ࡱ> WYV @ bjbjqq "69dddd(+(+(+(++tKtT,l0l0l0l045 5JJJJJJJ$MRmO8J)744778Jddl0l0aKu>u>u>7dl0l0Ju>7Ju>u>VG@8TGl0H, ǒ_O(+;NG IwK0KZGxO#=BOGddddGOG855^u>5LE6~5558J8Jd$e>Chemistry 372 Gustavus Adolphus College LAB #2: FTIR (ROTATIONAL/VIBRATIONAL) SPECTRSCOPY OF HCl/DCl Abstract High resolution infrared absorption spectra of gaseous HCl and DCl are collected and used to explore the vibrational and rotational energy levels of the two gases. Related Reading McQuarrie and Simon, Physical Chemistry: A Molecular Approach, Chapter 13, 13-2 to 13-5, Molecular Spectroscopy, pp. 497-507 and Chapter 5: The Harmonic Oscillator and the Rigid Rotator: Two Spectroscopic Models, pp. 157-178 Background The vibrational-rotational spectrum results when rotational transitions accompany vibrational transitions in a molecule. One classical example of this is a spinning ice-skater. As the skater pull her arms closer to her body, she spins faster. Similarly, if you imagine a diatomic molecule, you can see that a decrease in bond length (a vibrational transition) results in faster rotations. Infrared spectroscopy allows you to observe different rotational transitions that occur within a single vibrational transition, and from this data, you can elucidate some important physical information about the molecule. Vibrational-rotational spectroscopy involves two precisely solvable problems: the harmonic oscillator (vibrations) and the rigid rotor (rotations) [see McQuarrie, Chapter 5]. Here, we will review each separately and then see how they are combined to explain the vibrational-rotational spectrum. Vibrations If an object can move away from its equilibrium (lowest energy) position against a force proportional to the distance it moves, it is called a harmonic oscillator. A classical harmonic oscillator (such as a mass attached to a spring) can be described by Hookes Law, which states that the force of a stretched spring is equal to the displacement (Dx) times the force constant (k). F = -kDx (1) Figure 1 shows a spring at rest (1a) and then stretched to some position where a force is now present (1b). If we call the resting position xo and the final position x, then displacement, Dx, is equal to x  xo.  The potential energy of this system is given by minus the integral of equation (1) from xo to x. Note the substitution Dx = x  xo.  EMBED Equation.2  (2) A chemical bond between two atoms vibrates as a harmonic oscillator. The equilibrium bond length (Re) is the resting position and any bond length shorter or longer than Re is like the stretched position of the spring. This is easiest to see in a qualitative potential energy diagram (see Figure 2).   At Re, the potential energy, V(R), is at its minimum. When R is longer than Re, the potential energy increases, approaching zero as the bond length goes to infinity. When R is shorter than Re, the potential energy also increases, approaching infinity as the bond length goes to zero. To find a simple equation to express V(R), we must limit the molecule to a state where the bond length spends most of its time near Re. In this part of the curve, V(R) can be approximated by a parabolic function: V = k(R Re)2 (3) where R Re is the displacement from equilibrium bond length. Using this mathematical model, we have approximated the potential energy function shown in Figure 2 as a parabola. As you can see in Figure 3, the harmonic oscillator approximation is only valid at values near Re. As the curve moves away from Re, the function must be corrected to account for anharmonicity.   The harmonic oscillator approximation can also be evaluated using quantum mechanics. The quantum mechanical solution to the Schrdinger equation for a harmonic oscillator gives a series of quantized energies with the following solutions: Evib = h0(v + ) (v = 0, 1, 2, & ) (4) where v is the vibrational quantum number and 0 =  (k/m) (5) n0 is called the vibrational frequency. k is the force constant and m is the mass of the atom. Different values of v designate different  vibrational states of the system, and give rise to different energies, all of which are multiples of n0. In the case of a heteronuclear diatomic molecule, equation (5) must be adjusted to accommodate two different masses. The reduced mass, m, is substituted for m. m = mAmB/(mA + mB) (6) where mA is the mass of one atom and mB is the mass of the other. The vibrational frequency is then defined:  EMBED Equation.3  s-1 (7) In wavenumbers, the energy, EMBED Equation.3 , and the vibrational frequency,  EMBED Equation.3 , are:  EMBED Equation.3  cm-1 and  EMBED Equation.3 cm-1 (8) Transitions among vibrartional levels are subject to the selection rule that v = 1 and the dipole moment of the molecule must vary during a vibration. Rotations While the harmonic oscillator model considers a bond like two masses connected by a flexible spring, the rigid rotor model considers a bond like two masses connected by a rigid bar, like a dumbbell. The dumbbell rotates as a unit, and the energies of rotation are also solvable by quantum mechanics [see McQuarrie, Chapter 5]: Erot = BeJ(J + 1) (J = 0, 1, 2, ) (9) Here, J is the rotational quantum number and Be is the rotational constant and is defined:  EMBED Equation.3 = EMBED Equation.3  s-1 (10) where m is the reduced mass (as defined in equation (6)) and Re is the equilibrium bond length for a vibrating diatomic molecule (if the rotor were truly rigid, the bond length would be constant). In wavenumbers, the energy, EMBED Equation.3 , and the rotational constant,  EMBED Equation.3 , are:  EMBED Equation.3  cm-1 and  EMBED Equation.3 cm-1 (11) Rotational transitions are governed by the selection rule J = 1 and the molecule must have a permanent dipole moment. Vibrations and Rotations When we consider both rotations and vibrations simultaneously, we take advantage of the fact that these transitions occur on different timescales. Typically, a molecular vibration takes on the order of 10-14 s. A molecular rotation is normally much slower, taking on the order of 109 or 10-10 s. Hence, as a molecule rotates one revolution, it vibrates many, many times. Since the vibrational energies are large compared with the rotational energies, the appropriate energy level diagram is:   The spectroscopic transitions you will observe in this experiment correspond to arrows pictured in the diagram. The spacing between vibrational (v) energy levels is large compared to the spacing between rotational (J) energy levels. As a result, all the peaks you observe will be of the vibrational transition Dv = +1. You will need to assign the rotational transitions based on the selection rule, DJ = 1. This simplifies your spectral assignment, since it rules out any transitions which dont follow the rule (such as J = +2). There is an interaction between the rotations and vibrations, causing EMBED Equation.3  to be dependent on v. Thus, the total energy in the rigid-rotator harmonic-oscillator model is:  EMBED Equation.3  (12) where v = 0, 1, 2 and J = 0, 1, 2  EMBED Equation.3 is the rotational constant when v = 0 and EMBED Equation.3  is the rotational constant when v = 1. It is often useful to relate EMBED Equation.3  to EMBED Equation.3 , allowing a direct calculation of Re:  EMBED Equation.3  v = 0, 1, 2, (13) The energy of observed transitions, EMBED Equation.3 , can be calculated from Eq (12):  EMBED Equation.3  (14)  EMBED Equation.3  (15) Substituting Eq (13) into Eqs (14) and (15), the final expressions for the two types of transitions are determined:  EMBED Equation.3  (16)  EMBED Equation.3  (17) Equations (16) and (17) can be simplified by substituting n = J+1 in equation (16) and n = -J in equation (17), the result is an identical equation:  EMBED Equation.3  (18) Equation (18) allows one to plot the results for both branches on one graph. Fitting the data to a quadratic formula will allow one to determine values for  EMBED Equation.3 and  EMBED Equation.3 . From these values,  EMBED Equation.3 ,  EMBED Equation.3 , and k can be determined from equations found above. Example Spectra (and more info) Figure 5 shows the vibrational-rotational infrared spectrum of HCl. By convention, a series of transitions for which DJ = -1 is called a P branch, and a series of lines for which DJ = +1 is called an R Branch. An R branch transition originating in state J and terminating in state J+1 is written  R(J) , and a P branch transition originating in state J and terminating in state J-1 is written  P(J) . (Q branches, in which DJ = 0 can occur in some cases, but not in the vibrational-rotational spectra of diatomic molecules, so we will ignore them.) The gap between the R branch and P branch corresponds to EMBED Equation.3 , and the separation of the lines in both branches is ~ EMBED Equation.3 . Example 13-3 from McQuarrie gives an example of using this information to predict the spectra of diatomic gases.  If one examines Figure 5 closely, it becomes apparent that the lines of the R-branch are more closely spaced than the P-branch lines. In addition, if one would compare the experimental values obtained for  EMBED Equation.3 and EMBED Equation.3 with those calculated by the above equations, some fairly severe discrepancies would be apparent, especially at increasing values of J and v. The discrepancies basically arise from three factors: the increase in vibrational amplitude with increasing vibrational states (this is why EMBED Equation.3  depends on v), the reality that chemical bonds are not truly rigid (i.e., the bonds stretch slightly upon rotation), and the anharmonicity of the internuclear potential energy well. Mathematically, there are several additions made to Eqs (13) and (14) to account for these discrepancies. 13-3, 13-4 and 13-5 of McQuarrie explain these mathematical terms and show how they are obtained. With these additional terms, the total energy becomes  EMBED Equation.3  (19) where v and J are quantum numbers equal to 0, 1, 2, , and is the frequency of the molecule vibrating around the equilibrium internuclear separation, Re.  EMBED Equation.3 is the centrifugal distortion constant and  EMBED Equation.3  is an anharmonicity constant. Refer to McQuarrie for more detailed information. When including the centrifugal distortion constat, EMBED Equation.3 , Eq (18) becomes:  EMBED Equation.3  (20) Procedure Safety and Other Concerns: Follow general lab safety rules. The KBr windows of the IR cell are hydroscopic. Do not touch them and keep the cell in the dessicator when not in use. In the Lab: HCl (and DCl) gas is plac(gop & ; c e o p q ~  \^$&(.0<>dfhj !g׼׼׮׼׼מ׋׼j3 h>EHU$j3 h>CJUVmHnHujh>UjhJDUjh>UmHnHu h>H*h>OJQJh}h}6>*h}h> hJDhJDhJDh0 hB6hG4hB5 hB5hB2()fgp  &   DFvx"$*46$a$gdJDgd> $ !a$gd> !gd>6vxEF|}st@B HJ(gd>gh>?<=z{}y|:<>@ "(*2ººhxyH*OJQJh>OJQJhxyhxyH*hjbhh5Uh}h570 h>H*j h>Ujh>UmHnHuh> h>H*B24BDXZ,.>@fhjlpt: < b d f h v x z ꢕyqbjqmI h,CJUVaJjhUjth,h,EHUjqmI h,CJUVaJjHhhEHUj$lmI hCJUVaJjhUh h gH*jh gh(EHUjqI h(CJUVaJh['jh['Uhh gh570h> h>H*$(x !!&"'"(")"3"{#|###$ $$&&&&&(((T+gd ^`gdgdgd> !!! ! !!!!!!!&")"2"3"@#`#d#y#z######### $ $$$$˼˧ߣ{{vvߣvnjhX,U h>H*h}h}h>6>*h}h}6>*hJDhlh@=h570h>h gh gH*jZ"h gh,EHUjqmI h,CJUVaJh gjh gUh ghH*h hhjhUjh['h,EHU*$:$<$>$@$B$D$j$l$n$p$v$z$$$$$$$$$$$$$%%&,&-&@&A&B&C&b&c&v&w&ɼظrcjmmI hCJUVaJjs*hhEHUjzmmI hCJUVaJjhU h>H*h gh>6OJQJh>hh570 h gH*h gj'hX,h gEHUjlI h gCJUVaJjhX,Uj&%hX,h gEHUjlI h gCJUVaJhX,%w&x&y&&&&&&&&&&&&&&&&&&&&&((())1*4*|********T+欟旓Âzuppi hh h>H* h}H*hh>H* hh>h}h}6>*h>h@=hxyj0h ghEHUjlI hCJUVaJh ghH* hhj.hhxyEHUjXpmI hxyCJUVaJhjhUj,hhEHU&T+U+X+Y+[+&-(---r.s...........//0/1/D/E/F/G/O/t/u///¾{nj[jAmI h#`CJUVaJhxyj>hhZw)EHUj{mI hZw)CJUVaJjhUhhj<hZw)hZw)EHUjJmI hZw)CJUVaJjhZw)UhZw)hlhlhlOJQJ hlhl *hPj{3h!hU h!h jh!hUmHnHu T+Z+[+r.s.0/O/g00001;111112233p^pgdk ^`gdmYgdxy^gd#` ^`gd/gd ^`gdgdlgd>gd//////////00#0$0%0&0)0*0=0>0?0@0d0e0g0l0m00000000ƾƯƾƓƁ}u}fYu}UhljIh~Th/EHUjmI h/CJUVaJjh/Uh/ h#`H*jGhZw)h#`EHUjJmI h#`CJUVaJjEhZw)h#`EHUjPmI h#`CJUVaJjh#`Uh#`jChZw)hZw)EHUjmI hZw)CJUVaJhZw)jhZw)UjAhZw)h#`EHU!000000000000011111111011121318191;111111111111qdjUhmYhmYEHUjǕmI hmYCJUVaJhmYjhmYUh/jCRhxyh#`EHUjmI h#`CJUVaJh#`jNhxyh8BEHUj'I h8BCJUVaJjhxyUjLh,hlEHUj1mI hlCJUVaJjhlUhlhxy&1111111222222222C3D3W3X3Y3Z3^3_3r3s3t3u3333ϸϧϣ{s{dWs{s{jA`hU*hU*EHUjmI hU*CJUVaJjhU*UhU*j<^hZw)h_EHUjJmI h_CJUVaJjh_Uh_hkjl[hmYh8BEHUjI h8BCJUVaJjhUhh/hmYjhmYUjXhmYhmYEHUjܕmI hmYCJUVaJ3333333333333"4$45585H55555x7z798r8s88888888Ȼ׷׭}na}]Yh~Thljfh,h,EHUjqmI h,CJUVaJjh,Uh,hxyhxy5hxyhxyOJQJ hxyhxyhU*h6>*hU*hU*6>*hjdhU*h,EHUjNmI h,CJUVaJhU*jhU*UjjbhU*h,EHUjMmI h,CJUVaJ"3$4K9L9O9P9==:=[=>??&???=iJijj l & Fgd#8gdgd5 gd> ^`gdt`gdlgdlgd~T$a$gdPgdxy888888888J9L9M9N9P999999::1:2:3:4:7:8:K:L:M:N::::::Z;g;̾rnjfjfbhJDh#Ghlhl|jďhe^dhe^dEHUjumI he^dCJUVaJjhe^dhe^dEHUj~umI he^dCJUVaJjhe^dUhe^djjh~TUjh~TUmHnHuhxyjhh~Th~TEHUjsmI h~TCJUVaJjh~TUhmYh~Th,%g;h;{;|;};~;;;;5<W<`<<<<=:=;=N=O=P=Q=Y===== > > > >3>7>8>K>L>ûìÓûÄwsûdjۆmI hlCJUVaJh%j4hlhlEHUjmI hlCJUVaJh#GhlH*hkjΓhC hlEHUjwmI hlCJUVaJjhlUhlhl|he^dh XYh#Gjɑhe^dhJDEHUjumI hJDCJUVaJhJDjhJDU#L>M>N>O>k>m>n>>>>>>>>>>>>>??????&???A?b?????@hhRhhhhhöҧҖ}uqoqkqkqgh NhUh5 h?nh?>*hd8h(h?hDSh?>* h?5h XYjRhmYhtEHUjmI htCJUVaJjMhlhtEHUjmI htCJUVaJhtjhtUhJDh%hljhlUj9h#GhlEHU(ed in a cell with KBr windows.(The TA or I will help fill the cell with the gas.) KBr windows are used because glass absorbs strongly in the infrared region.We will use the Nicollet FT-IR to record the IR spectrum of HCl (and DCl). More details will be available in lab. You will collect the spectrum with a group. Analysis: All aspects of the data analysis are described in the Background section. Make sure you understand how the equations are derived and what the constants  EMBED Equation.3 ,  EMBED Equation.3 , no, Re, and k represent. (You will need to justify your calculations in your lab report). Assign each peak to a specific rotational transition (R(0), P(1), & ) for all isotopic species (excluding H37Cl as the IR didn t resolve those peaks well). Using the index, n (P branch: n = - J ; R branch n = J + 1), tabulate the values of n and the corresponding  INCLUDEPICTURE "http://www.gustavus.edu/academics/chem/pchem/HCl%20_Lab_files/image025.gif" \* MERGEFORMATINET (in wavenumbers) of the transition for all species. Plot  EMBED Equation.3  INCLUDEPICTURE "http://www.gustavus.edu/academics/chem/pchem/HCl%20_Lab_files/image028.gif" \* MERGEFORMATINET against n for each isotopic speices. Look for outliers. Use Sigmaplot, Excel, or other program and Eq (18) above to get n0, (2 EMBED Equation.3  - 2 EMBED Equation.3 ),  EMBED Equation.3 , and  EMBED Equation.3  for all isotopic species. Repeat with Eq (20) to get n0, (2 EMBED Equation.3  - 2  EMBED Equation.3 ),  EMBED Equation.3 ,  EMBED Equation.3 , and  EMBED Equation.3 . Compare the values obtained from each fit. Use EMBED Equation.3 and EMBED Equation.3 , and any combination of equations above, to find Re and k for HCl and DCl. Compare Re and your other constants to the latest data at NIST Webbase ( HYPERLINK "http://webbook.nist.gov/chemistry/" http://webbook.nist.gov/chemistry/). Calculate the moment of inertia for HCl and DCl. Using the two isotopic peaks (H37Cl and H35Cl or H35Cl and D35Cl) compute the ratio of  EMBED Equation.3  for the two isotopes. Use Table 1 for correct isotopic masses.Which isotopic substitution (37Cl for 35Cl or D for H) affects EMBED Equation.3  more? Determine the temperature of the sample using the Boltzmann equation and the peak in the rotational contour (what is the most populated rotational state, Jmp, and how does this relate to the temperature). [Hint: See McQuarrie 18-5] Present the results of this analysis and a discussion of what it all means in a short report. Table 1 atomic mass (in amu)isotopic abundance (%)1H1.00782599.9852H2.01400.01535Cl35.96885275.7737Cl36.96590324.2379Br78.91833650.6981Br80.91628949.31 References 1. McQuarrie, D. A.; Simon, J. D.; Physical Chemistry: A Molecular Approach, University Science Books: Sausalito, CA, 1997. 2. Shoemaker, D. P.; Garland, C. W.; Nibler, J. W. Experiments in Physical Chemistry; 6 ed. McGraw-Hill: New York, 1996. 3hi*H*h#8h' 5>*h' h' 5h' hH*hOJQJjdhT:hT:EHUj'xqI hT:CJUVaJj;hT:hT:EHUjxqI hT:CJUVaJhT:jhT:Uhh5 hBh5 h?>*h?hhJD(%lClalblylzlllllll!m'm(m;mm?mmmmmmmmmn.n0n4n6n:nxqI hT:CJUVaJhT:jhT:UhBOJQJhthh#8jèhBH*UjhkhkEHUjmI hkCJUVaJhkjhkUh' jihBH*U hBH*jhBH*UhBh? * l"mmpqqrss.t0t8t9tNtet $$Ifa$gd%$dd$If[$\$a$gd% ^`gd%gd% & Fgdk & Fgdnnnnnnnnnnnnnnoo o0o2o4o6ojoloooooooooooopp p p pp!p"p#p$pķ󦢚Ĉ{njhT:hT:EHUjhT:hT:EHUjhT:hT:EHU htH*htOJQJhthkjhT:hT:EHUjhT:hT:EHUj>xqI hT:CJUVaJjhT:hT:EHUjExqI hT:CJUVaJhT:hBjhT:U+$p&p'p:p;pxqI hT:CJUVaJhkjBhT:hT:EHUjqxqI hT:CJUVaJhtjhT:hT:EHUjExqI hT:CJUVaJjhT:UhT:&qqqqqqqqqqqqqrr rrrr1r2rErFrGrHrjrrrrrrrrrrrrr=ssssôأvrjrhUhUH*hUjhT:h{cEHUj>xqI h{cCJUVaJjh{cU h{cH*h{ch;AjhT:hT:EHUj>xqI hT:CJUVaJhT:jhT:U hBH*h' hBhkh-hg!0Jjhg!Ujuhg!Uhg!)ssss.t/t0t8tetftgtytzt{ttttttttttttttttttttu;ukulumuuuuuu7lprĹĹğėĉ}h{chBCJH*aJh{chB6CJaJUh{cCJaJh{chB6CJ]aJh{chEH6CJaJh{chEHCJaJh{chBCJaJh%h%5 hBH*hBCJaJh%hB5h%hhBhKh;A0etftitrtytoo$dd$If[$\$a$gd% $$Ifa$gd%qkd$$IfTF? {   6    24apTytzt}tttoo$dd$If[$\$a$gd% $$Ifa$gd%qkdo$$IfTF? {  6    24apTtttttoo$dd$If[$\$a$gd% $$Ifa$gd%qkd*$$IfTF? {  6    24apTtttttoo$dd$If[$\$a$gd% $$Ifa$gd%qkd$$IfTF? {  6    24apTtttttoo$dd$If[$\$a$gd% $$Ifa$gd%qkd$$IfTF? {  6    24apTtttttoo$dd$If[$\$a$gd% $$Ifa$gd%qkd[$$IfTF? {  6    24apTttttluu|ooge`eggd>$a$gd> L^`LgdEH L^`Lgd%gd%qkd$$IfTF? {   6    24apT . Gentry, W. R., Buttrill, S. E., Crawford, B., et al. Chemistry 4511 Advanced Physical Chemistry Lab Manual, 18th ed., August 2006. Figure 1 0 Figure 2 0 Figure 3 Figure 4 Figure 5 h{chBCJaJh? hxOJQJ^JhxhxCJOJQJ^JaJ L^`LgdEH$a$gdxy$a$gd$a$gd>gd> 1h/ =!"#$% Dd {~F  C "A Fig22  T~? Dv `! T~? h0JN`'xڽVKQQ״{%d@S؊D҇]2}H"36z%\H"R$_ A{gՆ8;=!Tj(C`_ha\%W QzLJӈVy9:H2 l772:k?fnYv+!gJ3>gI[ ['T3 .!6붰 -GuoܽV٬=6&m )̢%5As}az瑓׫яNg1888ŘA/0d8U%{PA7nm%ƔHSM">m_[ө =ڱ-l}Vԩdu>Ƽͻ(*h[ ˜y "([[؆͠$DY k&1` A?(IDbb|Ϲw`͛eh٦L-24ր1# n[Z:gQZez{i\2mYչٵyӶn=U">7@04P{㑈[H"TF=JTԂ/M\2xbɣvד>SzF#ļ{P(‡]UȴwP,pe'Jɣq_ŝ<++9VAWcp&_ DqHhXoýn!Cnz#ވ{dlKV^&0*;:j&n"{)JLF2;1v%}xDDBEg}F.|0c-(0d ޵6uXp.iZL;Q!_9%By gU&8KãhACx =9Iޙ2p;#;3xKᜌ %#(+v"5@T<ʇ5~P&UD;i}1| o dƳB wZ%WV0齎ZKfIKͨVVgh&,%WikLJNxڨ=G`E3sR , jZ25m 0KV6@'w݌9髾bݳ@;<iԧNjZr މS (6AAclXmUAmT_sŽgR3 qbmǔܟ)͸УKч_ ,rz\-lJ,ZKo^qTF:6avقb.n<#.Ѵrp K ΓEjQ X/~L.a#̮eq qwֈNvD7ZO%%#qs/pp'ɷ K~搔~!,p$q aj\")KDA컘^CtV[^a$ %J8BSD#}4T2MC%BB@# lYyh$W4>`HDYh$O7C#OxIшc{B#7U2[覷'[(Cab]JQFqƿп<ި⍼eSƝ[ӹg'< 3 w!f￞D [ b`_O1b-BWJE誑zM!S.yzkꐻ{ޙN6u2m In5ۧ T3L&bM<#/KM:Vs҆B%R%] 5#&a?냸<~09=%rLQ-nu#x@Dd F  C "A fig222)ɍwe` v `!)ɍwe`-lT:!xڍOHQ?~\פ%Du&xY[:f`mTd: й[(~уy73y3P ΰET3\3Iȕj=%*V pUT9TJ1k`Ҧ Cv U/<~Y1E谢(E.q~Z-<5YQ8&8ڹI6C?@ABCDEFGHIJKLMOPQRSTUX`u[\]^_afbcdehgikjlnmopqsrtvwyxz|{}~Root Entry F@_OZTData NWordDocument"ObjectPool\03_O@_O_865077122>F03_O03_OOle PIC dMETA d   !"#$%&'(*+,-./0123456789:;<=>?@ABCDEFGHIKNOPSVWZ_dgjmnqtux{~dX   $ .  & Timesw@C Qww w0-!VPSymbolw@M Iww w0-!=!-Timesw@C Rww w0-!Fdx*Timesw@M Jww w0-!x!"Timesw@C Sww w0-!o"&Timesw@M Kww w0-!x$PSymbolw@C Tww w0-!#PSymbolw@M Lww w0-!=E!-OTimesw@C Uww w0-!k(x`PSymbolw@M Mww w0-!-sTimesw@C Vww w0-!x|Timesw@M Nww w0-!oTimesw@C Www w0-!)!dxPSymbolw@M Oww w0-!=Timesw@C Xww w0-!1!2- Timesw@M Pww w0-!x!XTimesw@C Yww w0-!o"\Timesw@M Qww w0-!xZPSymbolw@C Zww w0-!YTimesw@M Rww w0-!k(xPSymbolw@C [ww w0-!-Timesw@M Sww w0-!xTimesw@C \ww w0-!oTimesw@M Tww w0-!)Timesw@C ]ww w0-!2 & '.$dxpr  $"$ currentpoint ",Times .+V, Symbol) =) -)Fdx (!"x +o ($x (# (E=) -)k(x)-) x +o ())dx)= (1+2" (!Xx +o (Zx (Y (k(x)-) x +o () (2/MTsave save def 40 dict begin currentpoint 3 -1 rPICT  ).CompObjJYObjInfo LEquation Native Moll sub neg 3 1 roll sub 7104 div 1152 3 -1 roll exch div scale currentpoint translate 64 39 translate /thick 0 def /th { dup setlinewidth /thick exch def } def 16 th /stb { newpath moveto 0 setlinewidth 2 copy rlineto } def /enb { rlineto neg exch neg exch rlineto closepath fill } def /hb { stb 0 thick enb } def /vb { stb thick 0 enb } def -216 304 5467 350 vb /cat { dup length 2 index length add string dup dup 5 -1 roll exch copy length 4 -1 roll putinterval } def /ff { dup FontDirectory exch known not { dup dup length string cvs (|______) exch cat dup FontDirectory exch known {exch} if pop } if findfont } def /fs 0 def /cf 0 def /sf {exch dup /fs exch def dup neg matrix scale makefont setfont} def /f1 {ff dup /cf exch def sf} def /ns {cf sf} def /sh {moveto show} def 384 /Times-Roman f1 (V) -7 601 sh (Fdx) 1305 601 sh (k\(x) 3036 601 sh (x) 3925 601 sh (dx) 4418 601 sh (k\(x) 5491 601 sh (x) 6380 601 sh (\)) 6744 601 sh 224 ns (o) 4134 697 sh (o) 6589 697 sh (2) 6879 431 sh 384 /Symbol f1 (=) 386 601 sh (-) 716 601 sh (=) 2145 601 sh (-) 2475 601 sh (-) 3630 601 sh (=) 4917 601 sh (-) 6085 601 sh 576 ns (\362) 1078 735 sh (\362) 2805 735 sh 224 /Times-Italic f1 (x) 1055 1020 sh (x) 1115 152 sh (x) 2782 1020 sh (x) 2842 152 sh 160 ns (o) 1170 1076 sh (o) 2897 1076 sh 384 /Times-Roman f1 (\)) 4289 601 sh 224 /Times-Roman f1 (1) 5255 502 sh (2) 5385 654 sh end MTsave restore dMATH&n V=-Fdx x o x  =-k(x-x o )dx=) 12x o x  k(x-x o ) 2FMicrosoft Equation Editor 2.0DNQE Equation.2 V=-Fdx x o x  =-k(x-x o )dx=) 12x o x  k(x-x o ) 2 FMicrosoft Equation 3.0 DS Equation Equation.39qi8b  0 =12k() 1/2_1232182144fF03_O03_OOle QCompObj RfObjInfoTEquation Native U_1231907876%4F03_O03_OOle XCompObjYf FMicrosoft Equation 3.0 DS Equation Equation.39q\ G() FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo[Equation Native \5_1231909304 Fй_Oй_OOle ]CompObj^fObjInfo`Equation Native a:_1231909297F03_O03_OP " 0 FMicrosoft Equation 3.0 DS Equation Equation.39q]ح G()=" 0 v+ 12 ()Ole bCompObjcfObjInfoeEquation Native fy_1231909263"F03_O03_OOle hCompObj!#ifObjInfo$k FMicrosoft Equation 3.0 DS Equation Equation.39qq. " 0 =12ck() 1/2Equation Native l_1231861239*'F03_O03_OOle oCompObj&(pf FMicrosoft Equation 3.0 DS Equation Equation.39ql( B e =h8 2 R e2 () FMicrosoft Equation 3.0 DS EqObjInfo)rEquation Native s_1231861249,F03_O03_OOle vCompObj+-wfObjInfo.yEquation Native z[_12319082181F03_O03_Ouation Equation.39q?p h8 2 I() FMicrosoft Equation 3.0 DS Equation Equation.39qOle |CompObj02}fObjInfo3Equation Native 5X3 F(J) FMicrosoft Equation 3.0 DS Equation Equation.39q@6 2B FMicrosoft Equation 3.0 DS Eq_1231908245/96F03_O03_OOle CompObj57fObjInfo8Equation Native -_1231908952;F03_O03_OOle CompObj:<fuation Equation.39q=d F(J)=2BJ(J+1) FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo=Equation Native Y_1231861133@F03_O03_OOle CompObj?AfObjInfoBEquation Native j_1231917130aEFй_Oй_ONV~ 2B e =h8 2 cI FMicrosoft Equation 3.0 DS Equation Equation.39q5 2BOle CompObjDFfObjInfoGEquation Native -_1231917179CMJF03_O03_OOle CompObjIKfObjInfoL FMicrosoft Equation 3.0 DS Equation Equation.39qy 2E v,J =G()+F(J)=" 0 (v+ 12 )+2B v J(J+1)Equation Native _1231917633RWOF03_O03_OOle CompObjNPf FMicrosoft Equation 3.0 DS Equation Equation.39q(vLH 2B 0 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoQEquation Native :_1231917315kTF03_O03_OOle CompObjSUfObjInfoVEquation Native :_1231917648YF03_O03_OLH 2B 1 FMicrosoft Equation 3.0 DS Equation Equation.39q[l 2B v FMicrosoft Equation 3.0 DS EqOle CompObjXZfObjInfo[Equation Native :_1231914523p^F03_Oй_OOle CompObj]_fObjInfo`uation Equation.39qhE\ 2B  =2B"" e (v+ 12 ) FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native _1231915057cFй_Oй_OOle CompObjbdfObjInfoeEquation Native B_1233562407zhFй_Oй_OOle &08 " obs FMicrosoft Equation 3.0 DS Equation Equation.39q%3 " obsCompObjgifObjInfojEquation Native A_1231917504mFй_Oй_O (J=+1)=2E v+1,J+1 "2E v,J =" 0 +2B 1 (J+1)(J+2)"2B 0 J(J+1) FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjlnfObjInfooEquation Native 1LH " obs (J="1)=2E v+1,J"1 "2E v,J =" 0 "2B 1 J(J-1)-2B 0 J(J+1) FMicrosoft Equation 3.0 DS Eq_1231918535HrFй_Oй_OOle CompObjqsfObjInfotuation Equation.39q(  " obs (J=+1)=" 0 +22B(J+1)"(J+1)(J+3)" e FMicrosoft Equation 3.0 DS EqEquation Native _1231918556wFй_Oй_OOle CompObjvxfuation Equation.39q " obs (J="1)=" 0 "22BJ-J(J"2)" e FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoyEquation Native _1233562393|Fй_Oй_OOle CompObj{}fObjInfo~Equation Native _1231918996uFй_Oй_Op\ " obs =" 0 +2(2B"" e )n- " e n 2 FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjfObjInfoEquation Native :\ " e FMicrosoft Equation 3.0 DS Equation Equation.39qد " 0_1231919181Fй_Oй_OOle CompObjfObjInfoEquation Native :_1231919182Fй_Oй_OOle CompObjf FMicrosoft Equation 3.0 DS Equation Equation.39q`lG R e FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoEquation Native 6_1231909640Fй_Oй_OOle CompObjfObjInfoEquation Native 1_1231910270Fй_Oй_O< 22B FMicrosoft Equation 3.0 DS Equation Equation.39q%\ " 0 FMicrosoft Equation 3.0 DS EqNȄy!%v¾Ww`?loKN#NAiSQf)G(Ӕ)JAkUJ-(V ڭ?K"MY c=sR]H ogİư"1eL_]t1i#qD=53Mpć[׵zS4,f{sdi|`g9 I쟟mרe$~¹mLos2;ՙ,z 2B_ '8?ߛ0JTJ[ _[kpDwp#&j֬.p z 'Dd F  C "A fig22 N 3P_iv `!a N 3P_B-lT:!xڍKHQ~00)*B5E(-%1hژm|Jec!aЃH%UD=t¹99` 8$Rfr3KȖ}NEȈDlŊ<K1¸*' ՞o.d Y}߆h*JSidǽPpl*2-IsMBoY;Ru4 ôMNZyQ"GǭS{5.mHӥ7ݺ2}F3Oxx(o,2{YbF <-ygz;˪Z?2'c)TfcpDIHM㨾u9ՐT{*JAg˥̼JjDu[o8B"%O!rWmz}[U;hU<ݭ0LQcsdTll6[x? cyVxH?ˬV ϳlCP+!=y F4slT:!(xTMh\Ud2 Q"\,D*NDRh%+*ؙyw&C'o7?IxjH`h(.\ttQ \Mf&#i̲q=s{y'}xE Ă A)(.#gpwA`o)JcǧϽ1 Xcw}bBjԔ uNvˮtuYhxrQ\7Z~-TrQUjƒ{IYjimiQ^ʮ;E?_vb5U/,.T+UO./(OBS Z),{?I9.j"' IjEGd8J_rANr"RnyjI꒷y|xZ$*/%P9ds~)U˭j I/oi |`Xv%y8(vӎQnbgm)ױzsnν=UWNue}I`u98x{G $X !:#I1,R5: G맠-*NY|zO!(5|F~2U'=|ő5c>b>rx8fqܰHcEo!p ċ;ECs3=$+ /Hp>YgFΐYCGc"#A9}_oom==؉A1 ]lH)Źs>Y#Aĉ rYcv_Dr#?F$5ػ8gAb(0/7e~fHLMdL93= Oj'FhNF2a2ݛfo˱ \ӹ{ U͜8,z{ uPmNS Lf'z=3>q$hG^Mb&Db ړE֞TBĮq7˶8SF8#Fɔ搿37S3؟xr=AsҏgپAc fֹ(iҷ;!}D>|JP>m 8޿ۮ~wsJ~G΋=s,Ҏ&zߒlÔsm;|tng7S?A^1 &v(gSLzˀ3jB6ۨh,Dd @b  c $A? ?3"`?2vU$zY]C-XRv `!JU$zY]C-X`: xcdd`` @c112BYL%bpuDlPv `!HE-j>Dl@H|xcdd`` @c112BYL%bpubxUsi#@Z *!5#gho|qy MUUq\`{-ԝgdd b V!?˱Dd T b   c $A ? ?3"`?2$j%1%'{*DCe"v `!$j%1%'{*DCe xڝKAg.HB8-|EZLJF$@<JJA? XXZR!|s_w$&)=77~;.B=:DHڶͣQ+s]n"4lV ae]QF{*RդKTO_(졅0B=xqE4:8c+ڿѰ9537Ec6k2p}Q+aDߊ'J\T`Ҙy}?q ߮yUwҸ Fe[|e.f7vt͜|t[U>6Ňc3T=\}3TϮ^dPx/E];W~^yټ3mƙv:G;>p%K@7aqw &|!mBU !Z~p'Dd hb   c $A ? ?3"`? 2 9G^7u8ٽGǍSj%v `!9G^7u8ٽGǍS@ `\xڥ=KAgVͭCP9- ?He#E" TPYOiR ๳9LByyٻe8UZb=Bl0 Cn=ʋcOZ;BJ⒊.>WzVT<]*F݅8)TшK}<Q݉ V7z9}Nypop%V˦&Jg%iU>Fqo/WY/:sc7|ocH<)<^ejFz ~Ko_AWO\AJdk-ط?0֧ s*13p+IhO ˋDd 4b   c $A ? ?3"`? 2?T<]* ,(v `!?T<]* & @pwxڥR=KAs ũ`!,m-0NNL c;k )R٦I"UlvJ*9L-of?gE+A;C0"\6oұ.Z;ZSd`TtaNPGEbXc::,K|O<lA{Cݫ?臗з;:'Sv }_s_0_PX]V+^Bg~&̰e2%M'և?a:I~ńƤ5nۨ&oVm&VS삮bm5 q 5/ '*@ ߁/pDd D@b   c $A ? ?3"`? 2^s 1QV::*v `!2s 1QV: xcdd`` @c112BYL%bpu @c112BYL%bpu 1,N`aDd ||b  c $A? ?3"`? 2kۤ/͝\B].v `!kۤ/͝\B]` `0Mxcdd``ved``baV d,FYzP1n:.! KA?H1Z \ @P5< %! `35;aR&br<K>b"6Q7f_eQo<-+LGY~K%E좤)PrrË;qZB_^0V3kCC]щKJH(\`pb2T+xX_lEV{ (`*G?Qm%ڊXRnݵˑ}%QT$f6$>F<Msfn[=df~}33t7>IW!M +@&0VឬW卍~^V̈́jyի^lijyn7Zj^=:s=a= %̞%CT2.yD?Ov6qOiWBGֆdG׸&RV[pp45~ad[txP8ޯ'MK!s#d#'hq5[X#d*o4S8'6;!#-嵱xw2A!#Ѡ&caC]ֺA9Bzʂ; #0ף'3JĀRRO>s3$5G;[ֽB׼k]{=4D,5/w9GiwiاC (`a0` dIc5=X:0PES>v |LATC)QCOȉ0Y?eX }+M^yHxȓ,6 A4=T)iE"-VHQfFgZ=X\gژZ229_HI25*Qh`P+О@) ,΢=шd/ŘgQ9sxq.fXSN]hv.R,@iw(awS@k!d:r_/@|6_Gķ :U_gԝl9BySe\UL7evTS[_َ>#u>zf8QNP i^WBRC M(@JN鳦҆.#ҕd_'L 6_S [w0.:]"K6)˜rgu$Ii8wN|N-uր<.ީ_NwBsˢSzTZ9;JJ?):B٣Ƈ".謫'qQķg,WrBbcOU̗pbvG1&> GQCĭۧ0*)vwq;#˗Uj;{1u8^mTȲYKatnuɓro7B a= =svPy7{k(,m={Mt` ۪:mջH6Q5&Dd @b  c $A? ?3"`?2O12`cz'n*s+<v `!#12`cz'n*sR xcdd``> @c112BYL%bpuv `!0*Y+ {[0M(xڥKQgD&V[ b_Jm zP )\GPQhK  1n_Dd |b  c $A? ?3"`?2_­t 6zΤ~|ة;Dv `!3­t 6zΤ~|ة`H0xcdd`` @c112BYL%bpu 1jjc"Dd @b  c $A? ?3"`?2O12`cz'n*s+1Hv `!#12`cz'n*sR xcdd``> @c112BYL%bpu%Z2YշQfZ2&2!]OD8|x̄8{J;[ Y֧E P"Y&%Kv9 {mNct%w2HEycs5W:6\ͮ~/ϙϪ_:H3@Oϭ~<y\\}|:& 6n JN siT NerŴqyL¹pf:{P3Dd hb  c $A? ?3"`?2}  HB%OYLv `!Q  HB%O@h|xcdd`` @c112BYL%bpuuN7{[=%6D?,yR,%#CTrB.dp?O7'_M l@A_z[IqGã ޿凁Vyib y?/R'KqŗQ.ʟ&}yfr6 ͘ڵ}3U_G 1[Ò Rsr_RJn*{ӝE=0v?|}3~m~4s{|m{|};s6M*t>轰 ߊ+&5|B\w;DkGT!o{>A_5  wحf}٭@Vb3p_R+BDd b  c $A? ?3"`?24(QeA4{NhRv `!`4(QeA4{Nڠ"@{5.xڥAOA߼nTECURPx'1FC#4i\ƢMcMq"^8păw=X'nr7r4y3L}}oޛy0_aPBR`mlBIud ঐދq3pWا/."cƑ\lPPH"W^ϕK +mE >yX+dn\Xw Z45j{(!,v 9_ˇ3>\$<2<~A7qgg M޷lvj>LOi`2bϑ8=OC=йd\LC폮c7]eLo٣xzX~ *cm{jLKW9f51/L唩46׃ Pd~wzYo8XJ;~ٹktM7K"گF,%s]+[]s˼Q< %7?.A9SW!M#yVرyC:FDd b  c $A? ?3"`?2/K3;E5E.V Xv `!K3;E5E.V6"hxcdd``fb``baV d,FYzP1n:&1! KA?H1ZD4깡jx|K2B* RvfRv ,L ! ~ Ay ;|.? _cx.Usi#.xQJ 7<@=*SD@FA9(% #MN(?3 Saҡ1U@x&y@|# '8Q姳pW6ɌlR&_n?<2B&27)?!ΐ #7p$-;#L HVq=F0D tnT~5o +ʿfA/lCRDHp<;ixF2S$'4gT.hBpR/v0o8221)W2\ԡ1} [ljDd  b  c $A? ?3"`?2$upFE|1[v `!$upFE|1hxڥK@]IMXTRJwlG?B(@MQW8 w䨱ԃ#s^}߽C 20tDȔp`a| auKvbGS:B!54@'|$,k; {`?#)M "k-uhkMS>&"oYB4 -,E R.^o렬BaynW'(9ג V"xa3>Q.p~2<>'*xMV1]MGl=3Ξnu2]?ljV}_ŗ vϖ zWV\a7QGtJKJ젮:B S~dXG[*ƹ:0Lh^ sXg Q`;_3{Dd @b  c $A? ?3"`?2O12`cz'n*s+^v `!#12`cz'n*sR xcdd``> @c112BYL%bpu 1Me*Dd hb   c $A? ?3"`?2tJuNRPbv `!HJuNR@H|xcdd`` @c112BYL%bpub t'\F ͫ䂆 8΅;֌LLJ% ?A2u(2t5B ~`'cYDd ,hb ! c $A? ?3"`? 2Qk@e"~[^:'-dv `!%k@e"~[^:'@|xcdd``> @c112BYL%bpuDlPfv `!HE-j>Dl@H|xcdd`` @c112BYL%bpubxUsi#@Z *!5#^_m޽gۛ mD?>b/FP׳͕}A?b $h% n̮=_J'~~f@>^/3$T7Oo?Ac7 t4o'f6,Ϣ$ɫÄC9èWĴt9}vցvy~;O2Wq 'ڱ7'=x`*dǸϢ<+ (O+~/wB:3:`A ~a>4߈{u̬|Xco{lv8m wV1ȯku{AaS^j _k?_`zj7|%ml4 !kfju)PrRX%Po}|0U~` 4;^"^{k|2rK@2*Ȝ-f! ȥy?\H H3OͲu>}ϗ%BO[@4]C'wYjl! T!ƁJoU"Xm^ %[7:9VUOOuP@2}"x"Ø(Nq@adD)P5ph#0&Je\ED(P5DY1Q T (*'B':RjDW> T <FaLU'ʸPjhHPj ABH gA,q :(ءU)P5h9K<%DUyrgD`(P5F輦'>7ćU xH)֜0õ ijޒ{pTΉ YT5&!sM[ӞhӘ(D N ADḎM9!?{sS]Q F\P箁{@ZWn ٶSNsHuXJ'E ~b0&czЮtsflN9!@ &?azECk:&  `;Jeeс6x2Aоp;NP)} 1gwvMкJ6͊= cl>\id j`[ 4zHHgfRC߈y`lxS*@J2}I*dQj!VuJSØȋ'EPJ2錏-y=SX4z̈~IW%MQJr`"JھZD`k -G<O"ƿY*n2w*vadhe&􆯝Ѧ8 twG\~FU?Roh,0KPo뽟"،7o;R'L%Nyo19]H5e}HsvNPwd8>ʉPuǾ>0h.0q9:PIyaci '(<74H۬޷b)p01sJ!&%#?Nh`AbMx'?, Bg,6dD-QޘNFLݤ.V"e>zg*ŇF S5J̃&?Mz{BxqCLRq·J>q>d4Kua<@.oA2 Ӑx9&z l^ 1 e魀alk/p0HcN`F]\[`ݵJ$#0V{YB[ j6#mT,%b!E6^S!׉~DaLpRV68J"Xb4)ȨyH0#X<5nALL-bCE5OE x2XJ+cb_H !:S-.dI{wL &Aݘ&=&m_TQ,""`dF=eJ2d5kREA4i$n4\_ UCCj`Y"kDnV#S~1(]x呪Z Pa})|s61 e;bͦ] ]9#NԮ>@x )Oz$%}IGFCjvE$#?A@E8stK> =̾WFLB.5.ğCj`+k/c74H@L##\c*hK;]35jb}Z*0@vZe9=Eh!uN|]ъ0 4 ÷^WY˷ΟRCx(7PK#@[8 !I~kfКlW I`wHCj9bKL3b!U ~C<-S"5 F #ÍD`a zH $¡8@іh U l`x@@ ⒱pXB=4A5lj@ۛ#-$aKhߥλ<eW CW/oKE…-Ryqz2^$iT'I 2%B{Zv09I7` i)Q G"3Cj`bDHY>Eq: ӫhz&b{]"6JLQ6-25!5dleRȮ4EwiB\S"Cѝ?__ޣFi8z5@2WtCΝsQA#.r`_`(;NXBkLA[}qaL+ZB _[ՅӼhpP~`p\^%OZRBfȚrnьna"DW 07"PhA8`gS FtL dNDo (zf\/3~*@39L NKW#it…-}ܬ!NSժ% ra"+Q%׸zljqc557!T얥<(*O }:rqp,}<kj`̕rU99wAQoӸМg\XH)"fn*|aPҒc]h 4C2傍u0M:i jHz}ĚweTהlS $coɦPi8 zӉnUqI9J3CrL9cj`QNŔ˴5911"G<АK~&!F=xa {Փ{a{N72vU*) sƩ*|0}bv6K8;':HkrOȏW-cMCcj` 7V0hX9\.Zh6Fz"/L:\|!Yw)uj#T2izL @%" d)$AHɇ\la`3#HLŎUO&=k*SsjU ޝ6?* Fcj \IRXI`© !eukPR>\ƣpWWdF֍&^f&OD E]ro%j EA26hv@bj8!Kqd8q ^{EI84=tSuw9t끍LsrPZv[,Mc >0-ccz4 o_ވ glJIad;;hP {*I"@~w9e2=d灯sUpzW(s0*xL7Y:&?CeEW$!lhDHQ5Zh%!Vg +e[5tK)^J0͠=[3g1iԎ&;D͚K5$Fٚ@X<9Fӈ|4I(&0)JwI3[lh"K)|Ƚce}%%H0Q EhL dҭEs̋V#͑FFr )1%L Xܛ@O׺7{۽mlM'xyQ'TTn5OI~E^LR&L -f-UNĺg v癟!$#;l_pi`"[ߵ, w-nGy{L ,:[Vd ʏ8Y`)ӷbGd0b8&uqv&>b)Mh2!)o&|'7F[h VJP82cd͔VŎ=iֻ3 eVc՛uL$j>Д?,YvHL 7?;E0昍vw9<4˷Rl,}0TJ}Z~Lh1֗׺1}&|6L}zp q.ZKAm:ģ}1O _OTb\DJUl eʘ€Dq"^e6TUbG}>Hj<<% ۂr ~xhQAlaejPlJ+؆5 ))L^%*ITua|*yv6dV~(H8$BAq"E`@,\^1$~RU7B&l/W%)gCP^o;^qNh n7b>1aY.&7;).kQ8<"D䣕xB|>%;&E%axtbY!0oAx5]H# !$iZ@޾ǝҺ )sD?!Iٰ$4dmk8$pEB 1Z.qaXO+R]h&= ۈ '>ś)U;@TQԦAs2 7[SKFWhnQA蔣'2^z`ߔH^ږV4<뚪#21fݍٚ Q4uг鋞0;Yڽˡ[\)!WRY2kwTHlL:SʆBA_}0i݈>M˽xm<n ;;-_[?ʚj<юr/H[_AъfDΆ_!$(紬"bfԄWDUih8GԷL_a+*,g좽YvC|ijޏ BSs5-1r37aq :N ]clМj[0#@lb[rN/i3Z8X*lK1|LpG1SVBl< h`-_f?%Z7H~{!!y M뿂bTDFxIN2IH9}L F渳ϯhytu,XhyhJj&-E.B"l ^2붦b}~7>{/Y@ ^gkQhy f>2e%!`fbݰ11QS;>( ΄ăKZl W k}qZg,h@f|GR䣜a"^:-ȒG p$Mq Y /Y~T aI ,[]rE,–p&cqv8+¢vQ;ZOdG%)SNƂƁ*N| [d>2_r)h\)"xP< -Qd6g\*}j{|b/Ho{*]pb6a+%K2bV+c[h۶8T+ҟRl~tebAm{!`{gT:Ӈǰ=:K!.lʻ։gTΆ[#;T٪I|ؾ=׳ -oeQ(MxpO>*[ (Ƌ{T"Ptc35Ng 0w*gr?K<;4cl\x+}H-;PRw ZI *\mrt-ؑn˶|rr&%϶wkY΅,l˓-@ cFl5"乓  ˲9޾dl{6jDjM> "jwg>lϩm"1ml+չ6퇴 m;úb_ZU+SS?ΥHqCF$=KaN=욞chwNaι'cxV N恣T8 T <^ב##W*NC4n -Ole CompObjfObjInfoEquation Native :_1231910293Fp@_Op@_OOle CompObjfObjInfo    !&+.16;?@ABCDFGHIJKLMOuation Equation.39qr 2B FMicrosoft Equation 3.0 DS Equation Equation.39q6 2E totEquation Native -_1231910884Fp@_Op@_OOle CompObjfObjInfoEquation Native R_1231915189Fp@_Op@_OOle   =" e (v+ 12 )+2B v J(J+1)"2DJ 2 (J+1) 2 "2x e 2v e (v+ 12 ) 2 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjfObjInfoEquation Native -_1231914715Fp@_Op@_Op\ 2D FMicrosoft Equation 3.0 DS Equation Equation.39q 2x eOle CompObjfObjInfoEquation Native :_1231921833Fp@_Op@_OOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qX1 " obs =" 0 +2(2B" e )n- " e n 2 "42Dn 3Equation Native _1232173074Fp@_Op@_OOle CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39q? " e FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo"Equation Native #:_1232173095Fp@_Op@_OOle $CompObj%fObjInfo'Equation Native (-_1231919268Fp@_Op@_OЗ 2B FMicrosoft Equation 3.0 DS Equation Equation.39q/B  obs (n)Ole )CompObj*fObjInfo,Equation Native -K_1232173118Fǒ_Oǒ_OOle /CompObj0fObjInfo2 FMicrosoft Equation 3.0 DS Equation Equation.39qЗ 2B FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 3-_1232173125Fǒ_Oǒ_OOle 4CompObj5fObjInfo7Equation Native 8:_1232173169 Fǒ_Oǒ_OOle 9? " e FMicrosoft Equation 3.0 DS Equation Equation.39qP4 2DOh+'0 CompObj:fObjInfo<Equation Native =-1Table P      !"#$%&'()*+,-./0123456789:;<=>?@A$pCR }cM N{)P5CsVxq^وU7"n^B-7~*v6^"oMY^|9 Tx \X␷!]ِMup {vGRXʹ.K6:T;W <V_B0œkr_lj)wDc Pjާ#Th־s]&KK7"ùIENDB`*Dd hb % c $A"? ?3"`?$2t[Z+|T>w6Pލv `!H[Z+|T>w6@H|xcdd`` @c112BYL%bpub 1dDd @b & c $A#? ?3"`?%2OK:Y6!q>D=+v `!#K:Y6!q>D=R xcdd``> @c112BYL%bpuD=+ v `!#K:Y6!q>D=R xcdd``> @c112BYL%bpuT$w!%?'C,U˪ T-[տm7T_)1,UhmDϙ w󶹶q_>٧G)G!QuFʟAo.9ĬUl%풏g"~0Wxgc;{^wULW$_ɋ慝; 1ݦoFH~A|ˁNVEBN׀:Q<7_Dd @b ) c $A%? ?3"`?(2O H+xv `!# H xcdd``> @c112BYL%bpubsYt9F7NJtH2D{ ln]%\`]F&&\z @ ] U`n '4M:Dd hb * c $A&? ?3"`?)2^2 9ԋ:}v `!22 9ԋ@|xcdd`` @c112BYL%bpub2i,@u@@ڈ##Xgj%ļ?m`aPa.5 ܺJ.hpCl,4L=fdbR ,.Ie0ԡ"|b@3X?ٰ^Dd @b + c $A%? ?3"`?*2O H+v `!# H xcdd``> @c112BYL%bpubsYt9F7NJtH2D{ ln]%\`]F&&\z @ ] U`n '4M:Dd b , c $A'? ?3"`?+23B򭠇HG8*3v `!B򭠇HG8*3d"hxڥ/ALeÒF*R Hpr n%48; p!ּmHdg;} @ 8t^ bqdĸ N.t^xLD}-.\щqЇ&3٭EgX&Wn)hU4g9_gm8=|*aKCQMRB$va`+rF[-Wrg-$;ҧm# d[r]4'MQVh׫}'x\_>xu`Ql=aZ8=e&? Sd"*6|0՗c?aϕP-7 (/*͵OyG*ۦU>z-_]uyu:i4 HtFq޻ @c112BYL%bpu+Ϊv `!#-huHqd 3>R xcdd``> @c112BYL%bpu+v `!#-huHqd 3>R xcdd``> @c112BYL%bpu+*v `!#-huHqd 3>R xcdd``> @c112BYL%bpu+Xv `!#-huHqd 3>R xcdd``> @c112BYL%bpu @c112BYL%bpubSҒYt9F7NJtH2D{ln]%\`]F&&\d @ ] @Yv] `XL_Dd @b ; c $A-? ?3"`?:2O-huHqd 3>+v `!#-huHqd 3>R xcdd``> @c112BYL%bpu+v `!#-huHqd 3>R xcdd``> @c112BYL%bpu c $A-? ?3"`?=2O-huHqd 3>+v `!#-huHqd 3>R xcdd``> @c112BYL%bpuDocumentSummaryInformation8ECompObjNj( D P \hpxChemistry 372Information TechnologyNormalAaron Nienow2Microsoft Word 10.0@F#@VVO@VVO5.՜.+,D՜.+,P  hp  Gustavus Adolphus Collegec6 Chemistry 372 Title 8@ _PID_HLINKSA!b#http://webbook.nist.gov/chemistry/  FMicrosoft Word Document MSWordDocWord.Document.89q@@@ NormalCJ_HaJmH sH tH DA@D Default Paragraph FontRi@R  Table Normal4 l4a (k@(No List4O4 Btopicdd[$\$4U@4 B Hyperlink >*ph8"@8 BCaptiondd[$\$B^@"B B Normal (Web)dd[$\$FV@1F kFollowedHyperlink >*B* ph $.877   $.8;77()fgp&  34LM"#&    V W  %X[  9:bc02A`9 ####''''))))l*m*++---.~/1;2l2x3a4b4444444445 5 55555"5,5253585B5H5I5N5X5^5_5d5n5t5u5w555w6677 7 77777 7!7*7+74757870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000x0000000000000000000000000(00(0p 0( 0( 0( 0 0 0 0 000 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000p0@0()fgp& 34LM"#&    V W  %  9:bc2A`9 ####''''))))l*m*+--.~/1;2l2a44444445 5 55555"5,5253585B5H5I5N5X5^5_5d5n5t5u55587@0@0@0O900@0@0@0@0@0-$@0-$@0-$X@0-$X@0-$X@0-$0@0-$X@0-$X@0-$@0-$X@0-$X@0-$X@0-$@0-$@0-$@0-$@0-$@0-$@0-$`@0-$`@0-$`@0-$`@0-$@0-$@0-$`@0-$`@0-$@0-$`@0-$`@0-$`@0-$`@0-$`@0-$`@0-$@0-$`@0-$@0-$@0-$h@0-$@0-$@0-$@0h@0-$@0-$h@0-$h@0-$h@0-$h@0-$h@0-$h@0-$@0h@0-$@0-$@0-$@0A0@0-$p@0-$@0-$@0-$O90E0O90E0O90E0O90D0O90D0O90D0O90D0O90D0O90D0O90D0O90O0O90D0@0-$@0-$@0-$@0-$@0-$@0-$@0-$O90K0O90Q0Oy0K0@0-$O90M0O90M0O90M0 n@0@0@0O90b00n@0-$@* 0-$Oy00Oy00Oy00Oy00Oy00Oy00Oy00vOy00vOy00vOy00vBGD7LPHOy00vOy00vOy00vG7Oy00vOy00vOy00vJ:    Oy00vOy00vOy00v2K4;8 < @  Oy00vOy00vOy00vK;  Oy00vOy00vOy00vLv    Oy0 0vOy0 0vOy0 0vL,qv  Oy00Oy000wg2 $w&T+/0138g;L>h%ln$pqs $%'()*,-./123;<>?@AK6(T+3 letytttttt!#&+0=BCDEFGHL"0DFv &(?SUJ^`FZ\VjlAUW`tv,.   0 2 5 I K ###R#f#h#$$$$$$% &&'''((((((c)w)y))))u,,,,,, .|.~.....A/C//////// 000*0,0i0}000000000000001113171K1M11272222Y3m3o377:::::::::::::::::::::::::::::::::::::::::C:C:::::::::::X::8  @Z (  b  C   "` \  3  "` \  3  "` \  3  "` b  C   "` \   3   "` \   3   "` B S  ?# #77\ Tpt$ tL t$ tL$t L t Tt _Ref3107121487487 _ D_t4WA~ ^i/;jlwr} }""}##%%%%&&&&&&I'R'j(v((())[)b)|)~)))O*Y*y*|*******m+p+v+y+..a/h/////T0V0111111_2b2g2j23344P4Y44455#6)666687V[8   '( HKgi*.$(mn  ''z){)k,u,9-;---//004468733333333333333333333333333333333  5:c)+/[`''1))))++444v5w556777 777777!7)7+73787687sNT%bxȾGnS XY4_#`e^d gn~rxTwxxyX,8B_['$(bU*/#GgkQU-KmYl|,B( NlEH?,P0>X~Tt%(4444445 5 55555"5,5253585B5H5I5N5X5^5_5d5n5t5u587@&4&4.}}&4&4$  !"*,-/0x677p@ppp(@pppp pD@p$pL@p(pT@p,p\@p4p6pp@p@pjp@pnp@p(@UnknownGz Times New Roman5Symbol3& z Arial?5 z Courier New;WingdingsA GenevaArial"qh Æ Æ5.c5.c!24d66 3qH)?B Chemistry 372Information Technology Aaron Nienow