ࡱ> :<9}U@ `[bjbj "`5)L&\2       $}R0Qvvv0vF v  kt60WNRWWx 00$ In-Class Probability Questions 2/8/05 (1-8 taken from previous AHSMEs + AMCs) 1) A box contains 11 balls, numbered 1, 2, 3, , 11. If 6 balls are drawn simultaneously at random, what is the probability that the sum of the numbers on the balls drawn is odd? 2) A box contains three shiny pennies and 4 dull pennies. One by one, pennies are drawn at random from the box and not replaced. What is the probability that it will take more than four draws until the third shiny penny appears? 3) Six distinct integers are picked from the set {1, 2, 3,, 10}. What is the probability that among those selected, the second smallest is 3? 4) A non-zero digit is chosen in such a way that the probability of choosing digit d is log10(d+1)- log10d. The probability that 2 is chosen is exactly the probability that the digit chosen is in which of the following sets? A) {2,3} B) {3,4} C) {4,5,6,7,8} D) {5,6,7,8,9} E) {4,5,6,7,8,9} 5) Three balls marked 1, 2, and 3 are placed in an urn. One ball is drawn, its number recorded, and then the ball is returned to the urn. This process is repeated and then repeated once more, and each ball is equally likely to be drawn on each occasion. If the sum of the numbers recorded is 6, what is the probability that the ball numbered 2 was drawn all three times? 6) Let S be the set of permutations of the sequence 1,2,3,4,5 for which the first term is NOT 1. A permutation is chosen randomly from S. What is the probability that the second term is two? 7) A bag of popping corn contains 2/3 white kernels and 1/3 yellow kernels. Only of the white kernels will pop, whereas 2/3 of the yellow ones will pop. A kernel is selected at random from the bag, and pops when placed in the popper. What is the probability that the kernel selected was white? 8) First a is chosen at random from the set {1, 2, 3,, 100} and then b is chosen at random from the same set. What is the probability that the units digit of 3a+7b has an units digit of 8? 9) An unbiased die marked 1, 2, 2, 3, 3, 3 is rolled three times. What is the probability of getting a total score of 4? 10) If A and B are events and p(A) = 8/15, p(A )" B) = 1/3, p(A | B) = 4/7 calculate p(B), p(B|A) and p(B | ~A), where ~A is the complement of the event A. Are A and B independent? Mutually exclusive? Solution to Probability Questions 1) A box contains 11 balls, numbered 1, 2, 3, , 11. If 6 balls are drawn simultaneously at random, what is the probability that the sum of the numbers on the balls drawn is odd? The sample space is the number of ways to choose 6 numbers out of 11 =  EMBED Equation.3  =462. We must count the number of these  EMBED Equation.3  combinations that sum to an odd number. There are 6 odd numbers to pick from and 5 even ones. If the sum is to be odd, an odd number of odd numbers must be chosen. Thus, either 1, 3 or 5 odd numbers is chosen. Add up the number of ways to choose 6 numbers out of 11 in these three separate cases: # ways to choose 1 odd and 5 even =  EMBED Equation.3 , we multiply these two since each choice of a set of odd numbers can be paired up with each choice of a set of even numbers. Using the same logic, we have: # ways to choose 3 odd and 3 even =  EMBED Equation.3 , and # ways to choose 5 odd and 1 even =  EMBED Equation.3 , Thus, the desired probability is  EMBED Equation.3 . 2) A box contains three shiny pennies and 4 dull pennies. One by one, pennies are drawn at random from the box and not replaced. What is the probability that it will take more than four draws until the third shiny penny appears? The sample space is  EMBED Equation.3 , the number of permutations of the 3 shiny pennies and 4 dull pennies. Of these 35, we want to find how many of them require more than four draws to pull the third shiny penny. It's easier to use the subtraction principle here and simply count the number of ways in which the 3 shiny pennies all get pulled in four or less turns. We can enumerate these ( SSSDDDD, SSDSDDD, SDSSDDD, DSSSDDD) or reason that we must choose 3 of the first four slots for shiny pennies, fixing the last three slots do dull pennies. We can do this in  EMBED Equation.3  = 4 ways. Thus, the probability it will take more than 4 draws to pull the last shiny penny is  EMBED Equation.3 . 3) Six distinct integers are picked from the set {1, 2, 3,, 10}. What is the probability that among those selected, the second smallest is 3? There are  EMBED Equation.3  = 210 ways to pick 6 integers out of 10. Of these, we must count how many of these combinations of 6 have 3 as the second smallest value. In order for this to occur, we must choose 1 value from the set {1,2} and 4 values from the set {4, 5, 6, 7, 8, 9, 10}. This can be done in  EMBED Equation.3  ways. (We multiply because each choice from the first set can be paired up with any of the choices from the second set.) Thus, the desired probability is  EMBED Equation.3 . 4) A non-zero digit is chosen in such a way that the probability of choosing digit d is log10(d+1)- log10d. The probability that 2 is chosen is exactly the probability that the digit chosen is in which of the following sets? A) {2,3} B) {3,4} C) {4,5,6,7,8} D) {5,6,7,8,9} E) {4,5,6,7,8,9} The probability that 2 is chosen is log10(2+1)- log102 =  EMBED Equation.3 . Thus, the set we must pick must have a probability of  EMBED Equation.3  of having a number chosen from it. Given a set {a, a+1, a+2, ..., b} the probability of choosing a digit from that set is  EMBED Equation.3 , applying a telescoping sum and the log difference rule. Setting b+1 = 9 and a = 4, we find that a=4, b=8 and the correct choice is C. 5) Three balls marked 1, 2, and 3 are placed in an urn. One ball is drawn, its number recorded, and then the ball is returned to the urn. This process is repeated and then repeated once more, and each ball is equally likely to be drawn on each occasion. If the sum of the numbers recorded is 6, what is the probability that the ball numbered 2 was drawn all three times? Let x, y, and z represent the values of the first, second and third ball pulled from the urn, respectively. The sample space is all ordered triplets (x,y,z) such that x+y+z=6. These ordered triplets are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) and (2, 2, 2). Of these 7 possibilities, only 1 corresponds to drawing 2 all three times, thus the desired probability is  EMBED Equation.3 . 6) Let S be the set of permutations of the sequence 1,2,3,4,5 for which the first term is NOT 1. A permutation is chosen randomly from S. What is the probability that the second term is two? There are 5! = 120 permutations of 1, 2, 3, 4, 5 total. Of these, there are 4! = 24 where 1 is in the first position. (We can determine this by fixing 1 in the first position and then observing that there are 4! ways to permute 2, 3, 4, 5 amongst the remaining slots.) Thus, we have 5! - 4! = 96 permutations in the sample space. Of these 96 permutations we must count how many of them have 2 in the second position. For the first position, we have three choices, 3, 4 or 5. Then for the remaining 3 positions, we are free to permute the remaining three items in 3! = 6 ways. Thus, there are a total of 3x3! = 18 permutations in our sample space where 2 is in the second position. The desired probability is  EMBED Equation.3 . 7) A bag of popping corn contains 2/3 white kernels and 1/3 yellow kernels. Only of the white kernels will pop, whereas 2/3 of the yellow ones will pop. A kernel is selected at random from the bag, and pops when placed in the popper. What is the probability that the kernel selected was white? Draw a probability tree of the situation. Let Y = yellow, W = white, P = pop, N = did not pop. * Y 1/3 / \ W 2/3 * * P 2/3 / \ / \ P 1/2 (the inner branches are for not popping) YP YN WN WP From this tree, we have p(Y )" P) =  EMBED Equation.3 , p(Y )" N) =  EMBED Equation.3 , p(W )" P) =  EMBED Equation.3 , p(W )" N) =  EMBED Equation.3 , We need to determine p(W | P):  EMBED Equation.3 . 8) First a is chosen at random from the set {1, 2, 3,, 100} and then b is chosen at random from the same set. What is the probability that the units digit of 3a+7b has an units digit of 8? Let's make charts for the possible units digits of 3a and 7b in terms of a and b. nunits digit of 3nunits digit of 7n137299373411537 We can see that the units digit for each column repeats every 4 values. Thus, 3, 9, 7 and 1 appear exactly 25 times as units digits in the list 31, 32, ..., 3100, and the list 71 72 ..., 7100. In essence each has a probability of 1/4 of occurring as the units digit of 3a and 7b. Let (x, y) be the ordered pair where x is the units digit of 3a and y is the units digit of 7b. The probability of getting the each of the ordered pairs (3, 7), (3, 9), (3, 3), (3, 1), (9, 7), (9, 9), (9, 3), (9, 1), (7, 7), (7, 9), (7, 3), (7, 1), (1, 7), (1, 9), (1, 3), and (1,1) is 1/16. Of these, three sum to an units digit of 8: (1, 7), (7, 1) and (9, 9). Thus, the desired probability is  EMBED Equation.3 . 9) An unbiased die marked 1, 2, 2, 3, 3, 3 is rolled three times. What is the probability of getting a total score of 4? Let (x, y, z) be the ordered triplet where x is the value of the first roll, y the value of the second roll and z the value of the third roll. The possible ordered triplets that correspond to a total score of 4 are (2, 1, 1), (1, 2, 1), and (1, 1, 2). The probability of achieving each of these is  EMBED Equation.3 , since the probability of rolling a 2 on any given roll is  EMBED Equation.3 , whereas the probability of rolling a 1 on any given roll is  EMBED Equation.3 , and each roll is independent of the others. Since the three ordered pairs are mutually exclusive the total probability is the sum of these three probabilities which is  EMBED Equation.3 . %*MNO    ./*+>?@Ajk~ûöpj9hq0hq05EHUj}E hq0CJUVaJjhq0hq05EHUjeE hq0CJUVaJjhq05U hq05hq0hq05hq0h( h>B H* h>B h>B h>B H*hs4h>B h'Lh'Lh'L5 h(5 hv85 h'L5&NO  x y \ ]       $a$gd'L$a$gd'L`[ ./H?@%&kl$a$gd/ $a$gdR x$a$gdq0$a$gd'L$a$gdq0&':;<=@%&:;NOPQcdôҥ҇xtpaRj8hq0hq05EHUj E hq0CJUVaJh!hq0j hq0hq05EHUjE hq0CJUVaJj_ hq0hq05EHUjME hq0CJUVaJjhq0hq05EHUj)E hq0CJUVaJ hq05jhq05Ujrhq0hq05EHUjE hq0CJUVaJ dwxyznoʹ͒͡~t~eVt~t~j3hq0h/ 5EHUjE h/ CJUVaJjh5U h5jhq0hR x5EHUj+E hR xCJUVaJhR xjhR xhR x5EHUjE hR xCJUVaJjhR x5U hR x5jhq05Ujzhq0hR x5EHUjE hR xCJUVaJ hq05    BCVWXYZ|ĿĸĿĿĸĿİġȰąxtlg h_5h30h305h30jh/ h30EHUjE h30CJUVaJjh/ h/ EHUj'E h/ CJUVaJjh/ U h>B h/ h/ H*h/ h/ 5 hR x5 h5jh5UjhR xh/ 5EHUjE h/ CJUVaJ$l '(vw ""K#L#$$*&+&S'T'''''$a$gdG"$a$gd!u`$a$gddH$a$gd'L$a$gd/ &'vwx r"s""""""""K#L#%&&%&&&'&(&*&Ɉ{qbSqj%h!u`hG"5EHUjE hG"CJUVaJjh!u`5Uh!u`h!u`5 h!u`5h!u`hdHhdH5j#hpfh!u`5EHUjE h!u`CJUVaJjhpf5U hpf5hdHh! hdH5 h/ 5j h_hdH5EHUjE hdHCJUVaJ h_5jh_5U*&+&S'T'''(() )")$)&)()>)@)f)h)j)l)))))))))))******+*>*vgj/hzhz5EHUjE hzCJUVaJj,hzhz5EHUjE hzCJUVaJjk*hzhz5EHUjE hzCJUVaJhzhz5j(hzhz5EHUjjE hzCJUVaJjhz5U hz5hG" hG"5$'''(((p)* *(*C*D*++U+V+X+j+|+ $$Ifa$gd'L$a$gdhU$a$gd'L>*?*@*A*B*C*D*****+7+8+>+?+V+h+i+j+z+{++++2,3,6,7,?,B,R,S,U,V,],`,,,,,,,--E.F.Y.Z.ĿĿȸȸȳȝ}j"E hlCJUVaJjhl5U hl5H* hl5h.Wh.W5H* h.W5H* h.W5 hhU5H* hhUH*hhU hhU5 hz5 h!5jhz5Ujd1hzh.W5EHUj E h.WCJUVaJ0|+}++++thhh $$Ifa$gd'Lkd4$$IflF ,"   t06    44 la+++++thhh $$Ifa$gd'LkdO5$$IflF ,"   t06    44 la+++++thhh $$Ifa$gd'Lkd5$$IflF ,"   t06    44 la+++++thhh $$Ifa$gd'Lkd5$$IflF ,"   t06    44 la+++++thhh $$Ifa$gd'LkdK6$$IflF ,"   t06    44 la+++^._...1YYZtllldll\ll$a$gd_Ic$a$gdl$a$gd'Lkd6$$IflF ,"   t06    44 la Z.[.\.].^._../000000V0W0j0k0l0m0000000l1m111111ԻԝpaRjo?hg[5h_Ic5EHUj#E h_IcCJUVaJjm=hlhg[55EHUj#E hg[5CJUVaJjk;hlhg[55EHUj#E hg[5CJUVaJj8hg[5hg[55EHUjq#E hg[5CJUVaJjhg[55U hg[55hl h.W5 hl5jhl5Uj6hlhl5EHU 10) If A and B are events and p(A) = 8/15, p(A )" B) = 1/3, p(A | B) = 4/7 calculate p(B), p(B|A) and p(B | ~A), where ~A is the complement of the event A. Are A and B independent? Mutually exclusive?  EMBED Equation.3 , thus  EMBED Equation.3 .  EMBED Equation.3 .  EMBED Equation.3 . A and B aren't independent, since p(B | A) `" p(B) and p(A | B) `" p(A). A and B aren't mutually exclusive since p(A )" B) `" 0. 12XYYYYYYYYYYYYYZZ(Z*Z,Z.Z2Z4ZZZ\Z^Z`ZZ^[`[︩|mh`hlhtA5 htA5j(Jh_IchtA5EHUj$E htACJUVaJj=Gh_Ich_Ic5EHUj$E h_IcCJUVaJjDh_Ich_Ic5EHUj[$E h_IcCJUVaJjAh_Ich_Ic5EHUj1$E h_IcCJUVaJjh_Ic5U h_Ic5h_IcU hl5Z2ZdZfZZ`[$a$gd'L 1h/ =!"#$%9Dd b  c $A? ?3"`?2$oqAb˲=_D` `!W$oqAb˲= %xcdd``dd``baV d,FYzP1n:f! KA?H1@,@=P5< %! vfjvL@(\Peኪ]  29@ڈKَ $ŸWb@!o0 s~T V ,@d++&1`w?#1fupAic< jCC.hqCb nv0o8N+KRsA<.@;݌ `q.R9Dd b  c $A? ?3"`?2plEH)⺬¼銈:Y62bYqj_omhJԔJF醑$ŐӠߞQ?&nuDd b  c $A? ?3"`?2{_LG)ckab ` `!{_LG)ckab  axmJQ=1f EF A;!/ e( BY | L!*MVr7g.?rsIcdb"kq"-Y\@nAZ3XFIIKY,dcZF;N/ [~ ßI=O/ |`?'z֓f_1f?@BACDEGFHJIKLMONPRQSTUWVXZY[\]^_a`bdceghjiklmonprqsutvwxzy{|Root Entry Ftt=5Data 1MWordDocument"`ObjectPool'gttt_1169953381FgtgtOle CompObjfObjInfo !$'*-0369<?BEHKNQTUVY\]^_bgjmpsvy| FMicrosoft Equation 3.0 DS Equation Equation.39q;1X 116() FMicrosoft Equation 3.0 DS EqEquation Native M_1169953405 FgtgtOle CompObj fuation Equation.39q;1X 116() FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo Equation Native  M_1169953502FgtgtOle  CompObj fObjInfoEquation Native y_1169953577 Fgtgt;] 61()55()=6 FMicrosoft Equation 3.0 DS Equation Equation.39q;e8k 63()53()=200Ole CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39q;a$ 65()51()=30_1169953613FgtgtOle CompObjfObjInfoEquation Native }_1169953759"FgtgtOle CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39q;cP 6+200+30462=118231 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo!"Equation Native #_1169953824$FhthtOle %CompObj#%&fObjInfo&(Equation Native )R_1169953974O)Fhtht;6V 7!4!3!=35 FMicrosoft Equation 3.0 DS Equation Equation.39q;-- 43Ole +CompObj(*,fObjInfo+.Equation Native /I() FMicrosoft Equation 3.0 DS Equation Equation.39q;G\ 35"435=3135_1169954027.FhthtOle 1CompObj-/2fObjInfo04Equation Native 5c_1169954091,63FhthtOle 7CompObj248f FMicrosoft Equation 3.0 DS Equation Equation.39q;1, 106() FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo5:Equation Native ;M_11699542178FhthtOle =CompObj79>fObjInfo:@Equation Native A}_11699542701E=Fhtht;a 21()74()=70 FMicrosoft Equation 3.0 DS Equation Equation.39q;;(^D 70210Ole CCompObj<>DfObjInfo?FEquation Native GW=13 FMicrosoft Equation 3.0 DS Equation Equation.39q;8,  log 10 32_1169954343BFhthtOle ICompObjACJfObjInfoDLEquation Native MT_1169954434@JGFhthtOle OCompObjFHPf FMicrosoft Equation 3.0 DS Equation Equation.39q;h  2log 10 32=log 10 (32) 2 =log 10 94ObjInfoIREquation Native S_1169954783LFhthtOle WCompObjKMXfObjInfoNZEquation Native [>_1169955550;cQFhtht FMicrosoft Equation 3.0 DS Equation Equation.39q;"- (log 10 (k+1)"log 10 k) k=ab " =log 10 (b+1)"log 10 a=log 10 b+1aOle `CompObjPRafObjInfoScEquation Native d6 FMicrosoft Equation 3.0 DS Equation Equation.39q; 17 FMicrosoft Equation 3.0 DS Equation Equation.39q_1169955762VFhthtOle eCompObjUWffObjInfoXh;;X 1896=316 FMicrosoft Equation 3.0 DS Equation Equation.39q;Dо 132Equation Native iW_1169956714T^[Fht@!jtOle kCompObjZ\lfObjInfo]nEquation Native o`_1169956758`F@!jt@!jtOle q3=29 FMicrosoft Equation 3.0 DS Equation Equation.39q;DY$ 1313=19CompObj_arfObjInfobtEquation Native u`_1169956777YweF@!jt@!jtOle wCompObjdfxfObjInfogzEquation Native {` FMicrosoft Equation 3.0 DS Equation Equation.39q;D؀dZ 2312=13 FMicrosoft Equation 3.0 DS Equation Equation.39q_1169956808jF@!jt@!jtOle }CompObjik~fObjInfol;D 2312=13 FMicrosoft Equation 3.0 DS Equation Equation.39q;,4 p(W|P=Equation Native `_1169956996hroF@!jt@!jtOle CompObjnpfObjInfoqEquation Native H_1169957568tF@!jt@!jtOle p(W)"P)p(P)=)13p(W)"P)+p(Y)"P)=)13)13+)29=)13)59=35 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjsufObjInfovEquation Native :_1169957745myF@!jt@!jt;0 316 FMicrosoft Equation 3.0 DS Equation Equation.39q;a 261616=1108Ole CompObjxzfObjInfo{Equation Native }_1169957790~F@!jt@!jtOle CompObj}fObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q;WD 26 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 6_1169957817|F@!jt@!jtOle CompObjfObjInfoEquation Native 6_1169957882F@!jt@!jtOle ;XX 16 FMicrosoft Equation 3.0 DS Equation Equation.39q;C@^ 31108=136CompObjfObjInfoEquation Native __1169957937F@!jt@!jtOle CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39q;Xt p(A|B)=47=p(A)"B)p(B)=)13p(B)_1169957979F@!jtktOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q;a:1 p(B)=)13)47=712 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native }_1169958041FktktOle CompObjfObjInfoEquation Native _1169958134FktktOle ;H]X p(B|A)=p(A)"B)p(A)=)13)815=58 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjfObjInfoEquation Native s1TableW;Wa p(B|~A)=p(~A)"B)p(~A)=p(B)"P(A)"B)1"p(A)=)712")131")815=)14)715=1528Oh+'0  ?UP|(?E.I) \Pgj^&0ݛ@*lM!m.] `p021)Wx\e=l v1S M7Dd b  c $A? ?3"`?2''uz^gT~N)]` `!U''uz^gT~N)#xcdd``dd``baV d,FYzP1n:LB@?b  @,@=P5< %! vfjvL@(\P̵vŗ6 f3`Ƞ pi#.`~g0X P"F[%L>῀Ubq? ! ~ Ay ?q\c=m|J.hqCb nv0o8N+KRsA<.@;݌ `qVHDd lb   c $A ? ?3"`?2\8+5n` `!f\8+5" 4xcdd``d 2 ĜL0##0KQ* Wy A?dv@=P5< %!@5 @_L ĺE,a K&&rof01d++&1ԮR` P{q1aye<Q=A& y,A 27)?(kv0pw%0հTeuMq)=8bdbR ,.I! b䰀L aK:Dd b   c $A ? ?3"`? 2þ?+k"'$`=` `!Xþ?+k"'$@ &xcdd``dd``baV d,FYzP1n:f! KA?H1afĒʂT`35;aR& Ma(w f\Ky30 dr8s,H{%? 1B*a@p|%\?XM-VK-WMc~F0cp7xԆ\0 `p021)Wx ], 0vAj+S#tDd b   c $A ? ?3"`? 2*:NӨ2!w` `!*:NӨ2!  `xm=KP{rۚX088 N"8 gm@J Щ$S{$Dx r8 6`3y ڔXĘq[24L{QX,#p? K9E)c;l`zGIl Np[GaЭQeOqq U! bM(sC{%)i<0{3fM-` `!EL%ٍz>{3f`\xcdd``$d@9`,&FF(`T! KA?H1 , 3zjx|K2B* Rj8 :@AbS3% dDFz&br<_ۀj&#.#>% J?q)o\ '0Ä!'?=bld6`c4,KaF&&\ >@q(F.&NIDd lb  c $A? ?3"`? 2tz 0#XomT` `!tz 0#Xom4Axcdd``$d@9`,&FF(`T!! KA?H1 3zjx|K2B* Rj8 :@u!f0105X@V6+Ll.L&C&@L &N` ZZPKy0@fɈ HƤe< [Vr LI|@o1䧧r@EsThLL0<Մy,`:t` L1H7401@? c `,1W&0;XqL 0TY!|.hA)=TĤ\Y\ qAQ €,vDd pb  c $A? ?3"`?2gv>fITQؠC!` `!;v>fITQؠP%@X": xcdd``^$d@9`,&FF(`TɁAURcgbR 6*GfĒʂT @_L ĺE\@,a KEL *'] ZZPKy3@deĵ9D$X 2(IP~*d"6| ~6Cܧ<1pwb8l;@Fdwcvb@. $ ^&XxTVrB^} 90(I, bAz4a=b`3|pjL`D7bL.t9P@c+L i@bKP04CQPxP,>cBܤr@> W;1 N9%  .EU~T9QջCC}/>wp 7)xą;c pA.pK.+KRsA<.hyr.?0jmEDd lb  c $A? ?3"`?2KKC7[~տ%'$` `!KC7[~տ%vRxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@:#ȝATN`gbM-VK-WMc]  f22caɘWBa%ԅ\`_@tC``Ĥ\Y\ qA]̀ f',8;Dd Hlb  c $A? ?3"`?2^{ z@l a &` `!Y^{ z@l @"'xcdd``fd 2 ĜL0H bd?(ㆫaz*d3H1)fY;Zg2@0&dT0pE1At 2Bab`r0f'356A $37X/\!(?71vŗ6 +`0߈9%C3?3HLޟ$o w -t@penR~CP3W!v;@*l-Q.] `p021)Wx\C1_!v1clHTDd lb  c $A? ?3"`?2 a2Bz[(` `!r a2BF@8 @xcdd``Vf 2 ĜL0##0KQ* WفMRcgbR vxl 3zjx|K2B* Rj8 :@u!f0109Y@#L & cff7S?21d++&1ԮR` Pn2c`XVB`Q%L~>o DŽ*π* Vbq I9  qU`wwg%f J?w[*!)=xddbR ,.I񸠱v-z@fyO RDd lb  c $A? ?3"`?2[0EH:&<.'x*` `!p[0EH:&<.'F ~ >xcdd``Vf 2 ĜL0##0KQ* WYMRcgbR v@=P5< %!@5 @_L ĺE,a K& af`7S?21d++&1ԮR` Pn2cs!|Jd&.˄*π*>+ss@aʥ}L`ܝ LA*l+a8pm䂆88V @``㑑I)$5صa j@RSDd lb  c $A? ?3"`?2fW`G |Wy-` `!qfW`G |WF@8 ?xcdd``Vf 2 ĜL0##0KQ* WفMRcgbR vxl 3zjx|K2B* Rj8 :@u!f0109Y@#LlL&& { o'0ebM-VK-WMc]  v3dǬ 1sU|J6&. U>UD= \P [V?ݙ¶/ݖJ.hscb nv0o8+KRsA<.h,0]6PTDd lb  c $A? ?3"`?2R~/6:cTzT/` `!rR~/6:cTF@8 @xcdd``Vf 2 ĜL0##0KQ* WفMRcgbR vxl 3zjx|K2B* Rj8 :@u!f0109Y@#LlL&& { o'0ebM-VK-WMc]  v3dǬ 1sU|J6&. U>UD= \P8ĥ}L`ܝ LA*l+a2pm䂆88V @``㑑I)$5صa j@PtDd b  c $A? ?3"`?27ezS\"?9'I'Nt߉9fٹuFB8òY6mGt.*,3ZJi5~n/3Zk1OA6^ 񤶑RVqGl\ѷcO>M8p_|YexD^Gn~W7a< w}_ Ty nyU$uDZwO(_/]ZYF5&>ckC$/3L1!?J~nHڗK=*o.ނ~7? =SDAk{Hw?IǭoS>x@-U,xQ&ETI`Uo%$ =EDBko1@2__K kq#m*R$$If!vh5 5 5 #v :Vl t65 R$$If!vh5 5 5 #v :Vl t65 R$$If!vh5 5 5 #v :Vl t65 R$$If!vh5 5 5 #v :Vl t65 R$$If!vh5 5 5 #v :Vl t65 R$$If!vh5 5 5 #v :Vl t65 Dd @lb  c $A? ?3"`?2Nj`ݲG9*77` `!"j`ݲG9v xcdd``$d@9`,&FF(`T3 A?d@f2@0&dT0pE1At 2Bab`r} wfjQ9A $37X/\!(?71vŗ6 +`0ˈـ|C3?qHԅ\`_@tC``Ĥ\Y\ qA]̀ f',9 tDd @lb  c $A? ?3"`?2+yd|i;9` `!+yd|i͌ p`xcdd``vc 2 ĜL0##0KQ* W􀙁KRcgbR vE3zjx|K2B* Rj8 :@u!f0109Y@#LlL&&v&[ o[&0bbM-VK-WMc]  aWs4;+ `\F FT+ofgaE* U>U> 72+ss\"}?}17Ɋ ? o!|.hqb*- `pj`dbR ,.Iqv=zhB  UDd lb  c $A? ?3"`?2L'$kU (;` `! '$kU vRxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@#ȝATN`gbM-VK-WMc]  f22cgɘUBQ`Q%ԅ\`_@tC``Ĥ\Y\ qA]̀ f',b8Dd lb  c $A? ?3"`?2Lp?I#I~(=` `! p?I#I~vRxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@#ȝATN`gbM-VK-WMc]  f22eaɘUB`a%ԅ\`_@tC``Ĥ\Y\ qA]̀ f',8UDd lb  c $A? ?3"`?2Y=x$`Wg {?` `!sY=x$`Wg $4 Axcdd``b 2 ĜL0##0KQ* W A?d zjx|K2B* Rj8 :@u!f010 3X@7 L5+LL '0`bM-VK-WMc]  07c Rih gfb ,Ra*3U@ Lz ] \PaᚂEL`e L[Y@*lcf4Ѝ,J"j#*W˜ى7EwQ0 M.Og,+YeZG<(΢̀ ڈ[,'~{NgS{kEe^Vf&]Jg ɑdVO Pcq8.D97+ÉnŋP蝞~BOV1ez8sU<Smk6-"{s?ȿWm_źy~Yss]pG7*ko瀮4la$Gs R90,-gsLų̵?΀7%Dd Tb  c $A? ?3"`?2Зrz0J$cg:*D` `!Зrz0J$cg:* xڕR=KAK."h%)X$T$"`em+-V66b~ݡ ny;C @$ep`!!#Eɸe^Flj& d9s[ȅ8599(ڻNpɣ: j1n DR 0q8Ot~LqCIű3xψ`W|UBн| NI,iv:+IKxe M7xU>I^⸞KP9CΏ+q+fXSIҩ`l$:T:th +}XzJ,9IҶ!-ѭ=8]ڞ/;GZqG*_mDd  b  c $A? ?3"`?25e/:&ջG` `! e/:&ջ`` xڕ+aǟygp$q ?"5䲴'V,cۢÖ?Iq׼ q0<}y%zF Qr,6Rr1dΤ,j % H65<6dg7&9DX2h%r*|³R,:}o䛗(0 :{qk!6?s_:~n jR/)W; bMgr˭Gr7>.uvZy#JoQrw+2ݒ+>½.k$tߟ7--뢜gжzoAݥFPw'rC~ 7 %<úT<_t_\TrG^Ǩrw==`ygջOBsSRG~ LqN8-tvI/Yz<x6o7íz~^uK5xsok~Ϋu~Ou a|A3CjLRHW|ـ9lO|%/,=M&zۻEm~ӊ"e9$FffEFw3+q SummaryInformation(DocumentSummaryInformation8@CompObjj( D P \hpx&In-Class Probability Questions 2/8/05ofn-CguhaassuhauhaNormalsguhaas15aMicrosoft Word 10.0@XG @ؿT @Ht&#՜.+,0 hp  WPHSsJ ){ &In-Class Probability Questions 2/8/05 Title  FMicrosoft Word Document MSWordDocWord.Document.89q@@@ NormalCJ_HaJmH sH tH DA@D Default Paragraph FontVi@V  Table Normal :V 44 la (k@(No List j@j .W Table Grid7:V05)`NOxy\]@A . / H   ? @ %&kl '(vwKL*+STBWX ( C D !!U!V!X!j!|!}!!!!!!!!!!!!!!!!!!!!!!^$_$$$'M(N((((((7)000000000000000000000000 0 0 0 00x0000 0000x00x00 0000x0x000x0@0@00000 00 00x00x0X0x0x000x000000x00000000 0 00 0 00 0 0 0x0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000 0 0 0000(0x0(0(d*&>*Z.1`[!"$+. l'|++++++Z`[ #%&'()*/`[* > @ j ~  & : < :NPcwyn BVXr%'{  * > @ E$Y$[$&&&V&j&l&&&&l'''N(b(d(l(((((((((5)::::::::::::::::::::::::::::::: c7)%7)8*urn:schemas-microsoft-com:office:smarttagsdate 220058DayMonthYear?EHLZ\7){"%rtT\<?_a [ _ , 4 # & 7:-0}rtknorMSy{ ( C x { L!Q!!!""##B$E$$$%%&&i'l'''9(L(g(l(((')))7)33333333333333333333333333333333333333333333333333333G G $%wxA B ''N(4)7)7)guhaa(q0_>B G"/ 30g[5tAdH'L!u`_IcpfR x.WhUv8ls4z!V!X!j!|!}!!!!!!!!!!!!!!!!!!!!!7)@B B B B @{L  '5)@$@(T@XUnknownGz Times New Roman5Symbol3& : Arial"qhAFyFd&#J&#J24d ) )3HX)?>B %In-Class Probability Questions 2/8/05guhaaguhaa