ࡱ> '` bjbj$$ 1FF:q(NFFFF>d>d>d8vdTd,0+fbetf"fff\)0[*]*]*]*]*]*]*$,h.Z*iYC|YY*FFff*"""YvFlff[*"Y[*"":(,,+)fVe =O)T>d( [*+00+(RX0 0X0+)+)X0?)"YYY**"YYY0+YYYY,,,d7>d,,,>dD6FFFFFF Episode 404: Gravitational potential energy and potential In this episode, students will appreciate the energy changes that take place as a body moves in a gravitational field. They have seen this concept before, for a uniform field, in the form Change in GPE = mgh, but this will be generalised to non-uniform fields around point or spherical masses. They will then be introduced to the concept of potential and its uses, before finally making the link between that rate at which potential changes from place to place and the field strength. Note that the mention of infinity often gets students minds racing, and puzzling over seeming paradoxes such as If the gravitational field is infinite in extent, what does it mean to be at infinity where the field is zero? Its best to approach this pragmatically; by infinity, we really mean as far away from all masses in the universe as we need to be to make the gravitational forces negligible in whatever context we are looking at. This is quite a long episode, and worth spending the time on to give a good grounding in these ideas. They will be important again with electric fields. Summary Discussion: Work, energy and gravitational potential energy. (5 minutes) Worked examples: GPE in a constant field. (10 minutes) Discussion: Potential energy in a non-uniform field. (10 minutes) Discussion: Potential (5 minutes) Worked examples: Potential energy and potential. (15 minutes) Student questions: (15 minutes) Spreadsheet exercise: (20 minutes) Discussion: Equipotentials, potential gradient and field strength. (10 minutes) Spreadsheet exercise: Potential gradient and field strength. (20 minutes) Discussion: Work, energy and gravitational potential energy This draws on what students should already know about work, energy and gravitational potential energy. What is work? (Work is done when a force moves its point of application through some distance in the direction of the force. In the absence of frictional forces, this work done is stored as the energy of the body on which the force was acting.) If I lift an object up from the floor to above my head (demonstrate it!), have I done work on it? (Yes. I applied an upwards force on the object which itself moved upward too.) What happened to the work I did on the object? (It is stored as energy on the object. We call this stored energy gravitational potential energy. Gravitational because we have to do work against gravity to lift the object, and potential in the sense that the potential is realised when I let go of the object. If you have something breakable (but safe and cheap!) they will really see this potential being realised.) Worked examples: GPE in a constant field Now, students have come across these ideas before at pre-16 level in the form: Change in GPE = mgh. It is as well to revise this with a few worked examples now.  HYPERLINK "TAP404-1-Gravitational-potential.doc" TAP 404-1: GPE in a constant field Discussion: Potential energy in a non-uniform field Now you can extend these ideas to potential energy in a non-uniform field. All the previous examples involved potential energy changes near the surface of the Earth. What would be the problem if we wanted to use the same equation to work out energy changes for, say, a rocket launched to the Moon? (The gravitational field strength is not constant the value of g changes.) We therefore need another way of calculating GPE changes in non-uniform fields. The full treatment of how we arrive at this formula requires off-syllabus calculus that would actually be accessible to more able students. We find that we can calculate GPE of a mass m at a point distance r from a (point or spherical) mass M by: GPE = GMm/r There are several very important points to note about this equation: 1. We know that the further you get from an object, the higher your GPE relative to it. (As something must have done more work against gravity to get you there). Thus when you are infinitely far away, you have as high a GPE relative to it as possible. We choose (arbitrarily) to make the value of GPE of all bodies at infinity zero. Then since this is the highest value of GPE, all real values of GPE (closer than infinity) must be negative. Therefore the minus sign in the equation is NOT optional; it must always be included and all values of potential energy in a gravitational field are negative. (This is not the case when we come on to electric fields, because they can be repulsive too). 2. Note that we have written GPE here, and not Change in GPE. By defining a point relative to which all GPE is measured, we can now talk about absolute values of GPE rather than just changes. This point is at infinity (see note 1 above). 3. Note that GPE follows an inverse proportion law (1/r) and not an inverse square law (1/r2) Discussion: Potential The weight of an object in the Earths gravitational field depends upon the mass of the object (as well as the mass of the Earth). However, as we have already seen, the field strength at a point is independent of the object placed there (because it is defined as force per unit mass of the object). Thus we can think of field strength as a property of the field at a point, and not the particular object placed there. Similarly, the GPE of a body at a place in the Earths field depends upon the mass of the object (as well as the mass of the Earth). How do you think we can get a quantity related to energy in the field at a point, which does not depend upon the object placed there? (By looking at the GPE per unit mass of the object, thus removing the dependence on the mass of the object just as we did with field strength.) We define the potential at a point in a field as the gravitational potential energy per unit mass placed at that point in the field. We can get equations for potential using this definition. For a field due to a (point or spherical) mass M, we have: GPE = GMm/r And so the potential, V, is given by: V = (GMm/r) / m = GM/r A few points to make: 1. This only relates to the field due to a (point or spherical) mass M. 2. V is measured in J kg-1. It follows an inverse proportion law (1/r) not inverse square (1/r2). 3. Just as with the equation for GPE, the minus sign is not optional. All real potentials are negative, and the zero of potential is at infinity (since all objects have zero GPE at infinity). 4. Potential, like field strength is a property of the field at a point, and is independent of the object placed there. Two objects with different masses at the same point in the field are subject to the same potential, but have different potential energies. 5. For uniform fields (e.g. close to the surface of the Earth), we can use change in potential = gh (since change in GPE = mgh and potential = GPE/m). [Potential will be returned to again when we study electric fields. There, differences in potential (or potential differences, pds) are what we often call voltages.] Worked examples: Potential energy and potential  HYPERLINK "TAP404-2-Gravitational-potential.doc" TAP 404-2: Potential energy and potential Student questions These questions relate to a spacecraft travelling from the Moon to the Earth. You may wish to omit Questions 3-5 inclusive if your students have not covered the topic of momentum.  HYPERLINK "TAP404-3-Gravitational-potential.doc" TAP 404-3: Gravitational field between the Earth and the Moon Spreadsheet exercise You can extend the spreadsheet activity from Episode 402 by including the idea of gravitational potential.  HYPERLINK "TAP402-3-Field-lines-gravity.doc" TAP 402-3: 'Data from the Apollo 11 mission'  HYPERLINK "TAP404-4-Gravitational-potential.doc" TAP 404-4: Analysing data from the Apollo 11, gravitational potential at different distances Discussion: Equipotentials, potential gradient and field strength Equipotentials join points of equal potential. They are very simple in the cases of uniform fields (close to the surface of the Earth) and radial fields (for point and spherical masses):  How far apart are the equipotential lines in the first diagram? (Since change in potential for a constant field is simply gh (where h is change in height), we have gh = 9.8 J kg-1. Therefore h = 1m the lines are 1 m apart.) What shapes are equipotentials in the real world? (Equipotentials are surfaces rather than lines in the real 3-dimensional world (i.e. horizontal planes rather than lines close to the surface of the Earth, and concentric spheres rather than concentric circles about a point/spherical mass), but we can only capture a slice of them on paper.) Equipotentials are always perpendicular to field lines. Diagrams of equipotential lines give us information about the gravitational field in much the same way as contour maps give us information about geographical heights.  What does it mean on a contour map if the contours are very close together? (On a contour map, the contours may be marked off at, say, 5 m intervals. Therefore, if they are close together, it means that the land on which they lie must be very steep.) What do you think it therefore means if equipotential surfaces are close together? (An educated guess would be that it means that the gravitational field is very strong there. That would be correct if the equipotentials are close together, a lot of work must be done over a relatively short distance to move a mass from one point to another against the field i.e. the field is very strong. Hence on the drawing above of the equipotentials around point or spherical masses, the equipotential surfaces get further and further apart as the field strength decreases with distance.) In fact, the field strength is given by the negative of the gradient of the potential: g = -dV/dr For students that might struggle with a derivative as above, it could be introduced as: g = (change in potential / change in distance). Spreadsheet exercise: Potential gradient and field strength In this exercise, students will manipulate (calculated) raw data on the variation of potential with height above the Earths surface. By the end, they will calculate the change in potential per metre (i.e. the potential gradient) and compare it to field strength and find that the two are equal. When they calculate the change in potential between say 200 km and 300 km, and divide it by the 100 km distance to get a field strength, they are actually getting an average field strength between 200 km and 300 km, which is likely to be very close to the field at 250 km (though not exactly because the variation in potential is non-linear). Hence the field strengths on sheet 2 being given at 50 km, 150 km, etc. They are expected to have used spreadsheets before and are asked to do some fairly simple spreadsheet manipulations.  HYPERLINK "TAP404-5-Gravitational-potential.doc" TAP 404-5: Potential gradient and field strength.  HYPERLINK "TAP404-6-Gravitational-potential.doc" TAP 404-6: Excel file potential gradient and field strength TAP 404-1: GPE in a constant field Assume g = 9.8 N kg-1 near the surface of the Earth. 1) Climbing a vertical rope is difficult. You have to lift your full body weight with your arms. If your mass is 60 kg and you climb 2.0 m, by how much do you increase your gravitational potential energy? 2) A block of bricks is raised vertically to a bricklayer at the top of a wall using a pulley system. If the block of bricks has a mass of 24 kg, what is its weight? It is raised 3.0 m. Calculate its increase in gravitational potential energy when it reaches the top of the wall. 3) Travelling in a mountainous area, a bus of mass 3 tonnes reaches the edge of a steep valley. There is a 1 km vertical drop to reach the valley below, but 20 km of road to get there. What gravitational potential energy will the bus lose in making its descent to the valley bottom? 4) Assuming the bus in question 3 does not change its cruising speed on the way down, where does the gravitational potential energy go? Why is there a risk of brake failure in this situation? Practical advice These are straightforward questions. The questions are available as worked examples or for students to work themselves Answers and worked solutions 1 GPE = mgh = 60 x 9.8 x 2 = 1176 = 1200 J (2sf) 2 Weight = mg = 24 x 9.8 = 235.2 = 240 N (2sf) Change in GPE = mgh = 24 x 9.8 x 3.0 = 705.6 = 710 J (2sf) 3 Change in GPE = mgh = 3000 x 9.8 x 1000 = 2.94 x 107 = 2.9 x 107 J (29 MJ) (2sf) 4 Since the bus gains no kinetic energy (its speed stays the same) it must be using its brakes, and all the GPE lost by the bus in converted to heat in the brakes. There is a risk of brake failure if the brakes overheat. External reference This activity is taken from Advancing Physics chapter 11, 210S TAP 404-2: Potential energy and potential Students sheet Data required: G = 6.67 ( 10-11 N m2 kg-2 mass of the Earth = 6.0 ( 1024 kg radius of the Earth = 6.4 ( 106 m gravitational field strength close to the surface of the Earth is 9.8 N kg-1 1) What is the gravitational potential energy of a 60 kg student on the surface of the Earth? What then, is the minimum energy that would be required to get this student completely out of the Earths gravitational field? 2) What is the potential you experience at the surface of the Earth? How would the answer be different if your friend who weighs more than you worked it out? 3) What is the potential at a height of 36 000 km from the Earths surface? This is the height of a geostationary orbit. What is the potential difference between the surface of the Earth, and geostationary orbit height? 4) So, what minimum energy is required to launch a 150 kg satellite into geostationary orbit? Why is the actual value a lot more? 5) What is the potential difference between the top and bottom of an office block on the surface of the Earth that has a height of 50 m? (Hint this close to the surface of the Earth, the field is roughly uniform, so you can use simple equations for change in GPE or change in potential). Practical advice The answers are given as worked examples for the teacher. The sheet can be used either as worked examples or a student exercise Worked examples potential energy and potential teachers sheet Data required: G = 6.67 ( 10-11 N m2 kg-2 mass of the Earth = 6.0 ( 1024 kg radius of the Earth = 6.4 ( 106 m gravitational field strength close to the surface of the Earth is 9.8 N kg-1 1) What is the gravitational potential energy of a 60 kg student on the surface of the Earth? What then, is the minimum energy that would be required to get this student completely out of the Earths gravitational field? GPE = -GMm/r = (- 6.67 x 10-11 x 6.0 x 1024 x 60) / 6.4 x 106 = - 3.8 x 109 J To get the student away from the Earths field completely will require taking him to infinity where his GPE will be zero. Thus we need to give him at least 3.8 x 109 J of energy somehow. 2) What is the potential you experience at the surface of the Earth? How would the answer be different if your friend who weighs more than you worked it out? V = -GM/r = (-6.67 x 10-11 x 6.0 x 1024) / 6.4 x 106 = - 6.3 x 107 J kg-1 or - 63 MJ kg-1 The answer is the same for everyone potential is a property of the field and all objects at the same point in the field are subject to the same potential, even though their potential energies may be different. 3) What is the potential at a height of 36 000 km from the Earths surface? This is the height of a geostationary orbit. What is the potential difference between the surface of the Earth, and geostationary orbit height? V = -GM/r = (-6.67 x 10-11 x 6.0 x 1024) / (6.4 x 106 + 3.6 x 107) = -9.4 x 106 J kg-1 or -9.4 MJ kg-1 The potential difference is then - 9.4 (- 63) = 53 MJ kg-1 (or 5.3 x 107 J kg-1). Note that this potential difference is positive; indicating that to get to geostationary height, a large amount of energy would be required. There is no problem with potential differences being positive, but absolute values of potential themselves must always be negative. 4) So, what minimum energy is required to launch a 150 kg satellite into geostationary orbit? Why is the actual value a lot more? Well, we now know that the potential difference between the Earths surface and the geostationary orbit height is + 5.3 x 107 J kg-1. In other words, for each kg of mass lifted from Earth to geostationary orbit, 5.3 x 107 J of energy is required. Therefore, for a satellite of mass 150 kg, energy required = 150 x 5.3 x 107= 8.0 x 109 J or (or 8.0 GJ). Actually, much more energy is required because there is drag with the Earths atmosphere to overcome on the way up, and also the rocket itself (and its fuel) have mass that needs to be lifted into orbit too! The answer weve arrived at is only the energy required to lift the satellite against the gravitational pull of the Earth. 5) What is the potential difference between the top and bottom of an office block on the surface of the Earth which has a height of 50 m? (Hint this close to the surface of the Earth, and the field is roughly uniform, so you can use simple equations for change in GPE or change in potential). What minimum energy do you use in walking up to the top of the building? For a uniform field, change in potential = gh = 9.8 x 50 = 490 J kg-1 For a 60 kg student, the energy required to climb to the top of the building is then 60 x 490 = 2.94 x 104 = 2.9 x 104 J or 29 kJ. For information, thats about 7 kcal where a kcal is what is referred to as a calorie on diet adverts. A chocolate bar is typically 200 calories or more! Students can rest assured that they use up more energy than this in climbing to the top of the building because their bodies are not 100 % efficient, and they warm up. TAP 404-3 Gravitational field between the Earth and the Moon The dynamics of space travel These questions pose a number of short problems about the dynamics of the motion of a spacecraft, returning from the Moon to the Earth. The mass of the spacecraft is 2000 kg.  The diagram shows its path and is drawn to scale (except for the diameters of the Earth and the Moon which are shown larger than they should be). Distances given are to the centre of the Earth. mean radius of Earth as 6.4 106 m, G x M for the Earth = 4.0 1014 N m2 kg 1 Gravitational force and potential energy 1. At point A the spacecraft has zero acceleration when its thrust motor is switched off. Suggest a reason why. 2. At point B, again without any motor thrust, the speed of the spacecraft is constant, though it does have acceleration. (At B, the craft is travelling at right angles to the line joining it to the Moons centre.) Explain this observation. 3. At C, the velocity is 6000 m s1, as shown. It is required to alter course by an angle of 1/100 rad, without changing speed. In what direction must the thrust be? Calculate the length of time for which the motor thrust of 12 000 N be maintained? 4. In which direction is the spacecraft accelerating at D if the thrust motor is not in use? Calculate the magnitude of the change its in momentum of the space craft over a time of 100 s. Ignore any effect of the Moon in this question. 5. Make a rough calculation to show it is fair to ignore the effect of the Moon in question 4. Ignore any effects of the Moon in questions 68. 6. The thrust motors are not used between C and E. Calculate the change in gravitational potential energy of the spacecraft change between C and E? Explain whether it is an increase or a decrease, and whether the answer would have been different if the motors had been used. 7. At C the spacecrafts velocity is 6000 m s1. Use your answer to calculate the kinetic energy of the spacecraft at E. 8 What kinetic energy would the spacecraft have at E if, instead of having come in from Moon orbit, the spacecraft were in permanent orbit around the Earth through E? Hints 1. Consider both the magnitude and direction of the forces acting on the spacecraft at A. 2. Both the Moon and the spacecraft will have mass and there will be a gravitational force of attraction between them. 3. Remember acceleration can be produced by a change in direction as well as speed. 5. Remember this is a scale drawing. 6. The gravitational potential is 0 J kg-1 at infinity. 7. You can assume conservation of mechanical energy when there is no work done against friction to be considered and the motors are not in use. Practical advice It is helpful to remind students that the distances in the drawings are to scale and they will need to measure them with a ruler (in question 5). Social and human context These are useful questions to consider when discussing manned missions to the Moon. There are many video clips that could be useful to put these journeys into a historical perspective. This could lead to discussions on the reasons for the space race; consideration as to which explorations are seen as prestigious in the present day; and the social and economic implications of the high budget demands of pure and applied research. Is such research likely to help or hinder increased international cooperation? Answers and worked solutions 1. The force of attraction between the spacecraft and Earth is equal in magnitude but opposite in direction to the force of attraction between the spacecraft and the Moon. There is no net force, so no acceleration. 2. The gravitational force is at right angles to the direction of motion, so there is no change in speed. The direction, however, will change so that the force is always acting from the centre of the spacecraft to the Moon. Since there is a change in direction, there is a change in velocity, therefore there is acceleration. 3. The thrust acts at right angles to the speed, since this does not change.  As shown in the vector triangle the change in velocity Dv is v q (for a small angle q), F = (mDv)/t EMBED Equation.3 4. If the thrust motors are not used, the only force acting on the spacecraft is the gravitational force of attraction between the Earth and the spacecraft; this acts towards the centre of the Earth. F t = change in momentum and since F = (G M m) / R2 EMBED Equation.3 5. The measured distance from D to the Moon is three times the distance from D to the Earth. This means that the gravitational force of attraction on the spacecraft due to the Moon (an inverse square law) would be 1/9 that due to the Earth if the Earth and Moon had the same mass. But the Moons mass is smaller than Earths, and thus it is fair to ignore it in these calculations. 6. The change in gravitational potential energy = EMBED Equation.3 EMBED Equation.3. Since gravitational potential is 0 at infinity and work needs to be done to reach infinity, the potential energy is less at a distance closer to the centre of a gravitational field, in this case at E. Since potential energy is a scalar quantity and does not depend on the path taken, this value is the same as if the motors had been used to move between C and E. 7. From conservation of mechanical energy (no work done against friction, motors not used), the decrease in potential energy = increase in kinetic energy, 3.6 1010 J. At C, the kinetic energy was already 0.5 2000 kg (6000 m s 1)2 = 3.6 1010 J so the total kinetic energy is 7.2 1010 J. 8. For a circular orbit: EMBED Equation.3 External reference This activity is taken from Advancing Physics chapter 11, 120D TAP 404- 4: Analysing data from the Apollo 11, gravitational potential at different distances A large-scale experiment in space Detailed data are kept of every space flight. These data, giving speeds and distances of Apollo 11 as it went to and returned from the Moon, are extracted from data supplied by NASA. They can be thought of as the results of an experiment to probe Earths gravitational field. You will need computer running a spreadsheet spreadsheet data table the Excel file below  HYPERLINK "TAP402-3-Field-lines-gravity.doc" TAP 402-3 'Data from the Apollo 11 mission' is provided to go with this activity. Finding the gravitational potential at different distances The raw data can be used to find how the Earths gravitational potential varies with distance. Again you need to select and process suitable data. Notice by inspecting the data that Apollo 11 has decreasing kinetic energy as it goes uphill away from the Earth, and has increasing kinetic energy as it comes back downhill to Earth again. Any increase in gravitational potential shows up as a decrease in the kinetic energy per kilogram, v2. Equally, any decrease in gravitational potential shows up as an increase in the kinetic energy per kilogram, v2. The two quantities are equal but opposite. Thus a graph of minus v2 maps the gravitational potential, except for an unknown constant, the total energy. 1. Choose either the outward or homeward trip (they have different total energies) and select velocities and distances, one from each 10 minute spaced pair given. 2. Calculate the kinetic energy per kilogram v2 for each. (i) Plot graphs relating the quantity minus v2 to the distance r. (ii) Test whether the gravitational potential varies as 1 / r (iii) Take trouble to find the best graphs to plot. (iv) Give the graphs a caption saying what they have to tell Practical advice These data are selected from a huge printout supplied by NASA. More data is provided here so that it can be looked at and discussed, and so that further analyses can be done. We think that there is also some interest in imagining the whole mission, which is why times from throughout the 200-hour mission are included. The exercise also provides students with further opportunities to think about the most effective graph to plot. It is worth insisting that graphs have captions that convey their intended message. Alternative approaches Slower students will benefit from simply looking at the data with you, and talking them through. Faster ones can for example plot the variation of potential for both outward and homeward trips and try to explain the small difference between them Social and human context NASAs raw data were actually provided with distances in nautical miles above the surface of the Earth, and with velocities in knots. External references This activity is taken from Advancing Physics chapter 11, 240S The spreadsheet is taken from Advancing Physics chapter 11, 160T TAP 404- 5: Potential Gradient and Field Strength The accompanying spreadsheet gives values of gravitational potential V at 100 km intervals from the surface of the Earth (calculated using V = GM/r). You will need computer running a spreadsheet spreadsheet data table the Excel file (see link below)  HYPERLINK "TAP404-6-Gravitational-potential.doc" TAP 404-6: Excel file potential gradient and field strength You are asked to complete the following tasks, in order to make the link between gravitational potential and field strength. You will be filling in the various columns in the table that are as yet uncalculated. Look at the spreadsheet formula used to calculate the potential can you explain each part of it? In the next column, work out the change in potential that occurs (to 3 decimal places) over each 100 km interval. This change in potential decreases the further up you go. Why? Consider equipotentials at, say, 2 MJ/kg intervals. What must be happening to the spacing of these equipotentials? Why does this happen? At what height has the potential become half of its value at the surface? A third? Explain. Now, you are going to relate the rate at which potential changes to the field strength. You have already calculated the change in potential over each 100 km interval. Dividing this by the 100 km interval will give the rate of change of potential with distance. This should give the field strength, since g = -dV/dr (the minus sign simply shows that the field acts towards the earth). :; z   6 9 < I X [ ^ p +.1Hux{45ghiWX+-"y| hH*hqh[kh0J*jh[kUh[kjh[kUjhUmHnHsH uhsuhmh~5hmh5hmh&5 h6hC|wh>:; q r z < ^ 1{|efghy(gd'gd&gd"J34 9y+%&3Yst '0^`0gdC|w(gd'gdIJt  0 1 4 7 !!"#g#h#######$$$$$$%%%%%%%%%%%%&и̤и̕ЌРh[kh0J*jh[kUhjh[kUh[kh0J*h[kh&0J*jh[kUh[kjh[kUh' hH* hcH*hchC|whh0J0 h6h4t4 !C"\""5#6#G#f#g####($$$%%%%(gd'`gdC|w '0^`0gdc '0^`0gdC|w'gd%%%w&x&&&v'x'y'z'{'|'}'~'''''d()***++-5.@.(gd'gd'gd&&&%&u&v&&&v'w'0(1(3(5(i(s(**..00D2E2w2x2y222222222233V3W3Y3[38888i:ִִֹֽ찥֝|ֽww hH*h<+hh0J*h<+h0J*jth<+Uh<+jh<+Ujh[kUh[k h6hh h0gH*h0gjhUmHnHsH uhh[kh0J*h[kh&0J*jh[kUjh[kU.@...../1C2D22 3!3E3F3{3|3L4M4N4O4P4Q4l5m5n5o5p5q56&gd(gd'gd666666666[7\7]7^7p777888898i8j888889 '0^`0gd'`gd(gd'gd999,:-:.:Y:i:x::::$;%;<<<<<<<====>'`gd'^gd&gd(gd'gdi:v::::::::::::::::::::;;!;#;$;>>>?@!@,@-@0@3@5@6@7@8@9@;@=@V@W@Z@]@z@{@~@@@@@@@AAAAAAAAA󶮶hmhH*mHsHhomHsHhmhmHsHh"/GhH* h"/GH*h"/Ghyh0ghH* h0gH*h0g hH* jhhhh0J0@>>>>7?8?9?:?;?@`@@@@AA'`gd'`gd'^gd(gd '0^`0gd'gdAAAAAAAAAABBqCtCCCCCCCCCCCCCCCCCCCCCCCCiEEEEEEEEEEEEEEEEEEEEEF F FFFFF F"FLFUF.Hþþþþþþݺݺݺݺݺݱhd h(\H*h(\ hqH*hqhohH* hoH*ho hH*hhmhH*mHsHhomHsHhmhmHsHEABBZCCDDiEEE%F6G7GGIgJhJK#LMMMM+N,NIN(gd&gd'`gd'gd'^gd.H/H7H8H9H=H?HHHHHI IL L"LLLLLNNOPPPP PDPFPHPJPNPRPVPXPZP\P^PbPjPPPARMRRRRRRR'U-UqUtUUUUUVVVVVVY!Yh&r h5h!hh h6hZCJEH hCJEH hZOJQJhOJQJhZj^hU h!3oH* hH*hh!3oBINNNNNOjPlPPQQQQRRRRRMSuSvSwSxSSSS-TTT(gd'gdTTTT#U$U%U&U'UXUUUUUUUvVwVxVyVzV{VVVVVVVW'`gd&r'gdWWWXXXX1YYYYgZhZZ\\\\z]^____Z```'^gd'`gd(gd'gd!Y#Y^^__``` ```:`<`>`B`D`L`N`P`R`V`Z`\`|`~``` bb0b1b7bb@bAbBbCbDbTbUbVbWbvbwbbbJcLc d dd۬ h5\j1hUj2F hUVhCJEH aJj/hUj3F hUVjhUhhOJQJ^J h]hOJQJ^JjIhUhhh h&rH*5`CbXbc d!d8degggghNhOhhhhhiiij+j@j' & Fgdh&gd(gd'^gd'`gd'gdddd d"d#d3d4d5d6d8dddeeeenf|fffffffffggggg g"g.g0g6g:ggggggggggg+j,jAjBjઝjh<+Uj]hUj.F hUV hEH h6]hCJEH aJhOJQJ^Jhh h] hEHj;hUj/F hUVhjhUjVhUj0F hUV3@jAjjjkkkmmonpnnn.ocoooooopqqqrrrfsgs(gd'gdBjpjqjrj~jjjll.m/mtmumnnnnnnnn3o4ocohouu/u0ubucuduuuy !"#ӺӲӖӇxjh[kU he}qh h  # A"2Yn_sf՚3cӔ5`!-n_sf՚3cӔ|sA !?Xv9xڕ|UϬ'`( ("**RQPDޱwvի =@! P!I}}ߙ5k͚5{͞3s8xM$# F__;S*Kk-0g]kʕĘZ,ȩS"R>4ɔG%Ѿx|AY6%LL5"qn1fi 7+LɅ0yI3h&3Yd7y;|k6ov/o9Gz *.}̵bHIFan%FmBsjm4}9bIDJԒ3+|TRV*ZIZNK堩$MEb.BS^V %הyF\oǟr{Re# LYb䚕 h+@د4 Y Wg;Q|5E<"=fQ|Kl7Kkma E7'6ޱ5L` ` Ɵ L::g>ެg=w g-P*JX^7`c e9C*ƞx:mQ +GҖk0 a0X0H%Tޖ7Ӯl~ lf|lƗFڔ a kЯ!yFǯb029Me:,6t:i!tqwQd(0H0\,#a=EF^4#a0 b;rCE5ƾ0Fhǥ/R)=Uq09&2vmU¦d,>8mEu>KE&QD"RAt6Ad:f8.2ILJYg;*Kv (Zԧ~_$,Gt\"~?ݼ]^C}7qm;ߏfַ`GzTj=;#Gy>ea(Z?i?)lO8㴝=?SaM֊($A2& AiΠ<b:<8.NE.BD K2?e? oE{/o/|2h%|ZV*ҿ\KT`P*3~e*3*U MJ啬O:k*rU)Q^Ay%k 'O} LȂ0 fLGacAsa,rTŰ2`9~W%*(m5P`=l&清.M{过xwn\\CPSk(:6:qM>omN$[8tʕ+h_y r9,"N: aP@6B 3k:Lssg}ϼ.9Cnsjup-\5P\^E^[ r^5p:J+X3X3XCXOUYWCY[geeX&/XgYFcʚ3k'O\8[~tL8C~pڞ|2=迧O{NΔ(',)ӝ;{wn+Yӝϙagg=Nm 7X`-P`Xˑw9#/ᴼ̙RSÑ KA>,7:V*(0{֋1zm`덍&>ؗ uqv(%Bڶl|_ f[alg. {/>|=}{즾 vPGE`;vylmvN]e{(y?9@?>R`X_Y[Y['sQN1r9aGrsem [.h鍯XnRAJqJyr"` "9NC vp߇ c`7:y>GEĸ2}1pACs= ǙrN"h(Cp~Er$88# x2`]Lmmdk+lͰ6eZA!5z/!IJ)57)RX i[ + - 0R΁kajF񓏿#\ab?LGadޮmxw'g>O罞ɻ> f g ۙ=>yCg?s6ߗٌAL>淗؍~;(3oG1TȢ{ɺdY %3Z:;[ߒC%Io:~7r<8sVa6;gD'.x;2! 6c ӐN9y&fs6yd3^cPC9r.̡]y<0|棟|||.BbPQ_X-bE-~!\Dr1b%[ ̇ԕ V_ amJZ PֱÃRkҾJj++y%QD-.M;d;~XJ{.u,(r RyxR\-%gK].k6|.E0fq&gs=SѺl@ɦO6~r9n]녎js9/9xUAG =tZ:M99r`\粎PPflY#3Y3`:}TȢ Vp{e Sh;2JjEinI/;ă&{ԨQ?(&[ܟ J*Kfffou#I1cM0ufRl@dPqf (FDMĶ 0 @fleb;ve=a~dC9pĤ#Ov}Fcdln1PB,iq"0$V}i7ׇ}'_';¸ J_ڛXkobEcߛJ9_C 0nOvt8Sd9"i1#cV )0YZR26$cbQ@A:&D&F"D3!O}*g1&g>2Zqشp7 8} ǞnO6|2dWZ؄NY'tDu;UM;^׊#ߴr䝦շfTօ]VeSY۱Ş?zv!{)۳sg缇Snk-ޗi۱ z{?{CvSfG~3 xIUkl|9c r"1< qιOp [eS ξO9NyS؟U}ԏmjiw}u|QJ콭o~̗S7cOש)_)?wz|?GK }\ޏF쎗h^4])wz?0C~tO彸{ۨuD4ޣ|Өu/NmB6*{j~З>vKKo?4U:}T^mvq4/>^eڼ 쉎8)/u>,*; ί W8*ڧum|<;҅Uy4|>9.N,rtq}UWŎ.Ϣ(d*G>N88/gU^m9>kB^^Z'xv)pn+m{I 봏ow$tj[5>.6NO^GmcUdh>1y${&u{М?/+/' X>7cש s)6*{_^Ko_zToLu\-_9&n_l\%MM|>~`jIOS>ׇtu;#zQ}_?N=2aKM}u 7@zoH~7*{]#n>1 }_k\ҧ3M󾴌eei*C2̴r) 7(UNR3gIfZKc𾴌e mMl שwsLtzk̤=<(y!sbYb:RXfT9+nP c/oe&MGMgdT;;W6tmQ/g,mwޏagw6;t]rcN}ytv$C+ ]k,1cN^Ko_l i?KbyLΓAK笠< ʣry?^}N;HyyD.v^nS}}ϴ/\NUEe(W{)D}56*'O;vސ-\O rݺ4pĻUle'4Rʉko"w`/7s#i[T&rFh'*'tw܂ ^TmSeSl%Ȕ^Wzudtz!ګN۴~j[˵uȷy_ϵ`W'3]%Ϻ)?h,/IEyTWDgt~j}]TyUΔ(NemO7x{uz ^mԶ:-s7)u*ka.GN}y~Dd7쥮4Kx?S"^vڶ2Q@5YL8.JbnVKo_@}%`}AH}UWus5|ѩ8Hۇ}Z)/i=Oe:Z&,4ǧHPmMS>q}wb 56(HשXC諲mjmbYK/9oޒMN\IP79!NUN_ [b:wDe?g'ޑ?W8a,=rkn^/0/pz~F>3OpZFTN|kC>Br{b}yT&tvoqz t׺W9u_TN|tksUsZ&˺پ U^ԧ9>ʼnqN*'gӵ?h߳dy͝?8?FʉZk=~>d'GM g_Ge<č~*'YM|Gz-el Gڛ+nU*'d/}nugߞ=JQQ^ɗI;SIښ\"*'v"t!%;mΖ6LiIr{:,tJ,;۵MJӖL|I҂ReSmJڼğ4mL П#v6~qJum"SJ7'O3o&5kbY\y=v|HTbKNɍ!c3kbXY`Fb,Ϝ29v1>*">+kgY:YM|r\jx^uYdby&7̏3b9&+6 4fOb͓֛V'ה K͔IäZ֤X}þ֌f7)`Lg O&ɶ}0 FGr3;:=}6HjjKM:$]JeIa+XI$ĥu<jQ7ԋKF~EvRt=R˸T ,:M74ii]yqE6 7<+y|nof4[ғ LcLJYn39y^i?QqX|qOQ0`% ~(89`R/qS?8Rgq ">e0!!?1T楌4;F9 o#ah$o2ec*wcLg;tF|ӈw*qg1L5%$~N/"F&$V(HJP`S7}a>߇8O_K|? ğ<3!k(K7 t} 6i m6`#lm1[JjŶfGlYn+`/C;Gs{ܱ 6N0 A!}u دJ[xđO<ˉk9)+w%q$UP|V3/e-2uQHG{9a^c's 3-&6ŬlPka5`%v+ϧ_g)73b_L'ro q.%eĝGcYɼV1հvmi 5Noo&4mVBm[lKǭΤURICh w@3ڛCKǝIwүOk݅6$nƽ6۠4nƾ;Zz 472ލ{#H7Mu)>q'p3y)  ;OC|u.qnd^7ٻ6ݍ{mcvЎxW[kK̡ +_;ދ>kϸ='wG2v̫uS6k3N-ƫŸq"U':[o G=Sy5`~@Ctm -h;Ok(ݎ &vr SlDȰSNJbf:LwSlِe=wc"dyx(mϳci](G/͑mGo8~aS/R)QRe8 '>e1JQ40bK1LȢT16nu6c謊g7 gA6v9o.j!~c1,f\<5﹌ˈ}1,b ;C3;<9)3u0qP<s*45FXq˥|O1T 91p)(U&Yd)+{)U:oi7䨩(')UN2KTKL. Jΐkԑ (UK\$4ʔ*{HHS<*'~}'>GrWt1iBrO:򤴒 JT97gHϥ|Eu>xH#^ r$=ߔ*{$I$*9%$UfhGlQ&|I\"ʉ?E[.3d̑R: HJ쒕*{Z-d#R:EN+{)U3Rs J̞kO6j/1{U9% {-c̪u+j[BsU9lm[hۛmMJbm]֣T9Sַm#)lUN\;{`[هݔ*י}Ӷ#ufNjjT9kHoۗh߶*{[CO;KZ~e?jݬuf{_w/jZ?~v)U3v>)@C)U3TWOqJ*'~Xdা3?^ǭVnarvuFe3Hb1םNtcw:7K˰Tb_9WҢ]'g|I˹r\>R^y׵a]=;rogT`W{R*#_~T׈u"y1{삟TC4-Dʉ}jMjeOVTRK14vϑ*'D.CdY>='gGfg] e,*{]>ykx*k6Q6-xdh**{!Jk9|YeKxY^9%*{n9߶ hۉydԴ5~Q9nGfYn_Gi_a>-s}BT:>% }Iψ^b_k}ڗc|iߒlQþ}G~/MQoK/ @[اOd\ُDel$OaSQ97g%Kl7Yj>_*lF˱n{>=De;ncWwrR:Syor\!}rO^WR;$}Eğz-&rOI`{rAtFcXi KAn0N &0H㿴 K K`u?3)`uȐ` f[-,Qa?5ȕ` }7X,|YQ9b_,nRB9#Awk$(-nt&EwH&Q9bit\-+E)FɍrStw5zHfr|ߍIi=,*]DTبLQZ}=j}7j{ј$zn4~=~=-mUnFϴFmlT2vP";"ZަEϳ*'$;>z͌VYبuYh0Zwl^]®Fn^ewEլ}7z=ƞ^gObr|MiI۳tU9&ղs"6*]U^&].:܍o|Kɽ['ڼ!WlNx):M 5IpwɫM ]j34ˢT]G&_m*Fߣ6wEۯ6oDߪ6ƥgtF٧Yĥu,'y._RӤq%tҺ$^FJǟgH=KGJˑ/7tN(#9 .2n>` LCImrZF2L3[N{.>)7O3|YSYAjhqY'rzR3R'_'E<"ȑIҸ1Ng4LDtn,c7ʟhl NO9!M^)CQ)bnC;9 ae. mq*nj)  _s[ /9Źk?Y{-X2Ĵ'8D1'qFl ȣ8KF*KtΔm<-*ʮ+lI%S.BOZyqr= Egz$SD(}hl6OJ?j&n[(qA.lvvsv3Rn{reUpk/^ٞe+Ҷ-;C9Ʀ\M/'i7-$ᣔm |TgpFhmC{\ iBns|NyލOC}}GF_]VMݜ1$ֻpp{?%WxGi{$q>EO-GD\錟ܙۉ9?\aA{h]%]1~2kD%w#M¬_=aQaĻH?/<~/"ShHoQh"cO3m/~`#ix u1Y/tkIb4$?7Ϭ=oH,:py_b'{6p벓{^g=)rf<$gC{HTp `wirw C6r{qV)Ѡ[q m rj/3y~(m'}/UuoΣSHy)<R~ҿr\jAN5:\ScA>.T+:r k_SuQgr=y< kj{T~sʜg?C_4 fS?;m6Ag~A?؝Ӊ~Qb| [쿓A7A=#>ԛ]|#na2GIi\lnvio_r݈;q~NJ;~<@ё:,{3{/5fN#[5xC>em|Hw?ʺg7 131E{ߟ;{?so{/tI O?z' /q|OѓzgOr1ok ?C{_s|/7C? `s0C i"ϴ/Ϸ_0A,;p4G112s,u9Dz6F3ב0R>} BsA.go6c."lsyK`5Zlv~6?oЋx&-X|d+e>f`LMcYg29oWi v5ZBkh/}4r]]LiY0y¶e4}2)N[cti)/yR1Nh:C7N[mjr$*Ţ_ʿ9c/i^Uh'{~W8{bs_V$X/#ֽ nDJ*~4ӤK (p`į;f,4&'Tc&հ8s7ܐsqs[YJs+iS8 y'q/?Gݸw|̽u"1w|/w9;^p;oTY;:M"yi"Rwr̈]n2cʉoӱKIiҜXۦ$/flt1ߟ3$Y9Oߟ3ķbLi~r9umF~JhCdT*˨4&-A !?XQExENs/欈E%""JRA̘w aHCAr,Ab.Au|PuOwA楥W8_Љ)H=)NIwȜlͧr\hIfh3nfj YE%`>}oƘAf(?Hӌ5]73wf,2 Yk>7gfc,bs9ŴL+)`E)j~L')mZ.יAr)Ue3Mn2s"rY'&`vH9WH\.'ȥr\(gʹ.\ 4Xny\`Vfgf֟>R5l:^l怹W<|,\f6C{61 rlnCvos:ˉ,4/| l -h{Ƿ]߉qVmJ3ѧ3rqa ]Td%iE={Ѧ'{=蛆=͵U:%w 3@7q:ep欚ɹ4K1 `|C8C003F0H fDہ`r0{?ж7 DI^.;-k R.H)~b ?.4cP0 GF2Q`$F`J!`0 uq[B Ơ68hDbLR.\L>9[V_!vfr!8M쉌1hsm,8 '}i+bt |lkkzL=35m#o<&Qm\-wl\J}Ac_9m؏!WR,WDALG 8ۉIdS8N;MыR/9,EV}sML=hӯ; Π#耽=}ӷ=1˹ ?[ЯWtii{r.z w_RPk2\E9/S CчfNr1ŜE˔Ǩ~ |1Ŝ;s]yv1Ŝs^O3`6a,,"_ ;,ö+o`X okZ2FV迍nc[YV).GR\iSR[ |%A)ef:Z\\OMO&5 ;kºg9RK`G4!lxOk&0x1f^H8UJP\A.e1zb0bqq zq{ ՝֍tvvٗ:g?rq}9wr~95Wr*8Y%ї\Omڠޖ6_K|-W[[ӧ5[qMl% /ģFӒ%yK\-#ZWՒܟ/to 6iZS͵kSmؿڰݚwkm߷݆w6ܷpn} 6m)rvhZVܯ۲}Em557;A;jviǽ{@G3F{i13;Dn}u j劮]we ]XCWniiغn+EyA bf{=2A61fy+|NbNl>[M 9)j#D:k K/~?{JrHLA8ى .ns>i'q~uιЍˡ+ޅCgηΜo@GcG#܉~Љ#ctdϝ8:#w_gt<`UNÖ]{7kڭ<@Mu r:^9Na ;8u5S؇c ӹkO't"NgYtV*$n ;hsqr$pD7M,rG;g zzXOXO\̠:Zò.vX~ +2GS[c68lB oٿv\l{Ns;vL氋zӦm{d2p 9r:3`ęg0LGr?t&޽Ea0~X9}X71Hx}úcs0w}cTdףZPEٷRvSٷb_Q \s*OSޣT0c2$8kj"yH&qUOS40o`"Y, 6mX˺ܛ`k[EWU xC3\d67Pw6fLıu؈27 yX05a-XN>LPckY:1Xq96@FΝ,y33x f lY _ pկ\  lD¿8dwu-Z5\ְ߫ٛao]>v-Xٹ밮 քUȫZ,ú'-K-A[?"-u)Z?UZtxG]vEU, w/`眩.y9YH~lsv>t׹s f>LCm:gg&`ugp'v5!s6,<3i3=f{:\ih&!Mωo"$ɜSt<OGL\ &qOژ#c˞}s,֟16Z[S0VUviz'b_J_J,ON?V#n"O0+}A0 6̬2kNP`0yP 2m͆0dcƀV ضn vƞ`=G 8mg(1fc>އ{3^̩'zU~:Y<<51OĻLHߎDN&lD~?c-߳ s9}Üe3.~=;f]@7t潙ynDľ>ޕDVU̵y{;z7?1s,:`/c&n.bb~/p5 I/6ޗAO͍q0Kj|&{J"9Kws.슏 '0xG3#5 񟫚v[T Q8Vo 펷iп9 z;kbtA0 'W'0v`1V"žZ&w-l9]C#͚@W"S}"x5 п6CGv߹ڮnٶuՆl6o 0 ]V0k=W7s/k1XGј̝(>cC=!xC=:~=Al:]4ߣaȃS~틬}=Bez<1е n38WyjqjmǏRw? yRm}ݓuζgs_v]O1ӵx=ø{d^wܐzl:]"w0/yK؞w/7?Fq;l[HcfC־Mھb(73_#6M_yؚ9]c;]?Wkkm5ƛ^uͶgs[5G 7CYy3俛w?3Sg?AF؁P־k?|1a\bF[i&r+1mqGsG]mҗNWGzCTl]w-ΤWNWSΰ7x}Y;ct|T9ۡ;ѧKȝCYc躎;gگW+\yNWKj6kWz#za{v?XHf<܏6ٶs 3Jy#Pqoiܐ]ϵl{a߱npXDž|X־qWhĝsp#gg ȇU~np,=^1Ⱏk7O9s~seN^R9¸˲ö)2ke&Q!XПI[mB=TT׸a {\d>/5BPg*5uB_F}Rk*#[k!WR.eڨ\ lH9e_SFd c-ۂoatoծq~wr כ]up%w A=w}ۄ1ߞ]rE1u)m_wjHuV[MZRR V=Ov0{Ӿܮ}|It }aE#wµ0k?]jr-3*5 }a7Iir|fj*Ly@mTg~tB_&x{By~,PXu;ryDm U, t ~^Z0 LОpzroNvF9e3~;AGUQ89xp|N~PfۏbO< Qil|qu#m_ 1R[(<5rx$tW c?[C~qg=w9]̎϶PYaY*,yP.nXN)&K|ET>v9)"ui\\ߢt[/6AlfԔk.) JH-)NW)]Cw6V:N(~"wHePQnEszuTZ]mw:]fRhkR8C ꕝ~:MC5/;N?WҜ-@-)9r_c}ٜu;]f*s;evMW~~O͡?#)-[7279Eߨ ~=mdf|qsWe,ld}&9ʶ2[~o%ob-.Uv(ϒ|; 7}G#͵HtNo#A m@xBl`s5_m׎tfTo7P[3?6{JuuԸ7;F5~]}5e쯇 kM+A[y ~n'牢Z\H`i!O> y"{~|; g9c}Nb&W3k0y*^S} 렙3ٚ>a6Wy**nY|iwڞ;#m{yvA[קiٞ~.^'Gyx <SOl/a U1DlY;aA;[ 8|wNvA0F bn|(눩-ǰԟ/t}6:hn5LM!=O=1ۿ'afG5u\_d&bﱕ?CNWMǠr-ħ 5+J3k 3{k B9+>CHb\@ Y ބ7IEb+LFe3-v:͇evD b//2,3=>L3}fV=O5JXO"uLNm*Gz[?߾j?4E4/~{$7ucAճ}v~~yѾdU+oH"Oƥ6OSWe`lY<5o oX8NOgs"K|su/О}<86tngm#vM=e }mMȭ)֓Sm%*[lO0eIU[i>P8yZ}'N5gτəI} '}v <>P8_ 'N.ˣWVC?:>P89?gojñ'NOF>P89?]BUaK+eN(_ȿtTaKeN(柫1!}8pr!2Wه 'ϕ؇ '/'N/evrߒ{'N՟}8prKmIeN(ߒ[Yه 'Qa- }8prKm#eN(ߒ'Noɿm [o;*pB0>P89̿%v'Noɿ [oW)pB0[_ه '3>䄓m{)pB0 +pB0J*pB0*+pB0(pB0(pB0)pB0Ua=Ra=uTa=Wa=Sa=Ua=Ra=>P89̿G#Fهp?B#)pB0) G'N!>P89G(pB0i G'N!w}8prRa#?Qه 'HeN(?B#}8prUa#?Jه ' G(Ni>P89G +pB0Q- G'N%:>P89G(pB0Qm G]eN(?J}8pr(vTa?_ه '8eN(?Js}8pr(Ra?+pB0Qj} 'GӔ}8prTZXه 'O%%}8prTZYه 'O%u}8prT@ه 'O%}8prT'NJS[)pB0?'NJS+pB0?u'NJS*pB0?u'NJS}eN(?nj;901;Mه '=+ 'N#>P89(pB01k 'N#w}8prRac?Qه 'XeN(?Fc}8prUac?Jه ' (Ni>P89 +pB0q/ 'N':>P89(pB0qo ]eN(?N㭔}8prw(pBoS}:f^R=)Sx)W@N牽XsYa6w2M-ej:f#dNV]f;v]!~/)jn7`Vp jbB@eT&ލĭv[+2̧"lFe)nb=UXWX-W)jj淚15XWGq%}qϸ3~}~A2wbLSjP {Up*FU ĩ@{9.Sq1~9Qc^_yyyW`7FUj~ΒR0))Sbs#?ӠaMrRʭ)WqJC)_s1W{}5@5@_jY4jʩ;^\ ֢`=ռc&9X/1rdMslsl-҆5ߐSbfJ`̔Z$I&sۜ>"|`=jωuظd{ND>6 ͆0L=(+64(96Zl1l;N {">x7s0?cc}"N/.3Ƹi<ҘOlFe)z>+=D? R Cj淚akY:֕vc1X;1&0DƝ&2k"|'0akPl %&6R$6 @ÞzӮ{/݉Ӎx]ۅ3ubN߉ytb>Wgיyva]w7ߝu Yo?߭&@R~&>Ol|Y_ւufC<lPd3MV< l4&9Ylo޸l;N {">EO߉ `{WU+ ,%R-!]`g|1.fc1Y̼~e~6~#Xrֵ"owX_X2j淚akY:֕Jm;cdܝa'ɼv2w|ֵIL|H< lgu` X~þ,R/b/"B- /ğ8ocycǼ3滀y/dXbֳu-e} X伱emh[:Z֋ֵ壕M.ZTS\V @mR2)zA5p !n} ݮA PbZ[kEoWwDu'|"g4Q1fkͺf>M^IDA45i'y bٓڛ}XG:Dw?n̵d)@nY.T*w'Uw~ 7iXuav GUy CRT~Cb#rq ,J`_FΑR>_ʫ|+ER]EEarp)rXuדWUrhk=*׀UWCx׳|7Gc$\>o&}U`#+}_UWmۆ??Ba~j϶V/`~vQ{N슽nAz `u@s<7ԃ*/1;]*sd~3͞@W>S]RTJJ6CR]_˾x ʮsAUW\2r?=LZNW?Un\QVf9#{7\?O~Cǥ@?Z\rf/b7B>dvri2?+UnͽAu_!߱w*wd`dNϝ@2U;y,GGug7,si<[t~Tv**]7nt[UIuWM ]iTW v;pT|eϔ{YROR7DW—*]V*_/U [*|<o`ʳNyJ@W`*?#O} n,/<Ѿ#؏we?F&iTZ_ U&ߴ T"ozpc;#WyΔvU(]&:x|Z,nNxUy t{¿˷*|'3O]Ż>_:\X~ twI|tSttwI2\^z|ttn^mUt{>| R=)#d/@WP5_*%]#eSs뵕2Yv2>?"3pWr/ (xVytBoTW,=5Ԟrk/b[{f=]厴S]Ez"3]gE "|NuLESm!gEH7xD啴S]G2z[L-@WeA8aTTWhĖ Gm)OWKDϴgٲ*&z!Z^@Whi[9ZAeTRzکo f}͔Ba?g&i{,֜VHhssRDo9sam9Gx"ܑq9Br3r"e[D*{fz{Svkn ^GM#OԓA'.N}:@I/|}y F'dm\%3kKTϸ>ϻ> UԳsۂoQ9vҕi%L'g*&qœ  f%oІӧ=2Rni^q{!M~&lg^D c?G5BnI7.s~JIw#o0%ilʉܸ/4}g^hsRJE)sW.UBM^~P% =LBe ,ņ |ŗRBב,LR_x╗4}:/6{EjҠliX`;t+Kj1BR9{J%Ч1zN(UaǟIҧt9!Z2OBxJ'LDRI$VS&畲297t2O餞k ]Ol&$zJsiRd$K;DҫNIrPI{}zN$[?k ;sdwR+&jN-~1Ho%L2LÆŞjD/6~)ݏ_3m rNmօ:dPeRGmĿl;.l R[4}@rkUn(۩QeQ-nZGŴ,羋,Tqe4sҩR_i+b~KcL` rLmwou^GM5e{Xn־l[7b ]~*c\WݝP:'y^K~;]Bey+tw,ܒǯk*;R ./5׺d{w*[ݕOWK~œ:mSuKuod ^n"fSe ~% dVl'SO~dd@V1}8E0Am/a=B8<|g3:.Twn[].wwv.yVw.Rն=Futlb˴WR9]MET*p-m+L[h+TuۨҪK}fSllV'd[ڞjK2U8(.v=^lOm>[Ц | *=T;vP=;Hc/DA*z^B"WGK1N~g{le**TUsUbVa7Q!Vf=+@YW*j;.yϱ~k^ep5)/Uwɾ9_f}߱pyf;K_Jk޿&suwMNO|M~&?gKr籺Kcr=Xɗە.tύ뻼_9W}w}z*u-WYwPՒC.=> ?JPORO=E==6T]Qqm/u&[@Ul7ố"*:+oE>)ԉnn'lObK,boQ9ގ6==LMY8 sj>kyu?f.|;]ſK}]nEwrs<ޕÝ翿yw./_m./o׿yC].'2:߼+˳ۻF)|iaTDjBm5S fg/!7z֠z=3^~ 57ۂW?RuLԅvNM՟Lj$x<߳[;ۛ:2v$:}{5ZwtFGضd֟Pk~OkGjG|k1ڶKz3ܭu.l)oz'qy ͒v4EKCK ʣ^LN~d܍\Im/x@:e{_vԲ iv܎mn} /brsIirw:`3Ly'h4m_cblwu,ĻNΕ蓟s&rw)jKk!clj4x)׼s ǫ|yWG^qb~v9WΑUvsrx4 `/ o}b|].EЋbqb]E-I̯ ,C~JRw߃[~һwJZ?-?'\jdؓ{J%쓿;.Kd̼yc^K߷'sbrdQ}$0$G\_ޜRI9dVyq<߶\=+\גd;y5s5OwgrCܓKRߌ^l9wK|՗f^E*E[}*{޽[yw0^Mp;-ت,-JwU]* T`7^Ms n"bܻYZ%y$fKbͨQ599||ZЮ| ޖ̳ #X-mM6̯-lKuV@uڽBW*_#{nlPU UpVx+$]o>m;ߺL_gTpaɪ:RtnT;iT1=xztHso7c ʧh "7m]/oK_o#F?/cc낯#mK#}QotNm蝱wDYӯ@Hc}c/`!6S=YPk\!Wvp@L x] |?3D @#! jh@>ۢ$y݈XgϖeBA[ j?m;mR|uOPV;;M6vfǹs9{wgJ<Lex}Xs8e^-A5T,}=T5CQbOkKAa!/Xh`&̂*|M N|Ed f(X#'VWU:vfճٳϙUsjͬY3f0F4І! (3`xZ}cs0b8N3*U3󵳫Ҳc wtnh :$0EP; wvDzP7 Om!og3d8x< ųi8ZSS*JV)_:?b6±X,VCCZno Z1g;ٱ~ܤϝ_s,Z4XT$B1m,Ҧ 95U3 CDcݡP-A taΑ=vC/~S>^keޣAV{:I*f&9|WK8@@cJzr2bg ׆D 'K~BlaIOLs7)KWINNѮ4j2-ܴW~ C[Bᶦ]!Y< %gY jm kA4.B=9ðfX;zȑثs BqI3'&y;ePuEaa;NɠzN_ţH1FE+J+]1J+A-A1)?e 6/"=`HlohSIIB`n]C jŃ0k~+|rTI?T Mbu`O$67뎺468z1GQ3J# FZc!ii*BI4ݹ.p$"\~Δ|/*fGqV }Fnax%'Wֺ*Nl9Z1j &+"7%~ Q@`!.[L[7ŪMPS6ùqO{rE˄24ZL̢8{R;|8:2攐SJYLyh͹yɚ#.aM n*Ine|ȋy!Eȣ^ρL˃JduӬ9y1"7 u=op⢲狋Q1nd\FEe#h QV05nd\Ee#hv>W"'\v퀛:v[7-y" QgB^'|::Oӂl jF;*FU1l" J+#s*<0"A<&׺Au\(cK`6{]svpj] 6&/4&<Ρwen\0ʗ|RDʉ$ iB=3YH3T6*É,H/e.ʰ2)YWiy&έ` ǠF|0Pڡ(o4p/T]8e}Ŏm;Mwq(ssI jL}jYz݉qJ܉e|T5 5xշ_׽[eݫ{U\MS;WU,v oO_Xej峰e:3ICʓD F|+ü23N9_Sㅊ9g\_d4uڇ/GA!q {K ^ rδY .18o]JsHz,>=fCǟ!k}oϏY3{Ԝ؏T KPN49~[c-)rVYgp`ޡy81wh{? ;4CϦǝ1KE0#w ?YI #| .(WfPQ.JG:QY^њhIIK+_-z/W0%&[-%ׯ9l%lk#(8gr1WF𨳓BXgdzΜJTte~/@-}wtߌD>]xv/ s^*]+Üuhn\v@%?ZV@_@A¬PA ļo_!QPro;e[/?|f@ɓqk@b`-eN 71GAQ#Riwh ep`ޡy8k]yo3η`3\3P} Cu"lPl%2yvxZ>}ѧ5 v="ȇrR׮d|or?v[_LkazxJ_uz~F:=? {輲],MK#,/'Bř6至ѯgc WyڐqisO6S\a?x-U\F^a1"1^-tbJJL|RzeK Քixel ~x ^?3厽\i~MVefѤw};vGNڷ4h_zo>>^Lm 'x F|t\PT7Xs]C]S6gJ&9U%JrY#/Kxނ!xހ_/T3pV 8ES˕i:,F.N/$v~y?$ᚚ1>e \Ǹg#%yPr#ؾ`Pk2P39ﮚjPo%hI[Y/ٟܧxR)ҴmEV=B!] '%![T9&m㓾I9m'xLjMnj fA.amkKgIp"uR<ΒV2:~z6%rX"kKDݔ#KA=xhs嚩 ).IVrc ʹ:U2~f(̿v ;i34bɿP3=#mk.A} -x-] +RR*He2L)DQsMIx^9tO N"J*.KiQz>2㹚dvƩNw;5K돻 &xJ#Opu$&ps AutqC8(󱌦1h#Y1Q/v~4섺>Jº慡`K{u=ܚ"AϏ`u굡ff+lnvl3thh+ۛds:uX:1O :e:!Ve67#^Ki}En%?OÇh`~ƥQ)=ӬZqb< vۺ]k==2錋Ah8 )}]W6ֿ(6iGp<5iHW`u8Ihku,lz O=hL|=Y"ַڂ=f~vn4%OxWy$Fwy־u L , l - L,l8 0 0 Գfn q¿fnaiemAܢ5t L,6XqgA#f8qi%HDFYIi醦niq](h躩떮ۺhne趡yIM S7M2uҚfZikfU(#~54 4L0mÌ5je,4iE1,*,Ӷ8GiMM-ʹ8܈7'C_mBː5tahԣٶfٴK05A Қaeضa 4"HD&,үaeۖgwѨK&ѱ8Aچcm]B-RD6 z=Fk-bxk5ӵUc nsx<_pb =xm/@ ^[&zfyP]tPݬ~׍G rDd 0  # A2~Ml5dOfZ`!RMl5dOf!  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnopqrstuvwxyz{|}~  Root Entry& F0fO)TData \WordDocument%1ObjectPool( Є*O)T0fO)T_1189083699FЄ*O)T,O)TOle CompObjfObjInfo !"#$%&),-./012369:;=>?ABCDEFGIJKLMNOPQRSTUVWXYZ[\]^_`b FMicrosoft Equation 3.0 DS Equation Equation.39q2: t=mvF=mvF=2000kg6000ms "1 1/100rEquation Native N_1189083698 F,O)T,O)TOle  CompObj fad12000N=10s. FMicrosoft Equation 3.0 DS Equation Equation.39qQ@= Ft=("410 14 NkObjInfo Equation Native m_1189083696F,O)T,O)TOle gm "2 )2000kg6.410 6 m() 2 100s=800Ns. FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjfObjInfoEquation Native _1189083695F,O)T,O)T/ "GMmR 2 "GMmR 1 () =GMm1R 1 "1R 2 () FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjfObjInfoEquation Native  : (410 14 Nm 2 kg "1 )2000kg1210 8 m"1210 7 m()="3.610 10 J._1189083694F,O)T,O)TOle 'CompObj(fObjInfo* FMicrosoft Equation 3.0 DS Equation Equation.39qH. F=GMmR 2 =mv 2 R so v 2 =GMRE K = 12 mv 2 =mGM2R=2000 kgEquation Native +_1191143986 F,O)T1O)TOle 4EPRINT!<'(4.010 14  N m 2  kg  1 )2(210 7  m)=210 10  J FMicrosoft Excel WorksheetBiff8Excel.Sheet.89q l=j&: . EMF<' )543F, EMF+@,,F\PEMF+"@ @ $@ !@ 0@?@     !" !" !  " !  o" !  o'%     Ld8:7!??'% (  Ldn8.n7!??Rp Arial ꊰ0x x'!:.0'  D0l < PArial$1' x}wuw% \<l  _0dv% RpArial/& x xD31.0&@  D0 < PArial$1' x}wuw \<  _0dv%    T {A9vA LGravitational Constant, G!     !T|]{A9vAL\6.67E-11 Tn={A9vAn L`Nm^2kg^-2 $T {A9vA LtMass of the earth, M#     #T|]{A9vAL\5.98E+24 TXn{A9vAnLPkgT 6{A9vA LxRadius of the earth, R      T|]6{A9vAL\6.38E+06 TTn6{A9vAnLPm$% % " !% %   p,% %   T {A9vA  LdHeight (km)  $% % % % T2{A9vALpPotential (MJ/kg)   # % % % % " !% %   Gp,% % % % % %   TM{A9vAM L`Change in   TM{A9vAMLppotential (MJ/kg)C   # % % % % " !% %   pd,% % % % % % % %   Tc{A9vA L`Change in   TF{A9vA L`potential    Tp{A9vALX(J/kg) % % % % " !% %   hp6,% % % % % % % % % % % %   Tnp5{A9vAni L`Change in   Tn{A9vAn L`potential    Tn-{A9vAn L`per metre  $  Tpn+{A9vAnLX(N/kg) % % % % " !% %   o  TTo0^{A9vAo0LP0eTxU0^{A9vAU0L\#DIV/0!t  TT0^{A9vA0LP-lTT0^{A9vA0LP-eTT0^{A9vA0LP-T`Xd{A9vAXdLT100rT`d{A9vAdLT0.01 T`X{A9vAXLT200lT`{A9vALT0.0o T`X{A9vAXLT300pT`{A9vALT0.0o T`X.{A9vAXLT400eT`.{A9vALT0.0n T`X4b{A9vAX4LT5009T`4b{A9vA4LT0.0) T`Xh{A9vAXhLT600dT`h{A9vAhLT0.0 T`X{A9vAXLT700T`{A9vALT0.0A T`X{A9vAXLT800AT`{A9vALT0.0 T`X2{A9vAXLT900T`2{A9vALT0.0 TlF8f{A9vAF8LX1,000 T`8f{A9vA8LT0.0 TlFl{A9vAFlLX1,100 T`l{A9vAlLT0.0 TlF{A9vAFLX1,200 T`{A9vALT0.0 TlF{A9vAFLX1,300 T`{A9vALT0.0 TlF6{A9vAFLX1,400 T`6{A9vALT0.0 TlF<j{A9vAF<LX1,500 T`<j{A9vA<LT0.0 % % % " !% %    6  T,|3{A9vA%LPotential Gradient and Field Strength  !      % % " !% %   o% % " !% %   p% ( % " !%   o% ( ( " F4(EMF+*@$??FEMF+@ CompObj5fObjInfo #7WorkbookgSummaryInformation("$8   " !#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ u'\pInstitute of Physics Ba=I&=--!<X@"1Arial1Arial1Arial1Arial1Arial1Arial1$Arial1 Arial""#,##0;\-""#,##0""#,##0;[Red]\-""#,##0""#,##0.00;\-""#,##0.00#""#,##0.00;[Red]\-""#,##0.005*0_-""* #,##0_-;\-""* #,##0_-;_-""* "-"_-;_-@_-,)'_-* #,##0_-;\-* #,##0_-;_-* "-"_-;_-@_-=,8_-""* #,##0.00_-;\-""* #,##0.00_-;_-""* "-"??_-;_-@_-4+/_-* #,##0.00_-;\-* #,##0.00_-;_-* "-"??_-;_-@_-0.0 0.000                + ) , *       @   D    "4 "4  "4  "4 "0  "4 "4 "4 "4  $ "P) " " " x) |)  |) x   ` Sheet2X%Sheet1,T1%Potential Gradient and Field StrengthGravitational Constant, G Nm^2kg^-2Mass of the earth, MkgRadius of the earth, Rm Height (km)Potential (MJ/kg)Change in potential (MJ/kg)Change in potential (J/kg)$Change in potential per metre (N/kg)-Field Strength (N/kg)f  u'  dMbP?_*+%MEPSON Stylus C64 Series 4d54 **** qDLLName32=E_DU18CE.DLL L dL 2EPSON Stylus C64 Series **** " d??Us      ! % % ~ &I@'#G@hK#@~ &b@'M}H"@~ &@o@'P%"@~ &u@'~~lܜ!@~ & |@'!@~ &0@'j`] @~ &P@ 'l/^?$ @~ &p@ '6/Lb@~ &@ 'v@~ &@ 'n*7cر@~ &h@ 'Dl@~ &@'r?@A~ "&@"'y0@~ #&d@#'SF4@~ $&,@$'" 5@~ %&@%' T@~ &&@&'K,.@~ '&@''!|@~ (&L@('Q\u@~ )&@)']}@~ *&ܮ@*'^؅;2 @~ +&@+'U @~ ,&6@,') @~ -&@-'4= @~ .&@.'Ep @~ /&b@/''ą4 @~ 0&Ʊ@0'-A͵ @~ 1&*@1'jVda: @~ 2&@2'wD @~ 3&@3'* YM @~ 4&V@4'?"@~ 5&@5'x֧l@~ 6&@6'Ӹê@~ 7&@7'ws@~ 8&@8'^0@~ 9&J@9'=#Sc@~ :&@:'2i׆k@~ ;&@;'ʀ @~ <&v@<'.Rѯ@~ =&ڶ@=')5fU@~ >&>@>'@D,@~ ?&@?'D@~ @&@@'T[S@~ A&j@A'Xe@Dl BCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`a~ B&θ@B'rΰ@~ C&2@C'I-b@~ D&@D' n@~ E&@E'F <\@~ F&^@F'Z@~ G&º@G's:@~ H&&@H'<@~ I&@I'&xx@~ J&@J'Sn@~ K&R@K'O-@~ L&@L'g}E@~ M&@M'֩Lծ@~ N&~@N'q@~ O&@O'!-5@~ P&F@P'g..4?~ Q&@Q'>ޫ5?~ R&@R'?0?~ S&r@S',R˿?~ T&ֿ@T'XKC6{:?~ U&@U' ?~ V&O@V'@i?~ W&@W'!{?~ X&@X',a?~ Y&@Y'?"-@?~ Z&@Z'AQJ?~ [&I@['Zz?~ \&{@\''?~ ]&@]'G5?~ ^&@^'ņtu?~ _&@_'˘?~ `&C@`'_)?~ a&u@a'w?Dl bcdefghijklmnopqr~ b&@b'b&?~ c&@c'?~ d& @d'9nf?~ e&=@e'BhB:?~ f&o@f'bˇ?~ g&@g'-.?~ h&@h'+v,[?~ i&@i'5{?~ j&7@j'0?~ k&i@k'̒?~ l&@l'A C?~ m&@m';?~ n&@n'sm?~ o&1@o'T6?~ p&c@p'wC??~ q&@q'rPQ?~ r&@r':Iw?&t@ >@7 u'  dMbP?_*+%MnMicrosoft Office Document Imag/ d,,Letterwidm" d,,??U} I } } - !"#$%&'()*+,-. ((((((  maU=   r\AE   ~ xVXA  ) ) * ) + ,~ ?<SB)DDDD.A    ~ Y@?)DDDD.A !"~ i@?)DDDD.A#"!"~ r@?)DDDD.A#"!"~ y@?)DDDD.A#"!"~ @@?)DDDD.A#"!"~ @?)DDDD.A#"!"~ @?)DDDD.A#"!"~ @?)DDDD.A#"!"~  @? )DDD D.A #"!"~ !@@?!)DDD!D.A!#"!"~ "0@?")DDD"D.A"#"!"~ #@?#)DDD#D.A##"!"~ $P@?$)DDD$D.A$#"!"~ %@?%)DDD%D.A%#"!"~ &p@?&)DDD&D.A&#"!"~ '@?'()DDD'D.A'#"!"~ (@?(()DDD(D.A(#"!"~ ) @?)()DDD)D.A)#"!"~ *@?*()DDD*D.A*#"!"~ +@@?+()DDD+D.A+#"!"~ ,h@?,()DDD,D.A,#"!"~ -0@?-()DDD-D.A-#"!"~ .@?.()DDD.D.A.#"!"Dl l"FFBPcccccccccccccccccccccc/0123456789:;<=>?@ABCDEFGHIJKLMN~ /@?/()DDD/D.A/#"!"~ 0@?0()DDD0D.A0#"!"~ 1P@?1()DDD1D.A1#"!"~ 2@?2()DDD2D.A2#"!"~ 3@?3()DDD3D.A3#"!$~ 4@?4()DDD4D.A4#"!$~ 5p@?5()DDD5D.A5#"!$~ 68@?6()DDD6D.A6#"!$~ 7@?7()DDD7D.A7#"!$~ 8ȩ@?8()DDD8D.A8#"!$~ 9@?9()DDD9D.A9#"!~ :X@?:()DDD:D.A:#"!~ ; @?;()DDD;D.A;#"!~ <@?<()DDD<D.A<#"!~ =@?=()DDD=D.A=#"!~ >x@?>()DDD>D.A>#"!~ ?@@??()DDD?D.A?#"!~ @@?@()DDD@D.A@#"!~ Ah@?A()DDDAD.AA#"!~ B̰@?B()DDDBD.AB#"!~ C0@?C()DDDCD.AC#"!~ D@?D()DDDDD.AD#"!~ E@?E()DDDED.AE#"!~ F\@?F()DDDFD.AF#"!~ G@?G()DDDGD.AG#"!~ H$@?H()DDDHD.AH#"!~ I@?I()DDDID.AI#"!~ J@?J()DDDJD.AJ#"!~ KP@?K()DDDKD.AK#"!~ L@?L()DDDLD.AL#"!~ M@?M()DDDMD.AM#"!~ N|@?N()DDDND.AN#"!DlcccccccccccccccccccccccccccccccOPQRSTUVWXYZ[\]^_`abcdefghijklmn~ O@?O()DDDOD.AO#"!~ PD@?P()DDDPD.A P#"!~ Q@?Q()DDDQD.A Q#"!~ R @?R()DDDRD.A R#"!~ Sp@?S()DDDSD.A S#"!~ TԷ@?T()DDDTD.A T#"!~ U8@?U()DDDUD.A U#"!~ V@?V()DDDVD.A V#"!~ W@?W()DDDWD.A W#"!~ Xd@?X()DDDXD.A X#"!~ Yȹ@?Y()DDDYD.A Y#"!~ Z,@?Z()DDDZD.A Z#"!~ [@?[()DDD[D.A [#"!~ \@?\()DDD\D.A \#"!~ ]X@?]()DDD]D.A ]#"!~ ^@?^()DDD^D.A ^#"!~ _ @?_()DDD_D.A _#"!~ `@?`()DDD`D.A `#"!~ a@?a()DDDaD.A a#"!~ bL@?b()DDDbD.A b#"!~ c@?c()DDDcD.A c#"!~ d@?d()DDDdD.A d#"!~ ex@?e()DDDeD.A e#"!~ fܾ@?f()DDDfD.A f#"!~ g@@?g()DDDgD.A g#"!~ h@?h()DDDhD.A h#"!~ i@?i()DDDiD.A i#"!~ j6@?j()DDDjD.A j#"!~ kh@?k()DDDkD.A k#"!~ l@?l()DDDlD.A l#"!~ m@?m()DDDmD.A m#"!~ n@?n()DDDnD.A n#"!Dlcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaopqrstuvwxyz{|}~~ o0@?o()DDDoD.A o#"!~ pb@?p()DDDpD.A p#"!~ q@?q()DDDqD.A q#"!~ r@?r()DDDrD.A r#"!~ s@?s()DDDsD.A s#"!~ t*@?t()DDDtD.A t#"!~ u\@?u()DDDuD.A u#"!~ v@?v()DDDvD.A v#"!~ w@?w()DDDwD.A w#"!~ x@?x()DDDxD.A x#"!~ y$@?y()DDDyD.A y#"!~ zV@?z()DDDzD.A z#"!~ {@?{()DDD{D.A {#"!~ |@?|()DDD|D.A |#"!~ }@?}()DDD}D.A }#"!~ ~@?~()DDD~D.A ~#"!~ P@?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!~ J@?()DDDD.A #"!~ |@?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!~ D@?()DDDD.A #"!~ v@?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!~  @?()DDDD.A #"!~ >@?()DDDD.A #"!Dlaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa~ p@?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!~ 8@?()DDDD.A #"!~ j@?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!~ @?()DDDD.A #"!aaaaaaaa>@ 7 @? ()DDDD.A '&%~ @? ()DDDD.A '&%aaaaaaaa>@   7 Oh+'0@H\|  Mr BoutlandInstitute of PhysicsMicrosoft Excel@1@՜.+,0 PXd lt| 1 Sheet2Sheet1  WorksheetsDocumentSummaryInformation8<1Tablel0SummaryInformation('@DocumentSummaryInformation8H 3@2 x}SMhQMtM5*xnrhOB R C"*6XBЃxI =bgOb=+t}6m|훏R?8 "1 (f\zv bχ3*px hUaUG4\6,6!tSk1"q4o1-%SWrs<_Z1+u S*p?]~ܯ6c76= Q+g|gC,=BQc5aꎢat)f,V$5hM,ߜWl5 Q({qYa|gƣ9atQT L>8̙\u3߿C;eIR~v|Fs,qN8_ SQ+K2~b륾+˶ޏ~?{P~l?f?#'rǟu&0myg%o%tqI}_0nf$4o>+uZg_~K뉣P%Dd 0  # A2'`6ǘBoIu{}`!u'`6ǘBoIu{F@(.CxڅkA߼Mmچ&bi !^Ó'+V4Xm$'EDYD((VՃ?z/jۋΛlny; ?vPIȘFQ$ 直VEC\:9wh[¥`elQlмz&Xz W\akg~d:ߧ{1鏸珉τ2T|A$VstJg\)PMFMPdW3F.*b_(r)k(ׇ4CQ߭stQh(u_eC`o;RU5_EIJ{} BqcӎRs10dT2Ð:ŻQ >SDLDdKVޅz"O0'}Ә̓08+?jG8IÁ|Eν{=a*/Ac!cbF=+c9z-@2 X_lnqXqy SaA(?]yUap7O|$ {+tڼ)s`΁<mvXL I^?[o/#T`x@u]jn"TDJktߙpuVMȃ#յz9dmt'ʿ"Dd 0  # A2iP\׸=|4uz!`!riP\׸=|4u@)`(?P@x}kQn64M폴$a[śW1Jbb!AAP{ѣR'x' o{6;77fXuL]}v01e1 @X%60kENJinb0 y[O6ר$/,7?Q*0d zXL5ĭW#p[R}ūܞL nnl1aby+(iK<<=Mi~9E\<,i\6e?e2?6[ff/9&m.)o&"͘@>SyBexC_zs"!O_wgw } J=L\=ѓc|& /Ԭ.&3I$:QOԾ=S9xVs:sx{']K*fR'-r]j.g\1nʑԝP#\ͳF#&G=y#D'yQ~t$dVǽcY Ƙ=)x>2{](+kv? ܦR睕= ,Ԅ׻`=v=b W"7; N&p*)*Iןo#G+_=J lXocsE܃>;"Vڮ#V ;ߎT)hjYC;wv3JB>%ՂJ;`.:בr} > Ο }lftfN);D?XM,˔[RcktWwNys?o~:oX8Msy!Ra~zN-:w޴.<&}`AVb{rg>3| [3y<"쏱 2 "h) sc jR.tDyK F TAP402~4.DOCF@TAP402-3-Field-lines-gravity.docDyK F TA4FBE~1.DOCNHTAP404-6-Gravitational-potential.doc Dd 'b  c $A? ?3"`?"g q F'2ҧPbxC A@=; q F'2ҧPbxIHMc!B x՜_PUwtL0TL W@c b2n4D$uڤEm/؀W:DfڙҩmC>!O&g!v}=˞Gk3wwo?ힳ{A;,G\cZ3هO1v ӎ(cUt'ZGb{QFX5JJdaYS/},DuԆUM1 d~)!oxvc6kb e3?_<{("v)PΛ~+/u6ԶM>ny$g#IR~gyirEYb3ߟSJQ4 ^?x5hΛ!* >z*_|_SHpr%Miy狲U4J.әgYRy`.*lЃ.b\TC?)l@beOCJ= ЃDHGAs}7~k^^_" ʭl_y1ۙ)~e8W_ y-/>sԟ o+ӼQY?Wx6D=q BO^Q]ul@lL<\g߼yrS 1!?,oػd\d }R1=/>W};ؚ̾۾<-}G-(퉘:Pʣޑ}h>fY*i)泸RzBխ]m,+5Q=qٓ.6Lq$9H {ًi%WjI:rFKQ//,/~iybc,_,+ZJmbaQۅ.`?eh[Z/X{\by `+n7=۰ b]W(zi WIϺIv&"1Ubc/VbXӜ",[ 7R cԇ h1܃ =eYҶةv?B$$6EY]tcCYc;cDsB-F ĨDyVI vHmYƳ%sd1뮺 :פr=J~Da k>iTEo+h56cyg =c8Hut-A+1T_5b|t9^RvH &tJ,+rzFzW>U.biH2p1NCqI"d㧜 7YzHq-i勯3,i/! `Lq} w1Swi z>S$_7%Ҙm'&ɔ]#L(nZVʢH^7ML9wD[1 {ΌS%;syXm; x0,˶+ki1㼟lʲ,of!)kQŗ}Ր(cF<}6ey 6`S̏SB4,j=s/R `Hqk !eul.,s?[/oߐu!g_ ,Y~~66aS6-7׆hZ?n#wCߜ; 9o^[eo^w7Q~;,˲6=K|7ҕ_/!}җr@|9_6r,/u!}9_6r,w >/c]/c9|9o\H_Br7r.L— LecH_&_&z)<}4O?~9SJA~ xN~w+ Z#퀗{v+bo+R̺BY$Ӯ8^Dc+D]UilU*U)+XlA^Y,}G;f fEw֡uX:֡.z4 [z%[RcKZؒ`K*KIm6 IEw&e52.+ی6caیdݰ EwvScia g[2Xs_wVUX*V}%[Vca[ ul[4--`}%.mmvq_w֩uZ:}%!퐅q_wvTc;ja; ]jlQr_wvVc;ka; ]Mhl Mp_w6MYY>1[6߹wAU{3jqoblyy$v;_s"Mr/sH \O\  Parahead Char*5CJOJQJ\^J_HaJmH sH tH L @L P1Footer - 9r CJOJPJQJmH sH .)@. P1 Page NumberbOb ( TAP Sub Char105B*CJOJPJQJ^J_HmH phsH tH  Mq&'p MPq  z1H@H Normal CJOJPJQJ_HmH sH tH DD P1 Heading 1 $x@& 5B*phJJ P1 Heading 2 $x@&5OJQJ\^JVV P1 Heading 3$<@&5CJOJQJ\^JaJDA@D P1Default Paragraph FontViV P1 Table Normal :V 44 la (k(P1No List  P1Chapterm$$d  %d  &d  'd  -D1$7$8$H$M N O P Q a$35B* CJ,OJQJ\^J_HaJ,mH phsH tH vv P1Strand$1$7$8$H$a$35B* CJ4OJQJ\^J_HaJ4mH phsH tH ll P1Letter$1$7$8$H$a$-B* CJ(OJQJ^J_HaJ(mH phsH tH f"f P1Type$1$7$8$H$a$0<B*CJOJQJ^J_HaJmH phsH tH z2z P1 TG Heading$x1$7$8$H$a$35B* CJ$OJQJ\^J_HaJ$mH phsH tH tBt P1Sub-Type$1$7$8$H$a$65<B*CJOJQJ\^J_HaJmH phsH tH hORh P1ItemH1$7$8$H$35B* CJOJQJ\^J_HaJmH phsH tH dbd P1Fields1$7$8$H$0<B*CJOJQJ^J_HaJmH phsH tH lrl P1Filenamed1$7$8$H$-5<CJOJQJ\^J_HaJmH sH tH  P1 Item Break^$d$d %d&d'd1$7$8$H$NOPQa$$CJOJQJ^J_HaJmH sH tH ll P1 Normal:Para1$7$8$H$-B*CJOJQJ^J_HaJmH phsH tH nn ,P1Parahead$1$7$8$H$.5CJOJPJQJ\^J_HaJmH sH tH dd P1Quoteh1$7$8$H$^h*6CJOJQJ]^J_HaJmH sH tH  P1Teachers Links$$h1$7$8$H$a$-B*CJOJQJ^J_HaJmH phsH tH nn P1Technical Code$1$7$8$H$a$$CJOJQJ^J_HaJmH sH tH  P1TG Heading:Para$x1$7$8$H$a$35B* CJ$OJQJ\^J_HaJ$mH phsH tH ~~ P1 TG Subheading h1$7$8$H$35B* CJOJQJ\^J_HaJmH phsH tH @@ P1Sup-term5B* CJ\aJph44 P1My HighlighterL+"L P1 Endnote Text"CJOJPJQJmH sH N2N P1 Footnote Text#CJOJPJQJmH sH @&A@ P1Footnote ReferenceH*>*Q> P1Endnote ReferenceH*,OQb, P1TAP Main&JOrJ P1TAP Para'xB*CJOJQJ^JphFOF 0P1TAP Sub(x5B*OJQJ^JphRR P1 AP Bullet) hh^h` OJQJ^J6U@6 [k Hyperlink >*B*phLL P1Header + 9r CJOJPJQJmH  z z z z z z z z z z z z z z z z z z zg C("+_//2=7?EQJMPXu\c#hwpqE;#* a =  z^2:; qrz<^1{|e f g h y 3 4 9 y+%&3Yst4C\56Gfg(wxd !"""##%5&@&&&&&')C*D** +E+F+{+|+L,M,N,O,P,Q,l-m-n-o-p-q-.........[/\/]/p///008090i0j00000111,2-2Y2i2x2222$3%3444444455556666778797:7;7N77788#8>8`888899::Z;;<<i===%>6?7??AgBhBC#DEEE+F,FIFFFFFGHH9HHHHHIIIII'JOJPJQJRJJJJKKKKKKKKKLL2LfLLLLLLPMQMRMSMTMUMMMMMMMNNNNZOOO PPPAQBQ[Q\S]SzS{STTUUUUURVgVhVhW}WX1YFY]YZ[ \ \!\4\s\\\\\ ^ ^^9^P^e^f^^^&___aabbbcScccccceeeeffggggg h!hUhVhWhhhhi3iSiTiiijjkk:lllnnxn'ootpupvpwpxpypppqq5q6q7q8q9qFqSq_qbqq!!!:!:!:!:!!:!:!:!:!:!:!:!:!:!:!!!:!:!:!:!:!:!:!!!:!:!:!:!:!!!:!:!:!:!:!:!:!:!:!!!:!:!:!:!:!:!:!:!!:!:!:!:!:!:!:!:!:!!!:!:!:!!:!:!:!:!:!!:!:!:!:!:!!!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!!!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!!:!:!:!:!:!:!:!:!:!:!:!!:!:!:!!!_!_!_!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!!:!!_!_!_!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!!:!:!!:!:!!:!!:!:!:!:!:!:!:!:!:! !:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!!:!:!:!:!:!:!:!!:!:!:!:!:!:!:!:!:!!:!:!!:!:!:!:!:!@M !:!_!1!:!E!!:!:!b!'!:!d !:!p!:!!:!:!:!!:!:!:!!:!:!:!:!:!:!!:!:!a!:!:!:!!!:!:!:!:!:!:!:!:!:!!:!:!!:!:!!:!:!:!:!:!:!:!:!!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!:!!:!:!:!D!:!:!:!:!!^!v::; qrz<^1{|e f g h y 3 4 9 y+%&3Yst4C\56Gfg(wxvxyz{|}~d !"""##%5&@&&&&&')C*D** +!+E+F+{+|+L,M,N,O,P,Q,l-m-n-o-p-q-.........[/\/]/^/p///008090i0j00000111,2-2.2Y2i2x2222$3%3444444455556666778797:7;7<7N77788#8>8`888899::Z;;<<i===%>6?7??AgBhBC#DEEEE+F,FIFFFFFGHH9HHHHHIIIII'JOJPJQJRJJJJKKKKKKKKKLL2LfLLLLLLPMQMRMSMTMUMMMMMMMNNNNZOOO PPPPAQBQ[Q\S]SzS{STTUUUUURVgVhVhW}WX1YFY]YZ[ \ \!\4\s\t\\\\\ ^ ^^9^P^e^f^^^&___aabbbcSccccccceeeeffggggg h!h"hUhVhWhhhhi3iSiTiiijjkk:lllnnxn'ootpupvpwpxpypppqq5q6q7q8q9q:qAINTW`@jgs`/>@BCEFGIKMNOQSUXZ?4 h guD*x****+RVcVeVhWyW{W1YBYDYGYXYZY \\\f^^^Tiiiq1q3qqXXXXXXX:::::XX: #*!!8@d(  $b  %9& % #" ~ & 6PF0*PF0*&  x ' 0PF0*PF0*'="9& j#Z %% ( %% ) BpCcDE(FjJ cRY  T8fn%p @   #" #. t  +7 *# #" %%Z  +7 +  +7t  Z-1 ,# #"  +0TB - C D Z-Z-TB . C D <.<.TB / C D //TB 0 C D 00TB 1 C D 00TB 2 C D 11`  07 3#  07n  Z-1 4 #"  0L5TB 5 C D Z-Z-TB 6 C D <.<.TB 7 C D //TB 8 C D 00TB 9 C D 00TB : C D 11TB ; C D .6.6TB < C D 77Z  +7 =  +7TB > C D + 7TB ? C D| +| 7TB @ C D^+^7TB A C D@+@7TB B C D"+"7TB C C D+7TB D C D+7TB E C D+7TB F C D+7TB G C D+7TB H C Dn+n7TB I C DP+P7TB J C D + 7TB K C D+7TB L C D2+27Z g M gZ2 N S 1Ng `  O# jZ  P  Q 1NB2C>DEF** >*8?;f2,;2/#/ 2  u]<! 9Zr~`{uoHT3&/ >VX@`#" 9 c (4 R 1NBoCDE@FJ96'HKfoB]liBo'T 9"$@`#"  e &b Z  S ( T  BC5 DEFE}z1tBY@'g}sGObbfr(QB7d""-P"6EcnP5#5)`XcU:/=-2W~{M#,;Th/hTC#vRb~+a)z ad7&Y83i  Y /@0_Z\,Hd  _%N{2rLjC}" b ` L x>   7 Q   ( S5    ^ Y     HW T y o d N 0 >FPZ~fl}5c%eO'[G5sF2FkxBpMI!6+2EJP^AZ2}*8yP5-i:9]7 @        `#"  i U  BYCDEF--R&*dG~fm;r/:CLYRF~; <MX}G_<m!i;DH@      `#" )  V 1NBCfDE(F2  <`]fW9'`< @`#"  ? W l1NBUCDEF!!6H&Ye# IUrLBC%*WY~)rNVhkDH@`#" r  d X 1NBQCDEXFb<l&kCd]uT E9BQR.0@`#" GWU  Y 1NB2CDE0F: Q0cffoc2N9@`#" ! D &b \ Y R~ Z #" L` R ) v%N [# 2Y R~T \ C ^ ) k% Z ] S d^ m%NfB ^ s *DjJV wt%xfB _ s *DjJY v%fB ` s *DjJR o% fB a s *DjJU ? s%@ fB b s *DjJU s% p"t ' >$G c# #" gu F t ,I d# #" R' >$ e  BCDEFr3d @1ddR\<hPhdhr[R/I8fjv9v2X7( :7[PdDLvpUy^u~^|n[JR C@+1cNKEVBQEBWA8b_JtD>D/ SS9KKr63 ]g'UrR%%  !,p7/JR@     `#" "  I f  fB=CDE`Fjd @1o Q0H]6{ 7=P1_kVb8;Dr WK!o 24@`#"    g  B_CDE8F3fvd @1et`md_\Y8u-9F6  ';!9W6']y|D+8_P_)5S&{N:'p B$E?ooci{N;-HxfZ4gf]r9&n 0=U&Z=NS{xmRE 83&'*.*'$CNYLROWo!{oDe3]FZjXCHZ`6o;o_/r9 `SziN*thMg+i?<S*PyR<UL"m-Z4`?KlN\\7f W% @4,ert@           `#" , t   h# #"   iB  BCDEFr3d @1ddR\<hPhdhr[R/I8fjv9v2X7( :7[PdDLvpUy^u~^|n[JR C@+1cNKEVBQEBWA8b_JtD>D/ SS9KKr63 ]g'UrR%%  !,p7/JR@     `#" (U  jB  0B=CDE`FjEB1o Q0H]6{ 7=P1_kVb8;Dr WK!o 24@`#" g m k  B]CnDEPFEB1Q\^^\ZQNMC//8*KXVLZ}ZjQSWAS0] K L@+#znXF<>L\L>,' ~qaY#J@!4'" & *@GXD(* $7~4s<jKt\sxc[QH*(!$5?IU]ekpux}    rH > n*t?h]\xP`~i{|lv_|FAR`u`P8%,&>#MXj y +s4^7S7BKIW[\dnohzjbVRI.((#!$wAtZsfrurzw{tkz^{Pp.t(5=Ndt .?Q~@           `#" & t .Q) l# #"  G mB  BCy DEFj5%44eK-VlR p+' -P{J - S y xN 1     q>zpxuPhRe24@              `#" C T n  BCy DEFj5%44eK-VlR p+' -P{J - S y xN 1     q>zpxuPhRe24@              `#" . T o  B C8"DExF5%^^o!SDjD 8V)fk_b[     M    V rz+ !$"8"!zC*B2_vU^7bVs! !# !2 #!6 B j N  M@ @ & 7 H# b   u I   P  _=ZFJGS .$TC+V+1?ya-Cp(ort@                   `#" rQ)x p 0PF0*PF0*p\ w Y  1b  ["' q #" /t . k"& r# #" `c2 s Nd @13 e"&r.Z . k"& t . k"&l2 u 0dq#-Z . k"& v . k"& w B*CZDE F*g EWZ$<*@` "4=#  x BCuDEFg ++&&vX5 <5bwwJ%J,qDo!&2W5uH,$ 3*BP P}aoWZ&X\@`#" vT~ y BBCbDEpFxg  ?T x '-QWT,{AbbVM&,xfNKErEBE'39<@*>4 z BCDE@FJ--<CiRvKj.L--"$@`#" }1 { BCDEF-- !0BE]r{u#>qt~cKNn]Y]GoAK,B,-* o6lN0Z l[\@ | BCDE8FB54-RKZiRK-<5 @`#" Dn } 2BCDEFg ::E6'$39H$Q3l9K90HZiii T09 ?2BD!J\?V`YBh$w0E`r}hY>&# `N{9]EZ3i'r Z ux@ !| ~ ,BCDEdFng f`K!-!6?E`Eir{ $0HlcE' f48@`#" C `!  B0CiDE$F.g  $6Wi'Q*-0 @` X#=#  B{CHDE$F.g  iT9'-<Q?xH{'i@`#" #N#8   BCDEFg P' Bf]/"@Rm[UpmaBO].,P  4C4jR^^Wad^F)%J    Q q D  ` H0 T pC.`3L B v{ 7 N      j . v II:..g !BP55Stb&JJ5bb> uQ0 |l@Zx4[6 Z)!2V0hqSD8Fe>&G`hB-((yXF.% tA  1  `? $?v|UI)_ P + nV t   1 I v  e A     l 3 $ H E j* ^ Xj HX 4p +  # u 4 %  P  n 5  t \ ;      o E  5 Y Y n wF     e [A V _ J `Y ]} K   $ 3 r ` ~ r t M ) u# f    ?  Ss+z( esn f ]!GVG']e?1!$QWz0hGG)^CIu* P ;K6Id1%Ex.Y2V\/k/>75avTW! ?6l3i`iE #MRkwHw~  G+t VJ .Xv$ByF:R! ) P P      A  )  &P    > bO |  C.d<[i  s= $ f t t 8 z !OaTV8  L   b  ~ H 0   : a |d |  X Ui  ; g  l] & C    k     4  K  ,- wVvRP@`#" ]k"&  BCDEF--!-? ]//A);D;hMtk;&)/q}qGDo`E- rQ]6{\`@`  ` . 6p! # . 6p!  BTCBDE F(9*BH0TQE0!6@"v  LBC]DE|Fv]ZVTR!Q!Q<KTHo3<-$ 0`!K0B'$6 ?W]8<@  `v6   s B CnDEF"@g bz6JF:Z R |   t*v,M*~'*<sNLW4.J+(@4 U"O:U[jUII(FEarCRCD         h S  1 C @ j y i ? * - N p ^ I L 2d | # ; #  5 5 & A0 Sc e] }B -      " %E i ~  + Fc al yW |{    x E ?E T' ` o X "  w    Gq z\ M M   # CM e     4 jn y B-3HHWf;<k tP/a."7YI&1c<Vix8w%V x=E=KmpXR1:p$ .K   q } _  . p   i    5 n< wr Y )   f $ Q K if -*   (   8v   x[ [ U 1   } ZS 0J   # mY |   ' ? l7Nn "z + Y ,K fP@`#" . p!Z2  S jJAZ2  S jJsH!Z2  S jJ ["'8b  "m  #" 4`  _| # + "m"` % # 0 j .|@ n ,I  #" 7!X$   BCDEFr3d @1ddR\<hPhdhr[R/I8fjv9v2X7( :7[PdDLvpUy^u~^|n[JR C@+1cNKEVBQEBWA8b_JtD>D/ SS9KKr63 ]g'UrR%%  !,p7/JR@     `#" "  I   fB=CDE`Fjd @1o Q0H]6{ 7=P1_kVb8;Dr WK!o 24@`#"      B_CDE8F3fvd @1et`md_\Y8u-9F6  ';!9W6']y|D+8_P_)5S&{N:'p B$E?ooci{N;-HxfZ4gf]r9&n 0=U&Z=NS{xmRE 83&'*.*'$CNYLROWo!{oDe3]FZjXCHZ`6o;o_/r9 `SziN*thMg+i?<S*PyR<UL"m-Z4`?KlN\\7f W% @4,ert@           `#" ,Z  S d% n    #"  ! B  BCDEFr3d @1ddR\<hPhdhr[R/I8fjv9v2X7( :7[PdDLvpUy^u~^|n[JR C@+1cNKEVBQEBWA8b_JtD>D/ SS9KKr63 ]g'UrR%%  !,p7/JR@     `#" (U  B  0B=CDE`FjEB1o Q0H]6{ 7=P1_kVb8;Dr WK!o 24@`#" g m   B]CnDEPFEB1Q\^^\ZQNMC//8*KXVLZ}ZjQSWAS0] K L@+#znXF<>L\L>,' ~qaY#J@!4'" & *@GXD(* $7~4s<jKt\sxc[QH*(!$5?IU]ekpux}    rH > n*t?h]\xP`~i{|lv_|FAR`u`P8%,&>#MXj y +s4^7S7BKIW[\dnohzjbVRI.((#!$wAtZsfrurzw{tkz^{Pp.t(5=Ndt .?Q~@  Oh+'0 $8 DP p |  8TAP404-0: Gravitational potential energy and potentialInstitute of Physics FTAPv3.dotvys28Microsoft Office Word@@@Q@<)TT`՜.+,D՜.+,d  hp|   9q' 7TAP404-0: Gravitational potential energy and potential Title 8@ _PID_HLINKSAt6MZ'%TAP404-6-Gravitational-potential.doc S$!TAP402-3-Field-lines-gravity.docMZ%TAP404-6-Gravitational-potential.docMY%TAP404-5-Gravitational-potential.docMX %TAP404-4-Gravitational-potential.doc S !TAP402-3-Field-lines-gravity.docM_%TAP404-3-Gravitational-potential.docM^%TAP404-2-Gravitational-potential.docM]%TAP404-1-Gravitational-potential.doc  FMicrosoft Office Word Document MSWordDocWord.Document.89q         `#" & n .Q)  #" _  B  BCy DEFj5%44eK-VlR p+' -P{J - S y xN 1     q>zpxuPhRe24@              `#" C T   BCy DEFj5%44eK-VlR p+' -P{J - S y xN 1     q>zpxuPhRe24@              `#" . T   B C8"DExF5%^^o!SDjD 8V)fk_b[     M    V rz+ !$"8"!zC*B2_vU^7bVs! !# !2 #!6 B j N  M@ @ & 7 H# b   u I   P  _=ZFJGS .$TC+V+1?ya-Cp(ort@                   `#" rQ)n  P  #"  _<n h >  #"  :n  >  #"  >TR  C @>'`B  c $D1 :n  >  #"  TR  C @>'`B  c $D1 :n  >  #" h TR  C @>'`B  c $D1 <n h >  #"  :n  >  #"  >TR  C @>'`B  c $D1 :n  >  #"  TR  C @>'`B  c $D1 :n  >  #" h TR  C @>'`B  c $D1 <n h >  #"  }:n  >  #"  >TR  C @>'`B  c $D1 :n  >  #"  TR  C @>'`B  c $D1 :n  >  #" h TR  C @>'`B  c $D1 <n h >  #" z P:n  >  #"  >TR  C @>'`B  c $D1 :n  >  #"  TR  C @>'`B  c $D1 :n  >  #" h TR  C @>'`B  c $D1 n  l   #" 6 "<Z  lA   lA`B  c $D1 lm`B  c $D1 `B  c $D1 @An  lA  #"   `B  c $D1 lm`B  c $D1 `B  c $D1 @AB S  ? v"q%34q)Zt"TZ:0& tKT 4 _1189086439 _1189086690 _1189086740 _1190720258 _1190720310 _1190720617 _1191143885 _1191143912 _1191143945 _1191143957 _11911439701q1q1q1q1q1q1q1q1q1q1qq@@@@@@@@@ @ @1q1q1q1q1q1q1q1q1q1q1qq9999999999999999:qbqq^CI]b))222222>8B8`8f88899%>>D DGGOO[[ccll oo:qbqq::::::::::::::::::::94 gvD***+x22#8>8FF[ \ ^f^^h3iTii:q:q h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH3gh{{                  6b*8A;!oNOues9^)<+GC0^0:MZ<"/G~I3M 8QM<_1bwb0ghg7k[k!3oe}qC|wyL@y''m#LsuZ<|P1(11&Adc h(\ggqvQ~W_&r,51;"Aqd"4@RiRi(*:RiRidGH%V%W%[%\nq@P@`@f@X@UnknownGz Times New Roman5Symbol3& z Arial3z Times;Wingdings?5 z Courier New"hkXtF@T`9T`9!xx2dqq 3qX2K\\iop-ldn-fp01\cxs$\1 RAMP Website\Departments\7 Proof corrected\FTAPv3.dot6TAP404-0: Gravitational potential energy and potentialInstitute of Physicsvys  CompObjaq