MATH 221 - Finding a unique row space solution. October 23, 2015

Experience is another word for mistakes.

The general solution to the system $A \vec{x}_{g}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is obtained from the row reduction $\left[\begin{array}{lll|l}1 & 2 & 3 & 2 \\ 2 & 4 & 5 & 1\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 2 & 3 & 2 \\ 0 & 0 & -1 & -3\end{array}\right]$. This row reduction shows that a basis for the row space is $R_{A}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]\right\}$. Further, from the row reduction $x_{3}=3$ and $x_{1}=-2 x_{2}-3 x_{3}+2=-2 x_{2}-7$. Hence, the general solution \vec{x}_{g}, in vector form, reads

$$
\vec{x}_{g}=x_{2}\left[\begin{array}{c}
-2 \tag{1}\\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-7 \\
0 \\
3
\end{array}\right] \equiv x_{2} \vec{\eta}+\vec{x}_{p}
$$

where x_{2} is arbitrary. The form of the general solution shows $\mathcal{N}(A)=\operatorname{span}\{\vec{\eta}\}$. The Orthogonal Subspace Decomposition Theorem (OSDT (pronounced ohst) is on page 146) guarantees that there is a solution $\vec{x}_{r}=\alpha \vec{\eta}+\vec{r}$ where $\vec{\eta} \in \mathcal{N}(A)$ and $\vec{r} \in R_{A}$. In addition, these vectors are orthogonal, $\vec{\eta} \cdot \vec{r}=0$, and they vectors are unique. Equating \vec{x}_{g} and \vec{x}_{r} and solving for the unknown row space solution yields

$$
\begin{equation*}
\vec{r}=\left(x_{2}-\alpha\right) \vec{\eta}+\vec{x}_{p} \in R_{A} . \tag{2}
\end{equation*}
$$

Using the orthogonality of R_{A} with $\mathcal{N}(A)$ leads to the equation

$$
0=\vec{\eta} \cdot \vec{r}=\vec{\eta} \cdot\left\{\left(x_{2}-\alpha\right) \vec{\eta}+\vec{x}_{p}\right\}=\left(x_{2}-\alpha\right)\|\vec{\eta}\|^{2}+\vec{\eta} \cdot \vec{x}_{p}=\left(x_{2}-\alpha\right) 5+14
$$

which implies $x_{2}-\alpha=-14 / 5$. Substituting this into (2) shows

$$
\begin{aligned}
\vec{r} & =\left(x_{2}-\alpha\right) \vec{\eta}+\vec{x}_{p}=\left(\frac{-14}{5}\right)\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-7 \\
0 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
28 / 5-7 \\
-14 / 5 \\
3
\end{array}\right]=\left[\begin{array}{c}
-7 / 5 \\
-14 / 5 \\
-21 / 5
\end{array}\right]+(36 / 5)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& =\left\{(-7 / 5)\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]+(36 / 5)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \in R_{A} .
\end{aligned}
$$

If you wish to make "doubly sure" you have a particular solution, check that $A \vec{r}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. To find \vec{x}_{r} or \vec{x}_{g} (they are the same through the connection
$\left.x_{2}=\alpha-14 / 5\right)$, write

$$
\begin{aligned}
\vec{x}_{g}=x_{2} \vec{\eta}+\vec{x}_{p} & =(\alpha-14 / 5) \vec{\eta}+\vec{x}_{p}=\alpha\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]-14 / 5\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-7 \\
0 \\
3
\end{array}\right] \\
& =\alpha\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+\left\{(-7 / 5)\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]+(36 / 5)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}=\alpha \vec{\eta}+\vec{r}=\vec{x}_{r}
\end{aligned}
$$

Repeat the above for $A \vec{x}_{g}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The row reduction reads

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
2 & 4 & 6 & 2
\end{array}\right] } \sim\left[\begin{array}{lll|l}
1 & 2 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] . \text { This gives } \\
& \vec{x}_{g}=\left\{x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right\}+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \equiv x_{2} \vec{\eta}+x_{3} \vec{\xi}+\vec{x}_{p}
\end{aligned}
$$

where x_{2} and x_{3} are arbitrary. The form of the general solution implies
$\mathcal{N}(A)=\operatorname{span}\{\vec{\eta}, \vec{\xi}\}$ and the row reduction shows that $R_{A}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$. Once
again, OSDT guarantees a solution $\vec{x}_{r}=\alpha_{1} \vec{\eta}+\alpha_{2} \vec{\xi}+\vec{r}$ where $\alpha_{1} \vec{\eta}+\alpha_{2} \vec{\xi} \in \mathcal{N}(A)$ and $\vec{r} \in R_{A}$. These vectors are orthogonal so that they satisfy $\left[\alpha_{1} \vec{\eta}+\alpha_{2} \vec{\xi}\right] \cdot \vec{r}=0$. Equating these two solutions and solving for the unknown row space solution gives

$$
\begin{equation*}
\vec{r}=\left(x_{2}-\alpha_{1}\right) \vec{\eta}+\left(x_{3}-\alpha_{2}\right) \vec{\xi}+\vec{x}_{p} \tag{3}
\end{equation*}
$$

Using the orthogonality $\left(R_{A} \perp \mathcal{N}(A)\right)$, it follows that $0=\vec{r} \cdot \vec{\eta}=\vec{r} \cdot \vec{\xi}$. This leads to two equations in the unknows $x_{2}-\alpha_{1}$ and $x_{3}-\alpha_{2}$. Solve to find $x_{2}-\alpha_{1}=1 / 7$ and $x_{3}-\alpha_{2}=3 / 14$ which, when substituted into (3) gives

$$
\vec{r}=\left\{1 / 7\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+(3 / 14)\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right\}+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 / 7-9 / 14+1 \\
1 / 7 \\
3 / 14
\end{array}\right]=\left[\begin{array}{l}
1 / 14 \\
2 / 14 \\
3 / 14
\end{array}\right]
$$

Hence, the "row space" solution reads

$$
\vec{x}_{r}=\alpha_{1} \vec{\eta}+\alpha_{2} \vec{\xi}+\vec{r}=\left\{\alpha_{1}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right\}+(1 / 14)\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

By definition $\alpha_{1}\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+\alpha_{2}\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right] \in \mathcal{N}(A)$ and $(1 / 14)\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \in R_{A}$

