
CODEMILL-J 4.0 USER GUIDE

SABATECH CORPORATION

2004

Copyright © 1999-2004. Sabatech Corporation. All rights reserved. Sabatech Corporation have made
every effort to make this guide and accompanying computer application, CodeMill-J free of errors and
defects. It, however, offers no warranty of any kind, expressed or implied with regards to the
information contained in the guide and concepts demonstrated by the application. They shall not be
liable in any event for incidental and consequential damages in connection with the use of the guide and
CodeMill-J.

2

Table of Contents:

1. Launching CodeMill-J
1.1. Running your first program
1.2. Sample Programs

2. Setting Options
2.1. Setting Scratchpad and Register Size
2.2. Setting RAM, VRAM, and STACK Size
2.3. Setting Monitor Options
2.4. Setting the Arithmetic Mode

3. Viewing Selections
 3.1. Clearing Registers
 3.2. Clearing and Hiding Scratchpad registers
 3.3. Clearing Screen and Hiding Mesh

4. File and Edit Menus
 4.1. File Menu
 4.2. Edit Menu

5. Running Programs
 5.1. Entering Programs
 5.2. Running Programs

 5.3. Structure of CodeMill-J Programs
 5.4. Error Messages

6. A Sample Session in CodeMill-J

7. Assembly Language Programming in CodeMill-J
 7.1. Computing Formulas in CodeMill-J
 7.2 Entering and Displaying Formulas in CodeMill-J
 7.3. Commenting in CodeMill-J

8. CodeMill-J Instruction Set and Commands
 8.1. CodeMill ÐJ Instruction Set
 8.2 CodeMill Commands

 9. CodeMill-J Help on the Web

3

1. Launching CodeMill-J

As with other applications, you bring up CodeMill-J by double clicking the
CodeMill-J icon in the CodeMill-J folder or selecting it from the applications
menu on your computer. Once it is launched, CodeMill-J is up and running,
and you can enter your program in the program window (Console) on the
right, and press the STEP or EXEC button on the CodeMill-J palette when
you wish to step through or execute it. Unlike other assemblers, running
CodeMill-J does not require any directives to run a program. Just enter your
program, and press the STEP or EXEC button. It is that simple!

1.1. Running Your First Program

What good is an application if you cannot get started with it right away? So,
if you want to see how CodeMill-J works, the simplest thing to do on it is to
set a pixel on the screen. Just type in STF 0808, 01,03; and press execute.
That is not too impressive, but it gives you an idea how you can compose
and run programs on CodeMill-J. Try to guess what each piece of information
in the code does. For example, try typing and executing STF 0507,02,04; to
see what happens.

1.2. Sample Programs

CodeMill-J CD comes with more than 200 programs that have been written
by CodeMill-J experts and enthusiasts. If you would like to try some of these
programs, browse the sample programs folder, and launch and execute them
in CodeMill-J. For example, the image below shows how to draw a cube in
CodeMill-J. You will soon be writing programs that are as neat as those
programs yourself :-).

4

2. Setting Options

CodeMill-J has a number of options which you can set any time during a
CodeMill-J session, even as you are running programs (see below).

The options determine how CodeMill-J is configured for executing programs
and displaying its behavior during the execution of programs. For example,
you can change the resolution of the GRID screen to make the graphics
more realistic using the Monitor Resolution option, or you can allocate
more registers to make sure that your program can run more efficiently and
faster using the Scratchpad Size option. You can also change the options
using the command buttons on the CodeMill-J palette as we will see in the
next section. (Note: Some options shown here may not be available on your
version of CodeMill-J.)

 2.1. Setting Scratchpad and Register Size

The number of registers in CodeMill-J's scratchpad, and their size are set
using the Scratchpad Size option from the Options menu. This option is
designed to simulate computers with different register sizes, and different
number of registers. To set the scratchpad size, use the Scratchpad Size
submenu in the Options menu. The available sizes are

4 x 8, 8 x 8, 16 x 8, 4 x 16, 8 x 16, 16 x 16, 4 x 32, 8 x 32, and 16 x 32,

where the first value specifies the number of registers, and the the second
value specifies the size of each register in the scratchpad. The number of bits

5

in a register determines the range of numbers that can be represented by
CodeMill-J. An 8-bit register can hold any integer between Ð128 and 127
whereas a 16-bit register can hold any integer between Ð32768 and 32767.
The umber of registers bounds the number of variables in a computer
program that can be mapped to the scratchpad of CodeMill-J without having
to save the registers to the memory during computations. Registers are fast
memory locations that reside inside the central processor units of computers.
Since the space is limited inside a central processor unit, todayÕs computers
come with only a small number, typically, 16 to 32 registers. This can, of
course, change as computers are designed and implemented with smaller
electronic cirtcuits.

You can also use the SPSZ+ and SPSZ- buttons on the CodeMill-J palette to
choose the next or previous scratchpad size option with respect to the
currently selected scratchpad size option (see below).

2.2. Setting RAM, VRAM, and STACK Size

The RAM, VRAM, and STACK sizes can be set using the corresponding
submenus in the Options menu. This option is designed to simulate
computers with different word size and RAM, VRAM and STACK memory
capacities. The RAM memory typically holds operands that can not be kept in
the scratchpad because of its limited capacity. The VRAM holds the pixels on
CodeMill-JÕs GRID screen. The STACK is used to run certain types of
programs and save the return address in subroutine calls. In all three
memory settings, the available choices depend on the type of memory that is
being set. The first value specifies the number of locations, and the second
value specifies the number of bits in each location. For example, if you set
the RAM size to 1024 x 16, CodeMill-J assumes that you are using a RAM
memory with 1024 locations, each holding 16 bits. VRAM and STACK memory
sizes are similarly set.

You can also use the RMSZ+ and RMSZ- buttons on the CodeMill-J palette to
choose the next or previous RAM size option with respect to the currently

6

selected RAM size option (see below). Similarly, VRAM and STACK sizes can
be adjusted from the CodeMill-J palette using the VRSZ+, VRSZ-, STSZ+,
and STSZ- buttons.

2.3. Setting Monitor Options

The CodeMill-JÕs Monitor settings can be changed to adjust its size,
resolution, background color, and background scene.

Resolution

The resolution of the monitor refers to the number of pixels along its height
and width. CodeMill-J's screen is square-shaped so that it has the same
number of pixels along its height and width. To set the resolution of
CodeMill-J's screen, select the Monitor Resolution submenu from the
Options menu, and click on the desired resolution. The available resolutions
are

8x8, 16x16, 32x32, 64x64, 128x128, 256x256, 512x512.

In the lowest resolution, CodeMill-J displays 8 pixels along its height and
width, providing 64 pixels in all. At the highest resolution, it displays 512
pixels along its height and width, providing 512x512 = 262,144 pixels

You can also use the RESL+ and RESL- buttons on the CodeMill-J palette to
choose the next or previous resolution option with respect to the currently
selected resolution size option.

Screen Size

The screen size of CodeMill-J can also be changed. CodeMill-J comes with
three screen sizes as shown below at 25% of the full scale, called small,

7

medium, and large. To set the screen size, choose the Monitor Size
submenu from the Options menu, and click on the size you desire.

Note: The 512x512 resolution can only be used when the screen size is set to
large as the actual (physical) sizes of the small or medium screens are
smaller than 512 pixels. If you set the resolution to 512x512 with the small
or medium size screen, CodeMill-J does not display any pixels.

 SMALL MEDIUM LARGE

Background Color

The background color of CodeMill-J's screen can be set to a variety of
colors that include the following:

white, black, gray, orange, red, green, blue, yellow.

To set the background color of CodeMill-J's screen, choose the Screen Color
submenu from the Options menu, and click on the color you desire.

You can also use the COLR+ and COLR- buttons on the CodeMill-J palette to
choose the next or previous resolution option with respect to the currently
selected color option.

Background Scene

The background scene of CodeMill-J's screen can be set to a variety of
background scenes that are listed under the background scene menu or by

8

opening a background scene from a file. The image below depicts the
ÒHouses IÓ background scene.

These options are designed to visualize the effects of various resolution sizes
on the quality of pictures and images and enhance animation features of
CodeMill-J.

2.4. Setting the Arithmetic Mode

The contents of registers in CodeMill-J can be displayed in binary, octal,
decimal, or hexadecimal number representations. These arithmetic display
options are designed to examine various representations of numbers and
operands in computers. Binary numbers use digits 0 and 1 only. Octal
numbers use the digits 0,1,2,...,7. Decimal numbers use the digits
0,1,2,...,9. Hexadecimal numbers use 0,1,2,...,9,A,B,C,D,E,F. All these four
number systems use positional number representation to determine the
value of a number with a radix. For example,

101 in binary = 1x4 + 0x2 + 1x1 = 5 in decimal
377 in octal = 3x64 + 7x8 + 7 = 255 in decimal.
FFF in hexadecimal = 15x256 + 15 +16 + 15 = 4095 in decimal.

To set the arithmetic mode select the Arithmetic Mode submenu from the
Options menu, and click on the arithmetic mode you desire. In addition to
these four modes, CodeMill-J can also display the register contents in
floating-point number format. However, displaying register contents in this
format makes sense only if you use CodeMill-J's floating-point operations.

3. Viewing Selections

In addition to the Options menu, CodeMill-J has a menu, called View (see
below), for setting, clearing the contents of CodeMill-J's registers and screen,
hiding the register set,the mesh and background scene on the screen. These
options are designed to reset registers and eliminate the left over images on

9

the screen before a new program is run. In particular, hiding the register set
boosts the speed of drawing pictures on CodeMill-J's screen.

3.1. Clearing Registers

The PC, IX, and SP registers, and the flags can be cleared by choosing the
Reset PC, Reset IX, Reset SP, Reset Flags items from the View menu.
The Reset All option clears all the registers and flags.

3.2. Clearing and Hiding Scratchpad Registers

The scratchpad registers can be cleared by choosing the Clear Scratchpad
item from the View Menu. The registers can be hidden from view by
choosing the Hide Scratchpad item from the same menu. It can be brought
back to view by choosing the Show Scratchpad item.

3.3. Clearing Screen and Hiding Mesh and Background Scene

The pixels on the screen can be cleared by choosing the Clear Screen item
from the View Menu. The mesh on the screen can be hidden from view by
choosing the Hide Mesh item from the View Menu, and it can be brought
back to view by choosing the Show Mesh item. Likewise, the background
scene can be brought to view using the Show Scene option or hidden from
view using the Hide Scene option.

10

3.3. Hiding GRID Window

The GRID window can be hidden from view by choosing the Hide GRID
Window from the View Menu. It can be brought back to view by choosing
the Show GRID Window from the same menu. The same effect can be
achieved by double clicking on the menu bar of GRID window if MacOs 8.0 or
higher has been installed on your computer.

3.3. Viewing CodeMill-J Settings

The current option settings of CodeMill-J can be viewed by choosing the
Show Grid Settings item from the View menu. This option is designed to
provide a point of access to all the option settings of CodeMill-J.

4. File and Edit Menus

File and Edit menus work like the usual File and Edit menus for most
applications with some minor differences.

4.1 File Menu

The file menu has the usual New, Open, Close, Save, and Save As
options for opening a new Program Window, opening or closing an existing
program, or saving a program. The Page Set up, Print One, and Print
options are used to print the Program or Grid Window whichever is active
at the time the Print submenu is selected.

4.2 Edit Menu

First, the Edit Menu works only with the Console or Program Window on
the right. The Cut, Paste, Copy, Clear, Undo options are used to insert,
replicate and delete portions of a program in the Console.

5. Program Entry and Execution

5.1. Entering Programs

Programs can be keyed in using CodeMill-J's instruction palette, or entered
more directly by typing them on the keyboard. In entering programs, it is
important to insert space between different portions of a statement unless
they are separated by a comma.

5.2. Running Programs

CodeMill-J programs are run using STEP, EXEC, SUSP, and RESM keys on
the Instruction Palette. Stepping (STEP) is useful for debugging
programs, while executing (EXEC) a program is used to watch the program's
overall effect on CodeMill-J's registers and screen. You can suspend a

11

program any time you wish by pressing the SUSP key, and resume it by
pressing the RESM key.

5.3. Structure of CodeMill-J Programs

Loosely speaking, a CodeMill-J program is a sequence of CodeMill-J
instructions put together. There is no requirement that a CodeMill-J program
begin with a specific preamble or a header, neither is there supposed to be a
termination statement,
even though, a HLT instruction is often inserted at the end of a program to
mark its end. Given this flexibility, CodeMill-J is empowered with the ability
of executing programs on the fly. To witness this flexibility before you start
writing your own programs, you may find it useful to try some of the
programs in Sample Programs Folder . These programs also illustrate how
various CodeMill-J Instructions work. To run any of these programs, first
locate them in Sample Programs Folder using the Open command in
the File Menu. Once a sample program is opened, it can be executed by
pressing EXEC key on CodeMill-J's Instruction palette. Typically, each
program contains a comment section at the top which specifies the default
CodeMill-J options for it to run. Make sure that the current option settings
match the settings in the comment section of the program you have selected
to run.

5.4. Error Messages

CodeMill-J may issue an error message during the execution of a program.
In general, an error message refers to either a syntax error in the program,
or an incompatibility of an operation with the current option settings of
CodeMill-J. The option settings are designed to expose the user to potential
size and structure constraints between its various components. CodeMill-J
stops executing when it encounters an error condition. If the error is caused
by an invalid syntax, the statement which contains the error is found in the
IR register. If it is caused by an incompatible setting, the error message
typically reveals which option setting may have caused the error. Just edit
your program and/or change your option settings to fix problem, and press
EXEC or RESM key to resume execution.

6. A Sample Session in CodeMill-J

(1) Bring up CodeMill-J as described earlier. (Double click on its icon, or open
it from the file or start menu).

(2) The cursor must be blinking on the top left hand corner of the text area
in the Console window. This means that you can enter your program starting
in that position. However, before you do so, it is important to check the
settings on the GRID window and choose the right options for the screen and
scratchpad registers.

12

(3) The GRID window on the left has been initialized by default to an 8 X 8
screen. This means that CodeMill-J's screen contains eight pixels in each row
and in each column. Also, the scratchpad has been initialized to four
registers, each holding 16 bits. These settings can be changed simply by first
clicking on the GRID window, then pressing on the Options menu, and then
selecting the desired option as explained in the earlier section. Select the $8
X 8 option from the Scratchpad submenu. You will see that the scratchpad
now contain 8 registers, and each register holds 8 bits.

(4) Set the screen resolution to 16 x 16. You will get an error message
indicating that you have insufficient VRAM. This is because a 16 X 16 screen
needs 256 bytes of VRAM at one byte per each pixel, but the default is set to
64 bytes. So change the setting for VRAM to allocate at least 256 bytes or
any number higher than hat in the VRAM menu, and then reset the resolution
to 16 x 16. You should see a screen with 256 pixels on it. As noted before,
CodeMill-J's screen can be set to have as many as 256 pixels in each row and
column.Ê

(5) Switch to the Console window, and type STF 0000,04,03; (Make sure
that you type STF in capital letters.) As an alternative you can use the
Instruction Palette to enter the same line by pressing the following
sequence of buttons:

STF, space, zero zero zero zero, zero four, zero, three;

(6) Now move the cursor over to the STEP key, and click the mouse while
watching the window on the left. You will see a red square come up on the
left hand corner. The square spans 4 pixels in the horizontal and vertical
directions. Why is it red? Well, the last two digits, 03, is the hexadecimal
code for color red. Why is it located at the top left hand corner? Because, the
first two zeros in the sequence 0000 identify the horizontal position of the
square relative to the top left hand corner, and the second two zeros identify
the vertical position of the same square relative to the same corner. The
prefix STF is the mnemonic (opcode) for the SeT Frame instruction that
creates a square frame whose top left corner is located at the hexadecimal
address as specified in the program. The hexadecimal code makes coding the
addresses of pixels easy. The pixels are numbered in 2-digit hexadecimal
notation from left to right and top to bottom, starting with 00 along each
axis.

(7) Now, enter STF 0C0C,04,01; in the next line in the Console window.
(Use the return key on the keyboard or the ent button on the palette to go
to the next line). If you again press the STEP key, you will see a yellow
square with the same dimensions, but this time, it is at the bottom right
corner. The reason is, of course, the address and color have both changed
while the size of the frame has remained fixed at 4.

13

(8) Now enter SWF 0000,04,0C0C; in the next line in the Console window,
and press the STEP key, while watching the screen on the left. You will
notice that the colors of the pixels in the two frames have changed to
opposite colors as shown in Figure \ref{f23}. Well, SWF is the SWap
Frames instruction, and 0000, and 0C0C in the instruction specify the
addresses of the frames to be swapped, while the infix (middle operand), 04
fixes the size of the frames in the swap.

(9) Now type JMP D,2; in the next line in the Console window, and this time
move the cursor to the EXEC key, and press it. You will see on the left that
the frames are flashing with alternating colors. What is happening is that
you've put in place a program loop within which you are constantly swapping
the two square frames, and hence the frames appear to have their colors
alternate. JMP is the jump instruction, D signifies a form of addressing,
called direct addressing, and 2 is the address of the instruction the
program jumps back to. You notice how the instructions are moving through
the instruction register (IR). That is where the instructions go to before they
are executed. Also notice how the bits in the program counter (PC) are
changing.

(10) Now while your code is executing, select Hide CPU registers from the
View menu, and notice that the code is executing much faster.This is
because, CodeMill-J is relieved from updating the registers in this case, and
this saves time.

(11) If you are thinking about how to stop CodeMill-J from executing your
code forever, just press on SUSP key while your code is executing; You
should notice that the program stops executing, and if you press RESM, it
begins to execute again. So, you can suspend and resume your code as
many times as you wish. You can also step it after you suspended it.

(12) Finally, to quit CodeMill-J, press on the File menu , and choose Quit.
Like any other application, CodeMill-J will quit execution, but before quitting,
it will ask you if you wish to save the program you have entered. If you feel
like saving the program you entered, select the {Save} command, and enter
a file name (any name you like), and press on the Save item again. If not,
press on the Discard item, or you wish to return to the program, press
Cancel. You can launch CodeMill-J any time either by double clicking on its
icon, or using the File menu.

14

7. Assembly Language Programming in CodeMill-J

CodeMill-J assembly language consists of

* 96 instruction keywords,
* 16 register specifiers, R0,R1,R2,...,R15,
* 16 numerical characters, 0,1,...,9,A,B,C,D,E,F,
* 9 relational operators, =,<=,>=,>,<,<>,<+,>+,!=
* 3 numerical specifiers, X,T,-
* 4 address mode specifiers, D,T,R,X
* a field separator, ``,'' and a statement separator, ``;''

The instruction keywords define the operations that can be performed by the
CodeMill architecture on which CodeMill-J programs are run. The instruction
palette in the Console window contains all these 96 instructions. They can be
entered into CodeMill-J programs either by pressing on the key on the
instruction the palette, or directly by using the keyboard of your computer.
Each instruction has a format or syntax that defines the number of operands,
and the role that each operand plays in the execution of that instruction. For
example, LDI (derived from ``LoaD Immediate'') instruction requires one
register, and one numerical operand. The numerical operand can be entered
in octal, decimal, or hexadecimal notations. The decimal numbers are
specified without any explicit specifier while the octal and hexadecimal
numbers are specified using the specifiers T and X, respectively. Here are
three different ways to load number 14 into register R1 using the LDI
instruction:

LDI R1,14; LDI R1,T16; LDI R1,XE;

In each case the operand represents decimal 14. Negative numbers are
entered in the same way in the three number systems by inserting "-" before
the numerical operand, as in the following examples:

LDI R1,-14; LDI R1,T-16; LDI R1,X-E;

Each instruction and its operand fields collectively form a statement in
CodeMill-J. As seen in the above examples, the statements in CodeMill-Junior
are separated by ``;'' whereas the fields within a statement are separated
by ``,''. Informally speaking, any sequence of syntactically correct
statements constitutes a program in CodeMill-J though not all programs may
produce meaningfull results. Here are two examples of CodeMill-J programs:

LDI R0,1; LDI R1,2; ADD R0,R1; HLT;

LDI R2,1; LDI R3,5; SUB R2,R3; HLT;

15

The first program loads 1 and 2 into registers R0 and R1,respectively, and
then adds R1 to R0. The second programs loads 1 and 5 into R2 and R3,
respectively, and subtracts R3 from R2. The ADD and SUB instruction both
require two register operands, and the result of the operation is stored in the
first register. In each program the last statement, called the HLT instruction
forces the program to terminate.

Here are two other CodeMill-J programs:

LDI R1,X1F; LDI R2,12; INC R1; INC R2; ADD R2,R1; HLT;

LDI R2,T10; LDI R0,T-2;DEC R2; DEC R2; SUB R2,R0; HLT;

Can you guess what each program does? (Hint: INC increments its operand
by 1 and DEC decrements its operand by 1). Can you further determine the
values of the registers that appear in each program after it is executed?

7.1. Computing Formulas in CodeMill-J

Let us consider how a simple algebraic expression can be worked out in
CodeMill-J. The expression is an ordinary sum of some four integers whose
values may be varied without changing the program. This is facilitated in
CodeMill-J as in other assembly language programs by referring to the
operands in the summation through labels.

For example we may define the four operands as follows:

A: 10; B: 20; C: 30; D: 40;

where A, B , C , and D are labels, and 10, 20, 30, and 40 are numerical
values.

We can then load the four operands using four LDI instructions with labels A,
B, C, and D as shown below:

LDI R0,A; LDI R1,B; LDI R2,C; LDI R3,D;

The only step that remains is to add the registers that can be done in three
additions:

ADD R0,R1; ADD R0,R2; ADD R0,R3;

The entire program looks like as follows:

A: 10; B: 20; C: 30; D: 40;

16

LDI R0,A; LDI R1,B; LDI R2,C; LDI R3,D;

ADD R0,R1; ADD R0,R2; ADD R0,R3; HLT;

The sum A + B + C + D is accumulated in register R0 after the program is
executed. It should be noted that the values of A,B,C, and D can be changed
to compute the sum of any four numbers as long as they are within the
range of numbers representable in CodeMill-J. Also, the label statements
need not appear before the instruction statements. In other words, the
assignment of values to labels is location independent. In fact they can be
moved anywhere in the program. For example, the following program should
yield the same sum as the previous program.

LDI R0,A; LDI R1,B;

LDI R2,C; LDI R3,D;

ADD R0,R1; ADD R0,R2;

ADD R0,R3; HLT;

A: 10; B: 20;

C: 30; D: 40;

You can verify that both programs produce the same sum by rearranging the
first program and executing it. Also you can use the STEP key to see the
effect of each statement on the scratchpad registers during the execution of
the program.

As a second example, consider the expression 12 + 22 + 32 + 42.

This expression can be evaluated in several different ways two of which are
given below:

Method 1:

Compute 12 =1, then compute 22 = 4, then compute 32 = 9, then compute
42 = 16, then add all the squares, 1 + 4 + 9 + 16 = 30.

Method 2:

Compute 22 =4, then compute 1 + 4 = 5, then compute 32 =9, then
compute 5 +9 = 14, then compute 42 =16, then compute 14+16 = 30.

17

Both methods produce the correct result, but the second one relies on less
space from a computer's point of view. This is because the first computation
needs to store the squares of all four numbers before they can be added. The
second computation need only to have two locations, one to store the partial
sum of the squares already computed, and another to store the square of the
next number to be added to the partial sum. Moreover, storing the squares
of the numbers requires that they are loaded back into the processor to
compute their sum.

Ignoring the issue of space for the time being, and formalizing the second
method, we are required to carry out the following computation: ((1 + 22)
+32)) + 42.

As in the previous problem, we must assign one of the scratchpad registers
to the result. Let us arbitrarily select R0. We can begin our computation by
loading 1 into R0.

Next we must find a way to square 2 and add it to R0. We realize that
another register must be used to compute the square of 2. Let us arbitrarily
select R1 for this purpose. So our program up to now will look like this:

LDI R0,1; LDI R1,2;

The next problem is to compute 22. CodeMill-J has an instruction to multiply
numbers, but this requires allocating two registers for the product that we do
not want to deal with for the time being. Our only other option, is then to
square our operands by successive addition. That is, we use the identities,

22 =2 +2, 32 = 3+3+3, 42 = 4+4+4+4.

We can compute 22 by adding R1 to itself so that our program now should
look like

LDI R0,1; LDI R1,2;

ADD R1,R1; ADD R0,R1; /* 1x1 + 2x2 is in R0 */

Repeating the last two steps for the other operands, the complete program
should finally look like as shown below:

/* Load 1 */

LDI R0,1;

/* Compute 2x2 */

LDI R1,2; ADD R1,R1;

18

/* Compute 1x1 + 2x2 */

ADD R0,R1;

/* Compute 3x3 */

LDI R1,3; ADD R1,R1; LDI R2,3; ADD R1,R2;

/* Compute 1x1 + 2x2 + 3x3 */

ADD R0,R1;

/* Compute 4x4 */

LDI R1,4; ADD R1,R1; ADD R1,R1;

/* Compute 1x1 + 2x2 +3x3 + 4x4 */

ADD R0,R1;

In case you are wondering, expressions between /* and */ are comments,
and are ignored by CodeMill-J when the program is executed.

Note that in computing 3+3+3, we notice that we cannot obtain 9 by adding
R1 to itself twice. This will amount to computing (R1 + R1) + R1, and if we
initially load 3 into R1 as we do, at the end of the first sum, R1 will then
contain 6. Now, adding R1 to R1 again will give 12, not 9. To get around
this problem, we load 3 into R2, and add R2 to R1 after we add R1 to itself.

As an alternative, we could add 3 to R0 after step 4, and eliminate steps 7
and 8. In either case, at the end of the 9th instruction, we should have 14
stored in R0. The last four instructions compute the square of 4, add it to the
partial sum to produce the result, and store it in R0.

LDI, ADD, and SUB are just three of several CodeMill-J's instructions with
which we can carry out the arithmetic operations. Two other instructions that
are closely related to ADD and SUB instructions are INC and DEC. The INC
instruction increments a register by 1, whereas the D E C instruction
decrements it by 1.

7.2 Entering and Displaying Formulas in CodeMill-J

CodeMill-J supports arithmetic in binary, octal, decimal and hexadecimal
number systems. These number systems are described in great detail in
Introduction to Computers With CodeMill Junior. Here we briefly mention how
they are entered and displayed in CodeMill-J.

19

Decimal operands are entered into the operand fields of instructions
directly, i.e., without using any identifiers.

Octal operands are prefixed by letter T, and the hexadecimal operands
are prefixed by X.

For example,

LDI R0,T12;

loads the octal 12 (decimal 10) into register R0. Likewise,

LDI R1,X1F;

loads hexadecimal 1F (decimal 31) into register R1. There is no specifier
for binary operands in CodeMill-J. However, they can easily be specified using
octal or hexadecimal specifiers. For example, the binary number
01111011 (hexadecimal 7B) is loaded into register R2 using the following
statement

LDI R2,X7B; or LDI R2,T173;

To display the values of operands in CodeMill-J's scratchpad registers, you
can use the arithmetic submenu in the Options menu. Simply click on the
number representation in which you wish to display the operands. CodeMill-J
will display them in the representation you selected.

7.3. Commenting in CodeMill-J

CodeMill-J programs can be commented by including them between pairs of
/* and */.

For example,

/* This is a comment */
/*/* and so is this one */
/* but not this one.

20

8. CodeMill-J Instruction Set and Command Keys

CodeMill-J instruction set repertoire consists of the following 96 instructions
and 36 commands.

8.1 CodeMill-J Instruction Set

LDI LDR LDD LDT LDG LDX LD+ LD- STI STR STD STT
STG STX ST+ ST- MOV NMV AMV IMV EXC CLX CLR INC
DEC NEG CMP SWH SHF REV IOR AND XOR NOR NND XNR
ADD ADC SUB SUC DAD DSU MPY DIV BTD DTB SHR SHL
SRC SLC ROR ROL RRC RLC FPA FPS FPM FPD CLF STF
MVF CPF SWF FLF ROF SCF CHF LDF SVF LSP SSP CLS
NES CMS DUS SLS SRS ADS SUS ORS ANS EXS PUS POP
JMP JCR JCD JCT JCX JSR RTS NOP SCC HLT SND RCV

/*LDI Help*/

Immediate Load instruction :

Syntax: LDI Rx, numerical or label operand;

Examples:

LDI R1, 2; /* loads 2 into R1. */
LDI R1, X20; /* loads 32 into R1.*/
LDI R1, T20; /* loads 16 into R1.*/
LDI R1, -2; /* loads -2 into R1.*/
LDI R2, N; N:4; /* loads 4 into R2. */

/*LDR Help*/

Relative Load instruction:

Syntax: LDR Rx, numerical or label address;

Examples:

LDR R1,20; /* loads the operand from memory location PC + 20 into R1.*/
LDR R2, N; N:10; /* loads the operand from memory location PC + 10 into
R2. */Ê

21

/*LDD Help*/

Direct Load instruction :

Syntax: LDD Rx, numerical or label address;

Examples:

LDD R1, 20; /* loads the operand in location 20 into R1.
LDD R2, N; N:10; loads the operand in location 10 into R2. */

/*LDT Help*/

Indirect Load instruction :

Syntax: LDT Rx, numerical or label address;

Examples:

LDT R1,20; /* loads the operand whose address is located in 20 into R1. */
LDT R2,N; N:10; /* loads the operand whose address is located in 10 into
R2. */

/*LDG Help*/

Register Load instruction:

Syntax: LDG Rx,Ry;

Example:

LDG R1, R2; /* loads the operand whose address in memory is located in R2
into R1.*/

/*LDX Help*/

Indexed Load instruction:

Syntax: LDX Rx, base,index;

Example:

LDX R1,10,2; /* loads the operand whose address in memory is given by IX
+ 10 into R1. IX is replaced by IX + 2 after the load. */

22

/*LD+ Help*/

Autoincrement Load instruction:

Syntax: LD+ Rx,Ry;

Example:

LD+ R1,R2; /* loads the operand whose address is in R2 into R1, and then
increments R2.*/

/*LD- Help*/

Autodecrement Load instruction :

Syntax: LD- Rx, numerical or label address;

Example:

LD- R1,R3; /* first decrements R3, and then loads the operand whose
address is in R3 into R1. */

/*STI Help*/

Immediate Store instruction :

Syntax: STI numerical or label operand,numerical or label address;

Examples:

STI 10,20; /* stores 10 in location 20.*/
STI 5,N; N:10; /* stores 5 in location 10. */
STI N,20; N:5; /* stores 5 in location 20. */

/*STR Help*/

Relative Store instruction :

Syntax: STR Rx, numerical or label address;

Examples:

STR R1,20; /* stores R1 into location PC+20. */
STR R2,N; N:10; /* stores R2 into location PC+20.*/

23

/*STD Help*/

Direct Store instruction :

Syntax: STD Rx, numerical or label address;

Examples:

STD R1,X10; /* stores R1 into memory location 16. */
STD R1,N; N:T10; /* stores R1 into memory location 8. */

/*STT Help*/

Indirect Store instruction :

Syntax: STT Rx, numerical or label address;

Examples:

STT R1,2; /* stores R1 into location whose address is found in location 2. */
STT R2,N;N:4; /* stores R2 into location whose address is found in location
4.*/

/*STG Help*/

Register Store instruction :

STG Rx,Ry;

Example:

STG R1,R2; /* stores R1 in location whose address is found in R2. */

/*STX Help*/

Indexed Store instruction:

Syntax: STX Rx,base,index;

Example:

STX 10,2; /* stores R1 into memory location whose address is given by IX +
10 IX is replaced by IX + 2 after the store. */

24

/*ST+ Help*/

Autoincrement Store instruction :

Syntax: ST+ Rx,Ry;

Example:

ST+ R1,R2; /* stores R1 in location whose address is found in R2. It then
increments R2. */

/*ST- Help*/

Autodecrement Store instruction:

Syntax: ST- Rx,Ry;

Example:

ST- R1,R2; /* first decrements R2 and then stores R1 in location whose
address is found in R2. */

/*MOV Help*/

Move Register instruction:

Syntax: MOV Rx,Ry;

Example:

MOV R1,R2; /* copies R2 to R1. The value of R2 is retained after the copy. */

/*NMV Help*/

Negate and Move register instruction :

Syntax: NMV Rx,Ry;

Example:

NMV R1,R2; /* copies -R2 to R1. The value of R2 is retained after the copy.
*/

25

/*AMV Help*/

Absolute Move Register instruction:

Syntax: AMV Rx,Ry;

Example:

AMV R1,R2; /* copies |R2|, i.e., the absolute value of R2 to R1. The value of
R2 is retained after the copy. */

/*IMV Help*/

Increment and Move Register instruction:

Syntax: IMV Rx,Ry;

Example:

IMV R1,R2; /* copies the incremented value of R2 into R1. The value of R2 is
not affected by the increment operation. */

/*EXC Help*/

Exchange Register instruction:

Syntax: EXC Rx,Ry;

Example:

EXC R1,R2; /* exchange the contents of R1 and R2. */

/*CLX Help*/

Clear Index Register instruction:

Syntax: CLX;

Example:

CLX; /* Clears the IX register, i.e. , it resets it to 0. */

26

/*CLR Help*/

Clear Register instruction:

Syntax: CLR Rx;

Example:

CLR R1; /* Clears R1, i.e., it resets to 0. */

/*INC Help*/

Increment Register instruction:

Syntax: INC Rx;

Example:

INC R1; /* increments R1 by 1. If R1 is 5, it becomes 6 after the increment.
If it is -5, it becomes -4 after the increment. */

/*DEC Help*/

Decrement Register instruction:

 Syntax: DEC Rx;

Example:

DEC R1; /* decrements R1 by 1. If R1 is 5, it becomes 4 after the
decrement. If it is -5, it becomes -6 after the decrement. */

/*NEG Help */

Negate Register Instruction:

Syntax: NEG Rx;

Example:

NEG R1; /* negates R1. If R1 is 5, it becomes -5 after negation. If it is -5, it
becomes 5 after negation. */

27

/*CMP Help*/

Complement Register Instruction:

Syntax: CMP Rx;

Example:

CMP R1; /* complements the bits in R1. If R1 is 01110000, it becomes
10001111 after complementation. */

/* SWH Help */

Swap Halves Register instruction:

Syntax: SWH Rx;

Example:

SWH R1; /* swap the two halves of R1 bit by bit. If R1 = 0111 0000, it
becomes 00000111 after swapping its halves. */

/*SHF Help */

Shuffle Register instruction:

Syntax: SHF Rx;

Example:

SHF R1; /* shuffles R1 as in shuffling a deck of cards. If R1 = 11110000, it
becomes 10101010 after it is shuffled. */

/*REV Help*/

Reverse Register instruction:

Syntax: REV Rx;

Example:

REV R1; /* reverses R1 bit by bit. If R1 = 11000000, it becomes 00000011
after it is reversed. */

28

/*IOR Help*/

OR instruction:

Syntax: IOR Rx,Ry;

Example:
IOR R1,R2; /* logically ORs the bits of R1 and R2, and stores the result in
R1. If R1 is 11110011 and R2 = 11000100, R1 becomes 11110111 after the
operation. R2 remains unchanged. */

/*AND Help*/

AND instruction:

Syntax: AND Rx,Ry;

Example:
AND R1,R2; /* logically ANDs the bits of R1 and R2, and stores the result in
R1. If R1 is 11110011 and R2 = 11000100, R1 becomes 11000000 after the
operation. R2 remains unchanged. */

/*XOR Help*/

Exclusive-OR instruction:

Syntax: XOR Rx,Ry;

Example:
XOR R1,R2; /* logically exclusive-OR the bits of R1 and R2, and stores the
result in R1. If R1 is 11110011 and R2 = 11000100, R1 becomes 00110111
after the operation. R2 remains unchanged. */

/*NOR Help*/

Not-OR instruction:

Syntax: NOR Rx,Ry;

Example:
NOR R1,R2; /* computes (R1 OR R2)', and stores the result in R1. If R1 is
11110011 and R2 = 11000100, R1 becomes 00001000 after the operation.
R2 remains unchanged. */

29

/*NND Help*/

Not-AND instruction:

Syntax: NND Rx,Ry;

Example:
NND R1,R2; /* computes (R1 AND R2)', and stores the result in R1. If R1 is
11110011 and R2 = 11000100, R1 becomes 00111111 after the operation.
R2 remains unchanged. */

/*XNR Help*/

Exclusive-NOR instruction:

Syntax: XNR Rx,Ry;

Example:
XNR R1,R2; /* exclusive-NOR the bits of R1 and R2, and stores the result in
R1. If R1 is 11110011 and R2 = 11000100, R1 becomes 11001000 after the
operation. R2 remains unchanged. */

/*ADD Help*/

Add instruction:

Syntax: ADD Rx,Ry;

Example:
ADD R1,R2; /* computes R1 + R2 and stores the result in R1. R2 remains
unchanged. */

/*ADC Help*/

Add with Carry instruction:

Syntax: ADC Rx,Ry;

Example:
ADC R1,R2; /* computes R1 + R2 + 1 and stores the result in R1. R2
remains unchanged. */

30

/*SUB Help*/

Subtract Instruction:

Syntax: SUB Rx,Ry;

Example:
SUB R1,R2; /* computes R1 - R2 and stores the result in R1. R2 remains
unchanged. */

/*SUC Help*/

Subtract with Borrow instruction:

Syntax: SUC Rx,Ry;

Example:
SUC R1,R2; /* computes R1 - R2 - 1 and stores the result in R1. R2 remains
unchanged. */

/*DAD Help*/

Decimal Add Instruction :

Syntax: DAD Rx,Ry;

Example:
DAD R1,R2; /* computes R1 + R2 in binary-coded-decimal, and stores the
result in R1. Refer to Introduction To Computers Using CodeMill-J for more
information. */

/*DSU Help*/

Decimal Subtract instruction:

Syntax: DSU Rx,Ry;

Example:
DSU R1,R2; /* computes R1 - R2 in binary-coded-decimal, and stores the
result in R1. Refer to Introduction To Computers Using CodeMill-J for more
information. */

31

/*MPY Help*/

Multiply instruction:

Syntax: MPY Rx,Ry;

Example:
MPY R1,R4; /* computes the product of R1 with R2 and stores the result in
registers R1 and R2. Refer to Introduction To Computers Using CodeMill-J
for more information. */

/*DIV Help*/

Divide instruction :

Syntax: DIV Rx,Ry;

Example:
DIV R1,R4; /* divides R1 by R4, and stores the quotient in R2, and
remainder in R1. Refer to Introduction To Computers Using CodeMill-J for
more information. */

/*BTD Help*/

Binary to Decimal conversion instruction:

Syntax: BTD Rx;

Example:
BTD R1; /* converts the binary representation in R1 to BCD. If R1 = 0001
1100 0010 1111, it becomes 0111 0010 0001 1111 after the operation. */

/*DTB Help*/

Decimal to Binary conversion instruction :

Syntax: DTB Rx;

Example:

DTB R1; /* converts the BCD representation in R1 to binary. If R1 = 0111
0010 00011111, it becomes 0001 1100 0010 1111 after the operation. */

32

/*SHR Help*/

Shift Right register instruction :

Syntax: SHR Rx;

Example:
SHR R1; shifts the bits in R1 right by 1 bit. The leftmost bit is reinserted.
The rightmost bit is lost. If R1 = 11011001,it becomes 11101100 after the
shift..

/*SHL Help*/

Shift Left register instruction:

Syntax: SHL Rx;

Example:
SHL R1; /* shifts the bits in R1 left by 1 bit. A 0 bit is inserted on the right.
The leftmost bit is lost. If R1 = 11011001, it becomes 10110010 after the
shift. */

/*SRC Help*/

Shift Right with Carry instruction :

Syntax: SRC Rx;

Example:
SRC R1; /* shifts R1 right by 1 bit. The carry (C) flag is inserted on the left.
The rightmost bit is lost. If C = 0,R1 = 11011001,R1 becomes 01101100
after the shift. */

/*SLC Help*/

Shift left with Carry instruction:

Syntax: SLC Rx;

Example:

SLC R1; /* shifts R1 left by 1 bit. The carry (C) flag is inserted on right. The
leftmost bit is lost. If C = 0,R1 = 11011001,R1 becomes 10110010 after the
shift. */

33

/*ROR Help*/

Rotate Right instruction :

Syntax: ROR Rx;

Example:
ROR R1; /* rotates R1 right by 1 bit. The rightmost bit is inserted on the
left. If R1 = 11011001, R1 becomes 11101100 after the rotation. */

/*ROL Help*/

Rotate Left instruction :

Syntax: ROL Rx;

Example:
ROL R1; /* rotates R1 left by 1 bit. The leftmost bit is inserted on the right.
If R1 = 11011001, R1 becomes 10110011 after the rotation. */

/*RRC Help*/

Rotate Right with Carry instruction:

Syntax: RRC Rx;

Example:
RRC R1; /* rotates R1 right by 1 bit with carry (C) flag . The rightmost bit
is placed in the C flag. If C = 0,R1 = 11011001,R1 becomes 01101100, C
becomes 1 after the rotation. */

/*RLC Help*/

Rotate Left with Carry instruction:

Syntax: RLC Rx;

Example:
RLC R1; /* rotates R1 left by 1 bit with carry. The leftmost bit is placed in
the C flag. If C = 0,R1 = 11011001,R1 becomes 10110010, The carry (C)
flag becomes 1 after the rotation. */

34

/*FPA Help*/

Floating-Point Add instruction:

Syntax: FPA Rx,Ry;

Example:
FPA R1,R3; /* computes the floating-point sum R1 + R3 and stores it in R1.
Refer to Introduction To Computers Using CodeMill-J for more information. */

/*FPS Help*/

Floating-Point Subtract instruction:

Syntax: FPS Rx,Ry;

Example:
FPS R1,R3; /* computes the floating-point difference R1-R3 and stores it in
R1. Refer to Introduction To Computers Using CodeMill-J for more
information. */

/*FPM Help*/

Floating-Point Multiply instruction :

Syntax: FPM Rx,Ry;

Example:
FPM R1,R3; /* computes the floating-point product R1 x R3 and stores it in
R1. Refer to Introduction To Computers Using CodeMill-J for more
information. */

/*FPD Help*/

Floating-Point Divide instruction:

Syntax: FPD Rx,Ry;

Example:

FPD R1,R3; /* computes the floating-point ratio R1/R3 and stores it in R1.
Refer to Introduction To Computers Using CodeMill-J for more information. */

35

/*CLF Help*/

Clear Frame instruction:

Syntax: CLF Frame Address, FrameSize;

Examples:
CLF 0000,01; /* clears the pixel at the top left corner on the screen . */
LDI R0,1; LDI R1,2; LDI R3,2;
CLF R1R2,02; /* clears the pixels (1,2),(1,3),(2,2),(2,3). */

/*STF Help*/

Set Frame instruction:

Syntax: STF Frame Address, FrameSize,Frame Color;

Examples:
STF 0000,01,03; /* sets the pixel at the top left corner on the screen to red.
*/
LDI R1,0; LDI R2,3; STF R1R1,01,R2; /* also sets the same pixel to red. */

/*MVF Help*/

Move Frame instruction:

Syntax: MVF frame address, frame size, frame address;

Example:
MVF 0000,01,0201; /* moves the pixel in location (0,0) to location (2,1) on
the screen. Larger frames are moved similarly. */

/*CPF Help*/

Copy Frame instruction:

CPF frame address, frame size, frame address;

Example:
CPF 0000,01,0201; /* copies the pixel in location (0,0) to location (2,1) on
the screen. Larger frames are copied similarly. */

36

/*SWF Help*/

Swap Frame instruction:

Syntax: SWF frame address, frame size, frame address;

Example:
SWF 0000,01,0201; /* swaps the pixels in locations (0,0) and (2,1) on the
screen. Larger frames are swapped similarly. */

/*FLF Help*/

Flip Frame instruction:

Syntax: FLF frame address, frame size, flip orientation;

Example:
FLF 0000,04,01; /* flips the 4 by 4 frame at the top left corner of the screen
about the horizontal line that cuts it into two halves. */

/*ROF Help*/

Rotate Frame instruction:

Syntax: ROF frame address, frame size, rotation amount;

Example:
ROF 0000,04,80; /* rotates a 4 by 4 frame 180 degrees. Refer to
Introduction To Computers Using CodeMill-J for more information. */

/*SCF Help*/

Scale Frame instruction :

Syntax:

SCF frame address,frame size,horizontal scale,vertical scale;

Examples:

SCF 0000,02,01,01; /* doubles a 2 by 2 frame. SCF 0000,02,FF,FF; shrinks a
2 by 2 frame by half. Refer to Introduction To Computers Using CodeMill-J
for more information. */

37

/*CHF Help*/

Character Frame instruction:

Syntax: CHF frame address,character code,character color;

Example:
CHF 0000,48,02; /* displays upper case H on the top left corner. Note: CHF
instruction works only with 32x32 or higher resolutions. */

/*LDF Help*/

Load Frame instruction:

Syntax: LDF frame address,frame size, memory address;

Example:
LDI R0,X100; LDF 0000,R0,XA; /* loads the set of pixels located in memory
locations 000A through 0109 on to the 256x256 screen. */

/*SVF Help*/

Save Frame instruction:

Syntax: SVF frame address, frame size, memory address;

Example:
LDI R0,X100; SVF 0000,R0,XA; /* saves the entire screen into memory
locations 000A through 0109. */

/*LSP Help*/

Load Stack Pointer instruction:

Syntax: LSP register id or memory address;

Examples:

LSP R3; /* loads the stack pointer from R3. LSP 14; loads the stack pointer
from memory location 14. */

38

/*SSP Help*/

Save Stack Pointer instruction:

Syntax: SSP register id or memory address;

Examples:
SSP R3; /* saves the stack pointer in R3. SSP 14; save the stack pointer in
memory location 14. */

/*CLS Help*/

Clear Stack instruction :

Syntax: CLS;

Example:
CLS; /* clears the stack top, i.e., it resets it to 0. */

/*NES Help*/

Negate Stack instruction:

Syntax: NES;

Example:
NES; /* negates the operand at the top of the stack. */

/*CMS Help*/

Complement Stack instruction :

Syntax: CMS;

Example:
CMS; /* complements the bits of the operand at the top of the stack .*/

39

/*DUS Help*/

Duplicate Stack instruction:

Syntax: DUS;

Example:
DUS; /* duplicates the operand at the top of the stack. It also increments the
stack pointer. */

/*SLS Help*/

Shift Left Stack instruction:

Syntax: SLS;

Example:
SLS; /* shifts the operand at the top of the stack to left by 1 bit.*/

/*SRS Help*/

Shift Right Stack instruction:

Syntax: SRS;

Examples:
SRS; /* shifts the operand at the top of the stack to right by 1 bit. */

/*ADS Help*/

Add Stack instruction:

Syntax: ADS;

Example:
ADS; /* adds the two operands at the top two locations of the stack. It also
decrements the stack pointer. */

40

/*SUS Help*/

subtract stack instruction:

Syntax: SUS;

Example:
SUS; /* computes the difference of the two operands at the top two lcations
of the stack. It also decrements the stack pointer. */

/*ORS Help*/

OR stack instruction:

Syntax: ORS;

Example:

ORS; /* logically ORs the two operands at the top two locations of the stack.
It also decrements the stack pointer. */

/*ANS Help*/

AND stack instruction :

Syntax: ANS;

Example:
ANS; logically ANDs the two operands at the top two locations of the stack. It
also
decrements the stack pointer.

/*EXS Help*/

Exchange Stack instruction :

Syntax: EXS;

Example:

EXS; /* exchanges the top two elements at the top two locations of the
stack. */

41

/*PUS Help*/

Pus Stack instruction:

Syntax: PUS register- id or memory address;

Example:
PUS R3; /* pushes the operand in R3 to the top of the stack. It also
increments the stack pointer. */

/*POP Help*/

Pop Stack instruction:

POP register id or memory address;

Example:
POP R2; /* pops the operand at the top of the stack to R2. It also
decrements the stack pointer. */

/*JMP Help*/

Jump instruction:

Syntax: JMP (D or R or T or X), branch address;

Example:
JMP D,loop; /* forces CodeMill-J to branch to the instruction identified
by the label 'loop'. */

/*JCR Help*/

Jump conditional (Relative) instruction. :

Syntax: JCR branch condition, relative branch address;

Example:

JCR R1,<,R2,relative; /* forces CodeMill-J to branch to the instruction that is
located at PC + relative if R1 < R2. */

42

/*JCD Help*/

Jump Conditional (Direct) instruction :

Syntax: JCD branch condition, relative branch address;

Example:
JCD R1,<>,R2,again; /* forces CodeMill-J to branch to the instruction that is
located at 'again' if R1 is not equal to R2. */

/*JCT Help*/

Jump Conditional (Indirect) instruction:

Syntax: JCT branch condition, relative branch address;

Example:
JCD R1,=,0,indirect; /* forces CodeMill-J to branch to the address that is
specified in the location 'indirect' if R1 = 0. */

/*JCX Help*/

Jump conditional (Index) instruction:

Syntax: JCX branch condition, index displacement;

Example:
JCX R3,=,1,4; /* forces CodeMill-J to branch to the address that is specified
in IX if R3 = 1, and then increments IX by 4. */

/*JSR Help*/

Subroutine Call instruction :

Syntax: JSR subroutine address;
or
JSR subroutine address, R;

Examples:
JSR subroutine1; /* forces CodeMill-J to jump to the subroutine identified by
the label 'subroutine1'. */
JSR subroutine1; /* same as above plus, the scratchpad registers are saved
before CodeMill Jr. branches to the subroutine. */

43

/*RTS Help*/

Return From Subroutine instruction:

Syntax: RTS;

Example:

JSR subr; HLT;
subr: ADD R1,R2; RTS; /* forces CodeMill-J to return to HLT instruction
after it executes the ADD instruction in the subroutine. */

/*NOP Help*/

No-operation instruction:

Syntax: NOP operand;

Example:
NOP 10; /* forces CodeMill-J to execute 10 cycles without performing any
operation. NOP can be used to introduce delay between excutions of
instructions. */Ê

/*SCC Help*/

Set Condition Codes instruction:

Syntax: SCC Register or numerical operand;

Examples:
SCC 7; /* complements the overflow and sign flags SCC 5; sets the overflow
and sign flags. Refer to Introduction To Computers Using CodeMill-J for more
information. */

/*HLT Help*/

Halt instruction:

Syntax: HLT;

Example:
HLT; /* halts the execution of a program upon the completion of its
execution. */

44

/*SND Help*/

Send instruction :

Syntax: SND Register id,device id/data;

Example:
LDI R1,0; SND R1,3; /* sends a red pixel to the screen. */

/*RCV Help*/

Receive instruction:

Syntax: RCV Register id,device id;

Example:
RCV R1,0; /* forces CodeMill-J to receive a character from the keyboard. */

8.2 Command Keys

/*STEP Help*/

STEP forces CodeMill-J to execute the instruction in the instruction register.

/*EXEC Help*/

EXEC forces CodeMill-J to execute the program in the text area of this
window.

/*SUSP Help*/

SUSP forces CodeMill-J to suspend executing the program in the text area
of this window.

/*RESM Help*/

RESM forces CodeMill-J will resume executing the program in the text area
of this window.

45

/*RAM Help*/

RAM brings up or hides the RAM memory.

/*VRAM Help*/

VRAM brings up or hides the VRAM memory.

/*STACK Help*/

STCK brings up or hides the STACK memory.

/* CPUR Help*/

CPUR brings up or hides the scratchpad and control register.

/* RSTA Help*/

RSTA resets all the registers and clears the screen.

/* CSRC Help*/

CSRC clears the picture on the screen.

/* RSPC Help*/

RSPC resets the program counter.

/* RSSP Help*/

RSSP resets the stack pointer.

/* RSIX Help*/

RSIX resets the IX register.

/* H/SCN Help*/

H/SCN toggles the background scene on the screen in and out view.

46

/* H/SRN Help*/

H/SRN toggles the background grid on the screen in and out view.

/* H/SPD Help*/

H/SPD toggles the sratchpad registers in and out of view.

/* BNRY Help*/

BNRY sets the registers to binary.

/* OCTL Help*/

OCTL sets the registers to octal.

/* DCML Help*/

DCML sets the registers to decimal.

/* XCML Help*/

XCML sets the registers to hexadecimal.

/* SPSZ+ Help*/

SPSZ+ sets the scratchpad size to the next value in the menu.

/* SPSZ- Help*/

SPSZ- sets the scratchpad size to the previous value in the menu.

47

/* RMSZ+ Help*/

RMSZ+ sets the RAM size to the next value in the menu.

/* RMSZ- Help*/

RMSZ- sets the RAM size to the previous value in the menu.

/* VRSZ+ Help*/

VRSZ+ sets the VRAM size to the next value in the menu.

/* VRSZ- Help*/

VRSZ- sets the VRAM size to the previous value in the menu.

/* STSZ+ Help*/

STSZ+ sets the STACK size to the next value in the menu.

/* STSZ- Help*/

STSZ- sets the STACK size to the previous value in the menu.

/* RESL+ Help*/

RESL+ sets the GRID Resolution to the next value in the menu.

/* RESL- Help*/

RESL- sets the GRID Resolution to the previous value in the menu.

48

/* SCRN+ Help*/

SCRN+ sets the Screen size to the next value in the menu.

/* SCRN- Help*/

SCRN- sets the screen size to the previous value in the menu.

/* SCN+ Help*/

SCRN+ sets the scene to the next value in the menu.

/* SCN- Help*/

SCRN- sets the scene to the previous value in the menu.

/* COLR+ Help*/

COLR+ sets the Color to the next value in the menu.

/* COLR- Help*/

COLR- sets the Color to the previous value in the menu.

9. CodeMill-J Help on the Web

CodeMill-J is a dynamic learning technology. To keep up with the most up-to-
date information about CodeMill-J, please visit www.sabatech.com often.

