-'***,*,- / / / /1368 :&<=)ARBCJMRUUN_gkoNpqv{|~~:.IeeeӲ9#TLE999ܹ<ѺM޻#f7fX(޿2 )XR78yACpCv?|@@@Mp4 3`%RU|]~.VVVBa'`T&&&4JC,```. Dtm!BTG7oXXX&ZZZUUUVW?@BACDEFGHIJKLNMOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~@      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~CCCc^c^c^c^````aa2b2bgb9ccdffhhjllloIpssstuAv+w+wizizz|~S~ZZZZ%؇//UN"Mƕ..[[zzBBE MMMM //Vee}}111bb&&!gyyP###hh,,F  N N J55CCzzRR!$''P'P'**I,I,- ////18368,:?<'=6AcBC:JMRUUe_gloZpqv{|~ o* lؐ/ȫ^Wӳ 6jݴ#aѵj ___Iߺd»?IQS;l,iX6S`%TW&X%ZZZY ^Dv 6t4c1h <kkkLl>2z>>>~``999>e#r3y,vw)))M/:hhhUUUVW=WW@X?@ACDEFGHIJWYZ[\^_qrstRRR*R+R;R<EFRST?X@"H@@@@@@(@<@&P@,.`@:x@>@J@TVXZ@^`bdfhj@z~@D@|@@@6p@^@p@|@@GTimes New Roman5Symbol3& ArialoTimes New Roman Special G1Webdings5& Tahoma;Wingdings"hV E&V E&ЅC:V"0d[ Outine Notes for Chemistry 832Allen D. HunterDr. Allen D. Hunter