ࡱ> MOLq` ["bjbjqPqP 7N::[t 4"T T T T T T T T """""""$#h%x8"T T T T T 8"T T M"!!!T ^T T "!T "!!!T H >h X!"c"0"!s& !s&!s&!LT T !T T T T T 8"8"!T T T "T T T T    Name ___________________________ Logarithmic Functions Many occurrences in our natural world can be modeled using logarithmic functions, including the strength of earthquakes, the intensity of sound, or the concentration of hydronium ions in a solution. In this activity youll explore the relationship between exponential and logarithmic functions, and determine how to write the formula for a logarithmic function thats the inverse of a particular exponential function. GRAPH INVERSE EXPONENTIAL FUNCTIONS \ Logarithms are related to exponents, so start by graphing an exponential function and finding the inverse graph. 1. Open Logarithmic Functions.gsp. Press the Show Exponential Function button to see the exponential function y = 2x along with its graph. 2. Press the Show Points button to show seven points on the curve. Measure their coordinates, and put the resulting ordered pairs into a table. (With the points selected, choose Measure/Coordinates to find their ordered pairs. With the coordinates selected, choose Graph/Tabulate to place the coordinates in a table). Q1: Notice that some of the x-values are negative. Does this mean that the resulting values of the function are negative? Explain why this is true or not true. ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ Next, interchange the x- and y-values by reflecting the points over the line y = x. 3. Press the Show y=x Line button. With the line selected, choose Transform/Mark Mirror. The line flashes briefly to indicate that it is marked as the mirror. 4. Press Show Points again to select the seven points in order, and choose Transform/Reflect. The seven points are reflected. Show their labels. To show the labels of the selected points, choose Display/Show Labels. 5. Measure the coordinates of the reflected points and tabulate the results. Align the two tables in order to see the original and reflected points next to each other. Q2: What do you notice about the coordinates of each pair of points? ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ Q3: Will any of the x-coordinates of the reflected points be negative? Explain. ___________________________________________________________ ___________________________________________________________ Q4: Why is the line y = x called the axis of symmetry for a function and its inverse? ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ Next reflect the entire graph over the line y = x. 6. Use the Point tool to construct the new point on the original graph, and reflect it over the line y = x. Drag your new point and observe the behavior of the reflected image. The reflected graph is the graph of the inverse of the original function. 7. To create the entire reflected graph, select the point on the graph and its reflected image, and choose Construct/Locus. Change the color of the locus, and make it dashed. On page 2, youll graph y = 10x, reflect it to show its inverse, and compare inverse to the graph of y = log x. 8. On page 2 construct the graph of y = 10x by choosing Graph/Plot New Function and entering 10^x into the Calculator. 9. Construct a point on the graph and reflect it across the graph of y = x. 10. Turn on tracing for the reflected point, and drag the point on the graph observe the shape of the inverse function. 11. Construct the graph of y = log x. Q5: What do you observe about the graph of the log function and the reflected image of the exponential graph? What conclusion can you draw? ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ On page 3 youll graph the exponential function f(x) = kx and use different values for k to find a general formula for the logarithmic function thats the inverse 12. Create a parameter k, by choosing Graph/New Parameter. Label this parameter k and set the value to 2. Use this parameter to construct the graph y = kx. To enter k into the function definition, click its value in the sketch. 13. Construct a point on the graph, reflect it across y = x, and construct the locus. This locus is the graph of the inverse function. Express this inverse as a logarithmic function by stretching or shrinking the parent logarithmic function y = log x. 14. Using the values of a and b, plot the logarithmic function y = a log (x/b). Adjust the sliders so that your newly plotted function matches the inverse of y = kx Q6: What values of a and b made the graphs match? a = ___________ b = ___________ 15. Record the values of k, a, and b in a table by clicking on those values and choosing Graph/Tabulate. Immediately double click on this table to save the values. 16. Change the value of k to 5, match the graphs again, and add a new row of data to the table by double clicking again. Continue adding new data to the table for the following values of k: 10, 100, and 1000. Q7: What pattern can you find to relate the value of k to the values of a and b? ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ Q8: Use this pattern to predict the values of a and b needed when k = 10,000. Test your prediction by gathering another row of data for your table. When k = 10,000, a = __________ and b = _______________. Q9: Now predict the values of a and b needed when k = 0.1, and test your prediction. When k = 0.1, a = __________ and b = _______________. Q10: Use your results to write a formula for the inverse of f(x) = kx. ___________________________________________________________ ___________________________________________________________ EXPLOREMORE Q11: Use algebraic manipulation to explain why your formula from Q10 must be true. ___________________________________________________________ ___________________________________________________________ Q12: A general exponential function can be written as f(x) = a 10(x-h)/b + k. Write the corresponding inverse function in terms of a, b, h, and k. ___________________________________________________________ ___________________________________________________________ '(>?> ?   Z ` y z } ~  ǺǺǺǺǺǬǺǺǺǺ}pǺ}Ǻ_}!hNeeh_X6H*OJQJ]^JhNee6OJQJ]^JhNeeh_X6OJQJ]^J!hNeeh_X56OJQJ]^JhNeeh_XOJQJ\^JhNeeh_X5OJQJ^JhNeeh_XOJQJ^JhNeeOJQJ^J)hNeeh_X5>*CJ OJQJ\^JaJ hNeehNeeOJQJ\^JhNeeOJQJ\^J%'(>?   Z y z   L M . / l m  7$8$H$gdNee $7$8$H$a$gdNee 7$8$H$gd_X["   ! " L M Z [       % ' ) > ? I J L M O P zh`/OJQJ\^Jh`/h_X5OJQJ\^JhNeeOJPJQJ\^JhNeehNeeOJQJ\^JhNeehNeeOJQJ^JhNeeOJQJ\^JhNeeh_X6OJQJ]^J!hNeeh_X56OJQJ]^JhNeeh_XOJQJ^JhNeeOJQJ^J*P Q R j k y #DMNRS[rٿٿٿٿɿɿٿٿٮٿٿمٿٮh`/h_XOJQJ\^Jh`/OJPJQJ\^Jh`/h`/5OJQJ^J!h`/h_X56OJQJ]^Jh`/OJQJ^JhNeeh_X6OJQJ]^JhNeeh_XOJQJ^Jh`/OJQJ\^JhNeeh_XOJQJ\^J4,-st-.TU 7$8$H$gd`/ 7$8$H$gd_X57:;JKZ[ijqrvw~  ,-/012stuµµµµ§§uhxOJQJ\^Jh`/h_X5OJQJ\^JhNeeOJQJ^Jh`/h`/OJQJ^JhNeeh`/OJQJ\^JhNeeh`/OJQJ^Jh`/OJQJ^JhNeeh_XOJQJ^JhNeeh_XOJQJ\^Jh`/OJQJ\^Jh`/OJPJQJ\^J-u-.0123CD\"3KT;=>?@BCFGOU\]nv|hNeehxOJQJ\^JhNeehxOJQJ^Jhxhx5OJQJ^Jhx5OJQJ^JhNeeh_X6OJQJ]^JhNeeh_XOJQJ^JhNeeh_XOJQJ\^Jhxh_X5OJQJ\^JhxOJQJ\^JhxOJQJ^J0BCCDop78i 7$8$H$gd_X   +,89CDGax $KLdfglmopsthOJQJ^J!h h_X6H*OJQJ]^Jh OJPJQJ\^JhNeeh_XOJQJ\^Jh OJQJ^JhxOJQJ^JhNeeh_X6OJQJ]^JhNeeh_XOJQJ^J<0234578<YٻwwwwhNeeh_X6OJQJ]^Jhh_XOJQJ\^JhOJQJ\^JhOJPJQJ\^JhNeeh_XOJQJ\^JhNeeh_XOJQJ^J!h h6H*OJQJ]^JhNeehOJQJ^JhOJQJ^JhNeeh6OJQJ]^J($)+i$TUVWZ[\]^ow{}ʥʥʘʥʥyk^h6OJQJ]^JhhOJQJ]^Jhh_XOJQJ]^J!hh_X6H*OJQJ]^Jh6OJQJ]^JhNeeh_X6OJQJ]^Jh5OJQJ^JhOJQJ^JhNeeh_XOJQJ^JhNeeh_XOJQJ\^JhOJQJ\^Jhh_X5OJQJ\^J#ij#$ ^_`a4 7$8$H$gd 7$8$H$gd_XHZ[`adefgrt  deŴ隐隤yhYOJQJ^JhNeehHOJQJ^Jh_XOJQJ^JhHOJQJ^JhNeeh_X6OJQJ]^J!hh6H*OJQJ]^Jh6OJQJ]^JhNeehOJQJ^JhOJQJ^JhNeeh_XOJQJ^JhOJQJ^J/STWXZ[\]^_abcdsuy{qcYh_XOJQJ^JhNeeh_XOJQJ\^JhYh_X5OJQJ\^JhYOJQJ\^J!hhY6H*OJQJ]^JhNeehYOJQJ^JhY6OJQJ]^J!hYh_X6H*OJQJ]^J!hYh_X6H*OJQJ]^JhNeeh_X6OJQJ]^JhNeeh_XOJQJ^JhYOJQJ^J" ]^fy{!45789:Qkm~ABDEFGqswyξΰ٥ξΰheWOJQJ^JhY5OJQJ^JhNeeh_XOJQJ\^JhYh_X5OJQJ\^JhYOJQJ\^JhYOJQJ^JhNeeh_XOJQJ^JhNeeh_X6OJQJ]^J945ABlm+ , i j v 7$8$H$gdeW 7$8$H$gdY 7$8$H$gd_X%&0;HJK_`lmj q v y z { | ڵ絥ڊykheWh_X5OJQJ^J!heWh_X6H*OJQJ]^JheW6OJQJ]^JhNeeh_XOJQJ\^JheWheW5OJQJ\^JheWOJQJ\^JhNeeh_X6OJQJ]^JhYOJQJ^JhNeeh_XOJQJ^JheWOJQJ^JheWheW5OJQJ^J' G!H!K!L!M!N!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Ķĩ쩙쩃xj쩙]쩙heW6OJQJ]^JheWh_XH*OJQJ^JheWH*OJQJ^J!heWh_X6H*OJQJ]^J heW\hNeeh_X6OJQJ]^JhNeeh_XOJQJ^JhNeeh_XOJQJ\^JheWOJQJ\^JheWheW5OJQJ\^JhNeeheWOJQJ^JheWOJQJ^Jh_XOJQJ^J# ! !G!H!!!""[" 7$8$H$gdeW 7$8$H$gd_X !!Z"["hNeeheWOJQJ^JheWOJQJ^JhRDOJQJ^J50P:p 9/ =!"#$% @@@ NormalCJ_HaJmH sH tH DA@D Default Paragraph FontRi@R  Table Normal4 l4a (k@(No List[ N '(>?ZyzLM./lm,-st- .  T U   B C C D o p 78ij#$ ^_`a45ABlm+,ijv  GH]00000000000000000000000000000000000000000000000000000000000000000000000000000000000@0@0@0@00000000000000000000000000@0@0@0@00000000000000@0@000000@0@00000@00LM./lm,-st- .  T U  B o p #$^Alm+,iv  GH]K0K0 tOI0 I0 I0I0I0I0K0K0K0  DOI0  I0  I0I0I0I0I0I0I0I0I0I0I0I0I0I0 I0I0I0I0I0I0K0K0" #TOVf|K0$ %OI0$I0$I0I0K0I0I0I0I0I0. I0.I0.K0K02 3fCI02I02I0K0K0I0I0I0I0K0< =gCI0<I0<K0K0@ AbK0I0I0K0X;CK0EFgCI0I0I0K0. K0KLDhCI0I0K0, P u ![" !#$&i4 [""%["[]eg[]Z]Z]sx~qv49]333333{|GJLMNZ]Z]  x`/ 9RD(oF_XYNeeH eW@ZZzxZZ[@UnknownGz Times New Roman5Symbol3& z ArialI& ??Arial Unicode MS"qh价&&6l /l /!24NN2HX)?_X2Logarithmic Functions admin_lhs admin_lhsOh+'0 $ D P \hpxLogarithmic Functions admin_lhs Normal.dot admin_lhs8Microsoft Office Word@0@Д`@=hl՜.+,0 hp  The Lamphere Schools/ N Logarithmic Functions Title  !"#$%&')*+,-./0123456789:;=>?@ABCEFGHIJKNRoot Entry Fb>hP1Table(s&WordDocument7NSummaryInformation(<DocumentSummaryInformation8DCompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q