Introducing Acids and Bases

Recall: $\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}$ <-------> $\mathbf{H}_{3} \mathbf{O}^{+}$hydronium ion
in aqueous solution---level of $\mathrm{H}_{3} \mathrm{O}^{+}$proportional to H^{+}, so we can either use $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to represent acidity of solution!
autoprotolysis of water: $2 \mathrm{H}_{2} \mathrm{O}<---->\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$ or : $\mathrm{H}_{2} \mathrm{O}\left\langle---->\mathrm{H}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathbf{1} \times 10^{-14}\right.$

Bronsted and Lowery Defn:
Acid---proton donor

$$
\mathrm{HA}+\mathrm{B}\left\langle---->\mathrm{BH}^{+} \mathrm{A}^{-}\right. \text {(salt) }
$$

Base---proton acid
HA <------->> $\mathbf{H}^{+}+\mathbf{A}^{-} \quad \mathrm{A}^{-}$is conjugate base of HA
$\mathbf{R N H}_{\mathbf{2}}+\mathbf{H}^{+}$<------->> $\mathbf{R N H}_{3}{ }^{+} \mathrm{RNH}_{3}{ }^{+}$is conjugate acid of RNH_{2}

Consequences of Autoprotolysis rxn of Water:

-can always find concentration of H^{+}or OH^{-}if other species is known since in an aqueous solution---the autoprotolysis rxn is always in equilibrium!----product of $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$must equal $1 \mathbf{x 1 0} \mathbf{1 4}^{-14}$
e.g.---if you know $\left[\mathrm{H}^{+}\right]=2 \times 10^{-3} \mathrm{M}$; then $\left[\mathrm{OH}^{-}\right]=\mathbf{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=\mathbf{5} \times \mathbf{1 0}^{-\mathbf{- 1 2}}$
-in pure water--- $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{x}^{2}=10^{-14}$; Hence $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\mathbf{1} \times 10^{-7}$

pH and $\left[\mathrm{H}^{+}\right] ;$

define $\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]$(we will see later that $\mathrm{pH}=-\log \mathrm{a}_{\mathrm{H}}{ }^{+}--$-but in dilute solutions--- $\left[\mathrm{H}^{+}\right]=\mathrm{a}_{\mathrm{H}}{ }^{+}$)

$$
\text { if }\left[\mathrm{H}^{+}\right]-3.8 \times 10^{-8} ; \mathrm{pH}=-\log \left(3.8 \times 10^{-8}\right)=7.42
$$

pH Scale

$\mathbf{p H}=-\log \left[\mathrm{H}^{+}\right]$; therefore: $\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$
(can have pH values < 0 (negative \#) and > 14--very strong acids/bases at very high concentrations)

- What about $1 \times 10^{-8} \mathrm{M} \mathrm{HCl}$?
- A dilute acid cannot be basic.
$\mathrm{pH}=8$??
We shall see--in a minute!

$\mathbf{p H}$ for strong acid and strong base determined by moles of \mathbf{H}^{+}or $\mathbf{O H}^{-}$ generated by complete dissociation of these species;
$10^{-3} \mathrm{M} \mathrm{HCl} ; \mathrm{HCl}_{(\mathrm{aq})}---->\mathrm{H}^{+}+\mathrm{Cl}^{-}$
(arrow in only one direction due to fact that equilibrium is achieved only when products are present)
$\mathrm{pH}=-\log \left[10^{-3}\right]=3.00 \quad$ (report pH to two decimals--usually)
What is pH of $4.2 \times 10^{-3} \mathrm{M} \mathrm{HClO}_{4} ? \quad \mathrm{pH}=-\log \left(4.2 \times 10^{-3}\right)=2.38$
What is pH of $4.2 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$? in this case need to use K_{w} expression---and assume all $\left[\mathrm{OH}^{-}\right]$in water soln is coming from exogenous base:

$$
\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=10^{-14} / 4.2 \times 10^{-3}=2.3_{8} \times 10^{-12}
$$

$$
\text { therefore } \mathrm{pH}=-\log \left(2.3_{8} \times 10^{-12}\right)=11.62
$$

Water Auto-dissociation the "leveling effect"

For strong acids or bases---can neglect $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$arising from autoprotolysis of water----when concentrations of acids and bases are $>10^{-6} \mathrm{M}$----however as you use more dilute concentrations--the contribution of H^{+}and OH^{-}are dictrated by water equilibrium reaction!
pH of $10^{-10} \mathrm{M} \mathrm{HNO}_{3}=?=\mathrm{pH} 7.00$ pH of $10^{-8} \mathrm{M} \mathrm{HCl}=$?

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]_{\text {tot }}=\left[\mathrm{H}^{+}\right]_{\mathrm{HCl}}+\left[\mathrm{H}^{+}\right]_{\mathrm{H} 20} } & =10^{-8}+10^{-7} \\
& =1.1 \times 10^{-7} ; \mathrm{pH}=-\log 1.1 \times 10^{-7}=6.96
\end{aligned}
$$

The pH of a very dilute acid can never go above $\mathrm{pH}=7.0$ or the pH of the very dilute base can not go below $\mathrm{pH}=7.0$

Weak Acid Dissociation Constants

in water, formally--should be written as: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O}<-->\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$ but we can neglect the water in writing any equilibrium constant

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}=\text { acid dissociation constant }
$$

For diprotic acids: $\mathbf{H}_{2} \mathbf{A}\left\langle---->\mathbf{H}^{+}+\mathbf{H A}^{-}<---->\mathbf{H}^{+}+\mathbf{A}^{-2}\right.$
(Diprotic acid $=$ two removable protons)
$K_{a(1)}=\frac{\left[H^{+}\right]\left[H A^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}=$ first acid dissociation constant
$K_{a(2)}=\frac{\left[H^{+}\right]\left[A^{-2}\right]}{\left[H A^{-}\right]}=$second acid dissociation constant

Weak Bases:

$\mathrm{B}+\mathrm{H}_{2} \mathrm{O}<----->\mathrm{BH}^{+}+\mathrm{OH}^{-}$
$K_{b}=\frac{\left[B H^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]}=$ base hydrolysis constant
K_{b} values are small for weak bases!
$\mathbf{B H}^{+}$is conjugate acid of B ; a salt of $\mathrm{BH}^{+} \mathrm{Cl}^{-}$dissolved in water would likely yield an acidic pH solution!---

Relationship between K_{a} and K_{b} of weak acids/bases conjugate pairs:

Thus (recall from manipulation of K values:

$$
\begin{aligned}
& K_{w}=K_{a} K_{b} \\
& \text { and } K_{a}=K_{w} / K_{b}
\end{aligned}
$$

Another example---What is K_{b} of acetate---the conjugate base of acetic acid?
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ <-----> $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}}$
can write reverse reaction as:
$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+}$<------> $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \quad \mathrm{K}^{\prime}=1 / \mathrm{K}_{\mathrm{a}}$
$\mathrm{H}_{2} \mathrm{O}$ <---------->. $\mathrm{H}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{w}$
$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}\left\langle----->\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}\right.$
therefore: $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}\left(\mathbf{1} / \mathrm{K}_{\mathrm{a}}\right)=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}$
for acetic acid--- $\mathrm{K}_{\mathrm{a}}=1.75 \times 10^{-5}$; therefore K_{b} for acetate $=$

$$
10^{-14} /\left(1.75 \times 10^{-5}\right)=\mathbf{5 . 7} \times \mathbf{1 0}^{-10}
$$

What is K_{a} for methylammonium ion $\left(\mathrm{CH}_{3} \mathbf{N H}_{3}{ }^{+}\right)$?

$$
\text { if } \mathrm{K}_{\mathrm{b}}=4.4 \times 10^{-4} \text { (amine); } \mathrm{K}_{\mathrm{a}}=1 \times 10^{-14} / 4.4 \times 10^{-4}=\mathbf{2 . 3} \times \mathbf{1 0}^{-\mathbf{- 1 1}}
$$

pK_{a} and $\mathrm{pK} \mathrm{K}_{\mathrm{b}}$:
$p K_{a}=-\log K_{a} \quad$ and $\quad \mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$
Therefore---the stronger the acid---the lower/smaller its pK_{a} the stronger the base---the lower/smaller its pK_{b} or---the greater the pK_{a} of the conjugate acid

pyridoxal phosphate

Comparing Acid/Base Strength

- More convenient to write $\log (\mathrm{K})$ values
- Less zeros to write
$p K_{A}=-\log K_{A}$
$p K_{B}=-\log K_{B}$
Acetic acid $\quad \mathrm{pK}_{\mathrm{A}}=4.75$
Chloroacetic acid $\quad \mathrm{pK}_{\mathrm{A}}=2.87$
Aminoacetic acid $\quad \mathrm{pK}_{\mathrm{A}}=2.35$

Complete table in Appendix B

Calculating pH for Weak Acid Dissociation

- First step, assume $\left[\mathrm{A}^{-}\right] \sim\left[\mathrm{H}^{+}\right]$

$$
\begin{aligned}
\mathbf{H A} & \left\langle---->\mathbf{H}^{+}+\mathbf{A}^{-}\right. \\
K_{a} & =\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
\end{aligned}
$$

$$
F=\text { total concentration }
$$ of A species---formal conc

[HA] $\left.\mathrm{H}^{+}\right] \quad\left[\mathrm{A}^{-}\right]$
$\left[\mathrm{A}^{-}\right]=\left[\mathrm{H}^{+}\right]=\mathrm{x}$
$F=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$

initial	F	0	0
final	$\mathrm{F}-\mathrm{x}$	x	x

- This ignores the small $\left[\mathrm{H}^{+}\right]\left(<10^{-7} \mathrm{M}\right)$ from the dissociation of water

$$
K_{a}=\frac{x^{2}}{F-x}
$$

Example--Weak Acid Problem

- What is the pH of a 0.02 M solution of benzoic acid?
$K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}$
benzoic benzoate
$\left[\mathrm{H}^{+}\right]=\mathrm{x} ;\left[\mathrm{A}^{-}\right]=\mathrm{x}$
$F=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]=0.02 \mathrm{M}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}{ }^{-}+\mathrm{H}^{+}$

$t=0$	F	0	0
$t=e q$	$F-x$	x	x

- Lookup pK_{A} from table (appendix B): $\mathrm{pK}_{\mathrm{A}}=4.20$

$$
K_{a}=\frac{x^{2}}{F-x} \quad 6.28 \times 10^{-5}=\frac{x^{2}}{0.02-x}
$$

Solve for x: $\quad 0=x^{2}+6.28 \times 10^{-5} x-\left(6.28 \times 10^{-5} \cdot 0.02\right)$

Two approaches can be used to solve-----can get rid of quadratic by using successive approximation approach:

- Just in case the programmable calculator is out of reach
- 6.28×10^{-5} is a small number
- What if we neglect the $-b x$ term

$$
K_{a}=\frac{x^{2}}{F-x} \quad 0=x^{2}+6.28 \times 10^{-5} x-\left(6.28 \times 10^{-5} \cdot 0.02\right)
$$

1) approximation:
(F-x) ~F
True if $\mathrm{F} \gg \mathrm{X}$

$$
\begin{aligned}
x^{2} & =\left(6.28 \times 10^{-5} \cdot 0.02\right) \\
x & =\sqrt{6.28 \times 10^{-5} \cdot 0.02}
\end{aligned}
$$

drop

$$
\left[H^{+}\right]=\sqrt{K_{A} \cdot F_{H A}}
$$

- Now check assumptions

$$
\begin{aligned}
& x \approx \sqrt{6.28 \times 10^{-5} \cdot 0.02} \\
& x \approx 1.12 \times 10^{-3} \mathrm{M}=\left[H^{+}\right]
\end{aligned}
$$

Checking/Refining the Approximation

- Assumption $\mathrm{F} \gg \mathrm{x} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} \longrightarrow \longleftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+}$

$$
K_{a}=\frac{x^{2}}{F-x} \quad F=0.02 M
$$

$$
\mathrm{pK}_{\mathrm{a}}=4.20
$$

$1^{\text {st }}$ approximation: $\mathrm{x}_{1}=\left[\mathrm{H}^{+}\right]=1.12 \times 10^{-3}$

- Now check the approximation--plug back in for x in F-x term---and then solve for x^{2} and then x as the square root!

$$
\begin{aligned}
x^{2} & =6.28 \times 10^{-5} \cdot(0.02-x) \\
x^{2} & \approx 6.28 \times 10^{-5} \cdot\left(0.02-1.12 \times 10^{-3}\right) \\
x & \cong 1.09 \times 10^{-3} \quad \longleftarrow
\end{aligned}
$$

- Keep plugging x_{i}, back into the equation until x_{i} is constant

But what about $\left[\mathrm{H}^{+}\right]$from dissociation of water? Do we have too worry about this?

- Water also dissociates to give $\left[\mathrm{H}^{+}\right]$and $[\mathrm{OH}-]$
$\mathrm{H}_{2} \mathrm{O} \stackrel{---->}{<} \mathrm{H}^{+}+\mathrm{OH}^{-}$

$$
\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]
$$

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} \longrightarrow \longleftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+}
$$

$$
\left[O H^{-}\right]=\frac{10^{-14}}{1.09 \times 10^{-3}}=9.17 \times 10^{-12}
$$

$$
\mathrm{pK}_{\mathrm{A}}=4.20
$$

$$
x \cong 1.09 \times 10^{-3}=\left[H^{+}\right]
$$

- Water dissociation gives -- $\left[\mathrm{H}^{+}\right]_{\mathrm{H} 2 \mathrm{O}}=\left[\mathrm{OH}^{-}\right]_{\mathrm{H} 2 \mathrm{O}}$
- Final pH of solution is $=-\log \left[\mathrm{H}^{+}\right]_{\text {total }}$
- $\left[\mathrm{H}^{+}\right]_{\text {total }}=\left[\mathrm{H}^{+}\right]_{\mathrm{H} 2 \mathrm{O}}+\left[\mathrm{H}^{+}\right]_{\mathrm{HA}}$
- $\left[\mathrm{H}^{+}\right]_{\text {total }}=9.17 \times 10^{-12}+1.09 \times 10^{-3}=1.09 \times 10^{-3} \mathrm{M}$
\rangle why so small--? --autoprotolysis rxn shifted to left---due to H^{+}from HA reaction!

Second approach to solve such problems---use formula for solution of quadratic equation!

$$
\begin{aligned}
& 0=x^{2}+6.28 \times 10^{-5} x-\left(6.28 \times 10^{-5} \cdot 0.02\right) \\
& 0=\mathrm{x}^{2}+6.28 \times 10^{-5} \mathrm{x}-1.25_{6} \times 10^{-6} \\
& \qquad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\left[\mathbf{H}^{+}\right] \\
& \begin{array}{ll}
\mathrm{a}=1 \\
\mathrm{~b}=6.28 \times 10^{-5} \\
\mathrm{c}=1.25_{6} \times 10^{-6} & \text { two solutions--- } \\
& \mathbf{1 . 0 9 \times 1 0 ^ { - 3 }} \\
& \mathbf{- 1 . 0 9 \times 1 0 ^ { - 3 } \longleftarrow}
\end{array} \begin{array}{l}
\text { reject---[H+} \\
\text { cannot be } \\
\text { negative! }
\end{array}
\end{aligned}
$$

- Fraction of dissociation

$\frac{\text { ionic form of acid }}{\text { total acid forms }}=\frac{\left[A^{-}\right]}{\left[A^{-}\right]+[H A]}=$ fraction dissociated
$[\mathrm{A}-]=1.09 \times 10^{-3} \quad$ From our last example
$F=0.02 \mathrm{M}=[H A]+[A-]$

$$
\% \mathrm{D}=\text { fraction } \times 100=\frac{1.09 \times 10^{-3}}{0.02}=5.4 \%
$$

- This is one way to define a weak acid (or base) from a strong one
- A strong acid (or base) is nearly 100% dissociated in dilute solution

at same concentration---fraction of dissociation for stronger acid is greater!!

For weak base-- similar treatment to find pH of solution

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O}\left\langle----->\mathrm{BH}^{+}+\mathrm{OH}^{-} \quad K_{b}=\frac{\left[B H^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]}\right.
$$

again--nearly all the OH^{-}in soln comes from the base reaction---not the autoprotolysis of water!

$$
\begin{aligned}
& \mathrm{F}=[\mathrm{B}]+\left[\mathrm{BH}^{+}\right] ;[\mathrm{B}]=\mathrm{F}-\left[\mathrm{BH}^{+}\right]=\mathrm{F}-\mathrm{x} \\
& K_{b}=\frac{x^{2}}{F-x} \quad \text { this time, } \mathrm{x}=\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

however----now when you find x by either successive approx. or solution of quadratic equation, to find $\mathbf{p H}$ you must remember:

$$
\left[\mathbf{H}^{+}\right]=\mathbf{K}_{\mathbf{w}} /\left[\mathrm{OH}^{-}\right]
$$

What is pH of 0.0372 M solution of cocaine?

$$
\frac{x^{2}}{0.0372-x}=2.6 \times 10^{-6}=K_{b}
$$

by method of successive approx; $x^{2}=9.67_{2} \times 10^{-8}$

$$
\mathrm{x}=3.11 \times 10^{-4}
$$

plug back into denominator in K_{b} expression:

$$
\begin{aligned}
& \mathrm{x}^{2} /\left(0.0372-3.11 \times 10^{-4}\right)=2.6 \times 10^{-6} \\
& \mathrm{x}^{2} / 0.0369=2.6 \times 10^{-6} ; \mathrm{x}=3.09_{7} \times 10^{-4}=3.10 \times 10^{-4}=\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

therefore --- $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=10^{-14} / 3.10 \times 10^{-4}=3.2_{2} \times 10^{-11}$

$$
\mathrm{pH}=-\log \left(3.2_{2} \times 10^{-11}\right)=10.49
$$

fraction reacted?

fraction $=\left[\mathrm{BH}^{+}\right] /\left([\mathrm{B}]+\left[\mathrm{BH}^{+}\right]\right) ;$but $\left[\mathrm{BH}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
therefore--- fraction $=3.10 \times 10^{-4} / 0.0372=0.0083$
or 0.83% is reacted with water!

F -total conc. of base initially present!

What is pH of solution of 0.05 M sodium benzoate?

This is a salt---that yields 100% dissociation yielding Na^{+}and benzoate ions at equal concentration in solution!
but we know that benzoic acid is the protonated form of benzoate anion----it has K_{a} of 6.28×10^{-5};
thus K_{b} of benzoate--the conjugate base of benzoic acid :

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=10^{-14} / 6.28 \times 10^{-5}=1.5_{9} \times 10^{-10} \\
& K_{b}=\frac{x^{2}}{0.05-x}=1.5_{9} \times 10^{-10}
\end{aligned}
$$

solve for x - ([$\left.\mathrm{OH}^{-}\right]$)--by successive approx-- $=2.8 \times 10^{-6} \mathrm{M}$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=10^{-14} / 2.8 \times 10^{-6}=3.5 \times 10^{-9} \\
\mathrm{pH} & =-\log \left(3.5 \times 10^{-9}\right)=8.45
\end{aligned}
$$

