ࡱ> 463 !bjbj .& %83OO"qqqLLL """"""_"]LLLLL"qqL<qq L qt" 0@ LLLLLLL""LLLLLLLLLLLLLLLL : Capillary Viscometer (Non-Newtonian Flow) Calculation Notes A capillary viscometer consists of a very small diameter, cylindrical capillary tube. A liquid is forced through the capillary by imposing a pressure drop. The very small diameter of the tube, the very large length to diameter ratio minimizes entrance and exit effects and ensures a fully developed velocity profile. Please use CGS system for your calculations. For all fluids, the shear stress at the pipe wall (twall) is shown below. twall = (DPR)/(2L) = (DPD/(4L) (1) Where: DP= pressure drop across the capillary tube D = inside capillary tube diameter R= inside capillary tube radius L = capillary tube length For a laminar, incompressible, Newtonian fluid, the shear rate at the circular pipe wall, gwall is shown below. gwall = (4Q)/(pR3) = 8V/(D)= 4V/(R) = (32Q)/(pD3) (2) Where: Q= volumetric flow rate, cm3/sec V= average fluid velocity, cm/s Use Bird, Steward, and Lightfoot, 1960, p. 46-48, for the Hagan-Poiseuille eqn to calculate viscosity of a laminar, Newtonian, incompressible fluid. Then calculate Re and Le as shown in Bird, Steward, and Lightfoot, 1960, p. 47-48. Then plot y = tw and x = gwall to prove the solution is Newtonian and to get viscosity (use cP) since the following relation is true for a laminar, Newtonian, incompressible fluid. twall = mgwall (3) Where: m = viscosity of fluid Verify that the gylcerol solution is laminar, and Newtonian, and that end/entrance effects are negligible. Youll have to use a 10ml pycnometer to get the solution density for glycerol and for methocel. Compare your results to any data you can find for glycerol. Then, after you calculate the viscosity of the glycerol using the diameter of 0.04, then use the reference value for viscosity of the glycerol at 20C at the correct concentration for your objectives and calculate the capillary diameter. How different is it from 0.04? Our capillary tube might not really be 0.04. Non Newtonia<=   0 2 < B D \ ^ ` b j H J  "$vxTZbdnvx04PRxzL N U hv~MCJH* hv~MCJH*hv~MCJOJQJhv~M5CJ\ hv~MCJU<=z { . 0 2 t   T ln$`a$$a$$a$PRuRZbh4 $`a$$a$n Fluid For a power law fluid, you still use Eqn 1 to get twall. Use the diameter of the capillary tube that you calculated from the glycerol case (do not use 0.04 ). For a power law fluid, the following eqn is true (See BSL, 1960, p. 11, Geankoplis, p. 162, McCabe, Smith and Harriot, 2001 p. 50). twall = m(gwall)n (4) Where: m = flow consistency index, dyne sn/cm2 m = m = viscosity of fluid if a Newtonian fluid n=1 if a Newtonian fluid, dimensionless n= flow behavior index From Dr. Morrison s book (Understanding Rheology), use p. 389, Eqn 10.32 to calculate n and m. Then calculate gwall from Dr. Morrison s book, p. 389, Eqn 10-31. Then calculate fluid viscosity = (twall from Eqn 1)/( gwall from Dr. Morrison s book, p. 389, Eqn 10-31). Then plot log viscosity vs. log gwall . Then plot twall vs. gwall. Compare your results to any data you can find for methocel. What type of fluid is methocel?     PAGE  PAGE 1 N X t v P!R!V!X!\!^!b!d!h!j!v!x!z!~!!!!!!!!!h0JmHnHu hv~M0Jjhv~M0JUhv~Mjhv~MUhv~MCJOJQJ hv~MCJ hv~MCJH* \ ^ P!T!V!Z!\!`!b!f!h!z!|!~!!!!!!&`#$$a$,1h/ =!"#$% ^ 666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH @`@ NormalCJ_HaJmH sH tH @@@  Heading 1$$@&a$5\DA`D Default Paragraph FontViV 0 Table Normal :V 44 la (k ( 0No List 4B@4  Body Text$a$2>@2 Title$a$5\4 @4 Footer  !.)@!.  Page NumberPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] & $$$'N !  !   '!!8@0(  B S  ? GO      j m Z b z /1  B L    ! ' 33333333 v~M @X `@` ` ```$@`UnknownG* Times New Roman5Symbol3. * ArialACambria Math"1h gFئKgF*A  $0  2QHX $P2!xx;Capillary Viscometer (Non-Newtonian Flow) Calculation NotesjakingdcasparyOh+'0 , @L l x  <Capillary Viscometer (Non-Newtonian Flow) Calculation Notesjaking Normal.dotm dcaspary42Microsoft Office Word@Ɣ @Jq2@(32@^+t" ՜.+,0< hp  MTU Chemical Engineering  <Capillary Viscometer (Non-Newtonian Flow) Calculation Notes Title  !"$%&'()*,-./0125Root Entry FGt"71TableWordDocument.&SummaryInformation(#DocumentSummaryInformation8+CompObjy  F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q