ࡱ> FIE[ ?bjbj >>ΐΐ+^ ^ 8tae%.}0"% % % % % % %&5)f % %%%%:t#,#uRVR# $5%0e%# )0|)#)#@ % %e%)^ g: 2.5 General Matrix Norms. In section 2.3 we looked at the infinity and one norms and saw how they could be used to estimate the error in the solution of a system of linear equations y = Ax in terms of the errors in the numbers in y. In this section we look at general matrix norms where one may use some other norm for x and y. They can be used in the same way as the infinity and one norm to estimate the error in the solution of a system of linear equations. Definition 1. Let A be a matrix and consider the mapping y = Ax. Choose a norm || x || for vectors x and choose a norm || Ax || for vectors Ax. Then the norm of A, denoted by || A ||, is the maximum value of the ratio  \eq \f(|| Ax ||,|| x ||) as x varies over all non-zero vectors x, i.e. (1) || A || =  \eq \o(max,x ( 0) \f(|| Ax ||,|| x ||) It follows from (1) that (2) || Ax || ( || A || || x || which is a generalization of (9) and (10) in section 2.3. In particular, || A || is the maximum stretching that A does when applied to vectors x. Just as when we are dealing with the sup norm and one norm for x and y, (2) turns out to be useful when we want to analyze how errors propagate when we multiply by A. The following proposition generalizes Proposition 2 of section 2.3. Proposition 1. Let A =  EQ \b(\a\al(a11 a12 a1n,a21 a22 a2n,....,am1 am2 amn)) and y = Ax and ya = Axa. Then (3) || y - ya || ( || A || || x - xa || If m = n and A is invertible then (4) || x - xa || ( || A-1 || || y - ya || Proof. (3) follows from (2) and the fact that y ya = A(x xa). (4) follows from (3) and the fact that x = A-1y and xa = A-1ya. // Unfortunately, the formula (1) is not so nice for calculating the norm of some matrix A. Sometimes it is convenient to restrict the vectors x that we are maximizing over in (1) to unit vectors. Proposition 2. The norm of A is the maximum of || Au || as u varies over unit vectors, i.e. (5) || A || =  \eq \o(max,|| u || = 1) || Au || Proof. Note that in (1) we can write  \eq \f(|| Ax ||,|| x ||) =  \eq \f(1,|| x ||) || Ax || = ||  \eq \f(1,|| x ||) Ax || = || A \eq \b( \f(x,|| x ||) ) || = || Au || where u =  \eq \f(x,|| x ||) and we have used the homogeniety of the norm. Note that u is a unit vector, since ||  \eq \f(x,|| x ||) || =  \eq \f(1,|| x ||) || x || = 1 So, when we maximize over all non-zero vectors x in (1), it is the same as maximizing over all unit vectors in (5). // Here are some properties of the matrix norms. Proposition 3. Let || A || be a matrix norm defined by (1). If A and B are matrices and c is a number then (6) || A + B || ( || A || + || B || (7) || cA || = | c | || A || (8) || A || = 0 ( A = 0 (9) || AB || ( || A || || B || (10) || I || = 1 (11) || A-1 || (  eq \f(1,|| A ||) Proof. To prove (6) we use (5). || A + B || =  \eq \o(max,|| x || = 1) || (A + B)x || =  \eq \o(max,|| x || = 1) || Ax + Bx || (  \eq \o(max,|| x || = 1) (|| Ax || + || Bx ||) (  \eq \o(max,|| x || = 1) || Ax || +  \eq \o(max,|| x || = 1) || Bx || = || A || + || B || For (7) one has || cA || =  \eq \o(max,|| x || = 1) || (cA)x || =  \eq \o(max,|| x || = 1) || c(Ax) || (  \eq \o(max,|| x || = 1) | c | || Ax || ( | c |  \eq \o(max,|| x || = 1) || Ax || = | c | || A || To prove (8) note that || A || = 0 and (1) imply  \eq \o(max,x ( 0) \f(|| Ax ||, || x ||() = 0 which implies ||Ax||=0 for all x which implies A= 0. Note that (1) implies || (AB)x || = || A(Bx) || ( || A || || Bx || ( || A || || B || || x ||. Therefore  eq \f(|| (AB)x ||,|| x ||)(||A||||B || which implies  \eq \o(max,x ( 0) \f(|| (AB)x ||, || x ||() ( || A || || B || which implies (9). (10) follows from (1) and the fact that Ix = x for all x. For (11) note that I = AA-1. Using (9) and (10) we get 1=||I||(||A||||A-1|| from which (11) follows. // Even the formula (5) is not convenient for finding the norm of a matrix. For given norms || x || and || Ax || it may take some work to find a formula for the corresponding matrix norm. For the Euclidean norm here are two useful formulas. Proposition 2. Let || x || and || Ax || be the Euclidean norms and || A || be associated matrix norm given by (1). Then (6) || A || = max{ | ( |: ( is an eigenvalue of A} if A is symmetric (7) || A || = max{  eq \r(,(): ( is an eigenvalue of ATA} in general Proof. First consider the case where A is symmetric. Then the eigenvalues (1, , (n of A are all real and there is an orthonormal basis v1, , vn of eigenvalues of A. Suppose Avi = (ivi and | (1 | ( ( | (n |. For a given vector x one can write x = (1v1 + + (nvn. Since the vi are orthonormal one has || x ||2 = One has Ax =     PAGE  2.5 -  PAGE 3 &)8;KR A B G H I    $ % 5 6 L O ^ ` c l p t u   ɵɵɵh[$%hF%^6jhF%^U h[$%6 hF%^6]hF%^ hF%^5\ huDAh!p huDA6huDA h!p 6 h!p h!p h!p hphxZ$h[$%D 5 N s  u }@ Sfgd8$$gdKgdF%^gdWF$      % ' . / 3 4 V X ^ _ e f n o r s   G H M N d j        תhhF%^]jhhF%^U] hF%^] hF%^5hu[h8 hSChF%^ jhF%^ hF%^6jhF%^U hF%^6] jhF%^CJEHhF%^CJEHhF%^6CJEH]hF%^8   ! # % & ' ( ) * + , - . 1 2 3 4 6 7 8 9 : ; < ? A B C D G H I J L M N O P Q S T Y Z ] _ d e f i k l t u x z 篫 h8hF%^ h shF%^ hF%^6H* hF%^6hF%^jhhF%^U]hF%^6H*]hhF%^]hhF%^6H*]h,hF%^EH hF%^H*] hF%^]hhF%^H*]hhF%^6]9z { } ~ "#&'(+,-.12 hu[6H* hu[6hu[ hF%^5 hF%^H*] hmhF%^ hF%^6h8hF%^6H*]h8hF%^6] jh8hF%^hF%^6H*] hF%^] hF%^6] h8hF%^hF%^<2347^_bcefklmpqstux  /1=>@N\]su|}   -.2379FhF%^6CJEH]hF%^CJEHjhF%^U hF%^5\h8hK hF%^6] hu[H* hu[6hF%^hu[ hu[6H*HFGTUYZ[]jklxy}~#$./<=ABFG:;@ASTnorsyz jh8 jh8 h86 h86] h85h8 hF%^6]hF%^jhF%^UO"#/0456<SU\^`almuxy|}̸̱̩̱̱̩hyhwJ6] hwJ]hwJ6CJEH]hwJCJEH hwJ6]jhwJU h8] h86]hwJ h85 hgJh8jh8U jh8 h8H* jh8 h86h88 6Wum+w(&`#$ 88^8`gdFQgdF%^gdwJgd8   '()-/78@CDGHOPQUVWZdepquڻڻ hwJ6 h86hwJ6CJEH]hwJCJEH jh8h8hyhwJ6] hwJ] hwJ6]jhwJUhwJH   +,/1256>ABEFMNOSUZ_abehimwx h86h8 hii6hii jhwJhwJ6CJEH]hwJCJEHjhwJUhyhwJ6] hwJ] hwJ6] hwJ6hwJD#$&'(,1235:;?@HJNOST\]̿樣 jh8 hii6 h86 jh8H* h8] h86] jhyh8CJEHaJhyh8CJEHaJhyh86CJEH]aJhyh86] hyh8jhyh8Uhiih86]efvwx Ҹ󔏔҂ jh8H* h8] hii] h86] jhyh8CJEHaJhyh8CJEHaJhyh86CJEH]aJhyh86] hyh8jhyh8U jh8jh8Uhii h86h83  9;>?HI_`ceg*,+/23=@DEJK`ahi~θαjhFQUh_ hFQ6 jlh_ hFQ6 hFQhFQh_ hK6hFQ hK5 hK6hK h;hRh8 hMH* hM6hM jhii hiiH* hii6h8hii;OPQVWXklwyz}~Ÿűűű𭽨 h_ 6H* jlh_ 6h_ h_ EH jh_ h_ H*h_ hFQ6H* hFQH* jlhFQ6 hFQ6 hFQ5 hF%^hF%^h_ hFQ6H*h_ hFQ6jhFQUhFQ jlh_ hFQ64  &'(*-01789:;=>?hM0JCJmHnHujhp0JCJUhp0JCJh[$%0JCJhp hp0Jjhp0JUhzjhzUh_ hF%^>* h_ H* h_ 6H*h_ h_ EH h_ H* jah_ 6h_ h_ 63()*;<=>? h&`#$]hh]h<00P&P/ =!"#$% Dp^ 666666666vvvvvvvvv666666>666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH 8`8 Normal_HmH sH tH JJ  Heading 1$$@&a$ CJ(OJQJZ@Z  Heading 2$@&5CJOJQJ\]^JaJVV  Heading 3$<@&5CJOJQJ\^JaJDA`D Default Paragraph FontViV 0 Table Normal :V 44 la (k ( 0No List 0>0 Title$a$CJ DB@D  Body Text 8d,.)@.  Page Number4 @"4 Footer  !424 Header  !HBH [$%0 Balloon TextCJOJQJ^JaJTRRT Body Text Indent 2 ^XSbX Body Text Indent 3 P^aJBQrB  Body Text 3P^aJHCH Body Text Indenth^hNN [$%0Balloon Text CharCJOJQJ^JaJPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] ? > ***-  z 2F] ?(? 3 S2FYk # . A " 4 l  ( 7 P 5 N w?1111111111111111111111111 $&-!!8@0(  B S  ?dfil&(13km U W 35HJR\=HVX\gwz~=@ BChlsx;B@N    6 < 1 5 1 2 &(=A=@333333333333333333333333333333333'*-0:@e VIU:Q/888^8`o((.88^8`o((.)88^8`o((.).88^8`o( (.).. 88^8`o( (.)... `^``o( (.).... `^``o((.)..... ^`o((.)...... ^`o((.).......88^8`o((.88^8`o((.)88^8`o((.).88^8`o( (.).. 88^8`o( (.)... `^``o( (.).... `^``o((.)..... ^`o((.)...... ^`o((.).......IU:QJID&~}gJ8 u@_ !p T Ktfpux]"8P#xZ$[$%&:3]5uDASCDWFwJKTK1iNFQ]R;hR?[F%^!c_e[fEgiil2o sEgtX unm,^8M*u[xSdY~v)M?F`EL%p W aM/EzN8@?H@UnknownG*Ax Times New Roman5Symbol3. *Cx Arial5. *[`)TahomaA BCambria Math"h'xAxAz; "; " 60  JQHX $PX2!xxErrors Frank Massey Frank Massey  Oh+'0   @ L X dpxErrorsFrank MasseyNormalFrank Massey8Microsoft Office Word@\ @@RV@6m@@RV;՜.+,0 hp  Kinko's, Inc."   Errors Title !"#$%&'()*+,-./012346789:;<>?@ABCDGHKRoot Entry FRVJ1Table )WordDocument >>SummaryInformation(5DocumentSummaryInformation8=MsoDataStorebRVuRVDNSNNU0R1A==2bRVuRVItem PropertiesUCompObj y   F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q