Stoichiometry Review

YOU MUST SHOW ALL WORK AND YOUR ANSWERS MUST INCLUDE THE PROPER NUMBER OF SIG FIGS AND COMPLETE UNITS IN ORDER TO RECEIVE CREDIT FOR THE PROBLEM.

BALANCE THE FOLLOWING EQUATIONS TO USE IN QUESTIONS 5 - 14:

1.
$$\frac{1}{2}$$
 Al + $\frac{3}{2}$ O₂ \rightarrow $\frac{1}{2}$ Al₂O₃

2. ___ Cu +
$$\frac{1}{2}$$
 AgNO₃ \rightarrow $\frac{1}{2}$ Ag + ___ Cu(NO₃)₂

3.
$$Zn + 2 HCl \rightarrow ZnCl_2 + H_2$$

4.
$$2$$
 Fe + 3 Cl₂ $\rightarrow 2$ FeCl₃

PERFORM THE FOLLOWING STOICHIOMETRIC CALCULATIONS:

5. Zinc reacts with hydrochloric acid to produce zinc chloride and hydrogen. How many moles of HCl are required to produce 7.50 moles of ZnCl₂?

6. Copper metal reacts with silver nitrate to form silver and copper(II) nitrate. How many grams

7. When aluminum is burned in excess oxygen, aluminum oxide is produced. How many grams of oxygen are required to produce 0.75 moles of Al₂O₃?

8. How many grams of iron(III) chloride are produced when 15.3 g of iron react with excess chlorine gas?

9. Copper metal reacts with silver nitrate to form silver and copper(II) nitrate. How many moles of silver will be produced from 3.65 moles of silver nitrate?

10. How many grams of iron are needed to react with 31.0 L of chlorine gas at STP to produce iron(III) chloride?

11. When 9.34 g of zinc react with excess hydrochloric acid how many grams of zinc chloride will be produced?

12. How many liters of oxygen gas at STP are required to react with 65.3 g of aluminum in the production of aluminum oxide?

13. Zinc metal reacts with chromium(III) nitrate in a single replacement reaction. How many grams of zinc are required to react with 42.5 g $Cr(NO_3)_3$? First, write a balanced equation.

$$\frac{42.5 \, g \, \text{Cr(NO_3)_3} \, | \, \text{Mol} \, \text{Cr(NO_3)_3} \, | \, 3 \, \text{mol} \, \text{Zn} \, | \, \text{U5.38g2n}_{=}}{238.008 \, g \, \text{Cr(NO_3)_3} \, | \, 2 \, \text{mol} \, \text{Cr(NO_3)_3} \, | \, \text{mol} \, \text{Zn}}$$

$$\frac{2 \, \text{Cr(NO_3)_3} \, (\text{aq}) \, + 3 \, \text{Zn}(\text{s})}{2 \, \text{Cr(NO_3)_3} \, (\text{aq}) \, + 2 \, \text{Cr(s)}} = \frac{2 \, \text{Cr(NO_3)_3} \, (\text{aq}) \, + 2 \, \text{Cr(s)}}{2 \, \text{Cr(NO_3)_3} \, (\text{aq}) \, + 2 \, \text{Cr(s)}}$$
PERFORM THE FOLLOWING LIMITING REACTANT PROBLEMS:

11.4 gMgO 1mol MgO 2 mol Mg 24.305aMg = 6.87gMg 16.3g-694=
11.4 gMgO Imol MgO 2 mol Mg 24:305gMg = 6.87gMg 16:39-699 15. If 25.3 g of aluminum reacts with 25.3 g of copper(II) sulfate, how many grams of copper are
formed? Identify the limiting and excess reactants in this single replacement reaction.
Determine how much excess remains. $2 \text{ Al} + 3 \text{ CuSO}_4 \rightarrow 3 \text{ Cu} + \text{Al}_2(\text{SO}_4)_3$
$2 A1 + 3 CU5O_4 \rightarrow 3 CU + A1_2(5O_4)_3$ $2 A1 + 3 CU5O_4 \rightarrow 3 CU + A1_2(5O_4)_3$
25.39 th mol th 3 mol CV 43.546 g Cu = 89.4 g Cu 26.982 g th 2 mol th 1 mol CU
25.39 CUSD4 mol CUSD4 3 mol CU U3.5469CU = 10.19CU
25.39 CUSD4 mol CUSD4 3 mol CU U3.5469CU = 10.19CU 159.089 CUSD4 3 mol CUSD4 mol CU
10.1 g Cu mol Cu 2 mol Al 20.9829 Al = 2.869 Al 103.5469 Cu 3 mol Cu mol Al 25.39-2.869 = 22.49
16. Identify the limiting and excess reactants when 1.00 g of zinc reacts with .0375 moles
Pb(NO ₃) ₂ . How many grams of lead are formed in this single replacement reaction?
$Zn + Pb(NO_3)_2 \rightarrow Pb + Zn(NO_3)_2$
1.00 gZn mol Zn mol Pb 207.2 gPb = 3.17 gPb
1.00gZn mol Zn mol Pb 207.2gPb = 3.17gPb U5.38 gZn mol Zn mol Pb
.0375 mol Pb(NO3)2 1 mol Pb 207.29Pb = 7.779Pb
1 mol Pb (NO3)2 1 mol Pb
$\frac{3.17 \text{ gPb} \text{ l mol Pb} \text{ l mol Pb}(\text{N03})_2 = .0153 \text{ mol Pb}(\text{N03})_2}{207.2 \text{ gPb} \text{ l mol Pb}} = .0222 \text{ mol}$ $17.1 \text{ f } 24.5 \text{ g of iron are placed in } 0.25 \text{ moles HCl, how many grams of FeCl}_2 \text{ are obtained?}$ $17.1 \text{ in the limiting and excess reactants in this single replacement reaction}$
207.29Pb molPb .0375mol0153mol = .0222 mol
17. If 24.5 g of iron are placed in 0.25 moles HCl, how many grams of FeCl ₂ are obtained?
Identify the limiting and excess reactants in this single replacement reaction. Fe + 2 HCl \rightarrow FeCl ₂ + H ₂
24.59Fe 1 mol Fe 1 mol FeClz 126.75 9 FeClz = 55.69FeClz 55.8459Fe mol Fe mol Fe Clz
0.25 mol HCI mol FeCtz 126.75 a FeCtz = [169 FeCtz] 2 mol HCL mol FeCtz
2mol HCl Imol FeC 2

PERFORM THE FOLLOWING PERCENT YIELD CALCULATIONS:

18. If 12.5 g of copper react with excess chlorine gas, then 25.4 g of copper(II) chloride are produced. Find the theoretical and percent yields.

% Yield=
$$\frac{\text{actual}}{\text{theo}} \times 100 = \frac{25.49}{26.49} \times 100 = 96.2\%$$

19. If 6.57 g of iron react with an excess of hydrochloric acid, HCl, then 11.2 g of iron(II) chloride are obtained in addition to hydrogen gas. Find the theoretical and percent yields.

Fe + 2 HCl
$$\rightarrow$$
 FeCl₂ + H₂

$$\frac{\text{u.57g Fe} \mid \text{mol Fe} \mid 1 \text{ mol FeCl}_2 \mid 12\text{u.75} \mid \text{g FeCl}_2 = 14.9 \text{g FeCl}_2}{55.845 \text{g Fe} \mid 1 \text{mol Fe} \mid \text{mol FeCl}_2} = 14.9 \text{g FeCl}_2$$

$$\frac{11.2 \text{g}}{14.9 \text{ g}} \times 100 = 75.2\%$$

20. If 5.45 g of potassium chlorate are decomposed to form potassium chloride, 1.75 g of oxygen gas are also given off. Find the theoretical and percent yields.

$$2 \text{ KCIO}_3 \rightarrow 2 \text{ KCI} + 3 \text{ O}_2$$

$$\% \text{ Yield} = \frac{1.759}{2.139} \times 100 = 82.1\%$$