ࡱ> RTOPQ R(bjbj 8hhz *>>>RRR8dRi&H "'"'"'"'Z(Z(Z(eeeeeee$lne>c)V(Z(c)c)e>>"'"'4iLLLc). >"'>"'eLc)eLLakc"'S,R5bei0ibLo/GLo,kcLo>kcDZ(0("L((Z(Z(Z(ee1LdZ(Z(Z(ic)c)c)c)LoZ(Z(Z(Z(Z(Z(Z(Z(Z( :  Chapter 2 Second-Order Linear Differential Equations 1 Homogeneous Linear Equations of the Second Order Linear Differential Equation of the Second Order y'' + p(x) y' + q(x) y = r(x) Linear where p(x), q(x): coefficients of the equation if r(x) = 0 homogeneous r(x) ( 0 ( nonhomogeneous p(x), q(x) are constants constant coefficients [Example] (i) ( 1 - x2 ) y'' - 2 x y' + 6 y = 0 ( y''   EQ \f(2 x, 1 - x2 ) y' +  EQ \f(6, 1 - x2 ) y = 0  EQ \a\al(homogeneous,variable coefficients,linear)  (ii) y'' + 4 y' + 3 y = ex  EQ \a\al(nonhomogeneous,constant coefficients,linear)  (iii) y'' y + y' = 0 nonlinear (iv) y'' + (sin x) y' + y = 0 linear, variable coefficients 1.2 Second-Order Differential Equations Reducible to the First Order (Read p. 71, Problems 1-8, 10 of the Textbook) Case I: F(x, y', y'') = 0 -- y does not appear explicitly [Example] y'' = y' tanh x [Solution] Set y' = z and  EMBED Equation.DSMT4  Thus, the differential equation becomes a first-order differential equation: z' = z tanh x which can be solved by the method of separation of variables  EQ \f( dz , z ) = tanh x dx =  EQ \f( sinh x ,cosh x) dx or ln|z| = ln|cosh x| + c' z = c1 cosh x or y' = c1 cosh x Again, the above equation can be solved by separation of variables: dy = c1 cosh x dx y = c1 sinh x + c2 # Case II: F(y, y', y'') = 0 - x does not appear explicitly [Example] y'' + y'3 cos y = 0 [Solution] Again, set z = y' thus, y'' =  EQ \f( dz ,dx)  =  EQ \f( dz ,dy) \f( dy ,dx) =  EQ \f( dz ,dy) y' =  EQ \f( dz ,dy) z Thus, the above equation becomes a first-order differential equation of z with respect to y:  EQ \f(dz,dy) z + z3 cos y = 0 which can be solved by separation of variables: -  EQ \f( dz , z2 ) = cos y dy or  EQ \f(1, z ) = sin y + c1 or y' =  EQ \f(1, sin y + c1 )  which can be solved by separation of variables again (sin y + c1) dy = dx - cos y + c1 y + c2 = x # [Exercise] Solve y'' + ey(y')3 = 0 [Answer] ey - c1 y = x + c2 (Check with your answer!) [Exercise] Solve y y'' = (y')2 2 General Solutions 2.1 Superposition Principle (p. 65 of the Textbook) [Example] Show that (1) y = e 5x, (2) y = e2x and (3) y = c1 e 5x + c2 e2x are all solutions to the equation y'' + 3 y' - 10 y = 0 [Solution] (e 5x)'' + 3 (e 5x)' - 10 e 5x = 25 e 5x - 15 e 5x - 10 e 5x = 0 (e2x)'' + 3 (e2x)' - 10 e2x = 4 e2x + 6 e2x - 10 e2x = 0 (c1 e 5x + c2 e2x)'' + 3 (c1 e 5x + c2 e2x)' - 10 (c1 e 5x + c2 e2x) = c1 (25 e 5x - 15 e 5x - 10 e 5x) + c2 (4 e2x + 6 e2x - 10 e2x) = 0 Thus, we have the following superposition principle: [Theorem] (p. 66 of the Textbook) Let y1 and y2 be two solutions of the homogeneous linear differential equation y'' + p(x) y' + q(x) y = 0 then the linear combination of y1 and y2, i.e., y3 = c1 y1 + c2 y2 is also a solution of the differential equation, where c1 and c2 are arbitrary constants. [Proof] (c1 y1 + c2 y2)'' + p(x) (c1 y1 + c2 y2)' + q(x) (c1 y1 + c2 y2) = c1 y1'' + c2 y2'' + p(x) c1 y1' + p(x) c2 y2' + q(x) c1 y1 + q(x) c2 y2 = c1 (y1'' + p(x) y1' + q(x) y1) + c2 (y2'' + p(x) y2' + q(x) y2) = c1 (0) (since y1 is a solution) + c2 (0) (since y2 is a solution) = 0 Remarks: 1 The above theorem applies only to the homogeneous linear differential equations 2 Read the problems 20 on page 71 of the textbook for some important general properties of homogeneous and nonhomogeneous linear differential equations. Linear Independence (p. 68 of the Textbook) Two functions, y1(x) and y2(x), are linearly independent on an interval [x0, x1] whenever the relation c1 y1(x) + c2 y2(x) = 0 for all x in the interval implies that c1 = c2 = 0. Otherwise, they are linearly dependent. There is an easier way to see if two functions y1 and y2 are linearly independent. If c1 y1(x) + c2 y2(x) = 0 (where c1 and c2 are not both zero), we may suppose that c1 ( 0. Then y1(x) +  EQ \f( c2 ,c1) y2(x) = 0 or y1(x) =  EQ \f( c2 , c1 ) y2(x) = C y2(x) Therefore: Two functions are linearly dependent on the interval if and only if one of the functions is a constant multiple of the other. General Solution Consider the second-order homogeneous linear differential equation: y'' + p(x) y' + q(x) y = 0 where p(x) and q(x) are continuous functions, then (1) Two linearly independent solutions of the equation can always be found. (2) Let y1(x) and y2(x) be any two solutions of the homogeneous equation, then any linear combination of them (i.e., c1 y1 + c2 y2) is also a solution. (3) In fact, the general solution of the differential equation is given by the linear combination y(x) = c1 y1(x) + c2 y2(x) where c1 and c2 are arbitrary constants, and y1(x) and y2(x) are two linearly independent solutions. (y1 and y2 form a basis of the solution on the interval I ) A particular solution of the differential equation on I is obtained if we assign specific values to c1 and c2 in the general solution. [Example] Verify that y1 = e 5x, and y2 = e2x are linearly independent solutions to the equation y'' + 3 y' - 10 y = 0 [Solution] It has been shown that y = e5x and y = e2x are solutions to the differential equation. In addition y1 = e5x = e7x e2x = e7x y2 and e7x is not a constant, we see that e5x and e2x are linearly independent and form the basis of the general solution. The general solution is then y = c1 e5x + c2 e2x 2.4 Initial Value Problems and Boundary Value Problems Initial Value Problems Differential Equation y'' + p(x) y' + q(x) y = 0 with Initial Conditions y(x0) = k0, y'(x0) = k1 Particular solutions with c1 and c2 evaluated from the initial conditions. Boundary Value Problems Differential Equation y'' + p(x) y' + q(x) y = 0 with Boundary Conditions y(x0) = k0, y(x1) = k1 where x0 and x1 are boundary points. Particular solution with c1 and c2 evaluated from the boundary conditions. 2.5 Using One Solution to Find Another (Reduction of Order) If y1 is a nonzero solution of the equation y'' + p(x) y' + q(x) y = 0 we want to seek another solution y2 such that y1 and y2 are linearly independent. Since y1 and y2 are linearly independent, the ratio  EQ \f(y2, y1 ) = u(x) must be a non-constant function of x, and y2 = u y1 must satisfy the differential equation. Now (u y1)' = u' y1 + u y1' (u y1)'' = u y1'' + 2 u' y1' + u'' y1 Put the above equations into the differential equation and collect terms, we have u'' y1 + u' (2 y1' + p y1) + u (y1'' + p y1' + q y1) = 0 Since y1 is a solution of the differential equation, y1'' + p y1' + q y1 = 0 u'' y1 + u' (2y1' + p y1) = 0 or u'' + u'  EQ \b\bc\[( 2 \f( y1' , y1) + p ) = 0 Note that the above equation is of the form F(u'', u', x) = 0 which can be solved by setting U = u' and then U' +  EQ \b\bc\[( 2 \f(y1', y1 ) + p ) U = 0 which can be solved by separation of variables: U =  EQ \f(c, y12 ) e EQ \s\up6(-\i( , , p(x) dx))  where c is an arbitrary constant. Take simply (by setting c = 1 ) U =  EQ \f(1, y12 ) e EQ \s\up6(-\i( , , p(x) dx))  and perform another integration to obtain u, we have y2 = u y1 = y1(x)  EQ \i( , , \f(e\s\up6(-\i( , , p(x) dx)) ,y12(x) ) dx)  Note that e EQ \s\up8(-\i( , , p(x) dx)) is never zero, i.e., u is non-constant. Thus, y1 and y2 form a basis. [Example] y1 = x is a solution to x2 y'' - x y' + y = 0 ; x > 0 Find a second, linearly independent solution. [Solution] We solve this problem in the following two ways: Method 1: Use y2 = u y1 Let y2 = u y1 = u x then y2' = u' x + u y2'' = u'' x + 2 u' so x2 y2'' - x y2' + y2 = x3 u'' + 2 x2 u' - x2 u' - x u + x u = x3 u'' + x2 u' = 0 or x u'' + u' = 0 Set U = u', then U' =   EQ \f( 1 ,x) U  EMBED Equation.DSMT4  or U = e EQ \s\up12(\i(,,1/x) dx) = e EQ \s\up10(- ln x) =  EQ \f(1,x)  Since U = u' u =  EQ \i(,, U dx) =  EQ \i(,, 1/x dx) = ln x and y2(x) = u y1 = x ln x You should verify that y2 is indeed a solution. Method II: Use formula. To use the formula, we need to write the differential equation in the following standard form: y'' -  EQ \f( 1 , x ) y' +  EQ \f( 1 , x2 ) y = 0 y2 = y1(x)  EQ \i( , , \f(e\s\up6(-\i( , , p(x) dx)) ,y12(x) ) dx)   EMBED Equation.DSMT4  = x  EQ \i( , , \f(x, x2) dx) = x ln x [Exercise 1] Find the second linearly independent solution to ( 1 - x2 ) y'' - 2 x y' + 2 y = 0 given y1 = x Hint:  EQ \i( , , )\f(dx, 1 - x2 ) =  EQ \f(1, 2 ) ln (  EQ \f(1 + x, 1 - x ) ) [Exercise 2] Find the second linearly independent solution to y'' -  EQ \f(y', x2 ) +  EQ \f(y, x3 ) = 0 given by y1 = x . [Exercise 3] Verify that y = tan x satisfies the equation y'' cos2x = 2y and obtain the general solution to the above differential equation. Homogeneous Equations with Constant Coefficients y'' + a y' + b y = 0 where a and b are real constants. Try the solution y = e EQ \s\up6(lx) -- trial solution Put the above equation into the differential equation, we have (l2 + a l + b) e EQ \s\up6(lx) = 0 Hence, if y = e EQ \s\up6(lx) be the solution of the differential equation, l must be a solution of the quadratic equation l2 + a l + b = 0 -- characteristic equation Since the characteristic equation is quadratic, we have two roots: l1 =  EQ \f( - a + \r(a2 - 4b) ,2)  l2 =  EQ \f( - a - \r(a2 - 4b) ,2)  Thus, there are three possible situations for the roots of l1 and l2 of the characteristic equation: Case I a2 - 4b > 0 l1 and l2 are distinct real roots Case II a2 - 4b = 0 l1 = l2 , a real double root Case III a2 - 4b < 0 l1 and l2 are two complex conjugate roots We now discuss each case in the following: Case I Two Distinct Real Roots, l1 and l2 Since y1 = e EQ \s\up6(l1x) and y2 = e EQ \s\up6(l2x) are linearly independent, we have the general solution y = c1 e EQ \s\up6(l1x) + c2 e EQ \s\up6(l2x)  [Example] y'' + 3 y' - 10 y = 0 ; y(0) = 1, y'(0) = 3 The characteristic equation is l2 + 3 l - 10 = (l - 2) (l + 5) = 0 we have two distinct roots l1 = 2 ; l2 =  5 y(x) = c1 e2x + c2 e 5x -- general solution The initial conditions can be used to evaluate c1 and c2: y(0) = c1 + c2 = 1 y'(0) = 2 c1 - 5 c2 = 3 c1 = 8/7 , c2 =  1/7 \ y(x) =  EQ \f(1, 7 ) (8 e2x - e 5x)    particular solution Case II Real Double Roots (p. 74 of the Textbook) l1 = l2 =   EQ \f(a, 2 )  In this case, y1(x) = e EQ \s\up6( ax/2) is a solution of the differential equation. The second linearly independent solution can be obtained by the procedure of reduction of order: Let y2 = u y1 = u e EQ \s\up6( ax/2)  then y2' = u' e EQ \s\up6( ax/2)   EQ \f(a, 2 ) u e EQ \s\up6( ax/2)  y2'' = u'' e EQ \s\up6( ax/2)  a u' e EQ \s\up6( ax/2) +  EQ \f(a2, 4 ) u e EQ \s\up6( ax/2)  so that the differential equation becomes (u'' - a u' +  EQ \f(a2, 4 ) u ) e EQ \s\up6( ax/2) + a (u' -  EQ \f(a, 2 ) u) e EQ \s\up6( ax/2) + b u e EQ \s\up6( ax/2)  = 0 or u'' +  EQ \b\bc\[( b - \f(a2, 4 ) ) u = 0 But since a2 = 4 b, we have u'' = 0. thus, u' is a constant which can be chosen to be 1, and u = x. Hence y2 = x e EQ \s\up6( ax/2)  Thus, the general solution for this case is y(x) = (c1 + c2 x) e EQ \s\up6( ax/2)  -- general solution [Example] Solve y'' - 6 y' + 9 y = 0 [Solution] The characteristic equation is l2 - 6 l + 9 = 0 or (l - 3)2 = 0 and l1 = l2 = 3 Thus, the general solution is y = (c1 + c2 x) e3x Case III Complex Conjugate Roots l1 and l2 (Sec. 2.3, p. 76 of the Textbook) l1 =   EQ \f(1, 2 ) a + i w l2 =   EQ \f(1, 2 ) a - i w where w =  EQ \r(b - \f(a2,4) )  and i =  EQ \r(-1)  Thus, Y1 = e EQ \s\up6(l1x) and Y2 = e EQ \s\up6(l2x) are solutions (complex functions) of the differential equation. Thus,  EMBED Equation.DSMT4  Note that we have proven that any linear combination of solutions is also a solution. Thus, we consider the solutions (which are real functions as shown later): y1 =  EQ \f(1, 2 ) (Y1 + Y2)  y2 =  EQ \f(1, 2 i ) (Y1 - Y2)  From the complex variable analysis, we have Euler Formula e EQ \s\up6(iq) = cos q + i sin q e EQ \s\up6(-iq) = cos q - i sin q Thus, Y1 = e EQ \s\up6(l1x) = e EQ \s\up6( ax/2) (cos wx + i sin wx)  Y2 = e EQ \s\up6(l2x) = e EQ \s\up6( ax/2) (cos wx - i sin wx)  or y1 = e EQ \s\up6( ax/2) cos wx y2 = e EQ \s\up6( ax/2) sin wx Therefore,  EMBED Equation.DSMT4   EMBED Equation.DSMT4  Since y1/y2 = cot wx, w ( 0, is not constant, y1 and y2 are linearly independent. We therefore have the following general solution: y = e EQ \s\up6( ax/2) (A cos wx + B sin wx)  where A and B are arbitrary constants. [Example] Solve y'' + y' + y = 0 ; y(0) = 1, y'(0) = 3 [Solution] The characteristic equation is l2 + l + 1 = 0 which has the solutions l1 =  EQ \f(-1 + i\r(3), 2 )  l2 =  EQ \f(-1 - i\r(3), 2 )  Thus, the general solution is y(x) = e EQ \s\up6( x/2) \b\bc\[( A cos \f(\r(3), 2 ) x + B sin \f(\r(3), 2 ) x )  The constants A and B can be evaluated by considering the initial conditions: y(0) = 1 A = 1 y'(0) = 3  EQ \f( \r(3) ,2) B -  EQ \f(1, 2 ) A = 3 A = 1 ; B =  EQ \f(7, \r(3) )  Thus y(x) = e EQ \s\up6( x/2) \b\bc\[( cos \f(\r(3), 2 ) x + \f(7, \r(3) ) sin \f(\r(3), 2 ) x )  Complex Exponential Function  EMBED Equation.DSMT4  Summary For the second-order homogeneous linear differential equation y'' + a y' + b y = 0 the characteristic equation is l2 + a l + b = 0 The general solution of the differential equation can be classified by the types of the roots of the characteristic equation: Case Roots of l General Solution I Distinct real y = c1 e EQ \s\up6(l1x) + c2 e EQ \s\up6(l2x)  l1, l2 II Complex conjugate l1 =   EQ \f( 1 ,2) a + i w y = e EQ \s\up6( ax/2) ( A cos wx + B sin wx )  l2 =   EQ \f( 1 ,2) a - i w III Real double root y = ( c1 + c2 x ) e EQ \s\up6( ax/2)  l1 = l2 =   EQ \f( 1 ,2) a Riccati Equation (Nonlinear 1st-order ODE) Linear 2nd-order ODEs may also be used in finding the solution to the special form of Riccati Equation: Original:  EMBED Equation.DSMT4  Special Case: y' + y2 + p(x) y + q(x)=0 Let y =  EQ \f(z', z )  then y' =  EQ \f(z'', z )   EQ \b\bc\[( \f(z', z ) )\s\up15(2)  thus the Riccati equation becomes  EQ \f(z'', z )   EQ \b\bc\[( \f(z', z ) )\s\up15(2) +  EQ \b\bc\[( \f(z', z ) )\s\up15(2) + p(x)  EQ \f(z', z ) + q(x) = 0 or z'' + p(x) z' + q(x) z = 0 If the general solution to the above equation can be found, then y =  EQ \f(z', z )  is the general solution to the Riccati equation. [Exercise 1] Solve y' + y2 + 2y + 1 = 0 , y(0) = 0 [Exercise 2] Solve x2 y' + x y + x2 y2 = 1 Differential Operators (Sec 2.4, p. 81 of the Textbook) The symbol of differentiation d/dx can be replaced by D, i.e., Dy =  EQ \f(dy, dx ) = y' where D is called the differential operator which transforms y into its derivative y'. For example: D(x2 ) = 2x D(sin x) = cos x D2y = D(Dy) = D(y') = y'' D3y = y''' In addition, y'' + a y' + b y (where a, b are constant) can be written as D2y + a Dy + b y or  EMBED Equation.DSMT4  where P(D) is called a second-order (linear) differential operator. The homogeneous linear differential equation, y'' + a y' + b y = 0, may be written as (D2 + a D + b)y = 0 or  EMBED Equation.DSMT4  [Example] Calculate (3D2 - 10D - 8) x2, (3D+2) (D-4)x2, and (D-4) (3D+2) x2 [Solution] (3D2 - 10D - 8) x2 = 3D2x2 - 10Dx2  8x2 = 6 - 20x - 8x2 (3D + 2)(D - 4)x2 = (3D + 2) (Dx2 - 4x2) = (3D + 2) (2x - 4x2) = 3D(2x - 4x2) + 2(2x - 4x2) = 6 - 24x + 4x - 8x2 = 6 - 20x - 8x2 (D - 4)(3D + 2)x2 = (D - 4) (3Dx2 + 2x2) = (D - 4) (6x + 2x2) = D(6x + 2x2) - 4(6x + 2x2) = 6 + 4x - 24x - 8x2 = 6 - 20x - 8x2 Note that (3D2 - 10D - 8) = (3D + 2) (D - 4) = (D-4) (3D + 2) The above example illustrates that the operator D can be handled as though it were a simple algebraic quantity. But... [Example] Is (D + 1) (D + x)ex = (D + x) (D + 1)ex ? [Solution] (D + 1) (D + x)ex = (D + 1) (Dex + x ex) = (D + 1) (ex + x ex) = D(ex + x ex) + (ex + x ex) = ex + ex + x ex + ex + x ex = 3 ex + 2 x ex (D + x) (D + 1)ex = (D + x) (Dex + ex) = (D + x) (ex + ex) = (D + x) (2ex) = D(2ex) + 2 x ex = 2ex + 2 x ex Thus, (D + 1) (D + x) ex ( (D + x) (D + 1) ex This example illustrates that interchange of the order of factors containing variable coefficients are not allowed. e.g., xDy ( Dxy, or in general, P1(D) P2(D) ( P2(D) P1(D) [Question] Is ( x2 D ) ( x D ) y = ( x D ) ( x2 D ) y ? [Example] Factor L(D) = D2 + D - 6 and solve L(D)y = 0 [Solution] L(D) = D2 + D - 6 = (D + 3) (D - 2) L(D)y = y'' + y' - 6 y = 0 has the linearly independent solutions y1 = e 3x and y2 = e2x Note that (D + 3) (D - 2) y = 0 can be factored as (D + 3) y = 0 y = e 3x (D - 2) y = 0 y = e2x which also form the basis of L(D)y = 0. Euler Equations (Linear 2nd-order ODE with variable coefficients) (Sec. 2.6, p. 93 of the Textbook) For most linear second-order equations with variable coefficients, it is necessary to use techniques such as the power series method (Chapter 4) to obtain information about solutions. However, there is one class of such equations for which closed-form solutions can be obtained - the Euler equation: x2 y'' + a x y' + b y = 0, x ( 0 We now guess that the form of the solutions of the above equation be y = xm and put the derivatives of y into the Euler equation, we have x2 m (m - 1) xm-2 + a x m xm-1 + b xm = 0 If x ( 0, we can divide the above equation by xm to obtain the characteristic equation for Euler equation: m (m - 1) + a m + b = 0 or m2 + (a - 1) m + b = 0 Characteristic Equation As with the constant-coefficient equations, there are three cases to consider: Case I Two Distinct Real Roots m1 and m2 In this case, x EQ \s\up6(m\s\do3(1)) and x EQ \s\up6(m\s\do3(2)) constitute a basis of the Euler equation. Thus, the general solution is y = c1 x EQ \s\up6(m\s\do3(1)) + c2 x EQ \s\up6(m\s\do3(2))  Case II The Roots are Real and Equal m1=m2 =m=(1-a)/2 In this case, xm is a solution of the Euler equation. To find a second solution, we can use the method of reduction of order and obtain ( Exercise! ): y2 = xm ln |x| Thus, the general solution is y = xm (c1 + c2 ln |x| ) Case III The Roots are Complex Conjugates m i n This case is of no great practical importance. The two linearly independent solutions of the Euler equation are (read p. 95 of the textbook for derivations!)  EMBED Equation.DSMT4  By adding and subtracting these two equations x EQ \s\up6(m) cos (n ln |x|) and x EQ \s\up6(m) sin (n ln |x|) Thus, the general solution is y = x EQ \s\up6(m) [ A cos (n ln |x|) + B sin (n ln |x|) ] [Example] x2 y'' + 2 x y' - 12 y = 0 [Solution] The characteristic equation is m ( m - 1 ) + 2 m - 12 = 0 with roots m =  4 and 3 Thus, the general solution is y = c1 x-4 + c2 x3 [Example] x2 y'' - 3 x y' + 4 y = 0 [Solution] The characteristic equation is m (m - 1) - 3 m + 4 = 0 m = 2, 2 (double roots) Thus, the general solution is y = x2 ( c1 + c2 ln |x|) [Example] x2 y'' + 5 x y' + 13 y = 0 [Solution] The characteristic equation is m ( m - 1 ) + 5 m + 13 = 0 or m =  2 + 3 i and - 2 - 3 i Thus, the general solution is y = x 2 [ c1 cos (3 ln|x|) + c2 sin (3 ln|x|) ] [Exercise 1] The Euler equation of the third order is x3 y''' + a x2 y'' + b x y' + c y = 0 Show that y = xm is a solution of the equation if and only if m is a root of the characteristic equation m3 + ( a - 3 ) m2 + ( b - a + 2 ) m + c = 0 What is the characteristic equation for the nth order Euler equation? [Exercise 2] An alternative method to solve the Euler equation is by making the substitution x = ez or z = ln x Show that he homogeneous second-order Euler equation x2 y'' + a x y' + b y = 0, x ( 0 can be transformed into the constant-coefficient equation  EMBED Equation.DSMT4  [Exercise 3] ( x2 + 2 x +1 ) y'' - 2 ( x + 1 ) y' + 2 y = 0 [Exercise 4] ( 3 x + 4 )2 y'' - 6 ( 3 x + 4 ) y' + 18 y = 0 [Exercise 5] y'' + ( 2 ex - 1 ) y' + e2x y = 0 ( Hint: Let z = ex ) 5 Existence and Uniqueness of Solutions (Sec 2.7 of the Textbook) 5.1 Second-Order Differential Equations Consider the following initial value problem: y'' + p(x) y' + q(x) y = 0 (1a) with y(x0) = k0 , y'(x0) = k1 (1b) Theorem-Existence and Uniqueness Theorem If p(x) and q(x) are continuous functions on an open interval I and x0 is in I, then the initial value problem (1) has a unique solution y(x) on the interval. Wronskian-Definition The Wronskian of two solutions y1 and y2 of (1a) is defined as W(y1, y2) =  EQ \b\bc\|(\a\ac \co2\hs12\vs12(y1,y2,y1',y2')) = y1y2' - y2y1' Theorem-Linear Dependence and Independence of Solutions If p(x) and q(x) of the equation y'' + p(x) y' + q(x) y = o are continuous on an open interval I, then two solutions y1(x) and y2(x) on I are linearly dependent if and only if W(y1, y2) = 0 for some x = x0 in I. Furthermore, if W=0 for  EMBED Equation.DSMT4 , then  EMBED Equation.DSMT4 on I; hence if there is an  EMBED Equation.DSMT4 in I at which W is not zero, then  EMBED Equation.DSMT4 and EMBED Equation.DSMT4 are linearly independent on I. [Proof]: (1)  EMBED Equation.DSMT4  If y1 and y2 are linearly dependent on I, then y1 = c y2 or y2 = k y1 If we take y1 = c y2, then W(y1, y2) = W(cy2, y2) =  EQ \b\bc\|(\a\ac \co2\hs12\vs12(cy2,y2,cy2',y2')) = 0 Similarly, when y2 = k y1, W(y1, y2) = 0. (2)  EMBED Equation.DSMT4  We need to prove that if W(y1, y2) = 0 for some x = x0 on I, then y1 and y2 are linearly de pendent.  EMBED Equation.DSMT4  We consider the system of linear equations:  EQ  EMBED Equation.DSMT4  where c1 and c2 are constants to be determined. Since the determinant of the above set of equations is y1(x0) y2'(x0) - y1'(x0) y2(x0) = W(y1(x0), y2(x0) ) = 0 we have a nontrivial solution for c1 and c2; that is,  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4  are not both zero.  EMBED Equation.DSMT4  Using these numbers  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 , we define y =  EMBED Equation.DSMT4  y1(x) +  EMBED Equation.DSMT4  y2(x) Since y1(x) and y2(x) are solutions to the differential equation, y is also a solution. Note that y(x0) =  EMBED Equation.DSMT4  y1(x0) +  EMBED Equation.DSMT4 y2(x0) = 0 y'(x0) =  EMBED Equation.DSMT4  y1'(x0) +  EMBED Equation.DSMT4 y2'(x0) = 0 thus, y(x) solves the initial value problem y'' + p(x) y' + q(x) y = 0, IC: y(x0) = y'(x0) = 0 But this initial value problem also has the solution y*(x) = 0 for all values on I. From the existence and uniqueness theorem, the solution of this initial value problem is unique so that y(x) = y*(x) = 0 or y(x) =  EMBED Equation.DSMT4  y1(x) +  EMBED Equation.DSMT4  y2(x) = 0 for all values on I.  EMBED Equation.DSMT4  Now since  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4  are not both zero, this proves that y1 and y2 are linearly dependent. Implication:  EMBED Equation.DSMT4  Alternative Proof by Abel's Formula W = y1 y2' - y2 y1' W' = (y1 y2' - y2 y1')' = y1'y2' + y1'y2'' - y2'y1' - y2y1'' = y1 y2'' - y2 y1'' Since y1 and y2 are solutions to y'' + p(x) y' + q(x) y = 0, we have y1'' + p(x) y1' + q(x) y1 = 0 and y2'' + p(x) y2' + q(x) y2 = 0 Multiplying the first of these equation by y2 and the second by y1 and subtracting, we obtain y1y2'' - y2y1'' + p(x)(y1y2' - y2y1') = 0 or W' + p(x) W = 0 Thus, W(y1, y2) = C e EQ \s\up12(-\i(,, p(x) dx))  Abel's Formula where C is an arbitrary constant. Since an exponential is never zero, we see that W(y1, y2) is either always zero (when C = 0) or never zero (when C (0). Thus, if W = 0 for some x = x0 in I, then W = 0 on I. In addition, if there is an x1 on I at which W ( 0, then y1 and y2 are linearly independent on I. [Example] y1 = cos wx, y2 = sin wx w ( 0 W(y1, y2) =  EQ \b\bc\|(\a\ac \co2\hs20\vs12(cos wx,sin wx,-w sin wx,w cos wx)) = w ( 0 thus, y1 and y2 are linearly independent. Theorem-Existence of a General Solution (see textbook p. 99)  EMBED Equation.DSMT4   678jkl  , . 8 : 麩uc_W_P_E_W_ jh_OJQJ jh_h_OJQJh_#h[ h[ 5B* CJaJo(phh_5B* CJaJo(ph h[ h_5B* CJaJph&h[ h[ 5B* CJ \aJ o(ph h_5B* CJ \aJ o(ph#h[ h_5B* CJ \aJ phh_B* CJ(aJ(o(phh[ h_B* CJ(aJ(ph h[ h[ B* CJ(aJ(o(ph h[ o(  78kl Z , 4 p^ p^ p^ p^ p ^gd[  & Fgd[  0 2 F H ` b f h l n p r t v x 0 2 n p r t t ߸߰߰߰߰߰߰߰߰߫ h[ h_5B* CJaJph h[ o( h_o(jh_U jh_OJQJhRhZhRhZo( h_EHH*h_OJQJ hRhZo(h_h[ h_5B*o(phh[ h[ 5B*o(ph44 4 , 8Zp @ p^p pp^p p@ ^ @ ^^ pP^ pP^` 60Znpƻ{ndWJFJF9hWh_5B*phfh_h7Rh_5B*phh7RhWB* o(phh7RB* o(phh7Rh_B* o(phh7Rh_B* OJQJphh7Rh_B* phh7Rh7R5B* o(phh7Rh_5B* phhW5B*o(phh7R5B*o(ph h[ h_5B* CJaJph+h[ h_5>*B* CJOJQJaJph#h[ h_5>*B* CJaJph24bd<>bd$& "$8ȳՒxxxxssssssl h7R>*o( h_H*jh_U h_NHh_OJQJh_hWh_5B*o(phf%jhSFhSF5B*EHUphf(jwE hSFCJOJPJQJUVo(hD\hD\5B*phf!jhD\hD\5B*UphfhD\hD\5B*o(phfhD\5B*o(phf& 6$&(*,.02468@:F @ ^ @ ^ @ p^p8FHz|">`bprvx"$(*246ƿƴƬƧƧƬƬƧƧƧƧƬƬƧƧƬƬƧƧƬƚƏƬhD\h_B*phh_OJQJ h_o( hRhZo(jh_UhWh_B*phf h_EHH*h_hWh_5B*ph hWh_5B* OJQJphhW5B* o(phhWh_5B* ph8&(t :<VX~  (*,.BDPRdhjl.24Hnprvx̿ػhW5\o(h7R5\o(hWhWo(hWhWh_5B* ph hWo( h_H*o( h_H*h_OJQJh<-h_6 h_EHH*jh_Uh_@>(jl24rtvx  6 p^ ^ pp`^p``gd$a$gdW^ @ ^ @ p^px  4<NTX`rv6JPVjpvx˺{sfsh h_5B*phh_OJQJh h_H* h_EHH* ho(h_hh_5B*phh 5B*o(phh5B* CJaJph hh_5B* CJaJph hWhWB* CJ aJ o(ph h_5B* CJ \aJ o(ph#hWh_5B* CJ \aJ ph($(48:<FJbfhnvz| (.@BLP\`bdnr h o(h h_6B*ph hWo( h_H*h_OJQJh_ h_EHH*P\4(x p^ ^ p^ p^(-.45MNY` :<DGHJKOPRS`acdhiklxy{| h_H* h o(h_56\]!h|vh_56B*\]phh|vh_6B*]phh_6H*] h_6]h_h h_5B*phD:;<D C l r s t k!l!m!n! p@ ^@ ` p@ ^@ ` px^ p^ p^ p^       " # 2 3 M N [ \ r t | !!G!H!k!p!s!! h"Zh_5B* CJaJphh"Z5B* CJaJo(ph hWo( h_o( h_NHh'`h_>*B*phfh'`h_B*phfh h h_5B* ph3 h o(h_ h_H*9n!o!p!q!r!s!!!X"""7#e#####X$Z$\$8 @ $d%d&d'd(dNOPQR]^ @ ^ ^`gd"Z & Fgd"Z!!!!!!!!!!!!!!!!! " """""""J"K"O"P"W"X"`"l"Ϻ}}o}}}}}}}}e]h'`B*phh B*o(phh h_56B*phh"Zh_B*H*phh"Zh_B*ph#h"Zh"Z5B* CJaJo(ph%h_5B* CJOJPJaJo(ph(h"Zh_5B* CJOJPJaJph#h"Zh_5B* CJaJo(ph h"Zh_5B* CJaJphh"Z5B* CJaJph l"~"""""""""""""""""""""""#*#+#,#-#9#:#@#A#K#L#N#P#Q#T#U#V#W#i#j#v#w########½¸¸²¸¸¸¸¸¸¸§¸Ÿ¸¸Ÿ¸¸Ÿ¸¸ h,h, h,h_ h_EHjh_U jh_OJQJ h_NH h_H* h_>*h_h h"Z56o(h h_56B*o(phh h'`56B*o(phh h'`56B*ph4#############X$Z$j$$$$$$%%%&3&4&=&>&z&&&&&&&&&&&ټ}rjfhfh h_5h'`h_B*phh_OJQJ#h=bh=b5B* CJaJo(phh_5B* CJaJo(ph h=bh_5B* CJaJph h o(h"Zh B*o(phh h_56B*]phh"Zh_6B*]ph h_o( h"Zo( h_H*h_ h,o('\$^$`$b$d$f$h$j$$$%V%%*&&%'F''( & Fgd=b^ @ 0^`0 0^`0 0^`0 @ ^ ^`gd=b & Fgd=b&&&&3'4'6'7'>'?'A'B'M'N'T'U't'u'~''''''''''''''((((((((())) ).)µµ§ᘓ{t h_EHH*h=bh_5B*phh=b5B*o(ph h=bo( h_o(hnh_56hnh_5B*\phhnh_B*H*phhnh_B*phhnhfB*phhf h_H*h_h h_5h h_56h'`h_6-((()))^**"+<+=+>+?+@+A+B+C+{+|+}++^ @ ^ @ ^` @ ^ pp`^p`` ^gd=b.)0)8)<)))))**"*$*A*B*`*a*i*l*t*w*y*{***********,+-+/+2+6+7+9+;+<+?+C+G+H+O+P+z+{+}+ʻ hf>*o( hfh_5B* CJaJphh/5B* CJaJphh/5B* CJaJo(phhf5B* CJaJo(ph hfo( h"Zo( h_NHh=bh_5B*phh_OJQJ h_EHH*h_ h_H*1}++++++++++++++,,,<,>,J,L,,,,,B-h-n-p-r--------------....D.M.N.Q.खख h=iZo( hfo( h"Zo(hnh_5B* H*phPhnh_5B* phP hf>*o(h_OJQJ h_H*hnh_5B* H*phphnh_5B* phph_hfh_5B*phhfh_5>*B*ph2++,,,,,8--D.E.F.G.H.I.J.K.L.M.N.gdf 0^`0$ @ PPP^P`Pa$ @ P^^ @ P@ `^@ `` @ P^ @ P^N.O.P.Q....b////'0y000 1H22222222 P ^gd/F @ ^ @ ^^gd gdfQ.x...........// ///*/4/5/;/*74282`2b222222222222233333344$4;4F4G4R4S4T4X4Y4Z4[4f4g4i4v4z4{44444444444444444𿻳΢hC23h_5B*phh/FhC23h/FB* phP h^=CJh^=OJQJh^=jh^=U h_EHH*hC23h_B* phP h=iZo( h_H* h_o(jh_Uh_h=iZh_B*ph8222233 4=4|444355555566666 6 66`66 7"7 @ ^444444455565@5A5I5J5N5O5f5g5j5v5{5|5}55555555555555555555ײן׎{ײvvqvmh h_H*hL h=o( hLo($hM4h_EHH*ehr!hM4h_CJehr%hM4h_OJQJehr&jhM4h_Uehr hM4h_H*ehrhM4h_ehrjh_U h_CJh_h_OJQJ(555555 66 6$6&6f6h6r6t6 7"7$77777777777777778&8(8Z8ssfh=iZh_5B* ph3hM4hM45>*B* H*phhM4hM45>*B* phhM4hM45>*B* o(ph3hM45>*B* o(ph3h=iZh_5>*B* ph3 h=iZ>*o( h(*3o(h_OJQJ h_EHH*h=iZh_5B*phh=h(*3o( h=iZo( h_NH h_H*h_$"77777"8T888 989b99J:[::::::;c;r<=p^p @ ^ @ p^p @ p^p @ ^Z8\8^8b8d8j8l8t8v8x8z888888888888888888888z9|9999999ɾɾɾwwrjfhM4jhM4U hM4o(jh_U h_EHH*hM4h_B* EHH*phPhM4h_B* H*phhM4h_B* phh_hM4h_B* H*phPhM4h_B* phPhM4h_B* OJQJphPhM4h_B* H*phphM4h_B* EHH*phphM4h_B* php&999999 :::: :!:-:.:7:8:;:<:H:I:d:e:w:x:z:{::::::::::::;;;<<<<< <"<&<(<*<,<6<8<N<R<T<۹ۗےےӒے ho( h_>*o(hM45>*B* o(ph3h=iZh_5>*B* ph3 h=iZ>*o( h_H*h_OJQJ h_CJjh_Uh_jhM4Uj<hM4hM4EHUjsL hM4UV7T<V<X<Z<\<^<v<x<<<<<<<<<<<====6=8=:=<=@=H=T=V=|=~======4>6>:><>L>N>>>>>>>Ž||hNQh_OJQJh=iZh_B* ph3 hHo(jh/hM4EHU(jZE h/CJOJPJQJUVo(h/jh/U h_o( h_CJh_CJOJQJ h_H* ho(jh_Uh_hho( h_EHH*0=H==(>|>>V??#@5@o@@@@@@@@@@@A;A>>>>???? ?"?P?R?V?p???@@@@ @ @@@@@-@.@5@A@y@z@@@@@@@@@@@@@;A=AXAƾ h }o( hAko( h_5\#h }h_5B* CJ \aJ phh }hO 5\o(hO 5\o(hAk5\o(h }5\o( h=iZo( hDo( h_o( h_H* h_EHH*h=iZh_B* ph3h_CJ0aJ0jh_Uh_/*B* CJ]aJph&h }h_56B* CJ]aJph)h }h_56>*B* CJ]aJphh }6>*]o( h_EHH* h_>* h_H*h_OJQJh_2G H"H|H~H>IhIIIIhJJK6KjKKBLzLLLMM @ Pp^p @ p^p @ ^^VD,WD ^`gd }^ @ ^fHhHrHtHvHxHzH|H~HHHHHHHHHHHHHHHHHHHI(IIXIZI|I~II־ꭩ~t~tfa[ h_NH hAko(hO h_56B* ph!Xhh_CJ EHaJh_CJOJQJ h_CJjh_CJU h_H* h_6] h }o(h_ h }h_5B* CJaJph.h }h_56B* CJOJQJ]aJph&h }h_56B* CJ]aJph)h }h_56B* CJH*]aJph#IIIIIIIIIIIIIIIIIIII JJJJJJJJJJJJJJJ8K:KL\L^LfLµ׭׭׭׭׭׭׭׭׭׭צצ׭כh }h_B* ph3 h_EHH*h_OJQJh }h_5B*phh }h_B*ph h }o( h_H*h_h_CJ EHaJh_CJOJQJ h_CJjh_CJU=fLhLLLLLLLLLLLLLLLMM>MBMDMFMJMPMTMVM`MMMMMMMMMMMMMMN N NN NN^N`NnNpN­jh_CJU h_6] h }o(hFS&h }h_56B* CJ]aJph)h }h_56>*B* CJ]aJphh }6>*]o(h_6>*]h }h_B* ph3 h_EHH*jh_Uh_OJQJh_ h_H*2MMMM@NOPPQQSSZTTTzUU V|VVVW @ Pp^p @ P^ $ @ ^a$ @ ^VD,WD ^`gd }^gd }pNNNOOOOOOOOPP"P$PPdPfPjPlPPPPPPPPPPPQQQQ@QBQFQHQXQZQhQjQpQrQQQQQRR R RRR,R.Rø쭝hO h_B* EHH*phpjhO h_B* UphphO h_B* phphO h_B* phhO h_B* OJQJph h_EHH*jh_U h_H* h_NHh_jh_CJU h_CJ8.R0R6R8R:R`RbRlRpRrRtRvRxRRRRRRRRRRSS$S&SDSFSPSRSTSVSZS🙟🙟~o~`~S~hO h_B*o(phhO h_B*EHH*phhO h_B*OJQJphhO h_B*phjhO h_B*Uph h_CJjh_CJUjhO h_B* UphphO h_B* OJQJphphO h_B* phhO h_CJjhO h_CJU hO h_h_hO h_B* php ZS\S^S`SjSlSSSSS^T`TtTvTTTUUUU(U*UNUPURUVUzUUUUUU"V$V&V(V*V0V2V\V^V`VbVhVjVVVVVVVVWW WɺԵԫԵԵԫԝԐԝԐԝԝԝԝԝԉԝԝԵԵ h_EHH*h }h_5B*phh_OJQJ h_CJjh_CJU h_H*hFh_B*EHH*phhFh_B*phh_jhO h_B*UphhO h_B*phhO h_B*o(ph6 WWWWW,W>WRWbWdWfWpWrWtWvWxWzWWWWWWW°˜˜iXSLD? h_H*h_OJQJ h_6] hFo( hFh_5B* CJaJph2hFh_56B* CJEHOJQJ]aJph)hFh_56B* CJH*]aJph.hFh_56B* CJOJQJ]aJph#hO 56B* CJ]aJo(ph&hFh_56B* CJ]aJph)hFh_56>*B* CJ]aJphh }6>*]o( h_EHH*h_WWzWW XVXXY ZZZZ7[\l\ ]]]B^Z^^^$ @ ^a$gd+P` @ ^ @ ^ @ ^(VD,WD&^`(gdF^WWWWXXXX XXX"X$XDXFXJXLXNXPXRXVXbXdXrXtXXXXXXXXXXXXXXXXXXXY Y YYY Y"Y*Y,YBYDYFYPYRYYYYYYYȾȾ󩡝h+P`jh+P`U h+P`o( h_NHh_CJ EHaJh_CJOJQJ h_CJjh_CJU h_EHH* h_H*h_OJQJ h_6]h_jh_U>YZZZ Z Z ZZZ"Z#ZaZZZZZZZZZZZZZZZZZZZZZZZZZZZ[[([)[6[ɾɰ}xkhr!hr!B*o(ph hr!o(jh_0JUh_OJQJ h_6]jh_U h_H*h+P`h_5B* phPh_h+P`5B*phh+P`5B*o(phh~qh_5B*phjh+P`UjY h+P`h+P`EHUjwL h+P`UVh+P` h+P`o(*6[7[9[:[E[F[G[H[I[\\\ \\\\\4\8\:\<\>\T\V\X\Z\\\^\h\j\z\|\\\\\\\\\\\\\\\\\]]]]] ]"]8]:]<]D]jh_Uh_CJ EHaJh_CJOJQJ h_CJjh_CJU h_H* h_6]h_OJQJh ~&CJOJQJo( h ~&CJo( h ~&CJjh ~&CJUh_ h_o(:D]F]L]N]d]n]|]~]]]]]]]]]]]]]]]]]]]^ ^2^4^<^>^@^B^V^X^Z^\^^^^^^^^^^^^^^^žŶŶjh+P`h+P`EHUjwL h+P`UVj h h+P`EHUjwL h+P`UVh+P`jh+P`U h+P`h+P` h+P`o( h_o( h_H* h_6]h_OJQJ h_CJjh_Uh_jh_CJU3^^^^^^^^^(_*_6_8___` `` `4`6`<`>`````a.anaparaxazaaaaaaaa b bbbb b"b0b2b6b8bRbTbbbbbDcFcccdd6d8d:df@fBfŸ}h(jhDhD5>*B*EH*UphPM$jxL hD5>*B*UVphPMhD5>*B*o(phPMhD5>*B*phPMjhD5>*B*UphPMhF5>*B*o(phPMh+P`h+P`5>*B*o(phPM hF>*o( h_CJh_OJQJjh_Uhzm5h_ hzm5o((BfDfFfTfVfXftfvfHgJgLgVgXglhnhphrhzh|hhhhhhhhhͼ~vfvfTvfvFhh_6B* ]ph#hh_6B*OJQJ]phhh_6>*B*]phh_6>*]h6]o(h_6]o(h_6EHH*]h_6OJQJ] h_6]#hFh5B* CJaJo(ph h_5>*B* CJaJo(ph#hFh_5>*B* CJaJph htfW5>*B* CJaJo(phhtfWh+P`5>*B*o(phPMVfXffgFgrgnhphhLi`iiDjjkfkhkk^ p^$ p^gd$ p^$ p^ @ P^ @ P^ @ P^hhhh i iiii i"i&i(i>i@iBiHiJiPiRiTiZi\i^ihiiiiiiiiiiiiij jjj j"j6j8j:j*B*CJaJph hF>*o(jh_6U]h_6CJ]jh_6CJU]h_6H*]hzm56]o(hh_6B* ]ph h_6]h_6OJQJ] kkkkkkkkkk&l'l4l6lIlJl]l^ltlulòБ~hW>0jxL hnO5CJKHOJPJQJUVaJ!hnO5CJKHOJPJQJaJ*jhnO5CJKHOJPJQJUaJhnOhnOhnO5o( hnOo(h_hP56B*phT#hPh_56B*OJQJphT!hPhP56B*H*o(phThP56B*o(phThPh_56B*phT#hh5B*CJaJo(phh_5B*CJaJo(phkkIlxlll m.mmm#n>nonnnnnnnnn @ ^ @ ^ @ ^ @ WDX`gdnO @ ^gdnO ^`^ulvlwlxlllllllllllllll m m/m0mBmCmEmFmlmmmompmmmmmmm,n-n*o( h_>* h_o(jh_UhJ+ h_EHH*h_ hnOo($hnO5CJKHOJPJQJaJo(*jhnO5CJKHOJPJQJUaJ.jahnO5CJEHKHOJPJQJUaJ4nnnnnno"oaoooo"phppqDqqrr*s,s.s0s$ pp`^p``a$$ @ ^a$gd3 @ ^` @ ^nnookolo~oooooooo&p(p,p0plpnp"q$qJqLqzq|q~qqqqqqqqrrrrrϿ騤whwh- 0h_B*OJQJphh- 0h_B*phj !hr[hr[EHU(j E hr[CJOJPJQJUVo(hr[jhr[Uhk`OJQJ h_EHH*hk`h_56>*B*phhr[h_6B*phjh_U hr[o(h_#hr[h_5>*B* CJaJph&rr"s$s&s(s@sBsTspsrstsvssssssssssssssssssst ttt*t,t.t0t2t4t>tBtJtLt^t`tjtltrtttttttttttttttuuuu󿻴ha3h_OJQJ h_EHH*h_h3h_5B*ph h3o(j$hr[h3EHU(jS E h3CJOJPJQJUVo(h3jh3UB0s2s4s6s8s:ss@sssNtvttuJu|uuv4vtvvv @ ^ @ ^ @ ^ @ ^$ pp`^p``a$u u"u(u*uuDuFuZu\upuruxuzuuuuuuuuuuuuuuuuuvv.v0vRvTvXvZvnvpvvvvvvvvvvvvvvvvvvv&w(w@wBwZwrwx'x1x:xKxLxNxOxha3h_B*phh3h_5B*phha3h_5B* phPha3h_B* phP h3o( h_EHH*h_OJQJh_HvZw\w^w`wbwdwfwhwjwlwnwpwrw1xjxuxxxxxy@yXyly @ ^ p@ ^ @ ^ @ ^Ox[x\xfxgxhxjxuxxxxxxxxxxxxxxxxxxxxxxxxxxxxxyy y yyy&y'y8y9y=y>yPyQyUyVyiyjyvywyyyyyyyyyyyyzzh_OJQJ jh_OJQJha3h_>*EHH*ha3h_>*h3h_5B*phhJ4LhJ4Lo( h_EHH*ha3h_B*phh_Dlyyy,zjz{X{{| | ||||||||||| }R} p@ ^ p^ @ ^ @ ^ @ ^z(z*zfzhzjzzz{{{,{.{X{Z{\{^{f{h{j{r{t{v{x{z{{{{{{{{{{||.|V|X|b|d|||||||}}6}8}}}}}h_OJQJh35B*o(phh3h_5B*ph h_H* h3o(h3 jh_OJQJha3h_56B*]phh3h_6B*]phh[%B*o(phh3h_B*ph h_EHH*h_6R}}}}*~P~~~.02468:<>@BDFHJLgdM @ ^gdM @ ^ @ ^ @ ^}}}}} ~~v~x~~~~~~~~~,.|~HJvx,T8:xzɾ{p{hjh_B*ph h_NH h_5\hPhMB*o(ph64hC hP>*B*o(ph64hPhPB*H*o(ph64hPhPB*o(ph64hPh_B*ph64#hPh_5B*CJ \aJ ph64 hMo(hMhMo(h_OJQJ h_EHH* h_H*h_,LNPRTVXZ\^`bdfhjlnprtvxz|~ & FgdMgdMJzlB| pPgd pP^ ^` WD,`gdM xWD2`xgdM  ",.02FHJLXZrvx|ʄ̄NP h_o( hMo(hMh_5B*ph# jh9h_B*OJQJphh9h_B*phh_EHH*OJQJh_OJQJhMh_B*phhMh_6B*]ph jh_OJQJ h_EHH*h_ h_6]-چ܆ކ 46>@JLrt|~)*./2356IJNOPQXwx֬~u~~u~ni hMo( h_CJo(hJ4LhJ4LCJ hJ4LCJjhJ4LCJU h_H*hJ4Lh_CJ h_CJjh_CJUh_ hM56B* CJ]aJph)hMh_56B* CJH*]aJph&hMh_56B* CJ]aJph)hMh_56>*B* CJ]aJph(PQ"6TrsNx:<>@(f p^ pWD,`gd p^ pP^ pP^xyz{}~$%-.23456^_abcghklmnoqrs۵}x}xso}jx}xse hMo( h\o(h( h_o( h*B* CJ]aJph 8:PRXZdfȌʌ"$8:>@BTXZvxPRȎʎΎЎҎԎ؎µ١٨ٜٜٜٗ١ٗ١¨١ h_H* h}`o( h_EHH*hMh_5B*phhMh5B*ph hMo( ho( h_o(h_OJQJh_jhJ4Lh_CJUhJ4Lh_CJhJ4Lh_CJOJQJ;fԎ֎؎(|0lnpV()*+,dN^ p^ p^(<DFNPXZjlp֐ $&*,|~),8fgrs ,.ؔڔѸh'h_5B* ph3 h_6] h}`o( hMo( h_o( h_H* h_EHH*hMh_5B*phh_OJQJh_GNڔܔΕ8024@ܘ08n WD,`gd $a$gd p^ p^$ p^a$gdk` p^ p^ p0^`0 p^ڔܔ <>|~̖Ζ(*,.024LPRTV^`hjҗڗܗ@XlnprԘ֘ܘøǧ h_5\ h}`o( h_o(hk`j-h h EHUjHL h UVh jh U jh_OJQJh_OJQJ h_EHH*h_h'h_5B* ph3 h'o(4,.8lnvtvšƚԚ֚BjռՙՔՔՔՔՍm`YKYhh_6B*]ph h_6]hh_5B*ph#hh_5>*B*OJQJphhh_5>*B*ph h>*o( h_H*hh_6 h_>*+hh_5>*B* CJOJQJaJph#hh_5>*B* CJaJph h_5\h_ ho(hh_B* CJ aJ ph3f#hh_5B* CJ \aJ ph3fndšĚƚVXZ @ ^< @ h$d%d&d'd(dNOPQR]h^gd8* @ ^ ^` TVZlnĜƜҜԜ $&jlprvx~ΝНųŦ𢝢ӆųŦ h>*o(h_OJQJjh_U h_H*h_hh_5B*ph#hh_5>*B*OJQJphhh_5>*B*ph h8*>*o(h8*h8*o(hh_6B*]ph h_6]h_6H*]4+[u @ p^p p@ ^ @ ^?$ @ h$d%d&d'd(dNOPQR]h^a$gdU  @ WDX`gd @ gdv @ ^ ОўԞ՞)*+,34KLMNijvaQj7hU hU 6EHU](jtE hU CJOJPJQJUVo(j4hU hU 6EHU](jE hU CJOJPJQJUVo(j1hU hU 6EHU](jE hU CJOJPJQJUVo( hU 6]jhU 6U]hU 6]o(h_6]o(hh_6B*]ph h_6]h_6H*]ğşܟݟޟߟ'()*,0178]嫛xo_PxKFF h_H* h9qo(jV@h9qh9qCJEHUjmL h9qh9qCJUVh9qh9qCJjh9qh9qCJUh_h,h_5B*ph ho(jy=hU hU 6EHU](jE hU CJOJPJQJUVo(j:hU hU 6EHU](jE hU CJOJPJQJUVo( hU 6]jhU 6U]hU 6]o(]^hirs}~  !,-12IJKLMNjkno̡hjjhjUhjh_H* hjo( h9qo(jDh9qh9qEHUj~nL h9qUVh9qjh9qU h,o(jh_Uh_ h_H*B,-MѡBQmȤzץ p@ p^p & F p@ gdj p@ pWD|^p`gdj p@ p0^p`0 p@ gd9q @ p^p̡͡ΡϡСҡ :<>@BNPR\^`$&,.248:@BHJNPfhlnvx|~ŽӹӍӍӍӍӅӍӍӍӍӍӍӍӍh_OJQJ h_H* hNo(jLhNhNEHU(jE hNCJOJPJQJUVo(hNjhNUjh_U h_NHh_ hjo(jhjUjHhjhjEHUjoL hjUVhj2أڣܣ !89:;EPQRShijklmƹѮќё՜wokhvjhvUjZhjhjEHUjVhjhjEHUj qL hjUV hjo(jShjhjEHUjpL hjUVjPhjhjEHUjpL hjUVhjjhjU h_H* hNo(hNhNh_B*phh_ h8*o()ȤѤҤ ()1:}~ťƥȻ۶۶۶۶۞ۓy۶ۓjfhjhvEHUhvh_B* H*phPhvh_B* phPhNh_B*phjchjhvEHU h_H*j`hjhvEHUjpL hvUVhvhNh_jhvUj]hjhvEHUjpL hvUV.ƥǥȥɥʥ˥̥ͥۥܥݥ #$%&'(*+,L`cwrjhvh_H* hvo(hvhvo( hvh_hNh_B*phjohjhvEHUjpL hvUVjlhjhvEHUjpL hvUVhvhNhvh_B* H*phPhvh_B* phP h_H*h_jhvUjihjhvEHU)ץ6bc}٧ ѨҨӨԨը֨ p@ ^ @ gdil[ & F p@ gdv p@ pVDWD,^p`gdv p@ p^p p@ p^p$TZǧȧɧʧ̧ͧ ./01ķϧϕϊ}ӕuhj|hjhvEHUhNB*phjyhvhvEHUjtL hvUV hvo(juhjhvEHUjpL hvUV h_H*jrhjhvEHUjpL hvUVhvjhvUhNh_B*ph h_NHh_ hvh_hvh_H*(1267NOPQwx~󼯼|lQ:,hil[hil[56B* ehphr5jhil[hil[56B* Uehphrhil[hil[56B* o(phhil[56>*B* o(ph!hil[hil[56>*B* o(phhil[B*o(phh_B*o(phh8*h_B*NHphh8*h_B*phjhjhvEHUjpL hvUVhvjhvUhNB*phh8*h_B*H*phèĨŨƨǨШѨ٨вzj\UH:-)$ h_H*h_hDth_5B*phhDth_5>*B*phh7/I5>*B*o(ph h,>*o(hil[hil[56B* phhil[hil[56B* o(ph5jhil[hil[56B* Uehphr9ĵhil[hil[56B* EHUehphr;jtL hil[hil[56B* UVehphr,hil[hil[56B* ehphr/hil[hil[56B* eho(phr ֨רب٨ʪ\6Bȭ !"#$ p@ ^ p@ ^ p@ ^  *,0268<>BDZ\`blnrtz|ªĪتڪ`bxzīƫګܫFHpr¬ĬƬܬެJL h_NHh_OJQJ h_H*h_\LRTjlƭ:;>?z{׮خ)245 ",.0|||w h_o(h_OJQJh7/Ih_5B*phhU 5B*o(ph jh_6OJQJ]hDt6]o(h_6H*] h_6] jh_OJQJh7/Ih_5B* ph3hh_CJOJQJhh_CJjh_U h_H*h_.$%&'()8Xұ  f  p@ gdek p@ ^ p@ p^p p@ gdil[ p@ ^02@BHJZ\Ȱʰΰаڰܰ "XfhбұԱֱ  <dfhjɖ h`{o(h`{jh`{Ujʇhil[h`{EHUj5wL h`{UVU hil[o(hil[jhil[U h_o(h_>*OJQJ h_>*h_OJQJjh_U h_H*h_ jh_OJQJ7  Theorem-General Solution (see textbook p.99)  EMBED Equation.DSMT4  6 Nonhomogeneous Linear Differential equations 6.1 General Concepts (Sec. 2.8 of the Textbook) A general solution of the nonhomogeneous equation y(n) + pn-1(x) y(n-1) + ... + p1(x) y' + p0(x) y = r(x) on some interval I is a solution of the form y(x) = yh(x) + yp(x) where yh(x) = c1 y1(x) + ... + cn yn(x) is a solution of the homogeneous equation y(n) + pn-1(x) y(n-1) + ... + p1(x) y' + p0(x) y = 0 and yp(x) is a particular solution of the nonhomogeneous equation.  EMBED Equation.DSMT4  Relations between solutions of (1) and (2): The difference of two solutions of (1) on some open interval is a solution of (2) on I. The sum of a solution of (1) on I and a solution of (2) on I is a solution of (1) on I. [Example] y(x) = c1 ex + c2 e3x +  EQ \f(2,3) e 2x is the solution of y'' - 4 y' + 3 y = 10 e 2x where yh(x) = c1 ex + c2 e3x is the general solution of y'' - 4 y' + 3 y = 0 and yp(x) =  EQ \f(2, 3 ) e 2x satisfies the nonhomogeneous equation, i.e., yp(x) is a particular solution of the nonhomogeneous equation. The general solution of the homogeneous equation can be obtained by the method discussed in the above sections. On the other hand, there are two methods to obtain the particular solution yp(x): Method of Undetermined Coefficients and Method of Variation of Parameters. Our main task in the following, is to discuss these two methods for finding yp(x). Method of Undetermined Coefficients (Sec. 2.9 of the Textbook) Let us illustrate this method by some examples: [Example 1] y'' + 4 y = 12 The general solution of y'' + 4 y = 0 is yh(x) = c1 cos 2x + c2 sin 2x If we assume the particular solution yp(x) = k then we have yp'' = 0, and 4 k = 12 or k = 3 ok! Thus the general solution of the nonhomogeneous equation is y(x) = c1 cos 2x + c2 sin 2x + 3 [Example 2] y'' + 4 y = 8 x2 If we now assume the particular solution is of the form yp(x) = m x2 then yp''(x) = 2m and 2 m + 4 m x2 = 8 x2 However, since the above equation is valid for any value of x, we need m = 0 and m = 2 which is not possible. If we now assume the particular solution is of the form yp(x) = m x2 + n x + q then yp' = 2 m x + n yp'' = 2 m thus 2 m + 4 (m x2 + n x + q) = 8 x2 or 4 m x2 + 4 n x + (2 m + 4 q) = 8 x2 or  EQ \b\lc\{( \a\al(4 m = 8,4 n = 0,2 m + 4 q = 0))  or m = 2 n = 0 q =  1 yp(x) = 2 x2 - 1 and y(x) = c1 cos 2x + c2 sin 2x + 2 x2 - 1 [Example 3] y'' - 4 y' + 3 y = 10 e 2x The general solution of the homogeneous equation y'' - 4 y' + 3 y = 0 is yh(x) = c1 ex + c2 e3x If we assume a particular solution of the nonhomogeneous equation is of the form yp(x) = k e 2x then yp' =  2 k e 2x yp'' = 4 k e 2x and 4 k e 2x - 4 (-2 k e 2x) + 3 (k e 2x) = 10 e 2x or 15 k e 2x = 10 e 2x or k = 2/3 Thus y(x) = c1 ex + c2 e3x +  EQ \f(2,3) e 2x [Example 4] y'' + y = x e2x The general solution to the homogeneous equation is yh = c1 sin x + c2 cos x Since the nonhomogeneous term is of the form x e2x If we assume the particular solution be yp = k x e2x we will have k (4e2x + 4 x e2x) + k x e2x = x e2x or k = 0 and 5 k = 1 which is not possible. So we try a solution of the form yp = e2x (m + n x) we will have yp =  EQ \f(e2x, 25 ) ( 5 x - 4 )  Therefore, the general solution of this example is y(x) = c1 sin x + c2 cos x +  EQ \f(e2x, 25 ) ( 5 x - 4 )  [Example 5] y'' + 4 y' + 3 y = 5 sin 2x The general solution of the homogeneous equation is yh = c1 e x + c2 e 3x If we assume the particular solution be of the form yp = k sin 2x then yp' = 2 k cos 2x yp'' =  4 k sin 2x or - 4 k sin 2x + 4 (2 k cos 2x) + 3 k sin 2x = 5 sin 2x or - k sin 2x + 8 k cos 2x = 5 sin 2x since the above equation is valid for any values of x, we need - k = 5 and 8 k = 0 which is not possible. We now assume yp = m sin 2x + n cos 2x and substitute yp, yp' and yp'' into the nonhomogeneous equation, we have m =   EQ \f(1, 13 ) and n =   EQ \f(8, 13 )  Thus y = c1 e x + c2 e 3x -  EQ \f(1, 13 ) ( sin 2x + 8 cos 2x )  [Example 6] y'' - 3 y' + 2 y = ex sin x The general solution to the homogeneous equation is yh = c1 ex + c2 e2x Since the r(x) = ex sin x, we assume the particular solution of the form yp = m ex sin x + n ex cos x Substituting the above equation into the differential equation and equating the coefficients of sin x and cos x, we have yp =  EQ \f(ex,2) (cos x - sin x)  and y(x) = c1 ex + c2 e2x +  EQ \f(ex,2) (cos x - sin x)  [Example 7] y'' + 2 y' + 5 y = 16 ex + sin 2x The general solution of the homogeneous equation is yh = e x (c1 sin 2x + c2 cos 2x) Since the nonhomogeneous term r(x) contains terms of ex and sin 2x, we can assume the particular solution of the form yp = c ex + m sin 2x + n cos 2x After substitution the above yp into the nonhomogeneous equation, we arrive yp = 2 ex -  EQ \f(4,17) cos 2x +  EQ \f(1,17) sin 2x Thus y(x) = e x (c1 sin 2x + c2 cos 2x) + 2 ex -  EQ \f(4,17) cos 2x +  EQ \f(1,17) sin 2x [Example 8] y'' - 3 y' + 2 y = ex The general solution of the homogeneous equation is yh(x) = c1 ex + c2 e2x If we assume the particular solution be of the form yp = k ex we would have k - 3 k + 2k = 1 or 0 = 1 which is not possible (Recall that k ex satisfies the homogeneous equation). We need to try a different form for yp. Assume yp = k x ex then yp' = k (ex + x ex) yp'' = k (2 ex + x ex) and k (2 ex + x ex) - 3 k (ex + x ex) + 2 k x ex = ex or - k = 1 or k =  1 Thus, y = c1 ex + c2 e2x - x ex [Example 9] y '' - 2 y' + y = ex The general solution of the homogeneous equation is yh = (c1 + c2 x) ex If we assume the particular solution of the nonhomogeneous equation be yp = k ex or yp = k x ex we would arrive some conflict equations for k. If we assume yp = k x2 ex then we have k =  EQ \f(1,2)  thus y(x) = (c1 + c2 x) ex +  EQ \f(1,2) x2 ex In summary, for a constant coefficient nonhomogeneous linear differential equation of the form y(n) + a y(n-1) + ... + f y' + g y = r(x) we have the following rules for the method of undetermined coefficients: (A) Basic Rule: If r(x) in the nonhomogeneous differential equation is one of the functions in the first column in the following table, choose the corresponding function yp in the second column and determine its undetermined coefficients by substituting yp and its derivatives into the nonhomogeneous equation. (B) Modification Rule: If any term of the suggested solution yp(x) is the solution of the corresponding homogeneous equation, multiply yp by x repeatedly until no term of the product xkyp is a solution of the homogeneous equation. Then use the product xkyp to solve the nonhomogeneous equation. (C) Sum Rule: If r(x) is sum of functions listed in several lines of the first column of the following table, then choose for yp the sum of the functions in the corresponding lines of the second column. Table for Choosing yp r(x) yp(x) Pn(x) a0 + a1 x + ... + an xn Pn(x) eax (a0 + a1 x + ... + an xn) eax  EQ \b\rc\}(\a(Pn(x) eax sin bx , ,+, ,Qn(x) eax cos bx)) and/or  EQ \a\al((a0 + a1 x + ... + an xn) eax sin bx , , +, ,(c0 + c1 x + ... + cn xn) eax cos bx) and where Pn(x) and Qn(x) are polynomials in x of degree n (n e" 0). [Example 10] y'' - 4 y' + 4 y = 6 x e2x [Solution] yh = c1 e2x + c2 x e2x yp first guess: yp = ( a + b x ) e2x No! yp = x ( a + b x ) e2x No! yp = x2 ( a + b x ) e2x O.K. [Example 11] y'' - 2 y' + y = ex + x [Solution] yh = ( c1 + c2 x ) ex Guess of yp: yp = a + b x + c ex No! yp = a + b x + c x ex No! yp = a + b x + c x2 ex O.K. .... yp = 2 + x +  EQ \f(1, 2 ) x2 ex [Example 12] x2 y'' - 5 x y' + 8 y = 2 lnx, x > 0 [Solution] Note that the above equation is not of constant coefficient type! Let z = ln x, or x = ez, then x2 y'' + a x y' + b y = 0  EQ \f(d2y, dz2 ) + (a - 1)  EQ \f(dy, dz ) + by = 0 thus, x2 y'' - 5 x y' + 8 y = 2 ln x  EQ \f(d2y, dz2 ) + (a - 1)  EQ \f(dy, dz ) + by = 2z or y'' - 6 y' + 8y = 2z, where y' and y'' are differentiated wrt z. yh = c1 e4z + c2 e2z and yp = c z + d =  EQ \f(1, 4 ) z +  EQ \f(3, 16 )  \ y(z) = c1 e4z + c2 e2z +  EQ \f(1, 4 ) z +  EQ \f(3, 16 )  y(x) = c1 x4 + c2 x2 +  EQ \f(1, 4 ) ln x +  EQ \f(3, 16 )  [Exercise 1] (a) x2 y'' - 4 x y' + 6 y = x2 - x [Answer] y = c1 x2 + c2 x3 -  EQ \f(x, 2 ) - x2 ln x (b) y'' - y = x sin x (c) [Answer] yp = ( a x + b ) sin x + ( c x + d ) cos x y'' - y = x ex sin x (d) y'' + y = - 2 sin x + 4 x cos x (e) ( D2 + 1 ) ( D - 1 ) y = x e2x + cos x (f) y'' - 4y' + 4y = x e2x, with y(0) = y'(0) = 0 [Exercise 2] Transform the following Euler differential equation into a constant coefficient linear differential equation by the substitution z = ln(x) and find the particular solution yp(z) of the transformed equation by the method of undetermined coefficients: x2 y'' - x y' - 8 y = x4 - 3 ln (x) ; x > 0 [Answer] yp = ( a x2 + b x ) sin x + ( c x2 + d x ) cos x Method of Variation of Parameters (Sec. 2.10, p. 108 of the Textbook) In this section, we shall consider a procedure for finding a particular solution of any nonhomogeneous second-order linear differential equation y'' + p(x) y' + q(x) y = r(x) where p(x), q(x) and r(x) are continuous on an open interval I. The general solution of the corresponding homogeneous equation y'' + p(x) y' + q(x) y = 0 is given yh = c1 y1 + c2 y2 where c1 and c2 are arbitrary constants. Suppose that the particular solution of the nonhomogeneous equation is of the form yp = u(x) y1 + v(x) y2 This replacement of constants or parameters by variables gives the method "Variation of Parameters". Notice that the assumed particular solution  EMBED Equation.DSMT4 contains two functions u and v. The requirement that the particular solution satisfies the non-homogeneous differential equation imposes only one condition on u and v. It seems plausible we can impose a second arbitrary condition. By differentiating yp, we have yp' = u' y1 + u y1' + v' y2 + v y2' To simplify this expression, it is convenient to set u' y1 + v' y2 = 0 This reduces the expression for yp' to yp' = u y1' + v y2' Differentiating once again, we have yp'' = u' y1' + u y1'' + v' y2' + v y2'' Putting yp'', yp' and yp into the nonhomogeneous equation and collecting terms, we have u (y1'' + p y1' + q y1) + v (y2'' + p y2' + q y2) + u' y1' + v' y2' = r Since y1 and y2 are the solutions of the homogeneous equation, we have u' y1' + v' y2' = r This gives a second equation relating u' and v', and we have the simultaneous equations y1 u' + y2 v' = 0 y1' u' + y2' v' = r which has the solution u'  EMBED Equation.DSMT4  =   EQ \f(y2 r,W)  v'  EMBED Equation.DSMT4 =  EQ \f(y1 r,W)  where W = y1 y2' - y1' y2 ( 0 is the Wronskian of y1 and y2. Notice that y1, y2 are linearly independent! After integration, we have u =   EQ \i( , , \f(y2 r,W) dx)  v =  EQ \i( , , \f(y1 r,W) dx)  Thus, the particular solution yp is yp(x) =  y1  EQ \i( , , \f(y2 r,W) dx) + y2  EQ \i( , , \f(y1 r,W) dx)  [Example 1] y'' - y = e2x The general solution to the homogeneous equation is yh = c1 e x + c2 ex i.e., y1 = e x y2 = ex The Wronskian of y1 and y2 is W =  EQ \b\bc\|(\a\co2\hs12\vs12(e x,ex,-e x,ex)) = 2 thus, u' =   EQ \f(y2 r,W) = -  EQ \f(ex e2x,2) =  EQ \f(- e3x, 2)  v' =  EQ \f(y1 r,W) =  EQ \f(e x e2x,2) =  EQ \f(ex, 2 )  Integrating these functions, we obtain u =   EQ \f(e3x,6)  v =  EQ \f(ex,2)  A particular solution is therefore yp = u y1 + v y2  EMBED Equation.DSMT4  =  EQ \f(e2x, 3 )  and the general solution is y(x)  EMBED Equation.DSMT4  = c1 e x + c2 ex +  EQ \f(e2x, 3 )  [Example 2] y'' + y = tan x The general solution to the homogeneous equation is yh = c1 cos x + c2 sin x thus, y1 = cos x y2 = sin x Also W  EMBED Equation.DSMT4  = 1 so that u' =   EQ \f(y2 r,W) = - sin x tan x v' =  EQ \f(y1 r,W) = cos x tan x = sin x Hence  EMBED Equation.DSMT4  Since by looking up table  EMBED Equation.DSMT4  Thus, u = sin x - ln| sec x + tan x | v =  cos x Thus, the particular solution is yp = u y1 + v y2 =  cos x ln| sec x + tan x | and the general solution is y(x) = c1 cos x + c2 sin x - cos x ln| sec x + tan x | [Example 3] x2 y'' + 2 x y' - 12 y =  EQ \r(x)  This is an Euler equation. The general solution to the homogeneous equation is yh = c1 x 4 + c2 x3 or y1 = x 4 y2 = x3 and W =  EQ \b\bc\|(\a\co2\hs12\vs12(x 4,x3,-4x 5,3x2)) = 7 x 2 or  EQ \f(1,W) =  EQ \f(x2, 7 )  In order to use the method of variation of parameters, we must write the differential equation in the standard form in order to obtain the correct r(x), i.e., y'' +  EQ \f(2, x ) y' -  EQ \f(12, x2 ) y = x 3/2 or r(x) = x 3/2 Thus, u' =   EQ \f(y2 r,W) = - x3 x 3/2  EQ \f(x2, 7 ) = -  EQ \f(x7/2, 7 )  and v' =  EQ \f(y1 r,W) = x 4 x 3/2  EQ \f(x2, 7 ) =  EQ \f(x 7/2, 7 )  Hence u =   EQ \f(1, 7 ) \f(2, 9 ) x9/2 v =   EQ \f(1, 7 ) \f(2, 5 ) x 5/2 so that yp = u y1 + v y2  EMBED Equation.DSMT4  =   EQ \f(4,45) x1/2 Thus, the general solution is given by y(x) = c1 x 4 + c2 x3 -  EQ \f(4, 45 ) x1/2 [Example 4] (D2 + 2D + 1) y = e-x ln x [Solution] y = yh + yp where yh is the solution of (D2 + 2D + 1) y = 0 or yh = c1 e-x + c2 x e-x y1 = e-x, y2 = x e-x W =  EQ \b\bc\|(\a\co2\hs12\vs12(e-x,xe-x,-e-x,-xe-x+e-x)) = e-2x \ yp(x) =  y1  EQ \i( , , \f(y2 r,W) dx) + y2  EQ \i( , , \f(y1 r,W) dx)  = - e-x  EQ \i( , , ) (x e-x )(e-x ln x )(e2x )dx + x e-x  EQ \i( , , ) (e-x )(e-x ln x) (e2x )dx  EMBED Equation.DSMT4  From Table:  EMBED Equation.DSMT4   EMBED Equation.DSMT4  = e-x ( EQ \f(x2, 2 ) ln x -  EQ \f(3, 4 ) x2) \ y = c1 e-x + c2 x e-x + e-x ( EQ \f(x2, 2 ) ln x -  EQ \f(3, 4 ) x2) [Exercise 1] (a) Solve x2 y'' - 2 x y' + 2 y = x2 + 2 (b) x2 y'' - x y' - 8 y = x4 - 3 ln (x) ; x > 0 by method of variation of parameters. (c) Solve x y'' + y' -  EQ \f(y, x ) = x ex (d) Solve y'' - 3y' + 2y = cos(e-x) [Exercise 2] Consider the third-order equation y''' + a(x) y'' + b(x) y' + c(x) y = f(x) (1) Let y1(x), y2(x) and y3(x) be three linearly independent solutions of the associated homogeneous equation. Assume that there is a solution of equation (1) of the form yp(x) = v(x) y1(x) + u(x) y2(x) + w(x) y3(x) Following the steps used in deriving the variation of parameters procedure for second-order equations, derive a method for solving third-order equations.  EMBED Equation.DSMT4  (b) Find a particular solution of the equation y'''  2 y' - 4 y = e x tan x [Exercise 2] In finding a particulat solution yp of a nonhomogeneous second-order differential equation y'' + p(x) y' + q(x) y = r(x) we have assumed that yp = u(x) y1 + v(x) y2 where y1 and y2 are the linearly independent solution of the homogeneous equation: y'' + p(x) y' + q(x) y = 0 In deriving the solutions of u(x) and v(x), we have assumed that u' y1 + v' y2 = 0 This exercise will show that there is no loss in generality in doing so. Suppose instead that we let u' y1 + v' y2 = z(x) with z(x) an undetermined function of x. (a) Show that we then obtain the system u' y1 + v' y2 = z u' y1' + v' y2' = r z' p(x) z (b) Show that the system in part (a) has the solution u' =  EQ \f(y2 r(x),W) +  EQ \f((e\s\up10(\i(,,)p(x)dx)zy2)',e\s\up10(\i(,,)p(x)dx)W)  v' =  EQ \f(y1 r(x),W)   EQ \f((e\s\up10(\i(,,)p(x)dx)zy1)',e\s\up10(\i(,,)p(x)dx)W)  (c) Integrate by parts to show that  EQ \i( , , \f((e\s\up10(\i(,,)p(x)dx)zyi)',e\s\up10(\i(,,)p(x)dx)W) dx)  =  EQ \f(z yi,W)  , i = 1, 2 (d) Conclude that the particular solution obtained by letting u' y1 + v' y2 = z(x) is identical to that obtained by assuming u' y1 + v' y2 = 0  Chapter 13 of the textbook.  Grossman, S. I. and Derrick, W. R., Advanced Engineering Mathematics, p. 123, 1988.  Grossman, S. I. and Derrick, W. R., Advanced Engineering Mathematics, p. 96, 1988.     2nd-Order ODE -  6:<rt܏.0ƐȐڐܐƾƬά՛ՅՅ~ypy~e~yyyyyh_EHH*OJQJh_H*OJQJ h_H* h_EHH*h_#hekh_5>*B* CJaJph hekh_5B* CJaJph#hekh_5B* CJ \aJ phhil[5\o(hek5\o( h_5\ heko( hil[o(jh`{Ujh`{hfYEHUjyL hfYUV' <rt؏RʓF$ phVD,WD^`ha$gdv$ & F pa$gdv$ p^a$gdv p^gdv p^^ HWD^`Hgdek $&*,>ȑʑޑ@z|~ęxphvheko(hvhvo(hv5B*o(phhvhv5B*o(ph hvo(j-hvhvEHU(jCE hvCJOJPJQJUVo(hvjhvU heko(h_EHH*OJQJh_H*OJQJ h_EHH*h7/Ih_B*ph h_H*h_+F|~&f468:P WD,`gd9 & Fgd9 p^ pWDX`gdv p^ pgdv$ p8^8a$gdvƔȔ̔Д֔ؔ02^dtv ,.0BFHLNPRT\ЖҖ48:˜ 0ܻܻܻȻܱܬܝܝ h_6]hvheko( hvo( h_NHhR hRo(h_OJQJjh_U h_EHH* h_H*h_hekh_5B*phhekhv5B*ph hil[o(<02VJNPNPLNdf~ڝܝRTnp콰쫝콈thZ'h_5B*ph h_EHH*hE`h_5B*phhZ'h_5hZ'hZ'5B*o(ph hZ'o(h9h_5B*ph h9o( h_o(h4lh9o( h4lh_ h4lh_5B* CJaJph h_H*h_ h_6]h_6NH]**ʛ2l2~ @ ^ @ ^ @ ^gd9 @ +^gd9^^ޝNr֞dޟPڠ,:f @ ^ @ ^gdZ' @ ^ @ ^pr~ҞԞ֟ܟTVpr(*<>~>@Z\^`¢ȢԢܢ*0Уң񾹬h<h_5B*ph h<o( h9o(h_OJQJjh_UhZ'h_5B*ph hZ'o( h_EHH* h_H*h_hZ'hZ'EHH*DfȢʢ̢΢ТҢԢ֢آڢܢ2ȣΤ*ХZ\^` @ ^ @ ^ @ ^Ƥ̤ڤܤ"(<BDFNPZ`tzȥΥ "&*02NPRXZt"$46JL04\`rvVXhl©Ʃȩh<h_5B*ph hE`o(jh_Uh_OJQJ h_H*h_ h_EHH*O`bdfhjlnprtZ§6PR @ ^ @ ^ @ gd< @ ^ȩ̩ЩԩܩީvxªƪΪЪتڪު«ҫԫثܫ^`df24JP h_>* h_EHH*h<h_5B*ph hE`o(hXOJQJ hXo( hXEHH*hXjhXU h_H*jh_Uh_OJQJh_ hRo(@\TZ^0j @ ^ @ ^*,¯$&*.68<BDFHJ\`dhprʰ԰ְxzұԱDFZ\tvz|Ƴȳh<h_5B*ph hE`o(h_OJQJ h_EHH*hX hXo(jh_U h_H*h_N t@vʳLNPRTVX @ ^ @ ^  68HJLl<>NRXZprtvVXlnprtvķƷ68:<>@\^pr¸ظ  z|h"8h_5B*ph hE`o(h_OJQJjh_U h_H*h_ h_EHH*QXZ\^`bdfhjlд8pRԷ$ @ ^`a$ @ ^ @ ^¸v4P|$Ҽ @ ^ @ ^02VX~»ڻܻ 8:FHLN\^jl  2HTVxz ¾̾ξhj~h"8h_5B*ph hE`o(h_OJQJ h_H* h_EHH*h_TҼ "$&(*,.02|dԿBDFH^ @ ^ @ ^пҿ468:>@B\$046: *fh rضحإإضإإإإضإضh_56H*\] hp6]h_6H*]h_6NH]h_56\]h_6EHH*OJQJ]h_6EHH*] h_6]hE`6]o( h_H*jh_Uh_ h_EHH*:HJLNPRTVXZ\x rP $ ^$ &d(dPR^ $$^a$ 0^`0 p^^"$<>BDJPRThjtv$(fhpr,ӾӾ!hhhh56B*]o(phh_jh_6U]h_6EHH*]h_6>*] h_6]h_6H*]HP8:<>@BtP0t p^ p^ p^ p^ gdp ^$ VD^gdh,.68BZ<>fjz|DFPdhj~$&68`bfhh_OJQJhph_B*ph h_H* h_EHH*hph_5B*ph hE`o(h_ h_6]h_6OJQJ]GFHNb,.BD~`bfhxz:<>@Z\`dnptx h_H*h0h_OJQJhph_5B*ph h_EHH*h_jh_UQN> `>fhjlnpT p^p`^^ p^` pp0^p`0 p0^`0 p^.0@Bbdfp >@BFH*,󽴭hXh_EHH* h_<EHh_<EHH* h_<h^sh_OJQJhph_5B* ph3 hpo( h_EHH* h_H*h_OJQJh_jh_U@T:fhjxgd^^ p`^p``p^p ^`"&fj.t~02bd缪ojeXh4lh_6B*ph hU0o( h4lo( h4lh_5B* CJaJph*h4lh_5<B* CJEHH*aJph&h4lh_5<B* CJH*aJph#h4lh_5<B* CJaJph ho(h_OJQJ h_EHH* h_>* h_H*hph_5B* ph3 hpo( h_H*h_hXh_EHH*"6||RTVX6\ p^gdU0 p^`gd4l & Fgd4l^  PXf 26\^>NP6HbķײײzvhU0hU0hU06o(jh4lh4lEHU(jE h4lCJOJPJQJUVo(h4ljh4lU h4lo(h4lh_B*NHphh4lh_B*phh4lh_6 hU0o( h_H*hh5B*o(ph ho(h_h_OJQJ.TZ^fhvxz ^`z|lnpտխխխխխխխխխխխխբբhU0h_B*H*ph3fhU0h_B*ph3f h_H*h4lh_B*H*ph3fh4lh_B*ph3fhU0h_B*phh_ hU0o(h4lhU0B*H*ph3fh4lhU0B*ph3fhU0 hU0H*:Zfp" p^>$ pd$d%d&d'd(dNOPQR]^a$ pgd$^a$ p^ bdptv 8:<>LN^`lnz|佹佹jhhEHUjVݔL hUVjh_UjΜhhEHUjDݔL hUVhjhUh_6H*] h_6] h_NH hU0o( h_H*h_hU0h_B*ph3fhU0h_B*H*ph3f2  LNZ\bz|~ *,DFXZz|Ȼ h_NH hj/o(hj/5B*o(phhj/hj/5B*H*o(phhj/hj/5B*H*phhj/hj/5B*phhj/hj/5B*o(ph h5Do( jh_OJQJh_OJQJ h_H*h_jh_U5"$<>FHJLln24DFJNVX\^np*.2468:>BDLNz| h_EHH*h_OJQJhGh_5B*phhG5B*o(ph hU0o( h_H*jh_Uh_M.`VF"Z @ ^ @ gdj/ @ ^ p^$&46:<LPTXdfjl|~&(8:BD jlɼطԬjҨh|h|EHUj๜L h|UV h|o(jh|h|EHUjrL h|UVh|jh|U h_H*jh_U h_EHH*h_h_OJQJ>@Bprtvx&(\hjĹȧjhZ7UhZ7h_OJQJ h'Ao(jh'Ah'AEHUjL h'AUVh'Ajh'AUh\2h_5B*ph hU0o(jh_U h_EHH* h_H*h_ h|o(5B.\^4l @ ^ @ VDXWDX^`gdZ7 @ ^ @ ^ @ ^  &24 *,DFZ\&(,͸֧ѧyyjh_U h_EHH*hcqh_5B*ph hU0o( h_H*h_OJQJh_jܳhZ7hZ7EHU(jk!E hZ7CJOJPJQJUVo(hZ7 hZ7o(jhZ7UjhZ7hZ7EHU(j E hZ7CJOJPJQJUVo(/^0hF*DB @ VDXWDR^`gdcq @ ^gdcq @ ^ @ ^ @ gdcq,.8:JNRTdf"$46BDF,t (LNǿhh_B*phhh_5B*EHH*phhh_5B*phh_B*phh5B*\o(phh_5B*\phh_OJQJjh_U h_H*h_ h_EHH*;N^`prvx|~ "(,08:<LN^`dfv~*,.068:BVXlnz| hcqo( h^so( h_EHH*h_OJQJjh_U h_H*h_R\^bfnptvz|~ ȹȭȹȭȹȥȠȠȹȗȹphEzh_B* EHH*ph3fhEzh_B* ph3fhEzh_5B*ph hU0o(h^s h^so(h_OJQJ h_H* hcqh_ h_EHH*jh_Uh_ hcqo(jhcqhcqEHU(j%E hcqCJOJPJQJUVo(hcqjhcqU, @$f6n$ @ ^a$gdEz @ ^$ @ a$gd9 @ XVDXWD^`Xgd9 @ ^gd9 @ ^ @ ^ 24<>NP|~ "68tx~ؼﱤ~hEzh_B* phhEzjh_UhEzh_B* EHH*ph3hEzh_B* H*ph3hEzh_B* ph3hEzh_B*EHH*phfhEzh_B*H*phfhEzh_B*phf h_EHH* h_H*h_hEzh_5B*ph-&(*,LNbdfjnptvxĵӪyjyhEzh_B* EHH*ph3fhEzh_B* ph3fh9h9B*o(phOh9B* o(ph3hEzh_B* EHH*ph3hEzh_B* ph3hEzh_B*EHH*phfhEzh_B*phfhEz h9o(jh_U h_H*h_OJQJh_hEzh_B* EHH*ph'   "$&(,.0468:dfhȹӱӱӬxskgg\jL h9UVh9jh9U h_o(hEzh_B* EHH*ph3fhEzh_B* ph3fhEzh_B*EHH*phfhEzh_B*phf h9o(jh_UhEzh_B* EHH*ph3hEzh_B* ph3h_hEzh_B* EHH*phhEzh_B* ph hEzo(h9B* o(ph3f#hjln ȯИna\XQXIh_CJ0aJ0 h_EHH*h_ h&#=o(jh&#=h&#=EHU(j**E h&#=CJOJPJQJUVo(h&#=jh&#=UhEz hEzo(hEzhEzo(j *h&#=hEzEHU1j )E  *h&#=hEzCJOJPJQJUVo( *h&#=hEzj *h&#=hEzUh&#=h&#=o( h9o(jh9Ujh9h9EHU  *,.<>\^`bdfh|~ &BDz|pr翺h&#=h_5B* ph3 hU0o(h&#=hU0o(h&#= h_H*h_OJQJjh_U h_EHH*h_h_CJ0aJ0jh_CJ0UaJ0Bf  BV & F pgdB~ @ ^ p^ @ $^p^p p^p` ^`gd^ @ ^ @ @ VDXWD^`@ gd&#= 68bd @B^`|~24r t            $ & 6 ߡߜ h_<H*jh_0J<U h_< h_EHH*jhB~hB~EHUjL hB~UVhB~jhB~U h_NH h_H*h_OJQJh_jh_0JUh&#=h_5 h&#=o( h_o(6R  r   (    `   $t\&4 @ p0^p`0^ 0^`0 @ p^p pp0^p`0$ p^a$gdB~6 8 D F         ~tv"$:<LNdfln68&(68JNP8:Ѽh2 h0<jh00J<Uh0jh00JUh_ h_<EHjh_<U h_< h_<H*I4JLN8"$&( $da$d @ p0^p`0 @ p^p "$&(h_h0jh0UaJ h0EHH* h0aJh2jh2U6P&P . A!8"8#8$8% Dp<Dd lb  c $A? ?3"`?217\V&4=kbD`!Z17\V&4=k8(xڥSkA}36"f I[oLҠ`RFh ?$1!"9=]$x+aOɦi.:d^~~08hs&x졫le-r. hK. 0$fH ax/kbFzZ< 'c\aJ _-($csR"F/yyy,TjgoJutL;#60t^ӕPJ}?ԹwWhE*t~Ɖ+P1|%J(BQڣFD_x`s_xd?milTj5Ur*Ӎ+=D#bkDK77+vS>D$-3V+͈?;~~<Q,XGEom*&s ɜl$f܋n?U$di:Fk#8bYOjqq7i8-jQhЩl }xU !_}ݲiy y"w_,Mد58-&9x2R(N1YDd xlb  c $A? ?3"`?2=T f %mJs}`!w=T f %mJs} ExSkSQ?|BїׂP@^`H0 iH^$$ "8vuqpCKwGՂ{>ywN)J[‘Wr6Ҫ8%idڙp3"%`BE*DWfVexۂcKGrbQH ]Pp`#,q=ߢ&`n/$)Qivk-Ӧ_q/^nAG(˖z>1u Ɗ9yq/7QAr Tk&8}g'\`GzN'.TgEH|XYWln\n̛VX&d(׾iXjD#HeŻgov)EZa_3JN"~f: x v&5Hx٤6kɂēR xL(!AKgO6B2|U}2Z |7p;͛`="S𦙠#+Ը\v{Vwiz)wWt ϐDd 4b  c $A? ?3"`?2x(2`!x(2 x pxڵTkQcvIkbw *(6 Ph=6͢MX(H% /^rMDP<)yviB >7f`i.঄xNǵ.P u>(tCO aq+'~c.5eh̠c[Uc7ĦE~J޿K5}mkzs9b(N/dsW^*g ҃Jќ/<4W7μĕʓ&ٜjk$>c7|j;w8Ӝͣaol}:Ыr8M#~)-JDBqa^ 9Vbi=M&L9ܜ@{6E0@K07)ߝjGs\0&%oD ®@lb j,\w '27ƼHDd hb  c $A? ?3"`?2bo@hKrUEe]`| 3KO~Z%B$JiѲ7iroʮ87_*\orS_ZםbmP<8h\Z[)( N]g+IYgPA~,1B,~;} q$vϸ*n1duxH2|vgQH { IiI̘;ih W)JMdagzeƽij&ڗ+A~4iOpgs ,FVJ8Dd <h0  # A2290baN] `!U290baNb`@ |#xRkAf6iMhZPr d{'ӨFHܓAAГЋ=o{|텯0פ%jW٥ʹ U>3:"خf]\ҟ1P6eypp}쟷SSJ'0v &̧ԄӍ3*Hk\-:5Tt Ns5Dvi шxN] 2  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFHIJKLMNSVrWXYZ[\]^_`abcdeifghjklmnopqsutvxwzy{|}~Root Entry FM<S,UData GWordDocument8ObjectPoolc`S,M<S,_1157986177,F`S,`S,Ole CompObjiObjInfo  #$%&'*-./014789:;<=@CDEFGHIJKLMNOPQRSTUVWXYZ]`abcdehklmnopsvwxyz} FMathType 5.0 Equation MathType EFEquation.DSMT49qX8|DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  yEquation Native +_1284207498; FS,S,Ole  CompObj i== dzdx FMathType 5.0 Equation MathType EFEquation.DSMT49q)t|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*ObjInfo Equation Native  E_1157978628FS,S,Ole _HA@AHA*_D_E_E_A  ! dUU=="- dxx FMathType 5.0 Equation MathType EFEquation.DSMT49qXs8|DSMT5WinAllBasicCodePagesCompObjiObjInfoEquation Native _1284208385 FS,S,Times New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  ==x e  1xdx +" x 2 +" dx FMathType 5.0 Equation MathTyOle CompObjiObjInfo!Equation Native "ipe EFEquation.DSMT49qMt|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  y==C 1 Y 1 ++C 2 Y 2_1284208633YFS,S,Ole (CompObj)iObjInfo+ FMathType 5.0 Equation MathType EFEquation.DSMT49q)|DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  yEquation Native ,E_1284208613FS,S,Ole 2CompObj 3i==Ay 1 ++By 2 FMathType 5.0 Equation MathType EFEquation.DSMT49qt|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagObjInfo!5Equation Native 6_1284208827$FS,S,Ole >essө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  whereC 1 == 12A"-iB()C 2 == 12A++iB() FMathType 5.0 Equation MathTyCompObj#%?iObjInfo&AEquation Native B&_1282982021J)FS,S,pe EFEquation.DSMT49q t|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  Let   z==s++it!e z 1 ++z 2 ==e z 1 e z 2 4"\e z ==e s++it ==e s e it Expand e it  in Maclaurin series:e it ==1++it++ it() 2 2!++ it() 3 3!++ it() 4 4!++"L==1"- t 2 2!++ t 4 4!"-"L()++it"- t 3 3!++ t 5 5!"-"L()==cost++isint4"\e z ==e s cost++isint() FMathType 5.0 Equation MathType EFEquation.DSMT49q o|DSMT5WinAllBasicCodePagesOle [CompObj(*\iObjInfo+^Equation Native _Times New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  y++gx()y++hx()y 2 ==kx() FMathType 5.0 Equation MathTy_1158415313.FS,S,Ole fCompObj-/giObjInfo0ipe EFEquation.DSMT49q8DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  L[y]==P(D)[y]==(D 2 ++aD++b)[Equation Native j_1158415443@3FS,S,Ole qCompObj24riy]==y++ay++by FMathType 5.0 Equation MathType EFEquation.DSMT49q(8DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %ObjInfo5tEquation Native uD_1158669802h8FS,S,Ole {!AHA_D_E_E_A  L[y]==P(D)[y]==0 FMathType 5.0 Equation MathType EFEquation.DSMT49q 8|DSMT5WinAllBasicCodePagesCompObj79|iObjInfo:~Equation Native )_1284130975=FS,S,Times New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  x in ==e lnx () in ==e inlnx ==cosnlnx()++isinnlnx()x m 1 ==x m++in ==x m cosnlnx()++isinnlnx()[]x m 2 ==x m"-in ==x m cosnlnx()"-isinnlnx()[]Ole CompObj<>iObjInfo?Equation Native  FMathType 5.0 Equation MathType EFEquation.DSMT49qt|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   d 2 ydz 2 ++a"-1() dydz++by==0 FMathType 5.0 Equation MathType EFEquation.DSMT49q8DSMT5WinAllBasicCodePages_11586736576EBFS,S,Ole CompObjACiObjInfoDEquation Native _1158673685GFS,S,Ole CompObjFHiTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  x==x 0 FMathType 5.0 Equation MathType EFEquation.DSMT49qObjInfoIEquation Native  _11586737801LFS,S,Ole 8DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  Wa"0 FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObjKMiObjInfoNEquation Native _1158673833QFS,S,8DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  x 1 FMathType 5.0 Equation MathTyOle CompObjPRiObjInfoSEquation Native  pe EFEquation.DSMT49q8DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  y 1_1158673850OVFS,S,Ole CompObjUWiObjInfoX FMathType 5.0 Equation MathType EFEquation.DSMT49q8DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  y 2Equation Native _1284730333"^[FS,S,Ole CompObjZ\i FMathType 5.0 Equation MathType EFEquation.DSMT49q:t|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  ObjInfo]Equation Native V_1284730494`FS,S,Ole Redy 1  and y 2  linearly independent ! Wy 1 ,y 2 ()==0 at x==x 0 FMathType 5.0 Equation MathTyCompObj_aiObjInfobEquation Native C_1284730852'eFS,S,pe EFEquation.DSMT49q't|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  RedWy 1 ,y 2 ()==0 at x==x 0   !  y 1 ,y 2  linearly dependent FMathType 5.0 Equation MathType EFEquation.DSMT49qOle CompObjdfiObjInfogEquation Native 1t|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  BlueDetermine nontrivial constants c 1  and c 1  at x==x 0 : FMathType 5.0 Equation MathType EFEquation.DSMT49qp8DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %_1158672315jFS,S,Ole CompObjikiObjInfolEquation Native _1284731074roFPmS,PmS,Ole CompObjnpi!AHA_D_E_E_A  c 1 y 1 (x 0 )++c 2 y 2 (x 0 )==0c 1 y 1    2 (x 0 )++c 2 y 2    2 (x 0 )==0  #$%&'()*-0123456789:=@ABCDEFGHIJKNQRSTUVWXYZ[\]^_`abcdefghijklmnopqruxyz{|}~ FMathType 5.0 Equation MathType EFEquation.DSMT49qt|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cObjInfoqEquation Native _1284731102tFPmS,PmS,Ole   1 FMathType 5.0 Equation MathType EFEquation.DSMT49qtdLDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*CompObjsu iObjInfov Equation Native  _1284731148m|yFS,S,_HA@AHA*_D_E_E_A  c 2 FMathType 5.0 Equation MathType EFEquation.DSMT49qtdLDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagOle CompObjxziObjInfo{Equation Native essө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  BlueShow that y==c 1 y 1 ++c 2 y 2 a"0 on I FMathType 5.0 Equation MathTy_1284731912~FPmS,PmS,Ole CompObj}iObjInfo!pe EFEquation.DSMT49qtLDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  BlueEstablish linear dependEquation Native "_1284732159wFPmS,PmS,Ole +CompObj,ience between y 1  and y 2 FMathType 5.0 Equation MathType EFEquation.DSMT49qtLDSMT5WinAllBasicCodePages7Chq0ȯ%2Uד'h5mx7ViYfNA[{ߓzwGr5_-xfD$9Hxpw߅xأf0b.dy^v)ʾ9(WgGڴfhv bbZ021g"ؘ'Fi-6SyILo3yc-Flb0]69y5Kr*hFyE/s0QZJ2LZ׸}m`ЗjgXGdž0K8HKTg3$4p݋T`k>蓨~43D+U,3V'{(Bӣ u?wAWX? l7{' vfOu8B(7tWs]:N h [Dd ,b  c $A? ?3"`?2 I 2pqٷJ`!y I 2pqٷX@h $p(GxX}lSU?/k7 (u 60mY`1moҤ^>btSIf̄c3cCN`dQT [0a>Z޺u{߽w~{}A/(!jй9o3)R+rNXUv/;Pb kxQt_ɣVHp/[6Sa_Okc{G\ߞ#5;:jxX]X4 =L7\se,p{ȄY/i xXj4uj\;ݹAPU2g\ȹCL30g[[VB7.rw!ܢ\ȭc!jn]mN6oX%ܑ=]Թ]i:d)lpWZ-Յ)˘mҢڅāhVeG.{[mkg+kpYx?YŽNvf]{͊2xt,[*SA~iHV‘հN(fQ^JيXS@* C.KE4ؕ鈌CUwG9HjMNIbgB(~GruE#" aՇaH׹s>,+e=]N/"_OvtY-X!ɍB77f͊;X^:{Syy$P)2sk,<и :.fS$%X$m0N46ٗfM+Y!@X~FFbg?c횳_/^H '-O$ ` kR"_6!@C]>E5홒/2P&W/E\T ZqF^.3 l?M4KD|Kj[( nuαI #,`hŢiub|=XH' $ǟd=e9T'fe!̾J5B݅jR1seGDcc`dW87bϫ{/E`nf M%wS9C)-&ZսS6+V2=5+Е@6-VV?E7Hn6r"1]{nujc&Hc;XiH|@ZǭNS#LgϘescƬyLca̱ 5e[!4V5< 2ה據@Uw3.di“N_c5vn#Z{_M}6ۮvܨU |NA&t~pT RY7-xmأX_魄uӃ;&xw {UawC4Vz=xYmixIH59""Ŋ8ڋ/bpTbAGq8(}f0P뚀[kotܢ!5B c0j6y?P#F¨ڎT1vqVԅ e5G${5eAMԛY3o~FTQu=p@.UT;R8PڀEzKJrCTEE Q(ʿuqM,EťzjLX(iVM󇮔JS*Ͳ|y"6TJ,DYbMQMO(Tgƹ|V0jY!4"WĝˣVSMPu+{ 8K\GJ )b2O\9$Jx7Dd L  C A?"?2 {*w:ڸ>Ȋi`! {*w:ڸ>Ȋi*`0xTOQm[lim B1$@#*o֪kiPn h7˱Kzߺ|ξ }-z3*t@+zNJ3a <8c&gz= c~"2F3S'd|1˦Tym=z-*sv2;6cG3+,6s`NpG5#V^ba}9?fc6ȿ D"&=C]걱/h<4]LE''R̍Mc$6kO?Uw==1f4p0;zij7‘Xq;:b YnDaŬVq ɒ:V9aL%c<рI2So㳥~ Rv:Dd]4Q),زdҁmq:X.rFmf~bSz&CKL_1T{T /CDd hb   c $A ? ?3"`?2<_ &kd!`!<_ &k@P.|xڝSKkQΝ$I0ZKKh RЅhT]$LB)a44M( RJ]j \X]dUmB@'s~~ޓs퀒fD6"l6MtmO8<:Ћ$# {7,Y~lNS] /H<bIDh"W%u:"۽5`.f6^Indi,Ž&s»bedWT,}69Bq_7[l)=ԓj^ЩJ Ghжx,fƺ~ By1-i#8y%bXl)E[!;v}<'>Dt,q8W+ZFUr^HorO.+Lޯ.>fgo>!CS|t5:|)431i0V󌂁  /`oe'OMY%8m dd?LDD3GqyAhwDK2CU[ř$H"5'K76qWV+L\6ngwl~"OV|z}Ӱ;rhX:q}Ao>;ÉZbXRXÅ˝53pIw\c1 Cm 6ռsljyW&)^\,q: iݓo+AU4|䜔ŃS?2ǻc>",ʉ-H.[4'Cʫ6Dd xb   c $A ? ?3"`? 2I ˯#a:7(`!I ˯#a:`@+ xXahe~%YbvvK]Zn:W3ج+*e&Jۛ&TMtEJm2ӉuSA cq%wJv{}y.^(4RCēRnRj=JZʲm\BMz!X +.*ky79r<Fp/nv=_TN/ПOIX Z)/9Bh 1`(@m$(ks4oR߮اc3~ C\^g5 n<~rΣlǴsl)8]~q|9qn>~ucO4S+`` Wr6Fx&Tac<仈1 }Z'Z<:uWgLçcpIJMx eVzڧa\/{u,~dSjVAKP8= ]lR0-4t<L7 [ܟN.6TglJ*^Iԇa0\]IJNɽɞ`H8s{fY+fxPrycP]Nyt&|;9ERYe;3,%_WfP(G4(vg^Q>AFGO&' e;WnB#?86۶Xc}{{wmqwem(@h8G{{ fP<, KI+u)͡ c[e *(ZR9+5x e悿*Pߋ}jWJ׊ d2%K48?E;R4U*Di!`JM\yԄVGJxy~yN :Š@ۄ2or ;Rw?R&q糣rZ{n)Ry*,U?ׅvDd ` b   c $A ? ?3"`? 2\VpSwTr>;8-`!0VpSwTr>; @dxTMhQv6i4?hZPچ[!6XH)U/!5QM#M"(zo= R9DPx(x ZPSov7M}f}ߛy3#Eh JÁW aKBeSwBu-ȠJV;N-M cDb[y(ׯaCn10O|6Sj.YbnSjE٪cK?`&$7grDNz}`{e= y/o+EyO؟\%HHo3=uYKqFX$'Lx&ϦrLC,^Y;T쓣oUiqk{~Xwėw˓UqYPe{hU=9m /┳갸V䚝m%쌐R %7ʍbjDF ׊t(đkhsaq UmwC3$)q_Tjbpx,~50Ѧ̥\*=ΓQ~Ůlc8w}6  s R s=֫haW3| m#y5210T=Q`j"o֓ID ~4G TBb j]Z[n8S6o+'R Dd lhb   c $A ? ?3"`? 2SZB-*P /2`!'ZB-*P ,@|xڕRk`~k˪i7lIW ˺U-4K2dPO(x.U7)9),_<=y0 C=A"q'2-ܜb]| .(!Vƨ|^JR<^3xY':%Қ,1)8I) N yv8p4ȱ%pEWNʵ<8.ma{iiSrg'w |^Y$pspIB]ۘeH4VÖ9;sMGu(}i kiS_Qd\])%]k49=ںJlz._& ]TZsN:\quVWSբ[?dFVuJ"#_g~c̕Ům̕=nOO֚(x]9 f b~^Ӿ|-=J" ~'HUhҸf"r̷$9ofc ʙ:f\ݫei0~573U!Dd hb  c $A? ?3"`?2)L.ØKpl.aO8`!L.ØKpl.aO@R|xڕRKQn~(E ͮzjk Hh"=KHd#f/!PKOՋ^z/kAM⡅lmv詏}%Ā+&yf,!¼X=ʲtRALF )F.¶TWl +~_u-|Bz'`P=9D&n[f*4Z5%(Ub2C[$_! C/;pwaR a1F#wi]JEX'b "2D'>t8dz#D} BN*ݶC0[WLf\DDd hb  c $A? ?3"`?2(]0f v-:`!]0f v-@|xڕRAKQXDES=Lē]WH6%/'xQK^z [Y 6;̼ޛo0 88 3[!%Ţ8a^+/QDKO7}(JhT X%و!yspDAHUuV?X_ՕF'ڣdEj yHs.ǽGCLj;?AQwT.V^Lo|JgF:X٩o6jo6VSn"Wo1Aa_ kкZ)*:7usg)%VOc*1dg껜z_e%è˷<oGsi/ XXDd hb  c $A? ?3"`?2'AjR9jV=`!AjR9jV@H|xڕRKAXMB7'zC{0LēݮblJK"^?Ջr]Oo o6(>o|3{K"@(  |..¼(:4]4<Nl<$f[=SMM|AP{DK\.K^,v[*ۖTSSݪUx+[Y/[uT_u3Tz%a_=O^NOwTYd0J*YI7Ɯgwm3?a,9W~ .؂ QĈ}]8̰ҏ^?@'_]?dᙢc7bpcfoƛa_{ vEDd b  c $A? ?3"`?2n9""kk@`!cn9""k#A6h1xTOHQ7n?h*VE\u!xkڱupR.֡Cu`Aթ:nS}ofwy{Oh hGC \]]UhmZޚ vdW~he-KMnIգ,sSV${,; 9A?pcm~|L6tGҔb"4nlپol[}|GKŇ&Q8&J?74 Qk861nf7!$m7MG#֎V}{tYt- ^7ĬpMWͩ]e0l02e3ΦE$[4v,X(Ɛ!@Y0fpEg_ h,{Uf{?UT%d#]*!p|dkm[klkWjuuݼZ\g!YN}CH:dzBdD0OY}vKX?8O[yn%!#Q*Ͳ5Fj'DPx 1w > o $=\OP(˿Ӛ<̩n;Bxk/p.!Mt_h4)@H51+ 1$fl+'t.MM&Y&)&^>^>Ri&Jbl)H)J8\^Ӣ_x333qV|o<7nNZ31RЅ.A 3 5EkWEX{]EIdi.q4Јe\Zloo gRB3Dd (b  c $A? ?3"`?2}yD0&YD`!QyD0&@ H1hxTMLA~3姭ٶQUMZʥ@ DzEv ݋$z0 ^4=4Iz3=I=IB}o?!'߼͛à@:ABW*aǪ2Z[Z'A W$hDUOh-@G Eճ*@֌щa^b+o_ \zr& }5r̬h8ָ#qB7ʕb?+;̀86p9,n 3*+Hy:+gRJz-z[^],|svpƞΡׁ++L_N&ҪKr\ͪ鸚ZueH¦0 4X33(YE2D6^kQ:Ft^S)Y7#BAA̰]:k^o͊.Q/gU@lx/>@铓aLDڦP29W3quLm!nnpF.}-FrZA^_~|7@K`823\Xhgg#Rq(aF_l( ~o* zBaǁ"nR `\ S%:xbчf`poHԃʥ^lq!LBV[6wykD 6jQ(A3Ĭ`IbOДIL+G|uln G㞤#Pj Jt/ItOyMMv肻5WJDt4Od~9,Dd hb  c $A? ?3"`?2h፱WA)_DI`!<፱WA)_@@(.| xTkQ6ݒiZj[K4%RluaM.ZH!?AŃEԃGOEU݃T0μ͖Pq7;ͼ0q gO?bl tNvO`w#mmd!]i? uZdj~MXv?AcM{#z-Nxu};X#>?0"+keՔ/kB׵ɉk $:&~ sDXgS)EXE:c)\HgUK5CaUUMb0-ŰLYVKa۠6\.%Ṑ.#w[pĞ[py\阤׋sSn^Tk'ȷ׮Y,jRXRa zrSĻvsO|B=?Ľn^\!eg/iFRgS+*%u^ X=M,T5J- `6/gjVU<p|/ CFz<9oG#S{#I3i1S@hidœ7P- ~Ɉ_apĴQ|+*DPfJj*2ȭmʫ$H!fEBI[a+D `EhGus7,Qh#С6jwaZ&Hd(# zc% wf&pnZj&@pE>}vbB 7n4Dd  b  c $A? ?3"`?2D}ϳIj-nďĠM=LӨ)xP 1.IĘPBxQCE 쩇"x'ylǾ̛ߛ^ @CznHq1@RH:n(Թ1DNɫ47ieHp'VȽrKW|G~~1xbg2Z^+W,Ti*G+> 8E֜]& Mߧ  1\5l0ʄǎC3X"k0v[bxW\$#V^o+]Ʒ=rnEWƝjh20ΨR"g.gnfP9GU#ood vSV7ν+;3;lffIH% \MD> eoim-3WC eRZ+!FbJT%LOmN,/<;85~w-/ă`TA8Iv[^1YU&EDH|2Y8x$EcQCtŢA%~[J:_K&.xTT{4<>4, 5S+{4.hv]. Zc2a.sBm٥7 * Dd hb  c $A? ?3"`?2U8 exu=x21P`!)8 exu=x2`@!|xRMkQ=M6i`&m]ӂ. Tti2M$GHD,"DpZp.P_OPw~̪/ ~̛9s{{ H\Z0Hhd9u|iuQo8 8d?r)kn+JߩǷB`d'4k <.+QcLH/3c6pNÁ{ vŷ[.c4{Q=]LE.L~WkkVShưR5ҊɖkEjkk7,uf7U;׺mJ۽VؓQHU Jd^E/? 7i%գCr$YYFʽC7;G;!Jbsj֚qt~iW׃3Q[WhFk.CA'H(eꭲ;3?Hr/E̯ںӈ-4>E v3xӣgUxۊ b{w!gͫyn,cuT&(n?òCuJNp`BYOд5جkӮ[K}f]mF0a BR%OEDs|N1'tN?i'adE6B)!̲~ެJOW_c?OWm$ #CChX).K>}HU_qlWFEKE]|}1<RFs׻7;dyn RՉK\mayLeRz߲# qV\ZbS;F| E7햋_ O%g'sx>?jsc9sʘ7{rXirj2'U ?F?~vfS?vHJXǭh6K=af&h>AGx&a/JHT.A^!|SF&4:beRbRe30-, ՕH< /d=>:D$Օ>_υgr$vtvEw<ɉp%v?KSNb±JUI{Mۼ+w4wZ Dd hb  c $A? ?3"`?2U8 exu=x21Z`!)8 exu=x2`@!|xRMkQ=M6i`&m]ӂ. Tti2M$GHD,"DpZp.P_OPw~̪/ ~̛9s{{ H\Z0Hhd9u|iuQo8 8d?r)kn+JߩǷB`d'4k <.+QcLH/3c6pNÁ{ vŷ[.c4{Q=]LE.L~WkkVShưR5ҊɖkEjkk7,uf7U;׺mJ۽VؓQHU Jd^E/? 7i%գCr$YYFʽC7;G;!Jbsj֚qt~iW׃3Q[WhFk.CA'H(eꭲ;3?Hr/E̯ںӈ-4>E v3xӣgUxۊ b{w!gͫyn,cuT&(n?òCuJNp`BYOд5جkӮ[K}f]mF0a  7i%գCr$YYFʽC7;G;!Jbsj֚qt~iW׃3Q[WhFk.CA'H(eꭲ;3?Hr/E̯ںӈ-4>E v3xӣgUxۊ b{w!gͫyn,cuT&(n?òCuJNp`BYOд5جkӮ[K}f]mF0a  7i%գCr$YYFʽC7;G;!Jbsj֚qt~iW׃3Q[WhFk.CA'H(eꭲ;3?Hr/E̯ںӈ-4>E v3xӣgUxۊ b{w!gͫyn,cuT&(n?òCuJNp`BYOд5جkӮ[K}f]mF0a  7i%գCr$YYFʽC7;G;!Jbsj֚qt~iW׃3Q[WhFk.CA'H(eꭲ;3?Hr/E̯ںӈ-4>E v3xӣgUxۊ b{w!gͫyn,cuT&(n?òCuJNp`BYOд5جkӮ[K}f]mF0a  7i%գCr$YYFʽC7;G;!Jbsj֚qt~iW׃3Q[WhFk.CA'H(eꭲ;3?Hr/E̯ںӈ-4>E v3xӣgUxۊ b{w!gͫyn,cuT&(n?òCuJNp`BYOд5جkӮ[K}f]mF0a zQ|ٙ7<~OWN$Ĥx,vz" II b C v 0JF5Q9@ExDіw zX .Mn)7xWjj&z}*Z'PN{}]]_w (gAFHljVC1tkܬsƕ*}C&@# .sKFU4ܙ &y1I^tJbcph q5}3;|C^ >lZǰD|*-LFZZU6 ;ZO׬ TeZ[wh ͗Ѧ8YxixǛOkj?*8az9Uzr չeDa9C:r IRr:ԘagQ^L+ZAFU"FJ !¤%'"~L3E{\!Vxq?L+d{Ô˃:> ݉cizEDectRG gRY6o.=u20A}TT*Jn3 Dd hb $ c $A? ?3"`?#2U8 exu=x21|`!)8 exu=x2`@!|xRMkQ=M6i`&m]ӂ. Tti2M$GHD,"DpZp.P_OPw~̪/ ~̛9s{{ H\Z0Hhd9u|iuQo8 8d?r)kn+JߩǷB`d'4k <.+QcLH/3c6pNÁ{ vŷ[.c4{Q=]LE.L~WkkVShưR5ҊɖkEjkk7,uf7U;׺mJ۽VؓQHU Jd^E/?Equation Native ?1_1284733316FPmS,PmS,Times New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  BlueIf px() and qx() are continuous on an open interval I,then y++px()y++qx()y==0 has a general solution. FMathType 5.0 Equation MathType EFEquation.DSMT49qOle LCompObjMiObjInfoOEquation Native Pt LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  BlueSuppose that  y++px()y++qx()y==0 has continuous coefficients px() and qx()on an open interval I. Then  every solution Yx() of this equation on I is of the form                                          Yx()==C 1 y 1 x()++C 2 y 2 x()where y 1 ,y 2  form a basis of solution on I and C 1 , C 2  are suitable constants.  Hence, theabove equation does not have singular solution. FMathType 5.0 Equation MathType EFEquation.DSMT49q8DSMT5WinAllBasicCodePages_1158675779FPmS,PmS,Ole sCompObjtiObjInfovEquation Native w_1158996898TFPmS,PmS,Ole CompObjiTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  y++p(x)y++q(x)y==r(x) ----------------(1)y++p(x)y++q(x)y==0 --------------------(2) FMathType 5.0 Equation MathType EFEquation.DSMT49q|DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagObjInfoEquation Native _1284824388FPmS,PmS,Ole essө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  y p FMathType 5.0 Equation MathType EFEquation.DSMT49qt|LDSMT5WinAllBasicCodePagesCompObjiObjInfoEquation Native _1284824406FPmS,PmS,Times New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  == 0y 2 ry 2 y 1 y 2 y 1 y 2 Ole CompObjiObjInfoEquation Native  FMathType 5.0 Equation MathType EFEquation.DSMT49qtLDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  == y 1 0y 1 ry 1 y 2 y 1 y 2  FMathType 5.0 Equation MathType EFEquation.DSMT49q_1285339506FPmS,PmS,Ole CompObjiObjInfo{t|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  =="- e 3x 6e "-x ++ e x 2e xEquation Native _1285339616FPmS,PmS,Ole CompObji FMathType 5.0 Equation MathType EFEquation.DSMT49qt|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  =ObjInfoEquation Native 7_1285339677FPmS,PmS,Ole =y h ++y p FMathType 5.0 Equation MathType EFEquation.DSMT49qft|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*CompObjiObjInfoEquation Native _1159012533FPmS,PmS,_HA@AHA*_D_E_E_A  ==cosxsinx"-sinxcosx FMathType 5.0 Equation MathType EFEquation.DSMT49qOle CompObjiObjInfoEquation Native \@|DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  u=="- sin 2 xcosx  +" dx== cos 2 x"-1cosx  +" dx==cosxdx"-secxdx  +"  +" FMathType 5.0 Equation MathType EFEquation.DSMT49q|DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePag_1159012715FPmS,PmS,Ole CompObjiObjInfoEquation Native _1159013840FPmS,PmS,Ole CompObjiessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  secdx==lnsecx++tanx  +" == 12ln 1++sinx1"-sinx FMathType 5.0 Equation MathType EFEquation.DSMT49q|DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  =="- 263x 9/2 x "-4 "- 235ObjInfoEquation Native _1285340092FPmS,PmS,Ole x "-5/2 x 3   FMathType 5.0 Equation MathType EFEquation.DSMT49qt|LDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagCompObjiObjInfoEquation Native _1159014669FPmS,PmS,essө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  =="-e "-x xlnxdx++xe "-x +" lnxdx  +" FMathType 5.0 Equation MathType EFEquation.DSMT49q  32   !"#$%&'()*+,-./0146789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklOle CompObjiObjInfoEquation Native |DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  lnxdx==xlnx"-x  +" xlnxdx== x 2 2  +" ln      !"#$&'(*x"- x 2 4 FMathType 5.0 Equation MathType EFEquation.DSMT49q|DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/'_!!/G_APAPAE%B_AC_A %_1159014954FPmS,PmS,Ole CompObjiObjInfoEquation Native _1284834175FPmS,PmS,Ole CompObji!AHA_D_E_E_A  y p (x)=="-e "-x  x 2 2lnx"- x 2 4()++xe "-x xlnx"-x() FMathType 5.0 Equation MathType EFEquation.DSMT49qi|DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT ExtraWinAllCodePagessө!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  y 1 u++y 2 v++y 3 w==0yObjInfoEquation Native 1Table5xoSummaryInformation( 1 u++y 2 v++y 3 w==0y 1 u++y 2 v++y 3 w==fOh+'0  0< \ h t b % c $A? ?3"`?$2S6"_6/`!'6"_6@R|xR=oP=9I$ i%*Av.AIhL0)iPz XX`ƇV"8|M\w^ @,˥Sz2$yu< NLN:,"?I*opD'4w-8DO)$F? Uf{,fV `T;x W> 7i%գCr$YYFʽC7;G;!Jbsj֚qt~iW׃3Q[WhFk.CA'H(eꭲ;3?Hr/E̯ںӈ-4>E v3xӣgUxۊ b{w!gͫyn,cuT&(n?òCuJNp`BYOд5جkӮ[K}f]mF0a Wg"6c7bl)uQK>#祡l۷A>#rl [5qAtP|\;"\wsmg4;x*kKk2"pM OM"9bhnK #CsY[ؤrE-'MJ?'R'U#6Nu`?bIҐSc e53 XJKSU%cmI p/j+Q,f3k뱪%>\<ч Jֻm_b+GQ|5؝Ąb\.93@rȳʲAnŜoUU gMOͰ+NɻO](Jg1]ZPPzje)"Jy/`G 3q +1Q:ppKe;O#/(J Zpvug1nEDd  b ' c $A? ?3"`?&24τ1Jˀ0k`!c4τ1Jˀ0ʦ `!x381xVMhWr-Yd dUĉc{)5lS;ֶ`+kX8`J Cp.9zpP(3Z^VΛ737נּ0<`S~PIHK妮KBuQ B8{#gmifSUZqq0!%Ao)g|lP*ӋOW> ?>|%ԑ?V̮+7"8@_ɕb))[a<9q : ?FpW c#+QhhuNDֱ\ǖx 3|6>[m]}E}ZL߾p1vyU,]b,Y%[LTV^7՜Y eXUyva3Wc+Zz:kL~lcNo__ouyZuQ^k:׫o<΢T\DEV5uA7&`[F: s{~٥LgQ=d|Kl癢T\m+.^2<-i1J|\WҶ'oNRBf<_2HF-/\" OtFtڙ-mD@}BJ`hK#,0-1ھhR~bLpA!ԅJjDL.DY tzι:S=ν33ӫ4x(÷&]R+YdY\2k{42aGx`G=+ʦM7c yVJ4#6zJ0+hYbz94 L` ^ x ~3S瞽_QB]^J5LHsln4hkgi1e0gZKթ\Tbmk@sρnU֙T?.a,y ەmqU;"&DO'׳?yN r|X;w\n*skB3wn 3~&pio,?"64+~Ct7FW=jU9ZmmnԍK&ֶֶ;75'+Ƈͤoa׬Z ۃc'7w&oLcSy~ZEX$oNq9 `S^Q6̏FHI7Y*M1ҖTߢC9 #ɈI`)ev'cy:Ai#êrrc3Ut0[i˰;Č$,qUc44AY%Srwcjqe(;VU5NLu\T[=-kR0iGER1?2r{מ "D\p~ٿ2?WX`5d3))+P)2ɨPۧwgIÑ@HR?P vܵc\u}}{ndg?֪]q{IىGvPGS9zu6!0bۏB~nVS$| a^x,CE-,0ЩHS1L6y 1>5[Ьdp YrFʹej\@(s6EZ7Hwjmjd~<ʵŖ1ײP X-tvқ3l&Dp$HRaϣI7FKQ&Oxx\ `n)]h-x_F+p/yt7V@LdL/c|]$#K4Պ'p7eQ?`WE pJ2Q,kaY1]lϘlGd} {Ncy?f͛ %mK1s®c'gəX'ȭ=n yԘKP'j>8ĶvT*jjR'q'"SR]l! .^~V>dR M"2 lv"fsJ4uWQ)ug)'wJbF)EpoAdqBc0Fjq cy YV5_u7A0aT';i꒒6+xb Nnu.-Dd ,|b * c $A? ?3"`?)2)>߂M6 O3`!>߂M6 O`0xڝRKQ56QJԓ  MēnW]5M{ R@zK^ xl7M nmvQ氏y3ߛf @d]HD"y`a\R|X\<R9c|됩D%3Ef5[ !FwBr奊eVST[+>yp77+O E;&z+f)t$1k 5m&8HMb>/2C̰H-#-\15o4ay~/avy RAX0Pqn+pcu HV{ ֭cu~0OkwpڽPýաCh0R1 F >)\[2d 6X4kDd b , c $A ? ?3"`?+2] " ԧ9.`!1 " ԧ♢  xUMhQf Pж^H6XH) BUI#I. $H! "Y7OT{hz`ٟFyd7f{{w@CƇ3fK7 Swu=S]Vk@@|yrPWzl^Hd/Klb< |@pZE~D{$nvuՒHgvuՒ,r]Y\V~CD΃/kqm!x F-<5k݌؄uL_6<,ͱBkXN]@)XyAc-J3(UBX([rprik4 U*;b0 nfҊoa`vkw3kgkDlݢtesi㷪dt gB>)TAj;EA.oV#hR[gNdjj&.u2;&29-/d' YH" Ư3NmA+7|>PC#H,iGӱ^wyc`č}Fu";Iո16&צq*6J ż eR̰H-0-r.G "Q&)EN1T#G -`XDZk_㴮 \ߑ0kyw g,T;we@ù]F y-@@n(>YF5[l/Dd b 3 c $A'? ?3"`?,2-ckἨEA`!-ckἨE dxTKkQ>LNy.iQXH E$Ԃ!UM#I\(t'npS]BD7M]Uw,7sϜ{z4H%$!ͦ;.{^ eLlaw+D&QмתIU2\ c`I82)k>Hu_םaK)Ƶl!cv)+T5v^-.KEz}XQzJDX}Cﴀ}7["D]w9Ci.{"Čpn0Znz6;n/.& թ5-PU<#Tv*\3XڪU >.϶^oRh*kCg쏃 NۇdR84ŏF G ^T(( !Ӱᖉ4{t((W0A{X,V!Z9 i*(kdYtr#Lݎv WkDē  =tїGqmWD&(Dd b 4 c $A(? ?3"`?-2rڟ+%$$"N`!Fڟ+%$$"J hxR?hQ޻\5]RUӀ Avx4 HBAqu tpqItpM Rqq}$ "I- Jr4)82MKʖ>Is# Y{x1=oîOU(IƓ99} ҳͶd/N۠珿^bgo׍n/"qYQI1c_tA_Q$-r\p {Q vZD R]5}|1kkB \ԗf47Vk 5JLk|zs{L/zֹy1 Sς'ox2tp~jd\1ȇM"': W\HYcD j4T"۫p nu"l3%@XJ2]N BXbέӊÛ;{;7{`!9W١D? @ xTKkSA>3y4Gu!M ĂFLF 1<$7!!qu BJ]?έn.|Uwi4օt9s%RڒH-BB8ҝ,m;\W9Nh`;"Qm[-Dr֭bF<@0Gdڂ9>z:[}}b rr'& )Xku"r^?yI|]u5 zaz mSS٠*e#(D9r\1OPƊ*;F:f#J~>S(;CLF)σ/w*jH{|C4 vblĻH?bc3[b5\+ۮd*z%ݸ75Bi!WnZE!5Wdfy7'3La,,ed .o'O@>H5OT R0i5shi`+-eJYɀ_~ I`|Ȫ:S\!u.ޅD)X<v5/:Zc8sA6ܻ<_ 0iu(~mi0QދjD\&/}|)lUUL XR(ADd b - c $A!? ?3"`?/2g2@VM{Lg߯`!_g2@VM{L 1d-xڵUMhA~3MJ~jJ1,iiA<#Ŧ b@HA(Jl"z) H/ XN6.;o߼}󾙝e`^J&hggd1^,u5|n9bRF,.h"Cɡ;JQN&Gfn6 e xϘjDr4.F9+Ey dpG㪦W X<2|nv^{'EZKI:z~FoŊMK !q**sYI>⾦+ulHqba -?F^N[>k]lvZQRHvT"Ȋ69x`*ܒyVQsõ1bIXfMtvrp73XP8r ϋKt(ix_&T 8drXրy=8!j+\{p顫렴ք2 *uZq_n<ؠ\֡mRRnPq[ʗ_5Dd db . c $A"? ?3"`?02z1J)kajo]Es[ `!Sz1J)kajo]Es*@,&!xڵUMhA~36u4QCHKiH0)n5FJ)-R؃xу^y"ł)dZΛ޼7:{; JHM#RTAruQJGćԎ a!s\[e_CV*Iϐb;zh5009B8мuql5lKB.Z'rk,QEo)b+9B&̓sp(:B@/=iJ7$gd<|8tm*FU4,#x%I4(3f}-uYݰB4] ѾV>uw|,B._WGn!ӹ\n ~ZNE{=2eS3޳Vs4sxz)ZM~|,J>s$pmg $iՅR~^ܩ$߈qLN~$l,ob"L&GU=1LkҺv\Mhv1SsYՈup@{D).Ń`+<^>V.Q!JrIB̍D\DP|,>^foP,P|OKm$J邎)7y34'% ^drR ̀t3gO $_`8gGdhd{8<]=3j? q A{}<h^j)v$píj(gGm`~#Bu']h?Dd < lb / c $A#? ?3"`?12+ɄTh`zSU`!+ɄTh`zS`HbxڭTMhA~3mM$m(n 4zHۨ `RIUI#I*(B0J^)`!t>0J^ @CxTOA~3B[J-hbB4CJbEŴFbRCD/)h0I 1hRY/r/ |G2ԤRoS !QSdeVs,)yhfx~jښ$gXJ_J h8z<{0W@+)4>$XC@i 16I\\q2Jj?q֡nNh̏"8O5^. cSڢ^]~Zg oMqgDd `b 0 c $A$? ?3"`?32D/1l&hcg `!/1l&hcg `GX xڭUOA~3ӖmaE4"[`* # z)ihjR 퍠ir0ތ^LA#zE/&L4ƛ뛝kItv}{3% I2lo ;%Fu #K?nDg\*A;C4Tc׻]A$x#^eZwO~A7G݈^{[ؼ]uxݒ4OT 5"AFA6|6>bKt&8EgX C򯃱S7TlpK&6!*KEl-V랫}TyTod9*WFi )/l3PYnflc bCYQ̹)jeYhm#,d,?7t.Ɍ' kM^7 g{Hl"g!m,Iˑ>U\\H:L{H\ /?y  Jpb" G5 yڬ'i~iMA[ hU/' O&&S&U ņ5$X x(rJW2谒"l$GaTYHE:rv4iۭknJ|9Qm45"֞/|9lq*5p[ַc:+,?AoQqOzϐ)bLjDd b 1 c $A%? ?3"`?42 xu`! xu8@>*`\VxڭU]HSq?jsjG)fS!:1Z5ئ8û( DzQ"졇$z! zKP/=KQEf9尴yw1&%HRJ3:{eQEI@m\f+ea7$o~l_Nb3VÝ1 y= FƯrpt*PSS`*K?e*ͱ8u3U. GK?Tqn_C֭1ͫ[Xy%zlyeQ[vzB y0hzLz%iIB9YG3v_`;1Vt+?fcX֙wAc~|C%][lPJZ? ޏe9qme\dH?{a_( [йrWB1w L΅b&h+7MQSutC}&S #W !DsWNU'Xd1ůdžx$S+rM$_O%xG?w=HhaxdsivҏFHJ-RJn $/ߵHYk5CeuHlIblad\%63-GxPAKz~"{/0U6]Djqփ,SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONSHan-Chern LingNormalCHUNG115Microsoft Office Word@.@f@B @R,5{՜.+,0 X`px NCKU/U% DocumentSummaryInformation8%CompObj)u   F#Microsoft Office Word 97-2003 MSWordDocWord.Document.89qb 666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~PJ_HmH nHsH tHX`X gQe$5$9DH$a$$CJOJPJQJ_HmH nHsH tH$A`$ -k=W[WFiF h\  o#dh5$7$8$9D CJPJaJ<>@"< jL $a$5:CJ$\aJ$222  0 9r G$CJ.A.  0 W[CQ OJPJQJPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!aWtheme/theme/theme1.xmlYMoE#F{oc'vGuرhF[x=ޝfvg53Nj/H $DA Q NR+DkRJxgfwiFPA}H1_1G1¢3D}$쪧2eHp ;\[aHWXX$V[|hrv.٘&0LВfp\aKR`j-jT3Α 15 so`l//1] fdn,,& "!Ic힍Q)sS#}{ kH;Njse{(e<#bq7F}!'MogZ%ug>ib6U>f#3-*\SXDHehSüJSZn=-lK+ G7d4"*}gVNJ^8G6;¯SR W#G6]:fIvK4d 7u` mNn)S23S~7KCnsF^*Ѕ]-p !NdO5gyڡ# B-{ jwY,ed2LGX_e{(T7$mw4紂r|5OO>(&bɮj y /cV- V iٿ 'jmǚx)Q(GψIcV?4hf6gtM&ʺ6ײ'\gk͎:;\qN-S;ks] =Z42&0旭N|pcI&MI`={DCPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!aWtheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] 2Ygug  " 8x!l"#&.)}+Q./4245Z89T<>XAFfHIfLpN.RZS WWY6[D]^JdBfhjkulnruOxz}xsڔ]̡ƥ1L00pȩ,,N h 6 (Y[]^`acdfhjklnpqtuvxy{|}   "$%')+,./0235789;<=>?ACE4 n!\$(+N.2"7=,Q,e,n,,,,,,,,,--.-3-G-O-c-t--./.v..///0020@0L0Z0l0w0000011112*2D2T2|222222233'3:3O3c3{3}3333+4T4"5;5F5_555S6g6m6}66667<7T7V78888 99+9V9e9u99999:::::;;;@;e;x;{;;;;;;b<r<==>>>???pJJJJJKK8K0MHMJM|MMMMMMSS SVOVWWWWWWW X X0XHXJXNXfXhXXXXJYYYYY?ZWZYZZZZZZ[[[[[[[[[ \#\%\+\C\E\[\s\u\\\\])]+]7]O]Q]o]]]]]]_-_/_9_Q_S_z_________6`N`P`LbjbdFddddee eg-g/g>hLhhhnnpprr$sEsuuuuu vwwwwyyyyyz zz}}}}|*(8*6IJZ_pڇbrב (*/?גSqxIyДܔL[ftɕ˕ѕ "9J (:UfחٗƙҙŚ +0BQcpěԛ-/7GnÝDSn͞Ϟ؞):BR 1IK GnѦg1111:1111111111111111111111:11111111:1111111111111111111111111111111111111111:1111111111::11111111:1111111:111111111::1111:111:1::::::1::1::::::::::::::::::11:::1111111111111111111111111111111::1:11111111111111:1:1:11::11111111111111:1111111:::11111:111111@  @ 0(  B S  ?H0(  gjkTjlLVVhVVh8*urn:schemas-microsoft-com:office:smarttagsCity9*urn:schemas-microsoft-com:office:smarttagsplace $uv'LP  hjtx{} z} #\h I"K"####,(C(I(a(+0+// 0 08090Y0p0v002252:2;2\2_2d2e23+393S3j7v799z9{999m:t:K;R;<<x=z===A>D>P>R>>>??@@|DDDDG+GH HIJoJJJJLLSLULLL{MMMMMMMMNNN NNNOOFPGP[P\PPPPPPPQQlRnRRRRRETQTTTUUUUjVxVccdddd,e:e5f7f?fAfKfMfdfffgfifffhhhh.i0i,j.jjjkkkkkkkk{l~lllmmmmnn1n3nnnoooo'p)p?pApTpVpcqeqzq}qqq}rrrrsssstttt&t)t-t/t^tattt/u1uEuHu[u]u_uauguiuvvvvwwwwwwpxrxxx yy)y,yMyOy}yyyyyyzzzzzz{{{{{{{{||'})}8}:}}}SUЀҀ!(*46SU57?Ã΃02̈́τknՅׅ~ 35xzDGACċЋSU$&ďƏ68<>DFkt;=BD&/Ֆؖil 57RUY[SUӜ՜*,+-79_akm;=CFitac%zFFHHIIKLNOQRSUeh68x{'(ABSX hj(,+0Z\ mo/1NS%&KWx 57#CE ;=  u!v!""""f#g#######y$z$$$l'o'((((b)d)))** *!*b*d*++,,,,k-m-----^.`. /#/ 0033V4[4445555)6+6C6D6667777889999::::B;F;;;t<v<<<====">&>2>4>N>P>>>>>>>>>?? @ @@@@@@@AAFAHAVAXA`BfBBBBBBBCC=CBCZC]CCCCCCCD*DDDDD E ECEEEpErEEEEFUFZF=H?HHHHHIIIIlJpJiKkKKKXL[L|LL{M|MMM}N~NNNGOHOmOqOOOPP3P5PPPPPQQRRRR1S5StSwSSSTTTT VVWWYWWW)Y+YYYYYZZ[[T[V['\+\]]b]c]]]]]^^_ _c_f_hakaaabbbb9b;b{bbbb!c%cccUdYdeeee*f,fEfJfffffgggg"h$hShUhghhhhhhhhhjjkkkkkkmlolll mm"m%mmmmmnn1n3n@nDninknnnnnnno ooooo'p*p:p>phpkpppppcqeqqqqqqqqq&r(rCrHr}rrrrrrssssttttEtGtttttu u/u1uLuOuvvvvwwwwpxrx yy}yyzzzzzzzz{{{#{{{{{{{|!|||'})}H}J}}}}}}}a~c~~~Ł#%/4̃΃02\b̈́τJOX\Ɇˆ/2tvՈֈ!%NOADь֌SUӑԑdfBE~ӔԔƖʖLM57mpSUkmϙљԚ֚DGuw')mΟП!<Aad}~z|FFHHIIKLNOQReh3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333jt"(+ v | :=OXqk5xO[ m !"N""$#f##D$y$Q&&*+k-- 0N00011l23W3b3"4V45a555C6667Y7b7Z9999e;;Z<t<==> >k>z>??@@@ ABBBB7ECE5FUFHH L L?L]LOGOOP]P|P VjVXX)YYYY\ZZS\\b]]^0^_c_4`c`cUd*eYeZeqejk l0ll"mmmrrm{{x}}|/?Ɇ8RӑA͒BABvTܗԚ1MuzFFHHIIKLNOQRehFFHHIIKLNOQRehd%,ypjd>.*BHs#b& 4k3%Ҝh2:A|0^`0o(0^`0o(.0^`0o(..88^8`o(... `^``o( .... `^``o( ..... ^`o( ...... pp^p`o(....... pp^p`o(........ 0^`0OJPJo( 0^`0OJPJo(. 0^`0OJPJo(.. 88^8`OJPJo(... `^``OJPJo( .... `^``OJPJo( ..... ^`OJPJo( ......  pp^p`OJPJo(.......  pp^p`OJPJo(........P  ^P ` OJQJo(hHl0  ^0 ` OJQJo(hHn ^` OJQJo(hHu ^` OJQJo(hHl ^` OJQJo(hHn ^` OJQJo(hHu ^` OJQJo(hHlp ^p` OJQJo(hHnP ^P` OJQJo(hHu^`o(() `  ^` ` hH0 @  ^@ ` hH.   ^ ` hH.  ^` hH0  ^` hH.  ^` hH.  ^` hH0  ^` hH.88^8`o(()  ^` hH0 p p^p` hH. P  P ^P ` hH. 0  0 ^0 ` hH0  ^` hH.  ^` hH.  ^` hH0  ^` hH.P  ^P ` OJQJo(hHl0  ^0 ` OJQJo(hHn ^` OJQJo(hHu ^` OJQJo(hHl ^` OJQJo(hHn ^` OJQJo(hHu ^` OJQJo(hHlp ^p` OJQJo(hHnP ^P` OJQJo(hHu0^`05B* CJo(ph0^`05B* CJo(ph.0^`05B* CJo(ph..88^8`5B* CJo(ph... 88^8`5B* CJo(ph .... `^``5B* CJo(ph ..... `^``5B* CJo(ph ...... ^`5B* CJo(ph....... ^`5B* CJo(ph........88^8`o(()  ^` hH0 p p^p` hH. P  P ^P ` hH. 0  0 ^0 ` hH0  ^` hH.  ^` hH.  ^` hH0  ^` hH.d%pjHk3%2:Ab&                 D X                 d0A        FSC U0DN ,4lM4S^V/XZO r!Or$ ~&8*,<-- 0\23(*3C23zm5(9<=&#=^=5Dw E/F@H7/IJ4L7RTVtfWm,Y"ZRhZ=iZ)$[S1[il[r[D\s\+P`h`jekcqq~qDt|vEz`{ }8z9qn_^s0pB~9U (j`}`9Z'%\Pj/ &M[ 2J+E`pFNQfYAk\R%[%| R=bWGa)f9LD~N'`6?6@6A6BCDEFGHIJLMNOPQRSTUVZ[`abcdgh@h h hhhhhhhhh<@h$hL@h(hT@h,h\@h2hh@h6h8ht@h<h>h@hBhDhFhHhJhLhNhPhRhThVhXh@h\h^h`hbhfhhhjh@hphrhthvh@hzh|h~hhhhh@hhhhh$@hhhhhh<@hhH@hhh\@hhUnknown G* Times New Roman5Symbol3. * ArialCe0}fԚPMingLiU/E jwiԚABook Antiqua;5 hQwwife0}fԚ;WingdingsA BCambria Math"1 HFd1$&s{5U/{5U/?!),.:;?]}    " % & ' 2 t%00 0 0 00000013468:<>@BDOPQRTUVWZ\^ \]d([{  5 0 0 00000579;=?ACY[][xxd%% 2qHP?RhZ2!xx*SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONSHan-Chern LingCHUNG,