Abstract Algebra Solution of Assignment-1

P. Kalika & Kri. Munesh [M.Sc. Tech Mathematics]

1. Illustrate Cayley's Theorem by calculating the left regular representation for the group $V_4 = \{e, a, b, c\}$ where $a^2 = b^2 = c^2 = e, ab = ba = c, ac = ca = b, bc = cb = a$.

Solution :

Hence $\sigma_a = (ea)(bc)$.

Let $V_4 = \{e, a, b, c\}$. Now computing the permutation σ_g induced by the action of left-multiplication by the group element a. a.e = ae = a and so $\sigma_g(e) = a$ a.a = aa = a^2 = e and so $\sigma_g(a)$ = e a.b = ab = c and so $\sigma_g(b)$ = c a.c = ac = b and so $\sigma_g(c)$ = b

Now computing σ_g induced by the action of left-multiplication by the group element b.

b.e = be = b and so $\sigma_g(e) = b$ b.a = ba = c and so $\sigma_g(a) = c$ b.b = bb = b^2 = e and so $\sigma_g(b) = e$ b.c = bc = a and so $\sigma_g(c) = a$ Hence $\sigma_b = (eb)(ac)$.

Similarly Computing σ_g induced by the action of left-multiplication by the group element c.

c.e = ce = c and so $\sigma_g(e) = c$ c.a = ca = b and so $\sigma_g(a) = b$ c.b = cb = a and so $\sigma_g(b) = a$ c.c = cc = c^2 = e and so $\sigma_g(c)$ = e Hence $\sigma_c = (ec)(ab)$.

Which explicitly gives the permutation representation $V_4 \rightarrow V_4$ associated to this action.

2. Show that A_5 has 24 elements of order 5, 20 elements of order 3, and 15 elements of order 2.

Solution :

Since we can decompose any permutation into a product of disjoint cycle. In S_5 , since disjoint cycle commutes. Let $V_5 = \{e, a, b, c, d\}$ Here an element of S_5 must have one the following forms:

- (i) (abcde) even
- (ii) (abc)(de) odd (even P * odd P)
- (iii) (abc) even
- (iv) (ab)(cd) even (odd P * odd P)
- (v) (ab) odd
- (vi) (e) -even

So element of A_5 is of the form (i), (iii), (iv) and (vi). As we know that, when a permutation is written as disjoint cycles, it's order is the lcm (least common multiple) of the lengths of the cycles.

- (i) (*abcde*) has order 5
- (iii) (abc) has order 3
- (iv) (ab)(cd) has order 2
- (vi) (e) has order 1

Now since elements of order 5 in A_5 are of the form (i). There are 5! distinct expression for cycle of the form (*abcde*) where all a, b, c, d, e are distinct. since expression representation of the element of type

(abcde) = (bcdea) = (cdeab) = (deabc) = (eabcd) are equivalent. So total elements of order 5 are $\frac{5 \times 4 \times 3 \times 2 \times 1}{5} = 24$. Now for elements of order 3. Since elements of order 3 in A_5 is of the form (abc).

Now for elements of order 3. Since elements of order 3 in A_5 is of the form (abc). Here there are 5 choices for a, 4 choices for b and 3 choices for c. so there are $5 \times 4 \times 3 = 60$ possible ways to write such a cycle. Since expression representation of the element of type (abc) = (bca) = (cab) are equivalent. So total no. of elements of order 3 in A_5 are $\frac{60}{3} = 20$.

Here since even permutation of order 2 are of the form (ab)(cd). so there are $5 \times 4 \times 3 \times 2$ ways to write such permutation. Since disjoint cycles commute there, so there are 8 different ways that differently represent the same permutations :-

$$(ab)(cd) = (ab)(dc) = (ba)(dc) = (ba)(cd) = (cd)(ab) = (dc)(ab) = (dc)(ba) = (cd)(ba).$$

So there are $\frac{5 \times 4 \times 3 \times 2}{8} = 15$ elements of order 2. {No. of ways of selecting r different things out of n is nPr } 3. Show that if $n \ge m$ then the number of *m*-cycles in S_n is given by $\frac{n(n-1)(n-2)...(n-m+1)}{m}.$

Proof :

For any given S_n , there are n elements in $S_n = \{1, 2, 3, ..., m..., n\}$. so we must have n-choices for 1st element, then n-1 choices for 2nd element, n-2 choices for 3rd element and so on... and we have n-m+1 choices for m^{th} element etc. So there are total no. of n(n-1)(n-2)...(n-m+1) for a m-cycles. Now we want to count m-cycles in S_n , since for 2-cycles (ab) = (ba){two equivalent notation, i.e same permutation}

For 3-cycles (a, b, c) = (b, c, a) = (c, a, b) {i.e 3-equivalent notation} For 4-cycles (a, b, c, d) = (b, c, d, a) = (c, d, a, b) = (d, a, b, c) {four equivalent notation}

- - - - - - - - - - - - -

Similarly for m-cycles there are m-equivalent notation for any permutations. Now, Since we have, n(n-1)(n-2)...(n-m+1) choices to form a m-cycle in which there are m-equivalent notations for any permutation of length m. So the no. of m-cycles in S_n is

$$\frac{n(n-1)(n-2)...(n-m+1)}{m}$$

4. Let σ be the *m*-cycle (12...m). Show that σ^i is also an *m*-cycle if and only if *i* is relatively prime to *m*.

Proof :

First we note that if τ is k cycle then $|\tau| = k$ since $\sigma^i(x) \equiv x+i \mod m$ for any x, $1 \le x \le m$

Claim : $\sigma^i = (\sigma^i(1)\sigma^i(2)...\sigma^i(m))$

we prove it by contradiction

Let i=1. Then the statement is obviously true. Suppose that

$$\sigma^{i-1} = (\sigma^{i-1}(1)\sigma^{i-1}(2)...\sigma^{i-1}(m))$$

then $\sigma^i = \sigma(\sigma^{i-1}) = \sigma\{\sigma^{i-1}(1)...\sigma^{i-1}(m)\}$ Since, here σ sends $\sigma^{i-1}(i)$ to $\sigma^i(1)$, thus $\sigma^i = (\sigma^{i-1}(1)...\sigma^i(m))$ $\implies \sigma^i = (\sigma^{i-1}(1)...\sigma^i(m))$ Since $\sigma^i(m) \equiv m+i \mod m \equiv i \mod m$ and $\sigma^{i-1}(1) \equiv 1+i-1 \mod m \equiv i \mod m$ i.e $\sigma^i(m) = \sigma^{i-1}(1)$ $\implies \sigma^i$ is an m-cycle.

Converse part

Suppose σ^i is an m-cycle and suppose that (i, m) = d > 1. (we prove it by contradiction) then there exists $k, n \in \mathbb{N}$ such that i=kd and m=nd, since, $(\sigma^i)^n = (\sigma^{kd})^n = \sigma^{kdn} = \sigma^{mk} = (\sigma^m)^k = I$ where I is the identity permutation. Hence $|\sigma^i| \leq n < m$. which is contradiction, since σ^i is an m-cycle and thus $|\sigma^i| = m$. Thus i is relatively prime to m.

- 5. Que. No.05 Let $n \ge 3$. Prove the following in S_n .
 - (a) Every permutation of S_n can be written as a product of at most n-1 transpositions.
 - (b) Every permutation of S_n that is not a cycle can be written as a product of at most n-2 transpositions.

Proof (a) :

We know that if $k \ge 2$, the cycle $(a_1, a_2, ..., a_k)$ can be written as $(a_1, a_k)(a_1, a_{k-1})...(a_1, a_2)$ which is k-1 transpositions.

Case-I, If k=1, then this cycle is the trivial cycle or the identity, which can be written as 1-1=0 transpositions

Case-II, if k > 1,

we know that every permutation $\sigma \in S_n$ can be written as a product of disjoint cycles, thus we can write

 $\sigma = (a_{11}, a_{12}, \dots, a_{1k_1})(a_{21}, a_{22}, \dots, a_{2k_2})\dots(a_{m1}, a_{m2}, \dots, a_{mk_m})$

where $k_1 + k_2 + ... + k_m = n$ and each of these cycle is disjoint.

we know that cycle i can be written as a product of $k_i - 1$ transpositions, and $\sum_{i=1}^{m} (k_i - 1) = \sum_{i=1}^{m} k_i - \sum_{i=1}^{m} 1 = n - m$, this is maximized when m is minimized and the least value of m is 1.

Thus, the largest value of n-m can be n-1.

Proof (b) :

From part (a), $\sigma = (a_{11}, a_{12}, ..., a_{1k_1})(a_{21}, a_{22}, ..., a_{2k_2})...(a_{m1}, a_{m2}, ..., a_{mk_m})$ where $\sum_{i=1}^{m} k_i = n$ and each of cycles is disjoint and also from (a), we still know that cycles i can be written as a product of $k_i - 1$ transpositions and

 $\sum_{i=1}^{m} (k_i - 1) = \sum_{i=1}^{m} k_i - \sum_{i=1}^{m} 1 = n - m$, However, since σ is not a cycle. $m \ge 2$, thus n-m is maximized when m is minimized i.e m=2 i.e n-2 is the maximum value of n-m.

Hence every permutation of S_n that is not a cycle can be written as a product of at most n-2 transpositions.

- 6. Que. No.06 Let σ be a permutation of a set A. We say that σ moves $a \in A$ if $\sigma(a) \neq a$. Let S_A denote the permutations on A.
 - (a) If A is a finite set then how many elements are moved by a *n*-cycle $\sigma \in S_A$?
 - (b) Let A be an infinite set and let H be the subset of S_A consisting of all $\sigma \in S_A$ such that σ only moves finitely many elements of A. Show that $H \leq S_A$.
 - (c) Let A be an infinite set and let K be the subset of S_A consisting of all $\sigma \in S_A$ such that σ moves at most 50 elements of A. Is $K \leq S_A$? Why?

Proof (a):

If A is finite, then σ moves only n elements because σ is n-cycle and the elements which is not in cycle are fixed.

Proof (b):

We may prove it by One-Step Subgroup Test.

As A is infinite set and $\sigma \in S_A$ moves only finitely many elements of A. Since H consists all $\sigma \in S_A$

 \Rightarrow H is non-empty.

Now let,
$$\sigma \in H \implies \sigma^{-1} \in H$$
.

So,
$$\sigma o \sigma^{-1} = I = \in H$$

Now checking for closure property,

Let σ_1 and $\sigma_2 \in H$ be any two permutations such that σ_1 and σ_2 both moves only finitely many elements of A.

Then $\sigma_1 \circ \sigma_2$ also moves only finitely many elements of A.

- \Rightarrow Closure property holds.
- \Rightarrow H is subgroup of A_5 .

Proof (c):

No, K will not be subgroup of S_A

Because, suppose that σ_1 moves at most 50 elements and σ_2 moves at most 50 elements, then $\sigma_1 o \sigma_2$ (Product of two permutations) might moves more than 50 elements.

- \Rightarrow Closure property with respect to function composition is not satisfied in K.
- \Rightarrow K is not a subgroup of S_A .
- 7. Que. No.07 Show that if σ is a cycle of odd length then σ^2 is a cycle.

Proof : Suppose $\sigma : A \to A$ is a cycle with odd length. Then we can write σ in a cycle notation as σ

 $\sigma = (a_1, a_2, ..., a_{ak+1})$ where $a_1, a_2, ..., a_{2k+1} \in A$ On simple calculation, we may show that

 $\sigma^{2} = (a_{1}, a_{2}, \dots a_{2k+1})(a_{1}, a_{2}, \dots a_{2k+1})$ $\sigma^{2} = (a_{1}, a_{3}, a_{5}, \dots a_{2k+1}, a_{2}, a_{4} \dots a_{2k})$ $\implies \sigma^{2} \text{ is cycle whenever } \sigma \text{ is cycle.}$ 8. Que. No.08 Let p be a prime. Show that an element has order p in S_n if and only if its cycle decomposition is a product of commuting p-cycles. Show by an explicit example that this need not be the case if p is not prime.

Proof :

 \Rightarrow Suppose the order of σ is p(p is prime).

Since order of σ is the lcm of the sizes of the disjoint cycles in the cycle decomposition of σ , So all of these cycle must have sizes that divides p is either 1 or p.

Since 1-cycles are omitted from the notation for the cycle decomposition of σ . Thus the cycle decomposition consists entirely of p-cycles. Thus σ is the product of disjoint commuting p-cycles.

 \Leftarrow Suppose σ is the product of disjoint p-cycles. i.e $\sigma = c_1 c_2 c_3 \dots c_r$

then $\sigma^p = (c_1 c_2 c_3 \dots c_r)^2 = c_1^p c_2^p c_3^p \dots c_r^p = 1$

(since the p^{th} power of p-cycles in σ are all 1, so their product is 1)

 $\sigma^p = 1$

A p-cycle has order p, so no smaller power of σ can be 1. Hence $|\sigma| = p$.

For an example :

Showing these conclusions may fail when p is not a prime.

Let p=6, $\sigma = (12)(345)$ $|\sigma| = lcm(2,3) = 6$ but σ is not the product of c

- but σ is not the product of commuting 6-cycles.
- 9. Que. No.09 Show that if $n \ge 4$ then the number of permutations in S_n which are the product of two disjoint 2-cycles is n(n-1)(n-2)(n-3)/8.

Solution :

Given $n \ge 4$.

Since, Permutations which are the product of two disjoint 2-cycles is of the form (ab)(cd), i.e of length 4.

Hence, there are n choices for a, (n-1) choices for b, (n-2) choices for c and (n-3) choices for d.

So there are n(n-1)(n-2)(n-3) possible ways to write to write such a cycle. Since disjoint cycles commutes there, so there are 8 different ways that differently represent the same cycle(As i mentioned it in sol. of Que.2)

Hence total number of Permutation in S_n which are the product of two disjoint 2-cycles is $\frac{(n)(n-1)(n-2)(n-3)}{n-2}$.

10. Que. No.10 Let $b \in S_7$ and suppose $b^4 = (2143567)$. Find b. Solution :

As given that $b^4 = (2143567)$.

11. Que. No.11 Let b = (123)(145). Write b^{99} in disjoint cycle form. Solution :

Since b = (123)(145) = (14523). So order of b is 5. (In case of single cycle. The order of permutation is the degree of permutation is the lengths of the set.) Now since |b| = 5, then $b^5 = I$. So we can write $b^{99} = (b^5)^{19}.b^4 = Ib^4 = b^4 = b^{-1}$. Since $b = (14523) \Rightarrow b^4 = b^{-1} = (32541) = (132541)$ so $b^{99} = (13254)$ or (154)(132).

12. Que. No.12 Find three elements σ in S_9 with the property that $\sigma^3 = (157)(283)(469)$. Solution :

Let $1 = a_1, 2 = a_2, 3 = a_3, 4 = a_4, 5 = a_5, 6 = a_6, 7 = a_7 \text{ and } 8 = a_8.$ Now we have to find σ such that $\sigma^3 = (a_1a_5a_7)(a_2a_8a_3)(a_4a_6a_9)$ then $\sigma_1 = (a_1 \dots a_5 \dots a_7 \dots)$ $\sigma_1 = (a_1 a_2 \dots a_5 a_8 \dots a_7 a_3 \dots)$ $\sigma_1 = (a_1 a_2 a_4 a_5 a_8 a_6 a_7 a_3 a_9)$ $\sigma_1 = (1 2 4 5 8 6 7 3 9).$ Similarly we can find other two elements $\sigma_2 = (a_1 \dots a_5 \dots a_7 \dots)$ $\sigma_2 = (a_1 a_3 \dots a_5 a_2 \dots a_7 a_8 \dots)$ $\sigma_2 = (a_1 a_3 a_9 a_5 a_2 a_4 a_7 a_8 a_6)$ $\sigma_2 = (1 3 9 5 2 4 7 8 6).$ and $\sigma_3 = (a_2 \dots a_8 \dots a_3 \dots)$ $\sigma_3 = (a_2 a_1 a_4 a_8 a_5 a_6 a_3 a_7 a_9)$ $\sigma_3 = (2 1 4 8 5 6 3 7 9).$

13. Que. No.13 Show that if H is a subgroup of S_n , then either every member of H is an even permutation or exactly half of the members are even.

Solution :

Let $H \subset S_n$ be any subgroup. Now, we define $\overline{H} = \{ \sigma \in H - \sigma \text{ is even } \}$

Claim: \overline{H} is subgroup of H.

Let $f,g \in \overline{H}$, Since g are even, so g^{-1} is also even. since the product of even permutations are still even, so we have fog^{-1} is even. So, here there are only two possibilities either $\overline{H} = H$ or $\overline{H} \subseteq H$ Case-I, if $\overline{H} = H$, then we are done. Case-II, if $\overline{H} \neq H$, then we need to show that $|\overline{H}| = \frac{|H|}{2}$ Since $\overline{H} \neq H$, it implies that there exists at least one odd permutations $\sigma \in H$ Now consider f: $\overline{H} \to \frac{H}{\overline{H}}$ defined by $f(h) = \sigma . h$ for any $h \in \overline{H}$. since σ is odd and h is even $\Rightarrow \sigma.h$ is odd. $\Rightarrow \sigma.h \in \frac{H}{\overline{H}}$ To prove that $\overline{H} = \frac{|H|}{2}$, We need to prove f is 1-1 and onto. for 1-1 let $h_1, h_2 \in H$ such that $h_1 = h_2$. since $h_1 = h_2$ $\Rightarrow \sigma h_1 = \sigma h_2 \Rightarrow f(h_1) = f(h_2) \Rightarrow f \text{ is } 1\text{-}1.$ and for onto since $f^{-1}: \frac{H}{\overline{H}} \to \overline{H}$ is given by $f^{-1}(h) = \sigma^{-1}h'$ for every $h' \in \frac{H}{\overline{H}}$. So f is both 1-1 and onto $\Rightarrow |\overline{H}| = |\frac{H}{\overline{H}}|, \text{ hence } |\overline{H}| = \frac{|H|}{2}$

14. Que. No.14 Suppose that H is a subgroup of S_n of odd order. Prove that H is a subgroup of A_n . rate S_n .

Proof :

Let H be a subgroup of S_n of odd order. i.e |H| = odd orderWe may prove it by contradiction. To the contrary, suppose $H \not\subseteq A_n$, then suppose $\exists \sigma \in H$ such that σ is an odd permutation. Let $H = \{\underbrace{\alpha_1, \alpha_2, \alpha_3, ..., \alpha_p}_{\text{Odd}}\} \cup \{\underbrace{\beta_1, \beta_2, \beta_3, ..., \beta_q}_{\text{Even}}\}$ $\therefore \sigma H = \{\underbrace{\sigma\alpha_1, \sigma\alpha_2, \sigma\alpha_3, ..., \sigma\alpha_p}_{\text{Even}}\} \cup \{\underbrace{\sigma\beta_1, \sigma\beta_2, \sigma\beta_3, ..., \sigma\beta_q}_{\text{Odd}}\}$ = H $\implies p = q$ $\implies |H| = 2p = 2q = even$ Which is a contradiction. $\implies H \subset A_n$

15. Que. No.15 Prove that the smallest subgroup of S_n containing (12) and (12...n) is S_n . In other words, these generate S_n .

Proof :

Let $\sigma = (12)$ and $\tau = (123...n)$ Suppose H is subgroup of S_n which contains both $\sigma = (12)$ and $\tau = (123...n)$. Now, we need to show that $H = S_n$. Clearly, we have $H \subseteq S_n$. Since subgroups in particular are subsets.

Since we know that S_n is generated by (n-1) transpositions (12)(23)(34)(45)...(n-1 n).

Now, I want to show that (12) and (123...n) generates these (n-1) transposition. Consider, $\tau \sigma \tau^{-1}$

 $(12...n)(12)(12...n)^{-1} = (23)$ $(12...n)(23)(12...n)^{-1} = (34)$ $(12...n)(34)(12...n)^{-1} = (45)$ $(12...n)(n-2 \quad n-1)(12...n)^{-1} = (n-1 \quad n)$ $(12...n)(n-1 \quad n)(12...n)^{-1} = (n \quad 1)$

Now i prove it by induction... for n = 1, it is obviously true. We assume that it is true for n = k, then $(12...k)(k-1 \ k)(12...k)^{-1} = (k \ 1)$ Now, we wish to show that it is true for n = k+1 $(1, 2, ..., k, k+1)(k, k+1)(1, 2, ..., k, k+1)^{-1}$ = (1, 2, ..., k, k+1)(k+1, k)(k+1, k, ..., 3, 2, 1)= 6(1, 2, ..., k, k+1)(k+1)(k, ..., 3, 2, 1)= (1, 2, ..., k, k+1)(k, ..., 3, 2, 1)

= (1, 2, ..., k, k+1)(k, ..., 3, 2, 1) = (k)(k-1)...(3)(2)(1)(1, k+1) = (k+1, 1)So, it is true for n=k+1 $\Rightarrow (12) \text{ and } (123...n) \text{ generates } S_n$ Which shows that $S_n \subseteq H$. Thus h = S_n

16. Que. No.16 Prove that for $n \ge 3$ the subgroup generated by the 3-cycles is A_n . **Proof**:

Since every 3-cycle is an even permutation, then every 3-cycle of S_n is in A_n .

Now, Let $\tau \in A_n \Rightarrow \tau$ is an even permutation.

 $\Rightarrow \tau$ is a product of an even no. of transposition.

However, $(a_1a_2)(a_3a_4) = (a_1a_2a_3)(a_2a_3a_4)$

And $(a_1a_2)(a_1a_3) = (a_1a_3a_2)$

Consequently, every product of two transposition(whether they share an element or not) can be written as a product of 3-cycles.

Hence, τ can be written as a product of 3-cycles.

 \Rightarrow For any $n \ge 3$, the subgroup generated by 3-cycle is A_n .

17. Que. No.17 Prove that if a normal subgroup of A_n contains even a single 3-cycle it must be all of A_n .

Proof :

Let $N \subset A_n$ be Normal subgroup and suppose that (abc) $\in N$. Let $\sigma' \in A_n$ be an arbitrary 3-cycles.

Then $\sigma' = \tau(abc)\tau^{-1}$ for some $\tau \in S_n$. Now here, there are two possibility either $\tau \in A_n$ or $\tau \notin A_n$. Case -I, If $\tau \in A_n$ then $\sigma' \in \mathbb{N}$ and we are done. Case -II, If $\tau \notin A_n$ then $\tau' = \tau(ab)$ is in A_n and $\tau' = \tau(acb)\tau'^{-1}$ is once again in N. \overrightarrow{n} .

 \Rightarrow If N $\leq A_n$ and contains a 3-cycle. Then N= A_n .

18. Que. No.18 Prove that A_5 has no non-trivial proper normal subgroups. In other words show that A_5 is a simple group.

Solution :

Order of $A_5 = |A_5| = \frac{5!}{2} = 60 = 2^2.3.5.$ Let N be proper normal subgroup of A_5 , then |N| = 2, 3, 4, 5, 6, 10, 12, 15, 20, 30. Total no. of 5 order elements in $A_5 = \frac{5P5}{5} = 24$, Total no. of elements of 3 order in $A_5 = \frac{5P3}{5} = 20$, And total no. of 15-order elements in $A_5 = 0$. Let us assume that |H| = 3, 6, 12, 15 then $|\frac{A_5}{H}| = 20$, 10, 5, 4 so $\gcd\left(3, |\frac{A_5}{H}|\right) = 1$ \implies H would contain all 20 elements of order 3.

Which is a contradiction.

{ As, Theorem says that If H be Normal subgroup of a finite group G. And if $gcd\left(|x|, |\frac{G}{H}|\right)=1$, then $x \in G$ }.

Similarly, suppose that |H| = 5, 10, 20then $|\frac{A_5}{H}| = 12, 6, 3$ \implies H would contain all 24 elements of order 5. which is a contradiction. Let |H| = 30, then $|\frac{A_5}{H}| = 2$. So again $\operatorname{gcd}\left(3, \left|\frac{A_5}{H}\right|\right) = 1$ and $\operatorname{gcd}\left(5, \left|\frac{A_5}{H}\right|\right) = 1$. \implies H would contain all 20+24 = 44 elements. we get again a contradiction. And finally, let us assume that, |H|=2 or 4. $\implies |\frac{A_5}{H}| = 30, 15$ Since, we know that any group of order 30 or 15 has an element of order 15. or As, if $\left|\frac{A_5}{H}\right| = 15 = 3 \times 5 = p \times q$ where p=3 and q=5. (Theorem : If G is a group of order pq, where p and q are primes, p < q and $p \nmid q$, then G is cyclic.) \Rightarrow G has at least one element of order 15. Which is again contradiction, because A_5 contains no such element, neither does $\frac{A_5}{\mu}$.

This proves that A_5 is simple.

19. Que. No.19 Show that $Z(S_n)$ is trivial for $n \ge 3$.

Solution :

Let $\sigma \in S_n$ be a non-identity element then there exists two distinct $a, b \in \{1, 2, 3, ..., n\}$ with $\sigma(a) = b$. Since $n \geq 3$, Now choosing $k \in \{1, 2, 3, ..., n\}$ such that $k \neq a$ and $k \neq b$. Let $\tau = (ak)$. Then $\tau(\sigma(a)) = \tau(b) = k$ and $\sigma(\tau(a)) = \sigma(a) = b$ since $k \neq b \Rightarrow \tau(\sigma(a)) \neq \sigma(\tau(a))$. Hence for every non-identity permutation in S_n , there exists some element not commuting with it.

Therefore $Z(S_n)$ must be trivial.

20. Que. No. 20 Show that two permutations in S_n are conjugate if and only if they have the same cycle structure or decomposition. Given the permutation x = (12)(34), y = (56)(13), find a permutation a such that $a^{-1}xa = y$.

Proof :

For any σ and any $d \leq n$, we have $\sigma(12...d)\sigma^{-1} = (\sigma(1)\sigma(2)...\sigma(d))$

This shows that any conjugate of d-cycle is again d-cycle. Since every permutation is a product of disjoint cycles, it follows that the cycle structure of conjugate permutations are the same. In other direction,

Let $\tau = (a_1 a_2 \dots a_r)(a_{r+1} a_{r+2} \dots a_s) \dots (a_l \dots a_m)$ and $\tau' = (a_1' a_2' \dots a_r)(a_{r+1} a_{r+2} \dots a_s) \dots (a_l \dots a_m)$ be two permutations having the same cycle structure. Define $\sigma \in S_n$ by $\sigma(a'_i) = a'$ for i = 1, 2, ..., m then $\sigma \tau \sigma^{-1} = \sigma(a_1 a_2 \dots a_r) \sigma^{-1} \sigma(a_{r+1} a_{r+2} \dots a_s) \sigma^{-1} \dots \sigma(a_l \dots a_m) \sigma^{-1}$ $= (a'_1 a'_2 \dots a_r)(a_{r+1} a_{r+2} \dots a_s) \dots (a_l \dots a_m)$ $= \tau'$ This shows that τ and τ' are conjugate. Now, Given the permutation x = (12)(34), y = (56)(13)Since that $a^{-1}xa = y$. $\therefore xa = ay \Rightarrow x = aya^{-1}.$ $\Rightarrow ((12)(34)) = a((56)(13))a^{-1}$ \Rightarrow ((12)(34))(5)(6) = a((56)(13)(2)(4))a^{-1} = (a(5)a(6))(a(1)a(3))a(2)a(4) $\Rightarrow 1 = a(5), 2 = a(6), 3 = a(1), 4 = a(3) \text{ and } 5 = a(2), 6 = a(4)$ $\Rightarrow a = (134625)$ Checking for a, a = (134625) and $a^{-1} = (526431) = (152643)$ $\therefore a^{-1}xa = (134625)((12)(34))(152643)$ = (13)(2)(4)(56) = (13)(56) =RHS, Hence done.

References

- Joseph A. Gallian : Contemporary Abstract Algebra, Ch-5, Brooks/Cole, Cengage Learning, ISBN: 978-0-547-16509-7, 7th Ed. (2010)
- [2] David S. Dummit & Richard M. Foote : Abstract Algebra, Ch-1, John Wiley & Sons, Inc, ISBN: 0-471-43334-9, 3rd Ed. (2004).
- [3] I. N. Herstein : Topics in Algebra, John Wiley & Sons, Ch-2, 2nd Ed (1975).
- [4] John B. Fraleigh : A First Course in Abstract Algebra