Abstract Algebra Solution of Assignment-1

P. Kalika \& Kri. Munesh
[M.Sc. Tech Mathematics]

1. Illustrate Cayley's Theorem by calculating the left regular representation for the group $V_{4}=\{e, a, b, c\}$ where $a^{2}=b^{2}=c^{2}=e, a b=b a=c, a c=c a=b, b c=$ $c b=a$.

Solution :

Let $V_{4}=\{e, a, b, c\}$. Now computing the permutation σ_{g} induced by the action of left-multiplication by the group element a.
a.e $=\mathrm{ae}=\mathrm{a}$ and so $\quad \sigma_{g}(e)=\mathrm{a}$
$\mathrm{a} . \mathrm{a}=\mathrm{aa}=a^{2}=\mathrm{e}$ and so $\sigma_{g}(a)=\mathrm{e}$
$\mathrm{a} \cdot \mathrm{b}=\mathrm{ab}=\mathrm{c}$ and so $\quad \sigma_{g}(b)=\mathrm{c}$
$\mathrm{a} . \mathrm{c}=\mathrm{ac}=\mathrm{b}$ and so $\quad \sigma_{g}(c)=\mathrm{b}$
Hence $\sigma_{a}=(\mathrm{ea})(\mathrm{bc})$.
Now computing σ_{g} induced by the action of left-multiplication by the group element b.
$\mathrm{b} . \mathrm{e}=\mathrm{be}=\mathrm{b}$ and so $\quad \sigma_{g}(e)=\mathrm{b}$
$\mathrm{b} . \mathrm{a}=\mathrm{ba}=\mathrm{c}$ and so $\quad \sigma_{g}(a)=\mathrm{c}$
$\mathrm{b} . \mathrm{b}=\mathrm{bb}=b^{2}=\mathrm{e}$ and so $\sigma_{g}(b)=\mathrm{e}$
$\mathrm{b} . \mathrm{c}=\mathrm{bc}=\mathrm{a}$ and so $\quad \sigma_{g}(c)=\mathrm{a}$
Hence $\sigma_{b}=(\mathrm{eb})(\mathrm{ac})$.
Similarlly Computing σ_{g} induced by the action of left-multiplication by the group element c.
$\mathrm{c} . \mathrm{e}=\mathrm{ce}=\mathrm{c}$ and so $\sigma_{g}(e)=\mathrm{c}$
$\mathrm{c} . \mathrm{a}=\mathrm{ca}=\mathrm{b}$ and so $\sigma_{g}(a)=\mathrm{b}$
$\mathrm{c} . \mathrm{b}=\mathrm{cb}=\mathrm{a}$ and so $\sigma_{g}(b)=\mathrm{a}$
c.c $=\mathrm{cc}=c^{2}=\mathrm{e}$ and so $\sigma_{g}(c)=\mathrm{e}$

Hence $\sigma_{c}=(\mathrm{ec})(\mathrm{ab})$.
Which explicitly gives the permutation representation $V_{4} \rightarrow V_{4}$ associated to this action.
2. Show that A_{5} has 24 elements of order 5,20 elements of order 3 , and 15 elements of order 2 .

Solution :

Since we can decompose any permutation into a product of disjoint cycle. In S_{5}, since disjoint cycle commutes. Let $V_{5}=\{e, a, b, c, d\}$ Here an element of S_{5} must have one the following forms:
(i) (abcde) - even
(ii) $(a b c)(d e)$ - odd (even P^{*} odd P$)$
(iii) $(a b c)$ - even
(iv) $(a b)(c d)$ - even (odd $\mathrm{P} *$ odd P$)$
(v) (ab) - odd
(vi) (e) -even

So element of A_{5} is of the form (i), (iii), (iv) and (vi). As we know that, when a permutation is written as disjoint cycles, it's order is the lcm (least common multiple) of the lengths of the cycles.
(i) (abcde) has order 5
(iii) $(a b c)$ has order 3
(iv) $(a b)(c d)$ has order 2
(vi) (e) has order 1

Now since elements of order 5 in A_{5} are of the form (i). There are 5 ! distinct expression for cycle of the form ($a b c d e$) where all a, b, c, d, e are distinct. since expression representation of the element of type
$(a b c d e)=(b c d e a)=(c d e a b)=($ deabc $)=(e a b c d)$ are equivalent. So total elements of order 5 are $\frac{5 \times 4 \times 3 \times 2 \times 1}{5}=24$.
Now for elements of order 3. Since elements of order 3 in A_{5} is of the form $(a b c)$. Here there are 5 choices for a, 4 choices for b and 3 choices for c . so there are $5 \times 4 \times 3=60$ possible ways to write such a cycle. Since expression representation of the element of type $(a b c)=(b c a)=(c a b)$ are equivalent.So total no. of elements of order 3 in A_{5} are $\frac{60}{3}=20$.
Here since even permutation of order 2 are of the form $(a b)(c d)$. so there are $5 \times 4 \times 3 \times 2$ ways to write such permutation. Since disjoint cycles commute there, so there are 8 different ways that differently represent the same permutations :-
$(a b)(c d)=(a b)(d c)=(b a)(d c)=(b a)(c d)=(c d)(a b)=(d c)(a b)=(d c)(b a)=$ (cd) $(b a)$.

So there are $\frac{5 \times 4 \times 3 \times 2}{8}=15$ elements of order 2 .
\{No. of ways of selecting r different things out of n is $n \mathrm{Pr}$ \}
3. Show that if $n \geq m$ then the number of m-cycles in S_{n} is given by $\frac{n(n-1)(n-2) \ldots(n-m+1)}{m}$.

Proof :

For any given S_{n}, there are n elements in $S_{n}=\{1,2,3, \ldots m \ldots n\}$. so we must have n-choices for 1 st element, then $\mathrm{n}-1$ choices for 2 nd element, $\mathrm{n}-2$ choices for 3 rd element and so on... and we have $n-m+1$ choices for $m^{\text {th }}$ element etc. So there are total no. of $n(n-1)(n-2) \ldots(n-m+1)$ for a m-cycles.
Now we want to count m-cycles in S_{n}, since for 2-cycles $(a b)=(b a)$
\{two equivalent notation, i.e same permutation\}
For 3-cycles $(a, b, c)=(b, c, a)=(c, a, b)$ \{i.e 3-equivalent notation $\}$
For 4-cycles $(a, b, c, d)=(b, c, d, a)=(c, d, a, b)=(d, a, b, c)$ \{four equivalent notation $\}$

Similarly for m-cycles there are m-equivalent notation for any permutations.
Now, Since we have, $n(n-1)(n-2) \ldots(n-m+1)$ choices to form a m-cycle in which there are m-equivalent notations for any permutation of length m .
So the no. of m-cycles in S_{n} is

$$
\frac{n(n-1)(n-2) \ldots(n-m+1)}{m}
$$

4. Let σ be the m-cycle $(12 \ldots m)$. Show that σ^{i} is also an m-cycle if and only if i is relatively prime to m.

Proof :

First we note that if τ is k cycle then $|\tau|=k$
since $\sigma^{i}(x) \equiv \mathrm{x}+\mathrm{i} \bmod \mathrm{m}$ for any $\mathrm{x}, 1 \leq x \leq m$
Claim : $\sigma^{i}=\left(\sigma^{i}(1) \sigma^{i}(2) \ldots \sigma^{i}(m)\right)$
we prove it by contradiction
Let $\mathrm{i}=1$. Then the statement is obviously true.
Suppose that

$$
\sigma^{i-1}=\left(\sigma^{i-1}(1) \sigma^{i-1}(2) \ldots \sigma^{i-1}(m)\right)
$$

then $\sigma^{i}=\sigma\left(\sigma^{i-1}\right)=\sigma\left\{\sigma^{i-1}(1) \ldots \sigma^{i-1}(m)\right\}$
Since, here σ sends $\sigma^{i-1}(i)$ to $\sigma^{i}(1)$,
thus $\sigma^{i}=\left(\sigma^{i-1}(1) \ldots \sigma^{i}(m)\right)$
$\Longrightarrow \sigma^{i}=\left(\sigma^{i-1}(1) \ldots \sigma^{i}(m)\right)$
Since $\sigma^{i}(m) \equiv \mathrm{m}+\mathrm{i} \bmod \mathrm{m} \equiv \mathrm{i} \bmod \mathrm{m}$ and $\sigma^{i-1}(1) \equiv 1+\mathrm{i}-1 \bmod \mathrm{~m} \equiv \mathrm{i} \bmod \mathrm{m}$
i.e $\sigma^{i}(m)=\sigma^{i-1}(1)$
$\Longrightarrow \sigma^{i}$ is an m-cycle.
Converse part
Suppose σ^{i} is an m-cycle and suppose that $(i, m)=d>1$. (we prove it by contradiction)
then there exists $\mathrm{k}, \mathrm{n} \in \mathbb{N}$ such that $\mathrm{i}=\mathrm{kd}$ and $\mathrm{m}=\mathrm{nd}$,
since, $\left(\sigma^{i}\right)^{n}=\left(\sigma^{k d}\right)^{n}=\sigma^{k d n}=\sigma^{m k}=\left(\sigma^{m}\right)^{k}=I$
where I is the identity permutation.
Hence $\left|\sigma^{i}\right| \leq n<m$.
which is contradiction, since σ^{i} is an m-cycle and thus $\left|\sigma^{i}\right|=m$. Thus i is relatively prime to m .
5. Que. No. 05 Let $n \geq 3$. Prove the following in S_{n}.
(a) Every permutation of S_{n} can be written as a product of at most $n-1$ transpositions.
(b) Every permutation of S_{n} that is not a cycle can be written as a product of at most $n-2$ transpositions.

Proof (a) :

We know that if $k \geq 2$, the cycle $\left(a_{1}, a_{2}, \ldots a_{k}\right)$ can be written as $\left(a_{1}, a_{k}\right)\left(a_{1}, a_{k-1}\right) \ldots\left(a_{1}, a_{2}\right)$ which is $\mathrm{k}-1$ transpositions.
Case-I, If $\mathrm{k}=1$, then this cycle is the trivial cycle or the identity, which can be written as $1-1=0$ transpositions
Case-II, if $k>1$,
we know that every permutation $\sigma \in S_{n}$ can be written as a product of disjoint cycles, thus we can write
$\sigma=\left(a_{11}, a_{12}, \ldots, a_{1 k_{1}}\right)\left(a_{21}, a_{22}, \ldots, a_{2 k_{2}}\right) \ldots\left(a_{m 1}, a_{m 2}, \ldots, a_{m k_{m}}\right)$
where $k_{1}+k_{2}+\ldots+k_{m}=n$ and each of these cycle is disjoint.
we know that cycle i can be written as a product of $k_{i}-1$ transpositions, and $\sum_{i=1}^{m}\left(k_{i}-1\right)=\sum_{i=1}^{m} k_{i}-\sum_{i=1}^{m} 1=n-m$, this is maximized when m is minimized and the least value of m is 1 .
Thus, the largest value of $n-m$ can be $n-1$.

Proof (b) :

From part (a), $\sigma=\left(a_{11}, a_{12}, \ldots, a_{1 k_{1}}\right)\left(a_{21}, a_{22}, \ldots, a_{2 k_{2}}\right) \ldots\left(a_{m 1}, a_{m 2}, \ldots, a_{m k_{m}}\right)$ where $\sum_{i=1}^{m} k_{i}=n$ and each of cycles is disjoint and also from (a), we still know that cycles i can be written as a product of $k_{i}-1$ transpositions and
$\sum_{i=1}^{m}\left(k_{i}-1\right)=\sum_{i=1}^{m} k_{i}-\sum_{i=1}^{m} 1=n-m$, However, since σ is not a cycle. $m \geq 2$, thus $n-m$ is maximized when m is minimized i.e $m=2$ i.e $n-2$ is the maximum value of $n-m$.
Hence every permutation of S_{n} that is not a cycle can be written as a product of at most n-2 transpositions.
6. Que. No. 06 Let σ be a permutation of a set A. We say that σ moves $a \in A$ if $\sigma(a) \neq a$. Let S_{A} denote the permutations on A.
(a) If A is a finite set then how many elements are moved by a n-cycle $\sigma \in S_{A}$?
(b) Let A be an infinite set and let H be the subset of S_{A} consisting of all $\sigma \in S_{A}$ such that σ only moves finitely many elements of A. Show that $H \leq S_{A}$.
(c) Let A be an infinite set and let K be the subset of S_{A} consisting of all $\sigma \in S_{A}$ such that σ moves at most 50 elements of A. Is $K \leq S_{A}$? Why?

Proof (a):

If A is finite, then σ moves only n elements because σ is n -cycle and the elements which is not in cycle are fixed.

Proof (b):

We may prove it by One-Step Subgroup Test.
As A is infinite set and $\sigma \in S_{A}$ moves only finitely many elements of A. Since H consists all $\sigma \in S_{A}$
$\Rightarrow \mathrm{H}$ is non-empty.
Now let, $\sigma \in H \Longrightarrow \sigma^{-1} \in H$.
So, $\sigma o \sigma^{-1}=I=\in H$
Now checking for closure property,
Let σ_{1} and $\sigma_{2} \in H$ be any two permutations such that σ_{1} and σ_{2} both moves only finitely many elements of A.
Then $\sigma_{1} \mathrm{O} \sigma_{2}$ also moves only finitely many elements of A .
\Rightarrow Closure property holds.
$\Rightarrow \mathrm{H}$ is subgroup of A_{5}.
Proof (c):
No, K will not be subgroup of S_{A}
Because, suppose that σ_{1} moves at most 50 elements and σ_{2} moves at most 50 elements, then $\sigma_{1} O \sigma_{2}$ (Product of two permutations) might moves more than 50 elements.
\Rightarrow Closure property with respect to function composition is not satisfied in K.
$\Rightarrow \mathrm{K}$ is not a subgroup of S_{A}.
7. Que. No. 07 Show that if σ is a cycle of odd length then σ^{2} is a cycle.

Proof : Suppose $\sigma: A \rightarrow A$ is a cycle with odd length. Then we can write σ in a cycle notation as σ
$\sigma=\left(a_{1}, a_{2}, \ldots, a_{a k+1}\right)$ where $a_{1}, a_{2}, \ldots, a_{2 k+1} \in A$
On simple calculation, we may show that
$\sigma^{2}=\left(a_{1}, a_{2}, \ldots a_{2 k+1}\right)\left(a_{1}, a_{2}, \ldots a_{2 k+1}\right)$
$\sigma^{2}=\left(a_{1}, a_{3}, a_{5}, \ldots a_{2 k+1}, a_{2}, a_{4} \ldots a_{2 k}\right)$
$\Longrightarrow \sigma^{2}$ is cycle whenever σ is cycle.
8. Que. No. 08 Let p be a prime. Show that an element has order p in S_{n} if and only if its cycle decomposition is a product of commuting p-cycles. Show by an explicit example that this need not be the case if p is not prime.

Proof :

\Rightarrow Suppose the order of σ is $\mathrm{p}(\mathrm{p}$ is prime).
Since order of σ is the lcm of the sizes of the disjoint cycles in the cycle decomposition of σ, So all of these cycle must have sizes that divides p is either 1 or p.

Since 1-cycles are omitted from the notation for the cycle decomposition of σ. Thus the cycle decomposition consists entirely of p-cycles. Thus σ is the product of disjoint commuting p-cycles.
\Leftarrow Suppose σ is the product of disjoint p-cycles. i.e $\sigma=c_{1} c_{2} c_{3} \ldots c_{r}$
then $\sigma^{p}=\left(c_{1} c_{2} c_{3} \ldots c_{r}\right)^{2}=c_{1}^{p} c_{2}^{p} c_{3}^{p} \ldots c_{r}^{p}=1$
(since the $p^{t h}$ power of p-cycles in σ are all 1 , so their product is 1)
$\sigma^{p}=1$
A p-cycle has order p , so no smaller power of σ can be 1. Hence $|\sigma|=p$.
For an example :
Showing these conclusions may fail when p is not a prime.
Let $\mathrm{p}=6, \sigma=(12)(345)$
$|\sigma|=l c m(2,3)=6$
but σ is not the product of commuting 6 -cycles.
9. Que. No. 09 Show that if $n \geq 4$ then the number of permutations in S_{n} which are the product of two disjoint 2-cycles is $n(n-1)(n-2)(n-3) / 8$.

Solution :

Given $\mathrm{n} \geq 4$.
Since, Permutations which are the product of two disjoint 2-cycles is of the form (ab)(cd), i.e of length 4.
Hence, there are n choices for $\mathrm{a},(\mathrm{n}-1)$ choices for $\mathrm{b},(\mathrm{n}-2)$ choices for c and $(\mathrm{n}-3)$ choices for d.
So there are $n(n-1)(n-2)(n-3)$ possible ways to write to write such a cycle. Since disjoint cycles commutes there, so there are 8 different ways that differently represent the same cycle(As i mentioned it in sol. of Que.2)
Hence total number of Permutation in S_{n} which are the product of two disjoint 2 -cyles is $\frac{(n)(n-1)(n-2)(n-3)}{8}$.
10. Que. No. 10 Let $b \in S_{7}$ and suppose $b^{4}=(2143567)$. Find b.

Solution :

$$
\begin{gathered}
\because b \in S_{7} \\
\quad|b|=7 \\
\Rightarrow b^{7}=I \\
\text { So } b=I b=\left(b^{7}\right) \cdot b=b^{8}=\left(b^{4}\right)^{2} \\
\\
\Rightarrow b=b^{4} \cdot b^{4} \\
\Rightarrow b=(2143567)(2143567) \\
\quad=(2457136) .
\end{gathered}
$$

As given that $b^{4}=(2143567)$.
11. Que. No. 11 Let $b=(123)(145)$. Write b^{99} in disjoint cycle form.

Solution :

Since $b=(123)(145)=(14523)$. So order of b is 5 .
(In case of single cycle. The order of permutation is the degree of permutation is the lengths of the set.)
Now since $|b|=5$, then $b^{5}=I$.
So we can write $b^{99}=\left(b^{5}\right)^{19} . b^{4}=I b^{4}=b^{4}=b^{-1}$.
Since $b=(14523) \Rightarrow b^{4}=b^{-1}=(32541)=(132541)$
so $b^{99}=(13254)$ or $(154)(132)$.
12. Que. No. 12 Find three elements σ in S_{9} with the property that $\sigma^{3}=(157)(283)(469)$.

Solution :
Let $1=a_{1}, 2=a_{2}, 3=a_{3}, 4=a_{4}, 5=a_{5}, 6=a_{6}, 7=a_{7}$ and $8=a_{8}$.
Now we have to find σ such that $\sigma^{3}=\left(a_{1} a_{5} a_{7}\right)\left(a_{2} a_{8} a_{3}\right)\left(a_{4} a_{6} a_{9}\right)$
then $\sigma_{1}=\left(\begin{array}{llll}a_{1} & \ldots & a_{5} \ldots . & a_{7} \ldots .\end{array}\right)$
$\sigma_{1}=\left(\begin{array}{lllll}a_{1} & a_{2} & . . & a_{5} & a_{8}\end{array} . . a_{7} a_{3} ..\right)$
$\sigma_{1}=\left(\begin{array}{llll}a_{1} & a_{2} & a_{4} & a_{5}\end{array} a_{8} a_{6} a_{7} a_{3} a_{9}\right)$
$\sigma_{1}=(124586739)$.
Similarly we can find other two elements
$\sigma_{2}=\left(a_{1} \ldots . a_{5} \ldots . a_{7} \ldots.\right)$
$\sigma_{2}=\left(a_{1} a_{3} . . a_{5} a_{2} . . a_{7} a_{8} ..\right)$
$\sigma_{2}=\left(\begin{array}{lllll}a_{1} & a_{3} & a_{9} & a_{5} & a_{2}\end{array} a_{4} a_{7} a_{8} a_{6}\right)$
$\sigma_{2}=(139524786)$.
and
$\sigma_{3}=\left(\begin{array}{lllll}a_{2} & \ldots & a_{8} & \ldots & a_{3}\end{array} \ldots.\right)$
$\sigma_{3}=\left(\begin{array}{lllll}a_{2} & a_{1} & a_{4} & a_{8} & a_{5}\end{array} a_{6} a_{3} a_{7} a_{9}\right)$
$\sigma_{3}=(214856379)$.
13. Que. No. 13 Show that if H is a subgroup of S_{n}, then either every member of H is an even permutation or exactly half of the members are even.

Solution :

Let $\mathrm{H} \subset S_{n}$ be any subgroup.
Now, we define $\bar{H}=\{\sigma \in \mathrm{H}-\sigma$ is even $\}$
Claim: \bar{H} is subgroup of H .
Let $\mathrm{f}, \mathrm{g} \in \bar{H}$, Since g are even, so g^{-1} is also even.
since the product of even permutations are still even, so we have $f o g^{-1}$ is even.
So, here there are only two possibilities either $\bar{H}=H$ or $\bar{H} \varsubsetneqq H$
Case-I, if $\bar{H}=H$, then we are done.
Case-II, if $\bar{H} \neq H$, then we need to show that $|\bar{H}|=\frac{|H|}{2}$
Since $\bar{H} \neq H$,it implies that there exists at least one odd permutations $\sigma \in H$
Now consider f: $\bar{H} \rightarrow \frac{H}{\bar{H}}$ defined by $\mathrm{f}(\mathrm{h})=\sigma . h$ for any $\mathrm{h} \in \bar{H}$.
since σ is odd and h is even
$\Rightarrow \sigma . h$ is odd.
$\Rightarrow \sigma . h \in \frac{H}{\bar{H}}$
To prove that $\bar{H}=\frac{|H|}{2}$, We need to prove f is $1-1$ and onto.
for 1-1
let $h_{1}, h_{2} \in H$ such that $h_{1}=h 2$.
since $h_{1}=h_{2}$
$\Rightarrow \sigma h_{1}=\sigma h_{2} \Rightarrow f\left(h_{1}\right)=f\left(h_{2}\right) \Rightarrow \mathrm{f}$ is 1-1.
and for onto
since $f^{-1}: \frac{H}{\bar{H}} \rightarrow \bar{H}$ is given by $f^{-1}(h)=\sigma^{-1} h^{\prime}$ for every $\mathrm{h} ' \in \frac{H}{\bar{H}}$.
So f is both 1-1 and onto
$\Rightarrow|\bar{H}|=\left|\frac{H}{\bar{H}}\right|$, hence $|\bar{H}|=\frac{|H|}{2}$
14. Que. No. 14 Suppose that H is a subgroup of S_{n} of odd order. Prove that H is a subgroup of A_{n}. rate S_{n}.

Proof :

Let H be a subgroup of S_{n} of odd order.
i.e $|H|=$ odd order

We may prove it by contradiction.
To the contrary, suppose $\mathrm{H} \nsubseteq A_{n}$, then
suppose $\exists \sigma \in \mathrm{H}$ such that σ is an odd permutation.
Let $\mathrm{H}=\{\underbrace{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{p}}_{\text {Odd }}\} \cup\{\underbrace{\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{q}}_{\text {Even }}\}$
$\therefore \sigma \mathrm{H}=\{\underbrace{\sigma \alpha_{1}, \sigma \alpha_{2}, \sigma \alpha_{3}, \ldots, \sigma \alpha_{p}}_{\text {Even }}\} \cup\{\underbrace{\sigma \beta_{1}, \sigma \beta_{2}, \sigma \beta_{3}, \ldots, \sigma \beta_{q}}_{\text {Odd }}\}$

$$
\begin{aligned}
& =\mathrm{H} \\
& \Longrightarrow p=q \\
& \Longrightarrow|H|=2 \mathrm{p}=2 \mathrm{q}=\text { even }
\end{aligned}
$$

Which is a contradiction.
$\Longrightarrow H \subset A_{n}$
15. Que. No. 15 Prove that the smallest subgroup of S_{n} containing (12) and (12 $\ldots n$) is S_{n}. In other words, these generate S_{n}.

Proof :

Let $\sigma=(12)$ and $\tau=(123 \ldots n)$
Suppose H is subgroup of S_{n} which contains both $\sigma=(12)$ and $\tau=(123 \ldots n)$.
Now, we need to show that $\mathrm{H}=S_{n}$.
Clearly, we have $H \subseteq S_{n}$. Since subgroups in particular are subsets.
Since we know that S_{n} is generated by (n-1) transpositions (12)(23)(34)(45)...(n1 n).
Now, I want to show that (12) and (123...n) generates these (n-1) transposition. Consider, $\tau \sigma \tau^{-1}$
$(12 \ldots n)(12)(12 \ldots n)^{-1}=(23)$
$(12 \ldots n)(23)(12 \ldots n)^{-1}=(34)$
$(12 \ldots n)(34)(12 \ldots n)^{-1}=(45)$
$(12 \ldots n)(n-2 \quad n-1)(12 \ldots n)^{-1}=\left(\begin{array}{ll}n-1 & n)\end{array}\right.$
$(12 \ldots n)(n-1 \quad n)(12 \ldots n)^{-1}=\left(\begin{array}{ll}n & 1\end{array}\right)$
Now i prove it by induction...
for $\mathrm{n}=1$, it is obviously true.
We assume that it is true for $\mathrm{n}=\mathrm{k}$, then
$(12 \ldots k)(k-1 \quad k)(12 \ldots k)^{-1}=\left(\begin{array}{ll}k & 1\end{array}\right)$
Now, we wish to show that it is true for $\mathrm{n}=\mathrm{k}+1$
$(1,2, \ldots, k, k+1)(k, k+1)(1,2, \ldots, k, k+1)^{-1}$
$=(1,2, \ldots, k, k+1)(k+1, k)(k+1, k, \ldots, 3,2,1)$
$=6(1,2, \ldots, k, k+1)(k+1)(k, \ldots, 3,2,1)$
$=(1,2, \ldots, k, k+1)(k, \ldots, 3,2,1)$
$=(k)(k-1) \ldots(3)(2)(1)(1, k+1)$
$=(\mathrm{k}+1,1)$
So, it is true for $\mathrm{n}=\mathrm{k}+1$
$\Rightarrow(12)$ and (123...n) generates S_{n}
Which shows that $S_{n} \subseteq H$.
Thus $\mathrm{h}=S_{n}$
16. Que. No. 16 Prove that for $n \geq 3$ the subgroup generated by the 3-cycles is A_{n}.

Proof :
Since every 3-cycle is an even permutation, then every 3-cycle of S_{n} is in A_{n}.

Now, Let $\tau \in A_{n} \Rightarrow \tau$ is an even permutation.
$\Rightarrow \tau$ is a product of an even no. of transposition.
However, $\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)=\left(a_{1} a_{2} a_{3}\right)\left(a_{2} a_{3} a_{4}\right)$
And $\quad\left(a_{1} a_{2}\right)\left(a_{1} a_{3}\right)=\left(a_{1} a_{3} a_{2}\right)$
Consequently, every product of two transposition(whether they share an element or not) can be written as a product of 3-cycles.
Hence, τ can be written as a product of 3 -cycles.
\Rightarrow For any $\mathrm{n} \geq 3$, the subgroup generated by 3 -cycle is A_{n}.
17. Que. No. 17 Prove that if a normal subgroup of A_{n} contains even a single 3-cycle it must be all of A_{n}.
Proof :
Let $\mathrm{N} \subset A_{n}$ be Normal subgroup and suppose that $(\mathrm{abc}) \in \mathrm{N}$. Let $\sigma^{\prime} \in A_{n}$ be an arbitrary 3 -cycles.
Then $\quad \sigma^{\prime}=\tau(a b c) \tau^{-1}$ for some $\tau \in S_{n}$.
Now here, there are two possibility either $\tau \in A_{n}$ or $\tau \notin A_{n}$.
Case -I, If $\tau \in A_{n}$ then $\sigma^{\prime} \in \mathrm{N}$ and we are done.
Case -II, If $\tau \notin A_{n}$ then $\tau^{\prime}=\tau(a b)$ is in A_{n} and $\tau^{\prime}=\tau(a c b) \tau^{\prime-1}$ is once again in N.
\Rightarrow If $\mathrm{N} \unlhd A_{n}$ and contains a 3 -cycle. Then $\mathrm{N}=A_{n}$.
18. Que. No. 18 Prove that A_{5} has no non-trivial proper normal subgroups. In other words show that A_{5} is a simple group.

Solution :

Order of $A_{5}=\left|A_{5}\right|=\frac{5!}{2}=60=2^{2} .3 .5$.
Let N be proper normal subgroup of A_{5}, then
$|N|=2,3,4,5,6,10,12,15,20,30$.
Total no. of 5 order elements in $A_{5}=\frac{5 P 5}{5}=24$,
Total no. of elements of 3 order in $A_{5}=\frac{5 P 3}{5}=20$,
And total no. of 15 -order elements in $A_{5}=0$.
Let us assume that $|H|=3,6,12,15$
then $\left|\frac{A_{5}}{H}\right|=20,10,5,4$
so $\quad \operatorname{gcd}\left(3,\left|\frac{A_{5}}{H}\right|\right)=1$
$\Longrightarrow \mathrm{H}$ would contain all 20 elements of order 3 .
Which is a contradiction.
\{ As, Theorem says that If H be Normal subgroup of a finite group G. And if $\operatorname{gcd}\left(|x|,\left|\frac{G}{H}\right|\right)=1$, then $\left.x \in \mathrm{G}\right\}$.

Similarly, suppose that $|H|=5,10,20$
then $\left|\frac{A_{5}}{H}\right|=12,6,3$
$\Longrightarrow \mathrm{H}$ would contain all 24 elements of order 5 .
which is a contradiction.
Let $|H|=30$, then $\left|\frac{A_{5}}{H}\right|=2$.
So again $\operatorname{gcd}\left(3,\left|\frac{A_{5}}{H}\right|\right)=1$ and $\operatorname{gcd}\left(5,\left|\frac{A_{5}}{H}\right|\right)=1$.
$\Longrightarrow \mathrm{H}$ would contain all $20+24=44$ elements.
we get again a contradiction.
And finally, let us assume that, $|H|=2$ or 4 .
$\Longrightarrow\left|\frac{A_{5}}{H}\right|=30,15$
Since, we know that any group of order 30 or 15 has an element of order 15 .
or As, if $\left|\frac{A_{5}}{H}\right|=15=3 \times 5=p \times q$ where $\mathrm{p}=3$ and $\mathrm{q}=5$.
(Theorem : If G is a group of order pq , where p and q are primes, $p<q$ and $\mathrm{p} \nmid \mathrm{q}$, then G is cyclic.)
$\Rightarrow G$ has at least one element of order 15 .
Which is again contradiction,
because A_{5} contains no such element, neither does $\frac{A_{5}}{H}$.
This proves that A_{5} is simple.
19. Que. No. 19 Show that $Z\left(S_{n}\right)$ is trivial for $n \geq 3$.

Solution :

Let $\sigma \in S_{n}$ be a non-identity element then there exists two distinct a,b \in $\{1,2,3, \ldots, n\}$ with $\sigma(a)=b$.
Since $\mathrm{n} \geq 3$, Now choosing $\mathrm{k} \in\{1,2,3, \ldots, n\}$ such that $\mathrm{k} \neq \mathrm{a}$ and $\mathrm{k} \neq \mathrm{b}$.
Let $\tau=(a k)$. Then
$\tau(\sigma(a))=\tau(b)=k$ and $\sigma(\tau(a))=\sigma(a)=b$
since $\mathrm{k} \neq \mathrm{b} \Rightarrow \tau(\sigma(a)) \neq \sigma(\tau(a))$.
Hence for every non-identity permutation in S_{n}, there exists some element not commuting with it.
Therefore $Z\left(S_{n}\right)$ must be trivial.
20. Que. No. 20 Show that two permutations in S_{n} are conjugate if and only if they have the same cycle structure or decomposition. Given the permutation $x=(12)(34), y=(56)(13)$, find a permutation a such that $a^{-1} x a=y$.
Proof :
For any σ and any $\mathrm{d} \leq \mathrm{n}$, we have
$\sigma(12 \ldots d) \sigma^{-1}=(\sigma(1) \sigma(2) \ldots . \sigma(d))$

This shows that any conjugate of d-cycle is again d-cycle.
Since every permutation is a product of disjoint cycles, it follows that the cycle structure of conjugate permutations are the same.
In other direction,
Let $\tau=\left(a_{1} a_{2} \ldots . a_{r}\right)\left(a_{r+1} a_{r+2} \ldots . . a_{s}\right) \ldots\left(a_{l} \ldots . . a_{m}\right)$ and $\tau^{\prime}=\left(a_{1}^{\prime} a_{2}^{\prime} \ldots . . a_{r}\right)\left(a_{r+1} a_{r+2} \ldots . . a_{s}\right) \ldots\left(a_{l} \ldots . . a_{m}\right)$
be two permutations having the same cycle structure.
Define $\sigma \in S_{n}$ by $\sigma\left(a_{i}^{\prime}\right)=a^{\prime}$ for $\mathrm{i}=1,2, \ldots, \mathrm{~m}$ then
$\sigma \tau \sigma^{-1}=\sigma\left(a_{1} a_{2} \ldots . a_{r}\right) \sigma^{-1} \sigma\left(a_{r+1} a_{r+2} \ldots . a_{s}\right) \sigma^{-1} \ldots . \sigma\left(a_{l} \ldots . a_{m}\right) \sigma^{-1}$
$=\left(a_{1}^{\prime} a_{2}^{\prime} \ldots . . a_{r}\right)\left(a_{r+1} a_{r+2} \ldots . . a_{s}\right) \ldots .\left(a_{l} \ldots . . a_{m}\right)$
$=\tau^{\prime}$
This shows that τ and τ^{\prime} are conjugate.
Now, Given the permutation $x=(12)(34), y=(56)(13)$
Since that $a^{-1} x a=y$.
$\therefore x a=a y \Rightarrow x=a y a^{-1}$.
$\Rightarrow((12)(34))=a((56)(13)) a^{-1}$
$\Rightarrow((12)(34))(5)(6)=a((56)(13)(2)(4)) a^{-1}$
. $\quad=(a(5) a(6))(a(1) a(3)) a(2) a(4)$
$\Rightarrow 1=a(5), 2=a(6), 3=a(1), 4=a(3)$ and $5=a(2), 6=a(4)$
$\Rightarrow a=\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 6 & 1 & 2\end{array}$
$\Rightarrow a=(134625)$
Checking for a, $a=(134625)$ and $a^{-1}=(526431)=(152643)$
$\therefore a^{-1} x a=(134625)((12)(34))(152643)$
$=(13)(2)(4)(56)=(13)(56)=$ RHS, Hence done.

References

[1] Joseph A. Gallian : Contemporary Abstract Algebra, Ch-5, Brooks/Cole, Cengage Learning, ISBN: 978-0-547-16509-7, 7th Ed. (2010)
[2] David S. Dummit \& Richard M. Foote : Abstract Algebra, Ch-1, John Wiley \& Sons, Inc, ISBN: 0-471-43334-9, 3rd Ed. (2004).
[3] I. N. Herstein : Topics in Algebra, John Wiley \& Sons, Ch-2, 2nd Ed (1975).
[4] John B. Fraleigh : A First Course in Abstract Algebra

