ࡱ> a >jbjb,, $dNN7"....****<*L7H>+>+>+>+>+:::GGGGGGG,;JRLG:)8:::G:..>+>+ G::::.">+>+G:zh....:G::EPrG2+ FY6*:bFGH07HxF6QM:QM,G:$MATH HELP SHEET PHYSICS 110 SCIENTIFIC NOTATION In astronomy, as in much of the physical sciences, you will encounter very large and very small numbers. Scientists have developed a mathematical shortcut for expressing these numbers called scientific notation. To write a number that is greater than 1 in scientific notation, count the number of spaces after the first number (well call it n). Then rewrite the original number by placing a decimal point after the first number and multiplying the result by 10 raised to the power equal to the number n. Here are some examples: 300000 = 3 x 105. (There are 5 spaces behind the 3) 214 = 2.14 x 102. (There are 2 spaces behind the 2) 5 = 5 x 100. (There are 0 spaces behind the 5) 654000000000000 = 6.54 x 1014. (There are 14 spaces behind the 6) To write a number less than one in scientific notation, count the number of spaces between the decimal point and the first nonzero number, inclusive (well call it m). Then rewrite the original number by placing a decimal point to the right of the first nonzero number and multiplying the result by 10 raised to the negative power (-m). Here are some examples: 0.0001 = 1 x 10-4. (There are four spaces: 0 0 0 and 1) 0.03457 = 3.457 x 10-2. (There are only 2 spaces:0 and 3) 0.5 = 5 x 10-1. (There is only one space, the 5) 0.000000000000897 = 8.97 x 10-13. (There are 13 spaces between the decimal point and the 8, inclusive) Scientific notation also makes multiplication and division easier, because multiplying and dividing becomes similar to adding and subtracting. Here are some examples: 105 x 103 = 105+3 = 108. 105/103 = 105-3 = 102. (4 x 108) x (2 x 106) = (4 x 2) x (108 x 106) = 8 x 108+6 = 8 x 1014. (9 x 109) / (3 x 108) = (9/3) x (109/108) = 3 x109-8 = 3 x 101 = 30. (8 x 10-2) / (4 x 10-6) = (8/4) x (10-2/10-6) = 2 x 10-2 - -6 = 2 x 10-2+4 = 2 x 10-2. (6 x 108) x (4 x 10-5) = (6 x 4) x (108 x10-5) = 24 x108-5 = 24 x103 = (2.4 x 101) x (103) = 2.4 x104. Write the following in scientific notation: 1) 546000 2) 390 3) 47210000000000000 4) 151000000 5) 0.000000000009 6) 0.00005 7) 0.0000000676 8) 0.00311172 Solve the following: 1) (5 x 109) x (9 x 108) 2) (4.2 x 104 x (2 x 103) 3) (1.2 x 10-2) x (1.2 x 102) 4) (7 x 10-4) x (3 x 10-6) 5) (1.2 x 10-2)/(1.2 x 102) 6) (4 x 106)/(8 x 102) 7) (1.2 x 10-2)/(1.2 x 10-2) 8) (3 x 102)/(1.5 x 108) TYPICAL MATHEMATICS Mathematical formulae are a way for scientists to describe physical principles concisely. It is far more economical to write "P2 = a3" than "the orbital period of a planet around the Sun increases with distance such that its square is proportional to the cube of the planets semi-major axis". In this class, it is far more important to understand the basic principle expressed in (for example) P2 = a3: planets farther from the Sun take longer to go around the Sun. Nevertheless, you will be expected to be familiar with a few formulae, because, in addition to their qualitative conciseness, these mathematical expressions contain quantitative information about the universe in which we live. The typical math in this class will involve solving for an unknown quantity given another, ratios, and a little trigonometry. Here are some examples. STELLAR PARALLAX The expression for stellar parallax is p = 1/d, where p is the parallax angle in arcseconds and d is the distance in parsecs. If p or d is given in a problem, then you can solve for d or p using the above formula. For example: an astronomer measures a stars parallax as p = .1 arcseconds. What is the distance of the star? Answer: Using p = 1/d, we need to solve for d given p. To do this, divide both sides of the equation by p: p/p = 1/(dp), or 1 = 1/(dp). Now multiply both sides by d: d = 1/p. Finally solve for d using p = 0.1: d = 1/0.1, or d = 10 parsecs. What is the distance of a star with a parallax of .025 arcseconds? What is the parallax angle for a star 200 parsecs away? KEPLERS LAWS As we will see in class, Johannes Kepler determined that planets moved in elliptical orbits about the Sun (Keplers First Law, or KI), that they sped up when they approached the Sun (KII), and that planets farther from the Sun moved more slowly than planets closer to the Sun (KIII). Keplers Third Law, sometimes called the Harmonic Law can be written as P2 = a3, Where P is the orbital period of a planet about the Sun (measured in years) and a is the semi-major axis of the planets orbit (measured in AUsthe average distance between the Earth and the Sun). The semi-major axis is basically the average distance a planet is from the Sun. Often were given one of these quantities, and we need to solve for the other. For example, suppose a new planet has an average distance of 4 AU. What is its orbital period? First, square-root both sides to isolate P: (P2)1/2 = (a3)1/2 => P = a3/2 = (4)3/2. But 4 = 22, so P = (22)3/2 = 23 = 2x2x2 = 8 yrs. As another example, consider a comet with a period of 1000 years. What is its average distance from the Sun? Now start by taking the cube root of both sides to isolate a: (P2)1/3 = (a3)1/3 => a = P2/3 = (1000)2/3. But 1000 = 103, so a = (103)2/3 = 102 = 10x10 = 100 AU. Here are some more examples. Given a = 9, 25, 36, 64, and 100 AU, find P in years. Given P = 64, 343, 729, and 8000 years, find a in AU. RATIOS The expression for the energy flux from the surface of a star is F = sT4, where F is the energy flux, s is a constant, and T is temperature. The value of s is of little importance for understanding the physics of this equation, and there will be other expressions in the class where constants appear but you will not need to memorize them. The essential principle behind the above expression is that the energy emitted by a star increases tremendously when the temperature increases (to the fourth power). Thus, if you could somehow double the surface temperature of a star, 24 = 16 times more energy flux would be measured. Suppose now that you observe two stars, and that one star is 4 times hotter than the other. What is the ratio of energy fluxes Fhot/Fcool? Answer: From the expression given above, we know that Fhot = sThot4, and Fcool = sTcool4. Thus, the ratio can be written: Fhot sThot4 Thot4 Thot 4 . Fcool sTcool4 Tcool4 Tcool Note that the constant disappeared, and we are left with the ratio of the temperatures to the fourth power. We know from the problem that Thot = 4 x Tcool, so: Fhot/Fcool = (4Tcool/Tcool)4 = (4)4 = 256. More examples: What is the ratio of fluxes when the hotter star is 6 times as hot as the cooler star? 10 times? 50? We can (and will) perform similar ratios when we want to compare the surface gravity or escape speeds of two planets, or the gravitational force between pairs of objects. SCALE One of the more important concepts of this course is actually quite simple: SPACE IS BIG. REALLY, REALLY, TREMENDOUSLY BIG. I MEAN TRULY REMARKABLY, STUPENDOUSLY BIG, ESPECIALLY COMPARED TO THE OBJECTS IN IT. In the first lecture, I demonstrated this with different Solar System models, each of which relied on a particular scale. In the 500 yard solar system model, I used a scale of 1 = 200,000 miles; that is, every inch represented a distance of 200,000 miles. A different scale might use 1 = 500 miles; in your first homework, you will be asked about a scale model using 1 cm = 3000 km. Constructing scale models is just more ratios in disguise. For example, if the scale is 1/200,000 miles, then to find out how many inches represent the Earth-Sun distance of 93,000,000 miles, for the ratio: X(inches)/93000000 miles = 1 inch/200,000miles. Solve for X: X = 93,000,000 miles*(1 inch/miles) (note that the miles divide each out) X = 465 inches. Since there is 1 yard/36 inches, this is X = 465 inches*(1 yard/36 inches) = 12.9 yards, or about the 13 yards I used in lecture. Some more examples: What is the distance and size of the Earth, Moon and Sun on a scale model where 1cm = 106 km? What is the scale of a globe in which the Earth is 1 meter across? How big would the Moon and Sun be, to this same scale? How far away would they be? ANGLES AND BASIC TRIGONOMETRY There are 360 degrees in a circle; 180 degrees in a line or a triangle. Each degree is further divided into 60 arcminutes, and each arcminute is divided into 60 arcseconds. Sometimes in astronomy, we will use radians instead of degrees. The radian is a unitless measure of arc. There are 2p (about 6.28) radians in 360 degrees. The basic trigonometric relations are defined with a right triangle:  sin(q) = Opposite/Hypotenuse cos(q) =Adjacent/Hypotenuse tan(q)=Opposite/Adjacent Where the hypotenuse is the side opposite the right angle. The relations sine, cosine, and tangent are really ratios of different sides of the triangle. A simple way to remember which sides go with which trig function is the mnemonic: SOHCAHTOA, i.e., Sine = Opposite/Hypotenuse (SOH), Cosine = Opposite/Hypotenuse (CAH), and Tangent = Opposite/Adjacent (TOA). Often well know one of the sides of the triangle and the angle, and from that solve for the other. Usually, well use the sine function, and if the angle is small enough, we can replace the sine of the angle with the angle itselfas long as we are using radians, not degrees (try it with a calculator: the sine of 1 radian is 0.84; the sine of .1 radian is 0.0998). This is sometimes called the small angle approximation, and youll see it first when we use the homemade cross-staffs in the first class project. How exciting! Angles are useful for determining actual sizes and distances to astronomical objects: Suppose you observe an object that subtends a particular angle on the sky. Lets choose the Sun: the Sun subtends about o on the sky; that is, the width of the Sun is o; recall that there 180o from horizon to horizon and 360o across the entire sky. If we know the distance to the Sun, we can compute its actual size, using the following angular ratio (also see page 18 in your book): Diameter/(2pdistance) = angular diameter/360o. In other words, the ratio of the angular diameter to the full sky is equal to the ratio of the actual diameter to the circumference of an imaginary circle with radius equal to the distance from us: So, to solve for the actual Diameter, D: D = (q/57.3o)d, and (note that 57.3o = 2p/360o) D = (0.5/57.3)(150x106 km) = 1.31 x 106 km, or a little more than a million kilometers! On the other hand, if we know the size of the object, we can find its distance as long as we know its angular size. The Moon also happens to have an angular size of about half a degree, but it is considerable smaller; in this case D = 3400 km. Solving for d this time: d = D/(0.5/57.3) = (3400km)/(0.0087) = 390,000 km. More examples! Oh joy! Using the information in the text, find the angular size of each of the planets in the Solar System as seen from the Earth. Note that now youre solving for theta, given a known distance and diameter. But be careful! Make sure that both D and d are given in kilometers. OTHER ISSUES MATH GRAMMAR Mathematics is a fundamental part of the way modern astronomy operates, and so its inclusion in an astronomy class is necessary. When answering a math question on an exam or assignment, please follow these guidelines: Mathematical expressions are a form of grammar, and as such require punctuation. End each equation as you would an independent clause (usually a period, but a continuation is also acceptablesee above). This allows a readerand a graderto understand clearly what you have written. You may also notice some conventions regarding math operationsfor example, placing two variables next to each other is science-speak for multiplication (we rarely use a times symbol, except with scientific notation. UNITS & NUMBERS Always include units if appropriate. Also note that units can be divided and multiplied just like real numbers. This often happens when were computing ratios. For example, if you want to know how many seconds there are in a year, you would do something like the following:  (60 seconds/1 minute) x (60 minutes/1 hr) x (24 hrs/ 1 day) x (365.25 d/ 1 yr) = 31557600 seconds/yr = 3.16 x 107 s/yr. Note that the minutes, hrs and days cancelled each other out. Note as well that I wrote the final answer using scientific notation, and that I rounded to three significant numbers. Usually in this course, you will not need to quote more than two or three significant figures; I will always let you know if you need to do use more than that. A more common example you are probably more familiar with is when you drive. If you drive for an hour at 60 mph, how far have you gone? Instinctively, you know the answer is 60 miles. The math behind that answer is another example of units being important: (60 miles/1hour) x (1 hour) = 60 miles. METRIC SYSTEM, SOLAR SYSTEM, AND COMPARISONS Throughout most of the course, well use the metric system of measurement (so kilometers instead of miles, kilograms instead of pounds and so forth). As we discuss truly large numberssay the mass of Jupiter or the distance to Neptune, well switch to comparative units. So rather than give a truly gigantic number of kilograms for the mass of Jupitera number so huge and ungainly that it means little intuitively, we usually quote the mass in terms of the Earths mass: 318 or so times the mass of the Earth. The same is done for Neptunes average distance from the Sun, which is usually expressed in Astronomical UnitsAUs for shortwhich is just the average distance between the Earth and the Sun. These are just more ratios sneaking there way into astronomy. Theyre funny that way. SHOW YOUR WORK! Always show all of your work. I will award substantial partial credit to answers that demonstrate you understand the principle involved, but got the wrong answer due a minor slip-up. ASK ME! HONEST, IM HERE TO HELP! Above all else, please feel free to see me during office hours or schedule an appointment if you are having difficulties with the mathematics of the course. I will of course be happy to go over all the examples in this sheet during office hours or during the help/review sessions during the term. = = = H O A q q d D "6,-VW \ d m n  I L < = B C H L P Q U V Y Z _ c g h q r } ~  ֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺֺhNh({PH*OJQJaJhNh({P6OJQJaJhNh({POJQJaJhNh({P5OJQJaJ hNh({PCJ OJQJaJ I "6G{ , : S j L 1$7$8$H$]gd({P 1$7$8$H$gd({P$1$7$8$H$a$gd({P @1$7$8$H$gd({P 1$7$8$H$gd({P=>   ! + 2 ; ? H J S T _ a t y TUjtu"$01<=>AU!hNh({PB*OJQJaJph!"hNh({P5OJQJaJhNh({POJQJaJhNh({PH*OJQJaJJ *6GUj &?AU $1$7$8$H$a$gd({P 1$7$8$H$gd({P1$7$8$H$`gd({Pct,dft$ 1$7$8$H$a$gd({P |p1$7$8$H$gd({P 1$7$8$H$gd({P 1$7$8$H$gd({P$1$7$8$H$a$gd({Pft "#$',-;<ophNh({PH*OJQJaJhNh({POJQJaJhNh({PH*OJQJaJhNh({P5OJQJaJhNh({POJQJaJhNh({P>*OJQJaJ>0@] 1$7$8$H$gd({P 1$7$8$H$gd({P$ & F 1$7$8$H$a$gd({P$ 1$7$8$H$a$gd({P   #$%)*,-MTUY^_`cdgjklprz{},/7仭仭仭仭仭仭仭hNh({POJQJaJ+jh({POJQJUaJmHnHsHtHhNh({PH*OJQJaJhNh({PH*OJQJaJhNh({POJQJaJhNh({P5OJQJaJhNh({POJQJaJhNh({PH*OJQJaJ6,M~Alm| "##$N$$$$$ 1$7$8$H$gd({P$ |p1$7$8$H$a$gd({P$1$7$8$H$a$gd({P7;BEGKQUW[\]cd P%Q%%&&&0'1'''''''''''''+jjj+jh({POJQJUaJmHnHsHtHhNh({POJQJaJhNh({P6OJQJaJhNh({PH*OJQJaJhNh({P>*OJQJaJ!hNh({PB*OJQJaJph!"hNh({PH*OJQJaJhNh({PH*OJQJaJhNh({POJQJaJhNh({PH*OJQJaJ&$X%%%&'''''(^)r+L-{-C.D.F.G.H.I.r.t..//$1$7$8$H$^a$gd({P$1$7$8$H$a$gd({P++C,D,s,t,,,,,W-X-x-y-{-|-F.H.z.{.............L0M0v1111c4s45556䥘ɘɘ||nhNh({PH*OJQJaJhNh({P>*OJQJaJhNh({PH*OJQJaJhNh({POJQJaJhNh({P5OJQJaJ+jh({POJQJUaJmHnHsHtHhNh({POJQJaJhNh({PH*OJQJaJhNh({POJQJaJhNh({P6OJQJaJ+/0L0M0e0v1w111k233a4b4c4s45556f7j888 1$7$8$H$gd({P 1$7$8$H$gd({P$1$7$8$H$a$gd({P6j8l888;;<<==> > > >>>>>>>>ĹĬģĕhNh({POJQJaJo(hNh({PaJhNh({POJQJaJhNh({POJQJh({P hNh({PhNh({P>*OJQJaJ+jh({POJQJUaJmHnHsHtHhNh({POJQJaJ88;;;;<<=======>>>>>> > > > >>$1$7$8$H$a$gd({P 1$7$8$H$gd({P>>>>>>>>> 1$7$8$H$gd({P$1$7$8$H$a$gd({P":p({P/ =!"#$%<@< NormalCJaJmH sH tH DA@D Default Paragraph FontRiR  Table Normal4 l4a (k(No List !8     !$ 8d !z!z!z!z!z z z z z zA f!I(c.58E) "6G{ ,:SjL *6GUj & ? A U ct,dft0@],M~Alm|NX !!!!!"^#r%L'{'C(D(F(G(H(I(r(t(())*L*M*e*v+w+++k,--a.b.c.s.///0f1j22225555667777777888888 8 8 8 8888888880`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0`0p`0p`ƀ0p`ƀ0`0`0`0`0`0`0`0`0`0`0`0`0000p`000p0000 0  000p`ƀ0p000Р0p`ƀ0p`0000 00p`0`0`0p0p`ƀ0p`0p`ƀ0p`0Т0p`0Т0p`0p`0p`0p`0@0p`0p`ƀ0p`0p`0Т0Т0p0000000`0`00 00@{0@{00p00p`0p`0p`0p`0p`0p`0p`00p`ƀ0p`0Т0p`ƀ0р0`ƀ0`ƀ0`0`ƀ0р0`ƀ0 0`ƀ0`ƀ0р0р0`ƀ0 0р0р0`ƀ0`ƀ0`0`ƀ0 0`ƀ0`0`ƀ0`0p0p0p0p0pǀ0p0pǀ0p0p0p0p0p0p0p0pǀ0p0p0p0p00p0pǀ0 "6G{ ,:SjL *6GUj & ? A U ct,dft0,M~Alm|N !!!!!"^#r%L'{'C(D(F(G(H(r(t(())*w+k,a.5680@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@0@0@0@0@0@0@0@0@0@ʀ0@ʀ0@ʀ0@ʀ 0@ʀ 0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@ʀ0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@@0@0w&0w&0w&0w&0w&0w&0w&0@0@ 0@ 0@ 0@ 0@>  7+6>!$')+-/ $/8>>"%&(*,.01>#l#%,R$IEL@n !$ (  HB  C DHB  C DHB  C DHB  C D 6    N  3   N  3   N   3   6b     N   3   N   3    N   3    N  3    &N  x"+(     S L  . ``T`T`T`TI&H%+(  ,L  x"I&(  x"I&(0Z  ,#%(   ,#%(2  s C&ENG~H=Jt&Q `TzK_T&`TzK_T&t&K_T&t&$M+'TB  C D ,#"%TB  C D %"( 4  ,#%(  S L . ``T`T`T`TH%U(   S L  . ``T`T`T`Tx""%  `B  c $DI&,#I&(HB  C DHB  C D HB  C DHB   C DHB ! C DHB " C DHB # C DHB $ C DB S  ?,MNOPQRS!!!!!{'//////j2k28}t  Mtat!t t  t1tt i t t  it Ut9tq$ t"qlt!lt ltltE latlt$u " t#="t`1d17878v؁&h.h.h.h.h.h.h.h.h.h.h.h.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.v         @d1d1 Ē d1d1480 @UnknownGTimes New Roman5Symbol3 ArialKM Times-RomanTimes;Helveticak MHelvetica-ObliqueTimes New RomanY MHelvetica-BoldHelvetica hCFbF8. c !~4d9@*MATH HELP SHEETInformation Technology ServicesInformation Technology Services,         Oh+'0DZ (4 P \ ht|'MATH HELP SHEET Information Technology ServicesNormal Information Technology Services4Microsoft Word 11.2@ԭ@"@ܛ:] 8.GXPICTXd ,, MSWD ,Times B.(^wMATH->) H-|)CE->)*L-))P-@)% ->)S-|)&HE-)\E-@)(T}-|M)' - >) ) ) ) ->)P-)&H-`),YS-)QICS-|)g -)110-)c -(w - ) ,  Helvetica 2-($wSCIENTIFIC NOT-($A-)#TION-@ )x -(wIn-)* -)astro-)pn-)omy,-G)m -)as-)5 -)in-)' -)much-){ -)of-G)* -)t-)h-)e-G) -)physical-) -)sci-)=e-)nces,-G)x -)you-)Q -)will-G)E -)e-)nco-)Qu-)nt-)*e-)r-G) -)very-)_ -)l-) a-)rg-)-e -(wand-G)T -)very small num-(7b-)ers.- )T -) Scientists-) -)have- )m -)de-)8v-)eloped- ) -)a-) -)ma-)Ft-) hem-)ba-)tical- )Y -)shortc-)u-)t- ) -)fo-)*r -(w expressin-)g - ) -)thes-)_e - ) -)n-)umb-)be-)rs - `3)* -)call-)Ke-)d - `3) -) scientifi-)c - ) -)n-)otation-). - )  -)T-)o - `3) -)wri-)@t-) e - ) -)a -)3n-)um-)Fb-)er - )- -)tha-)Ft - )  -)is-)$ -(Xwgrea-)et-) er - )- -)t-) han - )T -)1-) -)i-) n-) -) scientific -)n-)otatio-){n-), - ) -)c-)o-)unt - )F -)t-)h-)e - ) -)n-)u-)mbe-)br-) -)of spa-)c-)es - )5 -)aft-)8e-)r - ) -)t-)h-)e - ) -)firs-)Ct -(wnum-)bb-)er - )- -)(well-)r -)call - )K -)it-) ,Times New Roman-)n)).-=) -) Then rewri-)t-) e - ) -)the-)F o-)1r-)i-) ginal - )j -)nu-)8m-))ber - )I -)by-)5 -)placi-)gn-)g - ) -)a-) -)dec-)Qi-) mal (wpoint- )m -)aft-)8e-)r-`) -)the-)F -)first-`)Q -)n-)u-)mber-`)s -)a-)n-)d-`) -) multiplyi-)n-)g-`) -)t-)h-)e-`) -)result-){ -)by- )5 -) 10 raised -)t-) o-`) -)the-)F -)pow-)\e-)r (wequal -)t-) o- Q) -)t-)h-)e- Q) -)n-)u-)mb-)Fe-)r- Q) ,Times New Roman-)n). -)H-)#ere are- Q) -)s-)o-)me examp-)l-) es:-\)C -(w 300000 = -)3-) x- Q)' -)10 (n5 2+. -)(-)Th-);e-)re- Q)- -)a-)re- Q)- -)5 -))spaces- Q) -)b-)e-)hin-)Cd-) the- Q)T -)3)-@ )- -(w 214 = 2.14 -)x-) 10 (2 2+. -)(-)Th-);e-)re- Q)- -)a-)re- Q)- -)2 -))spaces- Q) -)b-)e-)hind the- Q) -)2)-@ )- -(gw 5 = 5 x 10 (RU0 2+. -)(-)Th-);e-)re- Q)- -)a-)re- Q)- -)0 -))spaces- Q) -)b-)e-)hind- Q)_ -)t-)h-)e- Q) -)5-))-\) -(w654000-)0-)0000-)p0-)000- Q)T -)=-) -)6.-)*5-)4- Q) -)x-) -)10 ( 14 2+ . -)(-)Th-);e-)re are -)1-)4- Q) -)spaces-) -)behi-)_n-)d- Q) -)th-)*e-) 6)-@ ); -(LwTo - (); -)wri-)@t-) e- @z) -)a n-)Qumb-)be-)r- @z) -)less-)Y t-)(han - ()T -)on-)8e - () -)in scie-)nt-)(ific- @z)= -)notat-)pi-) on,- @z)F -)c-)oun-)Tt - ()  -)t-)h-)e- @z) -)n-)um-)Fb-)er - ()- -)of-)* -(wspaces-G) -) between t-)h-)e- ) -)deci-)\m-))al- )' -)point-)m -)and- )T -)t-)h-)e- ) -)fi-)r-)st- )' -)nonzero-) n-)-um-)Fb-)er,- ); -) inclusive-) -)(-)w-)#ell (wcall-`)K -)it- Q) -)m)$).-`) -)Then -)r-)ewrite-) -)t-)h-)e-) -)orig-)Ti-) nal-)C -)n-)u-)mber-`)s -)by placing a deci-(m-))al-)' -)po)8int-`)5 -)to -):t-) he-)8 -)ri-)g-)h-)t -(wof-`)* -) the first n-)o-)nze-)Qr-)o-) -)n-)u-)mber-`)s -)and -)dm-)) ultiplying-) -)t-)h-)e-) -)result-){ -)by-)5 -)10-\)8 -)raised-G) -)to-\)* -)t-) he-)8 -)n-)eg-)/at-)%ive): (Cwpower-) -) ()-)m)$). Here-) -) are- Q)I -)s-)o-)me examp-)l-) es:-\)C -(w 0.0001 = 1 -)x-) 10 (-) 4 2+.-) -) (T-)0h-)ere ar-)e-) fo-)8u-)r- Q) -)spaces:-\) -) 0-`) -)0-@ ) -) 0-) -)and-@ )T -)1-))-@ ) -((w 0.03457 =-) -) 3.457- Q)~ -)x-\) -) 10 (O-) 2 2+. -)(-)T-)h-) ere are only- Q(( -)2-) -)sp-)5a-)ces:0- Q)x -)and-)T 3-)))-@ ) -(w0.5 =)q 5 x 1-){0 -(~-) 1 2+. (-)-T-)he-)8r-)e- Q) -)is-)$ -)only one- Q) -)spa-)Qc-)e,- Q)* -)t-)h-)e- Q) -)5-))-\) -( w0.00000-)0-)0000-)p0-)089-)T7-`) -)= 8-)M.-) 97-=)8 -)x -),10 (`-) 13 2-+ .-`)  -)(-)T-)he-)8r-)e-=) -)a-)re-=)- -)1-)3-=) -)spa-)Qc-)es-=)5 -)bet-)Fw-)#ee-)8n-`) -)th-)*e-`) -)d-)ecima-)l -( Hwpoint a-)n-)d- Q) -)the-\)F -) 8,-`)* -)inclusiv-)e-))-@ ) -( w Scientific-) -)&not-)Fa-)tion-)Q -)&also-)\ -)&makes-) -)&m-)) ultiplicat-)i-) on-)8 -)&and-)T -)&division-) -)&easie-)xr-),-) -)&becau-)s-)e ( w multiplying - ) -)a-)n-)d - ) -)dividing-) b-)4eco-)Qm-))es - )5 -)s)imilar - )x -)t-)o - ) -)adding a-)n-)d - ) -)subt-)_r-)acting. - ) -)H-)#ere - )I -)a-)r-)e -( 2wsome ex-)a-)mples:-@ ) -( w10 ( 5 2+ x 10 ( ,3 2+ = 10 ( 5+3 2+9= 10 ( I8 2+.-@ ) -( w10 ( 5 2+/10 ( 3 2+ = 10 ( 5)-) 3 2+= 10 ( 2 2+.-@ ) -( w(4 x 10 ( t8 2+) -)x-) (2- Q); -)x-) 1-))0 ( t6 2+) = (-)[4-) x- Q)' -)2)-)- -)x (10 ( td8 2+ x -)51-)0 ( t6 2+) = 8-)f -) x- Q) -)10 ( t8+6 2+9= 8 x 10 ( t14 2+ .-\)  ! ! ! !  ! ! !  ! ! !  ! ! !  ! ! !  ! ! !  ! ! !  ! ! !  ! ! ! ՜.+,0 `hpx  'c9 MATH HELP SHEET Title  !"#$%&'()*+,-./012456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXY[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry F0m31Table3}MWordDocument$dSummaryInformation(ZtZDocumentSummaryInformation8CompObjX FMicrosoft Word DocumentNB6WWord.Document.8