ࡱ> @B?M'` 9Xbjbj$$ hlFFM'XXXX444  B<B<B<8z<<< fF=p="===$h!Q4S@!XX=={ArXV=4=rT4=:= `=7vTB<C0Q4!!3v   $B<   B<HtJXXXXXX Episode 211: Newtons second law of motion This episode concerns Newtons second law. Your students will probably have met the second law in the form F = ma; many will have performed experiments to demonstrate the law. It is therefore useful to approach the experimental demonstration of the law as an exercise in data gathering and analysis. Using a simple set of apparatus should allow students to work individually or in pairs and critically consider the limits of the experiment as well as re-familiarising themselves with the second law. Summary Discussion: Revision of kinematics. (10 minutes) Student investigation: Relationship between acceleration and force. (30 minutes) Discussion: Looking at the results. (10 minutes) Student questions: Using Newtons second law (30 minutes) Discussion: Revision of kinematics Before embarking on the main activity it is useful to run through the equations of motion (the SUVAT equations) once again so that students will understand the recipe they use to calculate acceleration. You want to establish that by referring to the equation s = ut + 1/2 at2 the acceleration of a body travelling distance from rest is given by a = 2L/t2. Student experiment: Relationship between acceleration and force  In this experiment, a trolley is accelerated by weights which are hanging on the end of a string which passes over a pulley. It is important to note that the mass which is being accelerated includes the mass of the weights on the end of the string. After the preliminary discussion the students should be able to tackle this without too many difficulties. The questions at the end of the section are best attempted after the apparatus is cleared away and the students have drawn the graphs. You can use their responses as a basis for a plenary session in which further discussion of sources of error (timing more difficult for shorter time intervals, non-uniform acceleration etc).  HYPERLINK "TAP211-1-Newton-two.doc" TAP 211-1: The effect of force and mass on the acceleration of an object Discussion: Looking at the results Discuss your students results: Do they find that acceleration is proportional to force, and inversely proportional to mass? Numerically, are their results consistent with the equation F = ma? You may wish to point out that the experiment can only show proportionality. In other words, we can only conclude that F = kma, where k is a constant. In the SI system of units, we choose k = 1. This defines the Newton: 1 N = 1 kg m s-2. Student questions: Using Newtons second law Make a selection from these questions: cut out those you think may be too trivial for some, and others (using resolved forces) which may confuse weaker students even though the concepts have already been covered. You may wish to reserve some of the questions for later use.  HYPERLINK "TAP211-2-Newton-two.doc" TAP 211-2: Newtons second law TAP 211- 1: The effect of force and mass on the acceleration of an object  The aim of the experiment The aim of this experiment is to investigate the effect of force and mass on the acceleration of an object, in this case a trolley. You will need a trolley, a white plastic track, a pulley, thread, twelve washers (mass 10 g each, or 10 g masses and a holder) metre rule light gates and timer or stopwatches What to do Set up your apparatus as shown in the diagram. The trolley should be able to run for 0.6 m. This is the length over which the trolley accelerates. Compensate for friction by tilting the track slightly so that the trolley runs steadily down with no increase in speed when there is no force pulling it. Start with ten of your twelve washers on the trolley and the other two on the thread hanging down. The mass to be accelerated is the mass of the trolley and twelve washers while the accelerating force is the weight of the two suspended washers (0.2 N). Allow the trolley to accelerate down the track and record the time taken: take two repeats and take an average. Repeat the procedure by taking one washer off the trolley and adding it to the suspended washers the accelerating force is now 0.3N (same total mass). Carry on until you have only two washers left on the trolley. Calculate the acceleration of the trolley using a = 2 L/t2 where L is the distance between the light gates Draw up a table with the following headings: Accelerating force (N)Total mass (kg)time to travel L/s acceleration = 2 L/t2 (m s-2 )123mean Plot a graph of acceleration (y axis) against force (x- axis). Use the graph to answer the following questions: 1 From Newtons 2nd Law you would expect the graph of acceleration against force to be a straight line which passes through the origin. 2 Explain why you would expect this to be the case. 3 Explain what the gradient of the graph represents. 4 Calculate the gradient of the graph and explain whether it agrees with your answer to question (3). 5 Your results may show some scatter. Explain why this might be and the causes of any inaccuracy. 6 Does the experimental result support Newtons Second Law of Motion? Practical advice The friction changes with different slope angles. It is best to try the experiment out first and decide if it is worth tilting the slope to friction compensate. The acceleration could be measured directly with a motion sensor attached to a computer External references This activity is taken from Resourceful Physics  HYPERLINK "http://resourcefulphysics.org/" http://resourcefulphysics.org/ TAP 211- 2: Newtons second law Simple calculations and a little thinking. An 80 kg skier has a force of 200 N exerted on him down the slope. 1. Calculate his acceleration down the slope. 2. Is the slope less than or more than 45? Explain your answer. An ice hockey player has a sudden impact force of 2000 N exerted on him due to unexpected collision with the wall. The mass of the player is 100 kg. 3. Find his acceleration. 4. Compare this with the acceleration when he free falls. Coming out of a dive, 75 kg astronauts in training experience an acceleration of 40 m s2. 5. Calculate the force acting on them. 6. Compare this with the force which normally acts on them when stationary on Earth. 7. Why is it important that they are seated and strapped in before the dive ends? A 50 g tennis ball may be accelerated at 1000 m s2 to reach a service speed of 130 mph. 8. Calculate the force required to accelerate the ball. 9. Is your answer reasonable? Comment. When a force of 200 N is exerted on an asteroid it accelerates at 0.002 m s2. 10. Find the mass of the asteroid. Practical advice Some straightforward, 'get you started' questions. Social and human context Enormous. You might challenge students to come up with a piece of mechanical engineering that does not involve Newton's laws perhaps a pin board on the lab wall& . Answers and worked solutions 1. EMBED Equation.3 2. Slope is less than 45 because at this angle, force down slope = weight / 2, which is greater than 200 N. 3. EMBED Equation.3 4. Twice 5. 3000 N 6. Four times 7. Astronauts will be brought to rest at the end of the dive which may require the application of a large force resulting in injury. 8. F = ma = 0.050 kg 1000 m s2 = 50 N 9. Not very large as you can probably lift 250 N with one arm. 10. EMBED Equation.3 External references This activity is taken from Advancing Physics Chapter 9, 160S     PAGE  PAGE 7 (resourcefulphysics.org) accelerating washers washers trolley mask size 1 cm light gates (resourcefulphysics.org) light gates m  $%+,KLRS)  # 9 B Q R ºº~hcXhd[0J2hcXhcE0J2jhcXUhcXjhcXU$jhrh.UmHnHtH uhNb~hcEH* hNb~hcEhNb~hVYJh.5hVYJhcE5 hVYJhcE hrhr hrh. hrh_ hrhcE/+, ! ) Z   # : +K'gdd[0gd9'gdcE&gdcEM't'8X'*cjrtABCLabegpqrstcdnoﴩwppp hrhd[ jhrhUmHnHu hrhhrhcE5hcXh0J2hcXhcE0J2jhcXUhcXhrhcEH* hrh9 he:hcE hoChcEhrhcE6 hhcEh9 hrhcEjhcXUhcXh0J2,KcdefgTUco' & Fgd9'gd&gd0gd9'gdcE knoqkpqrvx "EQZ_Ccfh hrh. hrhg7k hrh?_ h/hhg- hrhg-hrhH*hrhd[H*hYhH* hYhh9hY hrh9h4$ hrhd[ hrh<  DA!8H\r{'$w&`#$/Ifgd'gdd[0gd9'gd' & Fgd9{|}~WEEEEEE'$w&`#$/Ifgdkd$$Ifl4\O& ``2` 6`w064 laf4'$w&`#$/Ifgdkd$$Ifl4J֞OY&  hh  6`w064 laf4'$w&`#$/Ifgd#kd$$Ifl֞OY& hh 6`w064 la'$w&`#$/Ifgd#'gdkd$$Ifl֞OY& hh 6`w064 laf"1df&gdXe'gdXe0gd9 '0^`0gd9'gd&'1ab46`hc f i !$!%!)!!!!!" " "+"J"g"h"k"t""""㺶hrhCJEH aJhrhOJQJ^J hrhh9 hrhXehrh?_0J2jhrh?_Ujhrh?_U hrh?_hrh.nH tH hrh?_nH tH :fhjJ d e f %!&!'!(!)!!!!!!!0"h"i"j"k"'h^hgd9'gd9'gdXek"""""""# # # # ##P#Q#j#$ $Z$b$$h%p%'gd9 '0^`0gd9'`gd9'gd0gd9'gdGw0gds.'gdXe"""### ###P#Q#\#]#b#c# $8$:$F$H$b$d$$$$$$$&%(%n%p%r%t%%%%%w&x&{&}&&&~vov h/hh/h]j: hrhUjޔF hrhUVh9hrhOJQJ^Jh/jhrhUjޔF hrhUVjhrhU hrh. hrhGw hrh?_ hrhXehrhCJEH aJ hrh+p%%%%%t&&&&&&&'L'M'O'P'R'S'U'V'X'Y'Z'$a$0gdGw'gdGw'`gd9 '0^`0gd9'gd'^gd9&&&&&&&&&&''%'K'M'N'P'Q'S'T'V'W'Y'Z'['\'b'c'd'f'g'm'n'o'p'q'n[n%hcX0J.CJOJQJaJmHnHu h,hu.0J.CJOJQJaJ)jh,hu.0J.CJOJQJUaJ hu.0J.jhu.0J.Uhu. hu.aJhajhaU hrh. hrhGwj hrhUjޔF hrhUVjhrhUhrhCJEH aJ hrh#Z'['d'e'f'q'r's't'''''''''''''''''XXgdgd.-gd- -&`#$gdq'r's't''''''''''''''''''''''X XXXXX X!X"X5X6X7X8X9Xͺٜ٢~ hrhGwh9ohh.0J/h.OJQJ^JUh.h.CJOJQJ^Jhu.CJOJQJ^Jhu.OJQJ^Jhhu.0J/hu.CJOJQJ^Jh9CJOJQJ^Jh.CJOJQJ^Jhahu. hhu.&ask size 1 cm trolley washers accelerating washers XXX X!X6X7X8X9X'gdGwgd./         ...)()()()()()08$:p/ =!"#$% zaM-*chHH( F}? x1X+&\%*͒JFIFKKMSO Palette d;"jC'pC%pK+sG'uP/yK)|Q-O)U.R,Y1^5U,Y/^3[._1b4g9c2i7i5p~CA(T2Y9$bB(e=#e?%e@&eB'f;!fF+hB&i@&iC'iJ.j>"j@"jB%jE(jG*mK,n@#nB$nD&nE'nF(nH)oN/pJ+pL,qB$qE&qH)rF'sC$sI)sJ*sL*sL.sR1tO.uG'vL*wD$wI(wK)wN,xO,xQ.xT1yG&zL){J({K({N,{R-{U0{Y3|L'|L*|N)|P+K'N)P,R.T.Y2O)R*S+S/V0T-\5X1Z2_8N(P*R+S,T+T/V,V0P)W/X/Y/Z3\2`7T*T.V,V/R*X-X1Z.Z2[1]3^5a6X,X0Z1\/\3]0]3_3`5b7Z-U+f:X-Z/\0^4^0_2a6d8a2c3h:k=Z.\/f7^1`2a0a4c3Z,\._0d4f4f8h8b2k:_/f7g6i9mg3j5l6m7vAo:r=m6o8q:ss:w<E{@{>BH-9$A%C(C*H.I+J1"N.O1 P4"R7$S0T4 U:&X1X4 X7"X;%\7"\9"\;#\=&\@)]4`8 `<$a:"a=$a@&aB)aE+C   ")$+*($''-2@7-0=0''8L9=CEHIH+6OUNFT@GHEC !!E.'.EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"; !1AQ"aq#2BRbr$3S4cs"!Qaq"1A ?V&A: )8gLֲ ꐎc>? r )v๠n>SlmHEccb')>3a/t1\{FZUsS)NK1o|Re,JzM4Q$Q..@nx^-MUؤEKcHOE9C^tV7 ,E]Es'l)$ce8>Ep Ƒ1gM5Q=8t<ƚ΁tޏ{|~9FAa?V]@G$ Z< ǚp4_f˸X Z俗A $tHICWX9;DHOg&;Mܸ'R7hNۈ*G4MC>qti/ vDea Uc;x`~hQ?hyo"w5{7i܆x6K6-ڎƑ +ިx;N>{UIu\~MCD]L}O8?DW[km$H4) HzFht(ɹLu5HIOVtrȟ5O}A}# ʊ<q:1AK'e4[ ʚK91ŏdw ?UƢ&1tyyXi16h^ FWN(`pn-J A/Lqg $a:[$#VIG]fm-AUxlg}fLr6E+䴎@4_I'$DzI(F= 'ǣ|=KgTf@sԹ&R Bsx#H]ǘ}id V!`3ǏE_ NoBMU=#*OX F;prZ5^9FDyK F TAP211~2.DOC4.TAP211-1-Newton-two.docDyK F TAP211~3.DOC4.TAP211-2-Newton-two.doc$$If!vh55525 #v#v#v2#v :V l4 6`w06+++55525 4f4$$If!vh5555h5h55 #v#v#v#vh#v#v :V l4J 6`w06+++5555h55 4f4$$If!vh5555h5h55 #v#v#v#vh#v#v :V l 6`w065555h55 4$$If!vh5555h5h55 #v#v#v#vh#v#v :V l 6`w065555h55 4DyK http://resourcefulphysics.org/yK >http://resourcefulphysics.org/Dd _ C0  # A2:k P"%k_.V`!:k P"%k_.V~@@xuKA̺RD<,D B.]"/z(o"Y:u)䥠sڱ pS?h73ٖ3}o6&RQB|EBeIQyU1hEV )P׸M vf>L wߩg#|'鄴(%F+r*˪9Odwڢ@eӕ2*0ذ$BH<%+^ T2LtmGe|%x[rb~2DJKvW@?כ\hrDd W0  # A2L,P~ `!L,P x}O@߽A04ʢ9tL &#8:?Cht0X*?Ӿ}c`L 4bZ2*AHgoQ;sB$ga J`_1!r݊wPÌx*)S 8fM$5/A@EGp7-}v}Իsxء'J-zė?dioKT;,:E܎-Em,r9$n64_6/РyMET A%yK˭h 7Ww[wXӽS{ho$Ylp%8^a>=,9T[0k@BJҽ< qu622U ⣃gDd  C0  # A2eg@L._ `!eg@L._xcdd``>$d@9`,&FF(`T̐ & ô A?d-A7fĒʂT/&`b]F"LO1X@DN3Q9A(31uyiu@|!}95l0^mo\H꽙Ab8W@\8#+D (FoL. a| 6_lblF0S+qA3fL`<&00ڼ"#& ̟f%P 27)?WW r\Aepl 8l>݋߽d;.hpp02@``#RpeqIj.C)޴ ] A4Gf~2O  !"#$%&'()*+,-./012345689:;<=>ADEFHGIJKLOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry F@$CvTC Data 7WordDocumenthlObjectPool p2vT@$CvT_1184161525Fp2vT`=7vTOle CompObjfObjInfo  !"#$%&'(* FMicrosoft Equation 3.0 DS Equation Equation.39qgd a=Fm=200 N80 kg=2.5ms  2Equation Native _1184161524 F`=7vT`=7vTOle CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39qw: a=2000 N100 kg=20ms  2 FMicrosoft Equation 3.0 DS EqObjInfo Equation Native  _1184161523F`=7vT`=7vTOle CompObjfObjInfoEquation Native 1TableN,uation Equation.39q: m=200 N0.002 m s  2 =1.010 5 kgOh+'0 (4 T ` l xSummaryInformation(DocumentSummaryInformation8CompObj)qTeaching Advanced PhysicsInstitute of Physics Normal.dotvys17Microsoft Office Word@@@<8@NSYT_՜.+,D՜.+,D hp|   5?' Teaching Advanced Physics Title 8@ _PID_HLINKSA@z=http://resourcefulphysics.org/5=TAP211-2-Newton-two.doc5>TAP211-1-Newton-two.doc  FMicrosoft Office Word Document MSWordDocWord.Document.89q3H@H P1Normal CJOJPJQJ_HmH sH tH DD P1 Heading 1 $x@& 5B*phJJ P1 Heading 2 $x@&5OJQJ\^JVV P1 Heading 3$<@&5CJOJQJ\^JaJDA@D P1Default Paragraph FontVi@V P1 Table Normal :V 44 la (k(P1No List  P1Chapterm$$d  %d  &d  'd  -D1$7$8$H$M N O P Q a$35B* CJ,OJQJ\^J_HaJ,mH phsH tH vv P1Strand$1$7$8$H$a$35B* CJ4OJQJ\^J_HaJ4mH phsH tH ll P1Letter$1$7$8$H$a$-B* CJ(OJQJ^J_HaJ(mH phsH tH f"f P1Type$1$7$8$H$a$0<B*CJOJQJ^J_HaJmH phsH tH z2z P1 TG Heading$x1$7$8$H$a$35B* CJ$OJQJ\^J_HaJ$mH phsH tH tBt P1Sub-Type$1$7$8$H$a$65<B*CJOJQJ\^J_HaJmH phsH tH hORh P1ItemH1$7$8$H$35B* CJOJQJ\^J_HaJmH phsH tH dbd P1Fields1$7$8$H$0<B*CJOJQJ^J_HaJmH phsH tH lrl P1Filenamed1$7$8$H$-5<CJOJQJ\^J_HaJmH sH tH  P1 Item Break^$d$d %d&d'd1$7$8$H$NOPQa$$CJOJQJ^J_HaJmH sH tH ll P1 Normal:Para1$7$8$H$-B*CJOJQJ^J_HaJmH phsH tH nn ,P1Parahead$1$7$8$H$.5CJOJPJQJ\^J_HaJmH sH tH dd P1Quoteh1$7$8$H$^h*6CJOJQJ]^J_HaJmH sH tH  P1Teachers Links$$h1$7$8$H$a$-B*CJOJQJ^J_HaJmH phsH tH nn P1Technical Code$1$7$8$H$a$$CJOJQJ^J_HaJmH sH tH  P1TG Heading:Para$x1$7$8$H$a$35B* CJ$OJQJ\^J_HaJ$mH phsH tH ~~ P1 TG Subheading h1$7$8$H$35B* CJOJQJ\^J_HaJmH phsH tH @@ P1Sup-term5B* CJ\aJph44 P1My HighlighterL+"L P1 Endnote Text"CJOJPJQJmH sH N2N P1 Footnote Text#CJOJPJQJmH sH @&A@ P1Footnote ReferenceH*>*Q> P1Endnote ReferenceH*,OQb, P1TAP Main&TOrT /Xe TAP Para Char'xB*CJOJQJ^JphRR P1 AP Bullet) hh^h` OJQJ^JLL P1Header + 9r CJOJPJQJmH sH \O\  Parahead Char*5CJOJQJ\^J_HaJmH sH tH L @L P1Footer - 9r CJOJPJQJmH sH .)@. P1 Page NumberfOf 'XeTAP Para Char Char)B*OJPJQJ^J_HmH phsH tH FOF GwTAP Sub0x5B*OJQJ^Jph6U@!6 ?_ Hyperlink >*B*ph09BR_y4mnop09BR_y 4 \ z z z z z z zh A04Jp 8A+, !)Z#:+K    c d e f T U c o  DA!8H\r{~f"1@nopqJdef%&'()0hijk    PQj-1FtLYfqt 5!!!:!:!!:!:!:!:!:!!!:!:!:!!!:!:!:!:!:!:!:!!!:!:!:!:!:!!!:!:!:!:!:!:!:!:!:!!:!:!!:!:!:!:!:!:!:!:!!:!:!:!:!:!:!:!::Z: : :::::*d:::::: :*d:::::: :*d!:!:!:!:!:!:!:!:!:!:!!:!:!:!!:!:!:!:!:!:!:!:!_!:!:!:!:!:!:!:!:!:!:!:!!:!:!:!:!:!:!:!:!:!:!:!!:!:!:!:!:!:!:!:!:!!:!:!:!:!:!!:!:!!:!:!!:!0!!:!1 !:!:!:!:!!:!:!0!:!:!!:!:!Y^!v:g::G:}::g:}:G:::+, !)Z#:+K    c d e f g T U c o  DA!8H\r{|}~f"1@nopqJdef%&'()0hijk    PQj-1FtLMOPRSUVXYZ[defqrt  15&0p&0'0'000'0'0'0'0'00000'0'0'00000'0'0'0'0'0'0'00000'0'0'0'0'00000'0'0'0'0'0'0'0&0'0'0'000'0'000 '0 '0 '0 '0 '0 '0 '0'000'0'0'0'0'0'0'000'0 '0 '0 '0'0 0 '0 '0 '0 '0 '0 '0 '0 0 '0 '0 '0 '0 '0 '0 '0 0 '0 '0 '0 '0 '0 '0 '0 0 '0'0'0'0'0'0'0'0'0'0'000'0'0'000'0&0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'000'0'000'0'000'0'0'0'0'0'0'0'0'0'0'0'0'0'0'000'0'0000000000 0-0-00-0-00 000000000000000000000000  &&&)"&q'9X#&(*K{fk"p%Z'X9X !"$%')-8X B a a1BD4XXX::: ")!!/Xr$M-*chHHi1]R$}? x1X+&\%*͒]@@h@(   N   %7 f Dn d# g #"   %7Z h S C2 @!L#WdZ d# i d#Z j S C2 @!M#$6Z d# k d#Z d# l d#Z m 3 mXd# Z n 3 n #   Z o 3 o   f p S PFPFpj   ` &# q# "\Z P3  r P3 T s C jJ ,r T t C jJ3:`  I I u# P H v #  I ZB w S DԔ IZB x S DԔ:  ; IT2 y C o/ Z z S v2 @,~  Z &# { &#pt  I |# #"  T } C jJ,i T ~ C jJ3 ` 4Z  I I   I IH  #  I ZB  S DԔ IZB  S DԔ:  ; IT2  C o/ Z  S v2 @,~  ZB  S D1Vo "o rZ &K #  &K #Z #s #  #s #ZB  S D1#j#ZB  S D1#j#ZB  S D1#s #4  W .` !:'I # K #xr2  6v @1$:'lZ !p&I  !p&I,t !Zw# # #" ""Q#I:Z  "q#   "q#  c DA Dark horizontalw"#uH  #  "fq#f  s *v2 @!Zw#.` ! F&$ # !p&`   BwCDE,F6jJ ww~@`#" ! F&$H2  # %!&!ZB  S DjJ%!!&{!~  s Bf3AjJMedium wood& a Z     f  s *v2 @  `   t #   T  C jJ   T2  C jJ I t42  W & Lt ,   # #" u   l2  0vd @,  TB  C DA  T2  C jJI t42  ?  Lt ,   # #" ]  l2  0vd @,  TB  C DA  Z  S C2 @d  Z  S C2 @f = Z  S C2 @d  Z  S C2 @f 8 z  c $"`S r  Z !L#  !L#Z !L#   !L# Z  S C2 @!L# Z  S C2 @!K#Z  S C2 @!K#>Z  S C2 @!AK#Z  S C2 @!K#Z  S C2 @![K#`  C  (  b   %7  #" Dn d#  #"   %7Z  S C2 @!L#WdZ d#  d#Z  S C2 @!M#$6Z d#  d#Z d#  d#Z  3  Xd#  Z  3   #    Z  3      f  S  PFPFj    ` &# # "\Z P3   P3 T  C jJ ,r T  C jJ3:`  I I # P H  #  I ZB  S DԔ IZB  S DԔ:  ; IT2  C o/ Z  S v2 @,~  Z &#  &#pt  I # #"  T  C jJ,i T  C jJ3 ` 4Z  I I   I IH  #  I ZB  S DԔ IZB  S DԔ:  ; IT2  C o/ Z  S v2 @,~  ZB  S D1Vo "o rZ &K #  &K #Z #s #  #s #ZB  S D1#j#ZB  S D1#j#ZB  S D1#s #4  W .` !:'I # K #xr2  6v @1$:'lZ !p&I  !p&I,t !Zw# # #" ""Q#I:Z  "q#   "q#  c DA Dark horizontalw"#uH  #  "fq#f  s *v2 @!Zw#.` ! F&$ # !p&`   BwCDE,F6jJ ww~@`#" ! F&$H2  # %!&!ZB  S DjJ%!!&{!~  s Bf3AjJMedium wood& a Z     f  s *v2 @  `   t #   T  C jJ   T2  C jJ I t42  W & Lt ,   # #" u   l2  0vd @,  TB  C DA  T2  C jJI t42  ?  Lt ,   # #" ]  l2  0vd @,  TB  C DA  Z  S C2 @d  Z  S C2 @f = Z  S C2 @d  Z  S C2 @f 8 z  c $"`S r  Z !L#  !L#Z !L#   !L# Z  S C2 @!L# Z  S C2 @!K#Z  S C2 @!K#>Z  S C2 @!AK#Z  S C2 @!K#Z  S C2 @![K#`  C  ( B S  ? 44f4Mt5yjsMt (5:::::::::::::::::::: b U !H~" 1tMMOOPPRSUVXYst 05 b MMOOPPRSUVXYst5+tV}!66:+XVPh<ȍ808^8`0o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h hh^h`OJQJo(h 88^8`OJQJo(oh ^`OJQJo(h   ^ `OJQJo(h   ^ `OJQJo(oh xx^x`OJQJo(h HH^H`OJQJo(h ^`OJQJo(oh ^`OJQJo(h808^8`0OJPJQJ^Jo(h^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH:+}!+h<`"        b4^        >8 /NYOueGwcX4$g-.s.u.GC0^0l5R9:MZ<oCcEVYJ3MzTd[wbg7k9oL@yNb~#Lja<|P1:>^e:gQ_qW.*!_,?_51r9]Xe!8H\{|}~5@b b :b b L4@@@$L@@UnknownGz Times New Roman5Symbol3& z Arial3z Times;Wingdings?5 z Courier New"hš&sF3_5_5!xx2d?? 3qXGC02Teaching Advanced PhysicsInstitute of Physicsvys