ࡱ>     t{i g}bjbj |x\x\2C' PP$$$8888pT!d8($0X4"z4z4z4Zwʻ$3t6i<lnnnnnnW ~n$XuZwnPPz4z4@J#Pz4$z4ll-z4p]K.Cެ LX0*dN$PԄH‡ԄԄԄnn,bԄԄԄԄԄԄԄԄԄԄԄԄ > :  BRB-ArrayTools Version 4.6 Users Manual by Dr. Richard Simon Biometrics Research Branch National Cancer Institute and BRB-ArrayTools Development Team The EMMES Corporation June, 2020 Table of Contents  TOC \o "1-5" Table of Contents  PAGEREF _Toc485977158 \h 2 Introduction  PAGEREF _Toc485977159 \h 6 Purpose of this software  PAGEREF _Toc485977160 \h 6 Overview of the softwares capabilities  PAGEREF _Toc485977161 \h 6 A note about single-channel experiments  PAGEREF _Toc485977162 \h 10 Installation  PAGEREF _Toc485977163 \h 12 System Requirements  PAGEREF _Toc485977164 \h 12 Installing the software components  PAGEREF _Toc485977165 \h 12 Loading the add-in into Excel  PAGEREF _Toc485977166 \h 12 Collating the data  PAGEREF _Toc485977167 \h 12 Overview of the collating step  PAGEREF _Toc485977168 \h 12 Input to the collating step  PAGEREF _Toc485977169 \h 14 Input data elements  PAGEREF _Toc485977170 \h 14 Expression data  PAGEREF _Toc485977171 \h 14 Gene identifiers  PAGEREF _Toc485977172 \h 15 Experiment descriptors  PAGEREF _Toc485977173 \h 16 Minimal required data elements  PAGEREF _Toc485977174 \h 16 Required file formats and folder structures  PAGEREF _Toc485977175 \h 17 Using the collation dialogs  PAGEREF _Toc485977176 \h 18 Collating data using the data import wizard  PAGEREF _Toc485977177 \h 18 Special data formats  PAGEREF _Toc485977178 \h 24 Collating Affymetrix data from CHP files exported into text format  PAGEREF _Toc485977179 \h 24 Importing Affymetrix data from text or binary CEL files  PAGEREF _Toc485977180 \h 27 Importing Affymetrix Gene ST1.0, 1.1, 2.0, 2.1, Clariom D, Clariom S .CEL files  PAGEREF _Toc485977181 \h 28 Importing RNA-Seq data outputted from Galaxy web tool  PAGEREF _Toc485977182 \h 28 Importing RNA-Seq count data  PAGEREF _Toc485977183 \h 28 Collating data from an NCI mAdb archive  PAGEREF _Toc485977184 \h 29 Collating GenePix data  PAGEREF _Toc485977185 \h 31 Collating Agilent data  PAGEREF _Toc485977186 \h 31 Collating Illumina expression data  PAGEREF _Toc485977187 \h 32 Collating Illumina methylation data  PAGEREF _Toc485977188 \h 33 Importing NanoString .RCC data  PAGEREF _Toc485977189 \h 34 Collating from NCBI GEO Import Tool  PAGEREF _Toc485977190 \h 34 Output of the collating step  PAGEREF _Toc485977191 \h 35 Organization of the project folder  PAGEREF _Toc485977192 \h 35 The collated project workbook  PAGEREF _Toc485977193 \h 35 Filtering the data  PAGEREF _Toc485977194 \h 39 Spot filters  PAGEREF _Toc485977195 \h 39 Intensity filter  PAGEREF _Toc485977196 \h 39 Spot flag filter  PAGEREF _Toc485977197 \h 40 Spot size filter  PAGEREF _Toc485977198 \h 40 Detection call filter  PAGEREF _Toc485977199 \h 40 Transformations  PAGEREF _Toc485977200 \h 40 Normalization  PAGEREF _Toc485977201 \h 41 Median normalization  PAGEREF _Toc485977202 \h 41 Housekeeping gene normalization  PAGEREF _Toc485977203 \h 41 Lowess normalization  PAGEREF _Toc485977204 \h 41 Print-tip Group/Sub Grid normalization  PAGEREF _Toc485977205 \h 42 Single channel data normalization  PAGEREF _Toc485977206 \h 42 Quantile normalization  PAGEREF _Toc485977207 \h 42 Normalization by specified target intensity and percentile  PAGEREF _Toc485977208 \h 43 Normalization by reference array  PAGEREF _Toc485977209 \h 43 Normalization by array groups  PAGEREF _Toc485977210 \h 44 Truncation  PAGEREF _Toc485977211 \h 44 Gene filters  PAGEREF _Toc485977212 \h 44 Minimum fold-change filter  PAGEREF _Toc485977213 \h 45 Log expression variation filter  PAGEREF _Toc485977214 \h 45 Percent missing filter  PAGEREF _Toc485977215 \h 45 Percent absent filter  PAGEREF _Toc485977216 \h 45 Minimum Intensity filter  PAGEREF _Toc485977217 \h 46 Gene subsets  PAGEREF _Toc485977218 \h 46 Selecting a genelist to use or to exclude  PAGEREF _Toc485977219 \h 46 Specifying gene labels to exclude  PAGEREF _Toc485977220 \h 46 Reducing multiple probes/probe sets to one, per gene symbol  PAGEREF _Toc485977221 \h 46 Annotating the data  PAGEREF _Toc485977222 \h 47 Defining annotations using genelists  PAGEREF _Toc485977223 \h 47 User-defined genelists  PAGEREF _Toc485977224 \h 47 CGAP curated genelists  PAGEREF _Toc485977225 \h 49 Defined pathways  PAGEREF _Toc485977226 \h 49 Automatically importing gene annotations  PAGEREF _Toc485977227 \h 50 Importing gene identifiers for custom annotations  PAGEREF _Toc485977228 \h 51 Importing annotations from an existing project with the identical chip type  PAGEREF _Toc485977229 \h 51 Gene ontology  PAGEREF _Toc485977230 \h 51 Analyzing the data  PAGEREF _Toc485977231 \h 53 Scatterplot tools  PAGEREF _Toc485977232 \h 53 Scatterplot of single experiment versus experiment and phenotype averages  PAGEREF _Toc485977233 \h 53 Scatterplot of phenotype averages  PAGEREF _Toc485977234 \h 54 Hierarchical cluster analysis tools  PAGEREF _Toc485977235 \h 55 Distance metric  PAGEREF _Toc485977236 \h 55 Linkage  PAGEREF _Toc485977237 \h 56 Cluster analysis of genes (and samples)  PAGEREF _Toc485977238 \h 58 Cluster analysis of samples alone  PAGEREF _Toc485977239 \h 59 Interface to Cluster 3.0 and TreeView  PAGEREF _Toc485977240 \h 60 Visualizationof samples  PAGEREF _Toc485977241 \h 60 Using the classification tools  PAGEREF _Toc485977242 \h 62 Class comparison analyses  PAGEREF _Toc485977243 \h 63 Class comparison between groups of arrays  PAGEREF _Toc485977244 \h 64 Class comparison between red and green channels  PAGEREF _Toc485977245 \h 68 Gene Set Comparison Tool  PAGEREF _Toc485977246 \h 68 Significance Analysis of Microarrays (SAM)  PAGEREF _Toc485977247 \h 73 Class prediction analyses  PAGEREF _Toc485977248 \h 74 Class prediction  PAGEREF _Toc485977249 \h 74 Gene selection for inclusion in the predictors  PAGEREF _Toc485977250 \h 75 Compound covariate predictor  PAGEREF _Toc485977251 \h 77 Diagonal linear discriminant analysis  PAGEREF _Toc485977252 \h 77 Nearest neighbor predictor  PAGEREF _Toc485977253 \h 77 Nearest centroid predictor  PAGEREF _Toc485977254 \h 78 Support vector machine predictor  PAGEREF _Toc485977255 \h 78 Cross-validation and permutation p-value  PAGEREF _Toc485977256 \h 79 Prediction for new samples  PAGEREF _Toc485977257 \h 82 Binary tree prediction  PAGEREF _Toc485977258 \h 82 Prediction analysis for microarrays (PAM)  PAGEREF _Toc485977259 \h 83 Survival analysis  PAGEREF _Toc485977260 \h 84 Quantitative traits analysis  PAGEREF _Toc485977261 \h 87 Some options available in classification, survival, and quantitative traits tools  PAGEREF _Toc485977262 \h 87 Random Variance Model  PAGEREF _Toc485977263 \h 87 Multivariate Permutation Tests for Controlling Number and Proportion of False Discoveries  PAGEREF _Toc485977264 \h 88 Specifying replicate experiments and paired samples  PAGEREF _Toc485977265 \h 90 Gene Ontology observed v. expected analysis  PAGEREF _Toc485977266 \h 92 Programmable Plug-In Faciltiy  PAGEREF _Toc485977267 \h 93 Pre-installed plugins  PAGEREF _Toc485977268 \h 94 Analysis of variance  PAGEREF _Toc485977269 \h 94 Random forest  PAGEREF _Toc485977270 \h 94 Top scoring pair class prediction  PAGEREF _Toc485977271 \h 94 Sample Size Plug-in  PAGEREF _Toc485977272 \h 95 Nonnegative matrix factorization for unsupervised sample clustering  PAGEREF _Toc485977273 \h 95 Further help  PAGEREF _Toc485977274 \h 96 Some useful tips  PAGEREF _Toc485977275 \h 96 Utilities  PAGEREF _Toc485977276 \h 96 Preference Parameters  PAGEREF _Toc485977277 \h 96 Download packages from CRAN and BioConductor  PAGEREF _Toc485977278 \h 97 Gene color coding for KEGG human disease pathways:  PAGEREF _Toc485977279 \h 97 Find over-presented pathways in a gene list:  PAGEREF _Toc485977280 \h 98 Excluding experiments from an analysis  PAGEREF _Toc485977281 \h 98 Extracting genelists from HTML output  PAGEREF _Toc485977282 \h 98 Creating user-defined genelists  PAGEREF _Toc485977283 \h 99 DrugBank information for a genelist:  PAGEREF _Toc485977284 \h 100 Drug Gene Interaction database information for a genelist:  PAGEREF _Toc485977285 \h 100 Affymetrix Quality Control for CEL files:  PAGEREF _Toc485977286 \h 101 Using the PowerPoint slide to re-play the three-dimensional rotating scatterplot  PAGEREF _Toc485977287 \h 101 Stopping a computation after it has started running  PAGEREF _Toc485977288 \h 102 Automation error  PAGEREF _Toc485977289 \h 102 Excel is waiting for another OLE application to finish running  PAGEREF _Toc485977290 \h 103 Collating data using old collation dialogs  PAGEREF _Toc485977291 \h 104 Example 1 - Experiments are horizontally aligned in one file  PAGEREF _Toc485977292 \h 104 Example 2 - Experiments are in separate files  PAGEREF _Toc485977293 \h 109 Reporting bugs  PAGEREF _Toc485977294 \h 112 References  PAGEREF _Toc485977295 \h 114 Acknowledgements  PAGEREF _Toc485977296 \h 115 License  PAGEREF _Toc485977297 \h 115  Introduction Purpose of this software BRB-ArrayTools is an integrated package for the visualization and statistical analysis of Microarray gene expression, copy number, methylation and RNA-Seq data. It was developed by professional statisticians experienced in the analysis of microarray data and involved in the development of improved methods for the design and analysis of microarray-based experiments. The analytic and visualization tools are integrated into Excel as an add-in. The analytic and visualization tools themselves are developed in the powerful R statistical system, in C, C++ and Fortran programs and in Java applications. Visual Basic for Applications is the glue that integrates the components and hides the complexity of the analytic methods from the user. The system incorporates a variety of powerful analytic and visualization tools developed specifically for microarray data analysis. The software was developed by statisticians experienced in the analysis of microarray data and involved in research on improved analysis tools. BRB-ArrayTools serves as a tool for instructing users on effective and valid methods for the analysis of their data. The existing suite of tools will be updated as new methods of analyses are being developed. Overview of the softwares capabilities BRB-ArrayTools can be used for performing the following analysis tasks: Importing data: Importing your data to the program and aligning genes from different experiments. The software can load an unlimited number of genes. The previous limitation of 249 experiments has been removed beginning with version 3.4, so that there is no pre-set limitation on the number of experiments. However, memory limitations may apply, which depend on the user's system resources. The entire set of genes may be spotted or printed onto a single array, or the set of genes may be spotted or printed over a multi-chip set of up to five arrays. Users may elect whether or not to average over genes which have been multiply spotted or printed onto the same array. Both dual-channel and single-channel (such as Affymetrix) microarrays can be analyzed. A data import wizard prompts the user for specifications of the data, or special interface may be used for Affymetrix or NCI format data. Data should be in tab-delimited text format. Data which is in Excel workbook format can also be used, but will automatically be converted by BRB-ArrayTools into tab-delimited text format. Gene annotations: Data can be automatically annotated using standard gene identifiers, either using the SOURCE database, or by importing automatic annotations for specific Affymetrix or Illumina chips using Bioconductor packages. Starting from v4.3, annotation can also be imported from an annotated existing project with identical chip type. If data has been annotated using the gene annotation tool, then annotations will appear with all output results, and Gene Ontology (GO) classification terms may be analyzed for the class comparison, class prediction, survival, and quantitative traits analyses. Gene Ontology structure files may also be automatically updated from the GO website. Filtering, normalization, and gene subsetting: Filter individual spots (or probesets) based on channel intensities (either by excluding the spot or thresholding the intensity), and by spot flag and spot size values. Affymetrix data can also be filtered based on the Detection Call. For dual-channel experiments, arrays can be normalized by median-centering the log-ratios in each array, by subtracting out a lowess-smoother based on the average of the red and green log-intensities, or by defining a list of housekeeping genes for which the median log-ratio will be zero. For single-channel experiments, arrays can be normalized to a reference array, so that the difference in log-intensities between the array and reference array has median of zero over all the genes on the array, or only over a set of housekeeping genes. The reference array may be chosen by the user, or automatically chosen as the median array (the array whose median log-intensity value is the median over all median log-intensity values for the complete set of arrays). Each array in a multi-chip set is normalized separately. Outlying expression levels may be truncated. Genes may be filtered based on the percentage of expression values that are at least a specified fold-difference from the median expression over all the arrays, by the variance of log-expression values across arrays, by the percentage of missing values, and by the percentage of Absent detection calls over all the arrays (for Affymetrix data only). Genes may be excluded from analyses based on strings contained in gene identifiers (for example, excluding genes with Empty contained in the Description field). Genes may also be included or excluded from analyses based on membership within defined genelists. Scatterplot of experiment v. experiment: For dual-channel data, create clickable scatterplots using the log-red, log-green, average log-intensity of the red and green channels, or log-ratio, for any pair of experiments (or for the same experiment). For M-A plots (i.e., the plot of log-ratios versus the average red and green log-intensities), a trendline is also plotted. For single-channel data, create clickable scatterplots using the log-intensity for any pair of experiments. All genes or a defined subset of genes may be plotted. Hyperlinks to NCI feature reports, GenBank, NetAffx, and other genomic databases. Scatterplot of phenotype classes: Create clickable scatterplots of average log-expression within phenotype classes, for all genes or a defined subset of genes. If more than two class labels are present, then a scatterplot is created for each pair of class labels. Hyperlinks to NCI feature reports, GenBank, NetAffx, and other genomic databases. Hierarchical cluster analysis of genes: Create cluster dendrogram and color image plot of all genes. For each cluster, provides a hyperlinked list of genes, and a lineplot of median expression levels within the cluster versus experiments. The experiments may be clustered separately with regard to each gene cluster. Each gene cluster can be saved and used in later analyses. A color image plot of median expression levels for each gene cluster versus experiments is also provided. The cluster analysis may be based on all data or on a user-specified subset of genes and experiments. Hierarchical cluster analysis of experiments: Produces cluster dendrogram, and statistically-based cluster-specific reproducibility measures for a given cut of the cluster dendrogram. The cluster analysis may be based on all data or on a user-specified subset of genes and experiments. Interface for Cluster 3.0 and TreeView: Clustering and other analyses can now be performed using the Cluster 3.0 and TreeView software, which was originally produced by the Stanford group. This feature is only available for academic, government and other non-profit users. Multidimensional scaling of samples: Produces clickable 3-D rotating scatterplot where each point represents an experiment, and the distance between points is proportional to the dissimilarity of expression profiles represented by those points. If the user has PowerPoint installed, then a PowerPoint slide is also created which contains the clickable 3-D scatterplot. The PowerPoint slide can be ported to another computer, but must be run on a computer which also has BRB-ArrayTools v3.0 or later installed, in order for the clickable 3-D scatterplot to execute. Global test of clustering: Statistical significance tests for presence of any clustering among a set of experiments, using either the correlation or Euclidean distance metric. This analysis is given as an option under the multidimensional scaling tool. Class comparison between groups of arrays: Uses univariate parametric and non-parametric tests to find genes that are differentially expressed between two or more phenotype classes. This tool is designed to analyze either single-channel data or a dual-channel reference design data. The class comparison analysis may also be performed on paired samples. The output contains a listing of genes that were significant and hyperlinks to NCI feature reports, GenBank, NetAffx, and other genomic databases. The parametric tests are either t/F tests, or random variance t/F tests. The latter provide improved estimates of gene-specific variances without assuming that all genes have the same variance. The criteria for inclusion of a gene in the gene list is either a p-value less than a specified threshold value, or specified limits on the number of false discoveries or proportion of false discoveries. The latter are controlled by use of multivariate permutation tests. The tool also includes an option to analyze randomized block design experiments, i.e., take into account influence of one additional covariate (such as gender) while analyzing differences between classes. Class prediction: Constructs predictors for classifying experiments into phenotype classes based on expression levels. Six methods of prediction are used: compound covariate predictor, diagonal linear discriminant analysis, k-nearest neighbor (using k=1 and 3), nearest centroid, and support vector machines. The compound covariate predictor and support vector machines are only implemented for the case when the phenotype variable contains only two class labels, whereas the diagonal linear discriminant analysis, k-nearest neighbor and nearest centroid may be used even when the phenotype variable contains more than two class labels. Determines cross-validated misclassification rate and performs a permutation test to determine if the cross-validated misclassification rate is lower than would be expected by chance. The class prediction analysis may also be performed on paired samples. The criterion for inclusion of a gene in the predictor is a p-value less than a specified threshold value. For the two-classes prediction problem, a specified limit on the univariate misclassification rate can be used instead of the parametric p-value. In addition, a specified limit on the fold-ratio of geometric means of gene expressions between two classes can be imposed. The output contains the result of the permutation test on the cross-validated misclassification rate, and a listing of genes that comprise the predictor, with parametric p-values for each gene and the CV-support percent (percent of times when the gene was used in the predictor for a leave-one-out cross-validation procedure). The hyperlinks to NCI feature reports, GenBank, NetAffx, or other genomic databases are also included. Permits application of predictive models developed for one set of samples to expression profiles of a separate test set of samples. Binary tree prediction: The multistage algorithm constructs a binary tree for classifying experiments into phenotype classes based on expression levels. Each node of the tree provides a classifier for distinguishing two groups of classes. The structure of the tree is optimized to minimize the cross-validated misclassification rate. The binary tree prediction method can be based on any of the six prediction methods (compound covariate predictor, diagonal linear discriminant analysis, k-nearest neighbor using k=1 or 3, nearest centroid, and support vector machines). Unlike the class prediction tool, the compound covariate predictor and support vector machines can be used even for the case when the phenotype variable contains more than two class labels. All the other options of this tool are identical to the class prediction tool. The output contains the description of the binary tree and the result of the permutation test on the cross-validated misclassification rate (if requested by the user). For each node of the tree, the result of the permutation test on the cross-validated misclassification rate, and a listing of genes that comprise the predictor are shown. Listings of genes include parametric p-values, CV-support percent, the hyperlinks to NCI feature reports, GenBank, NetAffx, or other genomic databases. Survival analysis: Uses Cox regression (with Efron handling of ties) to identify genes that are significantly correlated with survival. The output contains a listing of genes that were significant and hyperlinks to NCI feature reports, GenBank, NetAffx, and other genomic databases. The criteria for inclusion of a gene in the gene list is either a p-value less than a specified threshold value, or specified limits on the number of false discoveries or proportion of false discoveries. The latter are controlled by use of multivariate permutation tests. Quantitative traits analysis: Correlates gene expression with any quantitative trait of the samples. Either Spearman or Pearson correlation tests are used. The output contains a listing of genes that were significant and hyperlinks to NCI feature reports, GenBank, NetAffx, and other genomic databases. The criteria for inclusion of a gene in the gene list is either a p-value less than a specified threshold value, or specified limits on the number of false discoveries or proportion of false discoveries. The latter are controlled by use of multivariate permutation tests. Gene Ontology comparison tool: Classes are compared by GO category rather than with regard to individual genes. Provides a list of GO categories that have more genes differentially expressed among the classes than expected by chance. P-values of two permutation tests, HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Gene_Ontology_comparison"LS and KS, are used to select these GO categories. A GO category is selected if the corresponding LS or KS permutation p-value is below the threshold specified by the user. The GO categories are ordered by the p-value of the LS test (smallest first). Gene List comparison tool: Investigates user-defined genelists and selects a set of genelists with more genes differentially expressed among the classes than expected by chance. P-values of two permutation tests, LS and KS, are used to select these gene lists. A genelist is selected if the corresponding LS or KS permutation p-value is below the threshold specified by the user. The gene lists are ordered by the p-value of the LS test (smallest first). Plugins: Allows users to share their own analysis tools with other users. Advanced users may create their own analysis tools using the R language, which can then be distributed to other users who have no knowledge of R. Details about the Plugin utility are covered in a separate manual. A note about single-channel experiments All of the tools within BRB-ArrayTools can be equally run on single-channel and dual-channel experiments. For Affymetrix data, it is suggested that the "signal" field produced in MAS 5.0 should be used as the intensity signal. If the "average difference" field is used as the intensity signal, then genes with negative "average difference" will be automatically thresholded to a value of 1 (log-transformed value of 0), unless the user specifically elects to set those negative average difference values to missing during the log-transformation. For sake of convenience of exposition, we will assume dual-channel data throughout this document. We will refer to log-ratios, though a comparable analysis can be run on the log-intensities for single-channel data. We will also refer to "spots" but for Affymetrix arrays the analog of "spot" is the probe set used to detect the expression of a specified gene. All analyses on log-intensities work exactly the same way as the analyses on log-ratios, but for two exceptions: Data normalization: Dual-channel data is normalized within each array, whereas single-channel data is normalized relative to a designated reference array. See the section on HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Normalization"Normalization for more details. Gene filtering: BRB-ArrayTools includes a special filter for single-channel data, to allow users to filter out genes with more than a minimum percentage of Absent Affymetrix detection calls. Class prediction: To reduce the dominating effect that genes with overall high intensity might have, the single-channel log-intensities are median-centered on a gene-by-gene basis for all class prediction methods. Installation System Requirements BRB-ArrayTools is Windows-compatible software, Windows Vista, 7, 8 and 10. It is designed to be used as an add-in to Excel 2000 or later. BRB-ArrayTools v4.5 is compatible on an Apple MacBook pro machine with Windows OS installed with Apples bootcamp and Parallels Desktop for Mac software. The software can also be installed on a 64-bit machine with Windows OS and 64-bit Excel. BRB-ArrayTools is no longer supported for Excel 97. Installing the software components The BRB-ArrayTools software and associated files may be downloaded from the following website:  HYPERLINK http://linus.nci.nih.gov/BRB-ArrayTools.html http://linus.nci.nih.gov/BRB-ArrayTools.html If you have Excel open, please close Excel before installing BRB-ArrayTools. Loading the add-in into Excel To begin using BRB-ArrayTools, you must have BRB-ArrayTools loaded into Excel as an add-in. For detailed information about loading the add-in, please refer to the  HYPERLINK "http://brb.nci.nih.gov/PowerPointSlides/LoadingAddinsInExcel.ppt" instructions at the BRB-ArrayTools website. Collating the data Overview of the collating step Collating is a process in which your data are read, sorted, and written to a standard Excel workbook format which is "understood" by BRB-ArrayTools. The user inputs three types of data (expression data, gene identifiers, and experiment descriptors) by entering parameters to describe the file format of each data type. BRB-ArrayTools then processes these data files and produces a collated project workbook which is a standard data format used by all the analysis tools included in the software package. Curated gene lists may also be used to define gene functions or pathways, and will be read in at the time of collating. The figure below shows a diagram of the collation process. A note about Excel workbooks A single Excel file (with an .xls extension) is called a workbook, and a workbook may contain one or more spreadsheets called worksheets. A tab-delimited ASCII text file with an .xls file extension, though not a true Excel object, is interpreted by Excel to be a workbook containing a single worksheet.   Input to the collating step The input data files should be tab-delimited ASCII text files. Excel workbooks (where the input data is on the first worksheet if there are multiple worksheets within the workbook) may be used instead of tab-delimited text files. However, BRB-ArrayTools will automatically convert those Excel files into tab-delimited text format. If the user wishes to save a copy of the original Excel files, then the user should first save a copy of those original data files into another folder. The user must enter enough information describing the format of these input data files (such as the column designation of each data element) so that BRB-ArrayTools can find and process these data elements from the input files. Input data elements Expression data In general, BRB-ArrayTools accepts expression data as either tab-delimited text files, or Excel files. For Affymetrix data, BRB-ArrayTools now also accepts expression data in the CEL file format (see the section entitled HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Collating_Affymetrix_data"Collating Affymetrix data from CEL files). BRB-ArrayTools accepts two input file formats for the expression data: (1) arrays horizontally aligned in one file, or (2) arrays in separate files. Both the horizontally aligned and separate files formats can be used with multi-chip sets. If the genes are listed in the same order and there is a one-to-one correspondence between the rows of each of the expression data columns, then the data is said to be aligned. The horizontally aligned data format can only be used when the genes are already aligned, while the separate files format may be used whether or not the genes are already aligned. The user has the option whether or not to geometrically average over replicated spots within an array. For multi-chip sets, genes that are multiply-spotted over several arrays can have replicated spots within the same array geometrically averaged, but replicates across different arrays will not be averaged. For multi-chip sets, the individual arrays are normalized separately, but the data for all arrays within a set will be concatenated to form a virtual array. The required expression data elements are either the red and green signal intensity columns or the log-ratio column (for dual-channel data), or a single signal intensity column (for single-channel data). If a background subtraction is desired for the dual-channel data, then the red and green background columns are also necessary. In addition, a spot flag or spot size column may optionally be entered, to allow spot filtering using these data elements. For Affymetrix data, the Detection Call (Absent, Marginal, or Present) may be used as the spot flag variable for the purpose of flag filtering. For single channel data, all signal intensity values less than 1 will automatically be thresholded to 1 by default, before the log transformation is applied. Users who do not wish to automatically threshold their data can turn off this default action by selecting the Do not threshold to 1 (e.g., CodeLink) checkbox at the time of collating. For CodeLink data, signal intensity values have already been normalized so that half of all signal intensities on an array are between 0 and 1, so that it does not make sense to threshold these values to 1. When the Do not threshold to 1 option is selected, then signal intensity values which are negative or 0 will be set to missing, since a log transformation is not valid on such data values. Please note, however, that the Do not threshold to 1 option is IRREVERSIBLE! Once the negative or 0 values have been set to missing, they can never be thresholded again to 1 by re-filtering the data. Likewise, once the values less than 1 have been thresholded to 1, the negative or 0 values can never be separated from the values in the interval between 0 and 1 and be subsequently set to missing. In order to change the Do not threshold to 1 option, the data must be re-collated. Gene identifiers Various identifiers can be associated with each spot, such as spot numbers, well numbers, clone names, clone identifiers, probe set identifiers, UniGene identifiers, GenBank accession numbers, etc. The gene identifiers may be located alongside the expression data in the same files, or may be contained in a separate file which is used as a look-up table for the genes in all the arrays. For multi-chip sets using a separate gene identifier file, only one gene identifier file should be used for the entire set of arrays. If the gene identifiers are contained in a separate file, then there must be corresponding columns within the expression data file(s) and the gene identifier file, containing gene ids which can be used for matching the gene identifiers with the expression data. The column which is designated within BRB-ArrayTools as clone id should contain an organization-prefixed clone id (e.g., a prefix such as "IMAGE:", "ATCC:", "TIGR:" etc.). These clone ids can be used to link to clone reports in the NCBI database. Note that clone reports in the NCI mAdb database are only available for clones in the NCI Advanced Technology Center inventory or for other expression array sets that are tracked by BIMAS/CIT/NIH. All clone identifiers found within a clone id column that are numeric and have no prefix will be assumed to have a prefix of IMAGE by default. Probe set ids are used to link to feature reports in the NCI mAdb database. Currently feature reports are available only for the Human Genome U133 A and B chips, and for the Mouse Genome U74 A-C chips. For Class Comparison, Class Prediction, and Survival Analysis output, probe set ids are also used for batch query links to NetAffx. UniGene cluster ids and gene symbols are used to search for the UniGene annotation mirrored in the NCBI database. GenBank accession numbers are used to search for the GenBank annotation which is also mirrored in the NCBI database. microRNA Id can be imported in v4.1 as part of the gene identifiers. A minimum of one gene identifier is required for use in collating the dataset. However, the user may wish to enter any or all of the above gene identifiers, if they are available, to enhance the usability of the output from the analyses. Experiment descriptors A file containing experiment descriptors must be prepared by the user and input during collation. Each row in the experiment descriptor file represents an experiment in the dataset (except for the first row which is a header row), and each column represents a descriptor variable whose entries are used to describe each of the experiments. For multi-chip sets, each row in the experiment descriptor file should represent an entire set of arrays performed with the same sample, not a separate row for each individual array. The experiment descriptor file should contain exactly the same experiments as those to be collated (i.e., it should not contain any extra rows representing experiments which are not represented in the dataset to be collated). The first column of the experiment descriptor file should contain the names of the experiments. If the expression data is in a separate file for each array, then these names should be the filenames without the .xls or .txt file extensions. For multi-chip sets with separate data files for each array, these experiment names should be the filenames without the optional _A, _B, _C, _D, and _E suffixes and without the .xls or .txt file extensions. For horizontally aligned data, the order of the arrays in the experiment descriptor file is assumed to correspond to the order of the arrays in the gene expression data file. Each succeeding column in the experiment descriptor file contains a descriptor variable which may be used for labeling purposes, for identifying reverse fluor arrays, for classification analyses, for identifying replicate experiments, for matching between paired experiments, or for specifying the plotting order of the experiments when clustering genes. The user can create as many columns of the experiment descriptor file as he/she finds useful for classifying the arrayed samples. There should be no empty columns between the experiment descriptor columns. Minimal required data elements Although there are many optional data elements that may be input into the collating step, the minimal required data elements for all input formats are as follows: the expression data (either the red and green signals or the log-ratio for dual-channel data, or the single signal intensity for single-channel data), at least one gene identifier (may be located alongside the expression data or in a separate gene identifier file), and at least one experiment descriptor column (the experiment id) in the experiment descriptor file. Required file formats and folder structures Horizontally aligned format For data in the horizontally aligned format, expression data for all experiments are found in one file. Usually the first few columns will be expected to contain gene identifiers. After the gene identifier columns, there should be a set of columns for each experiment in the dataset, and the order of the columns should be the same for each experiment. Also, there should be no extraneous columns at the end of the file. For example, the file may have columns: ProbesetSignal1Detection1Signal2Detection2Signal3Detection3 However, the following set of columns are illegal for the horizontally aligned data format: CloneIdGBAccRed_Exp1Green_Exp1Ratio_Exp1Green_Exp2Red_Exp2Ratio_Exp2Filter There are two reasons why the above set of columns are illegal. First, the data elements do not appear in the same order for experiment 1 (with Red, Green and Ratio) and experiment 2 (with Green, Red and Ratio). Also, there is an extraneous column (Filter) at the end of the file which does not belong to any of the experiments. The above file can be corrected by re-ordering the columns as follows: CloneIdGBAccFilterRed_Exp1Green_Exp1Ratio_Exp1Red_Exp2Green_Exp2Ratio_Exp2 The Filter column will be ignored, since it is neither a gene identifier nor an experiment data element. Also, the Ratio columns will be ignored, because the ratio will be automatically computed from the Red and Green columns. Separate files format For the separate files format, the user should create a data folder consisting exclusively of expression data files (one for each array). The column format (i.e., the order of the data elements) should be the same in all the expression data files. Using the collation dialogs Collating data using the data import wizard To import data into BRB-ArrayTools, the user should go to the ArrayTools -> Import data -> Data import wizard menu item. A wizard will prompt the user for the data type and location of the data elements described above. The user must specify the following information within the wizard screens: Data types (e.g., single or dual channel, single array type or multiple array types, etc.) File type (e.g., horizontally aligned file format or expression data in a separate file for each array) Expression data Gene identifiers Experiment descriptors Wizard screen: data types BRB-ArrayTools can import the following data types using the Data import wizard: 1. Dual-channel intensitiesData consists of red and green channel intensities. Background columns may also be included if intensities have not yet been background-subtracted. Data has not yet been log-transformed.2. Dual-channel ratio or log-ratioData consists of ratios (=red/green) or log-ratios (= log2(red/green)).3. Single-channel intensity or log-intensityData from single channel experiments. Data may or may not have already been log-transformed.4. Affymetrix dataProbeset-level data from Affymetrix GeneChips. Data consists of the Signal (MAS 5.0), Avg Diff (MAS 4.0), or other probeset-level expression summary measure. Data may or may not have already been log-transformed. Important: Each data column must be clearly labeled with a variable name, and data columns should be tab-delimited. The data file should not contain consecutive tabs, except as necessary to denote missing values in the data columns. The dual-channel and single-channel data types (data types #1, #2, and #3 above) may also include optional spot flag or spot size columns, which are used to indicate spot quality. Affymetrix data (data type #4 above) may also include detection call or absolute call columns. Some datasets may fall into more than one category. For instance, the user may have dual-channel data in GenePix files which contain the individual channel intensities as well as a log-ratio column. In that case, the user may elect to import either the individual channel intensities (data type #1 above) or the ratios or log-ratios (data type #2 above), but not both. If the individual channel intensities are imported instead of the ratios or log-ratios, then BRB-ArrayTools will compute the log-ratios from the channel intensities. However, any normalization which had been applied to the log-ratios in the original expression data file will be lost, so the imported data must be re-normalized. Affymetrix data may be imported as single-channel intensity or log-intensity (data type #3 above) or Affymetrix data (data type #4 above). However, the default filtering criteria are different for these two data types, and the filtered data in the collated project workbook will differ slightly unless the user is careful to use the same filtering criteria in both cases. For Affymetrix data (data type #4 above), the user must specify the chip type (e.g., U133, U74, etc.). Wizard screen: file type BRB-ArrayTools can accept either tab-delimited ASCII text files, or Excel spreadsheets (a single worksheet within an Excel workbook). If the file is an Excel spreadsheet, then BRB-ArrayTools will automatically convert it to tab-delimited text file with the same name. The expression data can be saved either in a horizontally aligned file or saved in separate files stored in one folder. Horizontally aligned file In this file format, the data columns are organized into array data blocks, where an array data block is a set of consecutive columns containing data from the same array. The data elements must appear in the same order within each array data block. All gene identifier columns must be placed before the first array. If there are any miscellaneous data columns following the last array data block, then the user must either delete those last columns or place them before the first array. The following figure illustrates an example of a horizontally aligned file with three columns (Green, Red and Flag) in each data block:  Important: If your experiments consist of multiple array types, then each horizontally aligned file must contain arrays of the same type, and you should have one horizontally aligned file for each array type used. The experiments should appear in the same order in each horizontally aligned file. Up to five array types (denoted here as A, B, C, D and E for convenience) may be used, and data from these array types will be concatenated to form a virtual array. Separate files In this file format, each array is stored in a separate file. Each file must have identical format, including the same number of header lines before the data lines. The following example illustrates a file with three columns of data:  Important: The data folder must contain only expression data files. Extraneous files should be removed before collation. If your experiments consist of multiple array types, do not mix arrays of different types in the same data folder. Data for each array type should be stored in a separate folder, and corresponding samples performed on each array type should have the same filename within their respective folders, except that the names may differ by the extension _A, _B, etc. (For example, the user may have a folder called ChipTypeA containing files PatientID001_A.txt, PatientID0234_A.txt and PatID32_A.txt, and another folder called ChipB containing files PatientID001_B.txt, PatientID0234_B.txt and PatID32_B.txt.) Up to five array types (denoted here as A, B, C, D and E for convenience) may be used, and data from these array types will be concatenated to form a virtual array. Wizard screen: expression data To specify the data columns in the expression data file(s), first select the header line that identifies the data columns as well as the first line of data, and then specify the individual column containing the data elements. For the horizontally aligned file format, the user must also select the columns where data for the first array and second array begin. This helps the Wizard to determine how many columns of data belong to each array, and allows the Wizard to calculate the beginning column for each subsequent array. The columns for each array must be placed together, and there should be no miscellaneous columns inserted between the data columns for each array or after the last column of the last array. Here is a brief description of the data columns: Gene identifier column: The Unique ID or Well ID or Spot ID column uniquely identifies each spot (or feature) on the array. If this ID appears more than once within the same file, then it is assumed that the clone has been multiply-spotted onto the array. If the data is Affymetrix, then this column is called Probe Set Name or Probe Set ID. For single channel data: The Signal Intensity column contains the signal values of the spots (or features). If the user has Affymetrix data from MAS 4.0, then the Avg Diff column may be used as the Signal Intensity column. For dual channel data: The Red and Green Intensity columns indicate the intensity of the red and green signal. Log-ratios of red-to-green will be computed from the red and green background-adjusted values. The Red and Green Background columns contains background values to be subtracted from the Red and Green Intensity columns if they are not already background adjusted. These two columns are optional. Optional data elements common to single and dual channel data: The Spot Size column indicates the size of the spot. Some imaging software use the size data for quality control. This column is optional. The Spot Flag column indicates the quality of the spot. Some imaging software set the spot flag values such as 0 or 1 to indicates spot quality. A string such as Failed or Pass may also be used to indicate spot quality. For Affymetrix data, the Detection Call will be used in lieu of the Spot Flag. This column is optional. Note: For single channel data, all signal intensity values less than 1 will automatically be thresholded to 1 by default, before the log transformation is applied. Users who do not wish to automatically threshold their data can turn off this default action by selecting the Do not threshold to 1 (e.g., CodeLink) checkbox at the time of collating. For CodeLink data, signal intensity values have already been normalized so that half of all signal intensities on an array are between 0 and 1, so that it does not make sense to threshold these values to 1. When the Do not threshold to 1 option is selected, then signal intensity values which are negative or 0 will be set to missing, since a log transformation is not valid on such data values. Please note, however, that the Do not threshold to 1 option is IRREVERSIBLE! Once the negative or 0 values have been set to missing, they can never be thresholded again to 1 by re-filtering the data. Likewise, once the values less than 1 have been thresholded to 1, the negative or 0 values can never be separated from the values in the interval between 0 and 1 and be subsequently set to missing. In order to change the Do not threshold to 1 option, the data must be re-collated. Wizard screen: gene identifiers Various identifiers such as spot number, well number, clone number, UniGene cluster identifiers, GenBank accession number or gene title can be associated with each spot. They can be either placed alongside the expression data or stored in a separate gene identifiers file. These identifiers will be hyperlinked in the analysis output. For Affymetrix data, the user has the option of downloading the probeset annotation file directly from BRBs server. These files were originally downloaded from the NetAffx website and have been especially formatted for use with BRB-ArrayTools. Here is an example of a gene identifiers file:  Important: If the gene identifiers are in a separate file rather than in the expression data file, then you must specify which gene identifier in the separate gene identifiers file should be used to match against the Spot ID (Well ID, Unique ID or Probe Set ID) of the expression data file(s). For multi-array sets using a separate gene identifiers file, all gene identifiers should be contained in one file rather than a separate file for each array type. Wizard screen: experiment descriptors In order to facilitate the analysis of your experiments, an experiment descriptors file may be prepared by the user before the collation. If the user does not have experiment descriptors file prepared in advance, the user may elect to have BRB-ArrayTools create a template. Here is an example of an experiment descriptors file:  Except for the first row which is a header row, each row represents an experiment in the dataset. The first column should contain the names of the experiments. Important: For data in separate files format, the experiment names should be the name of the file minus the .xls or .txt file extensions. For data stored in a single file, the experiment names should correspond to the order of the arrays listed in the expression data file. Important: The experiment descriptors file should contain exactly the same experiments as those to be collated (i.e., the experiment descriptors file should not contain any extra rows representing experiments which are not represented in the expression data, nor should any experiment which are present in the expression data be missing from the experiment descriptors file). For multi-chip sets, each row should represent an entire set of arrays performed with the same sample, not a separate row for each individual array. Each succeeding column contains a descriptor variable which may be used for labeling purposes, for identifying reverse fluor arrays, for classification analyses, for identifying replicate experiments, for matching between paired experiments, or for specifying the plotting order of the experiments when clustering genes. The user can create as many columns of the experiment descriptors file as he/she finds useful for classifying the arrayed samples. There should be no empty columns between the experiment descriptor columns. If the dataset contains reverse fluor experiments, then select this checkbox, and specify the column in the experiment descriptor sheet and the labels in this column which indicate the reverse fluor arrays. The log-ratio will be computed as log(green/red) instead of log(red/green) for the reverse fluor arrays. Special data formats BRB-ArrayTools can collate data from two special formats for Affymetrix data, from a special format for data archives downloaded from the NCI mAdb database, and also from a data in GenePix format. For data in these formats, BRB-ArrayTools offers shortcut Special format collation dialogs which allow users to bypass some of the specification fields required in the Data import wizard. Affymetrix data can be exported from MAS 4.0 or 5.0 as probeset-level data (e.g., signals and detection calls from the CHP data) in tab-delimited text files, or imported directly into BRB-ArrayTools from the CEL files. Either of these formats can be imported in BRB-ArrayTools using the Special format collation dialogs. Tab-delimited probeset-level data files can be collated as a single-chip type or multi-chip set, whereas CEL files currently can only be collated as a single-chip type. However, probeset-level expression summaries which have already been exported from other software such as BioConductor or dChip should be imported as text files using the standard Data import wizard. Collating Affymetrix data from CHP files exported into text format To import data from CHP files which have been exported from MAS 4.0 or 5.0, go to the ArrayTools ( Collate data ( Special format: Affymetrix GeneChips ( Probeset-level data menu item. The CHP files should be exported from MAS 4.0 or 5.0 as tab-delimited text files in either the horizontally aligned or separate files input data formats as previously described. Single chip type The single chip type refers to the situation when all the chips which were hybridized were of the same type and format, containing the same probesets. Experiments which used only chip A of a multi-chip set can also be considered as a single chip type experiment. If data is exported in the horizontally aligned input data format, then a Pivot Table should be created containing the absolute analysis data from all experiments that were performed within that chip type, and the pivot table should be exported as a tab-delimited text file. If the data is exported in the separate files format, then the Metrics Table data from each CHP file should be exported as a separate tab-delimited text file in a data folder devoted exclusively to expression data files. The files may contain miscellaneous rows before the column header row, but all files must have the exact same format (and same number of miscellaneous rows before the column header row). Each file should contain data from one chip or array, and the names of the separate files (without the .xls or .txt file extensions) will be used as experiment names in the collated project workbook. In all of the following formats, the Probe Set Name, Signal and Detection are the only required columns from MAS 5.0 data, and the Probe Set Name, Avg Diff and Abs_Call are the only required columns from MAS 4.0 data. All other columns are optional. BRB-Arraytools can automatically recognize the data format of files that have been exported directly from MAS 4.0 and MAS 5.0. However, users who choose to edit the data columns and column headers of their files should follow the format described below, in order for BRB-ArrayTools to automatically recognize the data format. If the column header row is not in any of the following formats, then BRB-ArrayTools will not be able to parse the files automatically. In that case, the user will need to use either the horizontally aligned or separate files collating dialogs (for a single array type) or the multi-chip sets collating dialog (for multi-array sets), in order to collate the data. Expression data in a horizontally aligned file: 1. For expression data output from a Pivot Table in MAS 5.0: Probe Set Name Description Exp1_ Signal Exp1_Detection Exp2_Signal Exp2_Detection 1053_at Human replication 234 P 456 P 1773_at Human farnesyl- 123 P 39 P 2. For expression data output from a Pivot Table in MAS 4.0: Probe Set Name Description Exp1_Avg Diff Exp1_Abs_Call Exp2_Avg Diff Exp2_Abs_Call 1053_at Human replication 234 P 456 P 1773_at Human farnesyl- 123 P 39 P For the above two formats, the prefixes Exp1 and Exp2 will be used as experiment names in the collated project workbook. You may use any other experiment names, but do not use the following special characters \ / : * ? < > | . which have special meanings in Windows. The Probe Set Name column label may also be given as simply Probe Set. The detection (Abs_call) column should be right next to the signal (Avg Diff) column for each experiment. Expression data in a Separate Files format: 1. For expression data output from a Metric Table in MAS 5.0: Probe Set Name Description Signal Detection 1053_at Human replication 234 P 1773_at Human farnesyl- 123 P 2. For expression data output from a Metric Table in MAS 4.0: Probe Set Name Description Avg Diff Abs_Call 1053_at Human replication 234 P 1773_at Human farnesyl- 123 P 3. In addition to the above mentioned file formats, the following file format from the NCBI portal will also be recognized: ID_REF VALUE ABS_CALL AFFX-MurIL2_at -896 A AFFX-MurIL10_at 682 A 4. In addition to the above mentioned file formats, the following file format from mAdb will also be recognized: AffyId Signal Detection Call A28102_at 7.002252579 A AB000114_at 4.121015549 A Gene annotations file format: The gene annotations file is optional. If you have probe set annotation columns other than the Description column, please place them in a separate tab-delimited gene annotation file and use the following column header labels. For multi-chip sets, please place your entire probe set annotation information for all chip types in just one file. ProbeSet - the name of the probe set. Name - the description or title of the probe set. UnigeneID - the Unigene Id. Symbol - the gene symbol. Accession - the GeneBank Id or source of the sequence. Chromosome - the location of the gene in the chromosomal map. Experiment descriptors file: The experiment descriptors file should follow the same format as described in the previous section HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Experiment_descriptors"Experiment descriptors. The first row of the experiment descriptors file should be a column header row, and each subsequent row should represent an individual array. The first column of the experiment descriptors file should contain the experiment labels. When the expression data is horizontally aligned in one file, then the order of the rows in the experiment descriptors file will be assumed to correspond to the order of the array data blocks in the horizontally aligned expression data file. When the expression data is in a separate file for each array, then the experiment labels in the first column of the experiment descriptor sheet must correspond to the expression data filenames (without the .xls or .txt file extensions). Importing Affymetrix data from text or binary CEL files For Affymetrix data, BRB-ArrayTools now also accepts expression data in the CEL file format. However, the user may only input CEL files of a single chip-type, not as a multi-chip set. The Affymetrix CEL file collation in v3.6, currently has the following options namely the MAS5.0, RMA, almostRMA and the GC-RMA methods to compute probeset summaries. All of the above methods use Bioconductor packages to read the .CEL files and compute the corresponding probeset summaries. BioConductor( HYPERLINK "http://www.bioconductor.org/" http://www.bioconductor.org/) is an open source and open development software project for the analysis and comprehension of genomic data implemented in R. The MAS5.0 probe set summaries are computed from .CEL files using the justMAS function in the simpleaffy library from Bioconductor. The algorithm is implemented as described in Affymetrix's 'Statistical Algorithms Reference Guide' - see  HYPERLINK "http://www.affymetrix.com" http://www.affymetrix.com, and in Hubbell et al. (2002) Robust Estimators for expression analysis. Bioinformatics 18(12) 1585-1592). The RMA probe set summaries are computed using the affy package .The RMA method can be summarized as a three step approach that uses a background correction on the PM data (Perfect Match), then applies a quantile normalization and finally summarizes the probe set information by using Tukeys median polish algorithm. References: RA Irizarry, et.al. "Summaries of Affymetrix GeneChip probe level data Nucleic Acids Research, 2003, vol.31, No.4. If there are less than 100 .CEL files, BRB-ArrayTools performs the RMA method to compute probe set summaries. The RMA option uses all the arrays simultaneously to compute the normalization and probe set summaries. However, for large number of arrays(greater than or equal to100), BRB-ArrayTools uses the almostRMA method which is a more memory efficient method. This method uses a random subset of a 100 arrays to develop the quantile normalization and probe effects which are then applied to all the arrays in the dataset. Additionally, these quantiles and probe effects obtained from the subset of arrays are stored under the project folder in a sub-folder called almostRMA( Reference: Darlene Goldstein Bioinformatics 22:2364,2006). The GC-RMA probe set summaries are computed using the gcrma package from Bioconductor.The gc-rma method adjusts for background intensities for Affymetrix data which include optical noise and non-specific binding.The gcrma function converts the background adjusted probe intensities to expression measures using the same normalization and summarization method as RMA. To import Affymetrix CEL files, place the CEL files in a separate data folder, and make sure all the CEL files within the folder are of the same chip type. Then, go to the ArrayTools ( Import data ( Data import wizard menu item. This utility requires the BioConductor affy package to be installed as an R library. If you do not already have this package installed, then you will be prompted to install it before proceeding. After you click OK, the importing process will launch. Note about collating Affymetrix CEL files Please be aware that the collation of CEL files is a very memory-intensive process, and may take several hours to run for a large number of chips. You may wish to check your computers memory capacity, and allow sufficient time if collating a large number of chips.  Importing Affymetrix Gene ST1.0, 1.1, 2.0, 2.1, Clariom D, Clariom S .CEL files You can import Affymetrix ST-Array by clicking ArrayTools-->Import data--> Affymetrix ST-Array Importer. There are eight types of arrays that are supported in BRB-ArrayTools. They are Affymetrix Gene 1.0 ST Array, Gene 1.1 ST Array, Gene 2.0 ST Array, Gene 2.1 ST Array, Clariom D Array and Clariom S Array for Human, Mouse and Rat species. Please refer to  HYPERLINK "http://www.affymetrix.com/estore/browse/level_three_category_and_children.jsp?parent=35868&expand=true&category=35674&fromAccordionMenu=true&subCategory=35674" Affymetrix website for more details. Please note, that this importer does not support Affymetrix Exon arrays. To import your .CEL files, they should be placed in a separate folder, which contains only the .CEL files. After you browsed for your data folder containing the .CEL files, and selected the organism type, the program will attempt to download and install the necessary CDF file and the 'Oligo' package from Bioconductor. At least 2GB of RAM is required to run this Affymetrix Gene ST-array importer. By default, Robust Multi-array Average (RMA) method is used to process the data. The annotations for Affymetrix ST-Array are obtained from Bioconductor. For more details about those annotation packages, please refer to  HYPERLINK "http://www.bioconductor.org/packages/release/data/annotation/" http://www.bioconductor.org/packages/release/data/annotation/. Importing RNA-Seq data outputted from Galaxy web tool Starting from ArrayTools v4.3, RNA-Seq data pre-processed and outputted from the Galaxy web tool ( HYPERLINK "https://main.g2.bx.psu.edu/" https://main.g2.bx.psu.edu/) in tab-delimited .txt file format can be imported into BRB-ArrayTools for further statistical analysis of gene expression. The user needs to run Galaxy tools to obtain the FPKM estimates for each sample. Upon clicking on ArrayTools-->Import data--> Data Import wizard, a dialog form will pop up asking for the data type. From the dropdown list the user can select the RNA-Seq Data from Galaxy as the data type and then browse for the file containing the FPKM estimates to continue. SOURCE annotation can be run at the end of importing. Importing RNA-Seq count data A new feature added in BRB-ArrayTools v4.5 is to import RNA-Seq count data in the count file format generated by HT-Seq or in all-in-one tab-delimted .txt file format with the leftmost column containing the Unique ID for each gene. Clicking on ArrayTools -> Import data -> RNA-Seq count data importer, the user can proceed to select the count data file type and browser for the data file or the folder containing the data files. BRB-ArrayTools utilizes the DESeq2 R package to transform and normalize the count data. Normalized count data will be displayed in the Filtered log intensity worksheet of the project workbook. In the mean time, raw count data will be stored in the project folder for future differential expression analyses. Collating data from an NCI mAdb archive BRB-ArrayTools has a collating interface that allows the National Cancer Institute Advanced Technology Center users to easily collate their data that has been downloaded from the "mAdb" website as a zipped archive. To import mAdb data, go to the ArrayTools ( Import data ( Data import wizard menu item. Currently, this collating interface is only implemented for dual-channel cDNA data, and Affymetrix data from a single chip type. The mAdb collating interface will be modified in the future to handle Affymetrix multi-chip data as well. For now, however, if the user has an mAdb archive that contains Affymetrix multi-chip data, then the user will need to use either the Multi-chip sets or Affymetrix GeneChips collating dialog. With the mAdb collating interface, the user only needs to browse for the folder that contains the unpacked mAdb archive, and for dual-channel data, specify whether or not the genes are aligned and whether or not the data contains reverse fluor experiments. If the data contains reverse fluor experiments, then the user should first edit the array_descriptions file by entering a reverse fluor indicator in column "G", in which reversed arrays are denoted by the label Yes. The zipped archive should be unpacked before collating. When unpacking the archive, please check to make sure the directory structure of the archive has been preserved. When the data for each array is in a separate file, there should be two files array_descriptions_xxx_xxxxxx.xls gene_identifiers_xxx_xxxxxx.xls and a folder array_data_xxx_xxxxxx which are unpacked into the same directory. The array_data_xxx_xxxxxx folder contains all the expression data files, where each file contains the expression data for a single array. Other software developers may also create data archives that are similar in format to the mAdb data archive, which can then be easily imported by their users into BRB-ArrayTools using the NCI Microarray Database (mAdb) archive collation dialog. For documentation on the expected format for the mAdb data archive, please refer to the separate document in the Doc folder of the ArrayTools installation folder entitled HYPERLINK "V3_7AT_With_CGHV1_0-April/V3_7AT_With_CGHV1_0/Doc/mAdb archive format.doc"mAdb archive format.doc. Collating GenePix data BRB-ArrayTools can collate GenePix data with the simplified procedure which will recognize this format and enter all necessary columns automatically as compared to the same collation when it is performed in the data import wizard. To import GenePix data, go to the ArrayTools ( Import data ( Data Import Wizard from the menu item. User then will enter the data files folder location and experiment descriptor file (or use an option to create descriptors automatically from the files names) and will run the collation. Additional options can be set to flip the ratios on reverse fluor arrays, add extra gene identifiers (gene names and ids are entered automatically from the main data files), and average duplicates within arrays. For dual channel data, Red intensity - "F635 Mean" or "Ch1 Intensity (Mean)" Red background - "B635 Median" or "Ch1 Background (Median)". Green intensity - "F532 Mean" or "Ch2 Intensity (Mean)". Green background - "B532 Median" or "Ch2 Background (Median)" For single channel data, Signal - "F635 Mean". We also import other important fields: Unique ID - the "ID" column. Spot Flag - the "Flags" column. PrintTip - the "Block" column. Spot Size - the "Dia." or "Number of Spot Pixels" column Background-adjusted intensities are computed from the foreground mean minus the background median (usually this is F635 Mean B635 Median for the red channel, and F532 Mean B532 Median for the green channel), and the log-ratio is then computed from the background-adjusted red and green intensities. Collating Agilent data In BRB-ArrayToolsv3.6, dual channel Agilent data can be imported using the Data import wizard. Once, the program identifies that it is from the Agilent system then, the following parameters get automatically imported. The ProbeName"as the Unique Id, the"gBGSubSignal"as the green background subtracted signal,"rBGSubSignal"as the red background subtracted signal, the "gNumPix or rNumPix" as the total number of pixels for Spot Size and the "gIsFeatNonUnifOL or rIsFeatNonUnifOL" to indicate if a feature is a population outlier or not and is used as the Spot Flag parameter.For annotations either alongside expression data or in separate file, the ProbeName" gets imported as the Unique ID",gb"as the GenBank Id, the "ug" as the Unique Gene Cluster ID and the "GeneName" as the Gene Symbol. For single channel Agilent data, "gBGSubSignal"will be imported as the signal column Collating Illumina expression data The Illumina expression data can be imported using the Data import wizard. In order to import data using Data Import Wizard, the users need to export their Illumina data through BeadStudio software. As BeadStudio can output both probe profile and gene profile, the probe profile is preferred. For each array, columns with header containing AVG_Signal and BEAD_STD* (where * can be any characters) are required to be exported. For users who would like to apply variance stabilizing transformation (VST) through the lumi package, two additional columns with headers beadNum and Detection are also required in the BeadStudio/GenomeStudio exported file. If either of these two columns are missing, log2 transformation will be applied instead of VST. In addition, the output data file is required to contain columns with the unique ID column header named ProbeID, PROBE_ID or TargetID. Upon clicking on ArrayTools -> Data Import Wizard, the user needs to select the data type as Illumina Single channel data and browse for the data file. Once the program identifies that it is an output file generated using the BeadStudio software, data get imported by the lumi R package available at Bioconductor. The software asks users whether they wishe to lumi package to normalize the data. If non-normalized raw data are imported, they undergo variance-stabilizing transformation, followed by normalization. The users have 5 options to normalize the data: 1) Robust spline normalization (RSN); 2) Loess normalization; 3) Quantile normalization; 4) Rank Invariant normalization and 5) SSN (simple scaling normalization). We recommend users to export non-normalized raw data so as to use the lumi R package to transform and normalize the data. However, if the output data exported from the BeadStudio software are already normalized, the users should answer No to the question about using lumi package to normalize the data. . Starting from v4.2, the users have more options of annotating the Illumina data imported through Data Import Wizard. In order to meet the requirement of different annotation options, users need to make their decisions at the importing step. Three options are available for Illumina data annotation: 1) Custom annotation with the users own gene identifiers file; 2) SOURCE annotation. and 3) Annotation with the annotation package associated with lumi package. The software asks whether the user wants to annotate the probes through lumi. If the user answers Yes to this question, the software informs the user that the ProbeID or TargetID will be converted to NuID that is a unique ID specifically used for annotation through the lumi package. The annotation packages can be downloaded through Bioconductor and used for annotation by the lumi package (option #3). SOURCE annotation cannot be used if the original Unique ID has been converted to NuID. If the user answers No to the above question about lumi annotation, the software directs the user to browse for a gene identifiers file. The user cannot select the radio button The Identifiers are stored alongside the expression data, however, the same data file exported from BeadStudio can be selected as the Gene Identifiers file if some annotation columns such as Gene symbol or Entrez Gene Ids have been exported along with the expression data. This file can directly be used for creating custom annotation (annotation option #1), if the user checks the box Use these gene ids for annotation, instead of using data from SOURCE database. The Gene Symbol column is required for this option, it is a requirement for gene annotation in BRB-ArrayTools. Alternatively, if the user does not check the box, custom annotation will not be conducted. The user can pick one of the columns in the gene identifiers file as query key for SORUCE annotation at the end of importing (option #2). Several gene identifiers can be used as the query key for SOURCE annotation, including Symbol, Accession number, Entrez Gene Id, and Probe Ids starting with ILMN_. Collating Illumina methylation data Staring from ArrayTools v4.3, the Illumina methylation data in the .txt file format can be imported using the Data import wizard. Currently the following four chip types are supported: 1) IlluminaHumanMethylation27k; 2) IlluminaHumanMethylation450k; 3) IlluminaHumanMethylationEPIC; and 4) GGHumanMethCancerPanelv1. The raw data file is a tab-delimited .txt file outputted from either BeadStudio/GenomeStudio software. It is required to have the following columns: 1) TargetID column and 2) The AVG_Beta column for each array. The beta value represents the proportion of methylated signal intensities among all intensities (methylated and unmethylated intensities) in each probe. It is always a number between 0 and 1. In addition, the file could contain columns for the signal intensity data of unmethylated and methylated probes, such as Signal_A and Signal_B, Signal_CY3 and Signal_CY5, or Signal_Red and Signal_Grn, for all samples. Upon clicking on ArrayTools -> Data Import Wizard, the user needs to select the data type as Illumina methylation data and browse for the data file. Once the program identifies the TargetID and AVG_Beta columns, a form pops up to let the user select the chip type. If the user has either the Infinium Human methylation 27k or 450k chip, and the methylated/unmethylated signal data are available in the data file, data get imported by the lumi R package available at Bioconductor. The software continues to ask the user whether he/she wishes to use the lumi package to normalize the data. If the user answers Yes to the question, data will be quantile color balance-adjusted, quantile normalized and then converted to the M values (log2 ratios of methylated over unmethylated normalized signal intensities) using functions in the lumi package, otherwise data will be converted to log2(beta/(1-beta)) values. If the raw data file does not contain the signal intensities of methylated and unmethylated probes, or if the chip type is Golden Gate based, data will be read in using the methylumi package, and will be converted to log2(beta/(1-beta)) values. No matter what chip type it is, or whether normalization has been applied, the processed data will be treated equivalent to log2 ratio data. Starting from BRB-ArrayTools v4.6.0, the Illumina methylation data in the .idat file format can also be imported into BRB-ArrayTools by the use of the minfi R package. Paired _Grn.idat and _Red.idat files, along with a .csv file containing the sample information, are required to be kept under the same data folder. An example of such a sample sheet .csv file is shown as follows, Sample_Name,Sample_Plate,Sample_Group,Pool_ID,Project,Sample_Well,Sentrix_ID,Sentrix_Position LNCaP1,,LNCaP,,,A1,200134080009,R01C01 LNCaP2,,LNCaP,,,A2,200134080009,R02C01 PrEC1,,PrEC,,,A3,200134080009,R03C01 PrEC2,,PrEC,,,B1,200134080009,R04C01 CAF1,,CAF,,,B2,200134080009,R05C01 CAF2,,CAF,,,B3,200134080009,R06C01 For Illumina methylation data, there are 3 different options of annotation: 1) Annotate probes with the users own gene identifiers file; 2) SOURCE annotation. and 3) Annotate probes with the annotation package available at Bioconductor. For options 1) and 2) the user is required to browse for their gene identifiers file, or specify the Gene identifier columns present alongside with the raw data file. Importing NanoString .RCC data A new feature included in BRB-ArrayTools v4.6.0 is to import the NanoString nCounter expression data in the .RCC file format. Clicking on ArrayTools -> Import data -> Data Import wizard, the user can select the NanoString .RCC Data as the data type and then browse for the folder containing the RCC data files. BRB-ArrayTools utilizes the NanoStringQCPro Bioconductor R package to process and normalize the RCC data. The importing procedure includes three preprocessing steps: (1) positive control normalization; (2) Background correction; and (3) RNA content normalization. In the RNA content normalization step, users can select either the global median normalization or the housekeeping gene normalization method to normalize the NanoString data. Normalized data will be displayed in the Filtered log intensity worksheet of the project workbook. In the meantime, the raw count data will be stored in the project folder for further differential expression analyses. Collating from NCBI GEO Import Tool This function allows you to automatically import a GDS dataset from the NCBI Gene Expression Omnibus (GEO) database into BRB-ArrayTools. To import a GEO dataset into BRBArrayTools you only need to provide the GDS number which can be retrieved from the following Entrez interface:  HYPERLINK "http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gds&term=all%5bfilter" http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gds&term=all[filter]. Additionally, you can browse the above webpage to see the available datasets. The Import Tool can process ONLY GEO database entries with a GDS number. The Importer first creates a GDS folder associated with the GDS number that the user entered, it then downloads the GDS data file into the data folder. From the GDS file, it finds the GPL number and downloads and saves the corresponding GPL annotation file into the folder. From GDS file, it extracts the Subset Record such as Sample_id, Description, Protocol to create the Experiment Descriptor file. To import the data into BRB-Arraytools, a project folder called GDSXXXX-Project is automatically created. This Project Folder contains all the files BRB-Arraytools needed to analyze the array data. For Affymetrix Data, the annotations are imported from BRBs Linus server, using a chip type specified by the user. References: 1: Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R. NCBI GEO: mining tens of millions of expression profiles--database and tools update  HYPERLINK "http://nar.oxfordjournals.org/cgi/content/full/gkl887?ijkey=ysG9Li2nfUYJvdZ&keytype=ref" Nucleic Acids Res. 2006 Nov 11; [Epub ahead of print] 2: Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository  HYPERLINK "http://nar.oupjournals.org/cgi/content/full/30/1/207?ijkey=oxMPOWseARs7o&keytype=ref&siteid=nar" Nucleic Acids Res. 2002 Jan 1;30(1):207-10 Output of the collating step Organization of the project folder During the collating step, BRB-ArrayTools will create a project folder either within or alongside the folder that contained the user's original raw data files. This project folder will contain the collated project workbook, as well as supporting files needed by the collated project workbook. The new project folder will contain a BinaryData folder, and possibly also an Annotations or Output folder. The Annotations folder is created if the user chooses to lookup gene annotations from the Stanford SOURCE database. Some BRB-ArrayTools analyses may also produce various output files that will automatically be written to the Output folder. For example, all the plots that appear onscreen in the Cluster viewer page during cluster analysis are also automatically saved into the Output folder, and may be subsequently edited by the user for publication. Please note that only one data project should be collated into a single project folder. Please use a separate project folder for each collated project, and only re-use an existing project folder if you intend to overwrite the existing collated project within that folder. If you are collating into an existing project folder, and the project folder already contains an existing Annotations folder, then the gene identifiers in the existing Annotations folder will be compared against the gene identifiers in your new collated project. If the set of gene identifiers in the existing Annotations folder match up exactly with the set of gene identifiers in your new collated project, then you will be given the option of importing the existing gene annotations into your new collated project workbook, so that you will not need to lookup the Stanford SOURCE database to get those annotations. The collated project workbook The collating procedure produces a collated project workbook. This is an Excel workbook containing three worksheets labeled Experiment descriptors, Gene identifiers, and either filtered log-ratio (for dual-channel data) or filtered log intensity (for single-channel data). All other data variables, such as the red and green background-adjusted signals and raw log-ratios (for dual-channel data), the raw log-intensities (for single-channel data), the spot flag (or Detection Call, for Affymetrix data), and the spot size, are considered auxiliary variables and will be written to separate text or binary files within the project folder. The rows in the gene identifiers worksheet correspond to the rows in the filtered log-ratio (or filtered log intensity) worksheet. The last column of the gene identifiers and filtered log-ratio (or filtered log intensity) worksheets contains an internal filtering variable called Filter containing the labels TRUE or FALSE. To change the filtering criteria for any given analysis, the user should not manually edit the Filter column in these worksheets, but should set the filtering criteria by clicking on the Re-filter the data menu item. Re-filtering the data will cause BRB-ArrayTools to automatically adjust the TRUE/FALSE labels in the Filter column according to the filtering criteria chosen. The experiment descriptors worksheet of the collated project workbook contains an editable copy of the experiment descriptors file which was collated with the data. This copy can be edited by the user to add descriptors to be used in later analyses, as in the example below:  The Array-order descriptor variable, for example, might be used to specify the order of experiments to use when plotting lineplots of gene cluster expression. The gene identifiers worksheet of the collated project workbook contains the gene identifiers whose columns had been specified in the column format section under the gene identifiers page of the collating dialog box.  If the user has chosen to annotate his or data using the defined genelists, then the gene identifiers worksheet will also contain a column labeled Defined genelists, indicating if the genes matched any of those listed in the user defined gene lists. The click-arrows in each cell of the header row may be used to search for specific values of each variable. Column-widths may be adjusted by hovering the cursor between the columns in the lettered column header bar and dragging. The filtered log ratio (or filtered log intensity) worksheet contains the log-ratios (or log intensities) after the specified filtering levels have been applied. These are the data values that will be used for all analyses except the scatterplot of experiment v. experiment, where the log of the channel intensities can also be plotted for dual-channel data. The first column of the worksheet contains the primary gene id, which matches the gene id listed in the first column of the gene identifiers worksheet. Each succeeding column contains the log-ratios obtained from a single experiment. The highlighted yellow columns at the end of the dataset are used internally by BRB-ArrayTools for gene-filtering purposes. The user should not edit this worksheet in any way. BRB-ArrayTools will automatically re-filter this worksheet, if necessary, before running each analysis.  Filtering the data The filtering criteria are specified during the data collating step, and may be changed prior to each analysis. The dialog box for each analysis has a Filter button on the bottom, which can be used to specify or change the filtering criteria for all subsequent analyses. Although the filtering criteria may be changed for each analysis, it may be important to check the filtering criteria before collating the data if the data contains replicate spots for some genes in the array. This is because the spot filtering is applied before averaging the replicate spots, and replicate spots are not re-averaged after the collating step has been completed, even if the user changes the filtering criteria. The Filtered log ratio (or Filtered log intensity) worksheet of the collated project workbook will reflect the filtering actions which have been selected. With the exception of replicated spots, which are filtered before averaging, the supporting files that are located in the project folder will not reflect the filtering actions that have been selected. The order of operations for filtering the data is that spot filters are applied first, then data normalization, then truncation of extreme values, then gene screening. Spot filters Spot filtering refers to filters on spots in individual arrays. Spot filtering is used for quality-control purposes, to filter out "bad" spots. Unlike gene screening, spot filtering does not filter out the entire gene (row), but replaces the existing value of a spot within any given array with a missing value. Intensity filter For dual-channel data, a spot may either be filtered out (excluded) from the analysis, or thresholded (with one signal set equal to the specified minimum) in the analysis. Using the appropriate filtering option, a spot on any array that has a red signal less than the specified minimum and/or a green signal less than the specified minimum will have its log-ratio value filtered out on the filtered log ratio worksheet. Using the thresholding option, a spot on any array which has BOTH signals less than the specified minimum will be filtered out, but a spot that has only ONE signal less than the specified minimum will have the below-minimum value set equal to the specified minimum, in computing the log-ratio value that is shown in the filtered log ratio worksheet. The intensity filter is applied to the background-adjusted red and green signals. For single-channel data, a spot on any array, which has a signal intensity less than the specified minimum, may either be filtered out or thresholded on the filtered log intensity worksheet. Please note that the signal intensity values have already been automatically thresholded to 1 by default, unless the Do not threshold to 1 (e.g., CodeLink) checkbox was selected at the time of collating. If the Do not threshold to 1 option was selected at the time of collating, then negative and 0 signal intensities have already been set to missing, and signal intensities in the interval between 0 and 1 have been left as-is. Please note that the Do not threshold to 1 option is IRREVERSIBLE once the data has been collated! Once the negative or 0 values have been set to missing, they can never be thresholded again to 1 by re-filtering the data. Likewise, once the values less than 1 have been thresholded to 1, the negative or 0 values can never be separated from the values in the interval between 0 and 1 and be subsequently set to missing. In order to change the Do not threshold to 1 option, the data must be re-collated. Spot flag filter The spot flag filter can contain both numeric and character values. The user may specify a numeric range outside of which a numeric flag is considered to be excluded, and/or specify a list of flag values denoting the excluded values. When the flag filter is on, a spot on any array which has an excluded flag value will be filtered out on the filtered log ratio (or filtered log intensity) worksheet. The flag field is optional. For Affymetrix users, a Detection Call column can be designated as the spot flag column at the time of collating, allowing users to filter out expression values that have an A (Absent) call. Additionally, the spot flag column (or Detection Call column, for Affymetrix users) is also used by the Percent Absent Filter, to filter out spots (or probesets) with a large percentage of expression values that have a spot flag (or Detection Call) value of A. Spot size filter The spot size field is optional, but when the spot size filter is on and the spot field is present, then a spot on any array which has a spot size less than the minimum value will be filtered out on the filtered log ratio (or filtered log intensity) worksheet. For Affymetrix data, the number of pairs used to compute the signal can be used as a surrogate for the spot size measurement. Detection call filter For data collated using the Affymetrix GeneChips collating interface, the Detection call filter is a special case of the spot flag filter mentioned above, allowing users to filter out expression values based on the Detection call. The Detection data column is also used by the Percent Absent Filter to filter out probesets with a large percentage of Detection Calls that have a value of A. Transformations A logarithmic (base 2) transformation is applied to the signal intensities (for single-channel data) or intensity-ratios (for dual-channel data) before they are normalized and truncated. The effect of the data normalization and truncation will be reflected in the Filtered log ratio (or Filtered log intensity) worksheet of the collated project workbook. Normalization For dual channel data there are currently four normalization options: median normalization, housekeeping gene normalization, lowess normalization,and print-tip group normalization. Median normalization The median-normalization of dual-channel data is performed by subtracting out the median log-ratio for each array, so that each normalized array has a median log-ratio of 0. Housekeeping gene normalization The user may specify a housekeeping genelist that will be used for normalization. The housekeeping genes normalization of dual-channel data is performed by subtracting out the median log-ratio over housekeeping genes from all the log-ratios on the array. Lowess normalization For dual-channel data, a lowess (or intensity-dependent) normalization option is also available. The median normalization is equivalent to multiplying all of the intensities in one channel of an array by a normalization factor. In some cases it can be advantageous to have a different normalization factor for different intensity levels; i.e., the dye bias may be different for low intensity spots relative to high intensity spots. In the lowess normalization, a non-linear lowess smoother function is fit to the graph of un-normalized log-ratio on the y-axis versus average log intensity (i.e., [log(Red)+log(Green)]/2 ) on the x-axis. This is the so-called M-A plot. The lowess smoother is based on a concatenation of linear regressions for points in overlapping intervals on the x-axis of the M-A plot. This lowess smoother is subtracted from the un-normalized log-ratios for the array in order to obtain the normalized log-ratios. The lowess normalization is much more computationally intensive than the median centering normalization and may require up to 10 seconds per array on some computers using data with 35,000 genes. You may wish to first normalize your data using the default method and then examine M-A scatterplots to determine whether intensity dependent normalization is needed. If most of the points of the M-A plot are distributed equally above and below the 0 value of the y-axis, without a trend over x-values, then intensity based normalization is not needed. The default span parameter for the lowess smoother is set to 2/5.. This means that 2/5 of the total set of data points will influence the smooth at each value. Larger span values give more smoothness. In previous versions, the default span value had been set to 2/3, but this was found to create overly-smoothed curves which did not sufficiently capture the trends which were often found in the tails of the M-A plot. The user is able to change the default span value by editing the LowessSpan parameter value in the Preferences.txt file in the Prefs folder of the ArrayTools installation folder. The Preferences.txt file is a tab-delimited file in which parameter names are stored in the first column and parameter values are stored in the second column. To modify this option you can go to ArrayTools pull down menu select Utilities->Preference and change the options. Then choose the button to Save changes and Exit. Print-tip Group/Sub Grid normalization Global normalization calculates a normalization value for the entire array. This method is vulnerable to spatial effects and non-uniformity of the print-tips. Print-tip or sub-grid normalization attempts to adjust for such systematic variation in dual channel experiments. It is less vulnerable to spatial effects and non-uniformity of signal across an array. Print-tip group may also be called grid or sub-grid. For mAdb data it is called Block. The print-tip group data should be placed along side the expression data with one column for each array. Median Print-tip normalization independently calculates a median value of the log-ratios from the same print-tip group. This value is then applied only to spots from the same print-tip. For example, if an array was produced by a system with 16 print-tips, then 16 normalization values will be used for each array. Lowess Print-tip normalization uses only the intensity data that are from the same print-tip group to calculate a normalization value. This is value is then applied only to spots from the same print-tip. Single channel data normalization Starting from v4.2, more normalization options have been added for single-channel data. There are four methods available as follows: 1) Quantile normalization; 2) Normalization by user-specified target intensity and percentile; 3) Normalization by reference array and 4) Normalization by array groups. Quantile normalization Quantile normalization is a method that makes the distribution of each array identical to a target distribution (Boldstad et al.). The detailed algorithm is as follows, Order the log transformed intensities of each array. Compute the target distribution by calculating the arithmetic means of the ordered log intensities across all arrays. Assign the values in target distribution back to each array based on the rank of each probe (set), i.e. the highest-ranked probe (set) will take the highest value in target distribution, and the second highest-ranked probe (set) will take the second highest value in target distribution, as so on. Normalization by specified target intensity and percentile This normalization method is conducted based on each individual array by subtracting a particular number from all the log2 transformed intensities, such that a user-specified percentile of all probe (set) intensities is equal to the target intensity. The detailed algorithm is as follows, For each individual array, let N be the number of probes/probe sets, and let j be an index of probes/probe sets running from 1 to N. Let X and Y be user-specified target intensity and percentile, respectively. Let the intensity of a particular probe (set) j be Ij. Let the intensity at the Yth percentile be IY. Compute the difference (D) between the log2 transformed intensity at Yth percentile and the log2 (target intensity) by: D = log2(IY) - log2(X) The normalized value (M) for each probe (set) j is calculated as: Mj = log2(Ij) D In the normalization dialog form, there is a Use housekeeping genes only checkbox, through which the user can specify a housekeeping genelist that will be used for normalization. When this option is checked, instead of the full set of probes (probe sets), only the probes (probe sets) on the housekeeping genelist will be used to determine D in the above procedure. Normalization by reference array This normalization method is a combination of Median normalization of single channel data and Housekeeping gene normalization in versions prior to v4.2, where a reference array needs to be selected so as to be normalized against all other arrays. The normalization is performed by computing a gene-by-gene difference between each array and the reference array, and subtracting the median difference from the log-intensities on that array, so that the gene-by-gene difference between the normalized array and the reference array is 0. The user has the option to explicitly select one of the arrays to be the reference array, or ask BRB-ArrayTools to automatically select the median array as the reference array. The algorithm which BRB-ArrayTools uses to select the median array is as follows: Let N be the number of experiments, and let i be an index of experiments running from 1 to N. For each array i, the median log-intensity of the array (denoted Mi) will be computed. A median M will be selected from the {M1, , MN} values. If N is even, then the median M will be the lower of the two middle values. The array whose median log-intensity Mi equals the overall median M will be chosen as the median array. For this normalization option, the user may also be able to specify a housekeeping genelist, over which the median difference will be calculated instead of the full set of probes/probe sets. Normalization by array groups This option allows the users to normalize their data within array groups, or subsets. The user is required to enter the class column that specifies the array groups. For each array group, a median reference array is created based on all the arrays in this group, and each array is normalized against this median reference array using the same algorithm as described in Normalization by reference array. The user cannot pick the reference array for each group. The housekeep genelist option cannot be applied as well. Truncation This option allows the user to specify a maximum intensity (for single-channel data) or intensity ratio (for dual-channel data) to be used for analysis. Any values greater than the specified threshold will be truncated to the threshold. For truncation of intensity ratios, both the intensity ratios and inverse intensity ratios will be truncated (e.g., an intensity ratio threshold of 64 means that all intensity ratios will be truncated to lie between 1/64 and 64). Truncation is primarily used for dual-channel data, where small denominators can cause intensity ratios to become enormous. Gene filters Gene filtering, unlike spot filtering, is not applied on an array-by-array basis for each gene. Instead, it uses a criterion based on all arrays for a given gene, to determine if that gene should be screened out or not. Its purpose is not to filter out "bad" spots, but rather to screen out genes that are not likely to be informative. The last column (labeled Filter) on the Gene identifiers and Filtered log ratio (or Filtered log intensity) worksheets are internally used by BRB-ArrayTools to select the genes that pass the screening. Here the criterion for filtering out a gene is based upon the variability of its log expression values across all arrays after normalization. Filtering low variance genes is not really necessary except for clustering genes, where the computer memory requirements increase rapidly with the number of genes clustered. Several filtering options are available. Minimum fold-change filter Genes that have low variability may be filtered out using the minimum fold-change filter. Here the criterion for filtering out a gene is based upon the percentage of expression values for that gene which have at least a minimum fold-change from the median expression value for that gene. (If the dataset contains 250 or more experiments, then the mean will be used instead of the median for computational efficiency.) The user may specify the minimum fold-change that is required. If less than a specified percentage of expression values meet the minimum fold-change requirement, then the gene is filtered out. Log expression variation filter Alternatively, the filtering can be based on the variance for the gene across the arrays. One can exclude the x% of the genes with the smallest variances, where the percentile x is specified by the user. Or a statistical significance criterion based on the variance can be used. If the significance criterion is chosen, then the variance of the log-ratios for each gene is compared to the median of all the variances. Those genes not significantly more variable than the median gene are filtered out. The significance level threshold may be specified by the user. Specifically, the quantity (n-1) Vari / Varmed is computed for each gene i. Vari is the variance of the log intensity for gene i across the entire set of n arrays and Varmed is the median of these gene-specific variances. This quantity is compared to a percentile of the chi-square distribution with n-1 degrees of freedom. This is an approximate test of the hypothesis that gene i has the same variance as the median variance. Percent missing filter Here the criterion for filtering out a gene is based upon the percentage of expression values that are not missing and not filtered out by any of the previous spot filters. Percent absent filter Here the criterion for filtering out a gene is based upon the percentage of Absent calls in the Spot Flag or Detection variable. This gene filter may be applied independently of the Spot Flag Filter or Detection Call Filter described in the Spot Filters section above, though it uses the same Spot Flag or Detection Call variable. For instance, a user may choose to turn off the Detection Call Filter in order to preserve all Absent expression values as they are, but turn on the Percent Absent Filter in order to exclude probesets that are considered unreliable or uninteresting because too many of the expression values were Absent. In this case, probesets that did not get excluded by the Percent Absent Filter still maintain their expression values even for those values that were Absent. Minimum Intensity filter New to v4.1-Beta_2, is the criterion for filtering out a gene is only applied for single channel data. It is based upon the intensity value at a specified percentile across all arrays. For any given gene, if its normalized log intensity is lower than the specified minimum log intensity, it will be filtered out. Gene subsets Gene subsetting, unlike gene filtering, is not based on the expression data values for the genes, but rather on the identities of the genes. The purpose of gene subsetting is to select or exclude genes which are known to be interesting or non-informative based on one of the gene labels. Selecting a genelist to use or to exclude The user may select one or more genelists that define a gene subset, and filter the data to include only those genes in the selected subset (or exclude the genes from that subset). See the section below on HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Defining_annotations_using_genelist"Defining annotations using genelists for more details on how genelist files are used. Specifying gene labels to exclude The user may choose to exclude genes by specifying a string within one of the gene identifiers as an exclusion criterion. For instance, a user may choose to exclude all empty wells, so the user may choose to exclude all genes with Empty well in the Description column of the Gene identifiers worksheet. Reducing multiple probes/probe sets to one, per gene symbol The program provides an option to use all the probes that correspond to a gene or use only the most variable probe measured by the Inter-Quartile Range (IQR) across all the arrays. For single channel data, an additional option to use only the probe set with the largest expression across all the arrays is also available. By selecting this option, the reduced set of genes is used for downstream analysis. Annotating the data Defining annotations using genelists Genelists are text files containing lists of genes belonging to the same functional grouping, where the filename indicates the functional grouping that describes the set of genes listed in the file. Genelists used for two different purposes within BRB-ArrayTools: (1) to annotate the genes in the dataset; and (2) to subset the data based on functional groupings. One purpose of genelists is to annotate the genes (using the Utilities ( Annotate data ( Match data against genelists menu item). If any of the genes in the user's dataset match any of those in the genelists, then the name of the genelist will appear in a column of the gene identifiers page in the collated project workbook. For example, if the user has the Activating transcription factor 3 gene in his dataset with the identifiers CloneID 428348 and Symbol ATF3, then the CloneID would be matched against the user genelists and found to be in the Example Proliferation genelist file, while the Symbol ATF3 would be matched against the CGAP genelists, and found to be in the CGL:gene_regulation and CFL:transcription genelist files. Thus, an additional column named defined genelists would appear in the gene identifiers page of the collated project workbook, and the entry under the defined genelists column would be Example- Proliferation, CGL:gene_regulation, CGL:transcription for this particular gene. If the user adds or deletes a genelist after the data has already been collated, then the defined genelists column in the gene identifiers page can be updated by clicking on the ArrayTools ( Utilities ( Annotate data using genelists menu item. Another purpose is to subset the dataset based on functional groupings (using the Filter and subset the data menu item, on the Gene subsets tab). When the user chooses one or more genelists with which to subset the data, the subset of genes with a match against any of the gene identifiers listed in any of the selected genelists will be chosen for analysis. Currently there are two basic categories of genelists: user-defined genelists, and genelists that come pre-loaded with BRB-ArrayTools (e.g., CGAP curated genelists, BioCarta pathways, and KEGG pathways). User-defined genelists BRB-ArrayTools allows the user to associate genes with defined functions or pathways through the use of user-defined genelists. User-defined genelists may be stored in two locations: The Genelists\User subfolder of the ArrayTools installation folder contains genelists which are made visible to all projects. Each project folder also contains a Genelists subfolder which contains genelists which are made visible only to the specific project. Genelists placed within either of these folders are simply ASCII text files, where the name of the file denotes the function or pathway that is defined by the genes listed in the file. 1. Genelists using a single gene identifier column: When the genelist contains a single gene identifier type, the first row of the file specifies the type of gene identifier used within the file, and must exactly match one of the following pre-defined labels: UniqueID CloneID ProbeSet Accession UGCluster Symbol Each succeeding row of the file should contain the gene identifier of a specific gene or clone to be included in the list. For example genelist file named CellCyclePathway.txt might contain the following text: Symbol CDC25A CDK2 CDK4 CDK6 CDK7 The ArrayTools\Genelists\User directory currently contains some examples of genelists using this format, which will be used with the BreastSamples dataset that is provided with this package. These example genelists are used with the example dataset, and may be deleted at any time by the user. 2. Genelists using multiple gene identifier columns: Alternately, the genelist file may have a multi-column format, in which each row after the header row represents one gene, and each column represents one type of gene identifier. All the gene identifier types listed in the header line must still exactly match one of the pre-defined labels listed above. For example, the above CellCyclePathway.txt might contain the following tab-delimited text instead: UGCluster Symbol Accession Hs.1634 CDC25A NM_201567 Hs.19192 CDK2 NM_052827 Hs.95577 CDK4 NM_000075 Hs.119882 CDK6 NM_001259 Hs.184298 CDK7 NM_001799 When using such a multi-column genelist format, a particular gene in the dataset is matched against the first unique identifier column (UniqueID or ProbeSet) only, if this column is present in the user defined gene list. Otherwise, it is identified to be of the pathway or function (in this case, the cell cycle pathway) if any of the gene identifier columns is found to yield a match. The ArrayTools\Pathways\Output\BioCarta directory contains some examples of some genelists that use this multi-column format. Some procedures, such as the Class Comparison, Class Prediction, Survival Analysis and Quantitative Traits Analysis tools, will automatically create new user genelists. The name of the genelist produced by these analysis tools is specified by the user before running the analysis. If there is already an existing genelist with the same name, then that genelist will be overwritten. Some plugins also create genelists, though the user usually doesnt specify the name of the genelist in those cases. Beginning with v3.5 of BRB-ArrayTools, the genelists produced by analysis tools and plugins will no longer be used for annotating genes, though they were still be available for defining gene subsets. CGAP curated genelists In the Genelists subfolder of the ArrayTools installation folder, there is also a Cgap subfolder in addition to the User subfolder mentioned above. The Cgap subfolder contains curated gene lists which have been downloaded from the Cancer Genome Anatomy Project website ( HYPERLINK http://cgap.nci.nih.gov/Genes/CuratedGeneLists http://cgap.nci.nih.gov/Genes/CuratedGeneLists). These HTML files have been included with earlier versions of BRB-ArrayTools, but will be phased out beginning with version 3.5, since these curated genelists are not actively being maintained by the CGAP group. Defined pathways BRB-ArrayTools also provides defined pathway genelists in the Pathways\Output subfolder of the ArrayTools installation folder. Currently, BRB-ArrayTools provides BioCarta and KEGG pathways obtained from the Cancer Genome Anatomy Project ( HYPERLINK "http://cgap.nci.nih.gov/Pathways" http://cgap.nci.nih.gov/Pathways) and by using the KEGG.db R package available at Bioconductor ( HYPERLINK "http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html" http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html), respectively. The user may also automatically download pathways and signatures from the Broad Institute/MIT. Automatically importing gene annotations Annotations can be automatically imported by BRB-ArrayTools if the users dataset contains a standard gene identifier type such as the UniGene cluster, gene symbol, clone, or GenBank accession, or if an Affymetrix chip type has been specified. The imported annotations may contain the descriptive gene name, UniGene cluster, gene symbol, Entrez Gene ID, HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Gene_ontology"Gene Ontology, chromosomal location, and other functional annotations. Projects whose gene identifier column headers contain UnigeneID, ClondID, Symbol, EntrezID or Accession can be annotated by using the SOURCE annotation tool. This tool is found under the following menu item: ArrayTools ( Utilities ( Annotate data ( Import SOURCE annotations. Starting from release v4.1, SOURCE annotation can be run on 8 different organisms (human, mouse, rat, bovine, C. elegans, fruit fly, yeast and Arabidopsis) using Clone Id, GenBank Accession number, Gene Symbol, Entrez ID or UniGene Cluster ID as the query key. In addition, for Agilent data, Illumina data whose Unique ID starts with ILMN, and Affymetrix data where custom cdf option is not selected, ProbeID or ProbeSet can also be used as the query key for SOURCE annotation. Affymetrix data can be annotated by downloading pre-formatted R-packages from Bioconductor ( HYPERLINK "http://www.bioconductor.org" www.bioconductor.org) or from the custom cdf file website( HYPERLINK "http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF" http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF), if the custom cdf option is selected.Data which is imported as Affymetrix can be annotated by downloading pre-formatted R-packages from Bioconductor ( HYPERLINK "http://www.bioconductor.org" www.bioconductor.org). This automatic annotation appears as an option in the Data import wizard. If the user did not annotate the data at the time of collating or wishes to update the annotations that have already been imported into the project workbook, the user may run the Affymetrix annotations tool at any later time. This tool is found under the following menu item: ArrayTools ( Utilities ( Annotate data ( Import Affymetrix annotations. The Affymetrix annotation R-packages are updated quarterly by Bioconductor core team, so the user may wish to update the local Affymetrix annotations files by running this tool periodically. Affymetrix annotation can only be run on the Affymetrix array chips with available corresponding annotation packages at Bioconductor. A complete list of these packages is stored in the ArrayTools installation folder (default: C:\Program Files\ArrayTools)\Affymetrix\GeneChipNames.txt. For Illumina expression data, the user can also choose to use the annotation R packages available at the Bioconductor website. In order to use these packages, the Illumina probe ID or Target ID is required to be converted to the NuID using the lumi package. Once the Ids are converted the SOURCE annotation tool cannot be applied using the converted Ids as the query key. This tool is found under the following menu item: ArrayTools ( Utilities ( Annotate data ( Import lumi annotations. As for the Illumina methylation data, annotation can be conducted using the annotation packages available at Bioconductor in a similar manner to the Affymetrix chips. The annotations downloaded by either the SOURCE annotations tool or the Affymetrix annotations tool will be stored in a Gene annotations worksheet inside the project workbook and listed as separate text files under project folders Annotations subfolder. The gene annotation column listed on the analysis results HTML page contains hyper links to the gene annotation HTML page where available annotation terms are shown for each gene listed in the gene table of analysis results HTML page. The gene annotation terms are from gene annotation text files under the project folders annotations subfolder, which are created by ArrayTools annotation utility either based on SOURCE online database or Bioconductor annotations R-packages for Affymetrix data. From release v3.7, a new hyperlink DrugBank is available among other gene annotation terms on the gene annotation HTML page. DrugBank is a unique bioinformatics/cheminformatics resource that combineds detailed drug data with comprehensive drug target information, available online at  HYPERLINK "http://redpoll.pharmacy.ualberta.ca/drugbank/" http://redpoll.pharmacy.ualberta.ca/drugbank/. Once user clicks the hyperlink DrugBank: Query through Gene Symbol, ArrayTools will link to DrugBanks online query page using the specified gene symbol and show the list of drug cards returned in the Web browser. Importing gene identifiers for custom annotations When importing gene identifiers during the data import step, there is a new option added to convert the gene identifiers to gene annotations. By selecting this option, those data sets which have custom annotations can be used as gene annotations for downstream analysis. Importing annotations from an existing project with the identical chip type Starting from v4.3, the annotation information can be imported from an existing project with the identical chip type. The content of the Unique ID/ProbeSet column of the gene identifiers in the current project is required to be identical to the one in the existing project from which the annotation is imported. This can help reduce the redundancy of annotation on multiple projects with the same chip types. However, we do not recommend users to import annotations from a very old project in that they may not obtain the updated annotation information in their newly collated projects. This tool is found under the following menu item: ArrayTools ( Utilities ( Annotate data ( Import annotations from an existing project. Gene ontology Gene Ontology is a structure, controlled vocabulary used to describe gene products in terms of their associated biological processes, cellular components and molecular functions. For more information about Gene Ontology, please browse to  HYPERLINK "http://www.geneontology.org" http://www.geneontology.org. The vocabularies exhibit a complex structure, represented as directed acyclic graphs (DAGs) or networks. The following is an example from the  HYPERLINK "http://www.geneontology.org/doc/GO.doc.html#process" http://www.geneontology.org/doc/GO.doc.html#process .  If the SOURCE or Affymetrix annotation tools have already been run on the dataset, then BRB-ArrayTools can automatically generate the complete Gene Ontology information for all genes in the dataset using the structure files downloaded from the Gene Ontology database. The Gene Ontology information is used in the Gene Set Comparison tool and the GO observed vs. expected ratio option available for class comparison, survival and quantitative traits analysis tools. From release v3.7, the pre-formatted annotation R-package GO downloaded from Bioconductor ( HYPERLINK "http://www.bioconductor.org" www.bioconductor.org) is used in the Gene Ontology related analysis tools within ArrayTools. Analyzing the data Scatterplot tools Scatterplot of single experiment versus experiment and phenotype averages It is frequently of interest to plot the log-ratios of one experiment versus the log-ratios of another experiment. Generally, most of the plotted points, which represent genes with nonmissing values in both experiments, will line up along a 45-degree diagonal line. All genes that pass the filtering criteria will be used in the scatterplot, unless a genelist has been selected. In v4.1.0, the scatter plot tools have been modified to be interactive and provide additional options like modifying the arrays plotted on the axes, highlighting genes from a pathway within the plot, selecting up and down regulated genes,linking genes in different plots and exporting genes to a genelist file. To view details of how to run the plots either 2-D and 3-D you can run the video available on  HYPERLINK "http://linus.nci.nih.gov/PowerPointSlides/Scatterplot.wmv" http://linus.nci.nih.gov/PowerPointSlides/Scatterplot.wmv Scatterplot of phenotype averages To compare the experiments in one phenotype class versus the experiments in another phenotype class, BRB-ArrayTools provides a tool that plots the average log-ratio within one class on the x-axis versus the average log-ratio within the other class on the y-axis. These averages are taken on a gene-by-gene basis, and each gene is represented by a single point in the resulting scatterplot. The experiment descriptor sheet must contain a descriptor variable containing the class labels to be compared. A blank label in this column means that the corresponding experiment will be omitted from the analysis. For this analysis, the column should contain only two unique class labels, and all labels belonging to other classes should be blanked out by the user. Genes that are differentially expressed between the two phenotypes will fall outside of a pair of outlier lines. These outlier lines can be specified by the user to indicate genes for that the fold-difference between the geometric mean of the expression ratios within each of the two classes is greater than a specified amount. As with the scatterplot tool for a single experiment versus experiment, similar functionality is available. Hierarchical cluster analysis tools For a given dataset, hierarchical clustering can occur in two directions: either the genes can be clustered by comparing their expression profiles across the set of samples, or the samples can be clustered by comparing their expression profiles across the set of genes. In BRB-ArrayTools, the data can be clustered in either one or both directions independently. The objects to be clustered may be either the genes or the samples. Hierarchical clustering produces a sequentially nested merging of the genes (or samples) determined by a defined measure of pair-wise similarity or distance between expression profiles. The nested merging is represented by a dendrogram. At the lowest level of the dendrogram, each gene (or sample) is a member of an individual singleton cluster. At the first step, the genes (or samples) with the two expression profiles most similar to each other are merged into a cluster. Then the next two most similar genes (or samples) are joined as a cluster. At each step, the most similar two clusters (including singleton clusters) are joined to form a larger cluster. This might actually involve the joining of two singleton genes (or samples), merging a gene (or sample) into an existing cluster, or merging two clusters formed at a previous step. The distance between two clusters which merge into a single cluster can be read from the scale along side of the dendrogram. Clusters that are merged low on the dendrogram are similar, whereas clusters which are formed by mergers high on the dendrogram may be very heterogeneous. At the top level of the dendrogram, there is a single cluster containing all of the genes (or samples). At the lowest level of the dendrogram the clusters are very homogeneous because they consist of singleton genes (or samples). The tool for hierarchical clustering of genes can be used for perform a cluster analysis of the genes alone, or a cluster analysis of both the genes and the samples, where the output includes an image plot of the log-ratio values where the genes and the samples are sorted according to their dendrogram order. These two tools will be discussed separately below. When performing a cluster analysis of genes or samples, BRB-ArrayTools will create a Cluster viewer worksheet in the collated project workbook, which will display the dendrogram plot. To continue viewing the sequence of plots, click on the Next button at the top of the page. Clicking on the Next button may also bring up a prompt for the user to define discrete clusters from the dendrogram by cutting the tree, if the analyses selected by the users require the definition of distinct clusters. All plots that are shown in the Cluster viewer are also automatically saved as JPEG files in the Output folder of the project folder, and may be subsequently edited using other commercially available graphics software. Several options are available in the clustering procedure for the distance metric and linkage method. Distance metric The options currently available for the distance metric are: one minus (centered) correlation and Euclidean distance. For clustering of samples only, the one minus uncentered correlation is also offered as an additional option. A Pearson (centered) correlation between two experiments X and Y is defined as Si=1 to N (Xi-Xavg)(Yi-Yavg) / [ (Si=1 to N (Xi-Xavg)2) (Si=1 to N (Yi-Yavg)2)] , where the summation index i runs through the N genes in the two experiments, and Xavg is the mean over all the genes in experiment X, and Yavg is the mean over all the genes in experiment Y. (The formula is the same for the Pearson correlation between two genes X and Y, except that the summation index i would run through the M experiments in the dataset.) Pearson correlation is a commonly used measure of similarity of two columns of numbers, and hence one minus Pearson correlation serves as a distance metric. The two columns used in computing correlation contain the normalized log-ratios or normalized log-intensities of the genes for the two samples being compared. When the entire set of genes is not used for clustering samples, it may be appropriate to use the  uncentered correlation metric. The uncentered correlation between two experiments X and Y is defined as Si=1 to N XiYi / [ (Si=1 to N Xi2) (Si=1 to N Yi2) ] , where the summation index i runs through the N genes in the two experiments. If the complete set of genes is used and the experiments have been normalized, then the centered correlation between any two experiments is very similar to the uncentered correlation between those two experiments, because the means of the two normalized data columns are very similar. Euclidean distance is a somewhat different metric. The Euclidean distance between two columns is equivalent to the root-mean-square error between the two columns; it is the square root of the sum of squared differences between the expression levels. The expression profiles of two samples have a large correlation if genes that are highly expressed relative to the mean in one are also highly expressed relative to the mean in the other. The Pearson correlation depends on the patterns of which genes are above and below the mean expression in each profile. Euclidean distance measures absolute differences between expression levels of individual genes rather than on patterns of whether similar genes are up or down regulated relative to each other. The Euclidean distance between two expression profiles is small only if the absolute expression levels of the genes in the two profiles are very similar. The Pearson correlation metric is most commonly used, but it may be worthwhile to examine clustering also with regard to Euclidean distance. Linkage The other option is whether to use the average linkage, complete linkage or single linkage version of the hierarchical clustering algorithm. The distance metric used defines the distance between the expression profiles of two samples. During hierarchical clustering, however, the algorithm must compute the distance between clusters formed at a previous step, or between a singleton and a previously created cluster. With average linkage clustering, the distance between two clusters is taken as the average of the distances between all pairs of elements, one from the first cluster and one from the second. With complete linkage clustering, the distance between two clusters is taken as the maximum distances between an element in the first cluster and an element in the second. With single linkage clustering, the distance between two clusters is taken as the minimum of these distances. Complete linkage clusters tend to be compact, with all members of a cluster relatively equally distant from each other. The results of complete linkage clusters, however, may be heavily dependent upon the elements that were used to start the clusters. Single linkage clusters tend to be long and narrow in multi-dimensional space, containing members very distant from each other but closer to some intermediate member. Average linkage clustering is most commonly used because it provides a compromise between the advantages and disadvantages of the other types. Cluster analysis of genes (and samples) The cluster analysis of genes produces a heatmap image (a matrix of plotted varying colors, representing the over- or under-expression of each gene in each sample), where the rows in the image represent the genes, and the columns in the image represent the samples. The heatmap will be shown in an interactive Dynamic Heatmap Viewer tool. You can zoom in to show special regions of the heatmap, and mouse over to show gene and sample names. There are different metric choices. "1-Correlation" (which centers and scales the genes) or Euclidean distance can be used as the distance matrix. There are also different linkage choices. "Average linkage", "Complete linkage", or "Single linkage" can be used to determine the method of computing the distance between two clusters. Average linkage takes the average of the distances between each possible pair of genes from the two clusters, whereas complete linkage takes the maximum, and single linkage takes the minimum of the distances between each possible pair of genes from the two clusters. The user has the option to order the samples in the image plot based on a cluster analysis of the samples whose dendrogram-order will determine the plotting order of the samples, or based on a pre-defined experiment descriptor variable whose order will determine the plotting order of the samples. If a cluster analysis of the samples is chosen, then the user has the option to center and scale the genes or not, and a dendrogram will be shown on the top of the heatmap. In the heatmap, the genes are sorted in dendrogram-order. The gene list and sample list in the heatmap orders can be exported. Cluster analysis of samples alone Clustering samples is frequently performed using the entire set of genes that pass the established filter levels. In certain cases, the user may wish to use a special gene set for clustering and that is an option. There is an option for whether the genes should be median centered in computing the distance between pairs of samples. In most cDNA arrays using an internal reference channel, it is advisable to use the median gene centering option because it reduces the influence of the expression profile of the internal reference sample, which is often not itself of interest. Another option in the cluster analysis of samples is the ability to compute reproducibility measures. Cluster analysis algorithms always produce clusters, but the clusters are not always reproducible or biologically meaningful. With gene clustering this is less of a problem because we know in advance that gene products are grouped into pathways. It may be a question whether genes in the same cluster are co-regulated, but the existence of biologically meaningful gene clusters is usually not open to question. This is not the case with clusters of samples based on disease tissue from different patients, however. The claim that there are real clusters in many cases represents the substantial claim that the disease is molecularly heterogeneous. Such a claim requires more evidence than the fact that the clustering algorithm produced clusters. Probably the best evidence for reproducibility of clusters of samples is to demonstrate that the clusters that patients tissues are placed in remain the same when the analysis is repeated using RNA independently extracted from each of the same samples. In many cases, however, two experiments based on independently extracted RNA samples for each sample is not available. BRB-ArrayTools provides some alternative, though less compelling, measures of the reproducibility of the sample clusters. The user may select the cluster reproducibility analysis in the dialog box for clustering samples. The reproducibility analysis is based on perturbing the normalized log-ratios (or normalized log intensities for single label oligonucleotide data) and re-clustering the perturbed data. Indices are computed for each cluster in the original data indicating how much the membership of the cluster changed based on the perturbation. The perturbation and re-clustering process is repeated many times (the number of repetitions is defined by the user) and the output is a summary over the replications of the indices of reproducibility for each cluster. The indices are not computed for all clusters in the dendrogram, but rather for all clusters defined by cutting the original dendrogram at a level defined by the user. A similar level is used for re-clustering the perturbed data in each replication. Two reproducibility indices are reported. One is called the Reproducibility or R measure for each cluster. The R measure is based on pairs of samples in a cluster of the data. For each such pair of samples, the program computes the proportion of the replications that those two samples remain in the same cluster. That proportion, averaged over replications and over all pairs of samples in the same cluster, is the R measure for that cluster. An R of 1 means perfect reproducibility of that cluster. An R of 0 means no reproducibility of the cluster. The other index used is the Discrepancy or D measure. Each cluster of the original data has a target cluster in a repetition of the perturbed data. The target cluster is that cluster of the perturbed data that contains the largest number of samples included in the original cluster. The program computes the number of discrepancies as the number of samples in the target cluster but not in the original cluster plus the number of samples in the original cluster but not in the target cluster. This number of discrepancies is computed for each original cluster and averaged over the repetitions. The data is perturbed using Gaussian random noise. The user can specify the variance of the noise if he/she has independent data on the variation over arrays of measurements of independent labelings and hybridization of the same RNA sample. If the user does not specify a value of the variance to be used, the program computes the variance of normalized log-ratios (or normalized log intensities) across all of the arrays for each gene and uses the median variance for the generation of Gaussian perturbations. This estimation is reasonable as long as most genes are not differentially expressed across the arrays. The variance measure used may include some component of biological variation, rather than just experimental variation. The inclusion of biological variability is desirable, although true biological variability would be correlated among sets of genes and the perturbations simulated by the program are generated independently for each gene. For more information about the cluster reproducibility analysis, see the paper Methods of assessing reproducibility of clustering patterns observed in analyses of microarray data by LM McShane, MD Radmacher, B Freidlin, R Yu, MC Li and R Simon in Bioinformatics 18:1462-1469, 2002 also available as a technical report at  HYPERLINK "http://linus.nci.nih.gov/~brb/TechReport.htm" http://linus.nci.nih.gov/~brb/TechReport.htm Interface to Cluster 3.0 and TreeView BRB-ArrayTools now includes an interface to the Cluster 3.0 and TreeView software originally produced by the Stanford group ( HYPERLINK "http://genome-www.stanford.edu" http://genome-www.stanford.edu). This interface allows the user to automatically send data from the BRB-ArrayTools project workbook directly into a Cluster and TreeView analysis. For instance, the user may choose to subset and manipulate the data within BRB-ArrayTools, but view the cluster analysis results in TreeView instead of using BRB-ArrayTools built-in clustering tools. Visualizationof samples Multi-dimensional scalingis a group of methods for representing high-dimensional data graphically in low (usually 2 or 3) dimensions and implemented in Visualization of samples tool. The objective in Visualization of samples is to preserve the pair-wise similarities or distances between objects in the low-dimensional graphical representation. Visualization of samples analysis is similar to cluster analysis in that one is attempting to examine the relations among samples. But Visualization of samples provides a graphical representation of the pair-wise similarities or distances among samples without forcing the samples into specific clusters. BRB-ArrayTools provides Visualization of samples analysis of the expression profiles of the samples. We provide a 3-dimensional representation displayed as a rotating cloud of spheres in which each sphere represents a single sample. Samples whose expression profiles are very similar are shown close together. The options for selecting gene sets, and similarity or distance metrics for the multi-dimensional scaling analysis are the same as for the clustering samples tool. In general, the user will use the same selections in both analyses. For more information on the options for the distance metric, please refer to the HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Distance_metric"Distance metric section under the clustering samples tool. When complete data is used (i.e., data with no missing values), then the multi-dimensional scaling analysis using Euclidean distance is equivalent to a priancipal component analysis. When incomplete data is used (i.e., data which has missing values), then the multi-dimensional scaling analysis using Euclidean distance can be thought of as an approximation of a principal components analysis. When Euclidean distance is used on complete data, then BRB-ArrayTools utilizes the first three principal components as the axes for the multi-dimensional scaling representation. The principal components are orthogonal linear combinations of the genes. That is, they represent independent perpendicular dimensions that are rotations of the gene axes (if the thousands of gene axes could be represented). The first principal component is the linear combination of the genes with the largest variance over the samples of all such linear combinations. The second principal component is the linear combination of the genes that is orthogonal (perpendicular) to the first and has the largest variance over the samples of all such orthogonal linear combinations; etc. The first three principal components are usually good choices for multi-dimensional scaling representation, though they are not necessarily the best choice for observing clustered structure. Options on the multi-dimensional scaling dialog box provide the user control of the labeling of samples in the graphical display. The 3-D rotating plot contains controls for controlling the axis and speed of rotation. The user may also stop the rotation and use his/her mouse (holding the button down) to brush some of the points to obtain identification of the samples represented by those points. The Visualization of samples dialog box also provides an option for computing a global statistical significance test of whether the expression profiles are clustered. This global test of clustering is based upon the first three components obtained from a multi-dimensional scaling of the samples, which is equivalent to the first three principal components for complete data (i.e., data with no missing values) when the Euclidean distance metric is used. When computing the multi-dimensional scaling components for input into the global clustering procedure, the computation of the distance matrix is slightly different from the computation used in the rotating scatterplots. This is to ensure that the resulting multi-dimensional scaling coordinates are as analogous to principal components as possible, since the analogous relationship between multi-dimensional scaling coordinates and principal components exists only when the Euclidean distance is used. If the user chooses the centered correlation metric, then the samples are first centered by their means and standardized by their norms, and then the multi-dimensional scaling components are computed using a Euclidean distance on the resulting centered and scaled sample data. If the user chooses the uncentered correlation metric, then the samples are fist standardized by their norms, and then the multi-dimensional scaling components are computed using a Euclidean distance on the resulting scaled sample data. If the user chooses Euclidean distance as the distance metric, then there is no difference between the multi-dimensional scaling components used in the global test of clustering and that used in the rotating scatterplots. In v4.2, a new feature has been added that allows the user to specify either a pathway, genelist or a gene symbol for each of the axes. If a pathway/genelist is selected then all the genes in the dataset that match the pathway are used when computing the principle components. The statistical significance test is based on a null hypothesis that the expression profiles come from the same multivariate Gaussian (normal) distribution. A multivariate Gaussian distribution is a unimodal distribution that represents a single cluster. The global test of clustering can be computed only when the user has at least 30 experiments in his or her dataset. More information about the global tests of clustering is available in Methods of assessing reproducibility of clustering patterns observed in analyses of microarray data by LM McShane, MD Radmacher, B Freidlin, R Yu, MC Li and R Simon, Journal of Computational Biology 9:505-511, 2002 and also available as a technical report at  HYPERLINK "http://linus.nci.nih.gov/~brb/TechReport.htm" http://linus.nci.nih.gov/~brb/TechReport.htm Using the classification tools It is frequently of interest to determine whether samples of different phenotypes or samples collected under different conditions differ with regard to expression profile. For example, one class of samples may consist of breast tumors that contain BRCA1 mutations and the other class may consist of breast tumors that do not contain such mutations (I Hedenfalk, et al., Gene expression profiles of hereditary breast cancer, New England Journal of Medicine 344:549, 2001). Another example is comparing tumors that respond to therapy to those that do not. There are numerous microarray studies that have objectives of this type. This type of problem has been called class prediction in distinction to class discovery because the classes, or phenotypes, of the samples to be compared are known in advance of the expression profiling. Cluster analysis is not usually the most effective tool for addressing class prediction problems. Clustering of samples is usually based on the entire set of genes represented on the experiment. Since the classes to be distinguished may differ only with regard to a relatively small subset of these genes, these differences may be dominated by variations among the thousands of other genes used in the clustering distance metric. Whereas perusal of the image plot associated with clustering the samples and the genes may reveal some genes that appear to distinguish the classes, the visual approach is error prone without statistical confirmation that the clusters observed do not represent patterns obtained by chance from screening thousands of genes for those that sort the samples. BRB-ArrayTools contains two powerful tools for comparing expression profiles among pre-defined classes. They are found under the Class comparison and Class prediction menu items. Both tools presume that the data consists of experiments of different samples representative of the classes. The experiments should represent replication at the highest level, incorporating biological variability. That is, if we are comparing expression profiles of BRCA1 mutated breast tumors to non-BRCA1 mutated breast tumors, we need samples from breast tumors of different patients in both categories. It is not sufficient to compare replicate experiments of one RNA sample from a BRCA1 mutated tumor to one RNA sample from a non-BRCA1 mutated breast tumor. Comparing two RNA samples, regardless of how many experiments have been run with those two samples, cannot support conclusions about the influence of BRCA1 mutation on expression profiles. If cDNA arrays are used, the two class prediction analyses in BRB-ArrayTools assume that a common internal reference sample has been used in all experiments, or that a patient-specific normal tissue reference is used for the experiments. Class comparison analyses Class comparison between groups of arrays The Class Comparison Between Groups of Arrays Tool is used for comparing 2 or more pre-defined classes. The classes to be compared are defined by a column of the experiment design worksheet. The codes used in a column can be any set of numerical, character or character string codes. If an entry for a particular experiment is left blank in defining the column, that experiment will be omitted from the class comparison analysis. The ability of the user to define columns in the experiment design worksheet to specify class comparison analyses enables the user to import his/her complete set of experiments into BRB-ArrayTools once and to conduct a variety of different comparisons guided by different columns. Two options presented for the Class Comparison Between Groups of Arrays Tool are important for some situations: the ability to pair samples, and the ability to average over replicate experiments. If two classes are compared and the experiments are paired, then the paired t-test option should be selected. For example, if experiments have been prepared for the primary tumor and metastatic tumors of each patient, then the paired t-test option is appropriate and may improve the statistical power of the analysis. If multiple technical replicates have been performed for some RNA samples, then the analysis must either be based on selection of a single replicate for each RNA sample or the averaging option should be used. The test is based on comparing the differences in mean log-ratios (or log-intensities) between classes relative to the variation expected in the mean differences. The variation is computed assuming that all the samples are independent. If there are multiple experiments for the sample RNA sample, then the within-class variation will under-estimate the inter-class variation in means to be expected. The user should either omit technically inferior experiments, arbitrarily choose between technically satisfactory experiments that are tightly correlated (as determined using the Scatterplot tool), or utilize the averaging option. A combination of these approaches may also be used. If the averaging option is selected, the user must specify a column of the experiment design worksheet that provides RNA sample identifiers so that the tool can identify when there are multiple experiments for the same RNA sample. When analyzing paired sample, samples with replicated pairing id and classification labels will automatically be averaged. For further information, refer to the following section entitled HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Specifying_replicate_experiments_an"Specifying replicate experiments and paired samples. The minimum number of arrays required to run the Class Comparison tool is atleast two arrays per class. The Class Comparison Between Groups of Arrays Tool computes a t-test or F-test separately for each gene using the normalized log-ratios for cDNA arrays and the normalized log-intensities for one color oligonucleotide arrays. The F-test is a generalization of the two-sample t-test for comparing values among groups. The user also has the option of using the random variance version of the t-test or F-test. This is generally advisable, particularly when the number of samples per class is small. The random variance tests are discussed in more detail below. They provide for sharing information among genes of the within-class variance in log-ratios or log signals. The class comparison tool computes the number of genes that are differentially expressed among the classes at the statistical significance level selected in the F-test menu and creates a gene list containing information about the significant genes. Several other important statistics are also computed. The tool performs random permutations of the class labels (i.e., which experiments correspond to which classes). For each random permutation, all of the t-tests, F-tests or random variance t-tests and F-tests are re-computed for each gene. The Class Comparison Between Groups of Arrays Tool computes the proportion of the random permutations that gave as many genes significant at the level selected by the user as were found in comparing the true class labels. That p value provides a global test of whether the expression profiles in the classes are different. This test is also robust; although it uses the number of genes significant by the F-test as a statistic, it generates the permutation p-value of that statistic. In comparing classes, it is statistically easier to determine reliably whether expression profiles for pre-defined classes are different than to reliably determine exactly which genes are differentially expressed among the classes. The latter problem more directly confronts the multiple comparison problem. For example, suppose that we select a significance level of 0.001 for including genes in the gene list. If there are 8000 genes on the experiment, then we expect by chance that 8 genes on the gene list will be false positives. If we obtain 24 genes on the gene list, then about one third of them are false positives. If we obtain 80 genes on the gene list, then about one tenth of them are false positives. Traditionally multiple comparison corrections used in statistical analyses are much more stringent, usually requiring that the chance of any false positives be very small. For most microarray analyses, such conservatism is not appropriate. However, gene lists will not be a useful basis for further experimentation if they are heavily populated by false positives. For example, if we select a significance level of 0.01 instead of 0.001, then we expect by chance that 80 genes on the gene list will be false positives. Having 80 false positives makes interpretation or planning confirmatory experiments very problematic. So using a relatively stringent 0.001 is usually appropriate. With that stringency, however, there may be a substantial chance of false negatives; that is, some genes that are differentially expressed among the classes will not be found significant at the 0.001 level. The false negative rate will depend on the sample size, the within-class variation among samples and the average fold difference between classes for the gene. Hence, although the statistical power for detecting individual genes is limited by the stringency needed to control the false positive rate, the global test of whether the classes differ with regard to expression profiles will have better power for establishing that the expression profiles are different. Because a single global test is performed, obtaining a p value of less than 0.05 is sufficient to establish that the expression profiles are different. Multiple comparison stringency needed for inferences about individual genes is not needed for the global test. The Class Comparison Tool also provides univariate or multivariate permutation tests for the significance of individual genes. The univariate permutation tests are computed separately for each gene. The proportion of the permutations of the class label giving a t-test or F-test p value as small as obtained with the true class labels is the univariate permutation p value for that gene. Additionally beginning with BRB-ArrayToolsv3.4.0, if the user requests that the gene list consist of those genes significant at a specified threshold p value, then the multivariate permutation tests are not performed. The output gene list table is ordered by univariate p value with the most significant genes listed first. One of the columns contains an estimate of the false discovery rates. The false discovery rate associated with a row of the table is an estimate of the proportion of the genes with univariate p values less than or equal to the one in that row that represent false positives. The method of Benjami and Hochberg is used for this estimation. This method is less accurate than the method used in the multivariate permutation test method, but is easily computed and has been widely used. For the ith gene in the table, the estimated false discovery rate is m x pi / i where pi is the univariate p value for the ith most significant gene and m is the total number of genes tested (after filtering). Benjamini Y and Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B 57: 289-300, 1995. When the univariate significance level option is selected, the user will be given the option of computing univariate p values based on permutation t-statistics (or univariate F statistics if there are more than 2 groups) in addition to the t-tests (or F-tests). We have made the default not to report the univariate permutation significance levels for the following reason. When the number of samples is large, the permutation test will generally agree with the t/F test. When the number of samples is small, the permutation tests lack power for establishing statistical significance at stringent threshold p values. Additionally, the output will always contain a permutation based global test of the null hypothesis that there is no relationship between expression profile and class label. Suppose, for example, the user has requested that the gene list consist of genes with univariate significance levels (t/F tests) of 0.001 or less and suppose that n such genes are obtained. The global test will generate random permutations of the class labels and compute the t/F tests for all genes using the randomly shuffled class labels to compare the classes. The output will contain the proportion of randomly shuffled permutations for which there were at least n genes found that were significant at the 0.001 level or less. The multivariate permutation tests are much more effective than the univariate permutation tests when the number of samples per class are small because there may not be enough distinct permutations to give a permutational p value below a stringent level such as 0.001. The multivariate permutation tests are described in more detail in a later section. They provide the ability to control the number of genes in the discovery list that are false discoveries (i.e. false positives) and the ability to control the proportion of false discoveries in the discovery list. For example, the user can specify that he/she wants 90% confidence that the discovery list contains no more than 10% false discoveries. The multivariate permutation tests are similar in spirit to the Statistical Analysis of Microarrays (SAM) method, although they provide tighter probabilistic control on the number and proportion of false discoveries (Tucher et al. 2001 in reference list). SAM analysis is provided as a separate tool. A new feature added to v4.5 is an option to find differentially expressed genes by controlling the local false discovery rate (Efron et al., 2001). This method uses an empirical Bayes approach for two-class or paired samples microarray data. Consider the two-class problem for example. For the ith gene a two-sample t-statistic ti is calculated and transformed to a z-value, zi = -1(Fn-2(ti)) where  is the cumulative distribution function (cdf) of the standard normal distribution and Fn-2 is the cdf of a standard T distribution with (n-2) degrees of freedom. Let 0 be the (prior) probability a gene is null (non-differentially expressed). The Bayes posterior probability that gene i is null given zi can be expressed using Bayes theorem as : Prob( gene i is not differentially expressed |  EMBED Equation.3 ) = EMBED Equation.3 , where  EMBED Equation.3  is the density function of Z for non-differentially expressed genes and  EMBED Equation.3 is the density of Z for differentially expressed genes. In this formula,  EMBED Equation.3  denotes the overall distribution of the Z values, including null and non-null genes. The prior probability that a gene is null is generally close to one, so we can set 0=1 and obtain an approximation to the posterior probability that a gene is null given it s Z value as  EMBED Equation.3 . This posterior probability is called the local false discovery rate. In BRB-ArrayTools,  EMBED Equation.3  is computed from the standard N(0,1) density. The density function  EMBED Equation.3  is estimated using the nlpden function provided by Wager (2014). An option in the Class Comparison Between Groups of Arrays Tool allows the user to control for a potentially confounding factor while comparing classes. For example, you could compare expression profiles of tissue from two types of tumors while controlling for the gender of the patients from which the tissue was taken. You could also control for technical factors such as print set of the arrays. The analysis performed is an analysis of variance for a randomized block design. Two linear models are fit to the expression data for each gene. The full model includes class variable and the block variable, and the reduced model includes only the block variable. Likelihood ratio test statistics are used to investigate the significance of the difference between the classes. The random variance option is also available for this analysis of variance and multivariate permutation tests are applied to the resulting significance levels. New to v3.8, is an option to restrict the significant genelist by a fold change criteria. This is available under the options button on the dialog. The HTML output has been enhanced in this release to include a heat map of the significant genes. This heat map is generated after clustering the significant genes and samples. The grey color scale is used for single channel data and the default red-green color scale is used for dual channel data. The parameter to control the level of truncation can be modified in the preference option. Under the ArrayTools pull down menu there an option called utility->Preference and you can change the parameter Heatmapthreshold. Also included in this release is an interactive plot namely volcano plot for two classes or parallel coordinate plot for more than two classes. Each point in the volcano plot for example represents a gene from the list of significant genes. By clicking on any point in the plot ,the corresponding gene symbol will appear.New to v4.1 , a pair-wise comparison on a class variable with more than 2 class levels will be automatically tested. The test is based on simple T-test. Users can change the default P-value threshold from the 'Options' dialog. On the HTML output, a new column 'Pairwise significant' will be included in the table of "Genes which are differentially expressed among classes". For example, (1,3) means class 1 and class 3 are different for that specific gene at the specified P-value threshold. Starting from v4.4.0, the Class Comparison and Quantitative Analysis tools automatically create an Ingenuity IPA (Ingenuity Pathway Analysis) output file that contains a list of significant genes. This output file can be directly imported into Ingenuity IPA tool without any modifications. References: Efron, B., Tibshirani, R., Storey, J.D., and Tusher, V. Empirical Bayes analysis of a microarray experiment. Journal of the American Statistical Association, 96(456):1151-1160, 2001. Wager, S. A Geometric Approach to Density Estimation with Additive Noise.Statistica Sinica, 533-554, 2014. Class comparison between red and green channels In v3.6, the Class comparison between red and green channels has been replaced by an enhanced ANOVA plug-in of log intensities. The plug-in is used for finding genes differentially expressed between two classes for two-color arrays without a common reference sample. It can also be used to compare samples of one class with the reference samples in the common reference design. For additional details on the plug-in you can refer to HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Pre-installed_plugins"ANOVA on log-intensities Gene Set Comparison Tool The gene set comparison tool analyzes pre-defined gene sets for differential expression among pre-defined classes. The user chooses which pre-defined gene sets to analyze, which may be defined by user own genelists or based on Gene Ontology categories, BioCarta pathways, KEGG pathways, protein domains, transcription factor targets, microRNA targets, and the Broad Institutes Molecular Signature DataBase (MsigDB) gene set collections. We will describe the Gene Set Comparison tool in the context of evaluating Gene Ontology gene sets. The evaluation of which GO categories are differentially expressed among phenotype classes is performed using a functional class scoring analysis as described by Pavlidis et al. (2004). Functional class scoring is a more powerful method of identifying differentially expressed gene classes than the more common over-representation analysis or annotation of gene lists based on individually analyzed genes. It indicates which gene sets contain more differentially expressed genes than would be expected by chance. First a p-value is computed for each gene in a GO category. Then the set of p-values for a GO category is summarized by the LS and KS summary statistics. For a set of N genes, the LS statistic LS = "i=1N(-log(pi) )/N is defined as the mean negative natural logarithm of the p-values of the appropriate single gene univariate test. The KS statistic KS = maxi=1N (i/N-pi), p1 d" p2 d" & d" pN is defined as the maximum difference between i/N and pi, where pi is the ith smallest p-value of the univariate test. This is the Kolmogorov-Smirnov statistic for testing if the p-values are of a uniform distribution. The statistical significance of a GO category containing N genes is evaluated by computing the empirical distribution of these summary statistics in random samples of N genes. The significance values are based on testing the null hypothesis that the list of genes that belong to a given GO category is a random selection from the project gene list, against the alternative hypothesis that it contains more genes differentially expressed between the classes being compared. WARNING: Only use the gene set comparison tool with a gene list that has been subjected to non-specific filtering. Do not use this tool with a list of differentially expressed genes identified by class comparison analysis in BRB-Array Tools as the statistics are invalid". The re-sampling p-value is not based on normal distribution assumptions. Rather, it is based on a re-sampling procedure. For a given GO category, the re-sampling procedure randomly selects N genes from the list of genes that are selected for the analysis. Here N is the number of genes in the project gene list that belong to the GO category. For each selection, the associated LS and KS statistics are computed. The selection process is repeated 100,000 times to obtain a distribution of these statistics. Then, for each GO category, the LS (KS) permutation p-value is defined as the proportion of selections for which the LS (KS) statistic is larger then the LS (KS) statistics computed for the GO category with original gene list. The tests are applied separately to each GO category. A GO category is selected if its corresponding LS or KS re-sampling p-value is below the threshold specified by the user (default is 0.005). Some approximations are used to speed up computations. Results are provided as a table of selected GO categories that are ordered by the p-value of the LS test (smallest first). For each GO category, the table lists the unique identifier, the number of genes in the project gene list that belong to the GO category, and the LS and KS p-values. For each class, the geometric mean of gene expression (ratios) is provided. If only two classes are considered, the fold difference of these geometric means is also listed. Another table lists all genes that are found in the selected GO categories. They are ordered by the p-value associated with the GO category. If a gene belongs to several GO categories, it will be listed several times, once for each GO category that contains the gene. Since BRB-ArrayTools v3.7 a new gene set analysis method, Efron-Tibshiranis Gene Set Analysis (GSA, Efron & Tibshirani 2007), is implemented to use maxmean statistics improved upon the original Gene Set Enrichment Analysis (GSEA) procedure of Subramanian et al. (2005) for assessing signficance of pre-defined gene-sets. GSA uses the maxmean statistic: this is the man of the positive or negative part of gene scores di in the gene set, whichever is large in absolute value. Specifically speaking, take all of the gene scores di in the gene set, and set all of the negative ones to zero. The take the average of the positive scores and the zeros, giving a positive part average avpos. Do the same for the negative side, setting the positive scores to zero, giving the negative part average avneg. Finally the score for the gene set is avpos if |avpos| > |avneg|, and otherwise it is avneg. Efron and Tibshirani shows that this is often more powerful than the modified Kolmogorov-Smirnov statistic used in GSEA. The R-package GSA is automatically imported by ArrayTools and used for calculation. The Gene Set Comparison Tool can be used when user-defined gene lists are investigated rather than GO categories. The tool investigates the user-defined gene lists and selects those that have more genes differentially expressed among the classes than expected by chance. With pathway comparisons the genes are grouped by KEGG or BioCarta pathways, rather than by GO categories. BioCarta is a trademark of BioCarta, Incorporated, and the pathways included in BRB-ArrayTools provide displays of gene interactions within pathways for human and mouse cellular processes. KEGG (Kyoto Encyclopedia of Genes and Genomes) is an original database product developed by Kinoru Kanehisa and associates, and the pathways included in BRB-ArrayTools provide displays of interactions between enzymes and intermediary compounds within metabolic and regulatory pathways. The BioCarta and KEGG pathway gene lists used in BRB-ArrayTools are obtained from the Cancer Genome Anatomy Project ( HYPERLINK "http://cgap.nci.nih.gov/Pathways" http://cgap.nci.nih.gov/Pathways) and by using theKEGG.db R package available at Bioconductor ( HYPERLINK "http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html" http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html), respectively. While both KEGG and BioCarta pathway gene lists are available to non-commerical users, the KEGG pathway gene lists are not included in the software version for our commercial users. Starting from BRB-ArrayTools v4.4.0, a color-coded KEGG pathway graph functionality has been added to the Class Comparison and Gene Set Analysis tools. This new visualization tool provides a powerful way to discover up- or down-regulated genes in KEGG pathways. The color-coded graphs are given in the KEGG Pathway Graphs column of the table of gene sets in the html analysis output. A new feature added to v3.4 allows the user the option to download and use the Broad/MIT pathways and signatures ( HYPERLINK "http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html" http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html). Once the user agrees to the terms and conditions from the Broad Institute, the relevant files get downloaded and parsed. From v3.7, ArrayTools extends to incorporate the complete gene set collections from the Broad Institutes Molecular Signature DataBase (MsigDB). The database is organized into 4 broad collections: Positional gene sets, Curated gene sets, Motif gene sets, Computed gene sets. For descriptions of the collections, see the  HYPERLINK "http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html" MSigDB release notes. The previous Broad/MIT gene sets available between release v3.4 and v3.6 are now part of the Curated gene sets collection in release v3.7. ArrayTools provides a convenient way for user to register and login on the Broad Institute Website and downloads the gene set collections for use within gene set comparison tool. Also, now the Broad/MIT gene sets are available for both the Human and Rat species. However, only the curated and motif gene sets are available for Rat species. From release v3.6, three additional gene sets have been included, namely the transcription factor targets, microRNA targets, and protein domains. For gene sets of transcription factor targets, all genes in each gene set are either predicted or experimentally verified to be targets of the same transcription factor. Separate sets of human and mouse genes are provided. Predicted targets were obtained using the JASPAR2014 [1] (version 1.1.1) and TFBSTools [2] (version 1.4.0) to search the upstream sequences of genes (~1500bp). The sequences were obtained from the UCSC Genome Bioinformatics database. The search utilized transcription factor binding weight matrices obtained from the JASPAR [1] (version 2014) database and a minimum match score of 99%. With this approach each set contains genes that are predicted to be potential targets of the same transcription factor. Additionally, also included are separate sets of genes that have been experimentally verified as targets of the same transcription factor. We used transcription factor binding curation information in the Transcriptional Regulatory Element Database (TRED) [3] to eliminate targets without any experimental verification. Gene sets of experimentally verified microRNA targets are also included. These microRNA target gene lists were created based on miRTarBase database[7]. Genes in each set are targets of the same microRNA. All the microRNA-target interactions were verified by reporter assay or western blot experiments. Separate sets of human and mouse genes are provided. In v3.6-Beta3, an additional family of gene sets was added from the PFAM and SMART Protein Domain. These are gene sets that contain genes whose protein products share a common domain. We used Pfam [4] and SMART [5] protein domain links in the Swiss-Prot and TrEMBL [6] (version 9.3) databases to group genes into sets. Proteins encoded by genes in each set contain the same domain. Pfam and SMART are high quality manually curated protein domain databases. Separate sets of human and mouse genes are provided. The reference can be found on http://linus.nci.nih.gov/techreport/Xu-GeneSetToolkit.pdf In the previous v3.8 release, an option was added to handle redundant probe sets that correspond to the same gene. However, this option is now available in the Filtering and gene sub-setting tool. Additionally, the HTML output now contains a heatmap for each significant gene set. The heat map is in a grey scale for single channel data and red-green scale for dual channel data. The parameter to control the level of truncation can be modified in the preference option. Under the ArrayTools pull down menu there an option called utility->Preference and you can change the parameter Heatmapthreshold. For BRB-ArrayTools v4.1, the gene set analysis tool has been extended to provide an option for interaction analysis. Traditionally, gene set analysis finds sets of genes that are differentially expressed among defined classes of samples. For example, the classes might represent samples from patients who respond to a treatment versus samples for patients who do not respond. Interaction analysis finds gene sets for which the differential expression among classes is different for two pre-defined groups of samples. The groups might represent patients with different stages of disease. Testing for interactions is statistically preferable to the usual practice of comparing the gene sets significant for one group to the gene sets significant for the other group. The general testing procedure is as follows. We start by computinga nominal statistical significance value pi measuring differential expression between classes for each gene i using a univariate t test or random variance t test. These pi values are computed separately for the two groups.We would call them pi values for group 1 and qi values for group 2. Then for each gene set k we compute a summary statistic Pk of the pi values fori in k forsamples in group 1 and a summary statistic Qk of theqi values fori in k for samples in group 2. We then test the hypothesis that thetwo groups are equivalent with regard to inter-class variation in gene expression for the genes in set k. We summarize the difference between groups using a test statistic Pk-Qk. To obtain the null distribution of the test statistic Pk-Qk we randomly permute the group labels, keeping the class labels unchanged and re-calculatingP[k], Q[k] and the test statistic for the permuted data. We do this thousands of times and thereby tabulate thenull permutation distribution of Pk-Qk. We calculate a two-sided significance level for each gene set k using these null permutationdistributions. Two kinds of summary statistics have been implemented: LS test and GSA test. For the LS test, thesummary statistic Pk is defined as the sum of the -log(pi) for i in k. For the GSA test, the summary statistic is the maxmean statistic as defined in Efron & Tibshirani (2007). References: 1. Tan G (2014). JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Research 42: D142-D147. JASPAR2014: Data package for JASPAR. R package version 1.1.1, http://jaspar.genereg.net/. 2. Tan G (2014). TFBSTools: Software package for transcription factor binding site (TFBS) analysis. R package version 1.4.0, http://jaspar.genereg.net/. 3. Zhao et al. (2005) TRED: a Transcriptional Regulatory Element Database and a platform for in silico gene regulation studies. Nucleic Acids Research 33: D103-107. 4. Bateman et al. (2000) The Pfam protein families database. Nucleic Acids Research 28: 263-266. 5. Letunic et al. (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Research 30: 242-244. 6. Boeckmann et al. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL. Nucleic Acids Research 31: 365-370. 7. Hsu SD et al. (2014)  HYPERLINK "http://nar.oxfordjournals.org/content/42/D1/D78.long" \t "_blank" miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic acids research 42: D78-858. 8. Subramanian et al. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545-15550. 9. Efron B, Tishirani R. (2007) On testing the significance of sets of genes. Annals of Applied Statistics, Vol. 1, No.1, 107-129. Significance Analysis of Microarrays (SAM) The Significance Analysis of Microarrays (SAM) Tool is based upon a popular algorithm developed by Tucher et al. (reference below) for identifying significant genes in microarray data ( HYPERLINK "http://www-stat.stanford.edu/~tibs/SAM" www-stat.stanford.edu/~tibs/SAM). The SAM algorithm is one method of controlling the False Discovery Rate (FDR), which is defined in SAM as the median number of false positive genes divided by the number of significant genes. The SAM algorithm is an alternative to the multivariate permuation test provided in several BRB-ArrayTools class comparison tools. The multivariate permutation test has a stronger statistical basis than SAM but we include SAM because some users are more familiar with it. First we compute for each gene a modified F-statistic (or t-statistic for two-class data) in which a fudge factor for standard deviation is included in the denominator to stabilize the gene specific standard deviation estimates. We order these F-statistics by sorting them from smallest to largest (F(1), F(2), , F(i), , F(n)), where n is the number of genes. Then we permute the class labels and re-compute a set of ordered F-statistics for each permutation. The expected ordered statistics are estimated as the average of the ordered statistics over the set of permutations. A cutpoint is then defined as F(i*)(D), where i*( D) is the first index i in which the actual ordered F-statistic is larger than the expected ordered F-statistic by a D-threshold value, and is a function of this D. Genes which have an F-statistic larger than this cutpoint are considered to be significant. For random permutations, any significant genes are presumed to be false positives, and a median number of false positive genes can be computed over the set of permutations. The median number of false positive genes is then multiplied by a shrinkage factor p, which represents the proportion of true null genes in the dataset, and is computed as the number of actual F-statistics which fall within the interquartile range of the set of F-statistics computed for all permutations and all genes, divided by the quantity of .5 times the number of genes. If this p factor is greater than 1, then a p factor of 1 is used instead. The median number of false positive genes, multiplied by p and divided by the number of  significant genes, yields the FDR for a given D value. In the SAM tool implemented in BRB-ArrayTools, the user specifies the desired False Discovery Rate (FDR) and number of permutations to run, and BRB-ArrayTools will automatically search through a range of D values to find an optimal D* that yields the FDR specified by the user. The fudge factor for standard deviation is obtained and fixed a priori by searching through a range of values, and finding a value which minimizes the coefficient of variation of the median absolute deviation of the modified F-statistics. More details about the algorithm may be found in Tusher, et al. (VG Tusher, R Tibshirani, G Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Science USA 98:9:5116-5121, 2001). The output of the SAM analysis contains the computed  fudge factor and the optimal D* which yields the desired FDR, a list of the significant genes (defined as those genes for which the actual ordered F-statistic is larger than the expected ordered F-statistic by the D* threshold), and a plot of the actual vs. expected ordered F-statistics. Also, a barplot is given to compare the chromosomal distribution of the selected genelist to that of the overall geneset, and a table of observed vs. expected counts is given for Gene Ontology classes which are over-represented in the selected genelist. In BRB-ArrayTools v3.3 we have re coded the SAM algorithm in Fortran and now it is almost 8 times faster to run the SAM analysis. Class prediction analyses Class prediction The Class Prediction Tool is similar to the Class Comparison Between Groups of Arrays Tool in that the classes must be pre-defined. The user specifies the classes by identifying a column of the experiment description worksheet. Blanks labels in the column indicate that the corresponding experiment should be omitted from the analysis. Several of the class prediction methods are only applicable when there are two classes. Replicate experiments of the same RNA sample may be averaged, by entering a sample id column in the experiment design worksheet. When analyzing paired samples, samples with replicated pairing id and classification labels will automatically be averaged. For further information, refer to the following section entitled HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "_Specifying_replicate_experiments_an"Specifying replicate experiments and paired samples. For dual-label experiments, the class prediction methods are based on normalized log-ratios relative to a common reference RNA sample. For Affymetrix GeneChipTM arrays the methods are applied to normalized log signal values. To reduce the dominating effect that genes with overall high intensity might have with some class prediction methods, the single-channel log-signal values are median-centered on a gene-by-gene basis for class prediction. This is not done for class comparison analyses because the results there are un-affected by median centering the genes. Gene selection for inclusion in the predictors Generally, the user specifies a significance level to be used for determining the genes that will be included in the predictors; genes that are differentially expressed between the classes at a univariate parametric significance level less than the specified threshold are included in the predictor. It doesnt matter whether the specified significance level is small enough to exclude enough false discoveries, because class prediction is not really about discovering differentially expressed genes. In some problems better prediction can be achieved by being more liberal about the gene sets used as features. The predictors may be more biologically interpretable and clinically applicable, however, if fewer genes are included. As noted below in the section on cross-validation, gene selection is repeated for each training set created in the cross-validation process. That is for the purpose of providing an unbiased estimate of prediction error. The final model and gene set for use with future data is the one resulting from application of the gene selection and classifier fitting to the full dataset. Because the user generally doesnt know whether better prediction would be obtained from a more stringent or less stringent threshold significance level for gene selection, an option is provided to develop the classifiers over a grid of significance levels for gene selection. The cross-validated prediction error is computed for all significance levels in the grid and for all classifier functions selected. The significance level threshold used for gene selection can be viewed as a tuning parameter for the development of a classifier. Selecting the value of a tuning parameter to give smallest cross-validated prediction error should be viewed as part of the classifier determination algorithm. Providing the cross-validated prediction error for a range of values of the tuning parameter and inviting the user to select the tuning parameter corresponding to the minimum prediction error is somewhat dangerous however. The minimum cross-validated prediction error is a biased estimate of the prediction error to be expected for future data. Therefore, BRB-ArrayTools provides a completely cross-validated estimate of the prediction error to be expected with independent data based on the optimal selection of the tuning parameter. This completely cross-validated estimate is obtained by doing a doubly nested cross-validation; the outer loop for estimating the prediction error for a test set consisting of one or more samples omitted from the training data, and the inner loop used for optimizing the tuning parameter. This is quite computationally intensive, however. The gene selection methods described above ranks genes based on the extent to which they are individually differentially expressed among the classes. Some of the classifier functions then provide a multivariate modeling of the selected genes, but the genes to be incorporated in the model are selected based on univariate discrimination ability. BRB-ArrayTools provides, however, one other option for selecting genes, namely the greedy-pairs method described by Bo and Jonassen (Genome Biology 3(4):research0017.1-0017.11, 2002). The greedy-pairs approach starts with ranking all genes based on their individual t-scores on the training set. The procedure selects the best ranked gene gi and finds the one other gene gj that together with gi provides the best discrimination using as a measure the distance between centroids of the two classes with regard to the two genes when projected to the diagonal linear discriminant axis. These two selected genes are then removed from the gene set and the procedure is repeated on the remaining set until the specified number of genes have been selected. This method attempts to select pairs of genes that work well together to discriminate the classes. It is done in a computationally efficient manner. The user does have to specify the number of total genes to be selected (twice the number of pairs to be selected). As for all BRB-ArrayTools algorithms for gene selection, the process is repeated for all training sets created during the cross-validation process. The Support Vector Machine Recursive Feature Elimination (SVM RFE) method uses an SVM classifier trained on the data to rank genes according to their contribution to the prediction performance. The SVM algorithm uses a weighted linear combination of the gene expressions as a discriminator between the two classes. This linear combination is selected to maximize the margin, or the distance between the worst classified samples and the discriminant plane. Initially expression of all the genes is used to train the SVM algorithm. The SVM RFE algorithm removes genes that have a low absolute value of weight in the linear combination and a new SVM classifier is developed using the remaining genes. After finding a new linear discriminant, the genes that have the lowest absolute weights in the new discriminant are removed and a new SVM classifier is developed. Etc. The process continues iteratively until the desired number of genes is left. Although this feature selection method uses SVM classifiers, the features can be used with any of the classification methods. If one is performing LOOCV, the feature selection is performed independently for each leave-one-out training set; and similarly for other cross-validation methods The Class Prediction Tool creates a multivariate predictor for determining to which of the two classes a given sample belongs. Several multivariate classification methods are available, including the Compound Covariate Predictor, Diagonal Linear Discriminant Analysis, Nearest Neighbor Predictor, Nearest Centroid Predictor, and Support Vector Machine Predictor. Compound covariate predictor The Compound Covariate Predictor is a weighted linear combination of log-ratios (or log intensities for single-channel experiments) for genes that are univariately significant at the specified level. By specifying a more stringent significance level, fewer genes are included in the multivariate predictor. Genes in which larger values of the log-ratio pre-dispose to class 2 rather than class 1 have weights of one sign, whereas genes in which larger values of the log-ratios pre-dispose to class 1 rather than class 2 have weights of the opposite sign. The univariate t-statistics for comparing the classes are used as the weights. Detailed information about the Compound Covariate Predictor is available in the Hedenfalk reference given above or in A paradigm for class prediction using gene expression profiles by MD Radmacher, LM McShane and R Simon, A paradigm for class prediction using gene expression profiles. Journal of Computational Biology 9:505-511, 2002, also available in Technical Report 01, 2001, Biometric Research Branch, National Cancer Institute,  HYPERLINK "http://linus.nci.nih.gov/" http://linus.nci.nih.gov/~brb/TechReport.htm). Diagonal linear discriminant analysis The Diagonal Linear Discriminant Analysis is similar to the Compound Covariate Predictor, but not identical. It is a version of linear discriminant analysis that ignores correlations among the genes in order to avoid over-fitting the data. Many complex methods have too many parameters for the amount of data available. Consequently they appear to fit the training data used to estimate the parameters of the model, but they have poor prediction performance for independent data. The study by Dudoit et al. (S Dudoit, J Fridlyand, TP Speed; Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association 97:77-87, 2002) found that diagonal linear discriminant analysis performed as well as much more complicated methods on a range of microarray data seta. Nearest neighbor predictor The Nearest Neighbor Predictor is based on determining which expression profile in the training set is most similar to the expression profile of the specimen whose class is to be predicted. The expression profile is a vector of log-ratios or log-intensities for the genes selected for inclusion in the multivariate predictor. Euclidean distance is used as the distance metric for the Nearest Neighbor Predictor. Once the nearest neighbor in the training set of the test specimen is determined, the class of that nearest neighbor is taken as the prediction of the class of the test specimen. k-Nearest Neighbor Prediction is similar. For example with the 3-Nearest Neighbor algorithm, the expression profile of the test specimen is compared to the expression profiles of all of the specimens in the training set and the 3 specimens in the training set most similar to the expression profile of the test specimen are determined. The distance metric is again Euclidean distance with regard to the genes that are univariately significantly differentially expressed between the two classes at the threshold significance level specified. Once the 3 nearest specimens are identified, their classes vote and the majority class among the 3 is the class predicted for the test specimen. Nearest centroid predictor The Class Prediction Tool also offers Nearest Centroid Prediction. In the training set there are samples belonging to class 1 and to class 2. The centroid of each class is determined. The centroid of class 1, for example, is a vector containing the means of the log-ratios (or log intensities for single label data) of the training samples in class 1. There is a component of the centroid vector for each gene represented in the multivariate predictor; that is, for each gene that is univariately significantly differentially expressed between the two classes at the threshold significance level specified. The distance of the expression profile for the test sample to each of the two centroids is measured and the test sample is predicted to belong to the class corresponding to the nearest centroid. Support vector machine predictor The Class Prediction Tool also offers Support Vector Machine Prediction. A support vector machine (SVM) is a class prediction algorithm that has appeared effective in other contexts and is currently of great interest to the machine learning community. SVMs were developed by V. Vapnik (The Nature of Statistical Learning. Springer-Verlag, New York, 1995). We have implemented SVMs with linear kernel functions as our experience has been that more complex SVMs perform less well for this application. The SVM predictor is a linear function of the log-ratios or the log-intensities that best separates the data subject to penalty costs on the number of specimens misclassified. In the options dialog, the user can alter the default penalty cost or the cost of misclassifying a specimen of class 1 relative to misclassifying a specimen of class 2. We use the LIBSVM implementation of Chang and Lin. Bayesian compound covariate predictor The Bayesian compound covariate predictor is based on the method described by G Wright, B Tan, A Rosenwald, EH Hurt, A Wiestner and LM Staudt (A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma, PNAS 100:9991-9996, 2003). After selecting the differentially expressed genes for distinguishing two classes in a cross-validated training set, the compound covariate is computed which is the weighted average of the log expression values of the selected genes, with the weights being the t statistics of differential expression in that training set. That compound covariate can be computed for all of the samples in the cross-validated training set as well as for the sample(s) omitted from the training set. The values of the compound covariate scores of samples in each class in the training set are considered to have a Gaussian distribution. These are univariate Gaussian distributions. The means of the Gaussian distributions differ among the classes for the samples in the training set but the variances are assumed to be equal and a pooled estimate is used. With this model, using a Bayesian context, the posterior probability that the omitted sample belongs to class 1 can be written P(class 1 | x) = P(x | class 1) * Prior(class 1) / { P(x | class 1) * Prior(class 1) + P(x | class 2) * Prior(class 2)}. In this formula x denotes the vector of log expression values for the omitted sample with regard to the genes selected for use in the classifier developed in the training set with that observation omitted. Because of the assumption of Gaussian distributions, P(x | class 1) is the univariate Guassian density function for the compound covariate score for class 1 in the training set and P(x | class 2) is the Gaussian density function for the compound covariate score for class 2 in the training set. Prior(class 1) and Prior(class 2) are the assumed prior probabilities for the two classes. The non-Bayesian compound covariate predictor is implicitly based on the assumption that the prior probabilities are each . So if you select that option, the Bayesian compound covariate predictor with give the same predictions as the standard CCP. We have included that option so that users can see which predictions are clear-cut and which are less clear-cut. That is, if the posterior probability that an omitted observation is in class 1 is close to 1 or to 0, then that prediction is clear-cut. If the posterior probability is close to 0.5, then its a toss-up. We also provide an option of using prior probabilities that correspond to the relative frequencies of the classes in the cross-validated training sets. After computing the posterior probability of the class of an omitted observation we assign the observation to the class with the larger posterior probability. In the next release we will provide an option of providing no prediction if the posterior probabilities are within a specified threshold of 0.5. Cross-validation and permutation p-value For all of the class prediction methods requested, the Class Prediction Tool provides an estimate of how accurately the classes can be predicted by this multivariate class predictor. The cross-validated misclassification rate is computed and the results are reported. Several options are provided for cross-validation. Leave-one-out cross-validation (LOOCV) is often used. With LOOCV, the cross-validation process omits one sample at a time. For each sample omitted, the entire analysis is repeated from scratch, including the determination of which genes are univariately significant on the reduced training sample. From that gene list, a multivariate predictor is constructed and applied to the sample that was omitted. The program records whether that prediction was correct or not. This is repeated, omitting all of the samples one at a time. The output table shows which samples were correctly and incorrectly predicted, and the overall cross-validated misclassification rate. The output table is arranged so that you can see the extent to which the different predictors agree or disagree for each specimen left out of the training set. Because of the large number of candidate predictor variables, it is essential to use cross-validation or some similar method to determine whether the model predicts accurately. Even with classes that do not differ in expression profiles, it is very easy to develop models that predict perfectly when measured in a non cross-validated manner. Such models would be useless for application with independent data. For further discussion see Simon R, Radmacher MD, Dobbin K, and McShane LM, Pitfalls in the analysis of DNA microarray data: Class prediction methods, Journal of the National Cancer Institute 95:14-18, 2003. The options page of the class prediction tool provides alternatives to LOOCV for cross-validation. With k-fold validation, the samples are randomly partitioned into k (approximately) equal size groups. One of the k subsets is omitted and the classifier model developed from scratch using a training set consisting of samples in the union of the other k-1 subsets. The number of errors in using that model to classify samples in the subset omitted is recorded. This is done k times, omitting each of the k subsets one at a time and the total number of errors is obtained. That total number of errors corresponds to that partition into k subsets. The user can indicate that the process should be repeated with different random partitions into k subsets a specified number of times in order to improve the precision of the estimate of cross-validated prediction error. This is called repeated k-fold validation. When the number of samples is small, LOOCV is generally best. When the number of samples is large, LOOCV is very compute intensive and also an alternative like 10-fold cross-validation may provide a more precise estimate. The precision of the estimate does not generally improve greatly with repeating the partition more than once, but the user can experiment with more repeats to ensure that the estimate is stable. The options page also provides the 0.632+ bootstrap method of re-sampling for estimating prediction error as an alternative to LOOCV or repeated 10-fold cross-validation. It is quite computationally intensive as it involves generating 100 (default) training sets by randomly selecting a subset of the samples to include. It is somewhat unusual in that each sample can be included in a single training set in multiple replicates. The 0.632+ bootstrap method was proposed by B Efron and RJ Tibshirani (Improvements on cross-validation: the .632+ bootstrap method, J. American Statistical Association 92:548-560, 1997) and often performs well. When the number of samples is small, LOOCV is usually satisfactory, however. Cross validation and bootstrap methods for estimating prediction accuracy with high dimensional data have been evaluated and reviewed by AM Molinaro, R Simon and RM Pfeiffer (Prediction error estimation: a comparison of resampling methods, Bioinformatics 21:3301-3307, 2005). In addition to providing the cross-validated misclassification information, the Class Prediction Tool also (optionally ) provides the permutation p value for the cross-validated misclassification error rate. That is, for each random permutation of class labels, the entire cross-validation procedure is repeated to determine the cross-validated misclassification rate obtained from developing a multivariate predictor with two random classes. The final p value is the proportion of the random permutations that gave as small a cross-validated misclassification rate as was obtained with the real class labels. There is a cross-validated misclassification rate and a corresponding p value for each class prediction method requested. The user inputs the number of permutations desired. At least 1000 permutations should be specified for a valid permutation p value on the cross-validated misclassification rate. The user may specify only 1 permutation and will quickly obtain the appropriate gene list and valid cross-validated misclassification rates. Only the p values associated with the cross-validated misclassification rates will be missing. Computing the permutation p value for the cross-validated error rate is very compute intensive, because the entire cross-validtion process must be repeated for hundreds or thousands of random permutations of the class labels. Consequently, the default for this option is off, and in many cases it is best to not request this p value until later in the analysis. The set of informative genes , i.e. the genes that are selected as differentially expressed among the classes, will differ for each iteration of the cross-validation. This is because the entire predictor development process must be repeated from scratch for each new cross-validated training set. The gene list provided at the end represents the genes that are selected when the prediction algorithm is applied to the full dataset with no samples omitted. That is the predictor that would presumably be used in the future. But in order to properly estimate the prediction accuracy of that classifier based on the full dataset, one must go thru the cross-validation procedure. The final gene list contains a column labeled cross-validation support. It indicates the percentage of the cross-validation training sets in which each gene was selected. 100% means that the gene is so strong that it was selected in all of the cross-validated training sets. The initial table in the output, the one showing which samples are correctly and incorrectly predicted by which classifier, has a column indicating how many genes were selected for the cross-validated training set in which each sample was omitted. Note that the list of genes that are used to form the class predictors will coincide with the list of genes produced by the Class Comparison Between Groups of Arrays Tool for the same analysis between the two classes. The only exception is when there is only one nonmissing value in one of the two classes, or when the variance in one of the two classes is zero. In that case, the compound covariate predictor imputes the p-value for that gene to be 1, rendering that gene nonsignificant for that permutation or analysis, whereas the Class Comparison Between Groups of Arrays Tool does not. The Class Prediction Tool saves this gene list in the ..\ArrayTools\Genelists\User folder using the genelist name specified by the user. Prediction for new samples The Class Prediction Tool can be used to classify samples not used in the model building process. In the class prediction dialog, check the box labeled Use separate test set . You should create a column in your experiment descriptor worksheet that indicates which experiments contain samples that are to be included in the model building process (labeled training), which are to be used only for classification prediction once the model building is completely finished (labeled predict), and which samples are to be excluded entirely from both the training and test sets (labeled exclude). Predictions will be made for the samples labeled predict using all of the class prediction methods requested in the dialog. Ususally, you do not have a separate set of samples that you wish to withhold from the model building process when the analysis is first done. The model building process itself uses leave-one-out cross validation, and so it is not necessary to have a separate test set. Sometimes, however, after the model is built, you have additional samples whose classes you wish to predict using the previously developed model(s). We have enabled you to do this by re-building the model using the initial set of samples, and to then predict for the new samples in a combined analysis. This has been more direct for us to implement, rather than trying to save the originally developed model, since in cases like k-nearest neighbor classifiers, the entire dataset is needed for classification of new samples. Binary tree prediction The Binary Tree Prediction Tool is another algorithm that can be used for class prediction when there are more than 2 classes. The same methods (compound covariate predictor, diagonal linear discriminant analysis, k-nearest neighbor using k=1 or 3, nearest centroid, and support vector machines) form the foundation of both tools. Moreover, for the case of only two distinct classes, binary tree prediction is identical to the Class Prediction Tool (except it evaluates only one prediction algorithm at a time whereas Class Prediction Tool can evaluates all of them in one run). The difference between the algorithms lies in how they treat cases with 3 or more classes. The Binary Tree Prediction Tool does not attempt to predict the class of a sample in one step. Instead, at each node of a binary tree the samples are classified into two subsets of classes. One or both of the subsets may consist of multiple classes. The user-specified prediction method is applied to construct a predictor that can distinguish the two subsets of classes. The decision on how to split the classes in each node into two subset classes is determined by the split that can be accomplished with the fewest cross-validated misclassification errors. All possible divisions of the classes into two groups are tested, and the best one (with the lowest misclassification rate) is accepted as a node of the binary tree. If the misclassification rate associated with the node is above the specified threshold, the split is not accepted. In this case, the classifier will not attempt to distinguish between the specific classes in the group. Then, each of the resulting two groups is investigated in a similar manner. The process stops when each group contains only one sample or none of the divisions of the group into the subgroups has the cross-validation misclassification error rate below the threshold. If cross-validation of the binary tree-prediction algorithm is requested by the user, then the entire process of binary tree building is repeated for each training set, and the overall cross-validation misclassification rate is thereby determined. Two methods of cross-validation are implemented. For leave-one-out cross-validation method, samples are excluded from the analysis one by one, the remaining samples used to create a classifier that is used to predict a class of the one sample that was set aside. For large data sets, the leave-one-out validation may take very a long time. The tool has an option of using K-fold validation instead of the leave-one-out validation. For K-fold cross-validation method, samples are divided into K approximately equal groups. Then, groups are excluded from the analysis one by one, the samples of the remaining K-1 groups are used to create a classifier that is used to predict a class of the samples that were set aside. The user can assign K. By default, this tool uses leave-one out validation for the data sets with 25 or fewer arrays, and 10-fold validation if the number of arrays exceeds 25. Some of the algorithms in the standard Class Prediction Tool can be used even when there are more than 2 classes. The sets of genes used in the predictor at each node of the binary tree may differ, however, thus enhancing the ability of the algorithm to discriminate between the classes. More research is needed to investigate relative strength and weaknesses of the binary tree prediction algorithm when compared to the one-step prediction algorithms as applied to the microarray data. Prediction analysis for microarrays (PAM) The Prediction Analysis for Microarrays (PAM) Tool represents another method of class prediction, in addition to those provided in the class prediction tool. The method uses the shrunken centroid algorithm developed by Tibshirani et al. (PNAS 99:6567-6572, 2002). The method is similar to the nearest centroid classifier provided in the class prediction tool, but the centroids of each group are shrunken toward each other by shrinking the class means of each gene toward an overall mean. The amount of shrinking is determined by a tuning parameter called delta. As the shrinking occurs, some genes will have the same value of shrunken class mean for the different classes, and hence they will have no effect in distinguishing the classes. For larger values of delta, fewer genes will have different shrunken means among the classes, and so the classifier will be based on fewer genes. With this approach, the number of genes included in the classifier is determined by the value of delta. The algorithm provides a k-fold cross-validated estimate of prediction error for all values of delta where k is the minimum class size. The tool indicates the delta corresponding to the smallest cross-validated prediction error and gives the list of genes that are included in the classifier for that value of delta. The minimum cross-validated prediction error over the range of delta values is however a somewhat biased estimate of the error to be expected with new data. That is because the selection of the optimal delta should be viewed as part of the classification algorithm and should be included in the cross-validation procedure. We have utilized the PAM analysis program developed by Tibshirani, Hasti, Narashimha and Chu, however, and it does not incorporate the optimization of delta within each step of the cross-validation. The bias may not be large in cases where the graph of cross-validated error as a function of delta is relatively flat, and that graph is provided as part of the output. Survival analysis The Survival Analysis Tools are for analyzing time to event data, where some of the observations are right censored; that is, the survival time for some of the individuals is known to be at least as large as the data recorded, and the patient was still alive at the time of last follow-up. The survival analysis tools can be used for any such time to event data, but we shall refer to such data as survival data. Two tools are provided. One tool finds genes that are correlated with survival time for patients. There are many statistical methods for analysis of censored survival data. The most popular method is Coxs proportional hazards model, and the Efron method of handling ties is implemented here. This is a regression model in which the hazard function for an individual is a function of predictor varE iables. In our case the predictor variables are log expression levels. The hazard function is the instantaneous force of mortality at any time conditional on having survived till that time. The proportional hazards model postulates that the logarithm of the hazard of death is a linear function of the predictor variables, linked by unknown regression coefficients. For more details see biostatistics texts or the original paper (DR Cox, Regression models and life tables, J.Royal Stat Soc B 34:187-202). The Survival Analysis Tool for finding genes whose expression is correlated with survival time fits proportional hazards models relating survival to each gene, one gene at a time and computes the p value for each gene for testing the hypothesis that survival time is independent of the expression level for that gene. Gene lists are created based on these p values in the same way as in the Class Comparison tools. The p values can be used to construct gene lists using multivariate permutation tests for controlling the number or proportion of false discoveries. Or the gene list can simply consist of the genes with p values less than a specified threshold (0.001 is default). For more information regarding the multivariate permutation tests for controlling the number or proportion of false discoveries, please see the preceding section on HYPERLINK "Program Files (x86)/ArrayTools/Doc/Manual.doc" \l "__Multivariate_Permutation_Tests_for"Multivariate Permutation Tests for Controlling Number and Proportion of False Discoveries. The Survival Analysis Prediction Tool develops a gene expression based predictor of survival risk group. The number of risk groups and the risk percentiles for defining the groups are specified by the user. The survival risk groups are constructed using the supervised principal component method of E Bair and R Tibshirani (2004): E Bair & R Tibshirani, Semi-supervised methods to predict patient survival from gene expression data, PLOS Biology 2:511-522, 2004). This method uses a Cox proportional hazards model to relate survival time to k super-gene expression levels, where k is selectable by the user (usually 1-3). The supergene expression levels are the first k principal component linear combinations of expression levels of the subset of genes that are univariately correlated with survival. The user specifies the threshold significance level (e.g. 0.001) for selecting the genes to be used in computing the principal components. The significance of each gene is measured based on a univariate Cox proportional hazards regression of survival time versus the log expression level for the gene. After selecting the genes, the principal components are computed, and the k-variable Cox proportional hazard regression analysis is performed. This provides a regression coefficient (weight) for each principal component. Having developed a supervised principal component model as described above, to compute a prognostic index for a patient whose expression profile is described by a vector x of log expression levels, the following steps are performed. First the components of the vector x corresponding to the genes that were selected for use in computing the principal components are identified. Then the k principal components are computed. These are just linear combinations of the components of x, with the weights of each linear combination having been determined from the principal component analysis described above. Finally, the weighted average of these k principal component values is computed, using as weights the regression coefficients derived from the k-variable Cox regression described above. That computation provides a prognostic index for a patient with a log expression profile given by a vector x. A high value of the prognostic index corresponds to a high value of hazard of death, and consequently a relatively poor predicted survival. In order to evaluate the predictive value of the method, Leave-One-Out-Cross-Validation is used. A single case is omitted and the entire procedure described above is performed to create a prognostic index. This function is created from scratch on the training set with the one case removed, including determining the genes to be included in the calculation of the principal components. Having determined a prognostic index function for that training set, it is used to compute a prognostic index for the omitted observation. That value is compared to the prognostic index for the n-1 cases included in that training set (assuming that there are n distinct cases available in total). The prognostic index for the omitted patient is ranked relative to the prognostic index for the patients included in the cross-validated training set. The omitted patient is placed into a risk group based on his/her percentile ranking, the number of risk groups specified, and the cut-off percentiles specified for defining the risk groups. This analysis is repeated from scratch n times, leaving out a different case each time. Having completed the computations described in the previous paragraph, we plot Kaplan-Meier survival curves for the cases predicted to have above average risk and the cases predicted to have below average risk. It is important to note that the risk group for each case was determined based on a predictor that did not use that case in any way in its construction. Hence, the Kaplan-Meier curves are essentially unbiased and the separation between the curves gives a fair representation of the value of the expression profiles for predicting survival risk. The Survival Risk Group Prediction tool also provides an assessment of whether the association of expression data to survival data is statistically significant. A log-rank statistic is computed for the cross-validated Kaplan-Meier curves described above. Let LRd denote the value of that log-rank statistic computed for the data. Unfortunately, this log-rank statistic does not have the usual chi-squared distribution under the null hypothesis. This is because the data was used to create the risk groups. We can, however, obtain a valid statistical significance test by randomly shuffling the survival data among the cases and repeating the entire cross-validation process. For each random re-shuffling, we repeat the process, create new cross-validated Kaplan-Meier curves, and compute the log-rank statistic for the random shuffling. This provides a null-distribution of the log-rank statistic created in this way. The tail area of this null distribution beyond the value LRd obtained for the real data is the permutation significance level for testing the null hypothesis that there is no relation between the expression data and survival. The Survival Risk Group Prediction tool also lets the user evaluate whether the expression data provides more accurate predictions than that provided by standard clinical or pathological covariates or a staging system. The user specifies the columns of the experimental descriptor worksheet that defines the clinical covariate. This could be a single column specifying a stage or a set of columns for which a multivariate proportional hazards model will be developed. Kaplan-Meier curves are developed for the covariates without any use of the expression data. An additional model is also developed for a combination of the covariates and the expression data. For each cross-validated training set, genes are selected which add to predicting survival over the predictive value provided by the covariates for that training set. The principal components of those genes are computed and a model fitted containing the covariates and the supervised principal components. The survival risk group for the patient(s) omitted from that training set are predicted using that composite model. In that way cross-validated Kaplan-Meier curves are developed for the combination of covariates and expression data. A permutation analysis is performed in which the survival data and covariates are kept together for each patient but the expression profile is permuted. The cross-validated Kaplan-Meier cuves and log-rank statistics are generated for those permutations and finally a p value is determined which measures whether the expression data adds significantly to risk prediction compared to the covariates. This approach to combining covariates and expression data is experimental and may be modified or supplemented in future releases. Version 3.6, has an additional tool called Survival Gene Set analysis. Similar to the gene set comparison tool, this tools finds sets of genes that are correlated with survival. A proportional hazards model is fitted to survival time, one gene at a time and the corresponding p value for the gene is computed. The LS and KS statistics are computed using the p-values from the proportional hazard model for each in a gene set. The tests are applied separately to each gene set in the category. A gene set is selected to be significant if its LS or KS re-sampling p-value is below the threshold specified by the user. Results are provided as a table of selected gene sets that are ordered by the p-value of the LS test. For each gene set, the table lists the unique identifier, the number of genes in the project gene list that belong to that gene set, the LS p-value and the KS p-value. Another table lists all the genes that are found in the selected gene sets. For BRB-ArrayToolsv3.7 a new gene set analysis method, Efron-Tibshiranis Gene Set Analysis (GSA, Efron & Tibshirani 2007), is implemented to use maxmean statistics improved upon the original Gene Set Enrichment Analysis (GSEA) procedure of Subramanian et al. (2005) for assessing signficance of pre-defined gene-sets. GSA uses the maxmean statistic: this is the man of the positive or negative part of gene scores di in the gene set, whichever is large in absolute value. Efron and Tibshirani shows that this is often more powerful than the modified Kolmogorov-Smirnov statistic used in GSEA. The R-package GSA is automatically imported by ArrayTools and used for calculation. The method described above can be used to analyze GO Categories, BioCarta pathways, KEGG pathways, microRNA targets, transcription factor targets, protein domains, the Broad Institutes MSigDB gene sets collections as well as user-defined genelists. Quantitative traits analysis This tool finds genes that are significantly correlated with a specified quantitative variable (trait) such as age. Spearman or Pearson correlation coefficients are used as a measure of correlation and to compute parametric p-values. Most of the options are identical to the Class Comparison Tools. Two exceptions are the pairing of the samples and the random variance model that are not implemented for the Quantitative Traits Analysis Tool. Output of the tool is also nearly identical to that for the Class Comparison Tools. Some options available in classification, survival, and quantitative traits tools Random Variance Model The random variance model is found as an option in the class comparison and class prediction tools. The random variance t and F tests can be selected as alternatives to the standard t/F tests. The standard t/F tests are based on the assumption that the within class variance is different for different genes and hence these variances are estimated separately for each gene. When there are few samples in each class, the variance estimates are not very accurate and the statistical power of t/F tests are poor. Some published methods assume that the variances are the same for all genes, and that is clearly a poor assumption. The random variance model takes an intermediate approach. It assumes that different genes have different variances, but that these variances can be regarded statistically as independent samples from the same distribution. Specifically, the reciprocal of the variances are regarded as draws from a gamma distribution with two parameters (a,b). The parameters are estimated from the complete set of expression data and we first test that the model is accurate. In most datasets we have examined, the model assumption is very accurate. The usual t test for comparing expression of gene i in two classes is based on the statistic  EMBED Equation.DSMT4  where the numerator is the difference in the means of log expression for gene i in the two classes, n1 and n2 are the number of samples in the two classes, and  EMBED Equation.DSMT4  denotes the square root of the usual within-class variance for gene i. The within-class variance is computed by a weighted average of the variance of log expression in each of the two classes. With the usual t test, under the null hypothesis, the t value has a t distribution with n1+n2-2 degrees of freedom. For the random variance model, the same formula for t is used, except that  EMBED Equation.DSMT4  is replaced in the denominator by  EMBED Equation.DSMT4  where  EMBED Equation.DSMT4  The quantity 1/ab is an estimate of the expected variance for the inverse gamma model. Consequently,  EMBED Equation.DSMT4  is a weighted average of the usual gene specific variance and the average variance for all the genes. The weight given to the gene specific variance is the total number of samples in the two classes minus two. The weight given to the average variance for all the genes is 2a. It can be shown rigorously that when the model assumption holds, that the t values computed using  EMBED Equation.DSMT4  have a t distribution under the null hypothesis but the degrees of freedom is now n-2+2a. In cases where the number of samples n is small, this increase in degrees of freedom and the associated improvement in the estimation of variances results in improved statistical power for detecting differentially expressed genes. These results extend directly to the F distribution for comparing more than two classes. For details, see G Wright and R Simon, The random variance model for finding differentially expressed genes, Bioinformatics (19:2448-2455, 2003), also Technical Report, Biometric Research Branch, National Cancer Institute,  HYPERLINK "http://linus.nci.nih.gov/~brb" http://linus.nci.nih.gov/~brb ; P Baldi and AD Long, A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes, Bioinformatics 17:509-519, 2001. Multivariate Permutation Tests for Controlling Number and Proportion of False Discoveries The multivariate permutation tests for controlling number and proportion of false discoveries is an option found in the class comparison, survival analysis, and quantitative traits analysis tools. Using a stringent p<0.001 threshold for identifying differentially expressed genes is a valid way for controlling the number of false discoveries. A false discovery is a gene that is declared differentially expressed among the classes, when in fact it is not. There are two problems with this approach to controlling the number of false discoveries. One is that it is based on p values computed from the parametric t/F tests or random variance t/F tests. These parametric p values may not be accurate in the extreme tails of the normal distribution for small numbers of samples. The second problem is that this approach does not take into account the correlation among the genes. Using stringent p value thresholds on the univariate permutation p values wont be effective when there are few samples and will not account for correlations. We have implemented multivariate permutation tests that accomplish both objectives. They are described in detail in R Simon, EL Korn, LM McShane, MD Radmacher, GW Wright and Y Zhao, Design and Analysis of DNA Microarray Investigations, Springer 2003, in EL Korn, JF Troendle, LM McShane and R Simon, Controlling the number of false discoveries: Application to high dimensional genomic data; Journal of Statistical Planning and Inference (In Press), also Technical Report 3, Biometric Research Branch, National Cancer Institute, 2002;  HYPERLINK "http://linus.nci.nih.gov/~brb" http://linus.nci.nih.gov/~brb. This approach is also described by Reiner A, Yekutieli D and Benjamini Y, Identifying differentially expressed genes using false discovery rate controlling procedures, Bioinformatics 19:368-375, 2003). The multivariate permutation tests are based on permutations of the labels of which experiments are in which classes. If there are fewer than 1000 possible permutations, then all permutations are considered. Otherwise, a large number of random permutations are considered. For each permutation, the parametric tests are re-computed to determine a p value for each gene that is a measure of the extent it appears differentially expressed between the random classes determined by the random permutation. The genes are ordered by their p values computed for the permutation (genes with smallest p values at the top of the list). For each potential p value threshold, the program records the number of genes in the list. This process is repeated for a large number of permutations. Consequently, for any p value threshold, we can compute the distribution of the number of genes that would have p values smaller than that threshold for permutations. That is the distribution of the number of false discoveries, since genes that are significant for random permutations are false discoveries. The algorithm selects a threshold p value so that the number of false discoveries is no greater than that specified by the user C% of the time, where C denotes the desired confidence level. If C=50%, then the median number of false discoveries is that specified by the user. If, for example, C=90%, then you have 90% confidence that the number of false discoveries is no greater than that number specified by you. In a similar manner, we determine threshold p values so that the resulting gene list contains no more than a specified proportion of false discoveries. The class prediction tool produces a gene list ordered with the genes having the smallest parametric p values at the top. The length of the gene list is determined by the types of false discovery control selected. Generally, we recommend using all of the options: univariate p value threshold (0.001); limiting number of false discoveries (10 default), and limiting proportion of false discoveries (0.10 default). The output tells you where to truncate the gene list in order to get each type of control. The procedures for controlling the number or proportion of false discoveries are based on multivariate permutation tests. Although parametric p values are used in the procedures, s the permutation distribution of these p values is determined, and hence the false discovery control is non-parametric and does not depend on normal distribution assumptions. The multivariate permutation tests use the expression data much more efficiently than the univariate permutation tests. Consequently, we no longer recommend using the univariate permutation tests. We have retained the option to do the univariate permutation tests, but we have made the default to skip them. The multivariate permutation tests are particularly more effective when the number of samples is limited. In that case it may be impossible to obtain differences significant at the 0.001 level by a univariate permutation test, but quite possible to find significant genes while ensure that the number or proportion of false discoveries is controlled using the multivariate permutation tests. The multivariate permutation tests take advantage of the correlation among the genes. For a given p value for truncating an ordered gene list; the expected number of false discoveries does not depend on the correlations among the genes, but distribution of the number of false discoveries does. The distribution of number of false discoveries is skewed for highly correlated data. If you specify the confidence coefficient at 50%, the program provides the length of the gene list associated with a specified median number of false discoveries or given proportion of false discoveries. You may think of those gene lists as being expected to contain the target number or proportion of false discoveries, although the median and expected number are not exactly the same. Requiring 90% confidence that the gene list does not contain more false discoveries than the target amount is a more stringent condition and the associated gene lists will be much shorter than those based on the median. When there are few samples, the median number of false discoveries may be highly variable, and we recommend using the 90% confidence level. The HTML output file created by the Class Comparison Tools gives the parametric p-value, the univariate permutation p-value (if requested), and the geometric mean ratio (geometric mean intensity for single color oligonucleotide arrays) in each class, and gene identifying information. The list is sorted by parametric significance level. If there are two classes, the list is in two parts; those genes down-regulated in class one relative to class two followed by those genes up-regulated in class one relative to class two. When there are more than two classes, the patterns of differential expression among the classes will be more varied for genes in the list. The Class Comparison Tools save this gene list in the ..\ArrayTools\Genelists\User folder using the genelist name specified by the user. It is often useful to cluster the samples with regard to this gene list in order to better understand the pattern of genes across samples. Specifying replicate experiments and paired samples For the class comparison and class prediction analysis tools, the user may need to specify replicate experiments or paired samples, and for the survival analysis and quantitative traits analysis tools, the user may need to specify replicate experiments on the same sample. To enter paired samples into an analysis, the user must create a descriptor variable on the Experiment descriptors sheet in which a unique value is given for each pair. The following example shows the experiment design sheet for a paired analysis:  Here, the pre-treatment samples are to be compared against the post-treatment samples for each patient. The pairing variable is Patient_Id and the class variable to be compared is Treatment. Note that both Array012 and Array013 contain post-treatment samples for Patient006. In that case, the average of the two experiments will be used for the analysis. When an unpaired analysis is used, the user should make sure to specify whenever there are replicate experiments that have been performed using the same sample. The following example shows an experiment descriptor sheet in which replicate experiments were performed for some of the samples:  In this case, Sample_Id is the replicate variable to average over. Since Array001 and Array002 have the same Sample_Id, their average will be used for the analysis. Similarly, Array003 and Array004 will be averaged for the analysis. All the other experiments will be used as-is, since they have no replicates. Gene Ontology observed v. expected analysis The Gene Ontology Observed vs. Expected analysis is an option found in the class comparison, class prediction, survival analysis, and quantitative traits analysis tools. The purpose of the Gene Ontology Observed vs. Expected analysis is to give information whether or not the list of significant genes selected by the analysis is different from a genelist randomly selected from all genes in the analysis, for a given Gene Ontology. This is expressed by the Observed vs. Expected ratio. Before we define the Observed and Expected ratio, the term genes in the analysis should be clarified. The genes in the analysis refers to the set of genes which were input into the class comparison, class prediction, survival analysis, and quantitative traits analysis tool, i.e. the genes passing the filtering criteria. The Observed is defined as the number of genes in the list of significant genes selected by the analysis tool which fall into a Gene Ontology category. The Expected is defined as the average number of genes which would be expected to fall into that Gene Ontology category in a subset of genes randomly selected from the genes in the analysis. A Gene Ontology category is considered to consist of not only the genes which are described by that Gene Ontology term, but also any gene which is described by any children of that Gene Ontology term. For example, suppose we are computing the observed and expected counts of the Cellular Component term Cytoplasm. We choose a set of genes, denoted as A, which has total N number of genes with a Cellular Component term, in the analysis of Class Comparison. From these N genes, we get n significant genes by certain criteria, which forms a subset S. In the set A, there are M genes belonging to the Cellular Component term Cytoplasm or any of the terms children. And in the subset S, there are m genes belonging to the Cellular Component term Cytoplasm or any of the terms children. Then, the Observed is m and the Expected is n(M/N. The ratio of Observed vs. Expected for Cytoplasm is m/(n(M/N), simplified by mN/Mn. The user may specify a threshold for the minimum number of genes which must be in a Gene Ontology category to be considered (default=5), as well as a threshold for the minimum Observed vs. Expected ratio to be considered (default=2) in the Options page of the analysis dialogs. Programmable Plug-In Faciltiy BRB-ArrayTools has a plug-in facility that enables users or methodology developers to extend the tool set built in to BRB-ArrayTools by providing their own tools. Users can then easily add-in the new tools to their version of BRB-ArrayTools and use them in the analysis of their data. The extensions must be written as functions in the R statistical programming language. R is an open source and very powerful statistical language that is popular with academic statistical scientists. It is in many ways a public domain version of S+, although each language has some features missing in the other. There is a growing body of R functions developed for the analysis of microarray data and the plug-in facility can give BRB-ArrayTools users and R software developers access to each other via BRB-ArrayTools. Detailed information about the creation and use of add-in R functions is described in a separate document entitled HYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc"BRB-ArrayTools Plug In Guide. Here we will give an overview of the plug-in facility. In considering R plug-ins there are two perspectives, one for the R tool developer and one for the BRB-ArrayTools user analyzing his/her data and wanting to utilize plug-ins. For the plug-in user, the process of installing and accessing a plug-in is quite simple. The BRB-ArrayTools main menu contains a Plug In entry and a Load Plug In sub-menu entry. The Load Plug In dialog box askes for the path name of the plug in and it asks whether the user wants the plug-in added to the plug-in menu for future use. When the user clicks the Load button on the Load Plug In dialog box, the plug-in is launched and it will prompt the user for any further information it needs. BRB-ArrayTools will pass the R plug-in any data that it needs in the users Project Workbook that has already been collated by the user. The output of the analysis performed by the plug-in will be directed to a file and that file will be opened either by the plug-in itself or by the user. The user only needs to know the name of the plug-in. In using plug ins obtained from others, the user has to install the plug in in the PlugIns folder of the BRB-ArrayTools directory. There is a .r sub-folder for r functions, a .plug sub-folder for plug-in interfaces created by developers, and a .txt sub-folder for readme files created by developers. The creation of R plug-ins for BRB-ArrayTools is also relatively easy. The first step is to write the R function that performs the desired analysis. This function will be launched by the BRB-ArrayTools user as described above, and BRB-ArrayTools will pass to the R function the information in the active collated workbook that the function needs. The data will be automatically and the developer need not read any files to obtain the desired data. In writting the R function, the developer can name the available data objects provided by BRB-ArrayTools any way he/she chooses. Because the R function runs in the background, output from the function should be written to a file. The R function may open the file before terminating or the user can open the file. The second step in creating a plug-in is to create the interface between the R function and BRB-ArrayTools. We provide a wizard to make this step easy. The wizard enables the developer to tell BRB-ArrayTools what data objects the R function needs and what names the R function wants associated with those data objects. The wizard also enables the developer to prompt the user for additional data input. The input dialog will be in the format of the Micrososft Windows type of dialog boxes used by BRB-ArrayTools but the VBA coding of these dialogs will be automatically generated by BRB-ArrayTools using information provided by the developer in his/her dialog with the wizard. For more information, see the HYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc"BRB-ArrayTools Plug In Guide. Pre-installed plugins Analysis of variance BRB-ArrayTools contains several ANOVA plugins: HYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc"Basic ANOVA HYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc"ANOVA for mixed effects model HYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc"ANOVA on log-intensities HYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc"Time series regression analysis Random forest HYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc"Random forest is a class prediction method which bases predictions on majority voting of a collection of decision trees. Top scoring pair class prediction The HYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc"top scoring pair class prediction is a method for finding the pair of genes whose expression best classifies samples into 2 pre-defined classes. Sample Size Plug-in The HYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc"Sample Size plug-in calculator provides information on the number of samples per class needed for identifying genes that are differentially expressed between the classes when controlling for the number of false positives. Nonnegative matrix factorization for unsupervised sample clustering This method has been developed as an unsupervised sample clustering of microarray gene expression dataHYPERLINK "Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc". Nonnegative matrix factorization for unsupervised sample clustering Further help Some useful tips Utilities Preference Parameters To modify some of the default preference parameters, from the ArrayTools pull down menu, select the option Utillities and the choose the Preference. The allows you to turn and off the following parameters: Variable Value Comments LowessSpan 0.4 #Span for lowess parameter (proportion of data used for each point in lowess curve). ShowWelcome True #Shows the Welcome screen when BRB-ArrayTools is loaded. DebuggerOn True #Turns on debugger which points to offending line of code. PluginsUpgrade 3.1 #Plugin files have been upgraded to the structure of the version listed in this parameter. CheckedUpdate 3/19/2009 #Date of last update check. UpdateInterval 7 #Number of days to wait before checking for updates again. Use FALSE to turn off updates feature. DendroWidthG 580 #Pixel-width of dendrogram for clustering genes (in pixels). (Or enter "default" to use default value of 580.) DendroHeightG 400 #Height of dendrogram for clustering genes (in pixels). (Or enter "default" to use default value of 400.) DendroWidthE Default #Pixel-width of dendrogram for clustering experiments (in pixels). (Or enter "default" to use default values customized to plot.) DendroHeightE Default #Height of dendrogram for clustering experiments (in pixels). (Or enter "default" to use default values customized to plot.) ChangeRServer False #If TRUE, then use RExcel.xla instead of RServer.xla. PercentMissing 50 #If total % missing > PercentMissing, then pass data as character not numeric, to avoid time spent in converting missing values. Verification True #If TRUE, then turn on the data import, filtering, and normalization error detection. RetainTempFiles False #If TRUE, then turn on to retain the temporary files in the working path folder. StopCheckAnnotationsFolder False #If TRUE, then stop checking if project contains annotations folder. Heatmapthreshold 3 #Truncate parameter for log-ratio or intensity of heatmap. These parameters apply to analysis related heatmaps for Class Comparison, Geneset Class Comparison, and Time Course Analysis tools. For the dual channel data, the Threshold log-ratio = X is the thresholding parameter for the log-ratio values. Any values larger than X will be assigned to be X, and any values less than X will be assigned to be X. Minvalue is the color for the minimum value, MidValue is the color for the middle value (usually 0), and MaxValue is the color for the maximum value. For the Single channel data, the Threshold log-intensity percentile, a lower percentile from X1 to a higher percentile X2 are used for thresholding the data. The program will calculate the intensity values I1 and I2 of the percentiles X1 and X2. Any value larger than I2 will be assigned to be I2 and any values less than I1 will be assigned to be I1. MinVaule is the color for the minimum value, and MaxValue is the color for the maximum value. Download packages from CRAN and BioConductor If you plan to run various analysis tools on your collated project data offline (without an internet connection), we have added a utility feature to pre-download all the packages necessary to run various analysis tools and plug-ins from the CRAN site as well as Bioconductor. You must be connected to the internet to run this utility. The following is a list of packages that get downloaded. Packages downloaded from BioConductor are: affy annotate annaffy gcrma globaltest GO.db lumi ROC simpleaffy Packages downloaded from CRAN: bitops car gplots GSA impute lars matlab pamr randomForest R2HTML RColorBrewer XML Xtable Gene color coding for KEGG human disease pathways: This utility uses gene symbols to map the genes in the KEGG human disease pathways, and shows the color coding of the intensities, ratios, or fold changes of the genes on the pathway diagrams. Now it works for 76 human disease pathways from the website: http://www.genome.jp/kegg/pathway.html. Genes on the colored pathways have links for detailed information. The utility has three options: Sample name, Class variable, and Import data. First, you can select a sample name from the current project. The utility will color-code the sample log expression values (intensities, or ratios) of the filtered genes, and map them to a human disease pathway. Second, you can select a two-category class variable from the current project. The utility will calculate the average log expression values (intensities, or ratios) of the filtered genes in each class, and the difference is the log fold change for each gene. Then the utility will color-code the log fold change values of the filtered genes, and map them to a human disease pathway. Third, the utility works for imported data. The imported data should be in a text file, and need to have a Gene Symbol column, and a log Intensity/Ratio/Fold Change column with tab delimited. The utility will color-code the log values for all the genes in the imported file, and map them to a human disease pathway. Find over-presented pathways in a gene list: Starting from v4.6.0 Beta1, BRB-ArrayTools includes a new utility tool named Find over-represented pathways in a gene list. This tool allows the user to find over-represented Biocarta or KEGG pathways in a human or mouse gene list. First, the user needs to specify a gene list file containing a gene symbol column with the column header Symbol. Then the user needs to select a background gene list, which can be (1) Filtered genes in a BRB-ArrayTools project; (2) a whole genome RefSeq gene list obtained from the UCSC Genome Browser. The GRCh38/hg38 and GRCm38/mm10 assemblies are used for the human and mouse species, respectively; or (3) a user-specified gene list file containing a gene symbol column with the column header Symbol. Hypergeometric tests are conducted to identify the over-represented pathways at a user-specified level of statistical significance. Excluding experiments from an analysis Some of the analyses within BRB-ArrayTools can be run on a subset of the experiments in the collated project workbook. For the hierarchical clustering and multidimensional scaling tools, an experiment will be excluded from the analysis if it has a blank label within the designated experiment descriptor variable. For the scatterplot of phenotype averages and the classification tools, an experiment will be excluded from the analysis if it has a blank label within the selected phenotype class variable. Extracting genelists from HTML output Sometimes the user may need to extract columns of data from the HTML tables that are produced by BRB-ArrayTools. For example, the user might wish to include the HTML genelist table produced by the classification tools in a Word document for publication. Or the user might need to extract the t-values and midpoint values from the compound covariate predictor output for use in classifying new samples. Or the user might wish to sort the genelist table by a particular column. HTML tables can be easily converted to tables in Word or columns in Excel. You can do this in one of two ways. One way is to select the HTML table by left-clicking and dragging the mouse over the entire table, and then copying to the buffer through Edit ( Copy (or Ctrl-C). Then open up a blank Word or Excel document, and paste the contents of the buffer into the document through Edit ( Paste (or Ctrl-V). Another way is to open the HTML file within Word or Excel using the File ( Open menu. In the Open dialog box, go to the Files of type field and select HTML Document (in Word or Excel 97) or select either All Microsoft Excel Files or Web Pages (in Excel 2000). Now browse for the HTML document which you would like to convert. Once the table has been converted to a Word table or to cells within Excel, it is very easy to add to, delete, or edit any of the rows or columns in the table. Note that all hyperlinks are preserved when converting HTML tables to Word or Excel. Creating user-defined genelists The best utility to use for creating user-defined genelists is Notepad. This is because Notepad always saves files as ASCII text files, without adding the hidden formats into the file which some word processors do. To open Notepad, click on Windows Start Button ( Programs ( Accessories ( Notepad. To save any list of genes from a column of cells within Excel, simply select the cells by left-clicking and dragging your cursor over the cells, and copying to the buffer through Edit ( Copy (or Ctrl-C). Then open up a blank text file in Notepad, and paste the contents of the buffer into the text file through Edit ( Paste (or Ctrl-V). It is possible to save the list of selected genes from a BRB-ArrayTools scatterplot in this way. To save any list of genes from an HTML table, first convert to Word or Excel, then copy the desired column of gene identifiers into a Notepad document. Of course, the genelists from the Class Comparison or the Compound Covariate Predictor tool are already automatically saved into the ..\ArrayTools\Genelists\User folder. However, the user may be interested in saving the genes from an HTML table for purposes other than to enable subset analyses within BRB-ArrayTools, since the HTML tables report the genes in sorted order by p-value or another criterion. A new option in BRB-ArrayToolsv3.4.0 called Create Genelist using GO allows the user to enter a search string for Gene Ontology terms. The output from the search, is a gene list file which will contain the list of unique Ids where the search criteria term matches the GO description. The user can name the gene list file appropriately and this list gets saved in the Genelists folder under the users project folder. The genelist so created will now be available for the user to use by running the GeneSubset option from the Filter and Subset dialogue. Another utility feature added in BRB-ArrayTools 3.6, is called create genelist->Correlated with a target gene. This utility is for finding genes positively and negatively correlated with a target gene above a minimum threshold value. The inputs are the type of gene identifier, the value of gene identifier for a target gene, the minimum correlation threshold (default 0.5), and the name for the output genelist folder. This utility uses only the genes that have passed the filtering criteria. The output is a genelist file containing multi-column identifiers for those genes that are correlated above the specified correlation threshold with the target gene. This output generates a HTML table showing the positive and negatively correlated genes and generates corresponding genelist files that are placed in the project folders genelists subfolder. The resulting genelist will be used with in the Gene subsets of the Filter and subset the data option. If duplicates of a target gene are found, the averaged value for the target gene will be used in computing correlation with every gene else. DrugBank information for a genelist: New to v4.1.0, is the option to obtain drug names based on any genelist. The output from this a list sorted by either gene names or drug names. The link that the data is obtained from is  HYPERLINK "http://www.drugbank.ca/" http://www.drugbank.ca/. The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. The database contains nearly 4800 drug entries including >1,350 FDA-approved small molecule drugs, 123 FDA-approved biotech (protein/peptide) drugs, 71 nutraceuticals and >3,243 experimental drugs. Each DrugCard entry contains more than 100 data fields with half of the information being devoted to drug/chemical data and the other half devoted to drug target or protein data. Drug Gene Interaction database information for a genelist: Starting from v4.4.0, another utility feature called Drug Gene Interaction database information for a genelist has been added in BRB-ArrayTools. Upon submitting a list of genes, a user can utilize this tool to search the Drug Gene Interaction Database (DGIdb,  HYPERLINK "http://dgidb.genome.wustl.edu/" http://dgidb.genome.wustl.edu/) for the Drug-Gene interaction information on the genes of interest. DGIdb is a researchresourcethat can be used to search candidate genes in various source databases for known and potential gene-drug interactions. The source databases used in DGIdb for drug-gene interactions include CancerCommons, ClearityFoundationBiomarkers, ClearityFoundationClinicalTrial, DrugBank, MyCancerGenome, MyCancerGenomeClinicalTrial, PharmGKB, TALC, TEND and TTD. An HTML output file containing the drug-gene interaction information on the list of user-submitted genes is generated after this utility is run. Affymetrix Quality Control for CEL files: This utility which generates quality control plots and RNA degradation plots has been included in v3.5.To run the utility, you must open a project that has been collated using .CEL files and select the column from your experiment descriptor file that you wish to use as the column defining your arrays. This utility uses functions from the Bioconductor libraries simpleaffy and affy. The HTML output contains plots and associated tables. The main objective is to identify any outlier arrays within a class. The output contains Quality Control(QC) plots for each class variable for the following metrics: Scale factor, average background noise, percentage of genes called present, 3to 5 ratios for GAPDH and B-actin ratios. The typical recommendations are as follows: GAPDH 3:5 ratios: The ratio values should be around 1, values that are larger than 1.25 are colored red. B-actin 3:5` ratios: These ratios should be 3, values that are smaller than 3 are colored in blue and values that are above 3 are colored red as it may indicate an issue with labeled RNA. Scale Factor: The blue strip in the image represents the range where the scale factors are within 3-fold of the mean for all the chips. If any scale factors fall outside this range they are colored red. Average Background: This value is represented by a number besides the image and these values should be consistent with each other. Large variations in these values are colored red, otherwise in blue. Percentage Present: The percentage of genes called present is shown besides the image and these values too should be consistent with each other. Additionally, a table of the QC metrics for each array is presented below the plot. In addition to the QC metric plot, a RNA degradation/digestion plot is also provided for all the arrays within the class. The objective of this plot is to assess the quality of the RNA used in each sample. The plot, shows the expression as a function of 5-3 position of probes. For each array within each probeset , probes are arranged by their proximity to the 5 end of the gene. The plot shows the average intensity of the probes classified by this order. Only the PM probes are taken into account for this plot. Each line represents an array and usually we expect the lines to be parallel. Plots showing lines with different trends could indicate possible differences in laboratory processing. Below the plot, a table containing the slopes and p-values of the slopes is also provided. For additional details refer to  HYPERLINK "http://bioconductor.org/packages/1.8/bioc/vignettes/simpleaffy/inst/doc/simpleAffy.pdf" http://bioconductor.org/packages/1.8/bioc/vignettes/simpleaffy/inst/doc/simpleAffy.pdf Using the PowerPoint slide to re-play the three-dimensional rotating scatterplot When running the three-dimensional rotating scatterplot, users who have PowerPoint 2000 or later installed will also have a PowerPoint file created in the Output folder of the project folder. The name of this file is specified on the Options page of the Multidimensional scaling of samples dialog, and is named MDS.ppt by default, unless the user changes this name. To play the three-dimensional rotating scatterplot from the PowerPoint file, open up the PowerPoint file, and choose to Enable macros when prompted. Once the slide is opened, go into Slide Show mode by clicking on the View ( Slide Show menu item in PowerPoint. Once you are in Slide Show mode, then click on the Click Here to Display link to view the rotating scatterplot. You may edit the slide in Edit mode (such as changing the title, removing the warning label, or changing the caption on the link by right-clicking on it and opening the Properties dialog). However, the Click Here link will open up the rotating scatterplot only if you click on it during the Slide Show mode and not during the Edit mode. To go into the Edit mode, click on the View ( Normal menu item in the PowerPoint menu. Users who do not have PowerPoint 2000 or later will not have this PowerPoint file created for them. However, these users may still save a screenshot of the scatterplot or re-play the rotating scatterplot from a DOS command, as described below. To save a still-shot of the screen, simply press the PrintScreen button on the keyboard, then go into any application which has image editing capabilities, and paste the screenshot (usually by pressing the Ctrl-V key combination). Stopping a computation after it has started running Sometimes a user may want to cancel a computation after it has started running. If the computation is running in Excel, then the user may stop the computation from within Excel by pressing the ESC key, or by pressing the Ctrl-Break key combination. If the computation is running as a batch job within an MS-DOS window, then the computation may be cancelled by simply closing the MS-DOS window. Automation error An automation error is an error which occurs when one of Excels built-in functions is unable to run. This error often occurs at the save step, when the project workbook is unable to be saved to the disk for some reason. One possible cause for this error is that a users disk may already be full. However, many users have encountered this error during the collation step, even when their disks had not been full. The exact cause of this error is not yet known, as the error is often not reproducible on another computer system running the same software when collating the same dataset. However, a workaround does exist which enables users to continue using their project workbook even when this error does occur. The project workbook is saved to disk twice during the collation step. Before the collation process actually begins, a template project is saved to disk, containing all the proper worksheets but no data. After the collation process is completed, the project is re-saved to the disk, overwriting this original template. When the automation error occurs during the second save step, the user can often still open the original template project workbook and use it to regenerate all the data. Because the collation process did finish before the automation error at the second save step, all the data has already been written to binary files in the project folder. After opening the empty project workbook, the user may force the project to regenerate all the data by re-filtering the project using a slightly different set of spot filtering criteria (for example, by changing the intensity threshold). The re-filtering process will regenerate all the data which had already been written to binary files during the collation step, and the user may then change the filters back to their original settings, re-filter again, and then save the project workbook manually. Excel is waiting for another OLE application to finish running Sometimes when a user is running a large computation (usually occurs if the user is running a hierarchical clustering of more than approximately 4000 genes), the user may receive the following message from Excel: Excel is waiting for another OLE application to finish running. This message is NOT an error, but merely informing the user that the computation has not yet finished. Because the actual computation for the analysis may be performed in R (such as the case for hierarchical clustering), the Excel application must wait until the computation has finished in R before Excel can continue on. When this message appears, the user can ignore the message and just keep waiting for the computation to finish. Even if the user does not click OK to dismiss the message, the message will disappear on its own. Or if the user does not want to wait, then the user may choose to stop the computation, by following the instructions given above in the section HYPERLINK "V3_7AT_With_CGHV1_0-April/Program Files/Qualcomm/Eudora/atch_001/Manual.doc" \l "_Stopping_a_computation_after it has"Stopping a computation after it has started running. Collating data using old collation dialogs Prior to v3.1, BRB-ArrayTools used collation dialogs in which users must enter the format specifications directly, primarily by specifying column numbers where data elements were to be found. The collation dialogs used in previous versions are no longer necessary, since v3.1 now has a data import wizard which automatically reads the input files and displays the columns which are to be specified. However, the old collation dialogs are still supplied with BRB-ArrayTools v3.1 for backward-compatibility. Example 1 - Experiments are horizontally aligned in one file Format of the raw data files In this file format, the expression data from each array is represented by a block of columns in the data file, and the array data blocks are horizontally aligned in one file. There may be other columns, such as gene identifiers, that precede the array data blocks. However, there should be no other miscellaneous data columns following the last array data block. If there are any other data columns following the last array data block, then the user should either delete those last columns or move them to the beginning of the file so that they precede the first array data block. The file may be a tab-delimited ASCII text file, or an Excel spreadsheet (a single worksheet within an Excel workbook). If the file is an Excel spreadsheet, then BRB-ArrayTools will automatically convert it to text format. The following figure shows an example of a horizontally aligned expression data file with four columns in each data block:  The following figure shows the experiment descriptor file. The experiment descriptor file describes the samples used in the dataset. This particular dataset is a replication study. Each row of the experiment descriptor file describes the sample on one array. The order of the experiments listed in the experiment descriptor file are assumed to correspond to the order of the array data blocks in the expression data file. Thus, array data block #1 will be matched with HSOC2px-10 in row 2 of the experiment descriptor file, array data block #2 will be matched with HSOC2px-11 in row 3 of the experiment descriptor file, etc. The Reverse descriptor in column D indicates the experiments on which the fluors were reversed.  Collating parameters There are two ways in which the data may be specified in the collating dialog form. One way is to enter the red and green signal columns, and let BRB-ArrayTools compute the log-ratio. Another way is to enter the log-ratio column directly. The user is not permitted to enter both the log-ratio and the dual-channel signals, since the log-ratios can be computed once the dual-channel signals are entered. It is preferred that the dual-channel signals be entered (if they are available) rather than the log-ratio, since BRB-ArrayTools can use the signal intensities for filtering, lowess (intensity-based) normalization, and creating diagnostic scatterplots. If the log-ratios are entered directly, then these functionalities are not available to the user. The figure below shows the collating parameters which would be entered on the Expression data page of the collating dialog box to describe the horizontally aligned data file shown above, if the signal intensities were to be entered rather than the log-ratio. The user should browse for or type in the name and path of the file that contains the expression data. Note that the column designations of the red, green, and spot flag variables are relative to the first column of the array data block. In other words, a designation of 4 for the spot flag column means that the spot flag is in the fourth column of each array data block. Any extra columns within the array data blocks that are not specifically designated in the Data variables section of the collating dialog box, such as the third column (the log-ratios), will be ignored during the collating step. Since BRB-ArrayTools automatically calculates the log-ratio from the red and green signals, it is not necessary to enter the log-ratios as input.  The figure below shows the collating parameters which would be entered on the Expression data page of the collating dialog box to describe the horizontally aligned data file shown above, if the log-ratios were to be entered directly instead of the signal intensities.  The figure below shows the collating parameters which would be entered on the Gene identifiers page of the collating dialog box. In this case, the gene identifiers are found in the same rows alongside the expression data, not in a separate file. The gene identifiers are specified by their column designation under the Column format section, which are given relative to the file specified in the File section.  The figure below shows the collating parameters which would be entered on the Experiment descriptors page of the collating dialog box. The user should browse for or type in the file and path name of the experiment descriptor file. In this case, any array with a label of 1 in column D of the experiment descriptor file would have its intensity ratios flipped so that the log-ratios in that array are reversed to have the opposite sign.  The Filter dialog box, which allows the user to change the default filtering parameters, will be reviewed in a separate section of this manual. After all the collating and filtering parameters have been entered, the user will be prompted to enter a name for the project folder to be used exclusively for this dataset, and to enter a name for the collated project workbook to be created. Example 2 - Experiments are in separate files Format of the raw data files In this file format, the expression data from each array is stored in a separate file. All files must have the same column format, though the genes contained in the rows of the separate files may differ. Each file may be a tab-delimited ASCII text file, or an Excel spreadsheet (a single worksheet within an Excel workbook). If the files are a Excel spreadsheets, then BRB-ArrayTools will automatically convert them to text format. The BreastSamples dataset enclosed with this software package is an example of this data format. This dataset was obtained from published data by Ross, et al. To view the BreastSamples dataset, unpack the BreastSamples.zip file using WinZip or other utility. When you unpack the dataset, you should get a folder called BreastSamples, containing a gene identifier file called GeneIds.xls, an experiment descriptor file called ExpDesc.xls, and a subfolder called ExpressionData. Inside the ExpressionData subfolder, there are thirteen expression data files. The expression data files in this dataset are already aligned. The following figure shows the format of each of the expression data files:  The following figure shows the format of the gene identifiers file:  The following figure shows the format of the experiment descriptors file:  Collating parameters The following three figures show the collating parameters that would be entered on the Expression data page, Gene identifiers page, and Experiment descriptors page of the collating dialog box, for collating the BreastSamples data using SPOT as the unique gene identifier that links the expression data with the gene identifiers.    The Filter dialog box, which allows the user to change the default filtering parameters, will be reviewed in a separate section of this manual. After all the collating and filtering parameters have been entered, the user will be prompted to enter a name for the project folder to be used exclusively for this dataset, and to enter a name for the collated project workbook to be created. Reporting bugs To make comments or ask questions of a general nature, please post a message on the message board at the BRB-ArrayTools website:  HYPERLINK http://linus.nci.nih.gov/BRB-ArrayTools.html http://linus.nci.nih.gov/BRB-ArrayTools.html Bug reports should be e-mailed to the BRB-ArrayTools Development Team at:  HYPERLINK "mailto:arraytools@emmes.com" arraytools@emmes.com. Because many emails get automatically deleted as spam, please follow these guidelines to ensure that your email gets past the filter: Always include an appropriate subject header which indicates the topic of the email. If you are sending attachments, then please send them in a SEPARATE email from the main text, so that we will know in case the email with attachments gets deleted by our virus filter. Due to limited resources, we cannot guarantee that we will be able to diagnose and fix all bugs reported by users. However we do try our best to respond to users within a reasonable time, and to advise the user or fix the problem whenever we can. References Published references S Dudoit, J Fridlyand, TP Speed; Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association 97:77-87, 2002 I Hedenfalk., D Duggan, Y Chen, M Radmacher, M Bittner, R Simon, P Meltzer, B Gusterson, M Esteller, M Raffeld, et al. Gene expression profiles of hereditary breast cancer, New England Journal of Medicine 344:539-548, 2001. EL Korn, JF Troendle, LM McShane and RM Simon. Controlling the number of false discoveries: Applications to high-dimensional genomic data. Journal of Statistical Planning and Inference (In Press). LM McShane, MD Radmacher, B Freidlin, R Yu, MC Li and RM Simon. Methods of assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18:1462-1469, 2002. P Pavlidis, J Qin, V Arango, JJ Mann and E Sibille. Using the Gene Ontology for microarray data mining: A comparison of methods and application to age effects in human prefrontal cortex. Neurochemical Research 29:1213-22, 2004. MD Radmacher, LM McShane and RM Simon. A paradigm for class prediction using gene expression profiles. Journal of Computational Biology, 9:505-511, 2002. D Ross, U Scherf, M Eisen, C Perou, C Rees, P Spellman, V Iyer, S Jeffrey, M Van de Rijh, M Waltham et al. Systematic variation in gene expression patterns in human cancer cell lines, Nature Genetics 24:227-235, 2000. RM Simon, EL Korn, LM McShane, MD Radmacher, GW Wright and Y Zhao. Design and Analysis of DNA Microarray Investigations, Springer, New York NY, 2003. V Tusher, R Tibshirani and G Chu. Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. Proceedings of the National Academy of Sciences USA 98:5116-5121, 2001. GW Wright and RM Simon. A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19:2448-2455, 2003. Technical reports In addition, the following two references may be found as technical reports from the BRB website:  HYPERLINK "http://linus.nci.nih.gov/~brb/TechReport.htm" http://linus.nci.nih.gov/~brb/TechReport.htm Technical Report 001:07  ! " # $ % & 3 4 N O P Q R S l m rar j}hV&UmHnHu,hV&5CJOJPJQJaJmHnHtHu jhV&UmHnHujhV&UmHnHuhV&mHnHu hVj5;jhVj5;UhVjCJ aJ h#1CJ aJ hdg9CJ aJ h6CJ hVjCJ huv55CJ0 hnN5CJ0 hVj5CJ0hVj# !"01234567:;<Ni$a$ !& S  K  7 w  L  ! ! ! !$a$       * + E F G I J K _ ` z { | ~  ذ؟؎}l jkhV&UmHnHu jhV&UmHnHu jqhV&UmHnHu jhV&UmHnHu jwhV&UmHnHu,hV&5CJOJPJQJaJmHnHtHuhV&mHnHujhV&UmHnHu jhV&UmHnHu*      1 2 3 5 6 7 V W q r s u v w | jhV&UmHnHu j_hV&UmHnHu jhV&UmHnHu jehV&UmHnHu jhV&UmHnHu,hV&5CJOJPJQJaJmHnHtHujhV&UmHnHuhV&mHnHu*       + , F G H J K L c d ~     - . H ޿޿޿޿޿|jhV&UmHnHuhV&mHnHujMhV&UjhV&UjShV&UjhV&U&hV&CJOJPJQJaJmHnHtHjYhV&UjhV&UhV&)hV&CJOJPJQJaJmHnHtHu,  N 5VM[P~K| ! ! ! !H I J L M N z { /01345mnذ؊yh j hV&UmHnHu jA hV&UmHnHu j hV&UmHnHu)hV&CJOJPJQJaJmHnHtHu jG hV&UmHnHu,hV&5CJOJPJQJaJmHnHtHuhV&mHnHujhV&UmHnHu jhV&UmHnHu(56PQRTUVst,-GHIKزءؐn j hV&UmHnHu j/ hV&UmHnHu j hV&UmHnHu j5 hV&UmHnHu j hV&UmHnHu)hV&CJOJPJQJaJmHnHtHuhV&mHnHujhV&UmHnHu j; hV&UmHnHu+KLMpq:;UVWYZ[xyԲԡԐ jhV&UmHnHu jhV&UmHnHu j#hV&UmHnHu jhV&UmHnHu j)hV&UmHnHuhV&mHnHu)hV&CJOJPJQJaJmHnHtHujhV&UmHnHu)/0JKLNOP]^xyz|}~ҬҬyh jhV&UmHnHu jhV&UmHnHu jhV&UmHnHu jhV&UmHnHu)hV&CJOJPJQJaJmHnHtHu jhV&UmHnHujhV&UmHnHuhV&mHnHu,hV&5CJOJPJQJaJmHnHtHu(*+EFGIJK[\vwxz{|xg jhV&UmHnHu,hV&5CJOJPJQJaJmHnHtHu jhV&UmHnHu jhV&UmHnHu jhV&UmHnHu j hV&UmHnHujhV&UmHnHuhV&mHnHu)hV&CJOJPJQJaJmHnHtHu(|"Xw$R>x4 D| ! ! ! ! !"78RSTVWX޿޿޿ꠒp jphV&UmHnHu jhV&UmHnHujhV&UmHnHuhV&mHnHujvhV&UjhV&U&hV&CJOJPJQJaJmHnHtHj|hV&UjhV&UhV&)hV&CJOJPJQJaJmHnHtHu,VWqrsuvw "#$12LԪv)hV&CJOJPJQJaJmHnHtHu jhV&UmHnHujhV&UmHnHuhV&mHnHujdhV&UjhV&UjjhV&U&hV&CJOJPJQJaJmHnHtHhV&jhV&UjhV&U(LMNPQRmn89:ذᛍ|kZ jRhV&UmHnHu jhV&UmHnHu jXhV&UmHnHuhdhV&mHnHsH u)hV&CJOJPJQJaJmHnHtHu jhV&UmHnHu,hV&5CJOJPJQJaJmHnHtHuhV&mHnHujhV&UmHnHu j^hV&UmHnHu#:<=>WXrstvwx./0234pqxg jhV&UmHnHu jFhV&UmHnHu jhV&UmHnHu,hV&5CJOJPJQJaJmHnHtHu jLhV&UmHnHu jhV&UmHnHu)hV&CJOJPJQJaJmHnHtHujhV&UmHnHuhV&mHnHu(   #$>?@BCD[\vwxz{|Ӗodoj hV&U&hV&CJOJPJQJaJmHnHtHj: hV&UjhV&UhV& jhV&UmHnHu,hV&5CJOJPJQJaJmHnHtHu j@hV&UmHnHu)hV&CJOJPJQJaJmHnHtHujhV&UmHnHuhV&mHnHu&*+EFGIJK˽ˬ˽˽ˆ˽˽u˽˽d˽˽ j(#hV&UmHnHu j"hV&UmHnHu j."hV&UmHnHu)hV&CJOJPJQJaJmHnHtHu j!hV&UmHnHujhV&UmHnHuhV&mHnHu&hV&CJOJPJQJaJmHnHtHhV&jhV&Uj4!hV&U'KNAr'n"mD ?  ! ! ! !-.HIJLMN !;<=?@AQR׉x׉g j%hV&UmHnHu j%hV&UmHnHu)hV&CJOJPJQJaJmHnHtHu j$hV&UmHnHu j"$hV&UmHnHu,hV&5CJOJPJQJaJmHnHtHujhV&UmHnHu j#hV&UmHnHuhV&mHnHu(Rlmnpqrz{!"#%&'MNhijlmn~m j(hV&UmHnHu j (hV&UmHnHu j'hV&UmHnHu j'hV&UmHnHu j&hV&UmHnHu)hV&CJOJPJQJaJmHnHtHujhV&UmHnHu j&hV&UmHnHuhV&mHnHu* !"LMghiklmyh j*hV&UmHnHu j{*hV&UmHnHu)hV&CJOJPJQJaJmHnHtHu j)hV&UmHnHu j)hV&UmHnHu j)hV&UmHnHu,hV&5CJOJPJQJaJmHnHtHuhV&mHnHujhV&UmHnHu(#$>?@BCD^_yz{}~   Ԇ~s~~_&hV&CJOJPJQJaJmHnHtHj,hV&UjhV&UhV& jo,hV&UmHnHu,hV&5CJOJPJQJaJmHnHtHu j+hV&UmHnHu ju+hV&UmHnHu)hV&CJOJPJQJaJmHnHtHuhV&mHnHujhV&UmHnHu%  9 : ; = > ? e f ! !:!;!!?!@!i!j!!!!!!!!!!!!!!!jW0hV&Uj/hV&Uj]/hV&Uj.hV&Ujc.hV&Uj-hV&U&hV&CJOJPJQJaJmHnHtHji-hV&UhV&jhV&U7 @!!!!I"|""-#d##4$$$$-%\%%%9&g&&&&I' ! ! ! !!!!!!!!!!(")"C"D"E"G"H"I"["\"v"w"x"z"{"|""""""""" # #'#(#)#+#,#-#xg j2hV&UmHnHu jK2hV&UmHnHu,hV&5CJOJPJQJaJmHnHtHu j1hV&UmHnHu jQ1hV&UmHnHu)hV&CJOJPJQJaJmHnHtHu j0hV&UmHnHujhV&UmHnHuhV&mHnHu(-#C#D#^#_#`#b#c#d#########$$.$/$0$2$3$4$`$a${$|$}$$$$$$$$$$$$~g,hV&5CJOJPJQJaJmHnHtHu j95hV&UmHnHu j4hV&UmHnHu j?4hV&UmHnHu j3hV&UmHnHu)hV&CJOJPJQJaJmHnHtHu jE3hV&UmHnHujhV&UmHnHuhV&mHnHu($$$$$$$$$ % %'%(%)%+%,%-%;%<%V%W%X%Z%[%\%~%%%%%%%%%%%%%%%%xg j7hV&UmHnHu j-7hV&UmHnHu j6hV&UmHnHu)hV&CJOJPJQJaJmHnHtHu j36hV&UmHnHu,hV&5CJOJPJQJaJmHnHtHu j5hV&UmHnHujhV&UmHnHuhV&mHnHu(%&&3&4&5&7&8&9&F&G&a&b&c&e&f&g&x&y&&&&&&&&&&&&&&&&&&&&&xtltaltj:hV&UjhV&UhV& j9hV&UmHnHu j!9hV&UmHnHu,hV&5CJOJPJQJaJmHnHtHu j8hV&UmHnHu)hV&CJOJPJQJaJmHnHtHu j'8hV&UmHnHujhV&UmHnHuhV&mHnHu&&&&(')'C'D'E'G'H'I'|'}'''''''''''''''((-(.(/(1(2(3(Y(Z(t(u(v(˽ˬ˽˽ˆ˽˽u˽˽d j<hV&UmHnHu j<hV&UmHnHu j;hV&UmHnHu)hV&CJOJPJQJaJmHnHtHu j;hV&UmHnHujhV&UmHnHuhV&mHnHuj:hV&UhV&&hV&CJOJPJQJaJmHnHtHjhV&U'I'''3(z(()_))*t**+U++,5,b,,,,,,,,,1 ! ! ! !v(x(y(z(((((((((((((()))=)>)X)Y)Z)])^)_)))))))))))******R*S*m*~ j>hV&UmHnHu j>hV&UmHnHu j>hV&UmHnHu j=hV&UmHnHu j =hV&UmHnHu)hV&CJOJPJQJaJmHnHtHujhV&UmHnHuhV&mHnHu.m*n*o*r*s*t***********++++++3+4+N+O+P+S+T+U+++++++++++زءؐÌye&hV&CJOJPJQJaJmHnHtHjnAhV&UjhV&UhV& j@hV&UmHnHu jt@hV&UmHnHu j?hV&UmHnHu)hV&CJOJPJQJaJmHnHtHuhV&mHnHujhV&UmHnHu jz?hV&UmHnHu'++++,,,,,.,/,0,3,4,5,@,A,[,\,],`,a,b,s,t,,,,,,,,,,,,,,,̭̾̾̾̅̾̾t̾̾c̾ jChV&UmHnHu jbChV&UmHnHu jBhV&UmHnHu,hV&5CJOJPJQJaJmHnHtHu jhBhV&UmHnHujhV&UmHnHuhV&mHnHu&hV&CJOJPJQJaJmHnHtHjhV&UjAhV&UhV&&,,,,,(.H.//Q0*2329222q66(7)747:7V7X77&9T9@9@BBCD.F[FMGtG`HHJJKK/P@P]WtW\\^^a"abbııڬڣڧڜژژڧڧڧڧڧڧڧڧڧڧڧڧڧڑډjhVjU hVj5\h_g h_gh_gh6 hVj5 hnN5$h0B*aJfHphq *h0h0B*aJfHphq hVjhVj5CJOJQJhVj5;CJjhVj5;CJU511111)2*2p6q6%9&9@@BBCC-F.FLGMG_H`HJJKK-P & F h^h & F-P.P/P\W]W\\^^aajckc4e5eWfXfYfffjjjjkkjlkl & F & F h^hbkblbmbvbwbkcc5e?ejj6k7kkkkkkkkkl{lgmmmmmnnBnDnenznnnnnnnooooooooopppqqjq߿߿ߥߚߖjhW%UhW%jFhVjUh0 hxhx hVAhxhxh ShnNjyEh/%8U hVj>* hVj5 hVj5\hVj hVj0JjhVjUj\Dh/%8Uh/%86klBmPmQmRmfmgmoo?o@ooo p pWpXpvpwpqqqqqqqqqgdW% & FjqkqlqxqyqqqqqqQsjstttt u*uuugvmvyy!z"z#zKzLzzzzz{{Š%2v^_jۺ۵ۭ۔۵h?kh?k5h?k hVj0JjIh/%8Uh/%8jhVjU hVj6jhVjUmHnHuhVj5B*ph hVj5h0hVjhW%hW%hW%0JjhW%UjKGhW%U7qttttttuu $$Ifa$lkdVH$$If    vz  t 0    4 arp $IfuuuuuuuuxxxxxxxOzPz~\kdH$$If    vz t0    4 ar~~܀݀…ÅՈֈ$%uv^_"#VWWXwx*֘טŚؚ͚$If & F֘$nrlp<X+i{|}WXY|}ģţƣQRSfg=>?AKfs jahVjUjShVjU hVj5aJ hVj>*aJ hVjCJ hVjaJ hVj5>* h5 hVj6hVj hVj5GIJ(&&&kdJ$$Ifl֞ J / t0644 laJRXalw@AIOV_ju~FfNFf'L$IfޟߟXYpء+,}~X$IfXY}ţ~~$IfzkdP$$Ifl0 ,"P t0644 laţƣR~~$IfzkdcQ$$Ifl0 ,"P t0644 laRSg>~~$IfzkdQ$$Ifl0 ,"P t0644 la>?@A,-ABޫ߫zkdR$$Ifl0 ,"P t0644 la ʹ` ʹ( ˽vw MN CK~!/R]^lml} ;=ƧƧƟ hVj>* jhVj5 jhVj5mHnHu hVj6j%hVjUh6 hVj5j hVjU hVj5>* hVj5aJhVjCJaJhVj hVj>*aJ hVjaJ h6aJ:ʹ˹() ¼ü˽̽WXvw ` & F!MO *+def{|kl}~ ;=op =ot BD8= FG/0N !"FGHdejNY hVj5hVjOJPJQJ^JaJhVjB*phjhVjUh3L hVj0Jjh/%8Uh/%8jhVjUh_gh6 hVj>*hVj hVjCJ; BD8= FGf~=t/0NO./GH,-gd_g $$Ifa$lkdC$$If    vz  t 0    4 arp $If YZ[aghi{/Mfo !*5>Ewx$%78 IKL&ƿƿθʿƿʰʰʰʣʰΖhN> ho5hr!shr!shvah0J hh h0JjhU ho5ho5 huv5huv5huv5hh<h3LhVj5B*phh&hVj h&5 hVj5 jhVj5mHnHu6{gdgdr!sgdr!sgd<gdgdo5gd<\kd$$If    vz t0    4 ar&'PQlm?ILh             i x |    /^ 'EFŷŲŷŲΪΪΪΪΠΠΘh/%8jhVjUhVjOJQJ^JhVjOJQJ h&5 jhVj5mHnHu hVj5h&hVj hhh8fh<hh4shr!s hN>0JhN>jhN>U8    /0~ PQgdy %*./ES~,k++,/,u,y,,¹⬥⥬ޚ□hhhhN h'X5\h_g h_g5\ hVj5\ hyaJhyhyaJhy h'X5 jhVj5mHnHu hVj5h'XhVj hVj0JjhVjUjrh/%8U6Q@Ag-.EFkn#$gdgdNgdNdd[$\$gdy$>%/'++++4'6(666667A7d7e788899<<<=gdgdgdtgdgdgd,,,,,,,--//4555&6'6(6d7e7889+949Z9^9i9}99999;;;;;;;;;;<<<<ᤠ}vvvvvvvvvvvv hQxhh_ghthtCJaJhtht6CJaJhthh$h!B*aJfHphq %hr!sh!B*CJOJQJaJphhr!shB*aJphhB*aJphhr!sh!B*aJphhr!sh!aJh]%haJ.<<<<</>0>>>>>CClCmCCCDDDDDD3EAEEEHFRFpF{FFFFFqGwGGG HHgHHIIJJJJpLLLLLLLLNNPPyPP>QTQQQORPRjhVjUmHnHu hVj6hVjOJQJhVjOJQJ^J hVj5 hVj0JjhVjUhVjhh_g hh hQxhD=d?2B>BCDDDDDDDUHVHKKKKsNtN9Q:QNRORQRRRSSdd[$\$PRUR`RRSwSSSSSS`TqTTTUUUUVVY!YYYZZ8[F[R[X[[[\\\0\)]-]`aPbbbbb_cuchhhhkkkkllo,o1oGovoppqqL~M~hcei hLhhOJPJQJ^J h6h hVj6jhVjUmHnHu hVj5hVjNSSTTUUYY"Y#Y$Y%Y&Y'Y(Y)Y*Y>Y?Y@YPZQZ[[d]e] ^^^ !^^^W_X_i_j_bb3g4gEgFghhjjjj]l^ltlulmmnnnuovovooo=p>pSpTpqq%q&q(r)r>r?r xx{{{{ ~ ~FG78gdgdgd8gh*+`ւ@Abc+m^gd hh^h`hgd & F&gd & F'gdgdgdikl )*YZnoxyzLWfgڌیJ[ƐŔהܔ?bÛƛBEʞמ M79:EFJվվվվպh=hh hVjH*hVjmH sH  hVj5 hVj6hVjh6H*aJ h#h h6h hprh h6H*H019:uݍލĐƐǐҐӐ%&'45Rgd & F"gdgd^gdRS֖ז>?_`abFGH_`&'LMfggdhgdh$Jbox|ΤϤ234XY! PتroFήݮ!"/0OYZȯۯguĽh_AOJQJ jh_A5mHnHuh_AOJQJ^J jh_A5 h_A5h_A h4fh4f haJh\haJh4f hVj0Jjh/%8Uh/%8jhVjUhVjh=hh7ңӣԣ !ͨΨϨgd4fgd4fgdhbc[\İŰbcgh!"VW'(19BLV] & F%gd_Agd_AuӲֲIM"V(]2TYrڶ}J47wҾܾ"?DdhڿۿEFn} NOPpqrwܷ±ܦ±ܢhBjhVjU hVj0JjhVjUjhVjUhVjOJQJhVjOJQJ^JhVjh_AOJQJ h_A>* h_A6h_AOJQJ^Jh_A?]^129@EJOTU|}IJfӹrsgd_Aʾ˾/0NONO !gdr!sgdyw ]^_mno]^VWį̫z h0JjhUjhUh h hr!s jhr!s5 hr!s5hr!s hy0Jjh/%8Uh/%8jhyUhyhp9hxhVjh`orhFHhB0J hBhBjhBUhBh\n0 RS{,-op{|O^_λƵήήήΪ{ hp9hh hVj0Jj hVjUjhVjUhVj jhr!shr!s jhy hy0JjhyUjhyUhyhxh0JjhU hYlhjhUh h*Xh056  ^_acdef123EF$a$  !gdr!sgdr!sgdgd  567RS%&'Z[abxst%&񲮪hVjOJQJ hVj5 hVjCJ h&0Jjh&UhDh&h9hyCJj{hVjUj hVjUjhVjU hVj0JjQhVjUjhVjUhVjhr!s jhr!s6F(JKFG#$'(ef446(*68YZ=  l dd[$\$gde8`68<HJNPTZ`bflz| "$&(.̻̻̻û̲̻̲hVjH*mHsHhVjmHsHhVjH*mHsHhVj6H*mHsH hVj6 hVjH*aJ hVjH* hVjH* hVj6H*hVjOJQJhVjE.28ln ( w     R W ` d e       5 A ! "   0ksz##### $ $$$$$$%%c&B*}+~++òòßh/%8h j[}hVjU hVj0Jj|hVjUjhVjUhw<he8aJ he8aJhLhe8aJ hVj6hVjhVjmHsHhVjH*aJmHsH;STHI^"_" $$$5$6$a&b&c&{&|& ) )P1gd gd +++++239:&::::`=a======DDDD$IRI S SpSqSrSSShhhh1sssttttRuTuZu\u`uduju·⮦h)h~dH*h)h~dH* h)h~dhi>h~dH*h!-h~dH*hi3%h~d6h~d hVjH*jh/%8Uh/%8 hVj5jhVjUhJh0#h hVj hVj0JjhVjUj ~h/%8U2P1Q1112299::====0A1AEDFDHHHHI IKKTTWWW[[ccVi jjylh~dH*h~d&xxxHyIy\y]y^y_yzzzzz { {{{{{{{{{||=|>|Q|R|S|T|l|r|||A浨材{sokbhJhVjaJhVjh5hmh~d6jˑh&h~dEHUhgVh~d6jh&h~dEHUj X h~dUVj-h_h~dEHUjX h~dUVhYSQh~dH* h~d^Jjh&h~dEHUj喝X h~dUVh~djh~dUjֈhVRh~dEHU%AB2>)59?@NO[\ƆȆBCDRijxjjfb^h~dhh5hW+CJOJQJ^JaJ h*ph*pCJOJQJ^JaJh*pCJOJQJ^JaJh[CJOJQJ^JaJhBCJOJQJ^JaJ hJh<CJOJQJ^JaJ hJhf8CJOJQJ^JaJ hJhJCJOJQJ^JaJ hJh5CJOJQJ^JaJhJh5aJ"  RSTegnuvw)*#[\ʷp[[RNJBN:6h/%8jhVjUhVjB*phhgd;hVjhEhh~d^J(h~d0J&B*^JfHph333q 1h Zth~d0J&6B*^JfHph333q .hEhh~d0J&B*^JfHph333q *hh~dB*^JfHph333q $h~dB*^JfHph333q *hEhh~dB*^JfHph333q $hB*^JfHph333q h~dh Zth~d6  vwxy͊ΊϊЊ  ΏϏ02:<$a$ !7$8$H$#gd<gd~dˊ̊Њ "$LRTbdnpxz ~HIOĞĠghˤӤդݤ⾹Ⱜ❬hIZjhVjUh[hB h\\ h? \ hVj\ htZ^JhtZhtZ^J hVjH* hVjH* hVjaJhVj hVj0JjhVjUjh/%8U=opjk:;GHI׬جkEF$a$gdNgdh !SUVڥ jklvɦҦ֦abݨިߪk|JEѱֱױޱ߱IJS۹߹ߵߵ hhhhlFhyhhh hVj0JjhVjUhIZhVjh[hFHhB0J hBhBhBjhBUDSX[\X CFUZbcdmwε  *.ö·JK徭{wrwrwrwrwr hR4H*hR4hYLh\h4fCJOJQJ^JaJh\CJOJQJ^JaJhR4CJOJQJ^JaJ h\h\CJOJQJ^JaJh;CJOJQJ^JaJ h$ h$ h$ hVjCJaJ hVjaJhVjh`or hBhBh[hhB,FμϼEFYZfgij  gdN#gdR4gdR4#gd\KTUӾԾ־׾F>WYZgj ,Ljk !.湵hB0hBB*CJOJ QJ aJfHphq hNhy hGhGhGhVjh\hVjaJ#hR4hR4CJOJQJ\^JaJ#hR4hR4CJH*OJQJ^JaJ hR4hR4CJOJQJ^JaJ hR4H*hR42.01   FGI|12fgh鲙|x|t|x|txpxkxcxXcRcx hVj0JjhVjUjhVjU hVj5h~dhyhVjh`or0h`orB*CJOJ QJ aJfHphq 0hBB*CJOJ QJ aJfHphq hBNh[hB0J>*B*CJOJ QJ aJeh@fHphq r@h[hBB*phjh[hBB*Uph h[hB GHIJKwx]^ gd`orHJ`b^`VX68:</bcd9;23STij򽹮 hVjH* hVj0Jjh/%8Uh/%8jhVjU hVj5 hVjH* hVj6]hVj6OJ QJ hVjOJQJhVj6H*OJ QJ hVjhVjH*OJ QJ @Z[kl45@AVWX~j#$%QR  &'WXLM66M7N7]=x=PK~K[[\\\m\n\ImJmppC{}~ijȽjęhVjEHUj pA hVjCJUV hVj6 hVjaJhVj56] hVj\ hVjH*jh/%8Uh/%8 hVjhhVjOJQJ hVj>* hVj5 hVj0JjhVjUjhVjUhVj6$ % & G H     FGgh  %%%))//R4S466071727M7N7#:$:?=@=A=X=Y=??CCDDEEE6I8IK K!KKKLKSSS1S2S`XaXp\q\]]B^C^aaeejjClDlDlppwwC{D{}}~~jkhi#$@$a$7$8$H$"'(?@AB]^`aÈĈۈ܈݈ވ$%<=>?‰9:QRSTЍэ~j:hVjEHUjLhVjEHUjQuA hVjCJUVjhVjEHUjtA hVjCJUVjܣhVjEHUjtA hVjCJUVjhVjEHUj$hVjEHUj?rA hVjCJUVjhVjUhVj hVjH*.@ABڎێ56qrHIst!"VWbceˮ$a$|-YZB_cd#5=BJnx =EJRaj)1+,klyYZ⯫jvh/%8Uh/%8jhR>U hVj5 jhVj hVj5\hVjOJQJjɱhVjU hVj6hVj hVj0JjhVjUjhVjU<,-YZ>?$a$$a$;<123PQST'(ijkxy OPQrsŴŴŴŴŴj)h/%8Uj4h/%8Uj?h/%8UjJh/%8U hVj0JjUh/%8UjhVjUj`h/%8Ujkh/%8Uh/%8h hVjjhR>UhR>hVj0J5?UVklR&' !"fgYZgduVgduVgd7QCs@ABUV!"eWXYZ{q-.(c{ƾ쳾͚xtttptph(hN hyhyhy hO'hO'hEh$hO'h\h&sh&sh&s0J6]h&shuV0Jjh/%8Ujh&sU h}(huV huVhuVhuVh7QCh7QC0Jjh/%8Uh/%8jh7QCUh7QChVj,Zhiz{q8% 8z.gdEgdO'gd\gdO'.$ (/3:>EJQVgd(gd\gd\gdy {|w"6J'07ISThi!)/28@Xv{ɽŶԽԽԽԽԽԽԽԲԽh hGh^phA3'hp+h1<hAx hdh^ph^p h\ho hho hKho hulho ho h(h\FVcjw{!",-gd^pgd^pgdo gdo gd(KQRY_e @Z_h IOPW]czEFObcojh<Uh<h'h>h7hVjOJQJ jhVj5mHnHu hVj5hVjh\h^h^phAxIhi  )*QR&gd<gd>o_`aXYe,-6DOɹѲ|g[[hl=fHq )hl=h OJQJ^JfHq *hl=h 0J%6\]fHq !hl=h 0J&fHq hl=h fHq h h h"h>0J h>h>jh>Uh>h Chrh<0Jjh<Ujh<Uh< h?*h< gh-?Ua 3   h j k l    9OV ?Ibghs#-FKafy~ַ娠娠 jhVj5 hVj5hVjOJQJ^Jhjh7QC0Jjh7QCU h7QCh7QCh7QCjh7QCU hVj5\hVjh'h h>hl= hl=h>?-U z    IJK\],-$gdZz$nt!!D"E"F"y"z"$%((++++..U0000q112223334$455U5Y5d5e55566664757M7T7P8^88889s9hVjOJQJjhVjUmHnHu hVj6j hVjUjMhVjU hVj0Jj޾h/%8Uh/%8jhVjUhZzhVj hVj5A|"}"""$$$$%%L'M'(((((+++++++.2222222222222222222222233333333333333333333333c5d5f5g5h5i5j5k5l5m5n5o5p5q5r5r5s5t5u5v5w5x5y5374767778797:7;7<7=7>7?7@7A7B7C7D7E7F7G7H7I7I788899o;p;@========">#>%>;><>??????AAAs99::|;;;;<<J<U<|<<<<<<====#>$>&>;>>>>>>>??(?,?????????@@@AAAAAA BBZB[BBBBBB9ENELLZM[MM hVj5>*j^PhVjU hVj0JjOhVjUjhVjU hVj5jhVjUmHnHuhVjOJQJhVj hVj>*DA#A$AAABB$CyC1D2D*E+E7E8E9ENEOEFFFFGGHHfIgI$a$gd0 & F$gIJJJJsKtK?L@LLLLLLMMppqqqqrttiuLvMvxxMMMMMMMpDpEpFpppppq q!qqqrarorrrrrrrrrsss*s@s]s^sttuuu3u4uuuuuvvvGvHvIvKvvvw¾º¾ƶ⥟jThVjU hR2pPJ hVjPJ jShVjUhpOh#1hZzh? hwrjRhVjUjRhVjUUhVj hVj0JjhVjUj5QhVjU:HYPERLINK "ftp://linus.nci.nih.gov/pub/techreport/TechReport001.pdf"A paradigm for class prediction using gene expression profiles. by Michael D. Radmacher, Lisa M. Mcshane, and Richard Simon Technical Report 002:HYPERLINK "ftp://linus.nci.nih.gov/pub/techreport/TechReport002.pdf"Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. by Lisa M. McShane, Michael D. Radmacher, Boris Freidlin, Ren Yu, Ming-Chung Li, and Richard Simon Acknowledgements The BRB-ArrayTools Development Team is led by Dr. Richard Simon and current team members are Dr. Ming-Chung Li, Dr. Lori Long, Dr. Qian Xie, Dr. Yingdong Zhao. Past developers who have contributed to the software are Dr. Ting Chen, Qihao Qi, Supriya Menezes, Michael Ngan, Amy Peng Lam, Dr.Yong Li, Dr. Leonid Gibansky, Deyun Pan and Paul Shrabstein. This software uses many algorithms and programs developed by various members of and people associated with the Biometrics Research Branch. Many code fragments and hints were also taken from the Excel Developer Tip Archives (http://www.j-walk.com/ss/excel/tips/index.htm) from JWalk & Associates, Inc. Acknowledgements also go to the R Core Development Team for their production of the R software ( HYPERLINK "http://cran.r-project.org/" http://cran.r-project.org). For details, please see the 'Readme.doc' file. Support Vector Machine algorithm implemented in the BRB ArrayTools was developed by Chih-Chung Chang and Chih-Jen Lin (see  HYPERLINK "http://www.csie.ntu.edu.tw/~cjlin/libsvm/" http://www.csie.ntu.edu.tw/~cjlin/libsvm/). Cluster 3.0 software was developed by Hoon et. al (M. J. L. de Hoon, S. Imoto, J. Nolan, and S. Miyano:  HYPERLINK "http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/publications/cluster.pdf" Open Source Clustering Software.  HYPERLINK "http://bioinformatics.oupjournals.org" Bioinformatics, 2003, in press.). It represents an enhanced version of  HYPERLINK "http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm" \l "ctv" Cluster, which was originally developed by  HYPERLINK "http://rana.lbl.gov" Michael Eisen of  HYPERLINK "http://www.lbl.gov" Berkeley Lab. To view the clustering results generated by Cluster 3.0, we use Alok Saldanha's  HYPERLINK "http://genome-www.stanford.edu/~alok/TreeView" Java TreeView. Java TreeView is not part of the Open Source Clustering Software. License Cluster 3.0 is covered by the original  HYPERLINK "http://rana.lbl.gov/EisenSoftwareSource.htm" Cluster/TreeView license. Support Vector Machine algorithm implemented in the BRB ArrayTools was developed by Chih-Chung Chang and Chih-Jen Lin (see  HYPERLINK "http://www.csie.ntu.edu.tw/~cjlin/libsvm/" http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ). Redistribution and use in source and binary forms, with or without modification, is permitted as described in the Libsvm_copyright.doc file distributed together with the BRB ArrayTools.     PAGE  PAGE 115 Expression data ( one or more files) Tab-delimited text files (or Excel workbooks) Gene identifiers ( may be in a separate file) Experiment descriptors Collate Collated project Workbook Excel workbook with multiple worksheets User defined gene lists One or more text files Run analyses Filter Tab-delimited text file Tab-delimited text file (or Excel workbook) (or Excel workbook) www&w'w)w*w]w^w_wmwnwwwwxxxxx3x4xUxVxWxdxexixjxxxxxxxx)y*y+y8y9yyyyyyzz]zzzz hVjPJ j,ZhVjUj_YhVjUjXhVjUj+XhVjUj WhVjUhBhVj0J6]jaVhVjUhVj hVj0JjhVjUjlUhVjU3x~yyyyyyz z{{{{{{{{{{{{{{{{{{{h]h&`#$zzzzzz{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{|||$|%|&|6|7|8|9|:|;|F|G|H|ƱРhB*CJOJQJhphhB*CJ0hph!h5B*CJOJQJhphhR2p0JmHnHuh h0Jjh0JUh!Fjh!FU hVjPJ hVj hVj0JjhVjUjZhVjU4{{{{{||%|&|7|8|:|;|G|H|W|X|c|d|p|q|y|z||||||||H|V|W|X|b|c|d|o|p|q|x|y|z||||||||||||||||||||||||||}}}} } }!}"}9}:};}N}O}P}c}d}e}f}g}޿޿޿޿޿޿޿޿޻hVjh!FhB*CJOJQJhphh5B*OJQJhphhhB*CJ0hph!h5B*CJOJQJhph8||||||||||}}} }!}"}:};}O}P}d}e}f}g}+ 0/ =!"#$% nK/0%?aPNG  IHDR 8gPLTEfffffffffwwwffff̙̙̙̙iCbKGDH IDATx]K쪮%~sɚ#nDtv=[b &KIl,@2痈6heZjgߢ.E֨iÌҨK'"RR E3B 3a!" ЭU k~?yɯUyOn>eB@:*+~xP2]ADpEFݑ`Lk%! ckJiA: AnO:g&_cqg wWB ND$_B ո\ŗA6A7!Pت1`9MDpAz~? j=FĪ\vD@;/""8hAZA>AnFwʣ A 9 A/A)&"RS5H?z>ȣg : "M,=Ŵvj2hq\WY h>줻5肇M,Ny#@0A >_d샴%3jA$U_0bZo( r|z"q AD#y4iTA]3#}Q_OI$X"5#Ʋ7=h 72AQaM Ͽ ,ݯnׯߙOWї7yޚN|?F~"?C%vsm`\7FD'Ik%Aj]|"д=)%}4.2Ty=xVrsA`' 1VQ4SJNarm]U% uޘ2y=C dIK)TJg_J&>&dL_Shjq4JLyR]ҳIT~} WT*;j{<"DRj22W mЭGA6 IhOp5Ȃ2U~LR |vhN7u>j"ܻj' }Fl35vp (0X RY$@fk (V;[fpw?IxGm  5|!25f4ȫc~;Q䳦lAE}wT=>@/`5~? b} [d]5KzIqTj7eJdD(Vb>fL]JJ-} /[(R0Rbd O2A,A y5Hp51a >`׍bjn\ i#[Q;~P BK-3ؒ pGiDziE ,V_LSw{y pV(A8_,!HiGxvA1cLEv 7ky;HH47/`rBɼ:wa>_!JP~uқeg5IUxA&R}\-pGQ'UgAØ摈: >[8/A܈??UEN!KJl9v`g;Å0-f VeXJǃ4=+P 1 bY5HBs2Rqy^ΎǣXdfŠ _ I&M/"I^K`B >DDaAI SA'H7綈 JA!@|Žy9 bGA٨[$TD:%ěhǃDX&Ě jJiyֈ|r;aڄ v!HiDR* [E" IwiP A}&,/r^Ύ" w>&M5ȵ &ͤ8Z8,HpQ,W+An̊8IY|TiwU<șeGQ'UgiD_+\I~uR|&>0cDurFvp, &m XQnI,NćX߿pfx: >Xҿc&gET|Wo%Lv@F_Xꃼ1~+ dȥAsؽ4Y0Qj$.z AJʈQNO7L<<3sNA.GΊ >H^M,~B$U_'Ug;H+(<(*L< NzGHXbj*4IE>G%M: >,}GXѰZibIUxiYajs|TgFqodn_1{ܱ-H9،,vx=fcD1o $HŮb(,g4]_p>Eއ r\ i+AbA6 S/jtL7;"I Jċ]"M"xFܜ%ATFﷇ?7t-7b ;>w̒V {uiL1ufZrSIכxjy_ݑ> 2INA\T*AR.V3b҇Ԥ ްeyR.`* lR h/Xm'B*6л8Bt`$z/V ; G L"vÔI)3q+k{AhڨٴD>b׻{Лw/;"EΊB ~{|ۋnj 5qNRQ\T>X'Q.1¦DPPJ&°2CjUITa}Yajs|Tg  W $,N3s> gET5z|}_LӋ-Ĉo(oq.H͟B6=$VQI,-_/V>7nOn)iȶ\Lmd}@bA I )!|/jbـ' S.+ S7B /֘;]U;Kݛz [  XR0 T+=+/N*Xz& 43~Io͟#1<8ה/Ggy7ot[{-7ӛX$B^( N)A `Cٝ^"AcA4xHm熉 * S0U_'Ug>glt"2U_'UgxWm"Y^x*Fb6L *쭀e.0/`*ef5y _,jC[R!.Ը>iU'676RSbI/gŲtd< J%HR e gfVQH{#(SbH*DR_b}~=TA`g$K:%uD,ĕS a vvc(4vqtwU 65۲D ,I2 >  \D,NijvFaN {?: >z~F TX Ijd(*L| h `mSkCҖII$-ibIUxI_I/3v*B: >X tߙ5A- XJ]FCL^Ύ}Y1bm8b r=53ZhGI+tr5KLv`g#|vKzE>HbI+!ف A~<>OÅhgR{z۸d F.0ʲ{;;>zXCC7l\>*tTբǂ0 {;;zGv#Z7U%Q̌9 bs̘oؤȥ\FW;=6/X2n7d*KL AJØt )*_eomZaPᷦI r^Ύ}nO['3& eM,c -5 ZBM^LskT+DRQ\LzDU!#C>At?$VR?`*e7~fE*X_'UgوB_uR|&]aiNRޏNΊ] j SLbV@F!- Z9 S*L<퇺7 SA,Nij}.bIUxfn ۮ d#4tPl# JᙈAH!|D}ͭ2b",1|xYKja+D4H)pbl3qgE *L<Xw-]_(`j6`RYa@ v5 w: >O4׋NWDIUxk~>F$0N3 (냦 Se0h[T@F*6Z88zVrEd613XoQ֒nx[!e+XYaA P0k.*Ĕ%*WszWВ>8¨ S) LX7$- b#>oi=Ax nUV |̀9KZp+'ćXy|L:$QHZG>VKĻര #[ApI:M40%)gyoϯT bwwB4?3 S`6e %#A ޼uQH +)8B'YX $5WdSB ڶȋ_wxK0&r7Gr -2H.Y ;~?^7{dVFJjV)-Seq3 <3 L!:$HnMdg<4H?qܛ ID!m =c(tm5e apzZ/N`9$f})wVsbݻ]AZ*VIY|T䣛 A'{?: >5! SĜB37/7 aSzYT‚MIUl:KN2u@  X7Yajs|T- 5aC:euR|&Y'=2/!HY|TgyS1Kz &W$+L2v0jFL70cP LɱxfwƬ05\/^28HDJ@&+Lm3AՍ̋eHe()sW(ֶ: >h?YK0ELu@ b/.+n,.5/8fJH=ܽY%=g !@U$9$V=H<W ͬĤHE+L*G+9T%'$WiY[d S~mڧљ!r)!H|A^}7nn^gS_є Ϋ| Q?+Yz+h?s)!H|A~X|05AOP%(C73" ~ ^S g4c:xL4GXJFB݊ eתrWh UI5iQ ~?ujT IDAT) " A˳A[SLgF̊ +LA  ?K?$Hn͕j۰{;= &Fpc:* EmN:*xgrٿ?AZ$3K|*\|rbIUxV@_2+rޏNS_,AP ZFcuPbR;LIT 09Nų};_a*|J',N3.쁯sg5S~4c8e)SL|njǏP[&dAԹ[KAA\FB2@|#S!b@hn727/]3t >l(u>vlow2UL")4ȟz>^r -\ ERAzgE֛4\<S@MؓD>b.v}B(V<%15aXQp*PTNXcT ERhnk"A& 6veBbh w)=@;=jb1ya`wJ' !6O3mQ,=mϬE4Hr2ͤ8SAŃqV,3x?⋵5N/ @hޏNƃw SVW2w+Y&y S*lI"XeuR|& g7}rkp{RL6[Y XLpEtk )hٿA/%5ڸC|̇Xp1)tN|ʀ xD;rs+@1Ͼ” KY _a bIUxN4BE|*L[ Sxۍ J\UjRC;HȔDgYKz[*s%0ż׼t*LbIy^A- euR|&$q %,N_,h R_'Ug;*~Љz3 fVd}:AW(*L!}AO0QB: >1|;͡;Ų+aZ^7tuIeJBvVƻP˗wwgcIϼv}tJGfc2i])\IZFnUGL5 w>XՄƠ` 91s>$zW#A0%Ńj^D͢ݶ4AJLR .EdV}QI 9Ci|4 vx]w nK,[<$"1}bMxXyj"XzŠAhA\SDtb6X b-Aயc`w}ԭJӒHԓP{IN# AI8ńC44xM5oއevu}:2NS猿]qrHdbY,KEу{HU?25~:j[0~eyh{ FѮKTug 2R _f1Au!&D4HӟoJeY_U4wٿ%9>`?U1$"-`׬ s#MIIENDB`ni='5W;`p; DBPNG  IHDR @s)PLTEfffffffffwwwffff̙̙̙̙CdbKGDH IDATx}M*6qj{ҽG^Bķ&Z3$ A$-,'ţ$IR2ϷN:!\֙q/Ua28s 08OgŵiKr ߗ)16}9wq!Dw`?/S|F5?'Gb4s9w{8Q% &и/S(6Ȉ |?3i:@:}=C/ێG 2鏑 5PH' MєAFD +A!PD7W.=)߷\NIjk6/F AFu km;8F ?Ӌ_JNv&M@ 2vU4}v$b@IKNۑfDبAA&J 'gG1g sI DOhz!֩ӞTAF1!$ {үS*'t !V$7i 2k?m,W6jI h^#\T#yko ok!AVUwNOCnGA2-A"  C|9O1~'u_ GpeX߮@cu:)3e]Ov 3@NS7gio=lSWI@Vo3v{rpB6t 韃|fNas|.#(,%3Sw ؓ~Q@N͍X|8W^')b[N6y7?OcVL='l%V-WVv~ {FZc2_YQ9 L2Yɟ^ )[STdE^.y2A5YBH{L?͍d`ʼDu"JkuK5KeZ%S\Ak$A E?& /GQidt b1 bHF4Hm ;Т⏓],6d3h-OAj5ީZ| RʯbA̰$k^V| PӼA.g n GA^S< XrUdi*Z6ȳe5ja~ZA VETV~ u3m7kU$AgϢAG}u"jx J؛{o %v*T+ͷ.u#0!Vp bmL}-ЊXf6H ռS_ w1ܨ @e+?3FI&3}umRW>{͟IvE1:] BH2$g r4H3ed IVdfBAv}$V](" MYL +eAI0Tk +XL~mE O45Ȝ䖫Ehw3?wA d6eLfh|ꂀڊ&1t2 If*e U#Y(`m  g'RQsFc-Uc@D׶@"L(UXX}2D<vQTBb(-  A[s b̚tl>^υJ@I}NTq'YQdcjEJxy5i?d(NcQ !œ$I0# _4)?t,V DXv0Nn`õLX.&}){$6*UE4ISWV^5+ x wld Hw Wb4H '`TY)#h OF Dԑv (B? \d:Hc&A(@lY$@66ƵI "}-UV2.?@t `dAFlY7Jt.TA"14QH=IkPϸ.rRJn," T@d\[ae%,H]J***a AYR+AT Rʛ k{n(j!M Eؔs"^MmuiRu?,'R 8&=AvZi <𙒨ߠF,b1>+h!\\@@AGdY,gha.40iaY729QP C I+TİKڊ& ~AZb$Nx;罠[ >Qڊ)Bf?=Y1 Uid}  /-߫9OL/63E3Wž6¬RHji(<~bKXL~mE_ MQ0#YL @DhꨮA:@ ,&>j tk xS~opq~oJ '=*%$5dcAX06$z79P' n7U:Eҥ'ai/Z=)E0G_ uJL'"cLAH @9)udjF ƨ|CJIO(ѮDh0e ^ m-a`-aD!r`4@ GH b7L }Y6pJk2֬ IJBgOw(H#}_AN=xn jjS. R#iдoJ qC瘠gGQ(VxY,RRѓޙ$̂xq<~ök!V~"Ӽbb9A!EҠA~?u?ȪY,*rR/VQl | !JZ8 c$oFA~x6rz`JeZkB}QЎknw  ܓ53S_AW!':7>*9ZH uIzCr(\i51T3 VhԓTao;>5ЎIJX<ၬmq-^KG4ey2Q[]ECM6йwOh%ԍ'$5~L] EǨ8B5[P0vO:T.R ܔ'9qjPJ oZ5ŃtTP*K(2ZYfOH{F~߇X RAX'*VJZbed?f#?YRjfGLym)0e Zk- q5ogQ/jWHXz>s\xL4җeCj $ԉ&F{gJŃI.qE-6*7i7Av|L>& ~PY4h{b5ȿk!IeP#RCOTd`>r opkAQ`dc߅SQȊ'g3w B6$߆z<Ўk~WfEH_dgDaXkXhG 2==Yq ¤;NcTm MYMakNuop*856Pj NWHz`hG 2Jcҟ:@vAAAht<uAE(;AHLf{J i;D{DLTw^ s(k XtH<ԉ=*TTrbS DPTH9zYfROz Zf6tp(q\=Ia *!=/ ~d)BWM 1on \ Ў i0҉RH ۰ġS@*t sj7L",m Au= 6|SB!KĽ [ref4mHZH FI&ApoZjuD8U%$G2"%~mk6 =~6 TZvߎ ~ZT:tMN{cXbџKO5a6G׍t$@S֭Dbqn HQ $S9t\jOrE%pqXvH0t\H@5b.n¦Qlmp.h&"~B5r*~LO7iyGa=@ Q@B3 1<KFڮs N ZWEV8n ȾYPB #uM:@Ѕ+Ȣ`LS;irQVqa)#2'.Јx@%8 U ro_-eфV R(&㊬tZ@BdMDN%Y,*ܣe)So!` ٵpG-O5$jy}; @ Y+dm_G- _xpJwå5|xfC{Da @XO| v]{KS~6cp(-{T&(U$ NT,EUP О  <deUǃe= T|Ih-CHb +$  $yH~4PiX0/V- 2qF!AP0EEt%w ⍏hTu+ ̾_\gF?BU#Tl\) 1(U;c tǃW ED9 P;4@bMy?l\Q 7ZEXyO5NHj/\$WGsWqHTK \ "_r4&}H#}_$2Qj^I 9 X (#*C1В XI Qȫ_NKDKcd$.@pj*$]]\%l r jRH}kgZ`d^F]Udᴊ@RϸR/XQ}d3jI=vݓC͘HE aE`"e8B󚯶' PH,Z>#%+OԺfLqT>肦Q".oHg7L&6Hac<-&Av\⧚pzŊ Kd 2y%hT zCȵXDfv)RDS|SR>""ByZBA8AHz`ho$b#5ҏK @; /tI)/ၬ5DOw?a??7(d'X_l-L 4DBb.`debAC,+xICZ,p!M"0 oElQ?#=)IG;c\JGB#ͯxOʮa,IDAT t<5Lʖu,#' Dhfibu!9(?ߐ@>@e0~(hψIx06Hrwdm`V:rֆW2x.`Jha@ovNH|P 2= G:"D4R4 ]nwɭ&k"- :')b? yRj !`~`|UƷ:TrhFJI O _UkX5>O5aQ.I QcO1X Xj HGakDa0H60w!%` aB ~5,ߟ Fy Sq-\O 2Ю,ZqjQݤw>Ŋ@{j=Y[L]RE7SrȞTeKy^ۙ`dB&~oYd=`ɨhOdhŒ]<uASM0N臣ɕ?M45X5W$rX"Y[0%6[0)0@Y,ټ }7LSq KLqkb|-j@ qnݿ&IB_"Q.B#_AsWk+IMshd"=dq"W-ŋP&KxP3_;g8SGZE4 2Oe,>o$A(@Uy bq2eޭ1<#]M.j Ha5A7Lx}QH6x )LpO 3ǍEQ&vwm-$v4@Ȋ,eQ'+Zwn($]+q4g;1\ ,h ' Vg4`G!V.` p3r:z᦯)j>تA ֑FxR xbA<0nn.V)tU_GŲkפdk?o/XQ*,/VQa"$ISUQ4eR+ּt &6zEjpN( Zj 'l^>u k<ȕă$x]k<}Ozr6ahק\x*0E=~CH\hI,%1xЃՔv" `p.!bC\㓩%D1m0AhHp砅t+bFUIPy 'YCX&89lH,,48-b;4hoO;ƃXI#ҫbQ$k0̪zm* g_B/ d'~GXnZ.*,l:AbV#"T&Xzd]JIDCVwJ0!b_0cDa}gbuMrԚ[4ȿy'݇M6  S뿑whtb 5k HT4=Q@ K[^@J1jvS !z6HЧe5/1{kE}1F9" "U=j "&Y.\1T:@Ti&ʷ Rg4 FXۚWUĠa@JUv%9@ 6ƈR4[ɇW8Q @^oʡݹ`u7p ڰ8A%Xt׶ăkEz k+#)=Wite ^ܝ4$kaITF@OŜxoL}tCgh;ȵEJXDF*;TYu,&K^"@T+1NT' YW!@r!Y(lI\]_>ĪIt Q_1GᜩCb4p>E+ bިBsqFVBc`.DvlIB2"1j퀺kݭ5ȠHŊ4C͹gx}B%k 'Cy+vL辿 4Mjn+_u8ji.uSV h 0c]MZQ)( j):mVUbk V˲-5a A軥.3MSہ$ &ռb5ȓQ5 BGqSt8`ʈ8o'2RSHW]KA_kުռ|H ,xX]soI)*UzY8(d?2RAkb  P*`dFjלܚALneH*ćoHxE k5Ia 4`{ż%)KLH 6' acYSv% qaȈ32qIc4җ)Bg# i G= n @$ޡW ̓-Alᲀ)e:)S$Lt Em0 BRA]$`*?t "QҤAb T H dj=Ql컐Qb)w)UOVԗ<&@{=xXɨhX'ȾK @;o=_:c|l)) yXͫї#=9$A㣿a)k 㲓dy2 Xj44n<um@?(㥚0IgA>6A?ߝ;^Ӝ9O?@zg vLbOuR9YfLh ILx>S=h(RIRSrN G^ %MxY8.4[R9 bySAPrQ7EɊ/LX5*<4,  ׄ /iIghI !nsJ?XF^ZSF6o @ZHxC$b} ~q3,F&`–@ݳGVI32X[q)cvZL($D`6ȡRmNI10@ZBnla0K hEv-c֑# 5"R j$p i/ b;( aE:p-HgaG$m$QFEyZ$t.q *rq`8.%8A>/ b?j!Zst:@hq" $e=T;XZt6N_̘]JyOLJCB$y)Kx.`*|y568qms&qczfƉltIR( ʑq/\_ Lx#݂:РAE 'G/v ẢIblTb ug#%%Ej2$1Y,<qTa3YR2DŽ5 rU #ռ `o瞉H=+WH+A $55(\Y:@  Q݈]#YB}"ΫySM9_ oɑxRؖm *{غ<$> SɊIOF]AN=1~vhWD6WAG @kdi;\_$'䇐rВq):׮nh'=2 C43*.y٘ Z j) bUB٬'xta IeV%CEI{^FZ'#/.i$ vݹ-ϫ'+5&~9Hoj  P8WW)8TM#+ ^ y\{2+ R~bIX䪯1>24{h3 }.*6Qk~ҩ=dH@($J"@?7׃@֕6SkoB onèA>m怩""kRK7qxɼYAGbDD"+!6' MWk)f\W~BmZ.`Ğr$ 㕬. @} 7>&zo iLDd$2%β9qcү'/( 3YAb¹1k&aU‡X1FܪH>‰2qS 'ձ@e+@zLd8͋yD!V#m:PS[YʡcJWүo@6^! 2/^ TcCkXQo?ݝOw-Hi^n\R,"k@ N\ݝd=G@`.t GHe'+3@xmMM`37^$Vp :LJc}G4Ť\ٳC EݵW+Pdܔyb\tB(rӸ B49}= [deǫHzri2Sgꦹe/Ufڝl5i BsR@4o(gXl:Bhw|;yPTHX֢~ܔ&XdQ,L؇"<^k}09   j"zr~"^CDDЍVQd滫 ͽ_p,~>E$toNhGé;TϒeXe[SF@  3l$d7^q?]@ꮍxVfc5Xq\نeUKb 4E$Q ųM&s-iQA$*Aar]΃.O6UL=P*[[N{nes>NjB=2@&7qK-SA 4qяi +:ibnһm 0;9"ݚs_TizqaAi@xv h(dA܈C@NdN^LQA̿ `Zg-h®gTȀȂrFӼ;zA4 "}!&'>d՟lrlwũ4sa=voO;], v'MRM7Mwjj@ b4Y,7= AVfW:ScZFEͬEYIV.̭%^476q0u>mc&Rɛ RY,o brG|V-A`˒{3Q/Zv.n7a$%ӆ]7$ @kBIڊ[f/{M$5I_ 7[ƳH(\Hcgj}#: N:1k:u4_篽9&} wBBY&*% 4G1eW[Ň-iRai_? r1:uh:zه>⿳毸~%]"]"}?!WM?m~o_O;@N/>נtj~>%?GzYTj&IENDB`nD0aPNG  IHDR 8gPLTEfffffffffwwwffff̙̙̙̙c sFbKGDH IDATx}K㸮6z^Bđs-\COF[x)٩,UiIAHfcFNWsZgMvt{EiL əmj,H#N;1IqBFF/*;~??/ysiҳ44;dFͬrvH o O}1/| TD $Il)cb܁ ?3#a?pW<ds`7Hkkl'^V2f/ӬC]i!bHmN6Ȣ?] ϙm ^5 zw@ݟ7^Fi$  6h hc?YyY  Iob#td* Xl=.njt )HLnV)dۺ֏Y܁ǬA1I64҃y Lp>t^0@ lld~.F$7EGfdxZ"L4 }ޮrϋnۧNV~m،5I&?3e/v +@.f~AUui5ށ'Nvg'w[?8|n~t6rScg|gɟ~ 3gƌ4&7}BOF!ts}z+y,j_z^t6= 0d'ÞQXEkO"履bHn.#5ZoE!NM蘭[F-v6 ajM46k_rKab%m,m"K^PK+qO_nm259$di&Ge_@$Q ~Ha,mpx+?A5ȥ_L:v릷{'S)HFo`_?Y"ľM_YwrHHI):>MNJװ4 %0\0vt L&W ӯ8 *V !k~d?gzxF k諁>o sJXUcb,+7fǎgF(F[wi}fO 2j,@^`$S^tUBia~ |m3Z@E~TC_"k0 bj:{]$/Ki:m~C]l^Ǖ?c(2[y;{K?AJK^0?N ɦߜ@@ߙ>o,iOvAJoO?4{?gTY1NU,v"%c:T pw1 󭡼V r_5JU-_۔H17 Fb?\MKb^O RMO"76䞷A}j']5e[LRHJۅׅEU%vzSHopF& ȏ BkQ?M |3ɴBfWQ@l&VW"y nղ W+i47X4BLQ4LH+4g5H HeI '] Fboj a%s bALbgaLJ=%Q4B:[@h`R[f[sa3R HVA ,L,>.n^])`,=_j :biv. @k4[̬/hRHDh9 GX]oQsqy@R2D-zB_ H})&?TQA twҦAa_aO gL^zQtmHl$@pU R.{PxPT^Xh `%D_" ~ Dhe`m@|23 D=}$V(?*I:EbiE8 &-?K$Ť3 Zm6 - xgx 'Ÿhiz<&OibI@n9? @ p9efwVpFbb9SdZ4UؕRv+3`s巢g9RTJҲ}l\~M%?FbѸ\0Q]4^F2 jGb~ 3h 'nšRT߅~/Z_K- b zy[ɜZᬮF3C~үX^"K#UtFyzhڻJ\,XQcѵ$;f+Šlwjvhߜ޶ ;K1sjϙ2["~h3s BbфWdl1t^zC? @  qA S`cg$%Id 4&HfJֆQW =,~л5t^zuP "biD@`fƣZ0 H3jA.=pշ :x/XG4Z;x #en;X)@4TQ 014@-R#@B6G!x?}V* u^zh"}hA_RYnz`:T5,S5ūXe?_a h6GKXj&_HLHh4/k+:@.Gvm t񤎒[8H¤Gs"ʨ4\z(q.h̯?U,VN%kfN L<AT I?4)_b0 \VJ,U`l}kEp˝|w L̻yUatTl4dEpѾ9 g_;g bA)R7#h?7$ ÿ9 B8⋥ nEBA4jR+xoGz7?ȢA*ևgP^1yzH(r>?qu)U6x^յ( `5r+EV}"W԰E46^\QA 9c^ R8@f @< kzsht=@X) d ` Mzbҳᭇ U! ƟvXP VF@ B;(W+ @Rp!ob#8dҎ^a9xP(M[.LmY0hZgH|"DU&fG.6HTiHtA})V@36&AXi(RAh!xkJ _WZ C4T.0h赠%ɿ.èKA5H$bKjj@Ɇh}==3s^o FYYITjJ4E0ߓWb2uc r zAOP|05" ; rzeKP54H' 5oi؋!eRǀ-~}(,F&PDTU_4z/k9T^~^/2ղe>ЪTIĿ*t-o5HBIO a`GjZ1ÿ&RTAw9Ŀ^Lgp+ H |KF-k:g a$%Fv xoD ҨX$R<]9 ,-E%)Ao,`-1Nw }vSCƃ#`~ ϯb)sA:9}Mۢh鞭iJ靴W"o0iiHPCU j+(uIB] "A*BS,C̱SzyT?C8q1!u=BzA.[8F%ߕwp\0R^hoXb4ȍ0>z;zk0  n)9 wi7]ԛ0 9 sLm\rB>Y^<#b@040JdİsjJ4XxA̅ &G R<5~3."XؘN[@2}qoP J X5iU Win6SB 5zj'd5~4iezsIh^KCJSA%_B;!L3@|VAb,7ŌZ XRob P BX#>/R(]Py pp$!qI8ZF8Ylw1f 6P@k@NbĀ|PZ? F9@P RAVcٮc I 2o 4[xbzCӋzD.MQ+S\KRAZፉRaXR6DuQ}ۄ 6y60 BEϚ4^ASq{ȵ@9b0G!FڭHWbLl "/he*MoN?b^Ab44H' Ojtz!R1tj_Th:gңVʢ "3,@jh9'^딥jT*c_/bJxԳ^ZvC^ p7J8: rzqK~; I?4)E ŸЃ'>: |=t/:t.ZKQʟ1̃˘-A¬E_^3&Q.{As7?Ȅ5H֣O,ARNqRcWrY G)w {~c[Ao$2D/L6W i=b)ƎHwpQkM{L-b"@ huI.- za u=C/ W4v'"b/@ mg6jISDI İ3GHD_Aׂ^:}: IXVA/@B*4A @jR miZ8_7i1@*4H?&'֚H6;&27\Z4ȅk\s )j"'S5c_9@0 ᄴCgO j0Ap4DAA6#AB &uXs'U-<%E> @*4κtHͶTJiդTSq~0=~AhL $nkg ƑZFƔ* =g$@(B{RM/g<5JOVl4<髤ȉ;#xqN[ E!1.#OziKj׷X@7ֈyeZAMbeoX6 IDAT`+Ńmc/V'؋uzA>EDHc/V'؋u zS~J{DCjחD P\5'eA+]a:8%b&IȠTlJDž'$<(,`\k KjMC^ÈBrL: r ^,o ɽX0dݭWW87'"\CϜV A(^ jAnkQNM~$z/k90"0>itQ$yZAsW(h߈ȥZ^ @[1`-O9NL-t1&}nguq߆/t t%.8ai(Hjv@hZq9 ^)KBŤz R ܴHՊ T~z !XQ@ >2+{+h S|IafE#(6]EF>vS@8O%"I T\ ޸zĽ { " Wc~{ g^$<7?)^َZ &HokXn?=Is.fRAѣ`G nZ1ԇR{hպj XwTD H_j)aFT  }Qq dbAWm+ T. MDÇֵrS@HQ4 bj۟c@ 0EtWn?i<$(V?H@>vPBGn[Ih~k B}-M(@Ôzx|mQ8NOXAJ]\JX0aGuѺ 6)aS*?ȖVGSK}bi-pq&L QHG%n0ҹy6[nmrA7M?b^ # ?V~:Adt?*m&Ѿ; Oj%xJ\+Or+8-ا%l g#IUtihR~Y 2j !M;GuG]q9嫻,ab ca~hSdo:~ g4_\,L<~=5%?0EWKKt "RBBO^W eC!DO!icyJR -nv/?A{@Rtw_A`Ac"CpHКin[v^BArL(K?`XWԲ @]*;걵7tF&QF=3f~0^,4 B)(H~G&'&h5HbTgp䟻ǵyo Z45 rb ӊұҳa7X^ T:%@BxWxPlGAbO @pAJf/^c6"B$dj }RZ"a5i=@RX* : 2[pU y6 $CԴ,#2HNPR[ya- (_b)[3F%L A|@߬İm%@Lc>Մd_7ub]Q k?@zjb@Yj-pf%wi?ȡ raJ0eS R?!kg "a=Y ̌\0[VQr8'\N)?I8q?0ij LYhOVd@<_#dbe%3Q[.٠0Eb}on0tҏXgg+>Y~:=A׊ihNzMR tbK ׷K?Cy/]N;K\쓔|*vKWBI9!CIb=åtcr_.ŢnxhC'A@/ `KSNaj`T0;9= ~0Ue m)P`A @i? 8##A)pB5?/q0?V|"w#[M#ʼ905?zt[I 逩L.>hB򣝮FR,) b Y ^HeP %`*U|'IE(bn=[Md8Zr@S']zӣ Sˋ@b@p%wдUD *@h /F8j:`q}: L~k7*DJ_~c/)*A›^^ f~GWݼCA׷I`)T)qsLj 7"ARptNQBaI[4d|{oV$l rd1k|'7{T16e B%iA:9A _)`h<-X l\e+ (il<0;Ab7LͪGL ē VP=IzV+_RqIM{iRl^TAηwwAO;R7̱=7 ߯*UlOU|gS79*aʮfH b:%42A⯴[Ž҇6v^4G wno)?N: bBmW9@5AM?bix?b?W 2bҏXKso&]Ct rzA>흽aj\c|TaPN4։PtnRtA Rs4v; gb05lNab[ѐ~h3 ~Bݫ ;Ve>4xx /xkI)L  Foow*rWM-OV;BeB&C݃ς>$PTZp0A@ANHbiaZ͋@ ! B#AO%AL RtpFf,gb31;ejg ,ROmX<sȘwp~g H <*$ *Z/H+ 2An c7/g$ dgƀN16Y 0+ `)ِaB(@J4t Ŀ*#ߞ*@.fԶ%i? X/]8P@q1HC%lk`GΆdZ#AWx14q7Q 27AUApk -΍/gdK<N X౔v0:hsW^ aTdœ~3!/>>l˼mxI?<@̈́R ST`hdM˼:Taj ,&=!ݶ x >Qh!lQ^<+aEk lpNbaZ*A/OUi>#=ET%/hIŃlvhߜ~:5M+wv r *VoZVL-:g-\[-ib 0U&M) Bsm5lJ [sue Ulw OwC!Y"S} @Dd4Hť`RNtp/&#(p'+5A¾VknjټzD#m7DG͋w/L/$H!rR}Y8Tvd=8d#m6vJ]7 >(vRP)Vp(:l EMD>f5] V# irExIBDp{jAo B- t<*ປ)6U0/e?X|)|+M0r^dzc+3IAHo28~:A D؋K?b^ <&A:9Iܢw7L=OTi81$G)7LQJ-q?RŌ;nI̱W_Eg/~h3'my 9}nKU^A@/ =[T|hDOz&p]\W 9O0rՀUr"jƄ/O$bd 0$L))YHOԁL PR v %8J-~ъ5OV$SQb|`ezJ 12@  ťT~e7/jCkHUf j!毡F4h dy7i6E NpB働Y (D fr{3X  iBZ Rlz?^"?)bED"dȅ2U[@Gz[^,U b-Gȣټqx6SыUS!Us6΅vL[s<@=&B*yPz!l%zm a?"@lݳy 6\4;훱b QT t|Q4BQ[* KSAp=Dp%`i;'iHxbOѐVC~!TQY ~,Ozؗ:d,V#@٦4.R#@ 7O b@" qߩ2Yzfé "W V8OiHb*ֺ|RNF )m `وTKb0$mK@p: yTki3@Z Sn~V E$fM o2=f  (ldn\F.Ojg\|()T24z()n7}}FzA=VC.hI!{NAm1>&H'؋uz OV{@:9d<ãKmQSZ}RON#4$qpW5f+Ei%A\nSȓUdxNANA5ȅ'=BFx^a>AT4lNANA/kdE)^7pw<9?D<+h=_]708䝓1GF'! !MJd+%DEŸă9kv8%5m@z&Tp DT,I}6X&L p 55Agy7\^,RDn'?m{Jb5T;H& -a@u21bOdDUtpX& 1hlWGP.~dv2r jXM jD nIf:_[^xf QxZl DXF}0!r}etAt+DQY1@r$e(DFI | R#]̣^1WAB4HSL: #ҳDz:t# i)@(ct&w7dz qY) M4 5^1ApȢA˺YFN&B\9s mo)7$Ǣ@VP b.'|w 1TkR lR@ 4i7L7n'NOߝK B4.S_# D   Ws*'`*6gZ^pl+2~0 U*(Ԝ*?5aJ0R(($,8p/ͪHGl?  \'EynJcъE{_)Šݰt~lXł,͊c/*V4wҏݼggXW%uo *Ycb^;1S!7*9-]s͇K ޘA5 9A:9=>ݼd o;SNa~zΗnۤ>OxKͻMx]g] Sڔg`XVV М'ۑi>%CR45Ƥ_N{ʴ<!olb6Vg?`< }|z@kkimh+Iwȴ90߲SdPxڗ"p$Zm4s˞䒼UV S 4Zu<ϙ@P 'j;iCe^Q 橗S ">ex֍j_'@mVjr%ywo}M)  ;kQV ֬7zOM[#@b jaqh %ywo}+jL]VucA& ndd=o"YsxO_p Pm8C[Jۡ ' ” @rfEk =5 nt bytĮpjS5L@6q h qܶ_FI[v:m*C F $Nq j@kXK :% /A Xvd_AӞb١A^V܌ɯb?84I8IDAT .SHGw# _B%ywo}GSG2?ֹb~A, 4vNpj Y)[*OJÓ|zO\աJOmElsx״A=˗u~%]ϲ!?~S@""{9 nA EPI[Jva|ʳˎu܅ݼlu=$bY86ۉٰI/%/!g]+ W,7o4\ei랅o&nX~7ohΚMĺ3PHIENDB`n^F/훧-?sPNG  IHDRxMJPLTEwww bKGDH IDATx]m M<; $!Hv7?~!}s ]|ښ~y+oY z: کtGw+Q\y]V3?5+hz3MUa6`iߌF"&xմ1Lcwlok1^6>llOWq$~o Czj3l7Y.Q|؇U jFx^coQ|Um Pkwu fJ[٧Ө8eo6̵Wk7<~'a%Z;N>1p'<')lfc,omO6Z-V&R|ƛ*RMǣ80}KΉO;.Aŕil/@dc+{^G|e|8 ~? C8(ʁWȯkNZ|/#g2Pg5|zטo]?>NW~}|^ç( Tr⑍ߞB|ʴqZ^!fLSyqL׵vNrDwFh! +# 3B9_+kTㄇMٍ"q4\d^P{ee@>`}} 61f朋; j'md;MtD/r&8hE>IK^ֽ dK dYbŷ HE\Nը;IS?"tMqJ"şEMލy6V<6?SNq8#$Ղ;4BL(gWF<8W R{77#)Sc}efVF>Z.25WF^t3T3(b-zF~'gZ\ԑoS!;T<}txP%VD|ޝ}qEN-p ֔cԍx&# a%]#=hf cl*UxlY?jj2ԇxꨞxfP'QXg#!ɳ=Qgv#Cf㛕sj^L|bj IW3Bȕ\c"jx+&Ms2TxD6JYx;X^ dmt_oX__6 N`Cd+ueP59s=iF{\{{ߎIbxb2j"~5_ [{'S2O#>6LX㈷X=RuwŇX!^UE+N棘:+]Nl 7N6=ʖ;˨ljOV8B*Ԫxq/;k!g. ϪO_ Qu_WVFe㏡;+O0ο<1N[BgPx-N S mP[vq}ۈ1W`jd6^xoa'*b{Lk3+Ad/_{W*>Z??\D1WQHq?fO#q|+qcj*6~+Dēo/_~) 2B7Selde,y;\oo!3*p1ev ]|?D@dAexO+A;))u=5gfH ޅϠ!&>FSFJ.bW &0nԑABf tCYe:$(uiLgYQ3/9 ADm㾺I q?H }'}YJsosFʡ/\"%/C%B֖!e=BtHnMv'a$OT},kHԉ'IS.&;/ʳ&_2%} qpg T5\4 (=?'HNtUIl(CcbY֬!IHjQz1@`GB: !|@ CXfۚ^B[L̲}YFžmv!BwϯͲh|J_4I{i Q<!-"_&*,+a".XC/+8ڭC¡(8  agYnE4תT=pHk"ڕ^IT*- YȤX,\?7TX2 S͕Ӗ`EβaF*Lf)6wH-už}3y@vG  H '|Jj<`Ն  .ͺ`jCU-@ZEZC=$=J!I>$o!kKU,+qGTdP yT H9j;D">Tvȼ252"}1*gV=d>@#";X)G 3_M4T^s.uHT7Bt. 8ኒ?W!jD/kԕoSCv"-ҘA%dgU QB wxW>JQ)ڑds3@֚$M/ Ҳ; $õI@%!k0ݽ(CBÚ:7i@w uB>$@E-5$$hT {vcO!3F1@d_x"2J3_l U@2! {v"7}5@zIHDox՗E#8!pڀA<\r%uD(ik X/p'HTt\B~R 3q}B|٤^C#RWs]'KB.!@@"UEZsW x`Њf>/F3y&@Ҳڐ됙KeaH|e*Ud"Ǘ8tň&9bHh8;;AB$',"YpqT"W>j0mj1K!/(!_BJ3"!@3 Qe Td H(dJ1pt=Jb6:AZ|NƝ)[*Y-d1@U! DߖAŚ;{npaʦ +NJVabJCT@39 ]DSSIkcFڗYVD4NY Y,Z%INP}xGabb3tH8jb 42 IךA%*G@sEZsW~ Azu*Yf<!K2lΠb#P5Č;]Se0Z+TB~,N4 +zN$S YDzCjOSѣIe!3Q/_b,dUʠ)^0FSnl?zjvӟ(]*{%M}BRxH {CasQvwpԋ7 hKjwz{ӀF#ݧuY+ Q+VF ' &G@.@<,m0x%mtT(ޮ!8?4CCVFJbd5U춘TRI͒dbXK}\,&!l#=-,RKGϨCԧ$!B]'H×ՙg`C^\M*1d"͚!/j $nޙmhҗ1tltKFä>nS,dNaU9mTdJ`w70Xbx(VbedPq;$R/BM-@* HY!&!.ewεA&MB6B* MtT<91TD'@Qz;zV!~HsfPIG.6@/m*ݝ K "M H93!: 9f^NEZs7SIfYӲ>_E$-h`$Ͳ0 WD5 `8]DUpf)dP{{o,[K}p2̲&!*¬%9Ӟ9#unTT7fY:z_hD {XSfYf՗u:-4f u>!!>T3!!!o]Bhy@ _!TBA5MYկU@\ *2>$/9!3JOVY$= [tFCBY% 4$/6˂,@5)SWQCV_"G\ǐ՗_OµN&Y_5JHܛn(|ֳ1]\^|Of9eRs;$E7m^{/O+-A)ڃ2|{Zߔ!~79<o3"mɯ﵇n";ya5M,< ω;I"!3 0ޗS>d3qM fCI)&(a7HHtV$$n "7g5 ;OHk!a=4@JH'܃uL:dYCyE 9WBɑ>Z \ؑ/qn 2|%d:dF׍y˴ _S,q/*bCKklHYN+v\ 5^*4z;Pl3~΢GyuEd}l,\9W2F["|NȲ4:~vR}[J |ؠC[%OxН?;}Y~+s jLkN*cމ(y#|>m)nIENDB`n 7I ziJ$PNG  IHDRFJ8PLTEwww bKGDHIDATx]Y :ޤbF[ +.jތKK ,i"0=x^[K4oaJO=M|*?$7JFy<ĿA[z plmз'$o-{O]BS0Hܳŷ$G_DVy0BPK|"s>I^ ^n5X:4YN=7 .m,n{סQ߆~v^q~3\FGk[p;bJW_?F^aW[C?oiW/5}c[W>zO?h}BX- [v=t1-ȭN|ۏ$ao2ն€ş}L5e>Ob<'q(L۫V7٢wVz|/Bi Ax"icѯ k[w˰A_5|\W=4Ҝ4LKK'ԑl,- ~2Uz2;i2|ދd@,p F_IX.Ovz2ӈ_\|vu})dH(qO`^K :lc@51ۣOgiDU('F|ͫߪߗAV{uş ՈZOü(DzZ%Dy[2mܯ xƧ_BXk$VP2h_ke||dm>:^NF;bA Mݻ,~FH7 I幽 #:K=M2Ǡ5Ip^: dEæ,+LY'Gn)n4>@||XMx=v1Xş;BLK8Ae21Wg- wzug7*?~|=&YzDc3ю:6BOfp X޶I˷%xnrgJ! G+,W̿ #AwWYҹ #BP\gQ2[c4zrDGz}HFķ,~"W=W)}Dȕ9O(' K|L~O->`O|\<Bk)DH-ć2aPz*)hINq=4N@ U"hy@rU*yx&mgƠd2`XZujP+W ~q GSETYJ5Y4#Z Au'ڴ̪Y[ Lڨ٫/M}|mm%&>;EMZe6DVS iA;Dn +LB(/Ԩ)և̻->quh`>&ħ}4 A+eU*0xiUɭPLB($$>c?}%܇P _AW,H(D 43_G88YYmBb#>˫\PkO#ofd}GT/58pYL^G8FnŇy7ֈi-kڝ d}%JDhO⧶ş8Wg)rmX>_:!zuD|XWgrb0+B2ҺNH:$_0J|W**ա'asMehoCXio5eaK۬9 ;تl3\Ϛn!oA 1'd◘XeGcuy!2Y 0!t uIkefdy_+ފ5zޑ⛗G: mv`> |(nнfg">n=zuh75Wv Q+['/$Ăv4evލt1̅(.2l}~w>>wz!Y'(Usx^+P'`-Dau%X$d a~~?!>1-%h_V. |Gv">rK{sv7oFd%92K];Kq_T!vy04(yFƅPI&ZuI4DÂ3 QeB"sŗ:Sg>{\ݶ-*+&'Y3D14%~( !@1M!ҥ߁:rk:A|DetbqCL|t32_dV?xйc ‡gNǯ,M!ޠjz' 2ངM(f?X|z,>-3E|:>@%2]![1ЌGn'Xͅ(K gG:N07_WBߎ(y#aPioܛ>>R Q8:vD׳#J)RR,~Ŀ,Q)`vWХ }{::8өp[&~׆EF%v@^R,G"cLt>}[|ޫ3=-WE[ѷ#$bʹ#J.IkOD(= QюX#1e!}n1bZ?;n>~ HiB}K [t8 C Q3⛗I:g7~|r W'גg7]#lB/BEzuvXvDQ?bзU=31+N|>;#\҉w[;;_Pz 0ȓ]Gn[{з7u1LzhnՅ(ƷL?(_(THIz3 Pc!ʗa(gN(%OB&!qհBzSd[,"E߆>r[rW/3qXe!8١߁3r˺3cZG/ w||g7z/Cib/]бB!p-oprʖ(I:g7趹:%g7hSpv2z~Bb!JЏa Q^/=>_(ҡ;vшOˏŃ_|O!soe,tM||׷UtoWL@>>`/D!pԷwG)_,D2 Q26h~ ,\LձnM⇏m񇉟_9r;<gE4fVKA+">TdB|̐tg*?}4PY|H0sbXQv+bX߳֞SѻE>||F [a>n>\b-h,^W[|bG]tS~qqv5'At_K%~y|n2cЯ1 x+q*{TyGm!V Bk8'Fr~|.3=:~IfmNYRؒ/ J \:+xWZZ6 jۛ?k-D1YՑ[5FKΎ(:y1xHfcD⣂B|IX)d 1Zp->]ez/ӚCʼgGTU ,$klevu%$req&PjNPhf8P#Ϙܒ(] :-dl2Ō#TFJ@tFj7k$ Gʍ,Z<_=/?ϨGl4QMB-ik@/*Oc>R"(QIj*B֌ o, "4qIAk! cH = q:xO||Y(*:/Dٗϩ@D|saf+4\=)=t@E{xL6m&ćRB 5(.#JUkYs8T.g[;`ziq3Y793L^O|NL 2Xi6j]IZH6D^8 6?lvD)Yo`Փ1FxoTLW_S`UgMh2A ʁam E"9ĩm0rc~ZVgIYq9A[;e({aO=^ؠ}}ve:W˂fB#J`nm<=%qv8g7;~~0:% t>-DĆzh[QJ(<pFH,r߆3rky_g>~G ǰ٧_KfBr.v!6mG. ⇏m84|oG.  !%[ }v\0Ŀ>(fÉXcwD1Vo!g! ⷆ}y q1W'#up;#a>n#ʎ(y!X(0KkY {֡?k>~ SFXG?גi?UQ.IXJ:JStqa&\5t3B fFض|ҬQ%^yQSlEP& ofJA*F+Rmm+3Dqp$+5&Iѿ`9̪%S\֥ns{2ē&/ ;?C~4EIyxi="F}:m d`D?%%-7WznjP%QiKR 8hX1OZѝįo]V=⻻f/:W\J]jS%~m|xY5=m#> UE1ZN LQ͛JWc'c?[;;3W\P!,F'͈(RM>!j(aEN|5e$\ | f(\7^x|xέT#W%IBp4o E,"# -T4.iDc~ՁeEk`x-y凒OPyk2s(cu_#3ڱ@ס '~R'1czHM /241 ,FX1Pw'^rI4->lp'.@+gNKgrK|_$>K^Rüb %wi *ė 5##CߓNO',JNQ lψ!nh+McNe ~߼ /[Zp+x1_BR$w /=ٲ#ʡvX :1WqPI{&( =!e8&Wv>?˚n $ű͙}1źT( ͳ ߲[`67~?o> u}Uyv#MH̯5jd]`Kgt g;-=  D03naMi#?:]qpTx],>9wKS ?ƈ/ɂ7O#wVv|SuKQ,fG6j'_7SQL>w|= L x/-2ֱD94ֹpMӿfH}]HhgΕ,~*><xve#[l2-Ero>2/kn_X|zXb˺ _d;Q}b>>,-Mw8-abDl> Oag-~əz-DMՙ)ԼSoFoZG>Dl:=,/!"oՙ׫WzurXkyDC]:ُnOŧh+B#ůOﭑۑhςj?oSY#zX# x Lgo[9U ;7g?IV-<׾ll': LDryD-QYљC"Cܥ~bFORk=+DxځbsO!IENDB`n-k\10/!FyPNG  IHDR8WfPLTE###...999:::EEENNNRRR]]]^^^iiillltttxxx~~~##..99EERR^^llxx bKGDH IDATx흉b֭ՓOoN8+7;OzAֈ°V*4m4|l( 3M׉]\U:,U @7 @E:"( yd"{sm(y@{RwJl|73 xG.ٴjD36g5p&#c郟i7|_Ua d::RtMp\&F+i#hjI&&|,RAg$1iՎZa 9*n=ȼx=1m6${8GƀDWfir@ mN@_N3n%xF,JAx^f^v3(I9-a49[n-=rTԌԖ_ex8lqHFf8AN*alSlٻckHM$U:j88OrV@r1@P ָOzH zzf44=B3D{IŽ8cڀIx'T}Nש-DNƃ.څA'c]=. LEuJ4yk5;?03 ~~Ÿ٧9ip=0"2~jVڢǦTړJzJvHǖtF¨c6eP#^_WP T Nse2ʤ!axiL5,\FmI D 05=U)2X,+V*\$zsO[Nd p9-朱`695D_q'6uz.ësVbԘMvIyL.9iz{ϊ1u^sżQ8aGS̞\ђN~ 8Ng4)B7(/>8~$6dNGXS{pqAo$pf^F[XCά)i5K5,D:JPtykepxUq㱬%8%_ 8sȁCz(N cuO7pHI jYrfWlsL[WnhqLwTARgu0fFVGV>xdti%klIKa k UAU8PT%U @U8PT%U @U8PJP\Ik @U8PT%U @U8PT8*u\첻w9 kJ]2[n3 pJp@D')vA6g^6GQkW?%8,ӄ]V!_#K,g'CpQp&J Qhj9Pl} c2fg;GH}BnlaO:6afc{b&ԃCg СHtTMz𒿯H=ӑ+#p" 2d1cb5scg JCMUt}~̄(8N<))wD}Q mt)KTʭaIFV)|IB p"SρVlwЩr`&>\D;:6>3W?y;Oj|fb;6vq| V]/mb]6Ogil6%N*E@D;jN\2Zˁ.{W ^hE/z]DpT%U @U8PT%U @U8PT%U) Υ6%[ 8 ڔ&SŠ @U8PT%U @U8PT%U @U8P *_*zOb}JKhhG5-fQp4gıhސ3ZѶ ן 3%}?],P+p^[~=^wG]}޿!s7]? ^nnx~Klqy,suJc[DhSwST}gza(a-=>l|/{xm"z>Ӈ ޭ6Sw?oe+OO߆jϡmy=c0҇jHna[ˡF8 n'*T~SϏ*Zn9=9+ _ٶ"T3bØ6ouy%n5;,84p]2MOzˀs3th[A/\V?mq/A?IQއ:3:8wݝpOD,>tkiLUQ4Ŵo2vI~2>U{S@z1**gS :U~<oOzd*hurqb-"EudiQ Qy/Wƶ Nw*#=@KmNU6^VYfs}->vX8nۉf͹\8N&;-0(8{ڟqڟqڟ,JtgJM\ 6eڂKi۔88NS*88Np2ˁ3!fO糹WFM<%3}%ؙ]GaΖi$M qckEYFޙC''81NWdp(AcI !^#'ස M 6)8(Ux̚ 3)}Uq'=%}MMiԞQ[p& yj N"5n*8 yi8i8i8i8i8i/B3vzBgAp*Jp*JO7]EntADysq+rCn慿v틌 4u' z*i-LTpp*]gOsP`ϾM7ˋhZ䤑Y<޸<86v 컮ӽ.nO~D?G/;QFds]?IHOӰ[mlB=(BZ:|ST#*k*TVN%>aIWI[C럺p'5zYyP[ڛ? wOO}p(ϡoӣ,3d"IC?Uŵ&i3U#{B˚jMe$~lEt,)K^sr}jl$B =yX N"r7ݓD>!qCn5 M[AZ+^ddV"rgM.!j~騞&# ?}e<*₣+ؽn;dYtݵmW pDy[AZ+^dS8GKnNj{8{yLqH{ǥ{?UJؼWSSOϴJs[`qOUzVu|;ͩ_p?u?IƽO}wTՇT@/VPUb|hoq?T??:^e|+ν{g,‡2*#zfqL2,Έ?vq ΋85 } %J|P d/"k6Nű؇.7z;ؒ^c>68Qpo#)wpgW,,j@[p*Jp*Jp*J8Xn4ǑPhn Ipڲut~Xh-_r?Krd/"ːյG\.)ZApJ,XP';9h 3iA2]}?bkHy~'1Cnڏͳ*jR>7cJ(_}Vmۍ)p |q*`ŞsZ5c]^y~fo"-݂3ҕw왽Eu#ތ)k^DQ6~M$c߿ vWf_NtR\m)lSԦ7bO5Ip}T8vGN.WoY-^aqLl}75)^]2}F^I?_nʹ\3wLc_s}Ş~*cM%IpS[vG Kvs|fm_~b_5L}x3 !I eQB(j*ǻ~AlI?WmwO 2]Ч;/WOEs}-"UkZKVcoγp*Jp*J~E:Z3I(8H:d pZ $Bdp!p88YDN"NV''+zp.}s!ݳpwp.}Zw\qCpڱuTS/S) q 8pBxΜJ.DJ~DZ Q<p(8'p]L)8b-wStK\n*]X;L8γ\&$EUq0D7IΈ=Ʀ 1'\Gx!EBguI*lKiuI6|^p̸XF^y5:NFBM?*u:UmWdgǟN]7fMX0k #]Vrp^6 Ndq̘mF8΂0( klQZ.||I8,{ͻ>83u^|^¢tZ#^?3. .w 39egO ž)=M+) q|; 8pBx8E!p<8RCZ pNEgQ#฾ gBS98:9.S0M,1]Z]Va^rb[_TY&61Zhn9) 's}=$̹8{ݱ{ ]8}q.ݢvU]xŊp.q;P|1%^6 jOU1sE c'IZSUc+LL'Y: Yo%l]xv]㝜/O8<1wTpvsvPx */7dyvi% >[ow4ѰWkkgJ;P*ഇf<Mt>0n!MNa!tUͳ*jR>7cJӛ|1 #x)oJ 3{o~o+=3{eGSrG}מw7NkYxW5G~Wc~ /) RXVǙic SII3Ep³>8; oürŞ =U; e)Tj`D3_ؗauJ>q"IJV=ű,jR۠XԑǍ;ZEyf;8RDII6%7uke7Κ5zS]sh`.=8F昅cl;|48cckyrVKV ]s'pN+E|115 )Ն9N-Dmđ޲P.h )ezqU9$]KMى^ hg8E! q|pB8NQ8ͪ) ssKDSxCh:WB{'_iIہ$pvq28I;89BgLqiy8#Jfӂii+,;xNs89NEo,qk=sI*"N* DuP9Wh/K>DHL\*t69a7ɋKu gM:Wgu_Y4\~eھ#55hstȖ2O8sԥ @H8jkf>t"kfFJq]ۧN3ǕC[MDF.8E!wU'oq2덑h{&<d=^Dou *%xzDLN*t@Sw_< )<#S*xGT8.:qQpٿxX8p#{2$f+fZL< L8̸|?p<ܙcqd˟~d`{r/X^笽73nJ~{p] z5FgAFH 8tTmzCW9UY5p3Muwu˭qj.uP-ղWO]&Nk ׽fjR{5Qd;ڀz9/+L#q'qxf)NFDIo78i`)Cn7K{t:ڥǩwXٿ {ץnxF:Zqhi=Nn\Gkrgtv3@QSG8Pq*@UǁU <T%xJ8Pq*@Uǁ@G|sDhǁ*A8Pq*@UǁU <T%xJ8Pq*M8dUq.,-{J+q (#xF8Pq@uǁj <T'xF8Pq@uǁj <Vؽyy'̺{;8szDSSlg0bہǡ8Sb;8T}V4P=} pr:Ǒg_T9prg#O4#I'99Qİ\dvDp,pZ x^CzQba% UI:z3Zj ǘ42*88uHOG8q:[C ;NULjYcSX*8qpqfMUrϘFo,gnqlBq'naԎ3U՚T<8,y¨wAkWɸ8D8s,sa澀{PNG  IHDR8WfPLTEoYLbKGDH IDATx흉 EyLBĥzk+Kd9FjA A9A?2@&A@Mf |)DJ dŤMnOηEG'I ` 5JpU(ғ֎cH1YdHD̈4,\`ZNU-^'GQB)%dh BR ҈Ħi]Z8 7,Gm\W;rp( _t 3 $R|5D'?e2pD> <%F[ g*c(AS'8W!R. BҿU#ԏSFLd~eԜ0j IYSjBOT9 ]ΰ\yoUP\"p 0u2 @9i(q)@8I2 @&Sr jFp&5 p$pfJ%YL9A?P8j8I2 @&1*-DTGTQ 8j2i8n$,i>%f!\u}7; $2]_1Ԅ Po$6;2D|3*qZ~2 ~udo8_0]cȲbڅ6'Dq1b"͇R W :[q kuXQd-V%UIZNo`>m6a-4  >`Qv7T-9%̀Smz ~=O<%sVn T<+J?*媴loQNQ 9#q<̉OJGκjJˎ/־KBbQD*C1p(8rHr+qă]2VKCxqYl7}ƒ{*@b-#\fYOw/DZg*X-)z"jcvG 4 UA&$38vadzAIm\O]4m0PRԏ-N? DZB] >m$6") 񵼲PUКO!]8u#gz=8첄gb(N\XD?yK>ZFR&'V丱I\MJv~4a]R*=W\R$IO6mtĄ_EQwtIJd9E\xGE4}ǣ ǯh8:XhU$!mcJwӺ wKR~ScZ9:X;=w˕NnwR 8lwT8b[2ג#r 8{ZHG+"Jnr݃c1Fl>qf6xp:8{ E NX42Ii㛃S#p*~L8I2 @&$p dL8I-@Pmp.z< tsmAU$p dL8I2RB]x]{Ep.-uMKMXpIpIeQ'؋~)ʫSU0r덗}) wGKAଈ|X"Yܖg9Gx/}8mibF R_VSǭ"o)8k4# %tw8 xpBNhx*N <驊n(,*ApQ'~j+Ӣ"8:pݵ5ph/޽D4  dL8I2 @&$p dRnW 8\J]/8I2 @&$p dL8I2i8dv+$YK ;-m{M U/!tb䯡҇lC-mBLYM6 !W,ĪU|2!Gh TKE`X+EdXoۚIT2F>VHei>HWM *ֿ3JB.mIPm%&p⬌P2/9BtxG(?>+3PxlD38Tm; NL@eS9n1>տpDRֽ#T,оMXk5lSiA[4Yk0~1w-)L\qo*+#{7 K %8648lY-(jZj3Ǩ j3d-pB[|/8_T}pz [p*\p:猋W;88"iyNs88 mG9ψ| 6–_HG?}l.tefk*'ñ 'ނ !c2p8HZ$8O.1'vYiYP/8tmnDl;)qNp7iGg@1eJ´{NaU8I#s:9УyzDZp-qqXTpRfTp;u҉9nZv;Դ.3x!*HgG.ljC.>CRVόƈ,_S.JgMNzz Gx@4 >8̶t_p.pXpSNfoTT N<86 %aAcZ,ZgC0kt <'8^9GYUқwPp$ԿNYyP? ⅩuUjz𷪎zlU'$ދ,#;=cMAӷ)e*'S% Znտm\E_9>M._WԎt$8 QOQOʢt< Lo$SXW_,ԿNYyP8e-pB[w  $p dL8I2 @&$4b;͒mq/R ROTqm--%CSK!~F'1_B>1jwf+WHrê$/(1_R1O[&> NV֪x^*#YB5XXh$"vY }xYN\SH{έ-'ia7[/Qpy^Y|I0Î/5OdehOupx*^$yuṊ)Z?TGEfOM)iGIKRz9J 8ygh%TVڽ*=UVpq0Y] 1Zs]#r>g*jR>/%[I;'KUr z򬨬xtųk{joƶMa#帍 ZR\2 @&$p dL8I2 @&$p 'L[ULojEohp_Ǖzg])僅G Oۏ% O؋?AGz{,Z7n  @0<XoM{i1 '<'^<7>ֹ!Co0G('d 쐵ެԲ!bi` 0.q˧,F}SՄ;ޥ27G6?쳘0V^a*c,˹{"Q2t` cVuy,"gVo3Ho7 pm8zAz[OꋜX [[~8W_}9GX%tLkZ߭-? uep,;'_c)F~:s0l5j֖nZI* K3uJt4>>'Hprk1Q,ASseY12_SW'Og9Κͯ0sSG#*QVj?cSUx ' 6:87z !9yK◎o>1_vDh<߳+: urC|Yl~8ľ{zʨyC5q2xcfiXi2vW2dg7'=Uӝׯҹo#(SvDijm'Ώ(ebb9 \tpnp __N_|i^/xOizmp|F[f1'QKȔg]خ!;miȹ+Nj4my:.pڶ<8m[H-pNۖ8REp!cU.=E-mD۴WaqymK%sߨz[ɿsАk9M/ղ cI:x;\ pJ[PY|+s 1K6X`2de{q}x'XϟrcC$s>'Ѽ$tηhGs5pL,tʷ*ƣCk F-tisO(cY|cC:9q1f3o0X;TA ӨĕL{nDpyg e@8!tq:pH88$xQ8Qy­^zca z8==k8 p'fx#pJ[&Sڂǩ </KHQZg08ͽz'wM; *)١oq/cظx%H;EA񆑞emt#q7xw79K˳DKhdzp*:m37^:zakCu氧Zgx&]"`Uu Vc uq^ nO^|˿qzWmSojiy~&P'VsW䋢bgTx>IDATKDZV.~gR$긥V}G}^mu؛,G$ye'3[S5{z_ނ/iqO>Gs(K6uKgx.MUFz@SzoU=8-_{pzN8pj68u_U}eqq pqL ЃUe= xJND< xJle]պʉ{١⺪r8w]a5bpr$8Y51Mt >.a`Aq=vʯع@p"o8U=&xVuU<8ƺ*+\ 8[ϫC{8789{^ډ[a5p ˿ Uʣnx6pqVb\e*T BN5ǭ*[b=g8ߢ0 gZ5Rt/88>TSkl' Oo8 P(JM;Z6CDo>TEȰ|ǩlaN6릫Yj;<E 8M;T<x38;U M;r@K#dd<~p"\9kl'K82<&IR%cgjr#j2=κgJMN^,B2#|XJ[8@ \(RᰜOmT ɂ ‰m/7 F8$'}"'l6jMِ†B[O7hhp:9* J0mFV 3`OZ49p*6xHeCoa3p&{U@T@8@T@8@T@8@T@8@Tp.yps T@8@T@8@T@8@TD"O\3oe׶V‰@8;p" 'xm92qoK#0Hn=$1.PNrMPG_0|& Gf}L|'} I#Nsst.uU8dI^$;9UYC&V, ԅ#V㜏wA!D~7m]x/٤ƽxF2YrړY_4)@xCVQ8Ƥoi=zکo i;2K um 0yٞDS80Ή|g& ))O=;Wn/=U?&Ӆ@'8S}BsTNU1&/&i IGNU3P!$٪u6ڼ8K nyp(u 92j+U ÚS_9p^n '<\6n~ru)O{O9[)* * * * *¹& ]ߊp[n._@8@T@8@T@8@T@8@T@8@T U<W˾E֊0B8,TR@5gOpFuށ?Biq%MJLGF%(ҍ+cRʮ[piVeMKSȜ N.\ M;3sJ.ʮLj$dp;TgpW:&ǂ"7ɋ  @8@T@8@T@8@)1s*& {'l#k&Oi?rBpKf =[;Ȓ O($maK2k8yoG%\X{6Ɤ5ɚY$U753)~3wFJyz& ;!.wa+n/׵CJ+fcE*Y4_N҆_6 3cŌ H+V7\f'Ͼw)3rq~C.|HkB`2"K-%H菭%Xw6 ,zJ1aZCI&)Xؚ݈J/'aŹ< l4Hn=p䘮9&{#It>mM!2ҡ5V`I8NU)8U9eNgz1/"ٶ9#c5Ys9r{p=46G8Q@8@T@8@\m`θb!@8@T@8@T@8@T@8@ŭsїqfX-/ 2O6'ȡQp~p p p I8NHD|/N83Y81&P8k@8WPUz߳lgmtOUNj g$S?m^ȝ BګOUiNy翻`S*&H*sehm786s/n>%Ѓ!W]+<**M;0.= < wkwV)CfW1>uo;t^ḧvsgdvqQb#3ЮS$5b]]]M+4Ze&ےu[sO .ۮk>X]Vpڍ@ʯ2[8di,iKYb!t&vyWؾF})R ǂv^ )[~BRdL 5V;?Q~^‰fL8,$JvA%_d.4nxhTE꧑nxpsU{zg ?a] 3BVK?H6X-"v Nb_Q~I;ƇZwP4h6S#xpΙ¹)NShysw5{#8ޠɨUܾujpܗtգ}qEY=p %$k g9A-wYp;oY轿曗B͂]ӸHP8OUY~ذrCWYkD+)TWf.=> NF^<ۧY7km_Iy>wO&t};Uu]J}N:uzq{d!t]J } 8T9PPPPgi-/dpp p pq\}u\aPPPPP1D8!;J$<ʝ [Rп?*[&l1隳}m}m>FuF8tT6 "% E1kH* *m{HIEC= ^*qQ.B\V{d'5Rd[zkXaȏ8Y<@NUN>i**rB Prct%\Bz=·P ypлI޿.D[ZBeEM|jQpBn)O!,P,*z}A81JX$3Tv)yP}N '5o,N%OE8YQ$hdPђ,ժS6:㘰X)`9I#eᄓ Q>%P(B -{F21rӹS퍇[i_FY!dG vneS8ڸṕp ppUfx1)RR gIp9aA8TL8nFD'F.b L&MRZY 1`lD5)32㔺mR2 ) T;qkl؄M>Gۇ$JB1i5!7 IjH[xg2bi5Rݩ{F\|zEH #LNVDXk/+'vaHdKpz=;W` pH͢pb,Vꩬݒlj<32м#}*'*JYH!Yn{zq$P2Ȥo'XoSU69fU e˓plOUߪֺIbHE'>XO>LqH8n+gݓ<.`6v'ڍ{U:p wU@88* xJcv0>9{8=fm7<#xGsSX>*zԾi~OΑ68.vϻ;n*+ )o9[bT 0c²FhmYdG+\zG Gq -'fid"yᐥ=E1=uw<1u31-?r5:&0VJIVz,ʛ=g#kXP7;ERh=NYmɦ /FT;M$FYtoX7y2<=:#1tbap豜Tepd"7pD&k[c{!XCz;Li1iqlO8I[„C",vCpߪxfFBzC;XR /kɰ'fYqxp$ 9p? mFxțOI]@o5d6y5QD~co~xʕATQ.$ YOvx8 ҄{)^=]ԣ+z44Ǒf9k73pxpp QDqZԎL8 e < rFk78->WU7lVuza;u&N=_ aays#ǘRӝqmO68G;N=oUec. 8u-'/Vڰr,gɱW @8tr|C z:xN=|k{}<A*cS4q:G 'xTaiq R '2[UA 9&6 +P3{ f9תJI}'*-8NUQ2(?p*,'xkj%u ƿ81bXA#,RvٓcF|'c[.Yx2?9\r,geyKN~`/5/%p^Xp;V89𵘈Bz*G!С kX.:kW)6 7р!$ڙֹv4VNqAqpFZWFM\|p:͇upֳB8S-L*o%sLGm,"MTJɏm>1TUB+D];%t۵;=nvd9IJy;l*4Gh7D(k :ȵ+&YkWY;C%/3bg9g!ii/Ϝ娜$OA+P%I:&'xYΥ#tzP8MFXʹUs(fA8y }$V%@qqla-65N[.:.^ apwĄy6(7i UND] J/f]#Wl:sv o!Npz#֘ d *$\tMQ.d.d2k5(W%X*m;`e*Sºm҂tmAɋ2RjS3EErneM5wi\\ԉ;GL{U Bda!v)ڸ_40ЩҳFK_vߍ_ ŽC%g߫WC8|p&rӵNWI7ڱ S[Nݖԡ5fr/Dzb rM2M#\$؏r:<]123EʆK}bIL1ylGU4򉷤-۬+YS_U {݊vL z>,:gc0&Ƌ/O6U;VL!?[W GmM QV=H<ᨚ|Fƈ>VW'SB%℔WV©'!z%rÖ3Q5E8[1!G8%"SpDMl^h"^R"J_O7H2.e+ B2dJɫ赳-Xkpû45v$U>a@p p@p@p@p@p@P3EܜpkȟPw7.u<]pDp!<3p@8~΀3RpvVl4@83%Ъ?wLFFV ToGh~Wl0ěI8pֹ }¬a‘_8߉#R INmJ}f7&g*(H736OH+՛FqڜE; gm8|OP8\r8 [q!Gˬ7R_QyZHa&ЍVS)AzDL*,IoSeN;(ȝeglov=H9p,LqlqBL'g~xj٘ U%zun[yv{Nfd~Qam8\8&'KIKpw**|E&k 4%9d |(Ma5Ӛ)Έ8%2iA"1chֈ8 GwCA -; NZd{GN8,I8^FEٜg̞psp&DzO-KFg r jP:T"yoq*pz?vKw1gTu; q-B85%\!Uq;imUH߯Ri-I5-0U`ΊCγ擱 g*ʼMiv_q[6I7H0#KO4+ZwnG N./_6[Qz,nK"5z$͠=ü#;eF!Y|KŅ,"NnSNj呍vyJc JҲ5ե"թrMVȥ{(v{ptZ,l:vT6N GG{k"{ G&iG@,yܢ[Tv?{V:UN RȼӅ#fa7C7mNϴḍ3ဇ}s,6;8=YkK/F>ʊT>ICN" >~ ×Kn+{:#/΄ шspLk  Gn'bCnmYoyKQԆq[%djnDp妁GJI &.VA+C%&GvUUniz~791qUDNl&S.ާz3\$7{.8pKP2V\>ɩ<fˀLGmrewĖt^lZpLC=쐨*qJOZ6R8epIz6e8O;sU5j2J;3OoW' 9ReճS?NcĸuvHHmf!lD8Ԯ:@<|S/율SB*<եsKc_n#'wKUn[.B,'=7m1?PmtUvw7<HFdpH? #k?o7E6i aޫ{ gT18#ۍn=K ﲩBbG[jD$7;6v1fH7|VmJ\P*wRolK 7rxrd9I'e5}O$H:C`az˪Հ:Vx{uj:lXw쿓qםyWrV 򃱪l]9i|nCom3k\4-O nĄ2,i#ӭۮcu eolTu23Frp hg5vX¼p +u+F/eS1 -R;yh[9*=KsUѐlM-.K).{L 3@lYY{Ӣ&wlbU)\7NReQT ǩ=+Jzk5ud+ou*(^!nnv8^9qˉ8T mldr,ꥢl-ɌXUu^_,mRεB;^E2[[u;綶;v/Nlxe{'qpvRi ȹ¡nn s?8JpQ8z#?P1w-Y6JJ*Iy*BBܹG~odS TZs'8#N]DFp'$gIj~nыc^!,[vI ǹT1s9?*! ! ! ! ! ! ! ! ! ! 8p//LyR7G 'ϜpfZr 9Z8=Gϯ~2*'P#_Ƅ4e9Ή )¿1iˌ_QW0qҵ_-]Cqr^KVе+CeYzR{y  \RK,*(iZuqwἈ$JyjH G/W\S~4`03ypj7 pp?\}.9n' ! pᤛ#pI)H%g ጁp 13qp@8Θ3?\wXzl½ޛI 1MlfIA8cz})'S7sHNsp~ϧp8WO,e$M]XW(3'XS2,%™\Xqdu38I G}9Edg+Bуa^*JҐ (T_h}p_*F]XZ@8[/תyVe=\8[YGoήrC}q~f>rC}q?#ϏӶx8?8g7;GE6*3O;1մy8#GpAlȲgMġnTYUb C?Jjɇ9PPN*%Q2TOŲ.߻LI9??߈8"[72T^"IbI2~%*&^9%ۙʚRV"ΪCoݴ"/9oBjzuY&DJUҚLn "Ϊ5G7q>Tj>a#5ÙpIDu8~O8FVJHapISDM8Z8?<:T*QB l%u$R%Z%+ w*]|Cę8p5r|Eę8[A8pa{AD3Gmyit2zt G9-?~ꈣT#XBMJܓ^ iS:;-))Ҩ3u(g/8<2^yF9tR&}X)4 xh&՚nq*q[:W8'9Ӳ1Ӓ-ܙS%&Ӽ*:-G\Td=g(j ڎ|α#q,Q#Ϻ)lRMX_eOA=' G^LT?){# űWf,5sFg )”x ZAdvdnXVNU*i5rGnw\8oN{rěwi^hsu_ "B 8 "B 8 "B w8}4;\IBok+ L gҕVQ8Ejp{g/ƞ&"NIO6KI'J9V1$j*~8,iˆ|̝./#mXC"^m޷;9ӥ*n:[Dʟ$ڸp^lhR.!Y}4h[2'c 9` wSe(6x EqsG@C Mɯ[t`%}n̅k}q꜈dlPu*VT8PO8ٟ쓜Ie0ͺ~6K$I4,Z-1Jۻ8xڑ{ g>WB 8 "B 8 "B 8 "B F=w㸈sې ge=#C 8 "B 8 "B 8 PMqg '@(B 8 "B 8 "B k"|Ĺ,6@D@q@ D@q@ D@q@ D@qh#{x;O8: m󼈳ed~px<-lg#N2"N™#pA)@8vq$QT65Qc}pznɈ?.=v 7c叛8Ɋs;gQ F#NI8 NΟ8BEavL6\Oe SehP{Zi`>;&*56 Um=܍Fh7>i뼖T\Y]nG&>Y$m\0eN>kY}?ؒE[UCTӇ!~9|s34#Mo|i Iػ. Ys ͗ɘ!Թ"*tqnqw! ة3(F# \9VX#70 @?/0mHTLcHJ-v`:XA#4s^>Oa`ҫJpM6Q )0 a¬Y./dva*3XLJ1wnZG Q0L/Mً P0P0oy]*q]T{x  &(b!&(b!&(b!&(b!&(b"/s ȫ9lf"!&(b!&(b!&(b!&(b!&(bb`^S+VΖyr zirbi͔#q!Lͯ# c yh1?d5[#zLU OFx `⢈ԩ[`d>`ps:E0281QkIaȡLs I &4-ʼn6U &YZNzO$o٣_0d/(bb]SY}B 1A 1A 1A 1A\#`O: U9`XQ(CksՍ)%J{07t,)qVuG$L*ߧE4cF(5'duD]΅%ܹƿV.4E P0OZ).D_=bu>- cmedLqӈ!ةcPL's?7Q0 #{YNTsm {'P0!d}KhľCWrL!6t w=@0blOɳ)u .74,p %)3d fm2@A^`H(Bt-,M|B<]jw8m=~0Ll"g2?@u-׺.</V hsp-1S3ÍS 7 FF9G OԂwH򾰶N0!9`F%zE 8ڥe2>! kg) Q0P0CLP0CLP0CLP0CLP0~^6rBvLoU({ < ` ` HV   ؠ` ` ` ` `-ylt*Ҽ:^̗"|. v }0VJUdZROʁQ\#ͺF0+"|B K_G94ȃc8L)Ku ?phXb% CLgEoc);fx`Wa:ږ*kT=*޳0.Kٗ=Dp[|].VϷڬ'd1PP N{>664sf Ɵ뽇IGKnn9 ;3pt.sl7ܡhځwfGU|`6yF U s U|uRX8 !PyM#s.gz>qwߊa.̯~\։ U|}y-%j Cm0~0}w0(`aP00&(zp)zaA:Ҳ:o`T҉?tz=k[*xNw|Zx?N[0%{*B0HR1ehyY+I6\u}ıY qҤԐ[l>qP:-H`43g]?cڬBg1o/gzC,AŤԥZe+gz:o u˿f۩il=LU/'x; qrs^wZR{洴ϱ`q3 C CK}I&x_ha>pM/Ø` CØ`aLP0lY9 ^uo(%@aZR\uR|ۙ(h:r rݹ' Bӊ֡C b^pVf!G$Tk]=Xr\{xI Z{)N¼Iz&%{? ֕8~V肉=$꽗N<3sIo۱'3F\=e`aL$zsn&{alL0ì1AN1Znajl/lrWRaφ,7T`a2(v1zMJjWR]$y_낑uHR0ôwd\C8Ijxgz3(v<^Kʠ`a2(vmo cW( FP0Nr4P0a$LzS_5 =_>>&@Ø`aLP00&(z?x_Rz K@#y0 =@#`:H(0P0v0Oeغ ;y[ a'3p#RZ>`:a7"(˱܈@\~%5nD{) yHpl 'W3 35$ גK@#i P00&(z = Cc1AØ`aLP00&(I<w^^@s]2Ð1ÐACL0= 1ÐG}^ZCBCl0= 1ACL0Ā!zK0< !:0= AC,0= AC,0= AC,0= AC,ø*MC0 ٴyL4tA`y3tA(x)!z h1`aV hhC*ד<\L묞M0:4ʣ0`naV4l`Mwqgꂉc9u,:&,L(K՛>^j?=з.Jg$*V_0dvt2yQxmS*vDQ,t$7Z5, z$/gVOA/`A0jBQ &<`X I5R0iLzEҙJD$+4h/Wr"?a̧(#å4~@"B]EV~˾x:5#Ͱ;<85̬`C=?K$w`Te|S&/Ϛy A.a%rdْ0lFV OT\b1bډKJOt8wI/d4Uo,z -9lEڢW'Fbmm5uao\|\Kmjw!. ʇUV V` `#1Gb87LX>sGтY< RD, . Bȁ{`U4E/ OqZR qJ*}c#:I^'D%];a7pn K7ג #.'VWH04ؑ%Fy*ŽkMLK@SNLf=#A}kꓹF,}ϊAS0YvNvG8ۂi6t~`)/1HkG0>kL6C;4%La~rZzWiX┖=E07IG AgŚ`涒@*`I%7S=%Ӕ'Y&)1RHda.דI2HɵzאLgwB02 څ3SOIS=TkYiC02#xaM0J2/u*HS;Е3z[W)4Ekk`SR!)[y?J0qw'irK!^Q (#Уs 9̕ulE0R.v N*k` ` ` ` ``gU0W_DwG0cx p p p p{Dp O;c(t . . . . b`Fk+X_U h]=j[v5잂[t hni h L(Uz3{VS fs`E# m5w^"(_姹Z`)qj%B.2dۑ*ocaN:)aE?~rXy°!%i|䟛)POXxa( 2R6fkd2o9V= BG ȒҢ.ܜBcqJ9ϢyIjM_qwي`R>YMUFQWg)z] ^uȮ~5mhS:u9p..;%=# )#S8ߪS1TS-݂,"%hLǢLib!V\qrn-zsirHȎjEѝT]95)C݁bX-qNцN<=`Yסv7ג `FZr. J6sZdh8I0v[VO0xQ|uV}YLWnyS5?$T\œ.C_ճTM'}۬;|A; o$Vi]F[*GR K[3SjnDڌEvld[ Mo7۹a G(^7Vx=X@ږlֶ* ;/͔kcvR0]ەq}cڄXvAT1YH9ռ&A`;'\?/t 86`.IcPdZhRNEr*P\^K,[ucq|$O]cgsΪTExͪd3G0AxgH2KUb?Z0QJ&UGكA0cQ'cQ cOQN&@ͭ97dNI+3's>Ts't>t\q^fA)9?_* 4"|坏rkbpv"Wʓ;" He _vL G{x#Ga<$ ) )7VYU{YFko|㝏| EU=J|ź*st`季:c98¶&a" >|靏z,._?cMo*OIrk w ,Ǥ2pu$Ac--o}FOÙA0 yCz x* p1X0^iH{}/жd\]m"P˵mLsi6JW;b6hNE mj1an u;̏07 ƕ.NKڜK /E)ԉjD-dy٨j\ ;R\K}Wr%~-+֒ ye&wzYp^< Me(AmR{]XyqZG(G ›UV_b43P2^0O*:T\tU~xa( Fm'(*# `-Æ$fclKV_XDE`--^L+<) veP`"2`%ݰՄ6|`|YLR0̰C0ٮ,uK0VT0J+-buU,H%"Ԣ%\;3[Hz*ٸ뚶k-zmj"EK~|@0\@0.A~)i=iUo$@0~n* bǞxUsc=&9PBS.iXʰSUdE?aM0J/' g;b-*`ү, Bl4i$1!Tg$'_&#OITROxQƂo`(`Mi =8%ً{(^#U LqoS0K0 7Lpn#]\@0s9w?,3`v`HlT`, *S`@0Lr`c< 7EA@0U]`"tH1%#5ST$vp`e׻`$2:RTR&eswPwJ"sgL`!y1',&,)uÙǚL`AsPF.uTL][ֆ`yJ *B0»#NI{B08i"NIzS,z XH~(n?f,O s O "́\ 0" p\ 0#F/rd@yoi a9'sD9Mpa D@.a Dشm }#,'DG\ 0" p\TySsy{Q|[kykwY,Ss- u9ǵҋ3LW2m=|FV'yQl?.Afʙ%L_ 8ל.E6U{Ę,哛dZy1DR>7hP{ZY"21/ڼ7_R'=㗌8=jx2TI) L9qIJ-. |"5/'c690{OŘ+28 S49<,}_i>zOQ~6rh R9%yXYU9?q?OH4Pw?9nΦE\O)Ҩ²߱2/&pc &ub-`v*`fjM90M,g?eĜ~`fYqYv,Q2W5 gFגױj>yZ,'I٘ϾyJ:؂&Գ9I~մS.3SҠ,geDOiq9hz!V1F^O |RG?ʒP[<ɣ ܍%N7P!,MiʘQ֏@S# ~0KA.a D@.a D@.a D[{Ujχ5vfa;rkMfG6w}Ugs'=m3]8̚_ F`ĭ=wo˚bӝLta(:ns {7W ȹf=,%6ӓmV8ɔ󡛙69**Sk{ډ5G-sn .ndg0s?ڳ~oM;#G6d7WQOkkǭ=qMlnhK>aDx@>aDx@>aDx@>agDQn<Ԏ0q&]b|@Cψ0{Nj}3c@ D!!DiqB`a6 K"̼+~LZi3oVhةc& &𚽂yxYZLs@ɿw yyv csɃWb9m\a&&+ &Ra,54Jcrk]0(;`OQ6#f`ĸFPŎp%Eª saURg!)G"̮SI;NIu vrtY^^Df̢c[X#NIڭ5 o)i7-ڑTZ'C0=`wgG !DiqzJ#"̨}}3$}D(5{ifA'Ƙ˖yc'ytj0|6'9[`1b(j,H`֙i&8k%d1f<yIM8*4Lje0 rq,FfÊo 4i[ì- 8ݣЀI)cy|V|& rZ-L~5u-K#1+JMbPi ؈Dm5/J@.4ٜ@_CEo9Ldk.`bJJjvhVg Ff0I${Iо\ ddL0PU3b TL0I2iÎmK̺!xN4'm]f R vQsA~P 0&` d` MES^E Ia ^ȤNYDv"/:`9\#kbMN7w6Uc5|>:0<'\uW1 ^~IO9 H+cLG8.nƮ_c,e\~3+"Y$S'A"Du/D/.ȓJra ma NLwpnYDz C<bƈN&ezxBZLD %'uͫ WLt^~boEE;5kϨ;i0bdrG;I)9נʽ,jBtf$?/SfK)9.{NFV!Û|R`|VlB,, "DN^8<.NSvG&=Qb\何IuPeJFI|JR3hF0-vN#y*SR<ʜLܾ#_e c4bh\N{Y.y ҢȮhCLIt#ԃ"|KI{OáJGݥwG*.͸K=R^dL [ngѪ՞*oKg)e_UaO_F̓)IJ 9%4VPե=WNRJ u-yP}~ .^9П<<nB (( !:4O"GXY_l-Z]¢H+h0[igL(4tg> 9BG,๸ZGehV}GH R{JT](%rJ%t ' | D-UN5n]fҨ萤@ridd?dƀ-&aU*B `󩓢%rJZe 4ytzZ,y*LZZ,J߂̡Eon}9rǁ3 7zo?KSR"7QvȢ*`64&6ljzB*3{S]QM#3U`=ɠX8ڬ0n3?0vUZxSOF}wJʷsj{,0wC<Lq)xɌ?i|Jb))#+`ǟ&ӀQ0HG%I?E%Im)]N *q;eY.l,V`Vݰ!lQh27½v/W" *BZXwmR̵YtSK}dL0I2 @&$` dL*sM^\{; Z]s` dL0I2 @&$` dq`>j-3艚<[ԯ`OdZ~v?^`i;Q~пCaIs0i4՟V-X``d 0iD93 L¤Qoq5hY^/R9tʧY] ՛y?+zvE`ޢgs`,`L0$3=R>0S\JS f0W_>ST`dSiLEF9te<L3:|N>Y(Nm8 L#3f.Nn)z 0Y~ŏӉCGߖ_H}9Mp^$R`G?ƍq”4GOV008p 84|5\UQ u_`/غ"YyzZ?-zBN0yOR053\5K;uECqV475OLIb5}Wǣ1|.?vXi+j*}{;0_. 0 `p/)]:~`.j 4"ßz(O_E+s*z40C9TSpc0&c0&#``m|Fh,0Jf_p+CdžTmu0 D:s5Ίc3`Z01%}g|CYj~LAXnk\0`6IS::b-;b` 0IƩO\7{VT1E5Ls*0ʀƜ0rdq #AV"V(\35Gnӣ[&`x #9MRHo"` Å;6e$Oϧ$OfO4F$O(THmrѻEr"b4{&YwjY0x0&?(3¼H`I`I`N^}yvAc@l0I2 @&$` dL0I=sTʢ5e]`ĸ3tCúccU4_G&.Ա0W$!"_SRBCT:];A ܺdܸ\9uERFlNa{z+ˡ) LJ-^\*ڢMI1%ˊ^O lK辺0X^7 dL0I2 @&$` dL0I2 @&Axl~Dj(`soMok `{z]Ç> `6&CĂACD- Q?o5N=Rimx-Q$Qi,d>vVY2vJe)Y -LY823tbtEoo_9 ϲӪxvıjĉ>8AOJM&6Yųfu]wK<|mԅ.Y5\jwͱȪXJi]:tYkDNN+*S/$|^ÖMEu` dL0I2 @&$4kL}%D^%Ϻ :*lV00 `4) h.S\(LQFs:$ϒX{*0W_=GyGs wi0v 0 0 0 0u޴`U u8!@%@O?X\UGaXi_i̯m fZۻ7 zC2`VK"SHY+0Zxu?I?Q?W`6-i .ih s^ݰ-we:DRfl-)$[N.4y6$YCk #Vj}_Z3q/Ch&RQ^u`vcYk3)),]=MI!mB/泆$w>/'\ҭ_~Kt2>ɐ\]NT0),k; Ƈp YY&9`hW_ǎ>4?b',⤱4%^tpHǘ!gJr|]8񥡥8lQбҔ)2)Q+dq z0٢3_JN)(QM() z0yܯ${=<ןaK⌓'Kºzן}%A4 9zQQF0 ] ] ] ];`*Sycx L`*W=GV)ݚ;<*C*QGqd{Gߔ9Npk3%xa\LSU%`8/h`Z~ml׻xet L U6uZN͒=`{OV1$0,iyfo9lϼ7 rMY^dh؀900Vha=b) 7=ww_#fQާ\nӉVغvy6ia jOg;`:/gε0O0^^{$^z4OxM&*];h3`aZt",!+~zz´0  ^5w"̑n "0e#C<%a ♨imKl:(FXN^v,Lv/g+H ;i)npԹ)Aw.寨PFJ Hٝfiast@r9[ahNbgx:rJ*ˡ[t+%$EP|MmvN~c*g̻Ֆ=v?L04g.{zka̗t=5dNX:ձa2'{ ?/-t=.ŋ /Yp'50 0xyIJp>0U]W&35#A`u^;06`| ,L[Z lxKشFW*]0{-*"_uJ6ŏ0:tɚ"0髚6`pkrnga~@ꂅ0u, `aL `flUo#Sw0W_28M:faޡ3ڮ0ٵG) (.X悅) (.X悅) (Yu\tmSS@eܧb,LCTꍁ:0Q,`&ӴdX9q=̫YbL[oԁ`&?zD]kqsMKB{aa4m j2fƦsr{aa4ņ̛y0/0FY'b ` 7+kp4Ӥ&v`ٛGJf)o_Myo< өn`x^X0(ׁ׻5dort7-;ia~AwKe4Wja¿m>#7- z0}lE#Dh2'㞭a,J|M歀Q 4ZnAhKGsw}a N> tƇ%,Y[,..J] W{I_#ٮ=9|\zp/S^"xܭQI0v. cz9  u7 fi,"*XEU0L`aI`S fi,"K6jOFom/n!u mSrTc0 س3ǜ΋DjZŠkaN챁0fRg#0%ȼhcZl?LM>t$~jg`p2dzrGCBD%ԙ{zdO> Q}:uO/`1 \|)|8?ZgZvݫ>tFS-L:g_#"/Lz[o`a~[h$`az@Ï?%  ?f凿zE`XJX ,IƤzg(޶alI Q70ٞ?Lfm`a&&`a tqt,rmms S-LI -LS?TZoM=?kN;bѫl #`110 =ICQ0c,L3ݽ)k<!V0o14DwڼjD&w08P61 iSsE i~Bn3ˤm4D cjWot0z[ba~Vh)xI c:E]\R/0o0/ ) c12`.:XNuSz.)1”C='ZFy.i{0 {= s@#sIpM0}BiĢWj YsƥikBؖ:O(H sLIq`BO( Q)阅 ka#,}&O(u/z%m+%}>FY%O(p;XɛM {C=`04Fr/<4], Fp'^~,6lsJofϾ,6FD=\6 >-&jai cg`a^5~tm  ө5Sok8,LJYokp S8-X, "0Ћ            aaW갅ztZ2YlLLLLLLLLLj0T0W*n U% A`a `a `a `a `a `a `a `a `a `a `a `a `a `a `a aa\FU?IDATaa*΀87=tāt|e !ƖC,ƒ, 1f ` cF0zi`& ^ TwUzp|JQ=k8[!;vPl (N0KUX.E3<{, SƇuT0%jՁ%G&ɋzg W?˨JZ|s[vrj0`^ba ;;r|ȺlNS+0>~ŒYtZ=j>bJJO X g5,z}9j>rW{ʢEһjma`,cF0ƐS,L;h)GXQO HF|F>,0'7U` dLi `},L @U-S6Z0; ( ^$` dR]l 7w7ʽIENDB`nL[AdU>PNG  IHDR5؂ZgAMA IDATxm$yóK.\,R|)]+ʔ`)RK08ưe*$?Ĺ%J!_ @X,۱- Hf Jz ȼ(qJHK\.}=s?9}_3]oTW$B̄/ISIڵ}Y]M.a]Uv:R.GϋGU _?xa] !(n|Id7o׿"^[?(~8wQ\V\xJ:к{IV+{B}W|wظS8rZ~UzH:*niq8rO|c$^?}{/wl#ʷ75⚿s|GQ!3/z{/|? OO)MvT}H<$V[S!D6/UB䊏\~0=TzB?ZP>c>%X;{,CiKŢJv#Ȧ_קo.s{nں?~w폞3"Qq8x++(~V\ʛ4Q^ek?Pz&K!Jقvp8uZ>r㑻/ě~{yrK};Ykb‘+;~ȍGNIqPCeBՖnu1K~#O?{(ك+?{\@b}BdvvG*z;}U@v֙{*_xPٿk>vdz+@ 3Ms._wS'S?gđ'~韾巾 ^8zSS.?-U?~~WW]3ž@s ?OgmϿz6/|B|bSot'_q䆋7g~G*4YI䊏w@rsOJibV$@qJ8#μ*^ũ=ľX:so\kq-}g;>?xZ>+)&s=@:w}|@ŹUo_h-uFug[?x//>]%k 5.P^{yWo~?&=9"lm~eW+{C7T{{?g"wwKxq{{K$Y]⍀x#.@UKXx#d׮+ u`k?v.@Xz޵k_dzKw/(VZ@E*vq//}o?(Ggs^qAq?Gnq~Tռypg|q!n4 (,*?_\ T73忻KXbqŋ'w/q[/SF<"#?}+nn=}Kuu_{k__>*~Kp,An;+^<im'׊kW',޼)6}ā?fm^\Ĺ[mmG?\|[[ۿ*zn/obu⺯.nֺXIEE!~><8~OrϣŻO>!y]ĩGţ9.Gϋ__G3 _8qw1s/raʧ瓊z$wռ]'Bqn]]M.a]Uv:R7Uݾio|+'겗gj;Uؼ R>wgj0eUOʻXTZLj{rKU^oCEcr󺪜Ǥ#^52O߶}tb.8'FZnFchG] /w @\$8JA riJWZZtkڣNʜAF_%>p/| 8 n{S!uHڕf?ߗJt炇E2l_- ~h30nP)Q&1]5R%U56tK7B6}-(K38TFqmKՎ݀(wUax&>&rP1b&`i XK4#d&s cҟ  'I 4X,Z@ =4h>wl'b "⑬V1ϧi׭@m>/ˮcßV@oEt bL&]Eq@}hiU,d2LB2JFK6)Ͱnu(R$MK!ޒb ~4b&%P oHEOCYGr2PoW_rP$6&IE l&9Í 4zs8$X&2M'BċD̚?c=$٬ ^r@JoVobogE9x@ ӎ'Ko\rG_QQ,fVr6B_}uUSN @v,|[ ;E`!ݙ7:/x4,TsiX.|YY/N%\Y^n[D|?L&Lt"% Dz\(~՘ͦE>Ϋ +?x vI:揳2N/'IψBñX,svGwjVzu&ɼIyWriRS˿n^x-Foed>1bQX?B9@݅d>)$͎ɏM'̻?j"TӑUkYnd*3_"ו(]ϴ7 ¿ˎߢbo^fϦS!b;G%PW;4[SdibBъv%)õt\U? 1s/:E)OۻD}PΗ@9MSvjo= kz2/zp{QlN8м1UZ9wLoվZDعFN;Z_IC @t->KydxYtCv9o7lHӅUPn`Եt-f3[6AavUA6gU44"vݨW?r(2_N,4#S(iE#4/pWQ@9导 /KJ +Ze?{FԲYngy_ =%ڷ"7+-] t2-&fyv}mMKe'f&<-T(vvL&iv=fPݸOgcpXi",r.u]GKq ɖsʹ喅'B,E3,tqy d!kIGjLp42hbUZ:;aXaNx-`X7$s|=Fc;0"VN| &!Nb:MwЋqҸ{7D1i =X,^ f"\h7w 8.@1 mXgPu>mW1j*&IV+MD\02#LV[i]id|Kr]֍,"Ü.>=,H+DU/P6T>*/F(g2zSGKiRi>PɎ=oђZ @$k=bq̉($e98{ PۊLA@?d f.6K'{waVjL̇13%3]N/C/y* |Ij爨-LIJ_/-p7%@@E{:賑z%[#G5< ?EƁ[P "|u0$cpᮛaHfYmt:]Bw /"b]!"BD  "$@DH!"BD  "$@DH!"BD  "$@DH!"BD  "$@DH!"BD  "$@DH!"uαcǺn`><ͺn:t&Fk>wH\.n:5@D84]x(%IDˏ+'˩ث^y~k{F5٣/tH o}[}ꪫ={z衛{mG$v…}{{Uz .11!fA[}o7IjuoCV!]3B^?8w_&?uOܛ~ٳ{_73ressb~ 0$q{[zկ~z+W7ܥKn+;h'ɓ';c! vtk_~ƵW?{^yn}mC{x…_~_׿~Zp >;$@|K8o|۱vϿq.<׾ju|[[['kkV~].6.zBSҽk?R F Ev=nӟOkW|zK\f%VB믿o~OwauAquk^#8{?Z.]uK:r@ ׯ^eu?^BE IDAToy-kB .+fs*\^`񥵫?*u^!5O" aT_C;]?c[?{˵oٷ/_yo«yk9r-ٳG_D,O?mt>!DkW4 ^`ح3?~5y @|K_/{_?Ցu?gŐ^| !.\/k+cE_8 };y B-+ !3ٖ:lju0t$w|gv??믿ҥK<ŋgmǶ|`̽I]-)E!ݗR꟝gϞ>}ꫯ~ꩧ:hrpMy! ?Ȑbmmm={콴uInvO>ڻe=ݫ'{V.( ProvG;p̽[/]k_JcQuNb  @܎ϲ_]:qċ/~ȑ=>u;{lU1b9wwIJ&>*Tw\\`xm@ ||`4HvjWoWݸ~㭯 pܹ^xkd?^{7"d0Dm.\wⓥ{|¶ >`ۙ3g2ߓ'OhDpw l{gwH"_pw!c=c MѮЋ6ۺ g"X]74VH"Lru+"l6 ;qDM @VOtv-$jb&LX,#% @|DI*6L2Ϗ;Fcld" &#i Eyߋ" c2QfkM q 08$aJc]|AvDkU.ollt`l٬bsh0Uài08cuСp `HDMjwb]#P9`T?"U@1g'Ntcdv4X_).#\Q #CYuswK=SG0&$)sMGW HSὀxnM\lGTU;^+cE|&EqUgbb+Y(#Cʈ "@%3I=A|nfT(;v,|:Atj22fjuCzg\N&[1 & css3|:Ar^ʟH$In@  D|Khqax N8uB+z}3I\ouSWU}Khi(JTvH\:t.3d1S A^l݉;C FbģVHߕ?0+ُ3'庬Y*=r_WҬg]uJ50@ye!X#Z&ymh;SE>*<44]( 9t32_ץ 1.(%B п.`i3^!p)cFUicxfk\F WGx`0677W $Q 3Ě ئ*M@DH4{yh'_וH]Uh>Ks+CQUEdPxu}s8"4M󠿘 X˂!&o,iR'CQedjK&L%@WKX)ҏڗ8?CQo ΃H$@~f 1@^R53m,NKLTrNiJsigݺ%%7G1 5V }ѯ2\cX}wQ[Rc +NOw1կȈeyC?q)F1Vi:ߛ縓Ԫ7鉘 X/Tiv#ڠ֢/}9p_q9 hfHt` GUS 7Dfw3a(;ΡE}8_\Sm/EyqDӆ:b@#VTE.tXKŽ Y{m3/0,BkJ_7K[^꼁/UkmVU@X_'偩^rކBZZ_ 1JlfXBKԲtc&o P g0*,#D-̅2@-[1267 @ԦiUdv-\.9FƣR Zlj.@@DHJ4{A|]WEBuPTWdXBq|J.n(paiGnG1rh LMNRսU:3@5# tYk'  L͎{M!~UC7 7t2:ޒa_Ƣ Mu gP//V۹8y7ܓ FF950zpxKU.zIU&}ѷքPiIX|H  <KVҭ+(_J 7w/nUIMrKZ"ZjZ-?H`=GEy`jo͖&5e{U_n)Ya /nP˰)#e6E~^3K0B=_!`TXGQ!#ZyeZ#cd?Ta7%@0K?ENx6zy() d?ɷ;Fa&dd*O"ѫ*ͮkwXҐ  9oklXf?G1,KLڮ?eT5x`0677W $QmR   "\#iqP'_ו}QP0TRAeR}솢#&L{Wǃo  Lgh*4!um E5QKm22u" ĢeGK f7 @4Mۘ;<;[\"?o陵tܗ_*XUfNj1>c&K 2H?$,M ОV~ԯ2\cXZoUu>ꏱ2 B$0R (C!Nk8^ݫ\?ldx4# 4Ck^)_,M̹/%/Mcl9%_ҥaяLoƁ3{TZR%$-/aFF \i|* r Q@iTK<"ng0UEA˂s.(C+ 9m4?`4HP"`Mhq%@X4xrI_[k=!GFӒ %@0Rھ h-y [iNxL&m2cdgly_݋>Vr Ci{'}V!9`Hyܟei@<4!>vi2nZQ 9-0^1=R /k EH  /b'kLg-4Ҏakc/3ٿS%ʥ8*ͮkwXҐ ~ @ ^4ۨE(U:%ݥ J3C#kZ菉K{T*Wϴ=2.ё0/(0>\#kܗ" }GZ6TŸj{S#{tK=(.ڠ֢/}}/=i$͐` "P{8SZ` FykC"FSK#5+-X3겦pGv//Moȡ^LbH1[˫1K}I*n3oפbi-daL{o}FSq>NSս v/YWWvRUZmhN9VԴd7a F 7p’ = ? @\λ\.#QlI_)NDm:]|>L&m2cdVr "}WR$W44!KaȨ(y Vyc bQ %hC#@ 8fꏱN x%PmOᝯ*+5tDsIJG32.%"R(Z /-Ҽj֪ GPBM59}jZ+^\FПBZ4< ",1S* m, Tp Lv.&DB՞Ȼ:upRؽ7ɺ!BӒ %@y R`RuSy&Koi{+T]6浛e LGEy`jo͖v/YWWMq2^SɰTV۶6®)#e6E~^3K0B\ P3``TH涞2@-[1267 @ԦiUdv-\.9FƣR Zlj.@@DHJ4{A|]WEBuPKEvٽ8>c%t(YG~,o  iֲ)p ^ V8^edjK&L%@WE~6`@J`~ԾԆ˯2ӝ 1 :I@c()jf=žr_gJ,bheimtݺ#%cHpJS^idY䙡O+'HಸrQiMREuU˛ިV8#_Sۛ7ҙbtg]ӿj%!qōKU1ncxLĀ _RB`$ ,>MJՎrǽl #ŗb.$ -QV U$~qcRQϣ;$.@0ZJbM6+UQpLA LbHȻZI_ ܲj LRƮz8&k[Uvo}FSq>NSս v/YWWMq2^Sjxeimm{k]ǒM %@^-\`TXGQ!#ZyeZ#cd ~7#E͌ {dd*O(Wƪ_b$}=A>ؐwLxͪJw)_eǰ4릶mQd Bu;v/:fU:@5#YcLJ !@Ң W՗&_KoG%tlm{e(F9E1Siqv{A2]inlїAgѹu'=JcWf~*l_n<.d4^EAްn˸HuVϴ]o " ؝ L-ϋ5LsyKm0{_ MK$<@bT.ۡZ./  IDATVFlv/j]uFZ$M2F(LM^%ꪶ)Nk1jVlװ)#e6E~^3K0B\ P3``THrrbLFJt j*d2iX.Q#QlI _)ND-I5p "$@DHp i*/(M:ꆡv/VWdXHq|J.rw[22vB}s"@L&m2cd ~7(>o陵6vVXKLT< BҬ~#ִ1?Yq4!~s&AfՊn/Q x Kkqf}c!#PvxQ~N#*hcfd45zӬ`p8ДU4Zz1N[Kl+ë[ :6g9 j-kOziE-AAU7K6Y`7>VicQ:k06۹[Tg U{">`LHfRKUeͤ/MҔ`R4;Kbax%K[RvM*)6TUmk7y(LM^]Iu O2(Ydf%Ԉa9SFlTf!aL g0*,#D ~k2@-[1267 @ԦiUdv-\.9FƣR Zlj.@@DHKT_Pc uu]jZe༺"Bչ\f(^jI_ǃpUoc4ϻnHP̃~)pURkGKzZ(i%džyڒ Cرc~[m,NbaV CK E7bZſ]7@c$CIeQ>o|RQܗbEEJ}XUKR,9ؐʾ߮1T =,ΘDo*z_wF?2=17p Nݣ,>sXVZ5gW-w,K?g666n;f8{i9zywf þ^ {Eq/CQ5vo0DAKޗRL'" 괡G;  ?U˂r{xy̤/є`R5dgxp ˾_!ȫ1\ORd^)ݿhU%۽Aq +ֱ>NSKXy&T̰~#,Nw8l#`}`ssh%@~.> $Nzkx`T]# Z+wcxbL t:m| bNWad}P;22>B:9q UZ<]ڼf-WbMHy4d ?A[E1"a)pO  (h'JŚlRIư`ѿI_;bRKmT 7,F3@<e~RRp&'S-N${ |}I*m,G4M v/:yU#j&o :0}T&{Ɂ6lWRiRf3\^jİ)#e6E~^3p ,|> 7g!00\ăgxp @\Cl5x` @ԦiUNsB #QlIC]D-I5@5@DHw"B8D4xV$Tl`WmuE[մ%UmSnlRXFy԰@q jVSVi*Ko%+.zNy1!NUyJ\"|SF/yoX#Č3@VY!@cf?fUspAevރ)oUi4 m, Tͮ4S {x3$k^ C c8ăk&rYPnm\T`RW4%ؽMuwv'\ăóڪ+GVw4 ^k[JUߗkLT,MSKmN3hU#v .@@CƪE;ʽ|niR9Ru Mɚ Kpyy2"?d`@g0Ba`L8ălu dKn gxp @3k(p MӶQ xFƣb@&U8ăk! @4MK JӴM Z5@1'ī0267d @bTTܴh!ġC2Ϗ;B[l0D4U> 8` jTE-D Q8b_$?2W" >ϗh.>0t@`||`H`t 9@Ը0J$RcBt!@cEw @ (ls!@=eO0D," & jat2N5L5,ΏO;J(߿+;f&!]d<l6 `pfYle`łAO9y罥gxHn\{b$j$ O;vdE@DH0~I[Q$IZjL[/ˮ*-L *lpYHMgYh*,JK*صoח68-hJg}0.L%BujMk=0DvAWH _x.nl}j%CwȞdss3Xu Z?߫B6GBnsKUjJS^[RGy4YW`MKjtY-l\T<~ gh,lsZryғ&mwK_m=WOd>sP`pH8m5~;lՊVdR}ُXYu+f챲^k\j\fRZDm֘NוEym.avTUj8j[|;쵲?L]uw^bt+cfEʗ4?\Iu*-m\3( ԻLa0WY 5-հ2ݭvږ+1K[. P 4?6A v0˱3Lv\T֥|D{@V-6|$l4:Gڈk\HKYLXC7}GLFWsƄ/FgH*O`gMJW]R 6Zqn]rL,;\3\蟋!b : ThUFKj4+2`!^)"(tpkrf%+KY&6THYTo)&džWm֨.C&e31ira8M ^ 2W^ ǎSUw,^6`R90^-HKƤ%+Vj+riNZuţKU=6˥I*y覃lRr%& SnS57*Arߦo`T t;(ԿyQ-Jm oC*>6m;M߬;oآblWfKrѤB4Oڽ_11/Ӽ͝DDj:vt Ro.@@D8. @D>u1~|hk!"BD  "$@DH!"BD  "$@DH!"BD  "$@DH!"BD  "$@DH!"BD  "$@DH!"BD  "$@DH!"BD  "$@DH!"BD  "$@DH!"BD  "$@DHٻ(;.!l'y $:U95R*U? tyKJ@mUUUT)GuAِ  Ą̣`?<vz]{/ev3;~! @H! @H! @H! @H! @H! @H! @H! @H!WWWWr`TUUEBE,\10R ]Rx<^rI B[3<OI Xɓ' 0 $@B  wԑw¤W]]4e7#H:}0CI5k/J9s˗/gӧKv0K00>Vrڵk׮GL555%Y%fR(ZlҥKG! s_Ҝ9s [` <7gIO?{zõI|7b oСCo\M#GZdcE[[[x 3| 3p¤[TUU ϛ7>{lŇBҕ+W[򧳳3iiӦy===y4ƷAj֭[n:G|G֬Y#~V^mf0oBUVI+WtJZ|[x&KJ:zcLxy>SI&omm'sI?裩_‚ $пL23gΜ9#iܹR?ϛC0If̘nIٯ5>&l߾}O=T<迮u^l|[ZZ.]T gDN]j BWΘ1cI=h q ܘ''u} {M[1?9zh5 {7|)߃|MI=f `ҥK޲yPȻ2xM*BH>4|g  @H!$mۅ(MXrwcnW-q/H$ ]4 F 8pХ!$9qFz ^kQGaw}x|,Ho׿~?@Q'T@*/A+ƨm&@@E`v$| PjPNH`L{I1jM.wJJmT@_&Lm;>6 FIcbw"{PoϐPp(C(?Ф FH<5(OEhȝi]< oRJi(Ȼd[r`t A`yGa`]`d{Qõaoţx<7ihh.Ee0JBDe0JJur.@pP(=~d18d^A:Dڿ?iyG7moo/Xqa֭.B{9Rr4-DA0겜 /P;s}@n2|8@A^":y1h[[_ҥPII(@~UWWֆP[[R]]]b̙:$yor^m;8c0Wim7])4X7Dz\*%Y_Cxf}{f'lv[w8r3LfHo?&UtYĉsw| O4}E8z"[|kn޼9q^{m…m易AN:54ΤywyMz?Ph4Fw8bJ=U y9ض`rO^oʳ߭bXS$Rֆf~{ՠM_YYnYŋտʦ<իskj̚U3i~.J7KJϭ^ŋ"PtGOݍ7tN3lʆ'6Μ9DNLhJ9yHnێo9ʬAU5^0Ft,M0h&ddy[ڻV1?ߒxue1,iP~] [F#X8 m#npOQٽɲRS/mr3Gڿm۶m,Wd%KnLVDn$4uݴujk+՝DB7n\}m7!zί^u{FY@)zzDZX!չsNsX_n'`jl~ҒKwFgʩׯ_~ѣGwܙH$fΜ9vObF99ywyMz͡`/KɫPWhC+o{8Έٽs6ig]ҿRo Sl-6m*HXa˭"IVX,Klc$i&mr-Ynȵ"[b1I1+X,y*6oem$BV)V___]<ɶm_yeib[-Rsbȫ튊'u]V_qrպ|~~t̙ώK6MC=NDRa,ܶnFB!sb}y `D%&o dێt8ȲxνsCڿ&0Sw7f H_3jRh۶|v+#˦M +RUeo)dwcowTs&Irk愤iM&H\In,dY2ѿi,+<r7JnjNlULȕ@RIĒή֋/n޿.8MMUZ:as'JR_BgKJMP R3ʑm._a]sKVY\W;vUIWG{O&~ ͱ)`Y 3#¬ ;.x_*Prک/{;9ŋ߹sɓ'O2?eKa>-85ʑrMgs03N'][# HR?g'?RBJsyO=@R NԋM%jR@%"˩y/MOQ)nK[8l{x;F5ETS6a=2-KŲho-7!mH*f%3-oeK<\ɻm_jc~$Y &?֞w'~ygoZVRrc?qYNyXeRT&ogN9D:qBwHROTY[tꔮ\ow˩kʦtىgqvGoWҢ~G'MtͮD"W蒎I^''^ rMѧY?m{rFfʸyD^MxcRpsԛas#Sɑl|3Qh}9迿Cb+3г9isBW. u"s.9NJ-moC)~՗.쑞ޕo7gWI;>/qwqWBXOBL"\2Ŷ1RWTQpROBib\*'hPU%^g0`Chl޵>ѳٕVWlO7ӯ{{;JK)sE`Xz K-"'d9Z9RBMwVlތ/|(e |Μ)}W:&;"\$$ * 5kׯ\y:+kVoX_]U MLLLLL5]Omvv# ?J j4i13#G66n]ͼL&c1x3HJأ; A1H KAiq“ 8nE( lL}gܾ2}Sa)]@)`R>p/0r?9+ƷEj3"rB~-I>H* к M|IVw=5R]]]i}*K40%$|+K 0l&hAX>qgknꠟҦ8"~yoqrbI'­<1l~狊7q'|M=6W]evP"ie)8"ȃ:6vL&Dms/>pvo4lX:;;{" hdA 3A~ƗBQn^k4<}՛3ٙuby{-)!X1ﵗdF؋j'kb 98I( _c"!$,?݊W( [(\nbtjsI:Eƺ7 G$6gq*[]&lfG lv;L gBʥ+ֆSu]G,gssHR@ Ҡ>(a`Q A`p??bś_OrX 8Dpޙ}&{޷wW^tot;KJXhlĺuX(qHFGe.l)<]i Y~ƏqO=hMY3pjwv:{CÇli2FзK)FJE+S gʻih~=ă[X,ÎZ{t* XGd7F,Ko&@P%CgF̻Ww4sk@y|`Pz8fa߲r0xvnY^ALj-ՙꇦ57Ŧ t55붹Ŭ<į{zzzbvJiZss]:~l20(09r߾3_|QW|y=_޻eKzN}wFpi.ʟo879,͡6yx][CV jAa1f3rc\@щQ ,ʕ+J)쭀J\|8RsdJ{УyvK~~n΅?G#73)fbBP2\.Ap ml.dG(ve&価X#8j=ռq~@%Np08 ދJ… bf,Ͳ"QCNJM1M%ABzzmٲe>c\t6@C4072h,LF#8N:'/_~w8pЍ[x׿~YX֜^[ +=ֆaoGs3tv%yU>} v͚5O)1T} r1;*=#<[*i?wNYh d2i1Go ^WY\bjlЀR,2?(q2Q Ϛ\Q1f"sXfoqlz Ms  %Bޡ&J't!(-9 7px~ZVx /D4M6"IP[o3qko_t:j^s hW;CӺڪثNWO}xjyӧr}c.7u&xCv{?׃Qϲٖ޽hjFu.^}5a;Lb^ϥmm[[:^}}/֞8qE/VMJ'A),Mw43>b~ t]や_o`b8sB?w4|-+B- u1KMփk`c8m\S;ƀ_xy<<Y{:Ev2Жӣ,@mI$RULTM*mrL0( JX#AD.}=nr ޝ:0G fgWA}Ń=q N/_}+{UΎCd[>O9Mࢵ:~V&AسM1sG錏#tQs·CHD9qlg$b?HZVfYl~,Ъ>[n^h[ߑ0,UvRfR) `/KE"8u ƖgڵLB ^(JwLћ'Ln;YkPy0QJeuRxh~rC Gu`pi&DysfyIo ƌ`H4<YeY6&Ȱ/-%Z'̏3$Tl֯]dO tL_Ju}[ʂ:vm#Y| 䁿y\5Oocw~;4_~|f-;U--2qǃ8.y /gp(/c}1%xw$1]Pr ovʑ>jdkkk۹sgGGps괶.YvšP ;^*o+[n BđI(}a%yvbWM ޼d){DVm{Yb4Zp )\ L8I&a!s@ڬY01 ( dɰٜKtZ8K;픂Tn tzKF$I4"gܿ$Y:Մ,Klc>)hEHill ⎌?U%uMSeU%Zf!۶ov 4fG{9v&ߓ?y8W/v9weA@@ 8g5U7niM8O}}̥c"]]Mh0F_O2M=Pf}Rzv%*m/cT*Ea=օB)sޛ'Pxh L5͇~]`C)>A΂A #-GD)eWDBJ$7@8߄,*45 vN,JQ"_Kob&#9PUU`v,9<4(=~׸0Յ\.wɚ>Ѳ3% 24 3+,#K&m]P& Pjǖ)#<ٖ\ _ Foo4 yc^ 8&g%$?$~9>Ox:q Lds%Ҷ>$=)A񃯈W΋W++vܳ,V}Ŀ E!; [[#womC.~T=%N,^>"6q8uTMZ'N/~/~?U/_>) Q$w>!>qL ?)>g%W\=?x]]]~8xPŭBlc.UB_y߇Pk!6.H/_ơlsbL<6-*I~[[[[b]>uǧ~spGŏ_cGđ__Eղ>)j)Jϳ00E !e K; Ɠ)quGwoo։/\ozط!6/헎^w䉓WB$ڞV/S$0pe@+cw__Ycث.{>c?|O_/?#Я+?UW]uCVUfC:!ܳۥ^,𕋛{r>!Ka9dW_\ڸc;zߞׯe]b(""( Hћě6ŦԿ>qa?yУDzc9/qxų/'&?Ԗ[ XmWd7g-'*ACv٥J_]v_?!{@A]/]mۧ7n_wʏm\"~}|WԹo.~?ɟyso_x韾7?'{ OrP"ܯK RCoki~`9_I+w[z]8tn?= 8*^{ (f]n.w %@"@]U@=8y~8O^K~ooN|Έ3CIqҡa^guaW~չuP>8t[[m}Z՟§ܸo~Xx䓻O(mx܇{LGS>ާ~} ?6=>*nml}#{#7T{{>g"wKǮ׾[[Në^}vvVT>n Pv}3TO}~uORlG/>(Wܿ/ܽqwcd/2VZ@M*Vq//o=,[{nqaq={]]Q񣷊[>(W⪏6e]|ş+qx_v_I{ Z-Ńv_ц{n[ơVs`e  &*mau?Z>xX~S7 ^AxW痎c v`}r΋Ox⿊xqUNoo[+ŕ.:O{EcEa>M[ŭ__Z\}HK񗷊[R!qjqWWn~S|sw Bx}"x衇z<tlݯ~hIu?yPJDwOVB~w,a;ezCPދЩ~k6η?|k'MgjW;U}5+R>wW0mu/8TZM{s>m|>TQy-TO<)aӌ^T% ԽW >r[*6u!،*MBB<V6j5C4!tݒ¥_}{8O*6PP-d7ħ_:j`?ꦺPoHé}3{9Qy]]cB#]=*O߮st.x6t:7QɭhMc\^!{i/~ : nwS1Hڵ0ߗJO|C2mFX Z+;!Ha۪!)ц&勞1[ r-u5V6t9H7B6shK&rtPı֍bM"y41|3(_ȺH/\z/{)#cInj/Rb1 !lc݇WLV @(e6Eٿ sSʲr) Vc6uX[R-!?<υԑb(f7_"')#~5h>O@XjPe6fYELqy/f33/K)+s3RgSܞ:T˟VG;3eb1Nj2Y.y909Mj5 )iܚ/EyR.MS2?8Bb 8XlZ%B:\U.bt/{)%@*2z`Ͽ)cpaX,wn{&Hid% kq2ZMeO؍gPE!zMw9w6#xB5"Y!uRUD{YX!%~h !\y1/tΟ7.&EEmx aog偽Q >DM3Tg,{)e:Y纊ͲLgbwk %:`Y:?Ÿ8pZeY9#byl b/m{ߩufټIeWri&mߩ_|M(|2k |X,*gB!Vb6AmpYNorkcs}h@1A:s_p 5f?7?*+_"וhU]t7nq=+ΛE߾"MBr)v/:;{̅fQP٠hjE=[ԿGr\ڧu6Y?곹˱,y>NX~KS?(2i{h~w[hin]g}@`/w)HSW{NW ;"Ѫ(v3ξJqy"} Lan$^!]]F; [,|fuW;ؓ6N0C 9lȦ*5(,1TQ;h梊VBٞT?[5ZG΢2eYfɀCڦwz.>n} =bHbH CUTWwD Ux6UE\QYW M-5|R+Aa|rRIvl9ȋk.lJ-VӟʟPA"@?)L~q(Cզk+O㪾huŁrb岸թ(^<ɵyrӓ4 ˢ,?cn[u~zZ{BM}bh8 o ]OpP+n唧7$$g7мC+,3Ka\?-Hw/ݯ0U^D+rb=܍2o{3)-~nƼbK5,zNSV:o';E; _f/n!vUGU!TܦV?);R.Ґ&pO4Vrn)r.a":N˿+Y2 :S?hl^qVZb;/=t{2; )="\ߑPWcj@!Dz[CV 6nZHF, %Oݳȴ7s V , X0RϜ+n:PH jH`D>pBpєY e>ldԼ|ʳpgS天C#ΛZ޶J}:VXd"ߵ3n/HSHbٮB^0ROw_sEu'T#q`| SV {+!- oMdy5vrſe Zr!ѿ2 25~e!γ@Wc *h_?QSƪs*=atGp};ǬYyq!RhGBPIvt,Gc] _.,v,Ȱz'.^e${p =Fc'y"V.| &upu_U?(`qnv0pb:7xRX,|%|cỳ#G=j>fǏ9rddl߭"4# Ѕ q&_Fߧ d07fPMkj @e*Ex"@?ƖvZU5ۥ}SZs#| SWg@i%n_lO 󁰤W1@0%8X,9Ga;Hs&i> ЮN{I9[,E\/-7%@%{:\XF5<  X$cp 7l61L}Br`?.%@@ x  !$@BH !B$H  !$@BH !B$H  !$@BH !B$H  !$@BH !B$H  !$@BH !B$H  !$@Bswp ٬V0!Hˑ#Gn`yMЌ 9&7$+ERLd{s+)GerjjrTf_&GiQ}s}7-!ě;}{/2gΜy|G}4r v;w{ށ[Ϟ={9!fB<*,j`fYZ|?|#m( FHvL;W^寿ח\rOS?;sBr8ꡇ rxB =qMwWt%q~K7܅ kK{h'ډ'z<<`! @uWٗtߥWmdӧ~gm;r//;w_|}s[V^{OϸH >ŏ?^;ە\_]xBSO}_]Vw}7޸''kV-aubӪ/8Qͦ.޸c>hynaXh#;>ٟ^q7νpŹ+Vb%k7noo?W\qŅ huCف{7b9UR }:"Kޟ;>Ϟ[Br-W!Μ9ϮV .R!:o>=,pEq}iuh IDATm_W=znڿ{?{KBܳ=BG6.Ho˯z:OW >ŏ/^y_?úk>gO<|_B;w\N@_ƊWϜ{sBl_zZQ\(Б~Z }_nv̙SN]~w76zibpi902$i{Eg~U\ؾ *ظyO<ƧQ<';pW\|PVg>hO8t黷_lNcQ^j;=0+7/|xǟrѣGG}̙3ud|Xg}%f?"tOV8tǀrTѵsh_]vݾn~ͯ;W^y~ϟ~׫~f@"|ltHܹs8P}Qz{.n v>}mn=qD@"zXuAO?{پ ["kB裏>5B|yW@8}& bD-yMU_$iqPrlk6;~xM @V/tu-Ñejb&LX,# % @|$I*km2=d>y]4@wHDkP !\B1nH0By?$({U@:oa6tk5L|K(1hΨwN; M1X,<wb vp4g9#I3cS `@+rHx-}@RYv}7@$$hozw`đ`w%,%xȐ`l{ ]qyDǀkJ(!`̴9fणO HTSೀtLRjgT];^kcE0|&%qTgbR+lX(#CdDqs咙$ H|>PKj3눑 (y+ MN_.Ed6V28r2݊Hm0o[[[+ - /W$gYw![j$n@n Ǐ "!@ ep 07Ƴҽz? ~ji1OA@9|`V!W zmCF]O0|04PmҞcd®X _]W=/u97R*< @]_-w ңNPU_F!x 5u K`%`(X3# >2'C_fmlpVK, ~BW,f/tK#/ sƆMu{Ja7(TaQJR8qpiCVѤ4*mD:k^bț5SHHW%t6eCɪC0&ElV;֮qh{@wF6;N0`ĸcS]~MLVgQ@aƄf}n iI aZn'@,Qbس 'hW43Af'Zw J`]灚6GY>ӧmajUcݰ4x&tV s+`ZZd2_5b `H0*BuPq^Qd2Y.TaY;uA8yxꂴxu8 b`H'.OaILuOCqUI@ &`ss3~zA3|6u]Kʕ?n԰pwD@ &ckk+~zA8L, "Im H VAw->2|W@],=m)ZXO2×s y^LYEIU6/Wj(G I6x ?]c U!bD&EѸIsua3`f- Ջ啁ru!J5R4R]LثT7i;lu3nZ A`pl0J|JYdU6XJN1o ,BkҊkfWVukUu{ꨵ vN6MشhPLЕ6 pW]TbtU 8d?ҭ[=p= pkz۬Pw.Dݭ]:9bHjqR@+Vnc-ݤ*1ldsKɡƻa i%@Q|_=^ S5Ȯ0ԯyu[!ƻ}gt m PC!BYh3X5L&]22cdJm0o[[[+ 6$H <ϋB=;o\*.t|٤j_s nGmX֢-\_@$yWvVsCjuR|*{_nR\4 jX_,B H?|69TVH|<0V\@8+ůB:T7i;lu3nZ AWl0JAYdU6XJ7ap̛H l7wMfkqCVTG,vvn*@E[nF ]ixeK+oV@pՀl/VU(?"\:N_!`hH`8`Wڌ(<+m'6{ 3p=`ToqAQI0zKa$ HZyeZ#cdJm0o+ MӮɤZc\&_{L@ &ckk+~zA&S !Bv<UTȲ]6ԧzN)s$=q0ZVߺZNmSJ TaWzݡ W`+8),ҏ<+U]aTWЃ2|T/W_{Gf=#&zF׎v|T6߹KJ'SBBw=D{,D+1mxr kdrՍ6\W i[^:j_<º}apkf|n-bM}Hl\wDjIcWr4fG;@fa!]nZZT@uI/9 Ac]sHWË/ Q,@%lnYAf?_ݲ΅k\НjocNe^[`0$h h5W/3wh B7R-4oj|jJ qqXB↋w kImOÇp {\Q\o>`GI]Z|s_VabYݰ)H灞2B-ÑZ1267 @ҦiUdu-ñ\.=F&ƱR HZjj)@@BH X\z B|]WEBLær%ξnRWNfr l}fh?EIU6/Wj(Gn"mWzݡ K ),ҏM++Gn8b`fyw1/vGu^D}ܳ<0y?HuqЎf;R~ ToJ_)}p="=]MoX=l9YQƟjfRTGQUpJ5~A@]3Su,/Ҧ=8 ~siRK[n߀p}/ @Kan@y+UTn[V@ *΅kE!B|[Нjoz$ڲD6FXf> ~|$eQU+ZٷPQ`}HLZ|!^tZn9PWicnx%(٬q0m''J51%RVP.n`nT~c_VabnSVy~u-ah^"0k -kllRT64t\Gcܮ{'eY`X.L:\}J@jH0* v HZyeZ#cdJm0o+ MӮɤZc\&_{L@ &ckk+~zA&S !=yCgu]366[*!ZGaX̛k2 y^E&\䐮ZTa ҆Ⱥ ylh3 C94KЬX\G㦰/ߟ۰t jd+Eյ%+QhPHWEݤvYcn΄n_  ~@8̰?fҚuWرl@Ǽ Dt@9vLqgaonOuyB}|N6MV{ʫK4C_?ULw+ۥ-_4|~9)G䭆70q=sam/%8*tQ٬Pw.Dݭ]:9<аmC8/7EqXZa Ts޿L L nIa~mCkBҶ ˿zFI  l6Oul|Epa%dZP(cghX/` F\8W0*78y $%0D$-2B-ÑZ1267 @ҦiUdu-ñ\.=F&ƱR HZjj)@@BH 4\} B|Rw{ۦVVe]>}w{11WSy*U$ZFjȺ Ks #3A`}"pSZ~܆EA cp_|suىJgya 5x!H׎v|T ";궊Z &3TImkYdFZ}dM[>DU8 y` Z2Hfk/wG 7kUyՂ+T\@l`U(&MJOzV읙^1eB]C^ .N=tam/  T;$fs!nׁ7t'l-。W#$Յ I'r8y)&`c}nK+XGR`uɡR!}i[Ms^X#$橎վh=3t{6#`?J>}wb O5j9%@!fpጓ0z\ q4>N@"H0* Fo v#$ $IXrHRLfJ i*d2麖X.I#PjIڊ_)^$-I5 !$@BHply^A|Rw{vSbUfKDV2ͦO#X?;+QT:Mj)a)xnI /j"heX@z2PZ.DY2,"u\;ѶqKAB{ HNbyHSBBwD{,4,2(B+Ci/MYIXK*K3WL O 랇Z8W`t ꪳI}{Εa}Ҧ=;38iu7@#X x0*&s@ًj{W }253w=qMܰ͂SBuiWw.ly0vWOuwe W!ȳ}-wB(hMXז%8 YdAqpcc^sf|!gvcr5Ffd}byn'm ;/2h#fVtH=^X+1H .4\⺁yu[!ƻ*viFuSõpoVf9J F ݭRuAmߧMeE>!c Fh|KB F\wC``Źw\Fe8R=F&FR Ht:|>Le8eR`8W $IKmR <H  ![y?zvP/_U|Q==mSJ} qײ"M9|AJe_YEIUmj[s! 2,}( jX_,B3)_,Հ5"EɡRB:jX4fP#Xq=(G"@yeA]mR 3Cn/T7i;<2/L*;h9rc;ײ\u#-1즭s!S]ˋ:|s;Ǽ D`pkfF,onOuyĂ}QFafpUboܖek(BzjEkM .N+RosvܰGtܗqh IDATmjUO!nZնRunM=ϟ~G$hPҋeܯMS(ZTۦ:)QQbh K`R7_}qXh"P[!`ZnS6RP^(~-wPTQ Ц j#MڎkA;>*υLb ^SXR}оyPz]w,DZq'XeV 2'U7js]-.-mRGW랇ZX vL Xn5ETgBxRK371;r8azĦ ZLH jnHke3a]$=VwA'mRi_z>p}-` H uB5sH 6*md^[`0|$O ү^"ݱ#DC֤?-/,ͳK*lR,ІѨa4,<\>  iC|vns:[PUѦF]Nʲ"#]uQ)u"$'e iq].jk (lnnƯ@/H6Nb>O&krT1267 @RTOB$H yQȲ]ԧzk&G&`4._VZ0|}΅tAMo(gP L<æa"0`yTJ 锡n| jd+Vw>+ůW=ˣ SіӑgF׎v|T6 GݙPUwrx HPw:o(γYdU65_S } 208M$]3Su6|Uu{q# 47@s $҄iS겥C_Z 0O#@#ݺgX#:Kb\R^@wH uB5moN;PMkLJWcyRsnGX 4Ћ #)T%n󻞳muKlZh'p H`H,<ձ[E;?1~AmߧMB Z/` F\8W0*78y $%0D$ ~g2B-ÑZ1267 @ҦiUdu-ñ\.=F&ƱR HZjj)@@BH 4\}^PnOgg>ZRs70,nk2Wt]}7@ $hP /AvFE09VZ6nPu ɒv jЀ;ö@Xꋋ-L .ðVU#ðm1RZn8HPK_V(oAJEVMjəzM/떻i3ugBV6|P|n8HP+`JiVشЗ"N٭ukn60lnR |](p]3S)66ETgj;4l38HWt 6`zXkx=4Q-5yPHfa<@4\A/nRPo5d\(n!Jϸ5{ojMO > ;_Z [bޭUۺ؆hлyxpqH _J5rl/w1'R $p.rZnP(sᆾ4dc[ oFk~I_j}A;{6n["d/>nD%l0u'0zW677n;vHL c}sPj085H;86W5fGagFHag= a3N${t`T:z ;rksC nm)s$= &`4GVW|R]V.̭SA +0npH? ;XժRB:˰ @@?/Gm)-Q_)ԾժI&zku}^MaN+iC]a赺zRsPΫc5=@:HP&j@l^ 2]6C_fZk ]-/SB9^pHfjйzհվ@iSݞ+e5yĴBjsp} $p|0ZYmm ({Qm/9 E۫^VWqt?Ю1ZZnW;ܲ `H VK-bͻrG!QǼ56-7cy>q V5n( R׷qH \Ts{ aϼ+ݓs,w2 \nt{t`T'9X3R$K: 8Z1267Atu< \`ߘ $IKmR P+@:pS !@<65ʲXJ ԧzteSH{80@\AE*rUTZ ԹN K&z _ y^]M$}CjB{*pMWtVw!~8jMwEJEVMtJ"nNm"TzT0.X`pH jNʊWLIJ!M }.jԽ^Wpm_2l<%{nhaWt`pr̗G>2v7Ďc j_Y:h3-?%y0@\AkM?)(T캀r0Pk> @3"V́Qݢ%׍%Ӧl:j؏۰XksTIYVÁu=@:Xb8St`T'9X3)Wtp@<3k (pMӮI] xF&Ƭ) HZjj:\={$pHY<@!@GH ~Ƅ` LԹ(qԪ `|HKPW p\ ,BkRX,n AH Ƃ @kҢn F @3mOc`  !${ YǟCj`H @ҦiU.sA#PjIcS$-I5@ͭ-p!8rHCwA[t0$<׾Xx` E#DjO (ZEO 0!FI PDkʹ!>q?:b !}7@ $IOtd2ؑt!{qpjE݂@j% \5..WK'VAhyT9b*\_V簋MuJX#uM5l0lhI@C1!F< ҊU+j`Zɦ4m 撫?JRQgkR6̡zmhvÞRZD};7X>}mVzT0}*m -ѾGlFE.aqdDWݪiy.&ï6%7wҺ@s]R5W7D;o9g-Zem^;7\}H-\Bn0ڶa"WG!xY[as"!YsP.<I,hu{"l,s,e0AEsjX"sN&?]]d3V4_Slt=ܹLʙ9LHg}I?7%@Gz;n0Ma46mV0e؏C1=3$8S5g!HK0jo̻J}R.mrlPt mQ]ƾRLl-wۭU]lfcr>èY|#ڞ$ùQ F%@Ћ(f@08Ym{%aJ=RREfyJw\ڴSg]lfgiiRJEe ۔\mMô J0=퀗{F'ƄJ_͛ UɍJxc|ZeǶg2ͻIM6?;U H]!4PE<&eڷw;~ Xeiw`ʇd2EcS mNs?w=`mj&``$yXfGM/'M Bj_wghk.a HnBt31Ƚh5^ݹY}jkkWk Q&$ x>$+i-đ$n  @BF<>=@BH !B$H  !$@BH !B$H  !$@BH !B$H  !$@BH !B$H  !$@BH !B$H  !$@BH !B$H  !$@BH !B$H  !$@BH !B$H  !$@BH !?6gcq6IHcΝ;7<#3gϞ-իf͚%>dm%%%n޼9Z L{O\vڵkѮSUUfIeI:rY .]dɒ1.@Ȝ4w0is=MݻWҳ>/o>ozժUE}7|ro?o&\MѣG7zKO8a&***ODO<)'L(si?… %п,2 .\ i޼yޫ}QI/_6`B̜9SG3_?kDcLWZ3Ϥ/v!y}?o@eeҥK|ر%K$40ӧO[P]~t?Aggg m]RJdx-Bz"IDATw_WX2]8rH `ɧ(q…{.@|$͝;ʕ+٪OGGnj3^@t@&?? 9iG˗-[$\(ZZZț6$͟?޼y.]\|+9;::O^\\LAUV^H?x!/++6&[̙3'í7nP @iXn={R߻w5k]gJrʃ\u]˲PQQ_  UΝ;pBV/?f" ݸqc̙%%% #a0hjjyz߿?y=f\I^Sf?\_ NٳgsZZZR~u&2Ƶk׼ךB!un@n  ټ и駟3Z!1m @mmm` % [^(HaSSS`pP@.9s]  @@pg7QSS!vρjv#1C%7 9jvH^$mILl%tƵxAw4p O$!iN - 485A^ntXo۶_?#n @rD0'!(v're.@iz r.ӫ ZC&rC(t')t"x  y0zk8H曐gW QzdZ3'a~B4_JtcRH)906Fz#c00z.0z2 ?SSS37]?rWnC455"\ \)HUpn1PȻ0#Fbp\'HW:s~/'qyraud ;b"/e<׮ ƠzرcV `ժUǎuM14ǜlj8TY { ض8m#\x#] 9vؘ)S\z޽n۶9B񢩩){ӧO/e w5iU< zl}gkkkD4:Ѩ5kz{ ٻHRc޴U,ɒHuunή:'}1Xջtt3fX٪ /)K>ع3_6.r/llc޺U%/P8{V.qP˗uul_G۷`kcj ZIe~o߾}Ǐ޽;Ϛ5k<1qGњFW̌o{8Ψ{?Q*EiFRɷ۶R$VK+˒rH?Inג\+RIYbMe\WMnVYVI+Yn,dEb1]nʗ'رWY)V/K ! ,KKQ7o~z7nlo>/J.\ׯ_0< ez )%,פL^}USNVWяכo%_%!=/G8gP2S :g$[L.3Т|~g=E%77>TЯ?={l'HzÇopw}_O_٧c=£4ͱ1QΈҼG3QI @ ٶc).'VϹ=H`)w;yGzsJ/X,-ޒnW>9)m{r+ew ˶mŒ +R^nKܾjE,|)544T\A*9.ikʒBE_GI+ɍ,K&" eŚO::έR[-ջIRH*(\r{aK_8NC 'mP:odIbA&Bq7JV8AלŚ8?;ԩr]ڥ7$[W[[_wޱ~7^ì0H/3e-l+Ǎ <{VQwQ\qI/=}tQQQOOb pc1@v6jiEiw/\PR{!3u(?C֭]wZ`o9"0 ,|愮Ok' IwQ3`dnJ2ض tYȪU 33C1(iUuc11m~cъU"pBeM7m[7m'&&&&&(s5h_omv#?rqɪ?iZ/5Sҧ}?>P||&Y`O 64,>2RĶn92@T(KYU!r {i~ݙvYVnAH3 IGnreԄ\6jWN?2:zԋ Q`Pk1&е]m҉[ݛG{soapR2xG|;яOeկCD:m6p_VV'iiے{hVh:>w<pC_W{u2?Yivvرc6Dł:fKqƑoÚEnڶv[_/73y<{k.t} OAȧ5d>zk'b+ H"9M "TQtHRF_ Il{Y= E?ʾ`X>XXtMe 9;O> YƷq=~2 >T:޹N(E@$:IV.Xmmb&74 8 QW }nFy.ܿU޼|&o@0jI+Z(GvU۳OBMq6i{8FlƍX,pfFF#!gQD6e\~lF9>Ħ-U?~zO?lJ[.}&}v~ 7pѣGcC6cEqH ^#)~r-^L[ָ?[c@HWS=+O=N^b؞=] (P;8芷lm:ЗP'GOJ[]ʕ-~Sou|ꓷݍs\,0m`PԲ]4G~}Ywګ$ njAa1eco, ##ꚚXիW+^?%p,LY%kSgyF{?-kR.>id?G37 nDUQqP.H5XJ!Y>P:ٗbn|~@%Np=i7֋J… bRrndBIL6;}*Aq%ܹ}G2̹vHLsf92Zors38ujʕsϡCߴ37+'n% f w܁f|{bfڅ*J`A5?~?s7wfݺu33A;sRuy+w7 X< U)i7MeIaBDQLR:uI/qm .&R3((2$4I,7ĠnѨYiOaoc5aXL]~|w( (M9JkJqN<5kiᅈL(P<( h'ҿտL0sb٬_6VT# MŷֹkYxCԒ7r|%66z{aswž}nX:`bY 8b^Ap;L1ŋkjjN:UUUb k.7+M3< U)R7`Ÿ=IaԻhq9FJ.@T<͎@bۆ`*3PvBMx0aL>Gʫ^8t.@ 4r0NzB^> ~ॗK. ij[DSCCLq3՘LfJP`{bO}B@lPp@,3 {&usv6?;2UMxH]ař3|Մo]ŧW|P(-[RoZ>OuVM {pkFjF3qd. Y5 m ֔ZvbJR\#b̿Ɠ'TUU-[l峅Yp@?[o~Ƃu$hÿ)'ҔmhҞo5o~fDQ:1o@li]*c3BKVI$IRGJk7vtf8NRޢ!j)l_8$_S FE`W  xH2_a {toB(\WWn---p\\ FO$ $zL = Gʆ dlկQH$(KIOjzV(c+2P`r?gO^׫뾇ymt-#UoZےiT>ژMqu|<'n_sq&'ﯳ;օiMT."O}/}^hmmqFe3.?55aG>7DL9xbE{5hχ$xUVUUZυr:1/%Ӏ9HT*$DB1 TXUղN&eir:pAtrG<28Lghv=e8E7n'ZZZ(h1N) (lG [&'  ܍D("Kdvo BW.mq?2ӣ*ӓe"!;iKj@ \nb1BmJV(_CB?z ko^y47gff.֞?~ٌEi53׋aj/}_mdtp^gf2 !jF_Bx@`#50WS\K2s`@f ]KojJ2$ʢ+L $ЮF&kH$2I !n\lJ2Ix7kׯb}\mz/xt׶ﯪ >+ Om7pm!ϟ>}z|nϟg+$xOd[jT(+.BH6@PsWPe.=w:ӂx1.?>dp?+*EK.n ?"k: 2zR]k5(SjؒϏW_Vn{,Y8("iڗw Booo L`ݻw_rҌD : 2{U]k]x?u>S%)aޥe R"_i"DJ3!L$l6U[Rotծ0TfG9/(RmAT"D xkk4TUU7ׅ FWZa Ƅ[Mks}CՎe-vꖡ$yaUpBG?6;קO.vKwKnGۻoT q&\i2Am]$Ri:vpSI,f?p*06Z)m,R}37æjBa9ac̟+(9'9=- :7<| >Ga|s.z)Y_=,,yΗkj+KWh T3c"2v˒SK}8Xx}11h=Ժ\SܸYC"$?>E$'{]nQE!Q@Q@Q@Q@Q@Q@r~(d0)yweʁ"} =k.yΗ\j=e%h֗Viټ^ #5.|3c'#wθIEHԉ!B!Y? ;ly}hz%q ޷EH)xs'9.hmb5XbUDLp*$bI(q =HL v33Mܛ/0#o54s$No,Tk A s0]|-xu4I+Y4K4\PGkG'O]|]".g(0hn/,]6i$hI. 1#$Ht{ ɦ/OpJhUwEpv(*?stQwk]?]-lr^kZ=LerPm\kѴBW[{7;ž[h2r&C+h޿GL͵I[L^hĪIoniRJGn2C81r"&?ޒ/E _y&x#u) &\`gq ;rʸ:($'Š(EP\m5m[]m4,qujDrH?^ "(G_5bjvګR͖)V,Y2K6zFlgk7 s$|AcYf14G1~P\7j(]34o|3 [/7Wv?f9敌Pm_3dys D*AszVpF^Y8rğƯ]vv7)#|(#`py5r݋Ke#, s]?k i4Үh[`@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Gqq 70DI$($ޤ=/SPb@NF>U9O((((((((( rjPŬily\#6V28zw\=W6Һ (((((((((*3<+p,bwFtʤ u POm֤~J`i@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@QPEPEPEPEPEPEPEPEP\+:ֺJi_ִQEQEQEQEQEQEQEQE&x8) ((((9hg_E(/xzeZߢ0>9i>D?s7#WAEs IZ''[6;BB.?^?_E $^.0>9hg_E(/xzeZߢ0>9hg_E(/xzeZߢ9 ]7,_~iqmkJwy nٸǓc}q/#VΙY4-`֦ڜ.^ &~ļtP<_@=2-l?ȵE`}s/"C̿[dcg_E/5[J]R [ n 26bPCC@1LkΫZiN4 ned1p O voşO"/xzeZߢ0>9hg_ErA>–0>9hg_E(/xzeZߢ9DMf_E[OI٭g򿵥ׅgc1篢0>9hg_E(/xzeZߢ0>9hg_E(/xzeZߢ0>9jkھm:t\5RfV(%L(:._GmN:ߊ+Z|:q_s?Uڑ;Zh}6V:nѣ`o5'Q–xmvc)=>U^бӌ5N;&gFNpReO7P)^3==v:~I&cB?3~ ?  h2:A,?@ _Kq38VO1lHs׷?58>޿5 )oxmoio[ž%ԭ?hieeAh_mΡ'z쯠Ik4N ~cX :?oKq®o?@$z5,)xM AIdl_cu_Pbt۰rQz@V޴~G|?Uc0h[oq}c72:Xٔ=K5{RInÏ(w/uxL}8˚_H,3=3ۆj '>;Nzw1 80v+NE'ץX G|*n郭[)?p.A#\H#'}i\ f POj?unc OW6Gy.oa B҆%x %OсW{L)ian$|s2y?89O4g$qo{L,c+n?OqWGxMs|-G oiچoYb^z ;Ai8cg—wM?q¹zm6B]Epe%(֘XBn$2s}=~T3 ۺo?C#Z2נA'ր*od]#n? rL:ɋUO^#^@ɹ s^1=,XI*KuClHdmĪ&x 7$}q4{LnPh S_4H<~#n_{LjG}siUz>\8I?:@ q]G[|7U9_{L$qoF~ӎQ׺^fl׺^{l$|$t3i7CEOڭ$*!e6z054GӮ鄁9*9'x Ilͬgy%.0w$I=jhC9؝FӜ.\c whtp.?Psh9~a]zM $TH$rhGL|Roi^o?YZ[Aa ^)m1+|Q€+oi!@7c#Z}[ޣMk?h/7~G?#osӞ֚[sNr4ka_­nr @qX^ծI5ϴ욼֐>xJ)F *pZS oi;o> ҆sx)0l~;V`C6<yr7$ZO$Cۡ Ŏ1Ӑب.#q%p,j \UVݓ<P]lB8 P|C~G+E[K [MFKXm"3cjn?;A jӵ%s]Bg8$$co F~IR趷:gpWG5=ԡ(Hf;yAitIKM<ΛQZ:387Q Vw4g?z /9>f9 c\&Eopn2A]/#Ry$bxgRWF5ךc#/А@bA[9 (4t fP d2h@'f*L-CqS4/?8LԜoTz_3~G}g \zyxKQ,VO,9u i^GLc/?Col\ց!@? j@7j $~tnzZؖVN3p#z]3q¬$ ?= iWL|7R{L TqoZڶ({{u,FV^&_k Ҥ(@bӡ]`r6iGm oWz=Οs%k©1HtĤz}iu%t~ֹ'O@?iI;6o8^ Mdo78HϦ oc `9>k;º\Mk*3p-L3qpQsӵs^ nrȷ is%jVb*d@`MtM۳XS# i?k|Vv='jKLMN?*<Zm7Dv) ֊Ұ!G8+ w6\jסr!bA6F&S wXj^Oo/vq A'NO!EoY QHaEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP|%hImJX_ZOHO0.3uy©MPX!|7]6sZ\RŰ1WW='^: *7ݜ4jrV4m&kytreqEW]Kɚkx!.iW Oswm7]Ա%ż!&x{1O2xi<z4snf[hb$BSTIQq4` ?rz'U5^?aӴk4ΛgXe9 ]|5"陎ɦ%(۞YfOW g8MNeϋo.˺o)е2O[i@\mdFOv*3ZjWlh0K.,4kVBvc9@aNͳ&vTrwsO@=z RcH8*$nX=8'ޡJ>fdĒN*n2|t4,mZ].kߴ6b5 ,>f>uCq;?:xRX7Pꄆ;?Mo|1r̒oWebW'<s[@Њ]-o!7SOLEtqi1m=nVHlsv)C?rxQ Yf^7_A?@}+Ğh%1Ui H0]&MQ yy3px4K'̓]3eJHR?\uC헶q+y@Iiz.hiv\(*Kk@c ӽsÚL6/BfiP((d U$s>bۛ=&YXi:~=‹x# ê@85澵FЪNca< ?hZE H e/0Ϙf$`;譥/6X2D, AQR'&oaYe|ap1I $i$ޯmHuo<l1CkVEÐ$8\=Goqb4ETD@ [:.jrg9?ʭKOoDn7o, ]L0+ڝ]xu2M*MVߙ,Vb*F!'=ktr=:U7Uq,-y4VƬGxI-in+Wgmg #uCGdq1խK$vRIPyz`h>Sv5ꚤr@[G-#Kzv9a1zڜ8~dhcl3I*0 lkq{64[mJD{{ !ȍSp5[ U\.r`'97+(Q(}cHc W4ROq5ֱxQ՘OB}(F;J/5)4vE"WH B˺Mɦx{M[±ӑ=kSr0A9jٞK9n.$!TqOO3A ʊ xdUGR<ˋ@Ixe&-ٷ3S 'Ɏc .Z KGqn1执V/Ҍ)r=dG]!skeۑ@@R3q At'6Wi7i$ {iЧN Z;OG?=8ArAOܟ*9yzҨĄGv: ɿhF I1rNݮakGs?[15e]FǕ]_bFw$[n?`H٫Cz]Mhd 1`r63짵a>C ggicy 7J(1rN3wi}ݽfIaܥ{ cZivjirvzV>dך‹M u@Uy_L#g ig3~('ʀV^*聙?TUiHOV7QA`:_jdCp/`v"B8=d׆j{N& 0 Osj3G|9p.ei oG*X4k[ys癭?UEya WbXI crH-5xgQ6KK):õ )`:B~un54oF1r_y)rae}jmE s$-$dgj7ΊY`*[ndwu|7ũ 3Z) ςWO8ovTvgZ˥RD2VW r688 v*sGԖqw?$p8˺;;lVPU@˴v*Ԍ M1-嵒Lšg*nÓWFaj_-2%[Ep`d7dʛƒ@ I xv-7HXye_m,;iJē3ʻߦOSy|ÏqNܣ|ox{M(Q+98bA9=uڴp14SpAU.M&<$pǯYUAbI'=]BCzx&YCc_JjMlLnx}xJ#/S$6 8$W_BFl*;lg4:.|ɝIB!PYecOoGT R&bLXVɫ hF cWY_+ެ d}*Q͸6 ' drFqiI$R,wIqf Oަ[jݺe#PSxPk"úEn_1<4YJm2J#946P^Syu&=ejWzdYjWl91Ib͎霨t}I06HchZKO5WwRFX9c NxMtKf [݁,1NߘJqMn[z\v*,SVCuІg@=?rIF,6#BePG*tG^zU2*o.xn ]`r3׵E&>)Vf}W9$ =M⫛PN2:eq e%7>8Ͽ_A..6:]iLゟ*d:=iKc6}&(ehx*ܷ`66l>4 3!>Gwe`3IBM0)9@$:.mRE4Hw" 99$zRf**PI9 zy;2) q #GY{;;]j̥C+ l7pY^FϏ"M]t4i[>. FoW@&}a?UAsk-մXFز:gxgV$f SIU3%NFIi"ryd&V5 Rs[Mg+־|H),ꤌwg Ip X FU Ia\k_[<ӉbVw&o=^ 8!m6{@]k\?1Kc?ox߬B?+~삊(QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE9.XтOyux 6vyr{(S9gahnFOq\'acvʝkm_O6ڕ-j[>Sd<{Wndz2^70մ]Y[!3:*C*T0Iuhoo.2m7'ڛe[@%F9%䒓G㊂OT{t{AB͑#⸍wKy V2Ij\\(ibUIOͱB{(; !6 Hu԰mo$&Y&f(be5jM#Y:B#*njR@[H"[b1,w<>\dpx M>ԗO墐11 9ш`|FjMOķwzZHn"d&Y͹*8!cjL}&ɠGܻHKH~bF9n(д c+!o9G#PK-_Rqodby&y~ck)+OZl4;^*l!Ƙ-UWHA@5?%:S}Gi7Osd})i7W̫\\$'k$NIYpH90)*][]K-nmy&($ehcIg.;bi|Ű[2Mlg(ZW ;0 yf :˜bi|(>#LmzT$uTw-/&&<@$Q_rG\RH.:c3l\G0?+4? mTI٬x/aY0*|Yg'|Wp5)ztc,gp8 WomB"9)\Hq R}jMshIB0Kct_ -c -(9mj}n (\fk(̙%S;@>t-ӍJ}&vvPsD-v]mpʬ|BT2/EVI=jk^Ԑی7t-YbtKUinv0cj0s۸O44kB#2E yd8gHzON4oKm,1؜J$hC2l S܅0\(jx;H`ٱ ^̱699zm,F]^!@X1X001Ӏ tM{Nנ yA_h#xeN:*y'5m:ⴷ{aUs2© 2ڣ1u$̀>x =V$fHP\Α$Cne1 ׁ g4ssyi ]\[L]T37}sVǓi|ghlkj$\Җc=x²lH(fYI 0FI'rox]R$GR(ngeN=jIT*ȷ48"wI<<S%I(>-27t?&鿹 cPsq\սam:L㼷:eɜ,jL#oYR&0_;1J.ewuz[[M5ժ]+H[t#yT+;r|p毨qhXGvAp{I`ز3b]`U\MlxwRńw2CMĐȈ ђ[cr |ۀV"%k5ItĦe䞄g<洴+{XGI'y^Apd291crN5 1#Lz*>~E9둜ny}t? dcNci<=H. {V24ӎh5;o٤2Ҕ[84n6FҼ,Bw^'4翷U$@ШfpZ?9ޡA#oYZ_MwR3-}3 X^T.0 xsH)bkeByM^I'j'f# zl%4gt vʂ!f<}5=2`Ei&{#xڵwO<P =_@7.1| 7M<P' +h/_[ú||/kl֝<V5 ]@Ivqg+'W5 .FF-y$>[0?)8y뎴Ko6}~i]]٢4`«D6I#nOyxgGӵMCP+o>U-w1>٨;JkD( HwA؉'!;~s =UyGON7?F SxTsFV0JVm[$?CN7M ($GBC)1nMr{[F0<(~RrQvv@bv5Dv HK#H%7 Mݿ`+Q{3UU8!C DB jo¬Rs}R(J]8ny}B8RBs\Y,m/1X[ vqwp1tI1'J˶ll峵ޑ*/e%s9Ss\4)E87h%6tY7d3Z\a]I*A0˒@=6LKi"Hb$bdw}N:P-11Fc|@shWSp(>:RPK8FBcGE7M<Qo€#VKy> O6ӱ\R$@9s\s؄E0G!S, cE( Tc6H%Dddf`AL[3[̦/4Mtu#81T 3vA$+W%Ӯk{Xވ$d\+%N%c2OUw i<6?ny}t?cNܕvUԴEq دnEeRLm'{pE9c]hDDCs.2}fɡYK}[lg*̊15ddur_a׿+5|Qa׿+L/0Ɨ&< Aρt6l!t? LIYQR0(((((((((((((((((((((((ʾ a볒T>{)"+2E !}J+F}{wiai-: 9$3/7;MH5THHʳ 5]X-ť]Ed 6W=89P~gD$˻0)-+AxWcO?o~ũM]wGu xK4kU줎1MJSJ9sc#[3*[,w ~}g*۱rNkg[(42%{ctBƱ whυn[iu! A# dVJ7/4Wλ1Ky4&qPV$4{{kl)pυ]Ng%nq^i/<6F[^@iNb#'0HO͠I&Z-Τ'Yn˙*WZqhs$Kl6H28OPkgFXK-{r$w@GHї8lqj{WIch#T27 /m:>;iuuR塚O0BL(o>Bt|\VV[k2g*%9 0dOBaVJ_[~DPl:1_"?4G}B=&kxg{]N]3&RW8l.y JHՏ.][Z41‡2C Wꩣ[+wu|$;&$2OcZKq(Pm#qy @li2ǧ٣h--nP;:x9r.qShhZ徯"E[A.}_i9%1jC$Xa[tq`ޭayM=iaGP{zgޱ g evpÀ &&GRKG汍Jv  5{+?P]>y'WW%ƒ#Iz2EsڻMS״]BhC*2o nRAck1z]X{%4i$EN RF9̽,: mH6bn@M7H,COz4mbѭtˋ&tGB$̬P?{n6+\xft6M7ʸ^iӬLV.i?LW@'h4BQM?fOobH|ŖC[o+j rYIlw¢n^9'#xLkWf:Ap~rʁAALkkJVv,t\~fH>'8_HkX{đ,kHcx o,cqB.U$mapt渵y+dJJ17 c[PT6},l{{v<*Q~wn8rzfͦuuk}!K2$o: 6_>^žvob9aZy,W4ۘ>VrNPGCA>mRe.&ao+Vyshi5Ʃ1* v$)8zG4@"3(r6u9ִ}_T̷cJkVcَaAN]ou%ѓRl#d)CgԼ}2Z\]Bl4rJyƻ._>q#o@+nOvypVc/>6~Rc+͑8ntɥQ m?; D͹YG?T(jq!j ٍ뺺(b2\ HLsJ4bB @:^KoC]NH#*όWSY:8[oEr9R0Gdt$M7rLmG!O1HyR1p:T߭mtyaH-\`1RX`B?nK' ܵYÏc"0zypPxQm5VqDX+n[3[)Ғ8,,Yin #D @ A.j:vir64D":OUqp k;Y%^!}o<9<?7脋Yy `:sO^k?MhVڳAC$qoˁs]ÓqkEGO"?4|⡱6[%՟Vx" #I 9,~aʻ?%w%᷑I,a=;=ӹQR-> Zh&d!bo( ڎ+BOZ_i-ůXZ]j"*$+Nhium؊A;ݔe\3`skxM:/tm!D#Q~^>8P쎈#-֫uM=ԊUB!8`@hrRM4Ju28}KF ֫{r^\i7Η %<_m$pJNNtcb1cc(vmaT5]bC38ddgEבߢ֑g 2qw!NsKE{\:h$ؑ6#qr?tk^ Os,47e gx57BM4 O]Yij?%w'_f$T~B}@ƀ Dѱ`0J1Sb#+Ӯ=%\bU226ђx'켥9f7BۋdPdrC֥Ih<9oskZuD+Lhe/hY:e:pܤoD䣣aU5'_kbfۓl3Qt/}'$u2o_9v{2N#eg-'>N?q>⦝GVŨIz-dX]rgv`1-IeZϯjZ[ZO y8;Hb#'sK'Y]PXFtnl{ XD;@#@t] K*K.2ى?ku;ѮZP+o,H;Qj&N7c.ZkhW2@&2Fo\AP)}_?H`CԿƀ$/vV}B5A6J-G˰G%I,lȏJsC'T8\c3kѧ{4c6QG%ưeeЮ0% 7d9q^#m+d9rĀKmgg}Z8m *򿢂èn'_O4gK\aY$f $Z3h v#瑹sQ/gi'?7=~c@g?ҵ->kM[r&H0y?.Xb2! 1>U0XH'$7s0w݂Tr0I:HC$,QQ <)>3;MBᠵ1*&#̌s*XO@0&zƘW#qZq-=- 5W7T mxo5HE ѨXʶ{o CijO3%ʷ-qH@$p8\kYkoǨKmβ]ey<oL@PNfCM%ؕPX?͐ךZu4x존R+pd'qQNz};VfXO$=#dӵ_0/gjR6qGGƗOF?V4Ľ]o:I rvgn1v댞4 5AjE4 ,vITyc1F1=6v\R.V$l⥣h֒]Υ5坔`X;G6{0>S:4G"C2[d>k:=}Ķ֜,bbs|0ۜ-6=R(n<Dwkm yO>{Ԕm%֢#7gh#k?V`IEF!AпK/gh cpLN ) }ђONHX%̐NJTݽc)*7m ;V\ǧ[#ed$i v p9<wlҜt]J,.+[Fa H }쑒ktV>xx#w^D ૩P@r*{QL4!?hxNQ-2iu)V) nLJX.8e!\;ҵUfas ˉY㍉P @ݎz t&8H,MeI$>(~8mn]BP*9't o^{%GI^0FEr_k xz%'plC~A['plC~A[2QREPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP }}̜ ;]xS5wV1݃Ϋ 2W95:}oy򯿿}kc1Be*xwc'д4 "=6@ If,rA.fu5vYm$$  AyfLMoȊ$j;A${rzq1+{~I0a]!aTwbp5le#A!M 3جqH6V OZ]G2:Ee%KpРHEYrN1+{Ȧ)ULb3!RfVxy VYԞ ]${v?g,c<s~/-6#YnHYq7>Ь`P 2NKHM-ÈqEQep `~cx-K'iy5pIle~``' #UQE$o,#m sn <Ն/ 6I&2:ȚcK\e6Ri$sJv#*A9OkoÛVynΊ>ψ ]vp9svuzME3iFVy]9f<`rp!'~HF + X,W7b\[Brܟ KH,3-"Do* y}e^kywUg @֭hK s#< B ;s*3@W~ ws wyIf1>{{ /~pۥX0~ڣF};կ1ig){$ExA!>EإXfC 4cf-ȮN#ng屎0Olzj+yWmjpc `dsf9gױ\Sy -hA96(P:\ĺ̶*5؂HDff#|M[Xfx'}mF仍&{et'zI zonU=@=)D0޹8j^%J̲!Vmc(b#\Mh Z"7M 2pef#ۓ5I7+uytg" Xh3$'<\O:,Vd\~drc!2I0"ǹVu?麽\GsKtnm%v*eq<c{Bc%1ʍb]T6!tZ˧q- r"#$gIW,P3#WG <c:XDv`ınq!oBǮ£ RFHm襂cE#w.P,+^\K6[虳lӟ1*u-\5!֠}Gkq5]rr.pEtGvzoU! "N 9pGi1y[xxh[J1T>0 C8UɭAHuʳ609**|Q->y:ߎznu[R-Ɲ5^E~R1m`˳^18" KsƠ/5SUo9PxVma@'d/R ax9]|++HFe$!G,O$ho'GOƤ#xI7 8e >5j(vF*@u>#&gAp x'=4{HS A hԴhof-s Y3$lg`gϮ d[ PT%s׮s\Ϋ&-œ*6(b2 ºVw&t!JQjCvw,y3?5_5焟IEYOƏ5焟IEG__mxfn愦ᑂ08GjӬ-rR'KI' q~^226}6$$)gf`Y8$ƴ<~k5Ǹm>&bi;3{vmϯ5BSMIG?_'RQLϓ'Ny_ϭS8kM#qoWhXF95~zט}5zoi^J|"Q@&wusxf `;F=B^܈/.AGS a[qʥ% (@9$z|]4#cp\,['-jILo k7OD6E$%z8"6~k4y<$jJ(?1焟c ?5B#JeIFI ;XIi4Lw̗b>sUXdzR%;Q{v p!@cRO$ ҙmKIK_2Ph˃Aq(4Kyⵎdmrc;dJ_xI/#*gcͬ!Ѐq(X: 'GOƤ#xI?_(oRͮq{+IZk Z7}nO>V'GOƤ#_xIy$_jw#In % ̠ Gh5t4^Db'L*asF#>ؤn3^ s!&&UT;)eB3 没=VKmkZItY4iI]Hac&bc3<^ sB嬮QR;EsϖrI\~k ?5fKr.omapH8yڭNfG__xIԴP"#+a'P^Fv۟Bv2C Y$\mzFǿlفa9&yB^/߹uۂ|W,mqs7v.˖f pq}@f]Iuj.@!˶Y*]Œy#>WUFa1n'$Ӝ)+\h<$hxIԔU<$h_xIԔP~k ?5&lr, xSaA##A:A6Ż^CRF! >\ i941r[;$C$fr ' (G|%'X !}&b~h݂y+펟.+G?__xIԴSS ƩM`:Ŗ:MmТ]HP<h3p3{,S$2]*ǵ bЙ ީĶ (aEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPPWsCuPAu+}"g8]Av=nH/76Bžzt:]{KQ"F ps]?S:J>tΞHi']І#ՕLj NOjǥ[+O5Wow3wDWld*^OkZ]Ki4ցb7#9kةo&XWty[hıRbJ5$>)[v/+`S#- oNNKc4i#9[OwuKv~K:m>2Ǯ{hCr`2Gx'OEW c$G$+p?T׎~̼Y)o)vy%q2(I5Y4.gW5a3+#, ֢ٮ[I#qbHs(#=QZhn'W/qϽr ;{i 6V cM19$@dȫQԦf}#JTۤ%sami1meFS:fP+ۮiiP,:#".#Hw`ֲ{TM4Ҭ0me%I&Ha ͬs,]u#8y98Cj_۾ڝڷ=w+f޹+:fQnc}Ky%D @0;tQ"Gxm6hq;G'W^Ҟ&y[1GO+}F)vOi1Yºs5ٳAJ#/3QSG2%ċ2Z簝pޜ3YWŇnb6 2uY$Xci1Ox'(eTe+I!R~A! ~jE|E8jƟ?=_+?GM$OG߶ X_Mm%a`ukkr1V5 "òkBBqNVkwmP[qSoQ:vޣڬy'o Ety]~wQ秤΀tPl٬iiT@YhHQx?8]||2Gʝy9Anm]FpZ؜ 2Xx{f3?cMu;f3J$ls S^j6Ym+Kҟangފ FGC+`."J"QьpGW7IZ`JgEkt GǓkz捧pxr/`n;CشDQZU24L 8OR>,飖4fdY3&?L{KGX ~4Zkڇ]Ρ6wZd[]QcbX$E.o-VKBYЬJO+_tA xe"2oeMhU.2np2+2ս{FI._;`o;7a;qhxy5(7_o7d b2ڔWzeޠOzW'ݣnrvw:Seg&$`1ȫ:ө\]EuO|nRa80>`ISsZIZOy]D4Ln,2;Fة!&bogx/]f>U2 cXjR-{vBG OjF4Su2 .g8@nc\g;X5V⺖2|j3 w7Gb1iO" L-r6` TI?ft-̪̓aٸ^ipir@cXb%Ӎik*䎠=~ufGyt$4RFp]Cܜ)xMyRi.t"syeK0P ϩ[g5QGjLy fq靧.=oٓ$F1jŃ'O,{Zi7,6qȭM T8)_7pqĖqB 2(|g1o|z :ItH4kxգdTf dsZ--PlZq'sH7ayvwpj6HІ;r3{d@DU+Gq}R-Di _h5Hϗ[̀Cm۽4=W[܇mű$hvH,A a0q=|fm* ,{Lɖ`qG/W1g >^4:Wh쐟JŌrH80ULM6مwpbUAwUćq,X*0@k$A yz$e[ؾ3c2s<:ꯣimq,{qחK=GV`IEG_?Mov$=+-72jʖL<1e'Ԛ駐[A$$pƥ G$OYMiis+9 YIlɐ_ݐ<9&\ؠ6NI;m88 vv^k_Jkح.XeG$I߭Ay{zEj? ۬Y6)$/dSr*h[ݬIEE_?]Q|$y=k{F-{Ķ[oqo+Bvl͏-I$jːG_5JIu !8 ˍvFL,Ijr}$ 6" ԟ^ nhWsam# Le GoH'uY"5Ks ~U@ oOhDXبd$8#ℵuvl4lz̒d4lz$mkh!cy 2z7ⴶK=GUu)Sn߻d1o76 `i=أ]\\IE+! 0JqO-Y#U=~NrrN9K{#6r/YPv;E^/1=(K=GF;@OC:#ZSj?j}LZ]Ʋ+K 8-9;:gA?n4=n;a]R^+~EA2y dP0:b/?L5مu~(0׿f_K4"FDF*l skK_})--AI㐤YBvoPZ3/ n}=B'tٮQ&"2QPd^ٙ_S2 xni6w =Ֆ"s& !'q֡qpnmݢޛ0 g+l1r\w8Px[UVk7_Kk?4.0OC鑑幆dm|$vEc\fyWKm#ZKM\%DѾeSxy=yx2_Ef>uo<* ݉ W8\n`A@ͥϪi5Pđ.v}A _JLqJd}$XǙ4J L~P ݃6/\h5⼄Vr7nr|ϔ8ycú \<71Ip\>amm6 }{wVx}!6/-0@?s`u[FI[!.dkb,PT|1 e}[ &)ax! OrrM\6xEjzl6Cr+tx9?7NxKWÖеEK褓2+<.걌QG(Vwntpʱe8!@p7ylucUApCf -QJř`L`ާvo4EŽ!h2VǑ,,p9[kcB%ֵ-.Gh y T`eI-HܿȪYcSB;HA݇MqZqk[G}>Fl3=;2? m+M>Cm,<3$*NsrMun5 eI#)G%m8:$3t1gprշ eOR)@~1rdaUF/m,&1}Ilu5cqڟD}͉0Zu-pov>TP)˓~}c* .'w+2.]j  XxYR`p}5Xc*Wy X*gOq"Hy.Z}n`c,#n7(\XniEl')+ TR1 f! V[G5XkĞN2T 溟 ꯮gCdhK8~Q!U,'lv;W5g=M4hQkӰvFAPh=v3K &dRC*xbQYຊV` b*>ڀYA#[W蚞S4pƱ31Y:3$ _֤eݶ$zcw4*mV}ꄆO8xsZ6J6if#X˙ ͷpf8 ]lOS:ʡ9.&AOq\}Mskohg0ͼ 1h 89:d6iY l1#\yEp1@u+utdFΖD*@6*1Q[x^TF{m#d]w @]GSF񃼶[m-g̞|J\; :;&C.3$'0X;XFAovn+ xW8!ⶼ5Ϩ\pPS*QOG<}*J(?C=fɩr[CvHY9e`pA׽kV%ƥʰohhz2n1ReF.lDw00UP>\}A [j];i ѭm3:Y 7˹B=Zh{G} е ;h'F%|O%H;sz=N aN(D??TS$ox~ukԵKcuf" _0W%Xc8'sS^.l#٬vhAF~>u_04KGQu4y&kk{Ӽ,rY 06ykB}2Ւ\4!1ڡ@HN2G`o3IܪC#+:U0\d\6j.嵒4rD.I8ŒhG!B#} C<=>h9@{i׷!3jKMa @WGA%$4m<)0. <^VXB!ϩ8uj$='̶Уmi2Y?#:VGjR _Yifo@A  MO:\wLZu*<66|.A ŽIֺA=ss~seyu &!m$N0y!BC=IEGУhRQ@F]XX]z ia%̊JétS$pG?k^!ԭ4AZ%ȍ?km#=BP0'pklh~}*J(?C=Gq,r[Jv3!E*J:r8̏Gʙ'Hqko{hI%?3Ewb=z9&M77Kl7/,.lFW2g:pKk=vS-ʨ~aр z3[ Cl"|L+l*vF '0$VR՛ZT)rۅ_OMi}-f[ܸA$ۜ&prZԏhG!B"1N{Ê]]>I-?u$)dR8kOMy{}f$V, u>6QMt۶J`O#r֖e r@$' sVt,2_}Kuʬaxbzw=ҥKD7,gHpsM5qMɭMC=h{G} "?C=h{G} hYZVn5Geǜ ;5_Ogojd7Qwya-\ 3RQЋLr]5m7ʩ$`q<Xu^s5ވcS H$q+3MԏhG!B{LxW/?Okqݼ$w~DFd|zXN3ڸS}qO+FѤPx`# H@d8\zW%GI^0rI)DŰ׹7+L/0hc XC ߬M#~vAET(((((((((((((((((((((((_͍ߗ!QNkеaD[}{ء/i`sk gu;1|%v:^lOgz6ŃGNOu?S2ëR^+: ^isO#yܒ$O=jZE Kl$L>V]ZwVRXȩkI6$Bv}pmֺmF{~6kh> Ϲ$ 2x3QmjpNne"A12cepv8᪎L:mo%]EnqmFhp1oMӮ-ln`>ߤX^CI#$ZCq:xW0y OcJX=hfn ɥ\Cq52V0~wWy{b4>H4XCpd~pwppk"Kյ {it"Ia&*UdoC0N AZjwKN5[5=VR pvI{ipJ q@.lш8FV;vS3zBLX5] Hte@9sMZ-Gt `Auly/d PbFlaOn8 凅XV}Bۙ:U,UYYSG':/kV`K8ĒDFsf;w0z5ٿiL6]+\/Ðr+CL:]r,i+;qr:Ƌ=FQXJVUʷ{c$bW`1'簮MO ݮ\+)kp89Sch rz@\aq,7BKn%7ǯ0GV+-}ȻI*FH\qǼƾ5zEճ\HgSEwmb~g> rE׍Oz"Dm1mnN$!p~sVFbvp,3\) #d3 H95FuH&%r|Cbퟙ[z,fVh_KuL_g1HX4v@ wHƇ{ mñwۈDBO YN}He$wnG2`:KšޣcgӯifiAq/-]9N)#VޫxWcneeۧLʇh;K:S0,Q+u4.@p9#p8$AocQkICe1ˣ`Nr  +đIJEʤ~o?"Q#nYU Dc|JmR;qSF18v7@uͤb֖7 pgP@S5 -2(u{$GK mLmRki5It.nՄ ,.K%q98"滣_G/Y_C%esH"B*H`]S_jFijH#Ʋ+JT1˹iAV%]|ۘEԃ#&pˑfZ~ᥒM.FǺ8 mx]8cNj"jqηCfrxCle@8\@Ii͌S u VzmQʫY~Ozh:T i=yrT0cɯD]qkCv1F#w/n<˘.l۴c-r09`5hwkHSWe0@#-dEӌdciƍpf[4s KY 9`~bqҜ&bdOGudm +`Ny=2v[ϰL~˶0|ά94絲lZsnmbCgbUX}9#1ءsy(wyiG^_F7Z0#3KMasRkKfEm+,`r?*!$ d,G] p<WY\Ej-wcm`?|M|?-2TK87b8 ~e|G85 ۚmlmO`KB>D09 9<羍#35[;{l',f($q*,,|>%,bAsbCt[Kw5GTE4Z_m&7I+)r @n!Xx_UW[WH{g517mnw~| 2tvhS,v WB*Bx0굦/A֍fһ!`ɓN}뎵k=IZD"d3$\TdWUCCnP2m7NUvl9p@h\ݼ֓F#:~Zt}Y[I9>R(B |ye+BX:qhKawf!0G]ķ<>P q-5#ZyS$c`wet5Ab8̌?"n4ӧ_]), į*I+eׅ ww6QS;Fs'<Շ=E97Ghd&_0H>If$Ŀ+V%K{{$N*$ ۾`q$ :#~FF#ޱF05Km ;aɧb&cO]0 :ִ>a H3|-q!5Y&,V֏v5H-VC$6X6,07vq$E/c/cIEGuO7}:I}&,C.z`㑎j}kͽg5YJ<&GVl_sn(seE'/z͙H3,>^Je*rW[F3{e䳰wM zZIZ]D٩K2H ~R,rm NtBR;Iw2lylc-A 98^0Z)L1g,i0;~g~>kge,$l,Nz88: ׭wc)@<RS]w!# 5ը#"9?w9'[  m#73ϧfMg%滉tc' |;oq򁟓xWiCn99r}5Xf[شaqc>f䯸ڴnm^n/IաRX;) c+,Z{wp p:ni6YWllXLI'}8RI+_wsh(3#F"ld:hicT䟔<*dxkk9!6ב\4*@2=H3E)l8[E[x`h|%9 m9g'=M^}{iu/oc(Le=g#>ܥs412.Af!UF{ r=k-E^)]N/y`A` U[i !Pw{W'GᆽGٿa[Ϫ̒\ē+yϷsnL mk=Z/0߂NhGLV)LQQR0(((((((((((((((((((((((ȾƛvBʦ=‚MJ= n .lbC˷l0;lwm3?ڝn]`С@k?3-!;c9tOI7 &D7f5Kh-{<ʪ$ּQĺ߇"+[ ?Ma]sXC/l*njuKYYH*\yJdI.# .g\O8]Q'C 9q'Woqq{7L2^*n)Ry.<_$+,@wGCk6ł2&:֖1zuY9NF<{ lG+n[UҭU$44F y>~]K[k+8ˎ KaqܞI9'&3jWZ˧fd:|qMAQbII1ݓ *N㳦AgzV;Sǵ+sS2\ZqۨR=Y+G'?tw5p^UôI-6gwu}<m$S9Rs/P5UvZ5.XVc g6_yطfnbϮ{8?;Ag<~:FnHPtt$WJ$y4`ǯ5#3k|;ГOlG? l`rq΄).5˒peTxA݂x[K\Mf&4>p km {=7cӌQ΀g'|%>϶TR+OhHp-H qnF1ۯLsG8^uO>}?U/M bk2p- uߗz Xnp }pzXrIh\^x rc&=AS!c=I4Rd3n#KЁ,!# } PJSwHq#,T)# Iϳ߃X@ǿ) Ywo-x`GO<4sͿPFw(_ʁr'78WfH#nǪ|^  @S'<?Z"_헏.$8oa`>2I=_c=YAItow qF^⚕|1.~Qُw?Td$YϹ)s]̺ͥYK\޶Pyzlkqm(ݣ@=+&*ʏdh.ׯa&/>m #;}n5ۥZw~U\0 fbABeN\O}C5̐m_LL_ W^[./RKYc]*ǟWrI$ҕjF~[N)6vU)}i67MO3>`ej3\XCv̫s3K-[c@ӈt$0} զB+BSHG/<_-X l댜Ϩ6BhVθS/3mn:;.z2`S2-VHVU r;~{ʵq*(,9CSrsԏǧo)<_)9jtޔ ߠ/Q~/Rn77Loր1IΝZoaduv;0q-X !) .{Lis@yv?Q8LVڀ*wEP2J7K qo' ׵^ޣ8bx'Mc@~ҳyin`+, sq#=*[RVmmn eIm6ՙbDUCtVqЂ9&ߗmȿQ$)}?twm<E'm<韺(>Ln%?Nz@ ۂgU][9oo%im)4J 1变sU+m/qSԞ1M QɾAӑ {Gaanڍ%ۯ?~gVˋCϠl:T!:%7Mܒ&&|x:"[z[ sЭ0^ko4@V| #ߥ/; *FQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEy_DR2u#ɇ?翠'ߩ=k=Aי /?p)d=3QyOߕ @IʹBI d]:㠥^AGoʞ##ǜ1zoZRb8v$`o7rN Y8Li~OG5G#9t`$؋h~~SǵS*5~}{݀p94ie?*!kLoʞy'H;hUI.֑`0 w' l<yt@4-˼G Ґ;-`PX1~&1t=3ʓ(^@&9ż?^!s'ғɐh4?^Pda =)vɁԤsMWi@QsNeV ay?E\*HWp:%zj[.T݌:51!9QidgnJGSÑ `~C#`?eO/Cް.Or%gmwID]$XcOafψK'uDbue~JźDuB[W?v_At +; *FQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEp7AqwEhͻdpq ۑotT> M0GL=y^}Ox#q>%H#Lr.?OY')2?_S]uQGp8Cw? .|H\= ? qҏ 4ۑ.?OY')Aq { .(G w9et@eǿL.9뺢i>dp|@ˏOx# .(G {? .pGm ?.?OY')?ٗqŸN1sO .(G w? _S]uQGp8Aw? ?qžG.?>=O.?>q]wtQ',q]|@ˏ뻢i>dp@ˏOx#quE}?Ox'qҟ]uQGp8OS etžG.?>=O.?>q]wtQ',1 ˏ??N'qwE}?N'q { .(G {? .?q]wTQ',p|@ˏq]wtQ',?q]')2뻢i>dp@?N'qwE}?Ox#q { .(G { .SeuQGpO.?>q]wtQ',q]@ˏ뻢i>dp|@ˏq]wtQ',qtžO.?>=O.?>q]wtQ',~)X0nA5 ?OS euGp8OS .?>q ˏ뻢i>dp|@ˏ=2?OY')2??Ox#qwE}?N'qžG.?>=žG.?>q]wtQ',?q]')2?OY/).??Ox#wquE} { .q]wtQ',1 ?Ox'qwE}Ox# =\}]{I #=\}G)2?OY/).?C{ .(G {? .S euGp8_SetžG?>=žG?>=\}]{I #?e<.?OY')2??Ox# .(G {? .3ܐ}]{I #=\}@=?Yq]wtQ',?q]')2?OY/)2?OS euGp8uE}wи}~Z%GUV۵ 1븢Q;0*iuE-e'&KEf0((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((XDd;!N  c *&JA?t7Rqmw/aFqmw/JFIFxxC    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( k: Q@ |ɠJwO ( ( ( ( (m{WN ,&\FX#F1ހ6h;6Z 6$vF<݇YSʌ`K_&SpKl– E',~&Rj-/޳[33gwNzT=ŭ^j7A8ʍQ1G Ėc$kQXG\]둦me1N2x$2x E$$MF-Y\X{8#1Iҿf>al\\_[Dc\I*g'=HA{Tٚ찶X~ҐUu"PσU ~ΗaI v hN{}?ThF0=}(JX4m-fmG<+d ('=~4VGRl=69PO,&_v$s'nv̪Dq2-sf/q4,Cr.v9 sןv÷.,6k]kWh?#suN[k;n/H>b"BtV'oC[^6:;ެ55ۯc{Ub]ws@ {5XNr@ 4h mamQEax2u 翜HȓMXHpbWYOP(}_u7G5cxj9EECtc6{k8$?j*hc)agORy+Oz2I4Y\َ.ټ<G2md{T`Ӡ+y _æھs[].]Y ی  q/+afVh{ӥޝ˚].C/6g:*y?9zݮ2OG۵YeܟOҔvkĮˏ}o7G۵Yk4X՟MV̚Qr7SIocyJQv@ ?nka]qܞ҅$ȧjgékSYmC.oΟw_Kd_kB"dSF)}\e7Gu2GO\Gx]AifaXo%F[X Ras|_k2?O,4 ۝G:m܂Y 1\O^Zi? 鉩NYaygTP\)݁es?]'RdѨm3, :e7?kylj.^ gmլ$kvߒz>;}*nq؛4}\e7WI>EԵ[OaOn@ ?nsk;@5?NEK4 t4񺻓iNvچ>ݮgvyt plq_kq>[Z[PjTS!ޓ zy݁uXit}]X}o7WXI5O,4_ us$vک j\Z_=i^K[F2"19g9 M;_۵L?w8k44{+iWdX2 O8s~&S7:e7LS֤ WLXV;>>\4q]e7Gueupj2qQf\Ιe>~@.V`ΕF=˼pbBDa$g/.nntknټ !2m6=@ݩ]f۵i(n@ o7Wr})3OQ?8Ee=2k `Oې?ZRMwv_>ݮc'Luwqrq cߟCmH_ke?Em?cgCwq^\V^)],Rv@/ ?n.De*^?埩$Cwm!n@ ?n Iiy]"u2O~Yt~"8jOxi.%3yNvH[px=/ß4>ۮ2OlQ;SM/a=qz,`%h/?PX,-]۵Xit}]e7W Qf\Ιd1>߮d,}o7\w5KKN8Y.'Qy%H}<)';Bka 0Xk$@)+Lҳ)I9sNhg۵Yit}\e7WI8~x SEԵePO[uYiuۮ2Ovs_czo6em0?Mhd~mry?6m2>ۮ2O8(Ҟ)}\e"ye7O-u HdK7+4NQ0 en+03o #vL5rg.ROS֟C꽴O ?E)R>wsG2^{=[ՏqTjcgsxG_y֧NSInE@N~PĐqA}yc}6YLq#.ۉ#a;XdPJ7*3mf@/ ?Es>$񦯢^[[$nr #Va߆g#$D.1h #JcgmaF gg?-$XUմ՟«qח{QXQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@y  97?)myw\%aO>I+oE# ŧ&z17H|g챌z?W X qW=tmuXoeVX/ySՙL!P<oj}"$6zj'ē-Ȟ-^H5"@Vw_MUEG\#SQ7~&si`Y_kMX.uqey1ŎFGZvLeŏO7gkm帰G̈́mpH^H!(5[B&(㑁P '5c|?Fc=r-'\ ,o>X+"̓J鑚Mg~ŰHx;yU]WiwA3[_K]4ܼSLy2,TrH qyކǗu>HcZS}"E]}2|1ZՍ)X)9NհTl{b '/?]G]"=-f]%KMZlI/LmP<C[?z#~-s;\=QU$3 g/rt7oZK2_ʜAdl4uZGU\yIt;]p3_rj q)i+F[`_j%G$'(\ɵ?<&h GD ypݩ wG]"[EuH.5f \Y޵}ߒіMDV'vu>]HiDw_(kj e{[%mln$o>v2 *P Rp@z[9#W8MjGbm21Kp9l@m ڛ{y\0O7y1Xi65/u۱uInlØ]ud 8c>&z=O,lvPqd^UEGJxhLaօYiۨp|޸Ի.}.g_KÖ$#\;ZpœUk[ rIcfA1cܳEl'$"fxnK;tƱJRHĨ°\3AX~+%[8a!K{K#y2* m:j3ju;ye Ă0Bt pN2{ʂQ$q± * /uhBI?{5q]y2?٭j/? ]Hh/֍YU$GV鑑FƝcI,mn\J7E)*}",_ƴh c3ۓo po#!ˤ_rMEUGKG"&h {M=,᳴+hT$q(OϤ]s5E7ʺHj;›x mK٭j<mKrm"uhw>ƴ(fW_MPpP#Y1r%QWdzdr~EQqB*PoOlzGТqEwX&̮ݭj]dO.}"u>ƴ( w LQHnB1;GImOQҲ]f?w$kG*;˺HhϤ_(%72|LtN~jg 3|&GuO֍Ykd0mlb3#TMgbyؓԦ;.m֍(]Ϥ_5wfP$kZT?!EJ]EMkF,ov9g5J }MV{Hڬ { .6mѲ}"hE.hOm] H٣8P3ez=bv *yw_M.˯5E@d%s,I 朲)b077iY!hAij$ <٢PϤ_4.EօY Of*eO/?7jj,/?{Jխn# *Z٢ 1lt4;kf ͸/d5dtGzEѢ]Ϥ_5vd-o' e0﹭jo-Ev]gHoƓ˺>ƴhd^X>c5Մ22xoT_ qۉ.]ĸ"Uc (i03wc챜t>wc@K?5E.xektV=,5CKs> n?_' rt1T; )?LǝZbd{56׶i6O rpH~O@:zVSʷn#@YhGT[ Ԩ}3JUV`5m=]idww'9=knj/9_rs]Lߨ¸(!0 *Ǚomֵ|kw{Q\EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP^G;vuI ђWmjދJG=_=}#: ;PloĂyL7;ucSRnR+e#@np~|8y<'yoCa[#y;ҲJeFʁ;I0'OsޑEaP<? ڗMS.6'fb *Ül{ X].74q1hYf +#9Kz.lJЂrx :^ _Gm=lG9!~*0o%wgi$k>Uֺ̖qL7oy>B6j}QolVkdԴ)fPP D;H|gꆃb5 2?|in~bHvYSZtqH˰4@rs+\5Ηiz\\JK*^ UOKn={cܼrH3*T0s`kwY_ӑy\Lţ9`EI~iI2I%I#.bxɫ֫2Y$FGQ͎Hk5ksiexnⵒ18vA~dZԮ?W#wm,kW;o&Q&~X)nC;.4;BK;Xmic1hvH9e67g\CH/ʫ,:wڿG}jRZr<#h,P. ]?1 iYcn?*9Kso #H\4M)c&7CK+ue86z]oZF U ;z ECFj~[3VsnnA8ox/TQ<|O?\_go^)kx"U&PvNFےd9\ox/QSQ@xQSQ@xQSQ@%y?rxw<|jj| ?5j7<j( ) ݷjPǕso@ |_ISQ@xQSQ@x/QSQ@x/TPY?qRx/PbwlAs4萈&[mwrH$ʞ5#v@?_J]:H_*qϮM:B鎟+ic|ڢͨgXG$+0_/+#(9Q]4ĶDC 7% m$"K=.᧳Ӓ9 yj|ag;\\ $ mkWlݯr {`6hM}} Ews%'|1y( O+;xTgU-!{a;2[arMqwfi^i%k4e@@LmxElܥ^+tN)3hܺ3H'8q׆[xež%8H䰒G _;/t $Hʋ "EU<*P+/YP>:/ڴ:ޟ|.sӖFN2 :YkX}%C$@KNy8T pXH_mZo GP82NIj]|f{~0%+} }tϵ[G~sZ5+}cҸ_V:x~ $PŒ&%’ZL@[[_6c͵KUXH44imO /(W*ަ4fqu-}JqSIU*JT|Ηa>ʖp\ߦ4W sA_qȠvˌy a?ҥ?_\KV-lh;p-C0C8#wP=p2z(i^GwuF0(p8p  $c5n&ΘT??#ڸ]<+wQM[) e+o`cֻ{rL0I^?"Z5j7=p*r_*(5 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( OLi둍Wדx3?C]$սzŧ&zK 좒)Scn + K 94ԑ-lBq坛,$àj{ήA %%xu5#R_7Z[)h8T{'y:C$=:usLM&M-t~":<%>ws{?Î'e|M4^.Uj`Ѥ}ł2N@5u1_Lw>hr4fA9Y]uC=bۻn~nqkPY]KIVH(6' =6\寎=7O/vߺI*Súu\zT;.b0]|I1lNOʸ5kgeqi nALߙ,(^i,:Μy4,KMlT'1ŚfkmJ4FZ7.ISn8:lb I,#kx7 6 qب?>ݴ-lIF{vc3O vQ^'2Ӈ!6GV' αx~G*;~CɒI\{ B5 jwzE݌ns LsM5<+`&AiFg)*zsjoLo121UTH`OoxEc;IO69%t*bi:#nj`z&jakZ#;%Nr{wo f֯3FΏ9L>wv$/e9~y5.!yH%8`Q˃rʚ>Zߤwd܋0#o*#ʸci[o1Gw$Wq¶r$fDy]輹m&XdP|3,7wk,f;Aox֩wxHISQ@x֣|Z!?_FMECZy!S?[mѿ+}?_֩wuM@xQZ!?_֣|MECQLmaC?o|Z5+}j(ox֩ f+})lq/SZGZ5jFi7?ӁW̱EW1QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEWx@,l@\dɼ%sI]?ݫz/)U-?W3˔?w'*h&+8KLDܳ'@NԚϜtKKWgq&GpI8dxh+˭'\N}ktr0d pr:םgm3y`PEojziV2iKB,$GG~C+~x;>4'?{cZCIJ7`Ѥ3}+_/+#(9#TΞ? i\yffCH119#CE^wnnwpj6ی6Zֺ]JL= K { ք[n;:~IFHyyT>@A9TSo:],zL>]fRIKI%6BITJG|d.Win_n-x_XӕeyMlT Hm&oŸi$39b200x]jP_moH<ЩcK a ?y\cڭ#?[h?_֣|Z!?_֣|MEd[h֖{9ݷU U?*ff3pI'; ?_֮o5.,/%c1HGE\mu9<]UCFMECYWZ̷MA},$@;5\Nj4Y +h5t0͜~Q'f[o>kiGًBBJIHjga{%ݮs>[$&㹶‚y;@?7t~}Zr1[3'pHFf''BڿJ`^ɲ%YdrsyŔBגxT ?Ԗg66/j7<j(j7<j("G/bhϜ8Vܡ· 08<Vi$d_\on._ ѭ{vD e+o`cg,0r(ox/QSQ@x/QSQ@x/QSQ@%y?tp7T ?K55CFMECFMECPݼpbP<N>r9* ϓTox/TP; ?ox/TP; ?ox/TP; ?7*Cmd?_֣|Z!?_֣|Z!?_֣|Z*j|qRx/Pbw<?_֩w<?_֩w<+ĹW?=CsB j7<j(j7<j(j7<j(j[m?/h?_֣|Z!?_֣|Z!?_֣|Z*#Oڹuw<O5CFMECFMECQLmHp7ڭ3Aj7<?_֩w<?_֩w<?_֩ \£?ϱq ~#?_֣|Z!?_֤f OQq=i0 8#5_t9Ղ>כJ?ZڰWV ڷ_K2?=J(cP((((((((((((((((((((((((!KJ i%waU^QґYp~={ۼW+,)Hpz{(Đ[X2#{Ipdf@YpvY^)Ӽ-6١pnz+ZtUbpcUc"`ĩ5 Ρݮw@3UIJ]>Ȯx%?SY0I?TtϨgX^%FMfV`^VFQr-JqJ%BnWG}1.#7/j2^ߵqmj+o6ȦbISmt&HBUW)vFIjy)o#}= Yb 'f\OFl؊իjVv^|B3[Ln7]]^\>Y@ık) y:N0:By7]vRIMtP Mº\Qȋd冑ir9;Ӟ: eL\ %p Ux85mj}V&C,ex( 4r3wXҀ6Ěv-Iծ^#l3x;8~ujнAQpϦNN97ʟ|g.6-5ܴٜ,%?#|@ߋA}y1g߀gf qyD1;:z\ յԖjv5l/ (^CZg4Ĵdm|s@(6¸>;}*]YXۏfN{Tj7s[rQÀ܀fDysgd{Ww)h"!Ad(`Sǭv&,0rG@Z5j7rD'+G~!;x}Z襠oMU#:J$6PVuOkt|Eфe<^Ǜ۾LazWMQcx 8M| z?`}}?JXѰF)~Lʿ~gQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEWeeok#B*ϴc̓++ɼ?ۓtpY/)lA??ɝImbErr.7n1z٭eҭSH}%te|99=impڇ>cyѤ}+8_/+#9}k$TbuQ[L]8'1܆# N3Qh5C =>՝ۼӴ>ݻ~]8+PmgWcza6r*$a`K {qZ__Ew7R_6=o+G0^v8ygS4Jf.Y1lL =-M`Tv6s;~\N+4?DQ'Xӕ%5P1'Ժou"(\ۥď?Y̍n 0 }֙="mySgc}%pYXA$ɫY#m Ihَ" q+Ѯ$4y[ewFX+FXA[-RK3nіQ Ȭi8o#>  NHJOnsH v4^CkK7w[Ǔ #5k{1&F!~U' qkľ udt-ЩcK _MC!Z" m둜1#ڮXiiS}8|ȣͰl\gPo?|.j|+}Z( R|Zr,Q*}f,'''gV'Ӣo?0>펝kK6=/">ԁbZi9 M$p8^Ai#YOnoq,ȲHNQɠ-6`L$be.͒Z+}8i_(ێ{]mEZ-jԴ;-ZeNI\'HzuGlW1M{k[G,1mҪ9ۂ~Q׹A ߶q"rt#<x-kIqkb똪rB)c~ڥ?_Dx#SP[+}7rweI89nMy O;wcfiG =$Rgnswzt ,aq Thojڭ PU.f~K{mox֥?_UM)Re2nP /2鑎)]s|+}'+싏֥KߥQth2ܽM40IF1u4eZ"fECTbrO*OLVDZoB^eoZ_? wjwlY)RdOri yV.dWVKX^2E$U@q#8%\ x.fDKfWѬ떸XܩQjNJRppJtԵF<7dOjQ iU@~/Vtk _Lyoͻ.];xո`c]Z< Byk~J|Qx`/@3hO>SRQp lԺIP(Ϝ8Vܡp[ $c5r'ϟKjum?U.na 8Et,9&E_M0?(Mo-nm.A[zQtԻ+}Ϫ\ {+}?_U?'T(П}S[?_IZhO>Q?EW΃#;j|S{əan!jw;o|&j?G+o|&j?Gj6Sշ}*/ ? dדAu+q ox֪P'Q?EQ?EZSBO? ? . rO?˜E}NX(j7Q?EZ|UП}W5!X}1;hk_܌gǵIZFf.:QQ> _iZdw :}~\ ;+}7]+}w:Aw8fmɼ[J}̫wzQYQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@y/"?FI^^_h,y:q&sCڷґ_SAj:`3.|&лgw7?N Kq>!0wv=tm%oZlNcI1s7o3}ビn]>`;+;N1VϒGI1R$__XtTeܧ?h6Gg#i=mN/ƨmy>GPGLgF䓑G@ zi7vݴ.#R͇G-2+kT7HؖFUP#m?{punOdb:qaw!O-^5>.0nwqҲi]O4ˋ:|i 5ט|8P 8 =+']G1X 8-ʧi"%>ns_/ DqQѬfQ\] 󒅮7y  SXt6V?i5Y,+H弶V"^>Lp$#>[#H[}!4&TR[ySc'O#u>cVRꑟ"PEGiz?uoj4c΂IU".{39ݷi89VԮƙ=׉!FdolM7*m @hvM`1d|X䯗@rwbvZNg6 4bn7ۂ'ҵ<@ áFr䛒R<ß##U˩=H1vRK'Dtv@IN2p )9L~T*)#x-n{?(mz JLCSQ!E`0} M!K!E`0} O!FG@Ah5>GYnQd>CSQ!E`0} O!FoG@Ah5>G&G@Ch5>GYnQd#nQd>JuBB 4`TnG@Ah[z?(o( CFO!Fm@Ah[z?(o0} >>G&m@Ck/X߄{o$ޏ wco{yar\+YJOFO1@szΝ$v)@'`@Ac;gpPxqPYu[_1sussc n77&XёNc?M~q56@&:{QKI߸,1ؿ?b?&  TcS!\qgs~i>U'?GQ7QxT_ʤ?"eGGQ`#_ʤ8@tM>?GQ|`#_ʤ8Gߨ|GF>IQ@_ʌ}*E'?S}*@ߨ<?7?"(QO>\M/߸|GF>Iir^n?EGF>IxQ}G(߸_ Wڗs~(6?MGSdqj@LsUla;h|D-$ǘ:*PsJw:4]hU*pקW ${Pxڨ=ֆZk3kKu%yhoʎw=;s9V~3I.,X%)*څ,-4[5۷aen9Z6L+w[?+>"2 p53ׯ+}kwzQYQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@y|G0?$-fKOxŋ-OI˞N>ֻSZ0Wv[՚U :NhD6:H;R49n6r',ޒtuH$C.Fp oU_.s;78;a>(U$|ֱ@.1ߎr+bԾk2ΊAO>tHbdrc [PEv$pHxǨU#5#$ |\vs =jizE+h5?e';zO0}e:77\,u"X ,EO1_smOu99Ni2}kRoWg(/}a2ΧqI\,u"X ,E/:2kRoWg(Ϲ}=?_yg4gW/ _?: ?G~/}a2΢:\,u"?: ?G1_smOu;sxuoWg(Q _SeEoWg)?c7}C>0}QErAY?c7gܾڟ/I$O%sAYOX ,E/_SeEoWg)c7gԾڟ/_?: ?G,u"_SeEoWg)c7gԾڟ/_?: ?G,u"_SeEoWg)c7gԾڟ/_?: ?G,u"_SeEoWg)c7gԾڟ/_?: ?G,u"_SeEoWg)c7gԾڟ/_?: ?G,u"_SeEoWg)c7gԾڟ/_?: ?G,u"_SeEoWg)c7gԾڟ/_?: ?G,u"_SeEoWg)c7gԾڟ/_?: ?G,u"_SeEoWg)c7gԾڟ/_?: ?G,u"_SeEoWg)?c7gԾڟ/)rGC\,u"X ,E?bܾڟ/I'4oWg)?c7}C>0}QErAY?c7_smOuW1 _QR{j̾󨢹X ,EAY?_smOun8|ƙ\,2`A>0}ORtgW&)ۋ,+}Ka2ΔX MQ  7K/Se=gGMQ _?>1{j̾󧢹X I?c3&(ϩ}~ڟ/c??:?o"X $E/Se=gGMQ  7G~/}Ka2Ξdt_\,t$E8|Ibqo"bܾ?mOtvc??: 7G,x$E/_2αy@sm+@^=m')Ar?_yԱc3루?7,.×2Β?c3&(R?_y?tw?5ͧĿ*^{oB?L _Se=>1W??:?o"|=zMQR{j̾Lk> f'tuIOY $EPϩ}^ڟ/maϭDzw5̧į?1j̾-D^L*(fkͼs;_>͐HU_6g rT7/o6([]xٷfê!g;4s 8.9N +=eV%&~gEtQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@b \Kq?4f$1;I+I5E5&``>ϋ Э/&d`/OGW?_[SfF!_D|_MxK}5E0 ' h#_+/(gGW?_G!_D|_MoQG?,B<%B? ' kz=d`/OGW?_[Qg # Я/&B<%Bޢk?xY?xK}4/O{Y3#_+/ Я/&F!_D|_MxK}5E0 ' h#_+/(gGW?_G!_D|_MoQG?,B<%B? ' kz=d`/OGW?_[Qg # Я/&B<%Bޢk?xY?xK}4/O{Y3#_+/ Я/&F!_D|_MxK}5E0 ' h#_+/(gGW?_G!_D|_MoQG?,B<%B? ' kz=d`/OGW?_[Qg # Я/&B<%Bޢk?xY?xK}4/O{Y3#_+/ Я/&F!_D|_MxK}5E0 ' h#_+/(gGW?_G!_D|_MoQG?,B<%B? ' kz=d`/OGW?_[Qg # Я/&B<%Bޢk?xY?xK}4/O{Y3#_+/ Я/&F!_D|_MxK}5E0 ' h#_+/(g?W?_G!_D|_MoQG00 ' h#_+/(gGW?_G!_D|_MoQG?,B<%B? ' kz=d`/OGW?_[Qg # Я/&B<%Bޢk?xY?xK}4/O{Y3#_+/ Я/&F!_D|_MxK}5E0 ' h#_+/(gGW?_G!_D|_MoQG?,B<%B? ' kz=d`/OGW?_[Qg # Я/&B<%Bޢk?xY?xK}4/O{Y3#_+/ Я/&F!_D|_MK}5E#_+/-%[0x5da EmQIԛݰ (aEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP7rDd@ /N  c *B5Sg7A?t4RqZB"KFlqq2!FiqZB"KFlJFIFxxC    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (ex (55-d}:VPUAx # =hQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@!8 qKE3}?4ݏ})h(((((((((((((((((((((((((((((((((((((Xa"j^8&EQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQET/rSj  #*>ž$-7F*J($csuS((((((((;q@ E#0Qf ( (Te|BE29SDh!P)QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQESb=O+?vqK1lmP15= U'ZV`(Z(Q@Q@Q@Q@Q@Q@Q@yQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@$iюc@(((((((((((((((64\ (~CRA" ES((((((((@< j1²hQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE#(u* fhd_fw5-Y`nٍ/}E 4yK}XyKjrѧNQE3ʏy)Q@#(a▊Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@FDY$,?e iR59o袘Q@Q@Q@Q@Q@Q@Q@Q@@e <s55 hAԴQN( O4PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPHTBih((((((/giP<RƟE+)}_?NU ?&v(((((((((((((((((JaYqcU6?Я~Gy=یR 1P+ֿ?/]+ \΄ul?GOW/<&??/\|:6?У͏z'+֗ĉ 6e?j?"G GOQ=- *_*E7KQ:6?У͏z'+[HTUCu6\ݓoo{"*RKQ:6?У͏z'+z,$$euw"<&9GOQ=- *_*E7KQ:6?У͏z'+֗ĉ 6e?j?"G GOQ=- *_*E7KQ:6?Ъܺv8*1?/Yڍ4y=OPy[M,=@gumx?{-ÚXH.!eGCj"G⨻A}?*d$rio m#xMRTجutW}-m.'dXك4@UiIԗE m#ğU9<+زJI~iw>{u],u4W)?U ߇|%ak%V񌼳]"r[yv_\.xOSZY |[uʿ^j"G,utW)<&??/O,utWy.+l~/E7KQ:+[HTUio ,utW)<&??/G8XSm#xMRT- *_*p\"G[HTUcOE7KQ<&9WErio m#xMRTs??/M hFI 35ܠ:wR m疍kl(ub 2kcm#xMRTWErio m#xMRTs??/G"G ]- *_*E7KQ:+[HTUio ,utW)<&??/G8XSm#xMRT- *_*p\"G iqXH#fSx G8X쨮Sm#xMRT- *_*p\"G[HTUc=F<[\^pQ\"G[HTUcOE7KQ<&9WEqYoY37gh@.ܴSdm:FzQ;+[HTUio ,utW)<&2B2Lޅ;Ҋ+M2TaXro c3?h@ LUVܛd3h@K-#\С`u-Ԓ?7QfEy&???7QfEy&?wDYkPIZUR>4{D+[HTUio ~s[]- *_*5hg[ݦ ( Eyw_Z ׬ ѵ+kƐ_4X$c=ގ`/i2=: }sv1Oj>?j׳~aB13 Л5' (B((((((((((((((FmY"E}h:f8䚽B-|$s,U,B-?u\_Y֏ܪ@b`N Oe?YhYG[4fj6kZ&2KKԷἨ Ƭi6|,[m*ZՅIuxR*en_JѶ·Ih!Yx۟Ua򝼏Ʊ#mq/.^[H*lCnRîBkKB-m_"[B-?,0?u\_Y֏ܪ@b`N Oe?YhYG[4f}^MB?M`RPt|TscB- C[W^EnF`"?p:P~AѯtStx-u/q,PI)$māv5YzC5?]{&|T8@&,EVв?Ə /i 5F}*P3$ShY@h_oGe?YJ~Bw[Zul@ϭt_oGfejo9ԾylN$yUX}2 Fn,o6V=ViA.֖4?x~ld 88i}ڄڻ]rUŒ⵿,:h_oGe?n#Vk>[LI, 4Uo /hв?ƀ,U,B-EVв?Ə /h[B-?, 4Uo /hв?ƀ,U,B-T5j_/jo /j+>{i/a 4mr8ZC9K{;[v2\z@ WMớ 7WyDqI.z( k 驥7(ҡDRl 9_ب]ۀ8HVr]_BVIvYhYG[5h_oGe?YhYG[4fe?_oG*[4hY@h_oGe?Yڇn#G[5*P3$@Uo /hв?ƀ,U,B-5y5*X6oiKBQzqƺ:]JXvVzѦֱ=*P[ki !1HwMbd7$Pߌ ]O-zS_ ^`EVв?Ə /ifj /_oG֏ܪ@b`N hQU,B-EVв?Ə /hqi&Gk6eG(`, { u_oGvmkps~Q]'2^6xZ:?GٵyLږ66c-ϻ;Lv[B-?, 4Uo /hв?ƀ,U,B-,7vCjYw֋6C ], 4Uo /hв?ƀ,U,B-nG۾*ݠk{--Qy&p;\ԖWgǯ>aY2Ja1np1Wk=+V{yΣ[bMݴ$89ʰ rN4-MKb]GP1xʂH\z_^ [B-?,*[4hY@jkG[5@n'͌H:RhBe?_oG*[4hY@mڼ_JhBQYzE!uS1U${Vgwg U]` mߜFoi |mѾtRy)ö21֟wO_f[B-?,2S?ߏCZ[5SS68d'zSĄ+Tt Y?t Y%]U/VƏ/VƎIveBGtY-ΫnG01 ; fl49+Y^l4l4%9rUUo_v9*?/VƠtV#v]̤J+'%h_oGe?xqfXJF9'ҪhYRN>hE#/ PQzp,FdUvmܪą$ulO#w`@Ÿi,oG㗓S3˧fS( `c==OyGZzuڵf=Dr@+:((((((((((((((FmQ!?/?௟̟L&^nʃMjܠ5|G\Ee*+ ,~G?:O ۯ՝c\F\]]Z(2Jd X\ڇn#T|XUΫ\La2(1l.H`p*&h^"R.4٬FYZ&捸6ee##8ykxsPbբm.| T/ w;-;IڷcX2]1G ?t VMDֶ5GLխd{]mdrˌ6=yuÞ |Mw{mcy^@x(xGhƙaai=6wbT%V v4i`ټIgk %ytb'Hn bG4҈6eVp9;x̿.ORZZ| 6У!#ubCJ񙢇NPu#ϵ>o[O=J ̶$ѹF#ynm6bi6wt;yZrTܡIQ7s@ڏ/{е?oEO+pFTlp;'jy]$FY = g_ǮaO=rIs _VXF/r&آVpCMa/OeSA-6?IPɋL i$L奐E 1!y&DQԟI j{&Fo:Xzoq<2 E6cdϫ:}4P0s4֮~C#i&V 2"ΛO$۲TܡIQ7sEP{&FuGi֟Z`\+&Fog;m;J5(2wC@#vGq m&{^]Aus>9h oMόz>>w5q}V7ҽĭ&%mr7W Z`z^_+$us\izݼXk[#62$T$&)OaiGkZkqJl]GV.7[XBrϠ“Va2ULO?6:N?SN[[Ak,źٚhP@ Q=*{++]\$S(8@A8G^CX-c m.[) l$v)ݰ/%B1Uah~ͦZgΐ ef;l175b>74VZ42TϨLm]#[ dj6~́9s\\Bdc;>SY^%uƈ[o ʓs峻А ++ WiY:-6;kO&EUyjV zI8.J<uenں]Σ\u7g4S%>t4n$r#b{d`;Z\FW\Ǡ.5D/t.T2@2& NTpsVqZi1V}"oEoF0"Ϳr7(Rvqz,7x].k\_B%Սwq+Iat[|vQԧ4W]x[:[jVkt2[T瓌g'5>m>iiz=؈27@b D/-?R\7my^A?ɿ 2ܭFNJv *#U%ga'urhvi=ȖGABCw'$ >%KQ42K %q$/xKUpl2A$cX$ϫޛg.IVdas,L#r'`K__B_֊miiz=؈27@b D/-?S5Wu˘/,^Yƙ<ʃBկމ]W [kKI|[Q$MFvR կ%GƖ77:"}JK$lVY6 U+cF&.xry"p#.mԌI/v45{}{HRIRmY@ 0NpH=k-+S%ՕCs{jw:Ir>`ݜcԴHȣxʹϢ4e8z˷iM5ir^<ǯQE0~/! y[tvF.$XxHi,R5G #9Xj_-e_JrJou{&@oJ6vk > K* 0gߚ^R`Η=k;6mюH  A%dd3C[-r0]=ΣS,i\)'i%fk2S֗=u{{fK%جM#0H1 W;U>aj "c9?(GcEeOo?)Ukn4zn!CXY #oEd֥Ɲ^hR\j+m#>-!MshEWtQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@>,b֌CqM@fLq}GW(E^]O|We+[io< 6V 85utxm 澼䌒HX+.[j_ kRkhR)IMTJc^WKOFYlPbaSj^i%i1'FʖTFF/5%K4jTOňphv0hWVǦw X"E ˷qUaCЬ4"6,Ix Hfc} 35[D-LJI1&I4W6JInMI?: du^M1>b6ȒHd ŘA &8h[ê>Qk "Vrz5ݶ! Mq+GM[C]Y6T]=bqudh_~y'[R]կt} .o]L}2mLZ@?(chҺV_h y杴4b)d)g vJx㻲g)46vzpU[c]uVA:|I*,y w]Ro5siQ?'9oO C9y!cbɾ7dbT${Ե;=&^cpE N,{ m&PbnIL?ާ]*^mw"FЂ"5bK%I)Hf'껝YAg5RBhk)-':ѕRǵ,ufwQcC"TSoi`_+A g  um)KRR1%)pg99m|Wuw󠮗50M<")ع|ǧ$ZȹgoKg*:C<=0F1R^hFxo/3kutPf}#ns1k׷7&y\M܂;ݣs W 7s뺎h?𦔨^C<̛.])\t_ჭ\HG%94⫔.d_@o& ycVb@Bn`A$灎jm+Z|C{mVL] }c-fB% 'GKczy 6(17$T` %E(岺-\]c[Χ @F64ExUkw:VX&MFLd_)+0r{ֶ{~n*i~eǘ-` 靤g]hM7~So-/|cRp8xP5~P($ m'nH?MyWQ[gg*79$vdcE6mPd , w|q1-$}Z -qGYҹ x]h @CK wdqp8ֽhRZYii.0W8$~FiiZMqo*8L @ZD?UrZAaITUNvX;PV*A[6#[Pt`!sc;|['ؿ?>/X"#4w60:{QxopBqk"ozV`F9s#e,63H>o]gi2rJ`qA~qW܋u 2>18Iu_MԗGמYK-ŕhteg|!:GJsj"doʹ@IU#*:]/{~aYt KbsPĬzd#&E`ME`Lr0rN:\֍kG>, ׮{-Sƺc&ԓE3BӤf$bJt$=;~!zOkk7o3;qץ>M7OUT@Իha2`>r:]2f#'8dm_=?W[3hZL ;1> =6[I $Da/L8kQŖ}Q/?u[Kr7`sCN<_j$b ܴ8't$nBrpA8]zu.Xai[$X6HRv-G>K&'`}91Ѡĸ9LsJ$} Z#Ef$`dҩ_A OxWtie37jnHRVM~IuiE$+i\6rN|=ݿA#Z /MN8aXsuD!gKo؏xLnyQ%΢1]hc!EQ%+ 54Ѣ.gfIylvD t&CcϜT}_O*? ]^Z֧T7pd튧sMP'(txY/ټg b}\c&7+dcoM%94D?UeM ;vD4vN3SbyxC~Do)( '4/G%94-+W֬ՄHôn7GSVF@5R0k-vo Ie(R$%94D?UfAQ[1m"(نÚ<+}}$kj'mex|gcHP>s@"h|ϜUִ-BdjX 5\Y'4x5eeb$gp1/}/>/G%94⫞|uh]͍\q1L܊icKӮ.\^Ah'y>yA #G}_y?>/Y^--,.̋P <| U$3V4wNՅ&u&xPr|ʎ@ZD?Uh|5[=OIT峚?678.Hsێ{W-iZj:({kx?nbD~&TyλϜT}_O*[xHSAȻ"GC՟}}6?j]:(J2q<&Wi#ϜUm&PbnIL?ެ|i/Nkqy-.#NEMF]2.L~8i7%;#PJ76 <3,n=lN,lx!#l89TsaL"0j-8˲=o85׈m5:tzS_Io8Hb+p"lw`\I>\!7qk-4d:w.{"ڎej3^Y*m9 rV ȋLҴn<ϲ [giODzVڬ~5뵂1=8\^2ע4zL2__G@DyҫJq|o涓]ԣީiwx]02#9`c$F0Ϸ#e-{vUrFcz'PVM `Os2Aұ~ }>f>Ya33:c_ĆOهf<;Pou1??:K>siTlnA%08z|],~?<;il[$-7Xן+]%#@d$}:IaJ1oqg?C nJ|=kDɨߛi;pFTuzӵ?kѲѭb(啘 q:e}hZdZjv_;D#/L֖o=h\9y1VV=K F?꺽L6kRMq N(АJd"'>(ngӵ[m٭18%|x8" +Lզ]Kð^K }RMm'Z$|5m~VTzi¹37{ΥIf<*ڱSĒ LdZIm^hF}kl`PGCNŝkx9̣Fg?1VekC,"7F!cfPF^[7 >/4lM'9 SZ؝-sR8HlmmC ƈxCծ֥[+˂nm`XT/ZGР5&ȅ 9c6 WZrjz t>h7^aw0VW! '')e%4M eoKh8Rp? yggXCK1yN8VMޟotax,Sˑt_wVKX$ZٗOX[2+&U'[ZL/26Ӭ.t"OUU[G!8TQhLZhC$IoGB1NOlI"EI#"p젼*k,bpd,2:sAv-D^5qĠ*p@*+'K-f彥뢂cI8k6wW~?: s[ح Ȓ"Gzp2`5iϪ[EGvXFpE}9 x7v: sj1nvEO;S$X­F哠`Wk].B,xn+'%94D?UX+_O*K>siU(%94D?UX+_O*K>siU(%94 0m&SU?/uCZ>/G%94_ϜT}_O*Q@/G%94_ϜT}_O*Q@/P]!si0|Uy?>/V( h|3; G}괿?ROӶ>Q~G?OӶ>Q~G?k>?j׳׭ͅ }(4 ( ( ( ( ( ( ( ( ( ( ( ( ( (>Q!?C`s}h#eW0Yr>ݲ+ٶ^ſ?]wg>_9_?͜5KuH1k>e< 'Lm0RFr@#D)E[ImeyqC%qa#>e[߃הj /dL'4.). u "H3) )ud$AW~.Ɵsx M! mߓU{pj^ ]Ϊfi)n" >!@ܤHOJ&KUu]Y5)䴗[,@UY-I#kGŶ7:dYR P3FkJ71H>RXnSd8>?U>_qtky姂f|XW.uIʹ\C\.ede9#5JI48lH/u6dK-w\j7d/F?U/?T09/ n$Ze&y6@*"r6U+=:H\^93>{c涶^x?y='%+~]/u忈4ig40@$ۭduY^īo#-yeRUN FץlߓQ{~ON^o& o/X#EFxvOwgsis|29srߓQ{~OC5^_}UҼ u{(66-ŻA1^OJOz"f%\8=3" e*KaxJFx%K$fD+ &gQX\k♌2E͵E9B0pOv^x?y='owstQ&۹í\麣<>xy۴-R@N,jwL%Y #!NN+Ҷ^x? Ժ7"16ormtHxY.L[q,K]zgfSMa?4 " egc nWy^ 6^x?y='w8 \jQkZkz YK`Ko aQ-sΗU?Uտ/e,k1pgsw/?Uy 9u_'z>7_y\ߓQ{~O@U}6^x?_e*EWy='e*,U{ ]c֍.4$yw_e*EWy='e*,QU^x?y=' U}6^x?WP? hy='.]BGHxj/U^x?y=' Z_.?U1Rʮg>l|C>l|H?j׳׌|ۯկg[7}# Q^iQEQEQEQEQEQEQEQEQEQEQEQEQEQE|B65{mx?\ݝ~H|6s";_j`g!L'{q>PuysđeFVrzwc2 I..4iunkKLwnNAR1 :)tTy4O+˰QAbykg_{FTӼ8WS%K2VI7Wsjơ ۯ]g«X]hVyv/$rB6T:Ǧ9j]ѯn_7W3C ۉ#ϪW'cKúa6~uߛ2\0 Wi]cVnŔwGd 3޽c%E5 }"-ᵸId@33 [n2[b/K֖?شKxB-1[; !#Hrm':׏.}B(`#ld3N鸴e[cecu7X/4d[̩:F ^xe-C3i x4"%@ʏlwu.g ?^zkF˂;fhKgUK Vu?+ n4ۘŜ#5|;rϴNHj;ojzZiռ3\C?t+JmsGW>|-J@-Q@'Mmm}tk ]j>\] CSY͸b#(ڼ7zHWڣ!TQmE$QߞIq"y~q6b$$u0ϽUMm/o.)OFX~C=iVX{ttidfIףW'aӼHu.nͬ:lSA;Sgޒ*^'^fQE +^_j>M6K{;}T,{{JěGx5)'yw6 cCҜ~$&/flujI71~bUDTL6B7##n|Y/G.o + 9umZh;\3,3tX|bAͩt-kH5+.$:iog3o*&x*+zej7_FF-|;x]d|ŝԖyi(89 o k^je0;ylj@F,nF7V mF?S4dXdnɖEX0W86/rQulVh^ɮ91KVTa=_}_WWZq4֐]Mڤ/pllp'Ϸ^-|#ē97*$_"S2&EjzۋH -*U @.p2Xc%ΫzSN73 tut3.zw$Z}զ1& du+c$999z~v-]_\L~ '}Vu{sw]3mݠ|1h)>'I-!<>ui&[ kjW2 c٘հxOWu6W>%{I`9$MBu_{1! ,_,Nxp=h^?M?QOR-)˫݊ͧsSi9X;=o<ݿw_֧/ko57W|1i{ԊpIPN>^v{EZH^k+.Uء' =Gwok4Z嫥\4cN x"[MOO} d\֪fmA%G%c 9ko^V}|i,՞49#Gmvג-Dm \!p_Bϡi<7Faď[eSl]~#ѭ]&`HŧglMMev0lɨ[[h+˧5;UHۙ|B2vr28{~W?svkz1 :(iPX*|p=XV-.'4ڮxm4iHYo/f v݀A5kxQq VM#n:Hk"]6}&fb˷?BˏSRGj__jMXђS+i"]yipA<geuAaI;]pyݟj:fVݮcVeeQ/-ܷV((I$p3Sc_*ߐiy~_Y[RioN(&?rX{/\Iɵ-4jP^_+nrHyMO5FWeܯZFYBySuX]29LB]ydr!RHnhVjK6^'>ݦìhai"]y)pA?)qFzg:5<]kq~#13dN@qBT:q.=lCӭTvvDHsg64ojtiazlf;Ŋ~4徆wf燵֭Akwgt,b\`nRzLjZ}>= SHYDFl`WnN1ޕݓt\wiK~Ǫ+kAt<]4^t9.wcfCMEm:] $W1&lԹvjH.qV9_>t#NOLj0Ot6o[ŨkV~"iFpFOTų6ĶQnp >S8LJ ۪p *V"wr{f>S׭:i\[jC1đH )/?//u&;xX,2ctR#t8`F{OC=5-&R_XR[kU*7a$$tB`Z AglUmDP8'MsIBQY5UզRYMk.HB8PGWޟ꿯K~KكLy\׌۝p;8W ]zqSp GU)vT< uWU(~Oz> =f(f'IhgxRʯnWXr|AU-էX{$Z]X(d`zW6cGKuLI`Kv(F* K3:Z֗o}%^Cy,HN30Wt`GQ1x*k[MDƞ!֪fmA_$rXf93A?ɿЕ~+exXWCk1˘=:t2?/u%̶MfYܱʫ3Mh7(58!әU6\Phz9cJk8gĦM1/OWTLhh.uBN_^Ud{mˤc+p둼^ 8+ѫO]I)t]*IG@G։j~zm]mɵY!B3J ~F'>a'qQ9 k=k[u2TV$& Uc m. K\յXam4vK%ydrV3m [G׺Ni9?j(91_[jOE}2 y~*m^B44ۉ-mPnr rI/s\̛Gx5)'yw6 cCҴs\>^>(-nnu` Fx 5Ѭmo&5u'Kț, s'[g@4}2ydxn)*?L>Zfۑ44 sK5; I`ڍ-գt;Kj?,wo6 7μc/!|mĖvYbݎ79G9$Ga Fk#Nf`ʾ_x=\=Ğ7փhtYI;˼ cZ)'_؝mn~g#mSJo{nk=Au¹a z6 zZm4YtmBGd]RXŵxDOR@I'0+ ͨKiP~Zeg85]O.yy~,Px|6^Cmk8Y*${0@ ǐmSJo{nk=Au¹a UִwCм;j1pyN5de6vjGMu7F.vKYe%[[D;$X{[uF>_x ,5 jS 44*Gja%qz2Y'ҬXeHH[(TdA=+R9;&Ӯmn*}VٝN|џ TM- IA,4dyc!W~c&[]AQE^BX5^BX5 QEQEQEQE^BX5^BX5 QEQEQEQE^BX5^BX5 QEZ_Y?HhoO}?NEO}?NEۯկg(_^^oSG61 (Ӡ((((((((((((((b /X}*~5a'^7B65{mwg>_9_?͕^(I%AffpI;[BCOgr:٭-⍤YQfk@IYn#X%E nAn>i"x:uΚM6olwѕNϲu,|Gaus&BC<(|rzm~0-ṂC-\Kn9, &{c-֯?Ϩ6?֐\Kqozr!CPĪp2kEV';j,1jZRO).ofLca;Rh}ST'm%Y2p `hpx4aĀ7…o/wW:M5 I-R.e)űF=sR}PH2CvΌ=A ^c`[:V?쯵JHGmI=k6ҢkdZHi|s<еW]U6huEis 2RC  Qv<ûB%UrQ؊"|<[ ieE9# `\J;Ik-;ƺf#2C%,r$Cn1_3pkR{];Ww^S'sVƸ-͝F@ `!q{MДW_ޟ8?R_qzQ-#rA7dHrHt>1uwvEFI'4ֲKWΒ}CCn5x!]e|0svP4="XbԵx,>R\ߘ̘ =GOZyu+xTԠ㾻dt#򲫯UQUFr3OշE)nYRG @osnqjom:-JFѢIu]R+ݶ_d]i:x/58)3_=vĚ/5i4ѧْ$y~c;m(Ӵ—zKyAc O)fmeUTq©OE$i:8# R,m9'VKS#` rp 5x6yeHmd]FWRG?/[q[E]> yivat~W Yt.#m!u㪰 cKiWtxfhlǭyDŽ.xRGRnROʻo&y=y$x17}W Eu,<j [gyDžnx6\!f3#N]QQ]7ey.KmKV]fu}b.8פi niOm3g Ǿ ݯ]JHT㱅bu|bRp 0:v`4nImG=N8z%]#LhY'y% c 0<=k̯ྷn5 !m&C!]2NpsBt;ȵWo%ҵh/$! H8 G>$[n!yFLL vN'ɳOe'XKJIȼH6ƌti7,n1 ~6{i!q;B\9ɣ_m>Q~g3jZLJgk&&C.w 󑃑1\}/[Ųʱ24G^q֙"\VZo4 K"7rAFc!Yx`l_ovMBʁuIԟc!iq\:i18g9&?xsHo'TtxC]X-]}/Oh_ޟן?ouMBͯ5-6?{Ҵǻy$8_RA$e|GKKȮ6^\,CU% 7M4$WƏy:׈[qoh.b@.DnU~Q:u[XumKO.OS{+8̈́qiQYD|̦#VWYi#.JF3O_ޟי{z猯5 e(3< 3[:xn}:]^]D\i77pOqK,xDUe;u y J$vc>5[ /Z#ՊCwjmD"Ppw$AcH}Ʃ5yQ)B0_3zSF*̔;R iLNcGtͱU8n#zt<ƿyRZC:ڭ>2|WY䷅b _ꚏ5k /u[{7KuVªH R'ߍ>R\Ko<2DLYtݑf_ޟW WBKDcA&mGثHbHl/.#NdѣE,:Ie"4U)B 3>U{*FFQIEA5$0AO$HYO \ƚe-XEѰ<}7RuOHٖ)"24ŀ$oFPNFߦ)'}?A-?O;cxkXz{y㹒OV卑r,H$ r21lxSMỼ?BRjw꿭lwc>5\-BMLisHp\nn*ޭkoέ6á 1$X1Ѣsע_ֺƏp._HCuq/VD+Sx˜Mn烝jWiX{Nm>T16( BA<қV;fƣ+K[y..."RI%˪I$_\5 xbk$7QAcr,cb̀ykX[Cn5KOEj:K4n|Օ$  HW`p/5rI%g ! `ҭ /ԛ]ɿ2D֒Gҵho2)=zOgcuuo:/˼x8;6G+_m~VvF+EKvq;uܾP@$ 2}ǭ25`dDǙN&;p}{&%ݵDmDQ2p$IvwM?hȶ0Co-$ʍ4;FN(cϱc|6|b\ s&u|s]\XA}f{x.p$Lr&AvSjdմZMGlO@N{qWJY hn%<ڛyLvx`sFn~XGW)-Ƀ3gĒۏ~jINk V_4:Ƀ'w'5mZ|o#^__^Iw}{[hirp2Ű9 TZm֑۵Ɨ} ƒʡ V#8#zVq}:{jV367K۱ VP 'C_E/#94jxhn`70)-JgDZ5ۭÙU1rN@$ni>'Ƹ QQ \]\R=Իɛ$ c>5b@W_ޟ8?Pt@K,"#Yiz>OqB2n%XȥL4odXؐC\Nozޭg w+I%V^9&F!Hp]~PWq۷A_ޟf+EKvq;uܾP@$ 2}ǭroi^"7jrHqmaFUA ВHt>1uwvEFI'5I{??6MtG+50xM<zUq^:Kĺk\CS\YVf.6Ww,i"}A?c>5b8?qzV( c>5b8?.#XTlc^BX5qzGƬQ@4}/Oj_qzGƬQ@4}/Oj_qzP]F 7391Wk@ƏX+/Oh_ޟՊ(ƏX+/Oh_ޟՊ(ƠaRofscޯ{ ]cրcEW_ޟgjIۋuZ_) ϧ(y~ϧ(y~?uڵkjz>EWtQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@>,"yQ M^e?x?\ݝ~H|6Q,綒FѱYW O};Mml!aBb3T:NttB'EjbQ dt\i4-&Oc"k{oOU $zT#\^+f ˲5f O@:s /hꚕ]WV&BN֮jNhΡk}5qo dvAEeGMLҮQ^6-[,n"W`089m~&ռ;. W&UX2C)|t-y :ƃwW{7Ѩ A$ VYboưR}zM! в 'Q3[i6^ G͋隣Y[)l>Oa"$d5J[XbD"NHݽs ڛ#%Njlbe֯5ڢ&|?xFE$ = m* qzsH{ þ|b95A:E &3\LI8 |gɦ]Ywy=P˦|`쪛0wn c$?ش/$Ki0n>zFmCnsn?_t[]/AE^lfYTdcj'C-f.RxuykpwF =D74V vXٰ MoM^M2qqm=f]Vr84]b^EJyÉ@ d= *qZMJV\+?)OIf:w : -AG'kFfo!0h…Pq溛^ w;ynGDT3}7?2*ZKEeV[ЮS[A0ܴ"['9d V47OoeYQ57Źc!U@$dc0u=7Hug$VڨI NAm7H[/ImB jA=#_ CiOks`S様ŝN(sЩ;_º+Y.p{%?ϓnݻxW_Tnukk]ZLoVGX΅r7-쵛o =q;xUUW*95WFP֩tI6ɫ\4,6۟-PX砯AI%I\K g$sׯzkƥ *tme. '8-_Ob,,]K )o#j1  $֬v-/V7U DʿuԜz$A(nˏRiw}&7S΋+aہcI0I}*+ѩkzVob..&<1?A<Jp9uVҼ $݉#˔azRѸ'cIt{5$#X1=yT覞’#GMЏ[vA\0lVƙJ wquaAlFٰ>g9}_'~:~&^YZjIR .y*vKxU^}P\|v=F=F6}oﲼ l=)U-5DzLznivYFJ xB$,YԮMU+*=AUmesO/RH K1q#"Bn88>_ߤs^Hn/<7vm̻=#Myn5 ai䁭ׇ+`"2HUVvSI]^ŧ6W[dmPBbZA4V0Bh!R2j2?&O%'`֍WUŽđ9A֬ڽ­%L ȋ2}tٮ~ȟgy3Rq'zA?ɿQ3lcLQ>d1*ʻ[z;:`Fқc\7nEͅgswđwZu}֡#6X$92:=4C{*L|4v< F 4-`~ֿd iIm-yOͦEuiȬTʈyijVTֿcEkrVA$a-/5[&eԢH pH9*;N2+PkO̒Ki.1My1BoO??omމakh.Au&g!RYa"q6 B d 6i:W:̺+sw,@A(H8'votu;O kF҃:}bͼ򧍹=jA6RҬIdQƻ:`cץ =4[vn/b]Gn\<ա? EW}o?PQ? Eb]ADI+7e"B ETB-|uGUk4  $ Ra{]^_ -<1{o_Jn+k V|-U%'`֍WUŽđ9Aֶ+bEE? աP0xt*WP? h}o?PQ? EW}o?PQ? EW}Aw{jШ[Icg?pG*_Ƒ$;ue=NAۋuZ_) ϧ(y~ϧ(y~?uڵkjz>EWtQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@?(E^^!_Z29 >UO72ύ]O|Wf%j+>}vK{mǔ\ۣ*O<GCRx2Pz#-E+%@^kQ#H=;ԌEPUŞDPa: `}WV: /a[}7/c el3b9ANpzu[[Ou&%08?VHFy@I [vqN={ Oh,5kkkXociK{%4䍍v55CՓ^0[sDϔ+XNq^uooz=ގ.-Y"rӌj?]wc+ [Rh--#09:~m|̽ -?67$?. w 8ϱwᕼvG{=ׇ`kp|$y /M]K^| y,N:JY 4FޱE d'дA<,6xJIȥp{`Դ?>*զ۵H-c^I.Fѹ 6qvVVwx4@(siQ?K RR|7Ej5F,*'ﳹIg(5OҖ6{KPxnV({q IB76Y罜%Aq7 F\taƫ_v4j>[s^dhAK$9k/j7ZN Rbg*ǏX}G}/ xsKa7 2bؐ=1].hu/ Ym #tbN*O}+''gsמj [O1k;[=BGP8>0/I孳6:4vz_-#cDAT># 'ҚWZEm7)-##o{sSmtx[ԬEMJ7>$p;U0X[CͻYA]ƽ42Bt(RMC[Z\Fyls"%BM^:%h.A r VT_u\˻<Յn嶿f9Jbr~ ["5In4Rm1ɴ2\ ]]G}k% B `]KI5uO|PC(L;w;u3]R\ў nl[;.w!.4f#G;InhJ [y覸]C)C!+V+MѴ43}b p[i5vUk]GFA0$R!#)_u<@N҅Ƒ?~y%F\QoPM: ")g0Ķ "9п2=-2?0Kxc!aOyaKgm;(8tuFs0F&1t$-to@[m*0VswXLO\sR-tgoH5*#GPH#Cӡb4{f8lrI:}psҞa5osC$o^ !}>r]k +"+/[x|7V,H:uZZjC6/eS 8ڡ+E/$4ʾ.#RM)1\>s,q̣j>G x'#m<H\'w5oiZb[}\b3ۧZsX\OG*2Q0HGJ-6o&,^vF<3 zV :"m˘JG}Fbvk1+!Hɤ tX7sSĒQI4隤Qon2&DCs&85=.35Z _5\hZ5ޤ5+ M~X]ImJ iNr01̑wo3\ĬV2譌۲/kyy_xeiv\^ Ny&@g e08M.E-.0Ѯ1ڭ>ڤv0-484PI$$} wo3\ĬV2譌۲--tk kUK>siQ?EWD?Uh| UK>siQ?q%ޣ0ݥG=vz<) ֭?-fs'NN2ȷi"A*F\9 ǂʧ J_ij)'RA8- GymƝ}\,-YSzgONzWQsw{ 4+]RYԄKزqJT`F [ +"+/[h|};U1zU x{P672Yۻ$I{>_k_oS:|,mc~:4\WqtVy:oiTy~W|ٜc$Đg_JYݬmby$>Kot(h}}lmlYBv3+o—ڏN=G$oToj/43Q3Ȗx!v#i'#xK>siRZ'wob_}_O*C a%??ڠ UK>siQ?EWD?Uh| UK>siQ?EWD?Uh| ^BX5ϜUW6)__O*K>siP*%94D?UX_O*K>siP*%94D?UXh|.¹~>IO_ϜT}_O*,Uih|3; G} CAOӶ>Q~G?OӶ>Q~G?k>?j׳׭ͅ }(4 ( ( ( ( ( ( ( ( ( ( ( ( ( (>Q!?KGl.j|$s9]wcդӡ3jk,`'v1xZ%mso.uQ$guVag箭Es #{kgxY)H՘Nq3>Mt6{0bfDl)vڼ_ƶ ۯԾ(椱fB ?u\_NOi\R]@EfSRH%6N*mK:77KkSqAI Tֲ|G5m"Hфs3WvqAyz9-^]ӥg Eۏ@ŎkҴQ|Su݄Kxai.]Z2cL($n8&k}"k{Dx{i!e1^sD[~>M'RY5p^i;` 䁜sMsj"doʹ@IU#*:Cy~VI i1$ȥYDAm.nuf Ȕnb: 2}EiQ%RkžKߡ lI7 pxA[Pk| x-5IuXtiQ偃_5ebOcm8յ WJM5n|a>1Ќrwھs:u mz򃑊 ~6i=]\Z%%xޱf=##5[]Em:tK!m ʦF1Uss/hg {Ys@"+[?[AuL%B\7Zmϊ4 .[n.eIEdIe.y CepJj͔|[xQ/(B_gdV6̬,cNZ> Ҭo)--pB$fђ玕]h7ˆH.~ޟ4ULAVܥN=VuvM%qZ9]o zrN9m~?!vw:oY.Zy(i -5 dU;H x5WKk;Im,K:: rzռMnc[G}{nI#AdPFs8\xSVE\^?-Y͏qày~f嗎9Oo.%0E)biyߘT ~N}~+ѦԧW;e"I6N9j!~iEqe4[#MgE v@x36rXmlOui.9%n-AF%fr$P>RS9Wmm+Z}>mJoYBK@<(9rrjet=CN>s= #CҰK[oiO1t>mnI}Z S2+pC@d\ dqQ .[M NDWp*dCs, a#I|?איmvKt3k Ƨp`KLQPW{60rNs Rz|ZᲸ[_[Fb&Fw]qVmc9_-|PsnLjV:miq FLrD2|Pp$D_2l~ށjͫhq-w!JoPw}? {k:\;vWK_хMV:CkL2wN>$Ѽw^Yj m|mˉն285K)Yms5{5m_[oZhT}Ix]Z<+"T~ gFvaqu "HJ.Xoxҗ_tUOƔ k"ʘV*QN8U];z:E7H!-*Y;`N;T-!wO/}6V3^\#idsT mO:*֐q,b .X$32>s,H #!7Bd`U gt瞙ѵ=/QVP-G @U6Cu;i'@9 -dbPmjZƷ,yd 7ej+61\(uӧt'w ;}s]+7Z4>s$pب;Ď Hۺfk? ]dڹmtU.y.5'b ,cdwҏo t1-5k>b6ȒZHd ŘA &8h781on2}_*iKlv9N0sǩ'RS@_Hɍ :r叶a]a/ rJK R{f.ɕwl}`)-T䗚_wsѿE[5Oյgeoip..Fȯ;F#<^׋𾄷6u71B0FdVQޱ.u8J bҬ.ѮY 3:|Ae}oucHN#ΑJ;ɞy1 _=tMߏ>Ե Ζ-̑8@$x($=~56%QE (*kV*k@((((*kV*k@((((*kV*k@(*?UX?ޟ~?=~?= #(_^^1?QnVll/cQEy@QEQEQEQEQEQEQEQEQEQEQEQEQEQEFʯ`}ɻdWlx蹫k;σ l~-{?u;K=Vsn j.A%sZ4m4y<'@+[\dv4Wl oe*FTӼ8WS%K2VI7Wsj?U/?Uh׷vZ/ۙtq!i Hȅm+m%B Kİ?:͙.TH\͘J[w+%v^x?y='A`^$3j:ZcGihwr@BF۔Ou]iPGu:\lfqhʶh8w|Sv^x?y='6ҵ{oRӼ-wyp]_uq  l걃"`wb܊Ф6u5iwQ%!iѫ$[;PI'4t:۱lߓQ{~O^ikNWQ5s %yH 0sj׈o|!y"C{s%d,FCT=U__%.7M _-" uO{~O^u5zφEu~5%[qx,߹.%EbBa\61Ǧ5a'r?U/?UbC+ߓQ{~OV( /?TlߓWoR_mUD$bAoZjkz߈^ q l}ѻI_a_7=e*䧵Vյ/#i3\Y\Ifn%#-3  9 Zk"΂uo/%̂f * aja_cKcqhJM" T/?Ux:{ k../4ĺ4۫.s>'[mͶถ$T1̱Q"Q߈_F_:-6^x?⫁.z:Ֆ^Iepgb<G[8p02M6?U/?Uc];ˮ[ۛ2sn?vϴO'D}QM?HmLE?h yky'lߓQ{~OTi4"kt yLf-6G=HN|Io?MuBŵʳ"Pvs@ 3zW_0}}zBtЕ DA?ީ^x?L[iii{Wo4dTWg>f0qQ~K46N[˝D#2O$e6Xcg _m6^x?⫏˝ Pͼ&|ѮG6w>nq.:N4]]=bq!/E[e*v·cxy-b y3G{m|Hqp\V;mBɦIogoj sO`p3KI޿tlߓQ{~OY ̑G=btF*-Wt}牵54 e^cvҌQd{{~OF?UrZO'"ontqgjbV*H. OB@x[{-Zm!b/H`Nflr<[TcC@mlQ{~OXG zEFZo4lg2g;oc~ ҮDv;jwᢷ9[˵0pzv,wz=kR6ImMµ CeV]US2'2o [Eå\izc]^x8vU̅wl>I8"Wv _veM/5ąGE$FIqOzy='KOs˦i0icMj2\P\޹THw006XmB}KO]XMcr8e$@܇ GN-Ue*j0ZݦEr4i+!|&{Nֵ=]Rk2+9Yoʟ=:^w.DK]n㱑P#>c ,#oMkߓQ{~O\6Zi4Գ ˤ8S+>}nJD:6w>եp`s*;,*~b@l`_W͗6^x?⫐k_?i,W~epҺ$f.0;X#V.O5utXN3̋I# "\gߓTt,n7M _)Dc根חvڅ#OMv ,@; (g$A?ɿ}h6^x?y='jgYд ;:#ǘě!= =@$pE/K\Xjbde9F!v @]6^x?⫇uQo7R8P|\t*k_8M`K#\>r1X)r1J_?i^V/?TlߓW#'-Ew7aG?1)Q'u?U/?UimEюͧje{|˞[eң #@H9#:w>! k$I3'YeN=//Sy='e*Q@/?TlߓU(]y-h@d`HRH_/?TlߓU(?U/?Ub{~OF?UX+ߓQ{~OV( /?U]y+hHcUy{~OF?UX+ߓQ{~OV( /?TlߓU(?U/?Ub{~OP]ג6>_/?TlߓU(?U1Rʮgi47>l|C>l|H?j׳׌|ۯկg[7}# Q^iQEQEQEQEQEQEQEQEQEQEQEQEQEQE|B65{mx_\̿2Aw[{\2:^_9pQ&\jך)G[Y f Tm`s+ٚ(BYd lwQw CC%-KWI%Ɍ}3tjWz>Ojd1+63YNohs5+9.5yfI60 Wi o9ȳi^u{,.[dB@rH,xusiPԒȅ"[ґ[c5-5 Hʹ)47l4FGfI/լu5ǕFX;rۗrFx҃IȵPivrg\'&9ePzn–W&QJbs;m:py{*Epn\lppAE oo>·):iZҲ~pѲorcL1%yX?Z%jWVѿ7cFAܡ9ZcEW_ޟ8? Uc567ik%uNt*W$>iz.3̲J/'x@2˵* q:YZ7Mhde碌$WP4="XbԵx,>R\ߘ̘ =GOZIin4_[^+?u{gѴ[}?QдX[ '_i X>0 p '1wĚOAo- څE2S.ѓw+F%uHcvڏu|b zaKwwX-q5Hzac۾%mrlgr&rcL}1h:%M:$$_) rrî;չHᧆH $w,pEK0hwY.Lv-'{UH hn֮/@́o8(N܇GmyZςu+h%LdI{< @[Пe/\=)s7}, ]\\[[0Y홢$d/Oo{79o1'I5Y㸵"*̋Zh:Ɖuinex<c}FNNp6o'O58&=Oh_/Z~:s #on>$qa6q[FYL{3 tįwi:L;SW^;)PyhTW5ީ+s-HwL1l:5KEcwrS9‡&~IZhnm;I2T6A*NG d'ç]^[[Ao-[UB22ܒwrF985 Bq1.lHo[kt$^9skEڦk29fvDxi'8! @o$S!4]cNIՠX;͵1iK<,qw{@IZÚ&5bʹGAy2þ-Ŷ4<2Nuahw4hrEs/HǠ/Oh_ޟN075>[]VO,ɽ-ǘ(Gpj՟u-ŃM'#՛.c^Hۀ{3-^mA]2@%@uF{k6he8e8nڈkt k{sw_ w h.R[v,7RqJmׅu?OsihٳAc;.Ȝ]4ooW빁tGiƖm:/&=CTu9*&Gi5r_HK+Qs䫐X*6tg~4}/OhpwnueTWKRMԢG, rFw*T 隴bE&05:]`Z4a o8?qzF_ՀK?j6$Y ;Y F[ 3%2nW jȶ0Co-$ʍ4;FN(cϱc|6V&so,QfRs;-hpדF߄o ;Liw39u?*Q'5xz +5t:-㱼yb$o\Zc>4b8?qz@(c>4x~K4A:]} Jn $soRGqf'y1ٓav7 >KHYNFӤbZo&qgޟV<û$UrQ_~'"o 6?٤X<3Uܷ>٨jJ_fr46TPxMzk_ޟ|z.TzwZ.L')=9Nw% kEj:ͧ_)y O ,yAǵĎ9ߖ 淞D-$#&6])s@!hD#C%.=e'~5=,;s6kEִG#ZN=̅ eF51 d3=]W_ޟ8?*ƏX/Oh_ޟy8?.#XTlc UcEW_ޟ8? UcEW_ޟ8? ^BX5qz^Y%5rM?x{z1#zϾW%ϾW%zϾW%ϾW%zϾW%ϾW%zϾW%ϾW%zWP? k|)?K'|1Ѽ }OLynM-WiV|c4m_qzGƀ,Uicc  >On12h:v/_LU}05X@9{{}1 y7GZzuڵf=Dsa@+:((((((((((((((>y +MA,Q.](,zwΗA+?^c,%}5?͘\7am2-s!(߆ġA͟"Cᵵ eL| (J[{A55-=Dg;X8e8<^MYдԭgwYv9fcI$pƜSA5?ĽIcmt53۸[f^k3Vմ4k-@)$<Jq_+l!vFq‚INs"-(߻?(wcеh#o oR[v1ȇdU8Y38nx~}GIƴ[{{ %Un~s3^>ZM[4]r8zYvc-4jMƋc<cbH 7sr3\_?m]5/xƒ,6ǐ]=s VӞs`[s#!ZYXW_hzu徽uuYOޭH [ƁQ􉬭Rş'ݰ]H2CZ^M~=S_xX񎕦+a$mR*h@=9 k-[[1u@s"1$ ;'C=6R{ X/aC8wϘ\2ہ9 cCFH'Hq={4scpM--o]9?k>M+IքuH%ܝH }* $Z9d,]KIwe~_+ۦ̕N czvz~ful]G2j =K*EBpzOX6qvwr#Nt/o& }p+ѫÚeqHXC"[\%+PBb=u_o?૓~nEY%XEW}o?(EW}o?&gMg:mP:0l׈gMcjp7+^u[Ztֵ[Oucɐqe[izvq|-O.Ut9 ykBL4{2iE2# nm SjvzVyO|uaʠ3ldg9c/ IyxB@5+zs 3"5-ֵNm9-4`t֛sa-+I&a:1( UXj]j ۋ{!Y#vFy v^)z/7/6;~xV?kwPj=5Νqc20iTUxFWzR]ꋪKkSc#K`K޷-'ZDuƎ,2xX2 vZ5sΠ\qIp ;F>uh|>>se5C^"$T\*æqHӮ}jKy/%}",A88_ .4HM2erIcKWM9VҾ!h6Qxq╮^m n䜎wZ>7u_Z67d[m;hi [\ԫk(f 卙[- ?* [+Z_?-rm_U5%qEF@~v(XaӜԞ(^j c%ĉ;X Ԁr;9kGL/ c{tRyðqZ/mSM%Q64Ae]]v߁VR_C8ۯjR۝$-m5ڥ(SaOqvگA23{uۡ9"$ӮV4vGYaCAZ}:xL"$'=WH]nr1{m.Cvr?Yx NSò8biѴ32Gx =*X59oO J޻N玘"fMRMEy,Z7BD Vi<; JΡYp@a"K6^^ͬ >_x'mur$-hbXNk[UNTho/B'+=?G:.5K%J䢡Q|Q=MPӼ;X]M&u{X\Fm+C1 M4W>74}~{$'Xlo˕ߧOq<ܤGՇ|j۾\nu oj.ǔ0@27q=jHlQq,pX$FO= U,}> R=N]o!B^KV4EXqqK맠3ϴz[ocM Oe+. =n< APÏur+m [pG$t#Z=¯ƹK>D7L\yYk(f 卙[- ?*\(랦jߊkK3  ?$.$#,262ϤOèg:N! m[y I tqqmO ][kwJ7P&mRqAzSE 6^1~0Ȑ7s֫Ndhψtɵuaٯ[!4Λn=WC)Gzխb;TUQ'*s=kC16޲UQ? EW}o? UQ? U?/uCZ>g?pP]ڴ*|_~P*(}X~P*(}X'C^? Ϗruk$&qc;{?+ O7G-Z\(-? Ai]s[.t?uox {?n; D;/?u+⯋1 ךroc+,%H+7Ml5M*Pe.I9U2N"}~,Vv2$ah }$՟U{P' *gAs7/,ҰH؜$ڻ&5aZx'^,5&pgcΫ;{ݺc]FnN==O k \s?W}`k޲UϢYCV ռM-VUƕW'b I0ۜT'/M,ef Bݷz5 &7FѼȕcL%R<0Iw>|CIog%G%4 ~j~{ׇ4r¨Kv+y/nd 9+yirxS\<:]̶]}zz7syqWҭzm-XIR1$k0>3֍x/u 70d4떽i`vN# u"mJO5aenknݱH?);Ӗoi}\+mSY֣ue ٝuuGT'=Ϋ iTWV[KE'@VCA=/l[Vv@4m>+V64JUF=^Yg~#ޕ4.̅Y?WjVՎ_m mfHe;@]تFOS֪֒^vloop@ ISP|f^)'#'#k&$~hc*-o[žλK{s!e7{#ABaCKR[\Kl\ &~Sժ E6/ONk:ejV0΅.9pNJ𝿊n5xVxӍƹ= Dz7VҾO@my+m [5YM^$$P;OԌ1j9o|F$6:sƶpm!pzM[o_(|g5XFmOb@9 u/DdwꍪJYFLP@ps^/⛛SbRѵÕw WCxᕾj}qC},PcOc/({+,%%DڀԬu&XlB lncsS.j:.uo$D%ѵfN@!G{pz'kmeX`8"k:=kحm,ݕ@&XJֳ'H ּs/jZT eOq@[Ӧrz`M{=݄s|S꺃ix"󼋻98ܢTR<3ٯ(|I]-6[-]Bx,eBH|0 N:v<'o⛫? x-^/qOsՁC#57~~ ^vеn/ C[:-ψu쎒BI HϿV[m@YjV:E ˬMlqAH7R1}惭zu;h73ݮ7YPp0s+=?>Eq-,nK0QHOyI3)v2Txg7{o Hm~" +B!8$si._Stn%$\0Ͻ:a/\2HegM2@tl(z5B.t*SI$cqhn b!կz]u%v #O5cCR[7#R-}>O;iE?<=&O*,d?.d?.d?.d?.d?.d?.d?.d?.d]J%HL}TQv^@_'G?TQv^@_'G?TQv^@_'G?TQv^@_'G?TQv^@_'S@PZY+$ޒrO6#zׅy'TIuZ]]]4qbP`< =ypqO* x7ZWTQy~°VеH#b R#CZp#(GS5!oڗsi] >?Gڟ~gj )]?Gڟ~gj ( Ə?Qv'SjA(,L ISAEab?.jAO?35]?Gڟ~gj ( Ə?Qv'SjA(,OFfeR2$CEab?.jAO?35]?Gڟ~gj ( Ə?Qv'ST-,x KO[x1"dg5%]oC%BxK= # ٢wSп? Ч[4Qv1 zG^Ci5I#K6Y"'k?AST<'"o`G?V?_}Km?߾_}^PA%B_D<3$J3:G(0P :񝮿{=Pkm qAjƀ0Z]wao_0|6I'(htyG}<GE'أ?OTtQyG}<GEڼ@nXM?TմHVnm,VByxD݃~ QEh~:ϪxoCWbuV d=[G6yCVP"z͘%\`R^Z%؄NJq':RYZ^v)c%ջwDhnn#bf|s/ sO5#i֯%ԍX:|cE,Tl`qgo&RXTǁRC[%A$nQD.zb?QW( *CB/ {Tn=[wjD,#<9-|1)@^{js+:V:u!/{qק^/0_ h/XěSGy(abiAlo>X/4} LmaM9;ys Y i*/nȣ;OG9U=6B-|3@ "ru|6*sGP^:t+ۍ|ې>ASK-x[v i #(Sh,eO\I"xv,"[B=Rp=>f +çMc4Z3jA^>R gjݬ*ed:Wk.Ֆ-靱'"rhEI;y'Ѣ; H d戶yĥ'yx 9}R΅{q/rG2ѓE,gK"{y7|?%*Dα@ Z}u5߅ 0Gy1n&< (ab#wD1 tg 2h D$R#y<9TQ]$t/M'.8LRrXrlyG}NW-bO(y?Gب襠yG}<GE'أ?OTtQyG}<GE'أ?OTtQyG}<GE'أ?OTtQyG}<GE'أ?OTtQyG}<GE'أ?OTtQyG}<GE'أ?OTtQyG}<GE'ئ̈PٸKm'Pt4ss1e bI@>`>֞k'(gHCsVW\^y6'?}(mѶyZIj\AFG@"{<$4mV#Q(+_ ?Mo畯&8dz 4-OFk'r=mѶyZIj\AFG@"{<$4mV#Q(+_ ?Mo畯&dz 4-OFk'r=mѶyZIj\AFG@"{<$4mV#Q(+_ ?Mo畯&=dz 4-OFk'r=mѶyZIjn:&G@"{<$4mV#Q(+_ ?Mo畯&$ 8qFEyZIh{<$5.G#QmV6+_ ?MJ0HpmѶyZIj\AFG@"{<$4M7Ig^F%vaz QZGC~2=Ws\AFG-dz?#??\uj.rƐo@M 7mԹAK@3kkkxyIe9@j Enu$?nTb93| s?+X\ <:(ʬY0CA IIր[C4ItG$t O=;N@I4KwL>[C4ItG$t O=;N@I4KwL>[C4ItG$t O=;N@I4KwL>[C5Wmfhco_O@I4}^?tiY?)?ƏItG#{HwF֛Yh?4ޟI .A3hosiӢ?%?;R?)?ƏG0EA>[C4ç+]g'ҏhsM/I4}^?tiQY?)?ƏItG#{HwF;Y_?)?Ɨm~hosiҢ?%?;R?)?ƏG0OZJ>%0i4ĺ 8.?=;P$$X7)}K+Z\gѮӏ'B-H$,㰋Qpeq?|Gb;ɵ9-ܦȽ۞;z~_#;(_^^/}ӯկhO7}# /bQEy@QEQEQEQEQEQEQEQEQEQEQEQEQEQEWth +ß?"/7^Evhb{y([\9Ams"uQvŸExs +ß?_nB?q_񇰧Q^t‰uPWa)*<O+|7A]s(=?G‰uO+zq_񇰧Q>t‰uPWa)*<O+|7A]s(G?{ ʏ/ /7G( W\ (ŸDo '?_nB?1_񇰧Q>t‰uP Wa)*<O+|7A]s(G?{ ʏ/ /7G( W\ (ŸDo '?_nB?q_񇰧‰uO+zhcOO/ /7G( W\ )haOQ|7A]s /7^E/Wa)*<O+|7A]s(C?{ ʏ/ /7G(W\ (ŸExs +ß?_nB?q_񇰧Q>t‰uPWa)*<O+|7A]s(G?{ y( W\?DoרQOG?{y(W\?ExsרQKG?{ ʏ/ /7G(W\ (ŸDo '?_nB8STy(W\?ExsרQG+~0_ +ß?_nQ^uQ=?G‰uO+zhaOO/ /7G( W\ (Ÿ_ '?_nQ>uQ=?G‰uO+zq_񇰧Q>t‰uPWa)*<O+|7A]s(=?<O+|7A]s(G?{ y( W\?DoרQG+~0_ '?_nQ>uQ=?G‰uO+zq_񇰧Q>t‰uPWa)*<O+|7A]s(C?{ ʏ/ /7G( W\ (ŸDo '?_nB?q_񇰧Q>t‰uPWa)*<O+|7A]s(G?{ ʏ/ /7G( W\ (ŸDo '?_nB?q_񇰧Q>t‰uP+~0_ '?_nQ>uRŸDo '?_nB?q_񇰧Q>t‰uPWa)*<O+|7A]s(G?{ ʏ/ /7G( W\ (ŸDo '?_nB?1_񇰧Q>t‰uP Wa)*<O+|7A]s(G?{ ʏ/ /7G( W\ (ŸDo '?_nB?q_񇰧Q>t‰uPWa)*<O+|7A]s(=?G‰uO+zhaOQ|7A]s /7^E8STy( W\?DoרQG+~0_ '?_nQ>uQ=?G‰uO+zq_񇰧-/7/7N>RU$7vIYQP0((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((ZhDdQ \H  S $!3!dA?t5RgR~ agiFgR~ aJFIFxxC    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE03ʮ?SrrF;q@ EPM\fEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQA8@S(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((eV`PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEi])?EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE61@ E '>5'9oFX=A%k~cR'%<QL(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((("ƅMe;A(ES(((((((((((((((((((((((((((((((((((((((((((((((eP~uoEQEQA8Mʨ֠QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQHH< EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPH(@Fy4Q@Q@Q@Q@ xEÌm9 5-g}_W3_WӀsKE0 (c Tu) 2#REP@t((((((##Q@ 9FEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQER29)hU ?&(((((RƟEQEQEQEQEQEQEQER'ԚZ(((((((((e 0sR@hI\yK}(`QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE")uК፴wM!P\p km#xMRU:kʍn+ѩ 9yDl?\"G[HTUrs<B6?ЮBZ\V7$3Hٔ^Tio ,ul?GOW/<&??/G8X<B6?Ю_m#xMRT- *_*pyDl?\"G@{x[Tz_pyDl?\~f%$xC+ܤ0=;E7KQ<B6?Ю_m#xMRT- *_*pyDl?\"G[HTUcc} rCNGsⱸ!:F̧R@z[HTU'+Ԣ?/G"G@Ԣ?/X/Z,D5r\qfs1Eԩs*GsXio m#xMRT- 4nsio m#xMRTho5c@'d~F_ irBHEz ?/G3iel??/G"G⩩XGWErio m#xMRU\c;_iSog4)Ʀѳ 3Zo ,uW)<&??/G8XSm#xMRT- *_*p\m熴n$Hf)T?ީ?/G8XSm#xMRT- *_*p\"G[HTUc'֍m$ʈ3]'ud7ln.$8HՋ`$ɣ,z- *_*E7KQ:+[HTUio ,utW)<&Z\V7$3Hٔ^Q;*+[HTUio ,utW=hu%Y[Yuy4KRhRI"C#XA7"~cOE7KT䅙ᘑ$R@/AG8X쨮Sm#xMRT- *_*p\"G@{x[Tz_8Xh=>.XX 2xE7KS ]- *_*E7KQ:+[HTUAk.HYH/@sʊ??/G"G ]- *_*E7KQ:+[HTUio ,utW%Ԇ.j傋VJI6oNGj[HTUcOE7KQ<&9WErio m#xMRTs??/PO-&U`B/#czG8X쨮Sm#xMRT- *_*p\"G[HTUc Fn C8<{2D )dlQ쁤7scOE7KQ<&9WErio m#xMRTsg֖[*0!VJ@?/G8XSm#xMRT- *_*p\"G[HTUct{E$ܢxEI io ,utW)<&??/G8XSm#xMRT- *_*p^z4; q#IbS?7VꔚNǠQ^aɿ&O*+M2T#(?°'Ht=< O2T{yG^uo7v=иI۲6 Kaɿ&O*c0 +?7Qaɿ&O*c0 +?7QVpH4q L@R)F.O)z- *_*E7KV:+[HTUCshV\ݖ^YodUQI| 9cEqz/l-y'١̚D\2_&- *_*p\"G[HTUcOE7KT䅙ᘑ$R@/AG8X쨮Sm#xMRT- *_*p\"G[HTUcOE7KQ<&9WEqAghdw1/>/"G ]- *_*E7KQ:+[HTUio ,utW)<&??/G8X6Z\V7$3Hٔ^Tio ,utW)<&??/G8XSm#xMRUZ=s_Mco2FB˿ z9iEqxu_7hF_I*wz<&9WErio m#xMRTso<5cq"C0tOڥO<&9WErio m#xMRTs??/U_ir^jd[TRޤ,vtWn5 w-hUcQ!?Cdejo /k|$s`,U,B-?u\_Y֏ܪ@b`N Oe?YhYG[4fe?_oGqͭh q, /ۯRK? +a1kв?Ƴm]jV%GHD@pAbsO҅tf?û}*F:&᠅gsn~hIWv?JxĿD{am",E KH= / /i}먋4Uo /hв?Ɛ4Uo /hв?ƀ CA_5}}h}ʭ & $_oG*[4hY@k4ˏ\XAy/JWΐ#Rв?ƹH<-iiPl#=+bλ[%FIvhVݡo>R^V:mV\[G Hd\*5'[5Ri1VIh_oGe?!mVk>``Ppd ?[4fe?_oGJe?_oG3<"חq,zӽCo1z(6IH9ll TW9=F;cb帺Nޗ Kv;qP^k_NFcc5VЮA0?$y$M?EVв?Ə /ife?_oG65fﯭOU $B-EVв?Ə /h[B-?,uj_/k'k _(hɸ,AǡuwW}^h6+*0q\>SKn$u;Ngo~1<`mhPc9+V-?֭_oGdYh_oGe?!jmG[5͐:b(Be?_oG*[4hY@k7WW6>.u~`;V,ؐA ERWM.3iel4kRIus f,F2:bI99tO?[F}&ңO8b;GYZKc̈́1žYUʙO<+d[Oi0YZOmkQA `M[i!+$EVв?Ə /jJ,U,B-Uc=_oG֍=PHp60EVв?Ə /h[B-?,cNZfbHN` U/%cclkלhtZ-E%wỊ.x}*Vu)oM J.޻N=e/՛4Uo /hв?Ɛ4Uo /hв?ƀ Vk>ѧ"RI֧в?ƀ,U,B-EVв?Ə /h&FK]mcEmC io[nf]PJв?Ǝ[,U,B-EVв?Ə /h)~O ӪjtSL_ڣyp(8,HIJ׫NZt8%/QTt Y?t YIv2^\@=#NpHCJF}|װx/,T@;պpF'SVHjQD=5VU懧Xei}e#>Ч $:_[ w/QTt Y?t Y\˹z'CoMTt YGl_Y/m pHir3qu)]WEA5t:Z*[4hY^YYSa}tӱb/ /k?\ҵJD6;E2؜ҁ٦sZ5|Y5ۋ4k0<~\8=sޛZyf0,  +\jX?n蔬YhYG[4Y?K_oGw֋6C ] *[4hY@h_oGe?YhYG[4_1iOXz宝hgK巖=r>`OӂXqinM\h<жk_'Wf[B-?,e*[4hY@h_oGe?n#Vk>[LI, 4Uo /hв?ƀ,ך@jXAв?ư/4 sYNy̗ M`(N#'D]}\:g9fTT6?>V%gow jbM0Az?´,K6%{fe?_oGj /YGUnf10H 'в?ƀ,U,B-NfUUO /j[{Yn#Haw'Wޥ1)y$j($w<gxz"?ٺhKZyg o( miWZ[yopGMx蹫kľFmW;˃ l4 ijZPV;Y֪3\{[y< ܼ5VRr zg]T^_Cj /hꚕ]WV&BNֳFzz>neQ1 28=:C-4 vZR4Cxu $NU$dؚԯ3I-]%mmkc-v-: cdsFƪM*YD_]ieP%3-Mi{<bW:M):;ԕ~j+n;eOSYA x7^.7+4zuŝSdy$M8 օz^W=v<nfmε99cl+FI[p ( ( (+>75=Nϼ$xR&G@8i_>75xG=ki&U:UՍ晨Fhy0@,;knx&VK8/ ǰǮX%ii eZDڹ |3ѲE^o=5QEQEQEkޱy [ۣP6v XwxGĎIe$ꑨ28lmP 1Z$Rk*W+WK{2 ^G|Tɵm?]gXGiױX"YP8#>ՊHmu}wJn4+UZj-[D* 2pT>ёuK zֺ"A4 !2"#߂F8^.M~*ižqCJYK>| :αo%xC't:Xgڼ;YcM^6ʧ=oUM׊r+d|o8|RI//)&X2Z4X^Ȥb v;sʼuוa/89O0k_[t{졇j7`V/ϟy9\$;ko6z#Y:ls@%pZM[e-ܾ$g*=y w`ڧ5dckMEcuGkpp {(hzcsMyJC# Fy"kT>'ҵ#MB'ߛeCdE{{xXѣԭu j7-Փ#DX"ϻi/>#ٮ&[kigpJƅpjCZȰ^@Ʋ+( 3ϭyZiL-݂'4 i0"pc˙< < >d\Y5~R/'--!Sqw F c*NscZЯ?iWTnFKnrs+=Gռ7$RvAזK;< ʎZ֖;cX,>t$`]b(s#*('pR@ɪ6^'}Z=.Lү&K(~։er2  q[  i`8㽷p^JJ\ #,54QԢcC ݴkq ,Y,I# '+߯|_yhv{͵3¯WhvVhZ-F+9d]J62㌜]-FC*k93u!ffn6N:UZ/̓l ׎k)mj>7þU.pbGT]I*>]zEXKKk{Hm&Y&.de%+"eN[=%;mc\F\]]Z(2Jd X\tCjlWzv,kvsFS2dg;ʼn\{$*yr3ʒHTc"kz*j)\q}mt-l"bAHUz_WGFǫx^kK- ;q$Ib,A(sۃ~l%ii eZDڹ |3Ѳj}/k~GU{? ]dڬW1}fmi?+&Nj5aa܎tDI(U1:㚤[BZ_?{U׶k$Oޭ!Qxo2 !}mx q" \\tˋ۟\4y'XyhuSא:\6[jt\jt8l{gxc0iV_oV+ojWdIL820+qXXZkgcmlͬ] D8M' =_4|Xc4{- Tn,I٭I*OAWMv]Xsm: GBA HJ?KXj>=ԦNm .7p7Gh??Zy~_ ͗Q4{B_*ݥyilIƒ}P^U ٷ ~#Lڋk6\in*H/`.w@$Уx>emڞMx!)$OXH B:]psj:<#msM;kԍp2) C NX0>ВTC2`fhΟtM?7W#fTg* { ?3^~|3>)V~ibe ", &~tM:ߺ$(O]kQ)Z-|ʎ G#3(&7 CFG"^; -V[4{X;ET?R}4=Mn+-)4x֏ȶᇑ ۸w,ISooiy/?-ƌ/`嘁(9ޔGSM2r5 0gc@PXz^o iI#bd$|o0;#{|7P9q} _F?ht{9}QƣAx Dn9LoFrjAu=vIAiZ]-Y%0XsJW*۾c(^ciwhZx~kkTU"1ˍHYeׂ+(w6RC~쀵`ؘ~lލ]W&et3np˫lF2Ksӯ+V}u?WxkAҮt;n"dszW]أRZwۯ yaǁM_=?&Crċm>eꗑFN%}+O qZ.iikkR*f2;F sWVv5hgQm&ر4wHFcː0uRJOUJɻ5Km9uie)˽7ze+;"K[(ܣ` ֆo}N6X\ZiyaD2B͎YY7IR74l BtiV&]FT$[$ƚhoadd_:'vHmA F^93C4}2}GPMI.Eѕ٦Y6݂QֳO=h:XkOߥM$] `v 8om?YzQk-|(BG>3׬/H2Y/u(A-y7sSNMR )| \JeiYdV}T7d_J7/Z+RF.3 *;~axr kPy`pDy]Zn Im2Ui8W17?j^ 4-.E~hzǜofvTQX \aC]ȩ6om5$q+<8tukE^A6vR",@^7m`srz͖i+?!..ci wx"gXgv<,@8 y#&W-mEyfdDžll=8^-QyEy px̓a2O 2WWzq$П?13u1lSgyd^v$r9y?RUY f\U q뚅ڥ+ 4 ODcݛ͑Qapϝ8nhȞU׍BsLoXyuWJ̐"BF T623ַ\S)ѕ?XxH}KO(V F {Ծ-tlc!,W09R Inml܏Yn%ڻko-VT@;WkM/_"jYiwQD*wsJ88Hf;oiwVVW+]}x$W;x+q]Yj0գuGCDb!_.@I+m=W=+_ɣEYiXjfl+8V\=uiz~i~=lz+LA8-ciy:G7$R82]햕]ċ O`-֐yHT%˝Ԯ9&o+_ koWh:qZ^ThF$TE fAzwwҤ$2#ȾPwU/ lv%?suM#G/mW݀$aiW99t|m5ƚ]a2Fq Oj-Ńũ+mGFo.k I$B~G*@`:׊諃Vkm^m;$yM]RVRw .!퉓4{G~u]4IooLX敂Gf=\ΓOZ+q08,YZ^[Zj+e3j0o{2Lj1jK[r[OEêǩ̑HsbC",q[vXC`ȓepu θ7>+_ź;PTdVa(@$W dVntinnnLnVi،.@O^jڳuW=SPLӮIX-i dPI) wi aMȡFFk]9l5-I@I|5wu.8y.$6#߃]o-[C?+qEZ ['I_7"_3*Zh59idC H^I=u'HJ]{~MP #To]!p |jͮdz:fMj[JU\HO)Y>`0:Pp;/G>}W!{xdNѻGRqܬ}O]լIh bE. y WZCcoox)=Kx0n' ]CO[;Vx .h#c4VxhQ% 0ҋW"G#r~cE[?j ;YnneH` #*$JR6H䁑Ht|HPD#ǙPY7^#.h+]BtudQ!qwib}-%cB5m>]WKws'fF~kM7VkH$;&/"JdގI*H5te[Ou&%08?VHFy@I [vqN=ꎡ ۯ_izTq>֚ :VI `xs5S8TMKKm",˒BҫFbNyf^.{ozm~Ł1Z`A)1˛{L֊r/w}v?捴j$*%ʪ0)?_K>siTK:NC zAKX-yMJtq&̲p0xu+[CD?Uh|{$u O Rf 61$9VvwQRGN4Ofp%?/jIo?惭oGW?>/Y__%ZIiu}꒡R0ACZ3:ąw ()5ϴK>siQ?18Mr0^xz i,^Sz҆I, $-@mXznk---ɖ+x!#pb8Sj-H`Q8X&%Z}0H*m($0Qa'µ^vin$EI Nڏ(_-p#Pz}z;_ֆ%94D?Ud>-w0yIAeeR˕O x-gL~w$1 dr1 ]ɍh|ϜUǏi\hg}2^XfKr dd>njt}=cK < ieXwHQXFyr=$zڷf%94D?Us2MtZdm?P 'Gߏc Yv8?+}{G{i4;9|#n76Av}/i[_֦+-sJ壕cu$HH'+A4fiK!HH8V;WT +}Et1c(=F>QcZ×IOOOScͶB#|EvgÖ~ /w''#*8_cyvrBEV.mT-uwd&źdFwo|mZh3+CZx# SizmƩ7P 1NGSޯ_O*u/Eٯn%TY$),(NJʤF\5FGJ:FYJh豃#,Crp+3H.+WPCuݪDC ‹d21I-{`WCErg,o$m ߃X#1ץijVM ڗ`Os24}RjآIte 67LܒK"G-7RiLJxpNgjk&Fjj:ΙyV9FvPIe?ޓvi_CU--#bMV5XJNK?{$ɨҴ˝N=NðKE.H!iS0cQ:&jZsٷxCbť|{ 'uz-6[[[]+0` ؓ'cjvU JI;3N. dui B${p 0#j@<<4$i, v/1>f'$:^iבz zK2} ppHS+v>74 éZIi}}LotѰr2yZmAQ(Ls/xP<=ikw)iCn$ٖRrxėNi0"^\]lF$g# .nz+tm&{<5mo-+<[('$1Kb8Sj-H`Q8ZPK>siU(#i;Cpαerx#$d{֭`Z-YmdR{i7mF4.;Y-o4mxXz[Kw4i%([_(\ @ ?s;N3xOכLn4:kj?i"  *UDhu[)ɹ^2a?{vn ;k]-uECI5iaRA`FXt+CϜT7R"ͷ;[iR$A `պ<@"? YIV'9'p Qommiwswmnn7GJsǽh@:=Zj^ ) e5qm-tE[kb"8DW‘+JH&Kdly(4O &oЧU~o'Z6tZo-,Jm< N罹ݴr'o Hˌm,NH(*Eq-z[$H0Nd[{tkM+]1ߟգEf[VKTmJc0 s8P]i]w{؀/"٢3mmmlZE[vX1Gb5?tdtڮ&say [˾) ã * ym@ihKh/,f8s )8K4{p=_1t/LÖ!$09#Hb#p7v u/ZGР5&ȅ 9c6Ӷ4)D (xNf=HV;yh4 &N'ϥdwZigpn-A\=Om=P7Z W_eٜgp?*?$?q8گu6w[[Ì̡cgzrQNV9 s#.AAI8 -tIt-)!A$)Pp@$=Y+<$C[˙cuʜA_YSW1E*g H'zdZn\ZQ C3~Ea6ŽZͧE U9P;ҧM7O[9S@dC0sq֢1lm'Nͱݵ̛ළ-zsKiZ}^wq )#By3ZL1)o=FXڞ")T08bFy<ջ Y:Fyq=oGͣգRn5Z_.5k[W1rzΣ}D,2ĒҢXՔ N\vamvZV]wa-.gϛ4CɓjeHmMV+g AAb~~eO'}i-Ʋum@Gwmrg! ,t = WW\4pH]AbPW /wel&9tD/?Z8>q=.kkڋ];E[;pK48RPS>![+h>5]Tc9RNvŅZܬ$);lRT#a݌d3sQh|ϜU^8Ei=TfV*1=qX$񞣦⋍: gDXo >UB.;koSD?Uh|[SռIo*kmKyJ+1.9WcA72+ :[aS$wֲZimqo L0 Mg묟UP1n:I79Jǽ*p2,m˸q5zx O6n1Fݒ#Lcn8JCmlVN6mȱ h)#EWD?UehZ5ޤ5+ M~X]ImJ iNr01(FFXl'%s8'J.OCKk9,`b[=8Jp [PXE,qDO,y>1$Ęc)UGއ8l((;Fl@B#(3O#ՈvFyd`w sX:g./#u[Uv1vAeq5GZlĚRא!xE+nr=5B!z |A 3q8K6鉦OE- j(_qRxXաKV_-Js#5M; ›@n/erL%`gu#i qۊ|/{ 6,"k*-0||7+`-\sY闞!8v;֜N`"O8B'nU*I"%94 I$:j{? ]dڐ̽?BѴ|1iepTmmnA䌩 uƏ]=φ=ZͭX&rJ.px(Gүv!EsRp ՕHŗ}$^^cnێ1Ҵ( 3KtUtC`% -a-靤g=/MT}R/C !D9|^żtF_xf行=0F$cӵ 'Lե]Gð^I }R[-b]HN.0DVxE'铀SvWWОy 6(17$Roil.m0Xg$ި:ρKDNIc(f$ ܪqv} NeEf. mvBn7sz/eu+k2 ΋iى$`T/_y tq;z)-ǏJ"[Uð&vB&99|kCϜUbćE-6ͬZ33]% )-psy/7T Cy40q 24|$9k@Zađj Wۑ.P'6iNb\xa1'q;IrIϩk_[f u$ci#(,U%uxݲ+ٶ^ſ?]zyO\Wg+R]R= Gy{i;H ǓFP'#hi[YD\Pn2p}HO~-{?u-u=n#X?<+-.As;]Fv ,*ֶ/i; ?V?U\y垏 ֵh<3I^nnrJXy݀N,[V~Ams6K{O$hdb1 pOlߓQ{~OZ.R_i7YZXksad)3vo`eNOPl.y>6.maX?"),;[{~OF?U)Ǚ5`ZKhe Re :e`Ak z;2ok,& D z VP{GD)n&Cow#6nJ`qU'~KZX\"!ui7L2W1~Ws2Ȇ8!2Ty='e*쿯+2Pj5 UAહtmyi<-ŶsJw*=;ÃK3]+۫L=ޗ_LomnppF9U|:^Oo&IZ9(Y8HCy='e*[515Eq|XYID8':t|גH.N"ѭa. HNT Ta^x?y='mW߄ueoԴK_0 ON5kFc5ݶq A33 AlT/?TlߓSz?l+ޏs?H/&Bjހr9n_{e"3lKqh^Km<:O;U>?UVJVH]RYֵKnふy%UC$RUX[ޫiwvҼOwKmbb\HLɸ++a(0Ry='e*oP=M5c%[O5ICe8`Zkڇ74lߓTt,n7M _)DcW/bmoṑP@Ǡ8ϥbXZX\"!ui7L2ףlߓQ{~OB/__qb{~OF?UXc׃" jM6^x?⩭bmF-n-4X][dBLXg ߓQ{~OGDXߓQ{~O@(/?TlߓPg묟Q{~OPZ%גf6N_ߓQ{~O@(/?TlߓP*?U/?Tb{~OF?UXߓQ{~O@+),A{3L脬`b: 9k{e*>84ԶY5{)F̥{VOe*.\ >i"< ky {'ď]^j`MG($30:֏5KjC3)Y1)O*X glߓQ{~OBb{~OF?UXߓQ{~O@(/?TlߓP*?U/?T\@jX/@T18UU%|]e-.o,&c2I12]͜זO, QawjVkp=F[K]xPGmՉKa#@\x8_,aQGIc. #$ŷhm um{~OQ\yk-ʥ|8z67S?~2[˭.ar¤<,6ȊF+XkWXb{4aGwjVkp=K{~OE&OfE.mnofa$"QXGe 2pqڷ?U/?T\IX,7uCjT-mB'Xyjy='e*?U/?Tb{~OF?UXߓQ{~O@(/?TlߓPGލRdGzy/֥K :{$iʿ4? P,S~#]7PShIú#hؠ!UH-Hnu/?TlߓRjLh> t˕ q=&j?U/?UMHEWy='e*(/?TlߓPg묟Q{~OPZ%גf6N_ߓQ{~O@(/?TlߓP*?U/?Tb{~OF?UXߓQ{~O@(/?TlߓP#Iݢ)fh\$v?U/?Tvw03o5]*)!-&$9# #ҺJzBtЕ DA?ީ^x?.i7ܔXߓQ{~OR2_e*EWy='e*,W)8f^mqqkm"HM\"n@Hݞy='e*mf_km(:N9 Q3!rCñ؛[ndT%Wy='e*_oCk)Jjee{kwOΫ W0Z¶7udqZ3[L\~8-lߓR2܁%u ϧZ/50jzvt?폔ϧ)OӶ>\xW?\_ ?#gsWץ~H|6s";_j`g!L'{q>PuysđeFVrzwc2 I..4iunkKLwnNAR1 :)tTy4O+˰QAbykg_{F<v <+v73zs $*1p?kPmqj}VY5M*;9_LY8xpʏ9U n9,m,#[-Y>OaX#[&jvvֶ]!G\`]AU8TE8)&V{uZka)2 0gߚ>"j3-·Ww-D#fVQ|柯hҬtMWZ=P A2~+.iZ}u ϑp%ɕ6v8"_ s<[[_O V\d*&9TVpiғd5 `%" Vqz=;Ԛ_u+-* y iw6 $klPH鸷5cNQj:Xpj:F "ਁS+_(n JQn ֗Kd@iUpv\㸭]~Tn-{oeڋQ'hOI}M"c8&CBѩPÐwm8=ROY楦O彖sGy3T}LU2ڜ1Z V{]pދO~n߇LwWMg7Z7i-DWIH&9m a='uZxT]]]gy! o FxU\q)PEnݭZR&#«\XxQӆssZdڥīp"n>cm#kmB]0;(<{{{r5HoVG#HE%;[Æ>t ZX(孵h"H!W*0^3/={]׾,Ѽ={jL^%Ķ P7S o j#lu2pRUTu ~QZOM) M7ĉBIfsYC* Ϧx+{]+Hӆ(fvFC)>Z00G'<>h#vWɨj6NڌzZ#^Qe߲c*9%uL%gREF*Xgq?S汫x&ɦhTk TT +s mxrO8Z;9>/5t? y'Ø#-ZRs<;r XЦiM_No/C[]4І tR2Pͽw T=)KaWN'֮yi2X,̬6ɂ y޺Jπ]lHhC29aȪcϮ!:foL-ZP#mP< 꺤3Θ"GewS#qU_u6鿛f=cZt=${#QH?6IfwZ|3CVK2fBV%oE$\I)\h^Oxh䕉iP;0VfUm$_)HlO踵u~3Gu|+|5MBMJ-/c$lەQF GSK_ u;go p .C$vr@.tHG5dT12 32cof2Z!k'x_W?os@՟PKK>Ȟ82rTUUNbh=Ɲ\J#BpH$_( ( ( (+@j紙t:MAwj6BY yc\<(`+_i]OÚkk&wPzZ"^CY?6^CY?6 ( ( ( ( GެUt?b(((jZO_&i\decdnWEY>% n4ȕI I###rcF1qijKŴV @p^CY?6+Y%%x-y4K3"c(ɭ? ]dګ>(Š(((((NubMkos\\)o)BYP}HqP^6!$bwv*6᫉iW72˥DI#gc$zk=#MF5pѴzrA#FIR Jܭj47W (((`hwؓZm [PTy`s`Tͅ@i"d]axjkU̯4Ql|O}?NN~?;cg|,A%1` Oܛ潛1~$FmK;̓ lFI,Ȋ 35ˀIM)2:]9VA Ȯ7dž[[$kF2,M"`2A%sw0]+ExAg@## =J/Fл}g,|;]]8uXC3P /ax#'w;#cvX+Zz>OqB2n%Xȫcࣿ&e.'6stK3"z195]Z6x_@}#E 08Y{ثmrvvqur@/$Lܖ~5kh(C&Vp@e,dl*d8kvVLVܶ0iVMlĻDX. '˸-]qzU%-.mo7LV)oZR:dtЯP1V=u%wu/w::I3+ .?:I-⍤YQfk@I\zōqGjzea%>uKX pFF@zɮx}?Bw04^(K[*U<8?NIp5("Mf-zKr|F!NpHҎV"&2!K_Rko:Jw\^}dӲoG;27iEiuoŽ9#vWR2!AFKcijZjR[kFg0f, RwKпUqi_OOɿ_KXۻn|2|t=j$AAx]%mzҳ 8W]kze6[pFi<ԝ8B}ZMm6Y}jo<6l;WeY0wUH@W闚<[j6׭}ëtpMƨ㌂9(gV[5yJX>1̪õ%;jz/ƢK;;wh A[UQK`WM躵aim}mc~5sqL tEſA5o.9-GN[k]xu(yَϸq~Gƹ9.|Az^4ⷋFKLbBf,|ʿ!S;(˘I)qzGƬQ@4}/OjB5`dDǙ:"[jzCu/- V#X?Nɱ]؞_ݽ"eɯg1Z*y;ݲŋc^P8o/x-mfǕ4L[#+%C6P^IM-B}ASnV|'10 _ 8;|)-[KѿZVĒ4F.\Aȧ}/Okx z6jWF0NI{W]Gͮߡ_qzGƬQ@4}/Oj_qzP^F7 l35~>74Z]2Cqtm#P[,FGJ[Ӭ;!˅ee2T #y .Octʁ&_A/:$_?s#gօݾ`oc>5b8?ٞPdϽhWa^h֟T"5 `7'x4uKkI#Z7c8?&5HRMb5"qcY[4B-cs) z|5gN=f625zV(6 pB-EO~4}/Ok,ھ&Nehb"UYYTazW[B+/Oh_ޟՊ(ƏX+/Oj KH%[ g}WPO _ޟ8?PcEW_ޟ8?PcEW_ޟ8?PcEs v#T둑/,o3IbgW]AV V7d4 !F֮ W -PoW 5b"Qm_kn +;u1z3Z6e{mͭOo*XA +?x,?EϋU d[\!2`vc z3_ޟ8?PcEW_ޟ8?PcEP1572m2^]yn0JOq2C^3u?T3JnGYKq5wLC65bdn2:f'ҴoZ[ ޘ'0[HtI5{"Y ><APjmtYˎEfv_M0O}ҝ[ Ho մ)4l E4I.n͵c/4lܖtMYԅ—%..IyC:V%⽅ﶴ́ϭ_&O7t'W7:f*e2.*gV5}k]e{/i"eCØC$ p8fx)R_eM셇?3gqPu?c>5b8?qzV( ,KMA?c,7uCj@4}/Oj_qzGƬQ@4}/Oj_qzGƬQ@5ZGWt!\WBoz>4}/Oj_qzGƬQ@4}/Oj_qzH֐i& n֬%!x2hh&Ep}ր5ZIJաXַPkT,KMA??ᶶ!`f4t.8?qzV( c>5b8?qzV( c>5b8?qzV( c>5b8?B%wCXO1>(5b4}/Oj_qzGƬQ@4H@$h&=gVE"[Ýg dU݋3Gk>%ͼ4OxKtpW in%-.mo7LV)oZR:dt -Gž#]A ͲMi4;tW N9 {YnL>¬}/Ok5ru1@I84ZuԶ7Z|$Z 9+=mCA_k$Cӭ?/ 8!%TɑW-.9on/5 ۻsjW2"?QFI9ےztJUY<~ll?0*r rxO :k :V lѳ)pr+f_!$}[W(-T N0aiX6G8  qٹycqEC7q"z0Z;z6i6Z.}mg Cw6`:>si\մn6M rH-ߎ8txƏEr겴PH9]G޻JB?iX0~Bw\ ikkFOvb\j˼RAx ;ֶ[-PlncI;")Ax$ar@$U65i`ke]C̬xaڥ[:^G%Տt[ #Lwk7'% 3Ny9-Oo.h6u`T3`@#q[z>e|H+)+)XAS~b[hsvjM]kRwWo1GQ"qV~m7Yum.Fm-;l1xԡ{{j7 010H2N*喕{麼.4bUv0ۇSF0Ei_>75xƏEr겴PH9]G@Q: {C~/дNr}0u@2º-ĺuk:)NJPk>% &9S!F$ Elлo"x5<_F#xnT ;.*q߁G&4ϰkVSiK`C4%c ї*&[kigpJƅpjCZȰ^@Ʋ+( 3ϭ +Oƙ6Vi\_$1?jφgK]vOQ$7iq*ܬU wcG^Us;*$rw vqoY8^GM_Z^iƕ-sEa8"= |ᆷKų܂gdwo\AO:{HvKv͛9sDŽe:Jn.h,eAsqF;DztN 5|>4c!YL #Yc[C׈2iQ4X*Drs]\gOss*C/3#*v$XƶEΓS2ԦXo̡̨@FqG_-e^./V[ԾK't,b?2 ҭR!=dbT(+99,5}GPԬID| EqqhPrOmoM]$qssFIEQ`N !8ukG\j1$]M4+"ƇrE@$ܜzcex-XuEP@ȠkR_]\=bxݢ;I]TG3$QDEpU((}X+~U(*X 854wDnQ Car3U&F|Egݵucm kfj(<<Ā;)mF}jVakl,dT!uC 9P:fk-鷑\/D AQ=j]gĶZR6H䁑Htk=h~U(+2 'W' !x%_7i%Xr8 c[uy~nO4Xf8Ư} 6Vds@@1E'NQik:+KV:11N+$e[EOj:rܲ]<7?P+R}Kд[xcg`eKekCbuOǧ+[iڕb<p2rNa}o?iz[2-]JA պ`W}o?PT 6C̃sW꽟m@(}X+~U((}X+~U((}X+~U(k]2Zk/~}FTه*X? V3Zs )'Ƭ{Rx~S<.G [rOLօyy$n,$1t+I5buq:=#"r>kCFt;ibey ̭$`g0bǯhZY[(;yT'o3۬Mo)u, VA Bo?b? >g?pV( o?b? >g?pV( ڙHcVg]ŚtvZĎQ*RGpMm\@jkڥcsEq!%g*]pNTpxm+Ao&T delrL6m sireFpJG!}x4m W${;e $ wf rFOOi/^, P:NIi.IuaqIoo""1luz; KxJm:k;;QSsFx<1 @_W}o?ઐxC1ݽw9p6K2 Pּgm,\tDNv*z_o?/6Z SAt.[t6o*WaHHP(Z^ڬ,|2O? ,7uCj@g?pG*_}~Q@g?pG*_}~Q@g?pP%|Uj(? >g?pPiޙ؋& rp^i;XuVf?Eaqgoj: ĈE{ 76NFGk~R^60^ʳ[\F"e# U= [F ܯ? >g?pV( o?ચzNiA%LA p9/IԿnۍNa1 ddyJ^m o?bC+~U((}X+~,P"bU-[V-N;kHs!ԞIRvWX'i6$Vb")v Fq; [-*]uyo\i2ī*a ` Jg+v~|b@dUuxXȮZ]VV"T| KR6m 6>Aco|(o Us(]xWE{ZNwER6H䁑HK75iws\1VsƫrmܬTw!S Ia&m&KB_;N | :N{";Yr\jP:n,p%k  3@<=o?'O}?NN~?;c:v˘ Q!?CceFr|oR{7e?*,G6+I5_>PMB;%ŽԶ.~mѕ'G#<}yxufvxʌ}rs߯zXzFw" O N*"(UUF0Z+OWquFoo-ߋ 7w8՗ېzֵĭ܃g: qǪ_gr-08c|]5U@3KqrmʖUP ʓSn'p[0us`Ks&g\t3N%? !9P@atm&ݴpoʇ}d ,, |q)d#Ay<4e bPIWv xVH9&V9T-6$RzTu*0Iy5 enPc 0*ōx5k[Kyk Xn'Fx㊹>i7R[3j:VTiXZ"d̨}㮋,5I'%4EXcpc)9/s&]x_÷R]^xCOYy4є~["+^㇌]3+0=[^$UB:-߶5F@P{*$FHmš?.l1l>3N>$䶧5H ma6]pxEIv֧/Pm\qw]B,ywRA J'#ZkOO[~5[ZiL-݂'4 i0"pc˙< < >d\Yvf\Aqx~.!FG tU彭׆mÌ:zPn ][? eI#c,L7V ]M]xO$SI:"~/\^w-IS $mǒ;i:^-C.bt=*RkUGV$/K2{f0|̇ s91dbYO֖[iٲ8 NFWV^ !rOqFb1U~nq+:=|cl3<evW ~Tsֺ+~[ݔ>ζ]*F Vݶ)mmpDΑU1@0L8EڜPffke%.rrs4lRV),ɿ׭\`[d͵/ ZOw[T4Ef# s6JDlm,۝7OeyXae``ALGҭdv$IoG$ 79>o[[/ح͎ᆲ3zE5{ ͵P 2 9jyw<[Hen  |FѐɯD->}>vY\gζLG[hMc[xX(8=_J}r7V:>O>6ӿc̈́mPدCuWգREFҳ4?Q!9Y#I9^@siQX_O*K>siP*%94D?UM`EoOM׽Ccp M)됷[]i<I"Fz `+f^=FLңb;xNs!L:g(k ?ƚk%iL]A9PUR? CwdW:IcA*TiZdiamRDDQZ_%+E#k L6q>i3xoN.loΕo9{t_1c*T2 kiv34ш[A++ɪNAm{x8+!c('8KFdk6f:Mc!y` dIVQw$MuUU%hX㰕@UU1ND?USwbE*%94D?U!(h|ϜTb>74}_O*Ccp M)xOxj$֚ ڡ=Ε)j}>*xѤH庆M))Yc/niݑ Dı&nq%'%񟽒NzдiAKXӢ_O*K>siP2s!Mֶ2OI2~?N8[h|9HI#w2Y-R`rzJH[ۍ#RҧkĺۑQ˝0j.F4W{G޻Rq!N짃C-&Xy6*o2.ˤC%tD]WyڡU@=3i?^b4Ѵ|;pBYnU.F8P By8uK^X.AF{dlB "8jnmOMU"H[a)+i`Gh"|uʱ;ryc,,<5{[["^ȳ{hEگ6>c5T>e'}+m10B/qQ;CtD0{ckIv3nyYiU/G%94WPO D?UAi<Ťr |@h|ϜTb?>/@(h|ϜTb?>/@(h|ϜTb?>/@ϋW^ɷwQQ}t?d7H4{Im8!aO?#BkS?x,?x\R!^K{e~DHAu#ikuxV[X$rA$֍K+ht% QPV]_O*K>siP*%94D?UX_O*K>siP*%94D?U?0;|+74`>y=ʊ'C5$ N~FjCy 2AC)xCKIմwc:rWg9 ҝ,>(x &ԭpd5eu_R;k؋I;6l-= / EsRapČy}n.=GYԴHv( 2%2+OH{R0;5qۿmtDl ⧞Mλ ՞Fb c @hZ4~w]͌X n,cۘ?xnfw WQo閚tu`C5M>R'٭Zg'>Yw4-/].tѵM o_q=#'f]nuХƴ XjMz4E6l.4"h ,sdWGh"h-{Qmo}F_ :в[,fxZOxVC;L(` qWWUĀ`YOT}_O*)X,7uCjT-'BشNAOK>siRb?>/@(h|ϜTb?>/@(h|ϜTb&Q7ϜUO'ۥ?d>Rqڠ~%[$7JYH3/9O]}xtҤxd!q*tqc]g%94⪆麼˩xz ϔ0C!8AғZrA[-wG8!ʯ 6X }_O*K>siUIHEWD?Uh|*%94D?UXh|-'BشNAO_ϜT}_O*,QU/G%94_ϜT}_O*,QU/G%94_ϜT}_O*,QU/G%94gkv:Tqoo$FD c}n\8$dz՟K>siR<"2=̬0T#T^-.E +2]D{FUK>siV4LUE*%94D?UHUK>siQ?EWD?Uh| [\SżR1sV~/H<32Rc OS%x8;[+v xVH9&V9T-6]D{FT$rCu&qa7 qִ擗rbRG|OskJF!vO7<ʇ:ɸHugGZo[&G*1 EowO׫q,I*Ƴ@ I|gd5Vsǩxv uI-*c}jVקo_qmiڇg07vL5H.d;#) ` P{8d~}4R C0q 24|$9H,lG/ bn&TmqBvٯj[:vt?폔ϧ)OӶ>\xW?\_ ?#gsWץ~H|6rǫICgItYr#OcC6K(.]r H<200þ5][&V7Gmp:R0 . gK}֛Ll$`̉R8ӵyk{]mCA_'5[g@,}Nycy`"/«\cZ?u\_ֹYou2 4{Pa`UnQuJXtjK9./죡g!1#x6.maX?"),;қqMecX&HPrAG+<=ZZm%oZPۣ6e䜃 C-thg;(Uԫ+CX^+Wc{Ye6ȨJ x@cggҮKVZR׉I{c %ʥJ 1mbIr0UtSi=i>,"6K 8^Չccj:arvΦ&Ȋ ֑`0W?_Ǩik^KLU"HR:[Fn/eZ]@zpvTqӼUɠ[Q HФu<(<7U/闖V:&T­Eb7U8kK_P 3Y>p@ @@S}B;|1jYZ*[ΐ;`WC\Zծe NV[4ΌEV!B1`sOK^A?ɿ[+<=ZZm%oZPۣ6e䜃A?ɿSz;2ok,& D z T_Bk$u O Rf 61$9V>.-5đȱI Q z,luBS,.WP]VA4k:mRҵ_I5mtHHcpmG|ۜp>覻y6~A|[so-`\%$ ʥc+4$ZΙ]NMHcF cq3Tnz^~52ٽ'FcgUWlU]x~wn!>ͼ9%hR)d89"/_J$Ѿqleڼ̖@8`}qzƗ.'yʰ+ z {it]a/gi8%C{clMq᫝y/4BB)AeF9Mv-Ol 7i{ICh$i~>U1e \9n^dm:΄uM2TZKqgi%/ O݆'`z@1W hr *ORGjoE_/=~ٚk$Y'Cɐ;BcUPA w(̦]2u5cv}˜#T|Gi71[V޻Q#-Nj58[izol[x8fy`n1֞_+/K+H8mfB#2]bQjtWZHb!gKy! chCp>cpkjQkvKym쪆HW!yxLq?6qVVVlP*a)mO뽎/rX]ܐUKia chCp>cɨn6V'e9ko5 ?X_# UxcĶ1ig-`iw|b3NI84_R^]UEBI"„4DjyC[@dt ] ]8.ՄRZ6*\bF V>GWojBE(U>8AGK-Q@Q@s\aC Y޼ 8fYH8I< os\-_?OOZo;Eͺ.Alrb@Qw=3KP_Koose9G1&y m2r)3ֵӴaao?QE[8\9'8ʗN:/4 ;P5}x'g ܜ3m6Kැ5͌C留NÚ֣uz1E钬s4F]"ʂ3pA=k+|H햨m mۋrM1ïhZ}s\ʹ41[C2C1p@pxwuTQEQEQEQEW_i]OՓk7#{I,9Z5#̷x'$?S5r6MSKa-%¥Ab=EROefǺ6 t˕ q=&jk (aEPU7uCjU7uCjEPEPEPEPEPEPY>"%.BEonyODŽ^9b~8ZHiwhY@'imf:ρKDNIc(f$ ܮo6Z5ҭ"bI#J0<=+j$gUŠ((((+]c/6K{s (RFgj6-gi^~ov-cprNq.Vo%n%K`)H@1%xq$ɪ0^xz i,^Sz҆I, $]Сҭ|+=myK&Z 9go5Ur[Tݲ+ٶ^ſ?]x?\g>_9_?͕^ſ?]/.GigjҝAcAڍYXE$q}+Sz]ƍZX\_\ƙV'$<yKkL.Ɵsx M! mߓV^ ۯ`SuN{$BF \v{/?TlߓW k0k S;՚q?dǙ吪9ݜ{Z%ꃨ)v@pXEP1+O_ylߓQ{~O\L>мCm5Ɣ˦j:*15}F-CZHFsM$׾Pud/6[0p:|“in WbP{GD)n&Cow#6nJ`qV=2+Rd 0@`Ͽ5|D5 f[;!n![F̬wc= +Gy{~OF?Uq~-eO/ y.D2 +cI4I W2jZWs Ƃ8R@X-o-au{z~7#6ռN^v9];ܙʕ&a:5S:冣e/Pɮ ҪᑘqN/0Pbyn 2%EV`HRH75D5 f[;!n![F̬wc= gy{~OF?Uq~-eO/ y.D2 +cI5rƷ1[ >]`t.dyt/RvO\慯@n]?v^x?y='0->B[&?p2F9$dfxUM4!u%fs} N$ M5 u/?TlߓWRvWWv:6^x?,/1&s4F)ilDY8ǿ{GfWZn-eh!g9UsT׼IM4=_e*5}^O1G}?UajkU̯4Qgܕ8a sԝxȵWu:F[3$2b {\ޥtջN7}ӽ<zk7BIAIK3ڤvƍtoΧ>l|O}?NN~?;cg|(E^^!ֈŀ,>?rnoK;̓ l״ZE(k;up ~btn4"S'm7u,Þ YhXu .CЃ^WCCA_'[g@4}2ydxn)*?L>%X41w#횻h,qɪX$j51f1u=ZX4k{iTUsȄ@ !ռy{?,.Қ[]V!I;TEtZmޏzwУli-o V<*ƴb__~/5?mFgkmkmlڈYL u=ؿ#HB:B R/C?da|Z޻a O5V9mGpjzҴ_FBm#W Ӄֺ5:I3+ .?:2~l4.NX4_ ˲5+A0YMim%\|Rȟ >%ai߆{iU6SrqZc:XA?ɿm_@Rf1]G:9;EQ9#+HMfr:zfq.ismms~!bKxґ(-##r_u+-* y iw6 $klPH鸷5Bo⼺ySY.mhd#'i.##{Ӭ;!˅ee2T 8?w6r{]u6cvZ#UT"@B۔y 3ŗugkdd92 ?rs}8?R.ZeT{Ϣk~\sXz%TEQ)JpxGIZWU`sI}/c:X UcEW_ޟ8?A?ɿSմW'RBe dN? {i0i"cGOLGZޑr-=zrW:OCpq4vw%喫amxX.CFz?wtku-B;ZyUcWm'8O@֞Dҵ{ <Ҁ8fm$RHb\=XІAb7^*s[%-a4bA)DX7˷wLlf8?ٞPdϽ'ёny䅯M$أLw6H 1=3Iou/ \le9fdA^9CKL5Zk~e O@v^_ޟuo%tC3=Ƌaw5ʘ ,39kn/Ojhz(꺼\j1o33Ζ!56`-#76 ݳPC`cEW_ޟ8? ^CY?6qzPZZFб-783@c>4b8?qz@(c>4b8?qz@(c>4b8?"[GDr`N`hMWRL hi?ʻ>0Zزӡ#Mϓh-ԅO=Y۽A 2r[=Bk\427 E`z36K -:煅^աOu=JX)VI9U]@@$txgI6, bnp h%w6M=9bfW6ܻEW_ޟ8? UcEW_ޟ8? Uc.?S5s5森ɣ]i\d]/ ?U#Zs)oz-v-!Q7a<<ҵƝ.]|9Zçڤa!O9 ssHT/t}Vsk{;%}H*VAR#FRMo<͍ny쌎 ":V752iؒ˂=cJ5R)-XEq'٠T K1<rSHgIu{vmydE/n.nIlū[Cs##,Uwz c4Yo'bZZFб-783S/Oh_qzGƀ,QU4}/Oh_qzGƀ,QU4}/OhWOM\oGƠKH*$?=[h_qzGƀ,QU4}/Oh_qzGƀ,VOt_H4=g%bC.2D`Hܣ#5{qzH֐i& n֓aXZ-q,-͕oog;*]ٙ @=NMoYo'GL5Zk~e O@vOiiBĴdLϽPUcC,QU4}/Oh_qzGƀ,QU4}/Oh_qzGƀ,QU4}/OhA{ \\@&@OLO /8i4vwF^ͣxKh{=9 $eqǥnVlϤso;^9 8?mJŊ*Ə!(c>4b8?qz@+^5]3Yҍ_Xy724qRʬTAzck/Oh6IyGZ^wo'iH hU""FI$I^,е0+G'sy01$~5~hgd/pΎ s -ĺe͵-+JGPX5~ ԬH.n纃T6OA# 4rj?MNd6_-e9[N|.P[*ƅH?KwKs[]۴mk(FYUP nSuht[s-k&x)vp ѝUFK^+k5wvȡn9 s׽_!?;c:vt?폔ϧ.c<+Gl.jr$W֏# ac>Iٿ,K;̓ luGChn1Cr8±J9#6AahO6x''Ģ'tV5;NԓR֤ӯ/%-%#vȬ8MZ!t[sHK8g坎y$hSb ۯ?- {ws91!Gl傱gOkGUnf10H ']ҴrNږOkY!$R"Epx'T Gg]~MF R] Oll3|fD%:\crj4mGP,imFramp;=[ݹkb@$=Ih:EΏilQ?66Eٟ9RAH9 pRH|H#־o5omco LKEr\X;D5kww3jEEJBq4 \cHraBA8=Ji{~!]BUU9W,{s\?{9/<["1%)nP>z6i6Z.}mg Cw6`:>si\մn6M rH-ߎ8\PIHP:fn4j6+\5@ʅ$p(;<OÛ߇->b Em+3=i.|+ie \19,4Ys9Mg<]ũ2!K_Rko:Jw\禱: {C~/дNr}0u@2º-ĺuk:)NJPM<;'? eI.1iKCo  ²1S''[n%A32;.J y-wI2+_]9Z410W)Y@#j'vW[[i6A$B\Dl ',`WIK6<d~9<<-1YxJ&quErJ8g g4_@iωL b:8ZbcT}qAdZx3x NkXn- t,pTfU`xaں hwwOmy-_%Ǻ 1JPCO VwCZ_j)툲nF]}ʜ!صRmXEկMN OKkhepH[E7.-' Cyufȑj:r]ZéDVSu܏xlxmB#ߛ5BJ*SpT G/]J;rQ iY4;T"* 'ZKk޻%NWr87:} j\t_}~,QUg?pG(}rok/:oֽ*X 854wDnQ Car3T^-!٦/N->sj%0ھ 29y֐A#gTb[9ǭz66—pBd\ VХmE,p'O3q87qӧZI&Rb]IDM{ywK{uPTۃ՟ xL}6g0=3 ߓCu-W-~(.\`pؼqQ͠ieϧY[ D"pynA錜nWZ5<=RUmmClXħ}$=IȬ,c-$ىfv$ĒI5{Cߩb? >g?pH UQ? Us\>g?pP^ڽ­%L #y .Octʁ&_A/:$_?s#gֻ-*]uyo\i2ī*a `ͱ: {C~/дNr}0u@ F)kβ? >g?p@{|?5!/HrB8 I vo?˘4_HO$G%|ݤ~`A =SMR/X~HXVVc)񻺸C0YӼOy5 o$ި,y9e8#`֕<Ʊ~4q5Đ+hcA끓T|!iί0UEΌ`tSw;I~]=}<'_ԓjƧM9I[U$UeeSo-9Sjs5}:N Cud*|ۏB1ޯ^ǧ+;,[,ŏLwcU6Q.|bI=$`$q<[>_hȓ >^MJbJ&R>v|I$rj'UΜun5a2ny\>:zkGw_ç~Pg묟Q? a`0yt.h_}~,QUg?pG(_}~,QUg?pG(_}~,W -&8$OT{h9%)i dI9'~tGR/UN$Fwg:4y-JmuM"mb45*IsrH*r DStק-qG4䍃+AU}3^t˫H.+R`2V&mqs !$%s?x,?EϋU d[\!2`vcbB_,O{\^Gs20;x'#4k='C(/VYgqq\r+3na{=2(gcHnF6Ϧ5WTҴCQRuUx]YdeI}6jֿ֥>Gu!bK^rF3p~lsxmamv4F| Fp?@V#ӭt+T};S}^Yi3I&Nb(Q͍OMӵx즟S6ڕ7֓*Hv2 9VR@i&5:Mֻ+_YEuʇ1H q/Ss<+ ,+1 ~f?(aK׮o`3g?p@(o?b? >g?p@+<4Yմs">I]/*i}Im:lu?PA##z _khnfcO-POg묟V&Xj_7ZƧz)e1G5A$Ng?p@(o?b? >g?p@(o?b? >g?p@+zLzχg-D);Op1*;i`{Bȅ .pF*fQvi~[+KX'i6$Vb")v Fq; }kQMghX~TX~P*(}XO1>(2!K_Rko:Jw\禱: {C~/дNr}0u@2º-ĺuk:)NJPO?C? eI.1iKCo  ²1S''vWÚY k+hYW9zqiws\1VsƫrmܬTw!S KwI%5P&FD# rAN}-?KiF"9Ep|-h޵Xjv @ o^ 4Q꺔k.^DSgVqtܣ[S6́&^ϼ !isWo's]E5ͭYdNS'$>_9_?͝oy>Qϼ;o|Kk cQd7W-37U@¨9O5Wtn>=0/svhϤy"KuwN}M/e2+]P;|ӻ@?F} Qy>A+hngJO %!+rt uuk}wEmRd!*,p?dA-ѼH? hϤey% ٮ1vBqxH- TEܩ(+'NxS%h]\i_Kuz`9dFcrǮN_3> ėz7F(QVf@\ {>!ZԮͪE4"A*xA'nB+wEx/5M|gߝ7NZj/nlOO=&6~ ^$G;nsץwWgkJM?P^[.ș %<`>:e\w;\1y(W9˳tbdY[Z՝)$oCAJ:E&*Beʕ^@RAVđC8*j "GAQQa7"Lvy>A(ѼH? (aa7"Lvy>A(ѼH? (aa'XBF?RhϤesGAQG; ѼH? hϤesGAQG; ѼH? hϤesGAQG; ѼH? `]W>y8)hhϤ?o??E29XAF} S(hϤP`9vozZ(aa7"Lvy>A(ѼH? (aa7"Lvy>A(ѼH? (aa7"+X]ysޖ9XAF} S(hϤ?o??E29XAF} S(hϤ?o??E29XAF} S(hϤ?o??E29XA似oA(ѼH? (aa7"Lvy>A(ѼH? (aa7"LvK&,}?) a19# ɓ?p { _/KMIi꿙 >֞:W>{&VGié$26譻 Vqq+4u$YjI$I=vXݱ@b\73h=5 7G; ֞i꿙 E,_Zzg*si꿙 >֞QŸfHP9vn؟Ozi꿙 E,_Zzg*si꿙 >֞Qg(Zz¨QG; ֞i꿙 E,_Zz£ yw/̊}=si꿙 >֞Qg(Zz¨QG; ֞i꿙 E,_Zzg*si꿙 +N]v'ުQG; ֞i꿙 E,_Zzg*si꿙 >֞Qg*ΰ6=t` T,OOlTu}#]fMB /}pyt?폔ϧ-]g>8<_svt?폔_?Ͽ"ϧ)OӶ>RybW>IEOӶ>S>l|}qO}?NN~`K?9]?;c:v]/}pyt?폔ϧ)v?9EOӶ>S>l| ;yōЮ}21?8g>8>l|O}?NK%7@94ߵg*?տpi)cć1Fgy(NrzQ?m͕X. Ѳ[$T?ڟh'I(dӭ- V&fŽ29Ϸ|gy*]íǍ7z/tMFmֈ p9W;I鎗QeZ]C6O(U#8ʐs|<gs ٦nqxFB5;KxD (^BdrmAN֨|72Q\y2(*`8 y(Su/w ʼn,c>tjA(yPHo8zo [hzީXYc ȅ;F6$BI$[??ȣKsGtxĖsk"mH_!ggwZ E!f}NkQ??ȣ[ߑAłk|uu4N1:vF -댅;-CQYۈ#[xLT rxgy))oK~@;f8yGٴ[@O1 q[5'"9ECww'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9E'"9Es^"hȊo0&-&}:ʺ9Es|H 4ۛy-&TF AO6K II??ȣFahVd%RO^~g?pW<gy( o?sG"? >g?pW<gy( o?sG"? >g?pW<gy( o?sG"? >g?pW<gy( o?s|g+|[?h/Q? 淪#([?h/Q? ?b S>l|y S>l|y <=E?폔ϧ,k#([?]vt?폖5SG|(!c4#G5z6xֳI$ 1z_?y L GUApk扼!ሖT2-Y ~"5tGRy)+ #Q??ȣ@R%(PzI@ x}i)W%$Hi$p1HFH#Ac Ƹ*wh75Nޤ~?{b-">3ϏE(PP}]3[>3ϏE6|gg5QNgĶ|gg4l>?khGCAugl>?h|-׶G:|-ѳ?[?mu?%?[?gȶ^E? {-">3ϏE(PP}]3[>3ϏE6|gg5QNgĶ|gg4l>?khGCAugl>?h|-׶G:|-ѳ?[?mu?%?[?gȶ^E? {-">3ϏE(PP}]3[>3ϏE6|gg5QNgĶ|gg4l>?khGCAugl>?h|-׶G:|-ѳ?[?mu?%?[?gȶ^E? {-">3ϏE(PP}]3[>3ϏE6|gg5QNgĶ|gg4l>?khGCAugl>?h|-׶G:|-ѳ?[?mu?%?[?gȶ^E? {-">3ϏE(PP}]3[>3ϏE6|gg5QNgĶ|gg4l>?khGCAugl>?h|-׶G:|-ѳ?[?mu?%?[?gȶ^E? {-">3ϏE(PP}]3[>3ϏE6|gg5QNgĶ|gg4l>?khGCAugl>?h|-׶G:|-ѳ?[?mu?%?[?gȶ^E? {-">3ϏE(PP}]3{~4?hƏ?k(GCAugGg4cGg5QNgh#lƌ|h#lƽ??W_x>4ϑF>4ϑ^E? {G>G{ehӨ(><|h#lƍ??lu?'я׶QG:|6h#lƽ??W_x>4ϑF>4ϑ^E? {4ϑF>4ϑ^E? {4ϑFߍ׶QG:|1|(PP}]3x>G&όlƽ??W_xmşENިۂ1qZ>݋f`Cm\׹QG:Š(8(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((DyK  yK tProgram Files (x86)/ArrayTools/Doc/Manual.docyX;H,]ą'c_Experiment_descriptorsDyK yK :http://www.bioconductor.org/$$Ifr!vh#vz:V   t 0    5z44 arp $$Ifr!vh#vz:V  t0    5z44 arDyK yK V3_7AT_With_CGHV1_0-April/V3_7AT_With_CGHV1_0/Doc/mAdb archive format.docyX;H,]ą'c3DyK  yK tProgram Files (x86)/ArrayTools/Doc/Manual.docyX;H,]ą'c%_Defining_annotations_using_genelistDyK yK ^http://cgap.nci.nih.gov/Genes/CuratedGeneListsDyK !http://cgap.nci.nih.gov/PathwaysyK Bhttp://cgap.nci.nih.gov/PathwaysDyK  yK tProgram Files (x86)/ArrayTools/Doc/Manual.docyX;H,]ą'c_Gene_ontologyDyK www.bioconductor.orgyK Rhttp://www.bioconductor.org/yX;H,]ą'cDyK Chttp://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDFyK http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDFyX;H,]ą'cDyK www.bioconductor.orgyK Rhttp://www.bioconductor.org/yX;H,]ą'cEDyK .http://redpoll.pharmacy.ualberta.ca/drugbank/yK thttp://redpoll.pharmacy.ualberta.ca/drugbank/yX;H,]ą'cDyK yK :http://www.geneontology.org/DyK  yK Xhttp://www.geneontology.org/doc/GO.doc.htmlprocessqDd#R  C .Aintro_fig1R qrgɁsp FprgɁsJFIFHH,Photoshop 3.08BIMHHAdobed     $$''$$53335;;;;;;;;;;  %% ## ((%%((22022;;;;;;;;;;"?   3!1AQa"q2B#$Rb34rC%Scs5&DTdE£t6UeuF'Vfv7GWgw5!1AQaq"2B#R3$brCScs4%&5DTdEU6teuFVfv'7GWgw ?Ekrz̷q6e>mV+ IQ\¸)6]ehdc 8DlU;3-2dgfW̹WtӃ:M?2򩦼WAqw6]U4fݓڎA:E6aJ\#*\?Lq/ٟin7,fy﫝+9qxc[{ZּiC :h;dW2Wt*#vmV͆k{ZwDKdWJv?+oKvgZe˓2c7}^+r@cR8\p-TS+_s{o­ܜ `sZ<~үz]=7y_23r(b*ُcƷ5s콬{5!tֲƭMbZ]Wj+skydם?iW.vgZeu7/ӎrj mmB[kH5UY±ׯV/O=jOgw8:-|LNfUqZk%%k F1zGnIAIQޯ$8$x}>-,qI~coWK=گ7?Ky%GC_z_XqRIQޯ$8$}os^eM=;zslƦۇ۲;EUʱhVvs i-"ZK\4D=<). [m?9喹H ks;/K>vOlj&mYUcCg9k4MM?9.kAv~PCo 4ا'Iq.[] 2{A2{3^vsxc۟ZZDPTHòma{K_Uokei#P T9M>I')$IJI$RI$I%)$Ĥy"Zk\K\4 l IIQ+a2_p&OMq}7[*?p&OK<)qǸU|)o$G?E/8'HWgWdlL"{_wnJ?y_ TlV,nK+`.{݉RI4\q)S_1ֽΉ[t+ XjPc$6V@8<ֹ΍'S 7m bNrǒ21lTFI9I$JROqRt[rűDY{VkCY1Hhu'ɶ{_^Dp++}Nظ_e-gǮfYsL;ٟin7%;3-2d,>ަtل WVUaDiX;Ƨ5{.mMS\Z7Fٟin7%;3-2d>ޯOCTiUU&Mmkohֆxʇ3{}=co7kʗ7y_2Vt vdW[oOƱ=8=oko޹}2:5TZ} ?`ak?wU} GvgZe~Lq+?{q;zDEܾcehڛ5 cxqJ'Ϙ~LqK]vU0Z* 檯_юR6t&^e阠%~I$I%)$IN.'[v{i4+keM/`{жUs01}PuOk*4@7  /7;;3%Tg]c; řamIgfߑMWpsc llUcCښѤDínӺexo~]38 YUk1@uNu\=F@d]7IFR9ⲿmv$ꨩ\UM/ǐֵ9@IL!+w{rM_S.Z]!s\%k[ۓg"=ʏN?/9Wv7{mI86jF68s}x.9FI18غI$s=G>w-ݷ҈w3E4R\yCamTt5i&< ,*ңOqR+d3 Hx&W?y_ R+a2􊼳z>K:Ω 5[i-)c1LB}ڞ,??0ޤ+a2_p&OW)eԽkC뱄9kpЂwgO 8'HgWdg#/Miٸq*mǰmhw DK?\Xr`k~G?E/8'H%R>Wܟ?Z?p&ORuts,P$5#u*=GgKNl7@a F`@bOI$$Ʒ#'#233w}133% fMev ̙޴} g`yfE ibgNuqaiidGF+t^[V~u=ek4}ح:P22>2lmilQ5RvOdhOFŨ;)n5y hC[c;h Y-obѓۤa3?c~]mVM=n;sas$ lyDI$I$$I)I$JRI$K:}=77f3}Yug䱻O% H!V ϧKO\oWݑVFI YŹc2aw8myy ܃uve۽ _^n7ј~%??feuZΝs?fetؠI\gգ}_Yk96fK]^̷5Xw+NŲBBQTuO^Uz=81 Z,qkOk- ySY2$iq^~_շ]Ns+h]SkcOIuV*^\g<~Ÿf]C`t+Snmaɽ,n (,mca5ߣ-ν!+w{r^\gg30r1>͊ϴT÷{Kf>&% JFv+1 #(lS 7mGLim>f?/8I$%$I)J?_ϙJ̷%g"˫n6;XK\&>9MO˄ $hMsY~:FEŧ7-zUcۓSkkXi=ᦚ?lL"?y_ RqRC_u]2J2ʠTld3k RwVK]v5-.mא(}㋑eZ^\Z\z'?y_ R+a2\q>}7^Yu}7_>5]^-].!23rmz7ԏ]We6mw??jp5;m/up8'HgWd}osoX7q-S42iO8'H]^fwNmd~!X1od[[[(J@n?6L8FFR. wOuV*^\g#GG>4}nq1*\oNse@kvnhwCd|;wTmt2!s}{_qisr J$̓d@# O%f{D2vf>KdRYσvwϷr?NV#\2lfkڇk,56wk[?HHo^:/YU+?$:8 !Ӻׯs2EeKKݐvQ|n.b BFf.&E^\A:9 6 e۽+}b]+ūdzc}V5w}LO0;_w=W`H`&D4t[T+ѿ/yb]pަ/Y8?zVNHۻcYlRHFJ<\]iI')$IJI$RI$I%)yn=}Tu¼>+}68n i#vԗt2q^hkHLr;҅@2u1ͮqms#؍pnkaAbΫcw[~F^(\ǵm?F5.}Rs9AXE :5sɧ9 le!h.asn ^Ƕ_첗Y p.a ty4uq} ~zo{aި.p7āqjh/H*uh/H$l9H+< k~F]NYN6*splk+?X?VedUxY,uCw>Rև][$1x.>(e~?{f%?ĵRNdrcu3x?Z$+7Q0/G/s%Jrcu3xߕM'*dVN]6apl`i.c_~ҲŦ7)ޥ8_nPkCKYkwH:JJztI%)$IJTzwΩӿuO4M;2rpӋy$NbRI$K5\cݏMXֶ)}3UV\5Z]8B"#_z}$Gܼ_zz[? ?y%G/alޤrJ^y%G/alޤrJ^y%G/alޤrJ^y%G/alޥnUu*rATAԷAR|9#"48jwIdf}kYwa_erڱ- .kl}5==~W:u!;,?3yW+`s? Qꨩ\UM/ǐֵ9@XӠ~W:_֟9a|Uhǂ mV;w }U_f LznS^ߴpAm.OSW~c̃ic~E`{جsf;B3yұ\CwXg=~W:V;=øW+`s?FϯW+cܖV\ ,h+wI$TI$$I)I$JRI$Us_^zI8Xu ߗmCc,ƺkk5מ)RI$I%)$IJI$STLvQ^C!:.yP}m뇎^t1?j˻&ް+?fSv>Mڀ}̵;@8$:3#@k$EZ:mĩ[1zF<ۛgXKۜ@C@gAwuFʟx3"av8X`vֈRW_:uvCn m׾ ^+nKY}[J?3~Fݎ܎C*17׵|๣6~s;9 jUOo2*a%f׺k\zK 70 fkoCV/`m%$PzU]SZ}bU} { z}.7Noq[}nw?c5sw}{T&RB܋U['"{ yh'%9WEXrux^_f;mJeu~}ZVc[m>6ON0 ~Ki%)Q\¹_^Y}gkȬcd2ևCDÁT//\f&@g,>Ũ_xc*qlBkɽLvWh-F3r]A9D9x8m_+̢UXcbZ#Ĩ^ FQu/}N='<:4[QʬۛܘsEOV+ml=26p; ?G"_v?̿k&v=7mͻƎճjѽ/D/G0?kky72ڞkk,p``>jw!˜mS}UM3 zOu/kH$xn[U|n+uA7S C`,&WmW+6.E^y tIRne4չ{}L%ҥ;pGGl3OM2v'.$G`n>ǛL|y/Eu\Us]]TK\6HĞN\#WbI$W)$IJI$RI$}lįY_뚭d9l,sqcWkFn-y-1kuW2Hǂ iH=G_ \f|4jqGISE/WuCU/%rk7+nѴYgI}n1m* T:~]-v^D,.ʢB2T!1AlΕr/*~uV1\ڋ2D^-V=Ct7W{;/tkn XͶ7XGy;{BoBM2evg$c.<jV54A V9_r!̝ޓ dvuXcUk][mhsګs\$C`5'Wb5Q<TKw~?;ٯ"uCzU q!>{9] ݯd HG]x~'?~'uVaezW]Ycq,rZ׹uF׹i :nmv ;יȺ,.ۼ@5G],Q[}_蘽"on+\ .s`e78;V=}ֳX6N56 tVڙcn1ζ[mx.t=ƗUÍ]Um-{,+sj1+`,VF߉i??޵zA1l -{1,rScL .Pf=zVUnZ566wM`,GHNͫtlCV]5[_4=&W.m}aclkZu<ޓҺfbG7*7-OLͺ:hىodz%zO>8[[2@/-vg.tx\T͟]MK7߇Kl[{àlFՒ[qr:S6?3}7je,e2c]'y v渐ֈ}d]@nfk3/76׎FT)%R?Բz6gOFUY{vcTig0k86ȾWYrk]hmLfƘ-k%=2qIQ'ͽEeֶ^r;rB΍z563o69>RXIi׿6VC_QvC]8ޞ.نk. Ddzocllfk۬8pBiюZjyG? n7ֵnܕcYu/ef4gcK`3$+LZ%v_T+ѿ/yb?N?%z7,G:oc)N?/8I$%$I)I$JRI$I$$I)I$JRI$I$,԰srfZm~M%J^,sM/K-sCf9+RL0vRxoTW]hvY-z >%&~uG\n_19 wnV}_vwi%R1ERӏ6ou_fu.s'qu {_xvw#tNģÒ[XӍbZ(`Ҳ1qq+ʳ*&ۍ!K6[˅sLik}/ $݄Mb98CZvejY];hnKsuS[:cmĹNmol_mwb` ŵ knF{X2̯hŁݍKyЇL8zG֎'cl%ׯw|Ӕjx.k0Ys5l nZj-54]68%ձzRxbO"b^Uw51ݍxFw@~}`='cl%l5Rr^%o>6cZ~aߴeb71bM mkTm08-[ac5zV/Ixg.fϬw\n'(4ɷ}Y국knky?DNxo չ7SLpBie@9ߴVQ}=9ݷc_t Ob-U+is?Aֿ_g-[yT(oP~[erͭqwѬwAL|yrI'Fyf@ZUBe~T4uDX2|U?8zv'!˸PÐu EqkMk\Z\yZ'aٸXVe2N^bIVhˌy.nK.ˠP6ێî)Զ>hK]Ov%N^9Ϲ۴q8mU5[CXƀց 3OM2v'!.C}c. k̦̦݉݉{gaoSįF;gTMldnWO:Jk> khcKL32y>I$ĤI%)$IJI$RI$I%)$IJI$RYZ2%\q7cTָۚ[U/c^\>W@nyc I.e}a|~˨u.Gꫩk(ki|p!zX%׬u?2<+#w.K߯$gކGޯ$tQ_??EwCޯ$\u%!,[&&Tpl~po͡ w> KZ`nq[0z/PgQ݋uم`t[6t^~$@ VW\cr/7+@[+E,{TwwGso ޫpYu`2O\{+}meƯզϲdzOk#C,_ua}"pu>-XߴLIzoZ< cp/H'wd?~K@1ُEc6V1-葤/QU]T}?v8kͺ<7 u8kC뱘Ynk-s\)Inh/H%I41ov.EkussY[[ZS[75twH /벪ݑE7fYc.,uRD7wݠg_AwQ?`rn1_A.WSms/_w˷52Kdή#N?|X=]tLV;3pm>۝:Cщ[Ens`=(ڕ0x t=ދ5W,;boXۈSCK_ak{gY:5:01csX\\u$IMv/_E<6۫g`n7oﴌ{=<=l+Ȫ,k+.%IוsB_b_:WbQvo-YT::]noUWh!.s-ƽoz7N鎾J-s]}Yu7c7{Ѡ `t/+ȥv/_E/Wabp|3JQ:N5 Y;l5DsZ[H((HxnBHRI$W_:?ӿjKc|.ӛMuj[E2[`ɣkJѾABJzԒI%)$IJI$Sge痭UڍgMչf-6cg5ˇ5~+B}7o蒛I$JR']d;*}lԹ-m\D7{\`+zW- uak|ݹ ~# )RI$I%)Q:oc+ʏN?4?ˏN-I9I$JRI$I$$I)I$JRI$I$$I)I$JRI*GܾMŷ"*!=Ze!%4W _Ūm0b<۩kS`c6VoRI$I%)$IJI$RI$g>k{,c k5PA\ٟs3;/Kg%z/^{FN[k7bVl6=dVFn9:xw`q&;ηl??cpn??c^42ßN=ȦvOWoXgۦns]`ĵ1εn4&J`X^tO.\rslhs^ܧ p{Z< lf7_M-$Xevm'&`k:~GDꮬ[@,)Ki۹cMK^!ڐfeutG.w7le.dz']m ˘V?h{ %ճ~%ߒX{kǾzkhȆy逪] 2~Jfeu?gv_Tig:6X0__ {پ6^0dkֳ̹c;^86i*B=ZuXFQg.L$7/-+r.c\eI⃢)wJHY7:_yle7]UՕK߲>*O'?gv_GZU*YTW.p3+14]S`wd:H ֟Y]Q{1psF&?kno?!; b ԣf9x7%fYTlpeɮNaܤFfrŴ:e3?cv8]"߱6cYD~lwanrϯ {)7gks*5.]h݃pкo]Y8g.ju8ظĹZ}U7s3VG,:Pr_Mkš.0I%vr ~\?fet]R]S?Z(ٕY+qmۃ-Ǟ6Ä XrGyۗu[7\[mXǒ9ΩsӿuO4@^1wΩS|cN-I9I$JRK6,~>&9SMkc$K\guV*\C*ed?y%GbTnq1*Kx^̻ o$sbUʗ?&/Yqٗx-[L_yRث?.!{22żåp=~쬜V]`^~IfELkEN5h!eg<s~UWq-i: ? @|%X:fetõfu@[q$:/R˶7}O)}; Scp|n9_WeYLc qu>7.KFlkM^CW[] >G?ͻe;>H'IӘNCu 7x*]7E]9Ycl%~YUYv vƵi~倸?YTt;O.: 3v_CNJnEJK%lԈnFЈhYRf6O 1ut漱g1ŠY5?kp~u#:ggN@ckƐө>k*{N{zL=6=0WnGV̳2U///N lA?HP$_)[9]4bc[~v{)078QL6u0@2[h>:oM\-}bٙV6ew>߳[]ok` "Vba.Dbs.C"럵>F)`K&n5%ƙi-::ᦚVPbM};q1-vͬ ItYfQ4ޫEwmʹdoYⰓr_kO6ˬŖ<_as5jW {o}訥ZmhxA{Ogw?R>5 л:&x ĒIHRI$?C+2_{Ukiz~ﺛ=UGL˞/k^u1!Yeπ$~$H_׋nSbu'eixn95ag[Qlk,׹͆ef^Cv=l6zgH6@*y?VUJ }"KSM/FH"SwrS x[kA/(z7lr\?Pt_5o.KlKe⇬ᪿYW3k UxlG//7Vzg_g Yc x־Z5AvvL*Ε7[ٙSs9axD]ـ3hĩ:v;9! tm%<_Wz}tagmtc04,.aen-{ q 0~tѿܥz>F9.yqs]d,FяMB#ϒe95q (](LkSįF;gTMldC<Lim;:\I$I$Fgۛ?OB>o_{;=}gGoӔ~57..Z\O5U{mz=7~|2d7В^V/UWs澿r])1|q/2hdc=캚}va_mci\.V^.̺lz}ָ1% &W!o9W~&6^UcV6jmkݶXڛ=WUYYլqfEmy{Ȫ Xqg3c{%=3?>̌L=*,].12ⸯkW/nټ{lz;6ʝU⿯t;[z}[_slD=IO~}/^Lkgc='Eiyӫ0+ͪnum""M[ZTzWPW0gQXscnXkoD$N?sRz&-8\c]a>H` ]EӿuO4W@kkRB=o-1 N>U+?uI%?.>zg_XڶzSoJf\Zem%ϺSX51IWqkOIJƴ:[xĮMk[ƽ5>Ըc>?uX`{Zڵ?P`E,64;1Z?D,zUUzWQfQKun,{cmFU89vO/+?7gתۯ q)n5xwLVnea;́%fP8dՉkF4WN.> nƓ#$evW?V+?DXq P:/U%1~Vz"t]R1nXT맞VjiVjK=cG/Yo.6˭}g /0 LaI"I$Ώ^%ϮzV56Kr}zA?VgN}qHݷclW=4zZbڵ׭f^3]r~nC-{o#[ha9X3̗]]C/o۷ue ;h+?8GW`}o &]N--uΪJ̩ ̷ƗݲkSewKqť:s7z}2M &K~[аׇڟl+?JϮO6}{q߅VU?cq}j=`lwSmn a`i:o2pluQWN <7׹ 9v{ d{8t+Qeu n *UmM6Ҫ/9eYE~mkX@kK[¤Ϭ&Ϭtz.}tҷ)[p '߸"/DEMF)igZZ[UT}6 SP[L_{VkOmumdwP+ps=8M9]QWaQm5?.=@l=W}dGe Tڦ>uzga}qn>E 3ӯuD[q)4/ʚdHNl+?[-e8msqfSOL?fӢk_g/Y͞g]?euP˩Ԋ髨^Cq.mVsy:]##<548씺<@i+/ƢvQql\1j_+?DT맞Vj._:L?>ٳ46clN=亊[o`!"=B?Z8xgꘔeZZ~XZrFۆpDz~[h+?/`k~Xo/d[Z{ hk\2mmd{,?mw\^k` =tٽ+o~EXm1ݶLLq(};gTMle[a=GaֱE9ֹ|v!Y:oc$wlrpӋy$NbRI$=k/nn^WN&Iym˷ n5CQ{[]<ף`OtovᬿuLCr3eXv9qh%6( ?/౿? sat6ĩU;k~$͎0:WY(&GO{F W7P̜kv$8KVS}xZzuM@,hwA7ae}muX΅ Ч1<>:KãUNU^6zoݍmoDgec=bMV8>c*Xk۱'j׻gevcvͻl+^>?7=˙ZYmmgckL0w[f1*U9 vX@}mou_=ivOfK_2==ܒo_&2^ڟc.~P٬CvBUoȪs(8e2kP{͚;Git%<Gs3 U܋:c+bdz)>LJn 9kuUzglmֲRhoô% 밴+?/`FӪ7;dc\K2_c74jnM=/SNS1:+~ӏ][wVK7{pgcf3-׺Am[:Σ{ X?E sun%>ɮ|tVֳ7>v=GaZJot쟫vݿ;7'3&xSkp3xYI$O}V:~3M?fΦ[Ak贖ͮ#oV-S/xٗd[7oMe;"XfZ{膴m]:JkӺ}뱩i8X:u.qXOwOs\cR潶5܇oG;WXI%"¡t׍\즦1K5$ʃwO61~m-VSi;{~I)o՞έGUe{mŬWP GvzhzaޟmV2zE˪r~6EXُ]mmsHh<ԒS^ޝp}srC[\}v41IMh܀HYFT1M4nZ湯kG>ЫvYcqնͳKq宨FU8'HgWdx}>/,Em>d]Uq}[mhш:x-΋X%d)ueYk(մ?y_ R+a2\q>}7\ ŗl[11lɢGX{myeս&HsHWWqhvWm]CM]׽8Ș#+a2_p&OK=گ7?KWSUo}uzSaﮬv5 Hh#SuJ?y_ R+a2\q>}7UӿuO4W6OC'?/+ 卢/`tnV`?kȡ* _L1! `>`IQٯ"ؿn]|8~Xo$]lKC_fW.pc[ےٯ"ؿPc8a8ϊgWy%GC_f_zWb5Rvo-y%GC_f_zWb5Rvo+ =+)~]lJ}خ??,7T`?kȥv/_E+abp|IQٯ"ؿ]y%GC_f_zWb5Rvo+ =+)~]lJ}خ??,7T`?kȥv/_E+abp|3J]lKC_fC^_]#B~y%GC_f_zWb5Rvo-y%GC_f_zWb5Rvo+ =+)~]lJ}خ??,7T`?kȥv/_E+abp|IQٯ"ؿ]yQ\¸)/=+(8{ɏV>1 KH4Mf#)HpI$$I)JN?,msٟCLEU4({ b ̋2,l݀ʆ1M4زdž08.ǨlWFI$ĤI%?DyK www.bioconductor.orgyK Rhttp://www.bioconductor.org/yX;H,]ą'cDyK yK Zhttp://linus.nci.nih.gov/~brb/TechReport.htmDyK yK @http://genome-www.stanford.edu/ DyK  yK tProgram Files (x86)/ArrayTools/Doc/Manual.docyX;H,]ą'c_Distance_metricDyK yK Zhttp://linus.nci.nih.gov/~brb/TechReport.htm3DyK  yK tProgram Files (x86)/ArrayTools/Doc/Manual.docyX;H,]ą'c%_Specifying_replicate_experiments_anDd hb  c $A? ?3"`?2^-g]Y($mp:Y`!2-g]  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ 4 !"#$&%')(+*,-/.012356789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrsuvwxyz{|}~Root Entry< F`_K.CData I[WordDocument;|ObjectPoolB> p'[K.C`_K.C_1488367289Fp'[K.Cp'[K.COle CompObjfObjInfo "%(+,-./014789<?@ADGHIJKLMNQTUVWYZ[\]^`abdefghj FMicrosoft Equation 3.0 DS Equation Equation.39q]aT>_ z i FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 6_1488367194 Fp'[K.Cp'[K.COle CompObj fObjInfo Equation Native  e_1488365837Fp'[K.Cp'[K.COle ]IdT>b  0 f 0 (z i ) 0 f 0 (z i )+(1" 0 )f 1 (z i )= 0 f 0 (z i )f(z i )CompObjfObjInfoEquation Native C_1488366836Fp'[K.Cp'[K.C FMicrosoft Equation 3.0 DS Equation Equation.39q]'c@a f 0 (z) FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjfObjInfoEquation Native C]'B4T>1 f 1 (z) FMicrosoft Equation 3.0 DS Equation Equation.39q]c:a f(z)_1488365807'Fp'[K.Cp'[K.COle CompObjfObjInfoEquation Native 5_1488365718Fp'[K.Cp'[K.COle  CompObj !f FMicrosoft Equation 3.0 DS Equation Equation.39q]WcT>a f 0 (z i )/f(z i ) FMathType 5.0 Equation MathTyObjInfo!#Equation Native $s_1099722765$Fp'[K.Cp'[K.COle &CompObj#%'iObjInfo&)Equation Native *_1099723327"6)Fp'[K.Cp'[K.Cpe EFEquation.DSMT49q} DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  t== x i,1 "-x i,2 s  i    1n 1 ++  1n 2  FMathType 5.0 Equation MathType EFEquation.DSMT49q} DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle 2CompObj(*3iObjInfo+5Equation Native 6G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  s  i FMathType 5.0 Equation MathType EFEquation.DSMT49q} DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_1099723993.Fp'[K.Cp'[K.COle :CompObj-/;iObjInfo0=Equation Native >_1099723933,3Fp'[K.Cp'[K.COle BCompObj24CiG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  s i FMathType 5.0 Equation MathType EFEquation.DSMT49q} DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APObjInfo5EEquation Native F*_109972411318Fp'[K.Cp'[K.COle OG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  s i2 == n 1 ++n 2 "-2()s  i2 ++2a  1ab ()n 1 ++n 2 "-2()++2aCompObj79PiObjInfo:REquation Native S1Table# FMathType 5.0 Equation MathType EFEquation.DSMT49q} DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  s i2Y($mp@R|xcdd``> $X bbd12,(ㆫar`j`3H1g`Yˀh3 憪aM,,He`HI&meabM-VK-WMc8AFB4Ij]@ڈK{3+A~H127lnU%PC.Av1@. #RpeqIj.$ȝ @ ] @u7>Ib#3X?&GvDd b  c $A? ?3"`?2y!8>6󣼆Ym`!y!8>6󣼆YȂ@!bxTAhQ?mMmADTR{"=M$X4*JěxS$!^S%xA 4Lf=;3oB @P#cf`~/{.fnOLa >KI49 dzW-t!Ik|G"hh{k.xachkNۉ)= ~-x= TD.~C _KA-\;~-4cGGg%ψEWoS.L z/=:mJhs_:q|9ao)< 7Dd Dhb  c $A? ?3"`?2b^Wܒbb&G]`!Ub^Wܒbb&G @|#xcdd``fed``baV dR`1FYzP1n:&B@q56~) @ k'030< UXRY7S?$LY ZZpÍ) 9i,@u@@ڈ1Hf%?~J~3)ܞp1p7vR 1~kobV$A!Y4=`dbR ,.Ie0PCXI]` \8Dd 0Tb   c $A ? ?3"`?2=R@)^`!V=R@)  kXJ$xcdd``fed``baV dR`1FYzP1n:&f!?P  ㆪaM,,He`P&,e`abM-VK-WMc8AFiwXt9W^&VJ~J~3)ܞo@BE$J!2/ v`{*B  [a&#RpeqIj.P0uX0t5$~ OaDd @b   c $A ? ?3"`? 2is(N{ |rʗUER`!=s(N{ |rʗU@   xcdd`` $X bbd12,(ㆫab`r`3H1g`Y@J0ܘb_\!vNHq%0v3jV`kTl>H32dcUp{@&UrIPpC$;fLLJ% GA``h3,7݌GJ|gDd (hb   c $A ? ?3"`? 2Ӂz Jq`!Ӂz J@@ |SxR=KA}3wI,$~`%X-4X :,,+,RRNl3{An}o̼]Bz0UIL8"%'2^;)K| 7'+*"VK8uM%r(Ef4~Q߻d`z< dtv-84,iv⏂v+ Zofv^,%3Atnjbj2uWOPT/j^Ɛu%"`0tXB2'oOS,V~7Dd Dhb   c $A? ?3"`? 2b^Wܒbb&G]؏`!Ub^Wܒbb&G @|#xcdd``fed``baV dR`1FYzP1n:&B@q56~) @ k'030< UXRY7S?$LY ZZpÍ) 9i,@u@@ڈ1Hf%?~J~3)ܞp1p7vR 1~kobV$A!Y4=`dbR ,.Ie0PCXI]` \Dd @b   c $A ? ?3"`? 2is(N{ |rʗUE`!=s(N{ |rʗU@   xcdd`` $X bbd12,(ㆫab`r`3H1g`Y@J0ܘb_\!vNHq%0v3jV`kTl>H32dcUp{@&UrIPpC$;fLLJ% GA``h3,7݌GJ|DyK  yK tProgram Files (x86)/ArrayTools/Doc/Manual.docyX;H,]ą'c_Pre-installed_pluginsDyK !http://cgap.nci.nih.gov/PathwaysyK Bhttp://cgap.nci.nih.gov/PathwaysDyK yK Nhttp://www-stat.stanford.edu/~tibs/SAM3DyK  yK tProgram Files (x86)/ArrayTools/Doc/Manual.docyX;H,]ą'c%_Specifying_replicate_experiments_anDyK yK 4http://linus.nci.nih.gov/3DyK  yK tProgram Files (x86)/ArrayTools/Doc/Manual.docyX;H,]ą'c%__Multivariate_Permutation_Tests_for`Dd d N  s *A ? ? 2(ƶ /f1}d`!(ƶ /f1}d^ `xڵUKSQwnsM3DT?"e6G,MX˖]ff/IF_`!P  bDI^A{=wsj.;|ssv,,@< J- AvJ]55lt3עdz(g5s(?q 0XRdrA#|CZ(:B;ѷӫLT43t+{d2-eD\dC2tuf#⩌f}8gTQ:hB野o.jao2b]4佈#F?q,l-0cm5r#F.z,$Xխ VQN}w\#&ixur(Kl#|F(`cs>O1y&mxۊ,Bn"ì 2.Erf {Huџfd)[n`Fn'*cF&[!2QU$d|Z'[ͤ%cؕQr)W&gpb2!#<{(J{@L|K'?ipփ% g̃P|w7*:q ^&ZjXLD4_#j\5sQ!1qŊP4 ҽm s+]r .+uon{^XVCjvjsx$'ŗ`\,?~ˬo.|GfDd hN  s *A ? ?2: s,ʦ87h`! s,ʦ87@H|xڕRkQm74 bӂJ "MH0)U%Yh%+zRJ/"{yo7 >v}0 h'B.MeD$ mRv6'&qQcZ`t;g:L>3~6dlsYTuwߊ4ML/5XZ]ݮ{5^>_Q˪)˾Ogꭒjw1[e5bxXo+7/b;*#ӨJ7 g72]ֆSsX~Q /? Jv}0 h'B.MeD$ mRv6'&qQcZ`t;g:L>3~6dlsYTuwߊ4ML/5XZ]ݮ{5^>_Q˪)˾Ogꭒjw1[e5bxXo+7/b;*#ӨJ7 g72]ֆSsX~Q /? JD]̰v掰e 'q9$w+>wUdD77a -ѣ7r h݂g9h*85v'2[60ٝN 'S=CiJZqI_  4s^fW6q}n&yϵ?o0bHd-W]FYIݝd,>_0ݺ$"q$xiPz,~^ eu)Q}39r(5W%u;Q3쫭8]y3Wt/ ]=_RSIɕDd N  s *A? ?2}!d1 !͓ozI`!}!d1 !͓ozI `\xڵVOA~3-T-HQ`PdH(HbDJ/[]xltMq6ul`=khŻ 0!(CϣXx<ʭF -ja)B8ǎ%Ez O) ЉQHV<k9 DnhGZl7zT6 2;@7KT$ej]4C |8ԼfjYԱ_-[:*ס֮aGh{aJiS#K§%:|X$I%b8a%4KU`Ix0 U3+0D^_9UQer8J$IŸ*5d+}fJ%`  ITYՔddwaR-pU;JD*YvTKI)$d:l;j'CB"3iWKїVVdXXd΍vʔz:=4K :^E_Xٯ7]R<T<Ԋ,َNP56VOMQ"nףq@(1 ݎ$a*^ VȚ47Lq'8j}nHN_ zG9Qr\k.3DK&usGhx;CA_vA Պ1}`I3 N!k6 8 <ɾ8' {G;%lTSXhvX" G ^# $ph~Bxe3F꥾ZF]G`ZFHLD}2_)&cDd @|N  s *A? ?2L2jP}Nl@(`! 2jP}Nl@r` 0xڕRAkQm7nZ+զ*%[7bA"xFBҕldK ' RUeo뼷( |;o|o}$@rQHi5:I\Q EF &`4`gZyTa;~{*˜'$:+ܢeFZ7{^XE;Asshwy90aW9+BŐJ|DYnM\MM~!xw/"foP0Mp15@h'~Gzc9>iw tV[u``wN߯^ Q'5,iy%<^_43~fW7a}n&yӵ?W.2^2m$N .#ˬI3t w'*6ۧ; :lH\ ^,qT̲빟wF$g\k gߑ~Xk?xu R=&?s>Dd hN  s *A? ?2@*\SW}~`!*\SW}@H|xuRkPYt!Vm[)`),1j(4B{D]̰v掰e 'q9$w+>wUdD77a -ѣ7r h݂g9h*85v'2[60ٝN 'S=CiJZqI_  4s^fW6q}n&yϵ?o0bHd-W]FYIݝd,>_0ݺ$"q$xiPz,~^ eu)Q}39r(5W%u;Q3쫭8]y3Wt/ ]=_RSIɕDyK yK <http://linus.nci.nih.gov/~brbDyK yK <http://linus.nci.nih.gov/~brbDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK yK Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docyX;H,]ą'cDyK http://www.drugbank.ca/yK Hhttp://www.drugbank.ca/yX;H,]ą'cDyK Whttp://bioconductor.org/packages/1.8/bioc/vignettes/simpleaffy/inst/doc/simpleAffy.pdfyK http://bioconductor.org/packages/1.8/bioc/vignettes/simpleaffy/inst/doc/simpleAffy.pdfyX;H,]ą'coDyK  yK V3_7AT_With_CGHV1_0-April/Program Files/Qualcomm/Eudora/atch_001/Manual.docyX;H,]ą'c%_Stopping_a_computation_after it has6`Dd+9V  C 2AHorizStackedb_[,0*kSh_n`_[,0*kSPNG  IHDR7DtEXtSoftwareMicrosoft Office5qPLTE3f3333f333ff3fffff3f3f̙3f3333f3333333333f3333333f3f33ff3f3f3f3333f3333333f3̙333333f333ff3ffffff3f33f3ff3f3f3ffff3fffffffffff3fffffff3fff̙ffff3fffff3f̙3333f33̙3ff3ffff̙f3f̙3f̙̙3f̙3f3333f333ff3fffff̙̙3̙f̙̙̙3f̙3f3f3333f333ff3fffff3f3f̙3fs=j cmPPJCmp0712Hs[IDATx^}69YwHn'Я]e;mHQv2~GvGc%Hl}W$@sE^BCP(>|:S>:U<% pKND?E3<ԁB] s['xvVTS> Y4Yӏ~?ى'}8h泒:YH"DJ~g!S?f>+yO?G?qsi<<*SO,$pO?G,p%?~𧮋~ǮrW>c*ߩO?yXOeE?x?{>ȇse޿zU zo7%_Շ)?y/ ooryql }.3 ӏ>G7_ZË꫿oxۧ?/ệo_=<|ӛCy~,_>|| X-OÏ_}~7 zF+ŷ|m ?[ 9)Tάx\ŜǸ\OEӑ\W3 f!&x/>!.<4.?ДǾw뷳dWJ;mA>vjO,L[C|o/0i+?}xB| >?:mۂc~>`۰uƤ/kc/+r5̇X4.ӏ.;aAD4Xÿm߿ߚ.~)nQvf;/}Q]ɮ&r=}^"`iXy&m+QFQh+7ƺ@LO6:c:%m5r=}L>g݈<}Ŭ0/v._t}/ oXF~ӧ6=˜[]XX/oY!ɗrr=ms(M> C~=svԟn8<r=pYsPORǕmJK~jz\x֏&]b^_(_3X?c*E3;^$%]l\M+͛r="Ԑ&Ad1xZo?q^\͛nD}="K祶q_W?Ic\f'pwy$5z%WtDž7<}%Xol!ņt[Z P?aݾB?l$}s7C}x͛`S1NX]Ad\#(lK|G\ 5DoQO-潔Fi.aq[ /x7=$~z>&'׏#ѻ`^6:mWόؿIVрƾK̘ESu2(UɑJ=۫%Wo!ep,[1>;_t_D𤼱8ygA-2ۭ.khK:ow**%w` -=r^|08o}10a1<^#~ qyp &]erigoFEy~p gi6W?}xa6;)ӯV߾풫̿eh/+ @[, ,rp g_gltx]L3o~0XΗx!]r~i§_E&SN~/G;/‡Vgb/px64Vgb/([<{jo?'X_/!{᳡yR=<3xF)J_φJ_GÏ8[ᏌlwܭT ^|lhޭT ^|Q=*rR=<3x_JӏW^=м[g{Tnzx/f ЏgCnzx/fbO?^X_/!}J_φJ_>ܣ"w+3~1%O?JL z)7G%.C4,tT,6ilЇ_Wnu*H/q[XC0bQ\;jX f 5Cƀ9/x =6XUJzEfc_G U˾׉͹SCqot ͉9FL| epYy[Pqm/n D_;=NC!Ǽ\wbq rSooYKj<%gGJ4^6%M l N`V lQ^]ÎJQ#;`gToS2հQ1qY.EM b*ja%g1]nFm=g`BForQJq/9W]n\g,͒+*nx*Eejz M7*54F 4-> \ۈG{N;U kPڬjՏ.]F67$ڶG>cI=9ff3xy!:)Z7(ʼx9^* p݌8%p< n'PnB;3A˺[YdH鑲yrYcc ~tNލrW!:)b5Y 5bC+7~lz]|Hr戮.>'&pnUCt=z^޾w/֗vjs!}&ȁ^vXH}U9|$B&l6-WA6h׆?ԙl2!e b)c EGUyo%'$$:+VxB Zߤ!ɫ]eϯt=m|\ n&z$z[(K~U8% Ut kW H@W5]tz^iϷ T.id^ ;Ez_N '2sUqq6m9q"9E/nGq X6%@5LU2@#z {ޓOk&Qw0fb2Wx5)o](NB|KqS\I@9^ʈ hbov2!iP>#,yt]^E w:m](UDBPy^AORtO\gucR#~\=K(\uI:d+t.AW "Pp46Ǚr8E d̩j` ûuD}¢GJX-,.0>$|!C<`QSsNN"4L>kL 5 j +=3KDU}xf Y}]%:[ǣ^.rg)0'dvmhi)(-ӪP#T7 TD'!kt{:)zFtF\sRt\]iIu.Sv˞0AdU(\| `6:[1IGE\oyvz!ʺgkWqm^GOmt􅆲ϥ6:Y>O`s/9gjYѩpk|'R} NhPI*] 2wۈNsUt@YXSbNxu^v>ڐ /Upڪ3JE2OfWFds<*0=T}Ѷv+fS vKqNs>zP7HF4 {Y9 W%R4j$/%3(ŨWפK:Xv{|  tDC*15~EwRMՋRVIkg~t%yN$h4`6\y~{LM%jn:743vy6P%NNj +05N#z[N1 ÊhyZ$(=y6 E ui١zv3ǭCob*eiΐf^:e /˲yhUE MO+'C|g+@2Ql;)xF>|/no6:S>frIrRrzk.nx౰GQ^C-pwF)VB -ː?-\=䒄"Bib@|_ e "g\PR ,=k1B?xaԤdAr* aQ8/ymMH\/s7͔4ԣXPr)4^Șg^øce:(̎1]:2@4eZ> kF8CEfCƕ@c_\T΅myu?>l8+nBoelu28OF&*1ʸas p@U wHJ`Aجv ܎?Ce 2.`ӆI8UnEbF]4KިjbAX~I)SKp 3|\tP =hI% X"nʳ8$X/O5R7e <֥|BQ9H?WL(:.=:'D #jDa0pjWwG+B^oCws3%hN9Pu,䓑1ELˁ*KWa艾NOIrS~klAy,S ~L)ƀ-1ڟ}(n6:x̽.bѣYE Dx6&eI IKν\t9 1ALA\_UJ 6̙ڱ&Qqh e8ւ hKC-vuDuRq"K?Ztף]יԮgpߵyE[>{]ko% uv>\kIxӸ~ҩjtd?|[?:ճ}i$|<ËoVu?ʛAXp^k6u3~t15'-% Di&zӳhȼ:֝*_O~fzU/H+c}z])G^;Vˊ{6=ݘu? Ϭ2n ýz>I ,zjeQ+_+MNjlaD?zh q_L2*.ަ<Ƽ C(".`])ҖBN@ޑ|%]r㢆 i Sjb/iI6uePR>zBO2%lzJ:bE)#V4L Z4EKX,U Y\cϻёfi Z(\ qE YeQJGT0_aZ"^dB2]})I$JX['"B@T]K] [O̢]9!zjM5r͢)q 'Ƃ q}:lҸ ؋9f*bc_UwKEw(Qz[գ{g m C~sF'Y;RIf }Ҏ|b;#*1s1kTEL y~p]n>U'U/k(;m'_I5&"֘FHR̈́,RS.]݋x%HVMוV)V+XKY˨mz#SbwX,aנּ9_r\@nS4'9?i@qx 9 (pcޚ(dOZ/0MDx ;S{G)Iy_?,WJmtʅ#{.ZrF\/N7uǣGRU|ngU1l^4~SYќBZ=y7ֶ̼{'' :C 2+-,nA]FOnulSDg6 V@m fcǢ ܑ8v Mk\ȵev"=@rSW{s.+rM8rܭF NV*;+JweA8)5U/,9A j9H uY^y.Ks>v-_G8uGsf~J28:ϒ3[HQ27ɡc̽[YR<킱(́o,Yi-8ZYDQ<)Bڟ+Nг2?Fzj5TS+Zq N$T33zX\?ɈlI.iZr [R~yд m"d9B?WtKMN)IٳiU C^"ZX0MQ)˕2lGLo9A V-e$\2]aÅGhީ ժtk%6%ks1L9R&sF!4CE:i6" XLE֟:.ul|Ll3> xaR rq}a=̟|S%DæxRliS7G\qu w'A.啩X5nթ䢴;'%qSͤbt\2]1ҳ=~ĺx27 R rxу4Vt͋<rNW(_ @23Ra kn#GtHXHO5_@ql{6q(@N9h!a"4^i'N,:KFg$AmRij]'Lӯ DzE5OXhUpxt4ܨƣ.|ڤDVJ߇g'UmbKTB9%I=D'6 B o'2pZi,l*EtѴ&K{gT*:SLؙu}uSD-hJuW)G GXKEWhQ֚ χΚ8S6ۉy]x&na@V#mx tjLG 5sNK2"ftPtNsLsjZ X  ƚςekxvKI3k`5% DO>["NNtP,`h:!'*0ŵSIS@c~FPC6z))_fZ\ m1S70\xq IkHGO6Z)lFƵeȹSYn8Av@E}euyxTGG"Tc[)=B8dI2U%e]K錬+18k~t!=z"i;]eu zxh&;ZWOni˓dO7̏~ucKHھp/_Bz?\sl$VZC#ezEgcuw+vTK#xqv }u?7/-7Rz,οAIvar]eW'3k%زF\vCҔHuֱ>:3BWzce}tP =ob',nke=/<2돟z?&tl Efdg&]Svǖk)$[;QFvbPWһ\KcyՋYyIB[Gtdb[v(ll l0o?i`>n)`ĥ9dl'gdRR/bکgruH[ pES=.()xt\4E |Kы\UzkW U˥b]St5J/it9ILы4t Ƙam#è Z5L>ҟuƄZ, ?򪸩$:Xk={;$ Ir~",\y/@yWkʁFcQʅOjx/fE)OϺ(bm鯞}N:z4˗$}%DĞa kɧMM52i= xFH)Lv9$DʻkƎk G| ^(uWt>3a5o LOo Hh.)mR̴ -TrIͺn%7z8PCrLBL^hT1QtЪV?3:[]7t]pG1Bї8Eb~=aɘ"{輥 ``P 4=!Qh# ١V0 ZXDRfݙeJGG-B̏8d$^6j;PZZ_(ݴw!w你CPٚ|tѫ*ԃB1sՏc/S7DodӥQx<~3bKEm"j]8Lqe@2AɈɫS /68tI4AI.DcF ?F [ o7kT!AqEj5Eltw3ҫFCN(5^ԭ'a&ܠ_{r 8hLiwV9K$ob+B6]jM,+6ftTJ].,辛aWH}¶()ÉuErSbMEIxauH{?Gc4^73tG/Yv/ՌF GkS@{:=ޟOˀQn|S<wk]á&.U+,GQn 4~pDC7WgQ~y¬0R4.*ljPT16KykO*P %9 h|F/rL8A,e[w||]@d~s>~I̾}}qkmά#Ow!y+zy?=)ˏ)낧-c]\.ZH0zܳS?򜓸D>-]s"y$lM0Nw{)$N cAjH߰Q#!kwGB%Iދ߂H:)v]Kk#ۭޅp=^)bdQɏnjnU?ׅ".VtS+%9oA@/P#,c3}q]9`!I xR!8lKSflO Mu _y^T1ޫ8V0'4$yOCR-uѽ@'RWeƘ_k@=?O]LGPD0I7o0W6+x k֚8.4:NEW[-M()cDx+ztS=-f!+r-rC K1V?1ah-oFFxFVnpV)ϵfK58{Cmmz1+]]SEn"\IWP,_6y]"y#zQ!Hv8GD tY` Gȟ#kL& ,^糄TFPD$BX~4]ss-=TحQ**\UYR/l"D/C[r'NlEv˔хKZAt}!}ZxtXq8f'D%',§6GU*zbo"!N˕f0PC (.] 86sp$իjgJEX]ڙaLcc]M,/];Tvp+|X/~wDoǣ 0ܣvNMhh;o./M6nA%KhMz̛qLntuCN[(r(K2Kq6\dцA_P@æLLUP$JH T9t·+ޒڅU L*H^Y̵&{]bnUg4-hplFltf^u} zଆ~b?>fgDt / Jz95~5-kJ^_[1Ȕ!8Y>y,Vx$,ղ15s4T+XДt2- T ;ţKgb VbnjVO!0􎅇lO}j.,s:˭!k,\H^9ɂúE֏X#,rJ`G ڏ>lzC#Wy+zdyH鑲k6cC4Ǯ}JıuQ"{*r> ?:Oԕt 2[X_=d,i;Ц@4rX?>C?\Ν㴖C>uDBFizźRXD|dʭRJEIj*a#1Tm ZssDW(/AQ;]jj ~ZL |=4A!\9Wzh2ም2+|6&U"`B#(J3"kZ=/I2I>ɽ҄t+i2:/KfaJ h-(gH7Z;6t.ls) b봢V]j]ӋM3^5+xZbDׂ0D/HPg5f{Pklq98buzN=^jMȂ5@QlyRְya-UJz+JSi(V!5u)zc1٫u:Xk!oU*;Z DǷXY\mtFcH&9/SHv=Z,SDљ1zVtjhF-szka ⦩1aڻAymmc4.)1}sfy]CSz켅&{ӈ'#(Os:`8ֆ|x@|%Ց'Fcq`NZt_чZa0v|x.qMX 1}uTdl%A^+`8uf$$%,.|=GF℘4x|uq( "H4aכXJd GwZDVA\Vɠ"w XvK&.׋6:r芟Q܏1l58@8LŅ@LXH 8 @4VV\G(K8yo hŴFO yWjH>˦zT(l^>]M(qN2lU_G^֯g=<zXk+=\G0Ί%TMe.:@Qx8:#KKL @s ʊK-[.^e<,&$ltߙGy@gm(cI9J %yݮ! JM aʹWlB. iɧ_ʸRlI;! l@7+i9Lz4+y!c6j kApU'#vXU1Ωv2D|F;4?`,>>ѡc}JQC G]PiOQaa*-{zU{>4ehҐs}N@IŝҠ bCi3w*zX+㞔^a:Y{Kher|xtD.mtu1H'|Ξ_ҒeeCaS ?6;aFO/_-^?N f촵?,.n=!:txhEi+Uz i2{5+4sںZpP095$O^|k2ıϜv`dCC.G}{Rs6.ﺃg͏ޖ^~{G瓼֎N(Jy䬫ܾp#{56:*POv>^3ڏ3q ʫԖV*ӗ: u !:C{jʌQ+=W>5k̮ܶ[oEGoW;sNU.%oSsMiUd; *iOnRƊЋ'ۇDVdpNs},^;r^#_rxr/}* 6c_St8XFd,8+M$Rʚ9qfd1J}E#M 7}i 6SM#Tozwh-R/ݛp:]х.iMSI{׊aZ`lARхZAy(|Դhu/eѾLJ,9Fdڈ 2%2G߼Q RP1H+uqa֔F԰fĄZQ%Za ^ZC)5(SpxV!*2Xf(ЫtZ>b=iRca? z9<1شnVc]Wfw#=^!5v}ҜCm&u_\+ոpx=nUS-$/XjWѵ~, F F깱{Rɏbt*!0ׇ69\q9|D\e%!9?QqxBa-F ϡDW2]ܩFnH {$)dQ[\B\fiixvjr +KⲠwMåXuA5%!{4x2Aw[?$ݔCQ}&3 _`Y%bcY-3-c@Gm/,k:w?9*Lisrx]A,V&!8"R&mу}FƵ, 0,6=FMUjo>ΝJDtfj1EƣO7[ׁ M4#hvӅpXJi,zQȡ 8T1ԣ)Af"6NPR;-ߚJ-.ȂNF w[sU(Fbײ=),wIjn~ Ґz6 c4BԢL|\f!̽.USYץ3<3cO,h)uPo<_aƂfevBu)>n]L;Tb25YZT1_4: 6̨f/#. YbL0Cm7GOə=7}P6"ojlh{{jVܜ^[~xtCjX +[931 |U r[HdNWaLÄӖZdH_f-A9^Mw*(1Ң9긴?y \ 6TE9ƴ@[^X+4K}@zNҘM;l)8H^/\ 5ccFOx7LO6zZZVZn:2<>?{KwYσзfȦO1OLC{FdhqO (UY.3P=w $(6U;d# .+=gm^oXth9H`Sʫ޴c~tx U p4F5ea#k3\ 3~?ߟ¤GG-G/>L:d<+>$? q'mQ_YѩbPB b /(*x_L˺NQyy&c@"orAJȆ6.9s6~Er5?Ĕ%sz8UkQ䔋t_벤c]f|bM9GizAܲWE<:ĩ)@ ʦCRPV$5&6 ޼UnĎ+9_z>:Vh#a<0t'쮌$]"ǥؗ cGm葒\|(?$Jڇ$\ eT֎F(71[ |Ό"=B'ZyUoA[+?c:nD\~]d7TE0[Z]]10Un@7A6?pzI?)TEɳ!Ӥ6%ĝ+擩ΟFtDhOg!zxίM >W]iEòf^C1~"%W-죱G+0ơ'jK=IMK3`^*~Ѵ5q`}7.41M fOBkY㺀;c7F z <ʈnț^xˣ6ZwU:dѯ۩45QXERB>EK=]-iR޼]S$M5@tLF'6Ovg>ΙeX\! K"{b@(rP<M!`^ZR9T)4(Fנz1bFTEUYuosкmҎ QLrgp62CQY#yR<$=z;ltLaQ9WTt{o]yYmV-oZ?VϾ05uYU2܋P/.d<$s;_`wO>`4+J<Ƕ+iAv[: }h8AS6B/[v^Er4l5Z.t|vi?!.!Z3eM˪E&鈴,燔]鿛n?PwW/#.+{eY,b}+j`\8H#(b " aQ r-kyK3ch0$ 鈔Mk_PGn^ElX~e1|. )pfW6F",cݑx+w9ϰ/ZrѳYD\MT{B'Y/P?~:2-hmHzsWc5uF& ãu]aP\" ՃZȜ>o "T@ϭS,u;erH4'k? 'F9gb+_'fW :c[oSO4ޏE7̈N="iIJS-'^2iLѡE¡\1le_+pJ"pq{o`>::ds?3UobSϯi[N!l*ۯҕߙkMDpOC,tSR5,vB5PJMyYƐv\vd}q%lFDtnGnѠF7S;2eZpf̼W3dv Ct0\6c F 0ŵ`<`" qj:ba7J=k~a$Im^x#~%'zž9_\ua>#6#  @vճ?X(tcT:JT 5="oP\$.1B}V^жs7Y=~_\k=j-G̨<:q"?1 ']x~?z+'"?zm?2y&lB.KޜXv8//+kD/%ps:Yu0]m!}8ʭc=)K`s2z =R:ܽBџ~?Dyqa=8@NEY%p*7Y lO7F=pp{ ~MxVGH,s8z܂jATIENDB`/Ddl@ Z  C 6AExpDescriptorsbb.HwT\-P$*>. n6.HwT\-P$*PNG  IHDR|͉tEXtSoftwareMicrosoft Office5q cmPPJCmp0712`-IDATx^]|{=K$Б&FQi@  H& TAE !" K-=]v۽̛7Sy3 .lT .P]VB T*Z JJX%WKuZ 5P j.P+*a\-j%@%@UrTPJjV%!5,",՛PqW|fe+Hi)p^'DȂ Jt63Q^J;:KcuAgrMpP9d'P PI(iO,S "GDefA ң,)8[*sK luˈUO-~ܺ_B|A_AGR&*NREc%_ӜB=`$ ˖fX&'!Ϗؼ?>~NR<=;Ǡqqf "ZꦼueTRKٵ;m`J>B%vfFKc)@xtVov&olfy }*@KYk7P6XϿLUP]Ɋmɵy}_p9#Kl<<'JwwP+JtEv֌UJ\C2B Tެ}%6 ,!5UfNjzz| 5cu”1^wz\Tэ[="V޳K&vۡqII-Uy3ٸ5Y]۷oŝ#ܸU*Zc$2F_n/y}I/$GU?ОDYG\k3ڨ#"Âշ3rr2f;,ϧr3FNoJ\EVPwʠ]|8\mS0/(ږT5ч&V?9թ4IN-'+ڵ?HizS$Naڶ~(7T 邯Q%BrVwPZLCɨ ˔w*zQ/+`˖E!-ۯ7i8_ZdiJNoЏb&zkcgΎc[4_@_=DP|џ\V5E{XqQV3Xk-]W.sM|ǟ˸~d +$ǭ:Q#qr-6 ?"_F}X (v} E.##9=>j:۶>ȀCi#?C"z0i\Nuؙ^;" 7#9 ql[O=5KFē11xn7]ED Y'UۣnHN9f'b @w"2X!7u76xi#SH|3/4ٳ:et`za;] j~0Y̶}XTbCQzn׶171KO\X_9Q=]/pEzL.#z71#Uvf; Ez4KpDv%=He1AڨJP_wI^\9,bֆ|: |5 CLed%}sBB¦1^Āz(. Lɕە9{ &{A7TAO QQ> !=z1@zl*jG2_@O/p;":L,lu7 dgs[a9,ϊuQP6t`T_a6#_@2*lHZHՋ7}e#6.EM#{)yܰak$uҁ߰M f<-h E}Ft+5)1CcB1]+AWwˠg\̚YC]{Ѩ-Hhpn Ł AmD!ݗQXF:=؅ }C}reH^ƁO}DDdyW juḁ]wV>:li^H}E؁x.&t{*;r^o:,g9]? 9CЧ~1."TT968^/gȇ= 58O(X\Hhp]+)'̛&}JunZ4|JV|Pڼj8ӽ^qn$?:&#*}dkOU#_AO[z•d;pg/a3ȓ˲(E0Rp_7E5ῩU[$cI8cf x!/eQjj;{!O8q-tuAqfgnsT7iT*݇ WYkQ.<Ye' x^pA*cy%@ RieBs!|じ*6 I}ф9%y~Yѻ!%N& N"t((A]N(}QL̤/agȕXe!8>FKk_|:G- vcl{OSE‰V#s?_ocr, Qj'ϳ^xFLꄟC*b}U5A0HXi[hmI**l"Ma=nC}BbhOCu5's7!}wA.HhR?D]P CԢd#cP8?2Eh Id׺! ڇtj֒jo0d@[̔*`оETNP0Y.?)lRrHh3) s'> a\a:0uUi3vN\).=_[*!^2QcΡUqLzS`dΧhȿ#%j)V)H(of*>TE#V(!85%,|8ZcB`~;EZ8X]P;Z╨y(PZ~&ar&´pFk؏=^9!s}T[.e.)rAKuEv^x Gnș0.z `1¢ި ?[om뒙Eo͗T*|T-tt1QMZ%K&nZ$kkI墏 TG!T'jsj^/O]d3IŃbrgoo<z=jCX3'NZ_ᯛk" ܆˥i!\ sF~}R]5ZpWJ\/|LI 5S.e?U*MjP276,TS +ڮŰv dkh)apb9kyC {K=ne6V eߪ$*  /8ѨKg;+Jj Bx1^NvkYnwZJa?#Qv&BλI-_a/_TOujԺ'0ZB7 &Ϟջ!=}A%'(ऩ ~*vѿVg QбB2.1:V=^W+MܞQ)g,[&;@Ut]dGwFoOPX9CwaeR')Οdڲ7: FGGq Yy+j"BνGSkdiJ~,_Q*6爨Kjp|귉(t| ;&Uٻ0㙩MK+`;;jWz0טP©(Kw*XMKa׋05fx>6& VhK" ѭ[ IY~d}:[1}1]1C1dQEFN7}!:4B6gU!det'$kTЋ'`.|PU.{G3׸χө{.DŽL6xhv;+mUi!Vʛ 4eM!7R <4a!I&[R񓶅'n?="G2yn_V4T{ET(\4h!à.KF'7_YC-q z#csX䜬yxx(طxĘw-zBJ12448Piꉍֆ*aW;jثPEwJeB%=W[e Dh}smsiկBaa˚Q| GbkA_!C^!L fH3 SoA٥:z,kEo[k$"rŸ}0lι e/U d6^ĩQ˯=|RAPGmF"huc]/o:r$^E8-p/U_̀)2+OMM_>CFAY^,Q>HO([%Chxޙgl`bK[T DJGApno= ,'@.7AǪ[(&LrE47s$@vY6 7 laA[>'MetS2AdH_ۏݻo[B+Qd~ tŞCE1t(T>J.MU+-)AK+5;*b?ݏ+Z?e%.A}>)jѴy'4XVyC- :~ABQa1UtNrcбNrv+-(W^/;橑[UDcn+Ջ;&d:tC;mC'ptBشKmt̚?IK;@ޙ{)*h'OtL_ ;0メ$5%N:f[q~&͓ RS6<:FD i?2jnQ ގG2Iǰ` :hȑ7FG`mZHgFF=qz'oKr[2 V ܘ&AOYh =G6}GF~vQm#B9A'hƎ 'o7hHwAC7 jx77;}n:*ID\J3w񝧭-aZ5|C]{u*wn5-ΪV7bޙp"hkCѵA=?(g>CN[/R9mtZVY=فSqUW{q10t|w-4[&Fm M$OÌۇ$Qo6w%nUpSg yQ׽F: ;hf!)( :s^o_tȴCԓ0%4.i`<i5lB+pڴ#Wnyqm=/ɨҢ> {X {%9 {ɕ?c?~W i=T!.#p">Mҭ6*̗|8fq<=u3޴ Q2K'ȓat|#.>WeOTQNٰg--ڐeǯ57㶿U=S݊N^e^dژΚޢ7U;\N]JyA>޿hٲcJzSt o6l6lN3voX`5^~|yΖt`Ww Vp(->~Ӎa^tK}4GK8Z.ESoL~$9 IrO$>RfޞZN߬%7[BT]Ђsa;xhyS5wݙhJwBQQ ^vϟg}4e6҅P#*(\xhцQ oŃo0ZPk*,ythyӲ%ܽPѧId&B gJ.>6{*xȫ޽2iIBdZ|hTu!ۘ$D5x{PPPQk(sUWGp<%Aǭw>'2M:"J:h:w|2a)t|m!uS5B Gf98A][q:/JJWo@wq,'BϷ ?"7(4]~KD!ur-ju -t ߄`*J-Џ.Ga<œ7۹j"3VETنhgO.ß=z]4@65 *U^v#/ĄɰME.{Zjʗtp:T4Y÷/wmP5WkX S_z1DlO#CWNa[N:6XӬY¾{ʩ;Dʿ'tfdukP 1i j$:~M_ʈ˻MЪ/P(Z\-h7 x0II) *1h(a%.u(&gMڪ4y薥"G+(U*Pgդ." i'acC3 k,ѹIxOTׄTЕVWɟhgKmhHh(½N *dDIHole?ϥ%_OB"nfH8>vsmpް?\y+ Bt$ji{eY@0-I,DT(ed\t 陆t$A?2-S[R|GRP˽_Sybd[+h~<4ABroP^r],zv;X;Zy Ӄ<}B!ndn@ck|:9NT'k\@Eaf>92UV=Sh;AC=Dc )ҫi[<+)#Pp\5Ojgo4''PZbi&1:qQ?&A#`|"3=ZZ#=B&PB '(7G6? ;#Yh/Xxr|[̈6V'*_@c$Md@ڍ*CRC>'NgsC˒O,RniXjm{~2rr h7l.߬a eԌAS#s֮܄3gڴ(\8yg]/tbqůɔQ]f~6>GXXX:vz {@Y=6^Гƫ=!T7qC0 CR"h5M/RSa ( 9A@i; @tG u^PmްBTg`xVCPP %{ٶd rk?ac TP}eXqh6Π&qȣ8ot@ѣ?M!ܗJP{$t9Ðd,6-6>'ar\~x֘p21PvZdmisLpBsye<ɯ:aE)Lyg`!_ OwҮ>RENoDɱG s9N}irdO:bY #&kk뾯1)28EB ̦$mZDm{#ڷ9^PmfQɟX)5; [@ =S GH (-R 㤄~"'7$:sŏ~̮ݥI#δyn$5'bӀ+(f'W P:)֝i!  6(uӋil_b`3RZ|Bf*TcQ7HƦCZ&B2n52$v'o-|ͦ͏.ED !s7D*MZEdW%uҳITț #]~S]95Cٜ.MF5mpMDC%g}#K$"rx$H&~J\rtK7N"h>}rKdoſtM~fPePiƪPLt#9} %%,JM1?a6֥Ҁ/V Ƌ j晓mNY6sm#ٕY Js5M@ ܧ,Y@uF./Z/Z$Wy|5+`~"@ jH.PjwZA+ T]V@P+`~"@ jH.PjwZA+ T]V@P+`~"J<(#[&IENDB`DyK yK Zhttp://linus.nci.nih.gov/BRB-ArrayTools.htmlDyK arraytools@emmes.comyK 8mailto:arraytools@emmes.comDyK yK Zhttp://linus.nci.nih.gov/~brb/TechReport.htmDyK yK rftp://linus.nci.nih.gov/pub/techreport/TechReport001.pdfDyK yK rftp://linus.nci.nih.gov/pub/techreport/TechReport002.pdfDyK http://cran.r-project.org/yK 6http://cran.r-project.org/DyK yK Thttp://www.csie.ntu.edu.tw/~cjlin/libsvm/DyK yK http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/publications/cluster.pdfDyK yK Nhttp://bioinformatics.oupjournals.org/ DyK  yK http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htmctvDyK yK *http://rana.lbl.gov/DyK yK (http://www.lbl.gov/DyK yK \http://genome-www.stanford.edu/~alok/TreeViewDyK yK Xhttp://rana.lbl.gov/EisenSoftwareSource.htmDyK yK Thttp://www.csie.ntu.edu.tw/~cjlin/libsvm/(sppppH2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@_HmH nHsH tH<`< NormalCJ_HmH sH tH J@J  Heading 1$$@&a$5CJ$OJQJD@D  Heading 2$@&5CJ OJQJJ@J ' Heading 3$@&5>*OJQJmHsHD@D  Heading 4$@&5CJOJQJDA`D Default Paragraph FontVi@V  Table Normal :V 44 la (k (No List 2B@2 Body TextCJ0U`0 Hyperlink>*B*@V @ FollowedHyperlink>*B* 6@6 pTOC 1 5OJQJ2@2 pTOC 2 ^5.@. pTOC 3 ^:@:pTOC 4 `^` mHnHu.. TOC 5 X^X.. TOC 6  ^ .. TOC 7 ^.. TOC 8 ^.. TOC 9 x^x8"8 Caption@& 5>*CJ@Y@  Document Map-D OJ QJ 4 @4 Footer  !.)@. Page Number44 Header  !DCD Body Text Indent h^hHH  Balloon Text!CJOJ QJ ^J aJBP@"B Body Text 2"56\]aJ@Z@2@ 5 Plain Text#CJOJQJ^J@B@ Zz List Paragraph $^.X`Q.  @Emphasis6]BOaB apple-converted-spaceJ/qJ o Heading 3 Char5>*CJOJQJtH PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭VvnB`2ǃ,!"E3p#9GQd; H xuv 0F[,F᚜K sO'3w #vfSVbsؠyX p5veuw 1z@ l,i!b I jZ2|9L$Z15xl.(zm${d:\@'23œln$^-@^i?D&|#td!6lġB"&63yy@t!HjpU*yeXry3~{s:FXI O5Y[Y!}S˪.7bd|n]671. tn/w/+[t6}PsںsL. J;̊iN $AI)t2 Lmx:(}\-i*xQCJuWl'QyI@ھ m2DBAR4 w¢naQ`ԲɁ W=0#xBdT/.3-F>bYL%׭˓KK 6HhfPQ=h)GBms]_Ԡ'CZѨys v@c])h7Jهic?FS.NP$ e&\Ӏ+I "'%QÕ@c![paAV.9Hd<ӮHVX*%A{Yr Aբ pxSL9":3U5U NC(p%u@;[d`4)]t#9M4W=P5*f̰lk<_X-C wT%Ժ}B% Y,] A̠&oʰŨ; \lc`|,bUvPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!R%theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] (BXjmz %3;TmDefghiklmnpqvyz{|(BXjmz %3;Tm D &&&) H KL:R !-#$%&v(m*+,bjq =Y&,<PRiJuw.+juxASK.jsos9MwzH|g}'*+,./012456789;<=>?ABCDEGHIJMOT]aegilmotwz}~ | I'1-Pklqu~WJXţR>ʹ Q$=S^vo8R]F4P1W F%EDl@?Z.V23r5I7AgIx{|g}()-3:@FKLNPQRSUVWXYZ[\^_`bcdfhjknpqrsuvxy{|"$3OQl*FI_{~25Vru+GJc -ILz03m5QTs,HKp  : V Y x   / K N ] y |   * F I [ w z   7 S V    V r u "1MPm9<Wsv/2p #?B[wz*FI-IL <?Qmpz"%Mil Lhk#?B^z}:=e;>i(DG[wz (+C_b/2`| (+;WZ~47Fbex(DG| . 1 Y u x !=!Y!]!!!!!""R"n"r"""""##3#O#S######$$/$3$@$\$`$s$$$$$$$ZlZvZ6cccgghikixiq"rKr !Gdw$7K&PlE   /666;l;;<<<Μ3XڷEOp]]VR,^ 6R&Z% }   `222 HqHHOkckekik}kkkkkkkkHl\l^lqmmmmmm=nQnSn[|||6fǕ$s0uiÛN6VF]EEFp0p2pppprrrrrrrrrrVsnspstuuwww5SKhͳLE^aĵֵ'!|8P4Sqq  ( U+++ ,4,I, 7E7r7778e889z<<<o===@>>>>>>2???????@#@x@@@澀{{(b$Q?58Fg =#gb$`~MJf?a#Jb$ޞpwW#C&b$+(Zv5ŨrY#Ib$c/= P63n%Xmb$L[AdU>ƒb$r޵$d= |xd 0e0e     @  5% 8c8c     ?A)BCD|E||@H 0(  |;r;(  2  )+  s"*?H b #  gH c #  ^H d #  V~ e 6e5  ~ f 6f   ~ g 6g c ~ h 6hV L ~ i 6i < H j # }~ k 6k  ~ l 6l   ~ m 6m  ~ n 6 n   H o # };$~ p 6 p    ~ q 6 q    BB r  )!BB sB  BB tB  )!,! u # BTCDE F*5%xxhhT@`6~ v 6 v  H w # t7& x # BCDEF5%HH @` )~ y 6 y \'  ~ z 6zK!t% ~ { 6{^ +I& ~ | 6|t &  `   }# a %+H ~ #  N  3  ! N  3 $ !S N  3 e ! N  3  ! N  3  !N  3 +![N  3 m!N  3 !N  3 MN  3 _N  3 N  3 N  3 $TN  3 eN  3 N  3 N  3 *ZN  3 lN  3 N  3 N  3 =mN  3  +N  3   N  3 w  N  3 5 e N  3  $ N  3 ~  N  3 < l N  3  * N  3   N  3 w  N  3 6 e N  3  $ N  3   N  3 q  N  3 / _ ~  6" &+' ~  6 '( ~  6 (RS) ~  6 D)* 4 `    # "!(  BC6DE$F. 3663@` 5   BC6DE$F. 3663@`A w   BC6DE$F. 3663@`    BC6DE$F. 3663@`    BC6DE$F. 3663@` =   BC6DE$F. 3663@`I    BC6DE$F. 3663@`    BC6DE$F. 3663@`    BC5DE$F. 2552@` D   BC6DE$F. 3663@`P    BC6DE$F. 3663@`  `    # '(6(  B5CDE$F. 55225@`    B6CDE$F. 66336@`c    B5CDE$F. 55225@`" W   B6CDE$F. 66336@`    B*CDE$F. **''*@`  BB B    # TBCDEF5%;;-E^T7ZWQH-4 {U-.E TZWQuH*- rK'-i'QKBr<?EN*iu .Ui{QB<?E4Ni7^i-x|@`I$'*~  6&%'   # BCDE F*5%;;;;H;@`%"~  6 9 "V! ~  6V DA ~  6V !A" ~  6 4 ~  6 "# p  C ,ACollated1#" ?p  C ,ACollated2#" ?  S 2&ACollated3S"?  S 23sACollated3S"?p  C ,ASepFiles1#" ? x   C 4ABreastExpDesc#" ? p   C ,ABreastIds#" ?    C 6AHoriz_collate1S"?   C 8A Horiz_collate1bS"?   C 6A Horiz_collate2S"?   C 6A Horiz_collate3S"? |  C 8A  BrSamp_collate2#" ?|  C 8A  BrSamp_collate3#" ?|  C 8A  BrSamp_collate1#" ?h  c $;eA(NA#" ?h  c $8A(MA#" ?B S  ?mOJKQ Q>` ='''5)7):)D" 4!* 4H0" 44 Tj TH(4 &4 T 4T FT2TH 4 !4 49V)4H-84H|8+4 _Hlt37610994 _Hlt37662449 _Hlt37752496 _Hlt37768659 _Hlt37770892 _Hlt37746498 _Hlt37748253 _Hlt38092176 _Hlt38092623 _Hlt38372616 _Hlt41307123 _Hlt41307745 _Hlt41307815 _Hlt41976832 _Hlt42680611 _Hlt48697319 _Hlt48722314 _Hlt48726301 _Hlt48726477 _Hlt52021405 _Hlt55797436 _Hlt55803067 _Hlt55803008 _Hlt55868318 _Hlt55868755 _Hlt55872850 _Hlt57453537 _Hlt57453755 _Hlt70930122 _Hlt70930338 _Hlt71012486 _Hlt71012566 _Hlt99954329_top _Hlt165701572 _Hlt48727401 _Hlt99951399 _Hlt225750702 _Hlt257555042 _Hlt482960316 _Hlt55864324$__Multivariate_Permutation_Tests_for _Toc37317905 _Toc37317986 _Toc55873797 _Toc64942179 _Toc69113310 _Toc125960119 _Toc144891597 _Hlt162104214 _Toc162156433 _Hlt165783939 _Toc214767222 _Hlt280731741 _Toc403561589 _Toc420418808 _Toc485977158 _Toc485978135 _Hlt55867745 _Hlt55798946 _Hlt55863500 _Hlt55863942 _Hlt55864133 _Hlt55866225 _Hlt55873010 _Hlt125960239 _Hlt162103249 _Hlt225233153 _Hlt225751510 _Hlt257725569 _Hlt263423210 _Hlt280730967 _Hlt280731631 _Toc37317906 _Toc37317987 _Hlt38091718 _Toc55873798 _Toc64942180 _Toc69113311 _Toc125960120 _Toc144891598 _Toc162156434 _Hlt165783929 _Toc214767223 _Toc403561590 _Toc420418809 _Toc485977159 _Toc485978136 _Toc37317907 _Toc37317988 _Toc55873799 _Toc64942181 _Toc69113312 _Toc125960121 _Toc144891599 _Toc162156435 _Hlt165783942 _Toc214767224 _Toc403561591 _Toc420418810 _Toc485977160 _Toc485978137 _Toc37317908 _Toc37317989 _Toc55873800 _Toc64942182 _Toc69113313 _Toc125960122 _Toc144891600 _Toc162156436 _Toc214767225 _Toc403561592 _Toc420418811 _Toc485977161 _Toc485978138 _Hlt162103378 _Hlt38092625 _Hlt55872643 _Hlt162068503 _Hlt162099188 _Hlt64941425 _Hlt162072753 _Hlt162072754 _Hlt162072759 _Hlt162068449 _Hlt63220115 _Hlt165630273 _Toc37317909 _Toc37317990 _Toc55873801 _Toc64942183 _Toc69113314 _Toc125960123 _Toc144891601 _Toc162156437 _Toc214767226 _Toc403561593 _Toc420418812 _Toc485977162 _Toc485978139 _Hlt162100768 _Hlt55868370 _Toc37317910 _Toc37317991 _Toc55873802 _Toc64942184 _Toc69113315 _Toc125960124 _Toc144891602 _Toc162156438 _Toc214767227 _Toc403561594 _Toc420418813 _Toc485977163 _Toc485978140 _Toc37317911 _Toc37317992 _Hlt55868756 _Toc55873803 _Toc64942185 _Toc69113316 _Toc125960125 _Toc144891603 _Toc162156439 _Toc214767228 _Toc403561595 _Toc420418814 _Toc485977164 _Toc485978141 _Toc37317912 _Toc37317993 _Toc55873804 _Toc64942186 _Toc69113317 _Toc125960126 _Toc144891604 _Toc162156440 _Toc214767229 _Toc403561596 _Toc420418815 _Toc485977165 _Toc485978142 _Hlt447272629 _Hlt447272630 _Hlt530901391 _Hlt162100780 _Toc37317913 _Toc37317994 _Toc55873805 _Toc64942187 _Toc69113318 _Toc125960127 _Toc144891605 _Toc162156441 _Toc214767230 _Toc403561597 _Toc420418816 _Toc485977166 _Toc485978143 _Hlt447272886 _Toc528516116 _Toc37317914 _Toc37317995 _Toc55873806 _Toc64942188 _Toc69113319 _Toc125960128 _Toc144891606 _Toc162156442 _Toc214767231 _Toc403561598 _Toc420418817 _Toc485977167 _Toc485978144 _Hlt48726264 _Toc37317915 _Toc37317996 _Toc55873807 _Toc64942189 _Toc69113320 _Toc125960129 _Toc144891607 _Toc162156443 _Toc214767232 _Toc403561599 _Toc420418818 _Toc485977168 _Toc485978145 _Hlt71016392 _Toc528495455 _Toc528516117 _Hlt38372648 _Toc37317916 _Toc37317997 _Toc55873808 _Toc64942190 _Toc69113321 _Toc125960130 _Toc144891608 _Toc162156444 _Toc214767233 _Toc403561600 _Toc420418819 _Toc485977169 _Toc485978146 _Toc37317917 _Toc37317998 _Toc55873809 _Toc64942191 _Toc69113322 _Toc125960131 _Toc144891609 _Toc162156445 _Toc214767234 _Toc403561601 _Toc420418820 _Toc485977170 _Toc485978147 _Toc37317918 _Toc37317999 _Hlt41977546 _Toc55873810 _Toc64942192 _Toc69113323 _Toc125960132 _Toc144891610 _Toc162156446 _Toc485977171 _Hlt70768401 _Hlt162100803 _Hlt162100799 _Hlt70768578 _Hlt162104211 _Hlt41981971 _Toc37317919 _Toc37318000 _Toc55873811 _Toc64942193 _Toc69113324 _Toc125960133 _Toc144891611 _Toc162156447 _Toc485977172 _Toc37317920 _Toc37318001_Experiment_descriptors _Toc55873812 _Toc64942194 _Toc69113325 _Toc125960134 _Toc144891612 _Toc162156448 _Toc485977173 _Hlt136151222 _Hlt138052129 _Hlt138051412 _Toc37317922 _Toc37318003 _Toc55873814 _Toc64942196 _Toc69113327 _Toc125960136 _Toc144891613 _Toc162156449 _Toc485977174 _Hlt165627457 _Toc55873815 _Toc64942197 _Toc69113328 _Toc125960137 _Toc144891614 _Toc162156450 _Toc485977175 _Hlt136150667 _Toc55873816 _Toc64942198 _Toc69113329 _Toc125960138 _Toc144891615 _Toc162156451 _Toc214767235 _Hlt257722764 _Toc403561602 _Toc420418821 _Toc485977176 _Toc485978148 _Toc55873817 _Toc64942199 _Toc69113330 _Toc125960139 _Toc144891616 _Toc162156452 _Toc214767236 _Toc403561603 _Toc420418822 _Toc485977177 _Toc485978149 _Toc125960140 _Toc144891617 _Toc162156453 _Toc214767237 _Toc403561604 _Toc420418823 _Toc485977178 _Toc485978150 _Toc37317927 _Toc37318008 _Toc55873818 _Toc64942200 _Toc69113331 _Toc125960141 _Toc144891618 _Toc162156454 _Toc214767238 _Toc403561605 _Toc420418824 _Toc485977179 _Toc485978151 _Toc37317928 _Toc37318009 _Toc37317929 _Toc37318010 _Toc37317930 _Toc37318011 _Hlt71016159 _Toc37317931 _Toc37318012 _Hlt70768470 _Toc37317932 _Toc37318013 _Hlt70769075 _Hlt162100829_Collating_Affymetrix_data _Toc125960142 _Toc144891619 _Toc162156455 _Toc214767239 _Toc403561606 _Toc420418825 _Toc485977180 _Toc485978152 _Toc403561607 _Toc420418826 _Toc485977181 _Toc485978153 _Toc403561608 _Toc420418827 _Toc485977182 _Toc485978154 _Toc420418828 _Toc485977183 _Toc485978155 _Toc37317934 _Toc37318015 _Toc55873819 _Toc64942201 _Toc69113332 _Hlt102247417 _Toc125960143 _Toc144891620 _Toc162156456 _Toc214767240 _Toc403561609 _Toc420418829 _Toc485977184 _Toc485978156 _Hlt71016549 _Toc37317935 _Toc37318016 _Hlt138179458 _Hlt162100927 _Hlt162072725 _Hlk102247370 _Hlk102247371 _Hlk102247372 _Hlk102247396 _Hlk102247397 _Hlt102247404 _Hlt102247414 _Toc125960144 _Toc144891621 _Toc162156457 _Toc214767241 _Toc403561610 _Toc420418830 _Toc485977185 _Toc485978157 _Toc162156458 _Toc214767242 _Toc403561611 _Toc420418831 _Toc485977186 _Toc485978158 _Toc403561612 _Toc420418832 _Toc485977187 _Toc485978159 _Hlt257724214 _Toc162156459 _Toc214767243 _Toc315089965 _Toc403561613 _Toc420418833 _Toc485977188 _Toc485978160 _Toc447294282 _Toc485977189 _Toc485978161 _Toc403561614 _Toc420418834 _Toc485977190 _Toc485978162 _Toc533999185 _Toc37317936 _Toc37318017 _Toc55873820 _Toc64942202 _Toc69113333 _Toc125960145 _Toc144891622 _Hlt162103390 _Toc162156460 _Toc214767244 _Hlt257725570 _Toc403561615 _Toc420418835 _Toc485977191 _Toc485978163 _Toc533999186 _Toc37317937 _Toc37318018 _Toc55873821 _Toc64942203 _Toc69113334 _Toc125960146 _Toc144891623 _Toc162156461 _Toc214767245 _Toc403561616 _Toc420418836 _Toc485977192 _Toc485978164 _Hlt165627618 _Toc533999187 _Toc37317938 _Toc37318019 _Toc55873822 _Toc64942204 _Toc69113335 _Toc125960147 _Toc144891624 _Toc162156462 _Toc214767246 _Toc403561617 _Toc420418837 _Toc485977193 _Toc485978165 _Hlt138000375 _Toc30925078 _Toc30925360 _Toc37317437 _Toc37317523 _Toc37317608 _Toc37317693 _Toc37317776 _Toc37317858 _Toc37317939 _Toc37318020 _Toc37318101 _Toc37318172 _Toc37508125 _Toc3      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz|}~7508285 _Toc37508361 _Toc37616102 _Toc37616177 _Toc37616252 _Toc37752563 _Toc37752639 _Toc37768014 _Toc37768092 _Toc37769671 _Toc528516114 _Toc37317940 _Toc37318021 _Hlt37746513 _Toc55873823 _Toc64942205 _Toc69113336 _Toc125960148 _Toc144891625 _Toc162156463 _Toc214767247 _Toc403561618 _Toc420418838 _Toc485977194 _Toc485978166 _Toc37317941 _Toc37318022 _Toc55873824 _Toc64942206 _Toc69113337 _Toc125960149 _Toc144891626 _Toc162156464 _Toc214767248 _Toc403561619 _Toc420418839 _Toc485977195 _Toc485978167 _Toc37317942 _Toc37318023 _Toc55873825 _Toc64942207 _Toc69113338 _Toc125960150 _Toc144891627 _Toc162156465 _Toc214767249 _Toc403561620 _Toc420418840 _Toc485977196 _Toc485978168 _Toc37317943 _Toc37318024 _Toc55873826 _Toc64942208 _Toc69113339 _Toc125960151 _Toc144891628 _Toc162156466 _Toc214767250 _Toc403561621 _Toc420418841 _Toc485977197 _Toc485978169 _Toc37317944 _Toc37318025 _Toc55873827 _Toc64942209 _Toc69113340 _Toc125960152 _Toc144891629 _Toc162156467 _Toc214767251 _Toc403561622 _Toc420418842 _Toc485977198 _Toc485978170 _Toc37317945 _Toc37318026 _Toc55873828 _Toc64942210 _Toc69113341 _Toc125960153 _Toc144891630 _Toc162156468 _Toc214767252 _Toc403561623 _Toc420418843 _Toc485977199 _Toc485978171 _Toc37317946 _Toc37318027 _Toc55873829 _Toc64942211 _Toc69113342 _Toc125960154 _Toc144891631 _Toc162156469 _Toc214767253 _Toc403561624 _Toc420418844 _Toc485977200 _Toc485978172 _Hlt55868394_Normalization _Toc37317947 _Toc37318028 _Toc55873830 _Toc64942212 _Toc69113343 _Toc125960155 _Toc144891632 _Toc162156470 _Toc214767254 _Toc263423136 _Toc280010055 _Toc403561625 _Toc420418845 _Toc485977201 _Toc485978173 _Toc37317948 _Toc37318029 _Toc55873832 _Toc64942214 _Toc69113345 _Toc125960157 _Toc144891634 _Toc162156472 _Toc280010056 _Toc485977202 _Toc37317949 _Toc37318030 _Toc55873833 _Toc64942215 _Toc69113346 _Toc125960158 _Toc144891635 _Toc162156473 _Toc280010057 _Toc485977203 _Toc37317950 _Toc37318031 _Toc55873834 _Toc64942216 _Toc69113347 _Toc125960159 _Toc144891636 _Toc162156474 _Toc280010058 _Toc485977204 _Hlt41984025 _Toc280010059 _Toc403561626 _Toc420418846 _Toc485977205 _Toc485978174 _Toc280010060 _Toc403561627 _Toc420418847 _Toc485977206 _Toc485978175 _Toc280010061 _Toc485977207 _Toc280010062 _Toc485977208 _Toc280010063 _Toc485977209 _Toc280010064 _Toc485977210 _Toc37317951 _Toc37318032 _Toc55873835 _Toc64942217 _Toc69113348 _Toc125960161 _Toc144891638 _Toc162156476 _Toc214767256 _Toc403561628 _Toc420418848 _Toc485977211 _Toc485978176 _Toc37317952 _Toc37318033 _Toc55873836 _Toc64942218 _Toc69113349 _Toc125960162 _Toc144891639 _Toc162156477 _Toc214767257 _Toc403561629 _Toc420418849 _Toc485977212 _Toc485978177 _Hlt162100978 _Toc37317953 _Toc37318034 _Toc55873837 _Toc64942219 _Toc69113350 _Toc125960163 _Toc144891640 _Toc162156478 _Toc214767258 _Toc403561630 _Toc420418850 _Toc485977213 _Toc485978178 _Toc37317954 _Toc37318035 _Toc55873838 _Toc64942220 _Toc69113351 _Toc125960164 _Toc144891641 _Toc162156479 _Toc214767259 _Toc403561631 _Toc420418851 _Toc485977214 _Toc485978179 _Hlt138000597 _Toc37317955 _Toc37318036 _Toc55873839 _Toc64942221 _Toc69113352 _Toc125960165 _Toc144891642 _Toc162156480 _Toc214767260 _Toc403561632 _Toc420418852 _Toc485977215 _Toc485978180 _Toc37317956 _Toc37318037 _Toc55873840 _Toc64942222 _Toc69113353 _Toc125960166 _Toc144891643 _Toc162156481 _Toc214767261 _Toc403561633 _Toc420418853 _Toc485977216 _Toc485978181 _Toc403561634 _Toc420418854 _Toc485977217 _Toc485978182 _Toc55873841 _Toc64942223 _Toc69113354 _Toc125960167 _Toc144891644 _Toc162156482 _Toc214767262 _Toc403561635 _Toc420418855 _Toc485977218 _Toc485978183 _Hlt55867746 _Toc55873842 _Toc64942224 _Toc69113355 _Toc125960168_Selecting_a_genelist _Toc144891645 _Toc162156483 _Toc214767263 _Toc403561636 _Toc420418856 _Toc485977219 _Toc485978184 _Hlt162100988 _Hlt162103250 _Toc55873843 _Toc64942225 _Toc69113356 _Toc125960169 _Toc144891646 _Toc162156484 _Toc214767264 _Toc403561637 _Toc420418857 _Toc485977220 _Toc485978185 _Toc403561638 _Toc420418858 _Toc485977221 _Toc485978186 _Hlt257555616 _Toc55873844 _Toc64942226 _Toc69113357 _Toc125960170 _Toc144891647 _Toc162156485 _Toc214767265 _Toc403561639 _Toc420418859 _Toc485977222 _Toc485978187$_Defining_annotations_using_genelist _Toc144891648 _Toc162156486 _Toc214767266 _Toc403561640 _Toc420418860 _Toc485977223 _Toc485978188 _Hlt138052117 _Toc144891649 _Toc162156487 _Toc485977224 _Toc144891650 _Toc162156488 _Toc485977225 _Hlt530927239 _Toc144891651 _Toc162156489 _Toc485977226 _Toc55873845 _Toc64942227 _Toc69113358 _Toc125960171 _Toc144891652 _Toc162156490 _Toc214767267 _Toc403561641 _Toc420418861 _Toc485977227 _Toc485978189 _Hlt55867747 _Hlt257724384 _Toc403561642 _Toc420418862 _Toc485977228 _Toc485978190 _Toc315089995 _Toc403561643 _Toc420418863 _Toc485977229 _Toc485978191 _Toc55873846 _Toc64942228 _Toc69113359 _Toc125960172_Gene_ontology _Toc144891653 _Toc162156491 _Toc214767268 _Toc403561644 _Toc420418864 _Toc485977230 _Toc485978192 _Hlt184032138 _Hlt55866636 _Toc37317957 _Toc37318038 _Toc55873847 _Toc64942229 _Toc69113360 _Toc125960173 _Toc144891654 _Toc162156492 _Toc214767269 _Toc403561645 _Toc420418865 _Toc485977231 _Toc485978193 _Toc37317958 _Toc37318039 _Toc55873848 _Toc64942230 _Toc69113361 _Toc125960174 _Toc144891655 _Toc162156493 _Toc214767270 _Toc403561646 _Toc420418866 _Toc485977232 _Toc485978194 _Toc37317959 _Toc37318040 _Hlt55866875 _Toc55873849 _Toc64942231 _Toc69113362 _Toc125960175 _Toc144891656 _Toc162156494 _Toc214767271 _Toc403561647 _Toc420418867 _Toc485977233 _Toc485978195 _Toc55873850 _Toc64942232 _Toc69113363 _Toc125960176 _Toc144891657 _Toc162156495 _Toc214767272 _Toc403561648 _Toc420418868 _Toc485977234 _Toc485978196 _Toc37317960 _Toc37318041 _Toc55873851 _Toc64942233 _Toc69113364 _Toc125960177 _Toc144891658 _Toc162156496 _Toc214767273 _Toc403561649 _Toc420418869 _Toc485977235 _Toc485978197 _Hlt257560028_Distance_metric _Toc55873852 _Toc64942234 _Toc69113365 _Toc125960178 _Toc144891659 _Toc162156497 _Toc214767274 _Toc403561650 _Toc420418870 _Toc485977236 _Toc485978198 _Toc55873853 _Toc64942235 _Toc69113366 _Toc125960179 _Toc144891660 _Toc162156498 _Toc214767275 _Toc403561651 _Toc420418871 _Toc485977237 _Toc485978199 _Toc37317961 _Toc37318042 _Toc55873854 _Toc64942236 _Toc69113367 _Toc125960180 _Toc144891661 _Toc162156499 _Toc214767276 _Toc403561652 _Toc420418872 _Toc485977238 _Toc485978200 _Hlt380584024 _Toc37317962 _Toc37318043 _Toc55873855 _Toc64942237 _Toc69113368 _Toc125960181 _Toc144891662 _Toc162156500 _Toc214767277 _Toc403561653 _Toc420418873 _Toc485977239 _Toc485978201 _Toc55873856 _Toc64942238 _Toc69113369 _Toc125960182 _Toc144891663 _Toc162156501 _Toc214767278 _Toc403561654 _Toc420418874 _Toc485977240 _Toc485978202 _Hlt38092624 _Hlt280731742 _Toc37317963 _Toc37318044 _Toc55873857 _Toc64942239 _Toc69113370 _Toc125960183 _Toc144891664 _Toc162156502 _Toc214767279 _Toc403561655 _Toc420418875 _Toc485977241 _Toc485978203 _Hlt162101092 _Hlt55798749 _Toc37317964 _Toc37318045 _Toc55799001 _Toc55799096 _Toc55873858 _Toc64942240 _Toc69113371 _Toc125960184 _Toc144891665 _Toc162156503 _Toc214767280 _Toc403561656 _Toc420418876 _Toc485977242 _Toc485978204 _Hlt70930123 _Toc125960185 _Toc144891666 _Toc162156504 _Toc214767281 _Toc403561657 _Toc420418877 _Toc485977243 _Toc485978205 _Toc37317965 _Toc37318046 _Toc55799002 _Toc55799097 _Toc55873859 _Toc64942241 _Toc69113372 _Toc125960186 _Toc144891667 _Toc162156505 _Toc214767282 _Toc403561658 _Toc420418878 _Toc485977244 _Toc485978206 _Hlt280731846 _Hlt162101141 _Hlt225749605 _Hlt257557077 _Toc55799003 _Toc55799098 _Toc55873860 _Toc64942242 _Toc69113373 _Toc125960187 _Toc144891668 _Toc162156506 _Toc214767283 _Toc403561659 _Toc420418879 _Toc485977245 _Toc485978207 _Hlt162067644 _Hlt165783490 _Hlt165627628 _Hlt162068318 _Hlt162068359 _Hlt162068360 _Hlt162068272 _Hlt162101162 _Toc37317966 _Toc37318047 _Toc55799004 _Toc55799099 _Toc55873861 _Toc64942243 _Toc144891669 _Toc162156507 _Toc214767284 _Toc403561660 _Toc420418880 _Toc485977246 _Toc485978208 _Hlt162069815_Gene_Ontology_comparison _Hlt182285636 _Hlt182285637 _Hlt125949588 _Hlt162071935 _Hlt162072145 _Hlt162072412 _Hlt162072666 _Hlt257722730 _Hlt176158071 _Hlt303687339 _Hlt165627825 _Toc125960192 _Toc144891670 _Toc162156508 _Toc214767285 _Toc403561661 _Toc420418881 _Toc485977247 _Toc485978209 _Toc69113374 _Toc125960193 _Toc144891671 _Toc162156509 _Toc214767286 _Toc403561662 _Toc420418882 _Toc485977248 _Toc485978210 _Toc125960194 _Toc144891672 _Toc162156510 _Toc214767287 _Toc403561663 _Toc420418883 _Toc485977249 _Toc485978211 _Hlt57453756 _Hlt162099651 _Hlt162100655 _Toc125960195 _Toc144891673 _Toc162156511 _Toc485977250 _Toc55799005 _Toc55799100 _Toc55873862 _Toc64942244 _Toc69113375 _Toc125960196 _Toc144891674 _Toc162156512 _Toc485977251 _Toc55799006 _Toc55799101 _Toc55873863 _Toc64942245 _Toc69113376 _Toc125960197 _Toc144891675 _Toc162156513 _Toc485977252 _Toc55799007 _Toc55799102 _Toc55873864 _Toc64942246 _Toc69113377 _Toc125960198 _Toc144891676 _Toc162156514 _Toc485977253 _Toc55799008 _Toc55799103 _Toc55873865 _Toc64942247 _Toc69113378 _Toc125960199 _Toc144891677 _Toc162156515 _Toc485977254 _Toc55799009 _Toc55799104 _Toc55873866 _Toc64942248 _Toc69113379 _Toc125960200 _Toc144891678 _Toc162156516 _Toc485977255 _Toc55799010 _Toc55799105 _Toc55873867 _Toc64942249 _Toc69113380 _Toc125960201 _Toc144891679 _Toc162156517 _Toc485977256 _Hlt70928183 _Toc37317967 _Toc37318048 _Toc55799011 _Toc55799106 _Toc55873868 _Toc64942250 _Toc69113381 _Toc125960202 _Toc144891680 _Toc162156518 _Toc485977257 _Toc55799012 _Toc55799107 _Toc55873869 _Toc64942251 _Toc69113382 _Toc125960203 _Toc144891681 _Toc162156519 _Toc214767288 _Toc403561664 _Toc420418884 _Toc485977258 _Toc485978212 _Toc125960204 _Toc144891682 _Toc162156520 _Toc214767289 _Toc403561665 _Toc420418885 _Toc485977259 _Toc485978213 _Toc37317968 _Toc37318049 _Toc55799013 _Toc55799108 _Toc55873870 _Toc64942252 _Toc69113383 _Toc125960205 _Toc144891683 _Toc162156521 _Toc214767290 _Toc403561666 _Toc420418886 _Toc485977260 _Toc485978214 _Hlt125906051 _Hlt48722388 _Hlt162101196 _Hlt162101220 _Hlt162101186 _Hlt162069143 _Toc55799014 _Toc55799109 _Toc55873871 _Toc64942253 _Toc69113384 _Toc125960206 _Toc144891684 _Toc162156522 _Toc214767291 _Hlt303687340 _Toc403561667 _Toc420418887 _Toc485977261 _Toc485978215 _Hlt184031603 _Toc55799015 _Toc55799110 _Toc55873872 _Toc64942256 _Toc69113387 _Toc125960207 _Toc144891685 _Toc162156523 _Toc214767292 _Hlt257560030 _Toc403561668 _Toc420418888 _Toc485977262 _Toc485978216 _Toc55799016 _Toc55799111 _Toc55873873 _Toc64942257 _Toc69113388 _Toc125960208 _Toc144891686 _Toc162156524 _Toc214767293 _Toc403561669 _Toc420418889 _Toc485977263 _Toc485978217 _Hlt165627996 _Toc55799017 _Toc55799112 _Toc55873874 _Toc64942258 _Toc69113389 _Toc125960209 _Toc144891687 _Toc162156525 _Toc214767294 _Toc403561670 _Toc420418890 _Toc485977264 _Toc485978218 _Toc55799018 _Toc55799113 _Toc55873875 _Toc64942259 _Toc69113390 _Toc125960210 _Toc144891688 _Toc162156526 _Toc214767295 _Toc403561671 _Toc420418891 _Toc485977265 _Toc485978219 _Toc55873876 _Toc64942260 _Toc69113391 _Toc125960211 _Toc144891689 _Toc162156527 _Toc214767296 _Toc403561672 _Toc420418892 _Toc485977266 _Toc485978220 _Hlt55866227 _Hlt55867005 _Toc37317970 _Toc37318051 _Toc55873877 _Toc64942261 _Toc69113392 _Toc125960212 _Toc144891690 _Toc162156528 _Toc214767297 _Toc403561673 _Toc420418893 _Toc485977267 _Toc485978221 _Hlt125957002 _Hlt162101249 _Hlt125906053 _Hlt125906081 _Hlt225843029 _Hlt125906163 _Hlt57454446 _Hlt162101293 _Hlt162101259 _Hlt162101272 _Hlt162101276 _Hlt165782008 _Hlt165781984 _Hlt162068404 _Toc125960213 _Hlt125960240 _Toc144891691_Pre-installed_plugins _Toc162156529 _Toc214767298 _Toc403561674 _Toc420418894 _Toc485977268 _Toc485978222 _Hlt125960241 _Toc125960214 _Toc144891692 _Toc162156530 _Toc214767299 _Toc403561675 _Toc420418895 _Toc485977269 _Toc485978223 _Hlt125959681 _Hlt125959069 _Hlt125959658 _Hlt125960691 _Hlt125959143 _Hlt125959692 _Hlt165782030 _Hlt165782084 _Hlt165782246 _Hlt125959288 _Hlt125959508 _Hlt125959509 _Hlt162068441 _Hlt165782641 _Hlt165782767 _Hlt165782768 _Hlt257804229 _Hlt257804443 _Hlt257804444 _Hlt165781979 _Hlt165782270 _Hlt165782271 _Hlt125959168 _Hlt165782086 _Hlt125959511 _Hlt125959291 _Hlt125959694 _Hlt165783501 _Hlt165783502 _Hlt165782749 _Hlt165782750 _Hlt165783513 _Hlt165783514 _Hlt165782763 _Hlt125959187 _Hlt125959519 _Hlt125959515 _Hlt125959697 _Hlt125959293 _Hlt165782088 _Hlt125959218 _Hlt165627636 _Hlt165627649 _Hlt165782247 _Hlt165783493 _Hlt125959540 _Hlt165783548 _Hlt165783549 _Hlt225842797 _Hlt165782745 _Hlt165782746 _Hlt165782116 _Hlt162068363 _Hlt165627633 _Hlt165782090 _Hlt125959699 _Hlt165782742 _Hlt165781977 _Hlt165782726 _Hlt165782727 _Hlt125959587 _Hlt225842800 _Hlt125959456 _Hlt125959457 _Hlt125960242 _Toc125960215 _Toc144891693 _Toc162156531 _Toc214767300 _Toc403561676 _Toc420418896 _Toc485977270 _Toc485978224 _Hlt125959590 _Hlt125959604 _Hlt125959298 _Hlt125959313 _Hlt125959304 _Hlt125959685 _Hlt125960690 _Hlt162068399 _Hlt165782110 _Hlt125960688 _Hlt165782692 _Hlt165782034 _Hlt165782677 _Hlt165782678 _Toc125960216 _Toc144891694 _Toc162156532 _Toc214767301 _Toc403561677 _Toc420418897 _Toc485977271 _Toc485978225 _Hlt125959688 _Hlt125959615 _Hlt125959301 _Hlt125959639 _Hlt125959620 _Hlt125960689 _Hlt214767465 _Hlt214767466 _Hlt162099562 _Hlt165782652 _Hlt165782653 _Hlt162099553 _Toc214767302 _Toc403561678 _Toc420418898 _Toc485977272 _Toc485978226 _Hlt214767324 _Hlt214767449 _Toc403561679 _Toc420418899 _Toc485977273 _Toc485978227 _Toc533999212 _Toc37317972 _Toc37318053 _Toc55873878 _Toc64942262 _Toc69113393 _Toc125960217 _Toc144891695 _Toc162156533 _Toc214767303 _Toc403561680 _Toc420418900 _Toc485977274 _Toc485978228 _Toc533999213 _Toc37317973 _Toc37318054 _Toc55873879 _Toc64942263 _Toc69113394 _Toc125960218 _Toc144891696 _Toc162156534 _Toc214767304 _Toc403561681 _Toc420418901 _Toc485977275 _Toc485978229 _Toc403561682 _Toc420418902 _Toc485977276 _Toc485978230 _Toc485977277 _Hlt257557831 _Hlt225749616 _Toc485977278 _Toc420416998 _Toc485977279 _Toc485978231_GoBack _Toc485977280 _Toc485978232 _Toc533999214 _Toc37317974 _Toc37318055 _Toc55873880 _Toc64942264 _Toc69113395 _Toc125960219 _Toc144891697 _Toc162156535 _Toc214767305 _Toc403561683 _Toc420418903 _Toc485977281 _Toc485978233 _Toc533999215 _Toc37317975 _Toc37318056 _Toc55873881 _Toc64942265 _Toc69113396 _Toc125960220 _Toc144891698 _Toc162156536 _Toc214767306 _Toc403561684 _Toc420418904 _Toc485977282 _Toc485978234 _Toc533999216 _Toc37317976 _Toc37318057 _Toc55873882 _Toc64942266 _Toc69113397 _Toc125960221 _Toc144891699 _Toc162156537 _Toc214767307 _Toc403561685 _Toc420418905 _Toc485977283 _Toc485978235 _Hlt125949763 _Toc403561686 _Toc420418906 _Toc485977284 _Toc485978236 _Toc403561687 _Toc420418907 _Toc485977285 _Toc485978237 _Toc144891700 _Toc162156538 _Toc214767308 _Toc403561688 _Toc420418908 _Toc485977286 _Toc485978238 _Hlt165628071 _Toc55873883 _Toc64942267 _Toc69113398 _Toc125960222 _Toc144891701 _Toc162156539 _Toc214767309 _Toc403561689 _Toc420418909 _Toc485977287 _Toc485978239 _Hlt165628481 _Toc533999219 _Toc37317978 _Toc37318059$_Stopping_a_computation_after it has _Toc55873885 _Toc64942269 _Toc69113400 _Toc125960224 _Toc144891703 _Toc162156541 _Toc214767311 OLE_LINK1 OLE_LINK2 _Toc403561690 _Toc420418910 _Toc485977288 _Toc485978240 _Toc55873886 _Toc64942270 _Toc69113401 _Toc125960225 _Toc144891704 _Toc162156542 _Toc214767312 _Toc403561691 _Toc420418911 _Toc485977289 _Toc485978241 _Toc55873887 _Toc64942271 _Toc69113402 _Toc125960226 _Toc144891705 _Toc162156543 _Toc214767313 _Toc403561692 _Toc420418912 _Toc485977290 _Toc485978242 _Hlt162099518 _Toc533999180 _Toc37317923 _Toc37318004 _Hlt41977522 _Toc55873888 _Toc64942272 _Toc69113403 _Toc125960227 _Toc144891706 _Toc162156544 _Toc214767314 _Toc403561693 _Toc420418913 _Toc485977291 _Toc485978243 _Toc533999181 _Toc37317924 _Toc37318005$_Example_1_-_Arrays are horizontally$_Example_1_-_Experiments are horizon _Toc55873889 _Toc64942273 _Toc69113404 _Toc125960228 _Toc144891707 _Toc162156545 _Toc485977292 _Hlt41977518$_Example_2_-_Arrays are in separate $_Example_2_-_Experiments are in sepa _Toc533999183 _Toc37317925 _Toc37318006 _Toc55873890 _Toc64942274 _Toc69113405 _Toc125960229 _Toc144891708 _Toc162156546 _Toc485977293_Example_3_ _Multi-chip sets _Toc37317984 _Toc37318065_Reporting_bugs _Toc55873895 _Toc64942279 _Toc69113410 _Toc125960234 _Toc144891713 _Toc162156551 _Toc214767319 _Toc403561694 _Toc420418914 _Toc485977294 _Toc485978244 _Hlt530922009 _Toc37317985 _Toc37318066 _Toc55873896 _Toc64942280 _Toc69113411 _Toc125960235 _Toc144891714 _Toc162156552 _Toc214767320 _Toc403561695 _Toc420418915 _Toc485977295 _Toc485978245 _Hlt95891270 _Hlt528987025 _Hlt37769726 _Toc55873897 _Toc64942281 _Toc69113412 _Toc125960236 _Toc144891715 _Hlt161996199 _Toc162156553 _Toc214767321 _Toc403561696 _Toc420418916 _Toc485977296 _Toc485978246 _Hlt55809521 _Hlt55809522 _Toc64942282 _Toc69113413 _Toc125960237 _Toc144891716 _Toc162156554 _Toc214767322 _Toc403561697 _Toc420418917 _Toc485977297 _Toc485978247 _Hlt69112855 _Hlt69112856:$$$$$$$$$$$$$$$$$$$$$$$$$$$$$)))))))))))))y1$;C.HnZpZpZpZrZsZi[W^Y^Y^Y^Y^Y^Y^Y^Y^Y^Y^Y^Y^Y^ccCeCeCeCeCeCeCeCeCeCeCeCeCeReReReReReReReReReReReReReRegggggggggggggggggXhXhXhXhXhXhXhXhXhXhXhXhXhoiiiiiiiiiiiiiiiiiiiiiiiiiiiiilllmmmmmmmmmmmmmmpppppppppppppppppppppppq0r8rCrOrx}}}}}}}}}VVXXXXXXXXXX֐ffffffffll00O00E                  ......#####0004444<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CCCCCCCCCCCCCCCKQQQQQQQQQQQQQQQQQQQQQQQ+Q+Q+Q+Q+Q+Q+Q+Q+Q+Q+Q+Q+Q+Q+QVVVVVVVVVVVVVXWXWXWXWXWXWXWXWXWXWXWXWXW4_4_4_4_4_4_4_4_4_4_4_4_4_bbbbbbbbbbbbb^d^d^d^d^d^d^d^d^d^d^d^d^dfffffffffffffvgvgvgvgvgvgvgvgvgvgvgvgvgvgvgvgvg>h>h>h>h>h>h>h>h>h>hiiiiiiiiii(j(j(j(j(j(j(j(j)j)j$rsssssxxxxxhyhy||LjLjLjLjLjLjLjLjLjLjLjLjLj'''''''''''''R?????????????ӓHHHHHHHHHHHHHMMMMԛԛԛԛԛԛԛԛԛԛԛԛGHϠϠϠϠϠϠϠϠ'лллллллллллO        a3333333333333FFFFFFFFFFFFFF(((((((((((V[[[[[[[[[[[[[ccccccccccccccc  2222222222222222=======================G>Ht>vyzyzyzyzyzyzyzyzyzyzyzyzyz[||||||||||||||||||||||y4ٵx),]]]]]]]]]xxxxxxxxxJJJJJJJJJ           &&&&&&&&&&&&&44444444<<<<<<<<<<<<<<<<BEEEZahhhhhhhhhhhhhh[ijjjjjjjjjjjjjjkkkkkkkkkkkkkrxxxxxxxxxxxxxєєєєєєєєєєєєєܚܚܚܚܚܚܚܚܚܚܚ6\OOOOOOOOOOOOOPWWW]˭ϳг׳׳ݳ߳LLGHIKLLLMMPTTTUUWXXǵǵǵǵǵǵǵǵǵǵǵʵʵ̵̵ϵϵ  """ѸѸѸѸ             ****5n222vGGGGGGGGGGGGHHmmmmmmmmmmmmmmffffffffffffffP////ttttttttttt99999999999999999nnnnnnnnnnn - - - - - - - - - - - - - - - VVVVVVVVVVVVR|"|"}"}"}"}"}"}"}"}"}"}"=)************** ,.............327x9y9y9y9y9y9y9y9y9y9y9y9y9@@ A A A A A A A A A AyAyAD@@@@@@@@@ @ @ @ @ @@@@@@@@@@@@@@@@@@@ @!"@#@$@%@&@'@@@(,-./012)@3*@4+@5678A@B@C@D@E@F@G@H@9@:@;@<@=@>@?@KLI@MNOPQRJ@STUVWYZ[\]^_`X@abcdefghijklmnopqrs@t@u@v@w@x@y@z@{@|@}@~@@@@@@@@@@@@    @ @@@@@ !"#$%@&@'@()*+,-./01@23456789@;<=>?@A:@BCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl@mno@pqr@s@tuvwxyz{|}~@@@@@@@@@@@@@@@@@   @   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcde@fghijklmnopqrstuvwxyz{|}~@@@@     @@ !"#$@%&'()*+,-./012345678@9:;<=>?@ABCDEFGHIJKLMN@O@PQRSTUVWXZ[\]Y^_`abcde@f@ghijklmnopqrstuvwxyz{|}~@@@@@@@@     @@@ @!"#$%&'()*+,-.@/@0@1@2@3@4@5@RSTUVW6789:;<B@=>@?@@@E@F@G@H@A@C@D@I@JKLMNOPQXYZ[\]^_`abcdefghi@j@k@lmnopqrstuvwxyz{|}~@@@@@@@@@@@      !"#$%&'()*+,@-@./0123456789:@@;@<@=@>@?@A@B@C@D@E@F@G@H@KI@LJMNOPQRS@UVWXYZ[\T@p@q@]@_@`@^@a@b@c@d@e@f@g@h@i@j@k@l@m@n@o@}@r@s@t@u@v@w@x@y@z@{@|@@@~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@      !"#$%&@'()*+,-.0123456/@789:;<=>?@AB@DEFCGHIJKLMRSNOPQTUVWXYZ[\]^_`abcdefghij@lmnk@opqrstuvwxy|}~z{@@@@@@@@:$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$)))))))))))))y1$;C.HoZqZqZqZsZtZi[W^^^^^^^^^^^^^^ccOeOeOeOeOeOeOeOeOeOeOeOeOeReeeeeeeeeeeeeeeeeeeeeeeeeee>g>g>g>g>g>g>g>g>g>g>g>g>ggggguhuhuhuhuhuhuhuhuhuhuhuhuhpiiiiiiiiiiiiiiiiiiiiiiiiiiiiillmmmmmmmmmmmmmmmpppppppppppppppppppppppq1r9rDrOr}}}}}}}}}}VVXvvvvvvvvv֐ݗݗݗݗݗݗݗݗݗݗݗzzzzzzzz||LLO--------}}E                  DDDDDD#####111555555<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CCCCCCCCCCCCCCCK!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q!Q+Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=QVVVVVVVVVVVVVhWhWhWhWhWhWhWhWhWhWhWhWhWD_D_D_D_D_D_D_D_D_D_D_D_D_bbbbbbbbbbbbbsdsdsdsdsdsdsdsdsdsdsdsdsdfffffffffffffvgvggggggggggggggggRhRhRhRhRhRhRhRhRhRh$i$i$i$i$i$i$i$i$i$i=j=j=j=j=j=j=j=j=j=j$rsssss6x6x6x6x6x~y~y?|?|шшшшшшшшшшшшш,,33333333333RՎՎՎՎՎՎՎՎՎՎՎՎՎ^^^^^^^^^^^^^ӓ^^^^^^^^^^^^^%%%%%%%%%%%%%eeeeԛHI̠̠̠̠̠̠̠̠̠̠̠Ϡɶɶɶ(...O44444 a0000000000000DDDDDDDDDDDDDFxxxxxxxxxIIIIIIIIIII"""""""""""""Vtt44444444444cczzzzzzzzzzzzz  2222222222222222========>>>>>>>>>>>>>>>G>Ht>vzzzzzzzzzzzzz[|||||||||||||||y)4ٵDDDDDDDDx*-yyyyyyyyy,,,,,,,,,rrrrrrrrr           '''''''''''''44444444<<<<<<<<<<<<<<<<BEEEZahhhhhhhhhhhhhh[ijkkkkkkkkkkkkk/k/k/k/k/k/k/k/k/k/k/k/k/krxxxxxxxxxxxxx6\lllllllllllllQXXX^h˭гѳسس޳HIJLLMMNNQUUUVVXYY__ǵ˵˵͵͵ееԵԵԵԵԵԵԵԵԵԵ !!###((((((((((((((3333JndddvnnnnnnnnnnnnnnPSSSS9llllllllllllllmm            - W W W W W W W W W W W W W W VVR|"|"""""""""""=)**************I,.............;2u77x9y999999999999@@AAAAAAAAAAzAzADkx0lx0mx0nx0ox0px0qx0rx0sx0tx0ux0vx0wx0xx0yx0zx0{x0|x0}x0~x0x0x0x0%%)2=$99J;KGZ2555@5D     (1<CC#**HRR;QGc2555C5D   8 *urn:schemas-microsoft-com:office:smarttagsCity9*urn:schemas-microsoft-com:office:smarttagsState9*urn:schemas-microsoft-com:office:smarttagsplace=*urn:schemas-microsoft-com:office:smarttags PlaceType=*urn:schemas-microsoft-com:office:smarttags PlaceName   %%I1S1q1z12288o9x9S:Z:\:c:;;;;<!<<<m>w>>>k?s???]EdEfEmENNNNcTjTlTsTTTUUUUWWWW[[[[__\fdfllVmYm4y?yzz;zCza|l|||T~[~i~p~bflsv}%twRUJQRWAHINgoۜ  ոݸ*5ܼ'/`cKPUZ 188@RZXdhm wjmw(,GMt}R[~+2DNzdix !(5< 6>quy} ,1.w{          %.BR+"$MU;E!(S]^jBIW_EOtxHL/3 PT)-dhH R   ##$$]%g%h%t%%%%%[&g&&'$','1'9'Y'c'h'r'=(E(L(T(((((B)F)))****m+y+++,,<-A-W-_-g-o-i1q1u22556#6889999W:^:c:i:m:s:::::;;;;H>R>CCJJLLhLqLWWL[W[[[\\]]G^R^Vb_bddeeh h hh)j/jXj^jkkl!llllmrmmm1p7pqq7r?KOUVbfx 67  8BcjszWa_h&/3;,4v~$cr!!,,1111K4T4HH\\]]]]]^V^_^ eegghhWiZiyi{iiiiiii%j(jjjjj k$k+k,klnrntt+v5vRyWy]ygymysyyyTz^z_zez}}}}x~~~~Ձց{|ĂłRd}6AipƏ16^chmrwŔ͔ʖԖfo֢z~¤:>fv)*01fh~ot JS߳irOYNRT^klw~ %EN!,26? BH '-"$ -   `emw[d   ##55;;;;;;s?x? @@@@AAAAXGbGwGG"I.IVVYY__*e>> >%>8>>>??h@l@m@w@@@@@AAAAAB2C4C5C7C8C:C;C=C>CXCYCDD79'!'#L.Lpp_g*,ݗY] fzN_tw %!*-";B    h k  RUx{.D##$$3.:......../#/'/F/J/0 0014588<<<<CCXWhW4_D_bb^dsdvgghhllNpPpssx6xrwLjшՎH^%apMeԛϠл4Fm{(I-/ot![ ! 4T0d0=>5><>AA&I-IKKMMG_M_kk k%kkknmqmnnnn uuv vwwyzz||ׁځ4=EZ\QX |~jm+ 2   !!&'44k/knnssxxєܚ_i`b*+ǵԵѸ*3ʺԺvz{2dHnmgtXafwfs/S t9l n  - W 5 : #$$$M%d%7788d8e899::<=>>> >2C4C5C7C8C:C;C=C>CXCYCmCpCCCCCCCCC6D>DYD]DrDvDDDDDDD33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333<i#ccJA~1YSg˱) k>XNz+z<}c}l~~+c!\kaù <= AA2C4C5C7C8C:C;C=C>CXCYChCjCkCmCCCCCCCCCCCCCCCCCCCDDDDD!D4D6DIDKDWDYDcDeDpDrD|D~DDDDDDDDDDDDDD%3Rl*J_6Vv+Kc-Mz4m5Us,Lp : Z x  / O ] }  * J [ {  ! 7 W   V v #1Qm=Ww3p #C[{*J-M @Qqz&Mm!Ll#C^~>e?i(H[{ ,Cc3` ,;[~8Ffx(H| 2 Y y !=!^!!!!"R"s""""#3#T####$$4$@$a$s$$$$ZwZ6cciyiqLr"E  ΜYq `226WiL_ֵ("|Trq ) :):q:s:{:}:n=o=1C2C2C4C5C5C7C8C:C;C=C>CXCYCD#Th3+hUafn  {! 2X" HU$7$&O) / 8/ 0",QW3Jz05FLf""5 Uc5yVc|:6զT4:8tv;e.UA DxB: obPZ=#_P7:1&S4H\ ^ 1-eX-rt(n&v8$FzP¦3u:{/Se|"DN | *^`.^`.p^p`.@ ^@ `.^`.^`.^`.^`.^`o(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.88^8`o(.^`o() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.hh^h`o()hh^h`o()0^`0o(.((^(`o(.^`o(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.hh^h`o()hh^h`o()hh^h`o()^`o()88^8`o(.88^8`o(.hh^h`o() ^`o() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. ^`o() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o()^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.88^8`OJPJQJ^Jo(hH- ^`hH. pp^p`hH. @ @ ^@ `hH. ^`hH. ^`hH. ^`hH. ^`hH. PP^P`hH.^`o() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o()88^8`o(.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.hh^h`o(.hh^h`o(()^`o(.^`o(.88^8`o(.^`o() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.((^(`o(.0^`0o(.* |2X"05$FzHU$e|rtn&vQW33+#_P 8/04:/obPO)1-e{!""5 ^xB.UA Uaf:1&Su:{v;Uc5Vc|:7$TH\ ո0.ظ @h ^`OJQJo(ָ @h ^`OJQJo(ָ0.׸ @h ^`OJQJo(8ָ @h ^`OJQJo(Ҹ @h ^`OJQJo(pָ @h ^`OJQJo(`Ӹ @h ^`OJQJo(#0##                                                      VW                                            LmDaw$ 5qr4ijr4ij'r4ir4i3#r4ij@#En3$Lmz"7'r4i.q,r4iE w3DawC(8r4i.HS Vr4ijYar4ix ,br4ir4ij@#*Npr4i6N_e8\o @ ? q -W  #@{1G.#^l==4OVj?k%,0#R$W%S&A3'O'+;)k*p+,U/#1N1R4o5`5Kg5uv5 *6/%8f8dg9*u:gd;N>R>;CGC7QCF9G}HYIJyCJmJYL3L bLNNM2NnN$PpP)mQ[3R S}X'XhiYIZtZf1[\]k_o_b!b~dDme4f8f*pfzhh\n p*pR2p^pFq`orwr sr!s&s4sjvxAxdxye1yZz8D{ EuV C*W+[^Bo H9'Qy +<h_A!$ #t# Z&7E;j5JB&pO0x!FGy^pt PV71<9\lV&p9c h$[h ve(lFch_goED2C4C@ijkmnρς7Dp@pp@ppp@ptpvp@pzp@pp$@pp@pppp@ppp@p @UnknownG.[x Times New Roman5Symbol3. .[x Arial7..{$ Calibri;([SOSimSun;WingdingsI. ??Arial Unicode MS?= .Cx Courier New7. [ @VerdanaiSummaryInformation(=XDocumentSummaryInformation8(0MsoDataStore?p]K.Cp]K.CLUUVF1LCTTH3KV==2@p]K.Cp]K.C Oh+'0  < H T `lt| BRB-ArrayTools User's Manual Amy Peng Normal.dotmQian X5Microsoft Office Word@4@ίvAj@B`@F).CtݢUXhttp://nar.oxfordjournals.org/cgi/content/full/gkl887?ijkey=ysG9Li2nfUYJvdZ&keytype=refrpGhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gds&term=all%5bfilterMJV3_7AT_With_ ՜.+,D՜.+,\ hp  The EMMES Corporation-A BRB-ArrayTools User's Manual Title. 8@ _PID_HLINKSA.M*http://www.csie.ntu.edu.tw/~cjlin/libsvm/o6,http://rana.lbl.gov/EisenSoftwareSource.htmZA.http://genome-www.stanford.edu/~alok/TreeViews:http://www.lbl.gov/http://rana.lbl.gov/HGhttp://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htmctv~h'http://bioinformatics.oupjournals.org/Bhttp://bonsai.ims.u-tokyo.ac.jp/~mdehoon/publications/cluster.pdfM*http://www.csie.ntu.edu.tw/~cjlin/libsvm/a"http://cran.r-project.org/ C9ftp://linus.nci.nih.gov/pub/techreport/TechReport002.pdf @9ftp://linus.nci.nih.gov/pub/techreport/TechReport001.pdfL-http://linus.nci.nih.gov/~brb/TechReport.htm)mailto:arraytools@emmes.comP-http://linus.nci.nih.gov/BRB-ArrayTools.htmlhLV3_7AT_With_CGHV1_0-April/Program Files/Qualcomm/Eudora/atch_001/Manual.doc%_Stopping_a_computation_after it has.=Whttp://bioconductor.org/packages/1.8/bioc/vignettes/simpleaffy/inst/doc/simpleAffy.pdf3j|http://dgidb.genome.wustl.edu/,yyhttp://www.drugbank.ca/v6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docs6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docp6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docm6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docj6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docg6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docd6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doca6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc^6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.doc[6Program Files (x86)/ArrayTools/Doc/Plug-in Manual.docFXhttp://linus.nci.nih.gov/~brbFUhttp://linus.nci.nih.gov/~brbWi=.Program Files (x86)/ArrayTools/Doc/Manual.doc%__Multivariate_Permutation_Tests_for^J:http://linus.nci.nih.gov/gd7.Program Files (x86)/ArrayTools/Doc/Manual.doc%_Specifying_replicate_experiments_anhl4'http://www-stat.stanford.edu/~tibs/SAMZ15http://nar.oxfordjournals.org/content/42/D1/D78.long:.7http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html:+7http://www.broad.mit.eCGHV1_0-April/V3_7AT_With_CGHV1_0/Doc/mAdb archive format.doc-:https://main.g2.bx.psu.edu/K>http://www.bioconductor.org/packages/release/data/annotation/uchttp://www.affymetrix.com/estore/browse/level_three_category_and_children.jsp?parent=35868&expand=true&category=35674&fromAccordionMenu=true&subCategory=35674.2http://www.affymetrix.com/ORhttp://www.bioconductor.org/.Program Files (x86)/ArrayTools/Doc/Manual.doc_Experiment_descriptors#.Program Files (x86)/ArrayTools/Doc/Manual.doc_Collating_Affymetrix_dataSAhttp://brb.nci.nih.gov/PowerPointSlides/LoadingAddinsInExcel.pptP-http://linus.nci.nih.gov/BRB-ArrayTools.html 4.Program Files (x86)/ArrayTools/Doc/Manual.doc_NormalizationTn.Program Files (x86)/ArrayTools/Doc/Manual.doc_Gene_Ontology_comparisonItem A_PropertiescUCompObjir" xmlns:b="http://schemas.openxmlformats.org/officeDocument/2006/bibliography" xmlns="http://schemas.openxmlformats.org/officeDocument/2006/bibliography">   F Microsoft Word 97-2003 Document MSWordDocWord.Document.89qUbuntu CondensedTimes New Roman3.[x TimesG  MS Mincho-3 fg5. .[`)TahomaA$BCambria Math"qh5G{' &ݢUt-ݢUt-q%24AA 3qHP ?N12! xx BRB-ArrayTools User's ManualAmy PengQian X#                           ! "