ࡱ> -/,x7 "bjbjUU F7|7|lD,,$l03d#######$% 'h#[[[##[![#u!u!$ G  M2u!! #0,$u! ) )!Line Integrals Around Closed Curves, and the Theorems of Green and Stokes copyright 2000 by Paul Green and Jonathan Rosenberg Line Integrals Around Closed Curves In the previous notebook, we evaluated line integrals of vector fields F along curves. We continue the study of such integrals, with particular attention to the case in which the curve is closed. Example 1: We begin with the planar case. That means (if we think of F as being 3-dimensional) that the last component of F is 0, and the first two components only depend on x and y, not z). Let us consider EMBED Equation.3 , where C is the unit circle, and F is as defined in the input cell below. syms x y F=[-y,x] Before we evaluate the integral, let us plot the vector field F together with the unit circle. When the first argument to genplot is a two dimensional vector field, genplot will plot the vector field for ranges given in the next two arguments. In order to get an intelligible plot, the step size must be taken relatively large. (If you prefer to use the MATLAB built-in function for plotting vector fields, see the help for quiver.) syms t circ=[cos(t),sin(t)] genplot(circ,0:.02:2*pi) hold on genplot(F,-1.1:.2:1.1,-1.1:.2:1.1) axis equal; hold off It is evident from the plot that the vector field F is, in this case, everywhere tangent to the circle in the counterclockwise direction, so that the line integral should be positive. Now let us proceed to the evaluation. int(realdot(subs(F,[x,y],circ),diff(circ,t)),t,0,2*pi) Problem 1: Keeping C as the unit circle directed counterclockwise, let F2 and F3 be the as defined below. Make a simultanous plot of C with each of F2 and F3, and use it to predict what you can about  EMBED Equation.3  and  EMBED Equation.3 . Then evaluate the integrals. F2=[x,y] F3=[x+y,y-x] Green's Theorem Green's Theorem states that if R is a plane region with boundary curve C directed counterclockwise and F = [M, N] is a vector field differentiable throughout R, then  EMBED Equation.3 . Example 2: With F as in Example 1, we can recover M and N as F(1) and F(2) respectively and verify Green's Theorem. We will, of course, use polar coordinates in the double integral. syms r integrand=diff(F(2),x)-diff(F(1),y) polarint=r*subs(integrand,[x,y],[r*cos(t),r*sin(t)]) symint2(polarint,r,0,1,t,0,2*pi) Problem 2: Verify Green's Theorem for vector fields F2 and F3 of Problem 1. Stokes' Theorem Stokes' Theorem states that if ( is an oriented surface with boundary curve C, and F is a vector field differentiable throughout (, then  EMBED Equation.3 , where n (the unit normal to () and T (the unit tangent vector to C) are chosen so that  EMBED Equation.3  points inwards from C along (. Example 3: Let us perform a calculation that illustrates Stokes' Theorem. We will choose ( to be the portion of the hyperbolic paraboloid  EMBED Equation.3  that is contained in the cylinder  EMBED Equation.3 , oriented by the upward normal n, and we will take F4 as defined below. syms z F4=[z,x,y] We can parametrize ( conveniently using polar coordinates. syms r sigma=[r*cos(t),r*sin(t),r^2*cos(t)*sin(t)] This has the great advantage that we can parametrize the boundary curve by setting r to 2. boundary=subs(sigma,r,2) Let us now evaluate both sides of Stokes' theorem in this case. int(realdot(subs(F4,[x,y,z],boundary),diff(boundary,t)),t,0,2*pi) ndS=simplify(cross(diff(sigma,r),diff(sigma,t))) curlF4=curl(F4,[x,y,z]) symint2(realdot(curlF4,ndS),r,0,2,t,0,2*pi) Problem 3: Verify Stokes' theorem for the case in which ( is the portion of the upper sheet of the hyperbolic paraboloid  EMBED Equation.3  that lies below the plane  EMBED Equation.3 , and F5 is as the following input cell. F5=[-z*y,z*x,x^2+y^2] More on Green's Theorem Let's go back to the plane case. Green's Theorem can also be interpreted in terms of two-dimensional flux integrals and the two-dimensional divergence. We recall that if C is a closed plane curve parametrized by r in the counterclockwise direction then  EMBED Equation.3 , and  EMBED Equation.3 , where n here denotes the outward normal to C in the x y plane. Then if F is a vector field, we have  EMBED Equation.3 , while  EMBED Equation.3 . It now follows from Green's Theorem that  EMBED Equation.3 , where the divergence has essentially the same meaning in two dimensions as in three. Example 4: We will now take C to be the ellipse  EMBED Equation.3 , so that R is the region inside the ellipse. We will compute  EMBED Equation.3  two different ways, where F6 is as defined below. F6=[4*x,5*y] Let us begin by plotting the ellipse and the vector field. We will use modified polar coordinates for the ellipse. ellipse=[2*cos(t),3*sin(t)] genplot(ellipse,0:.02:2*pi) hold on genplot(F6,-2.1:.3:2.1,-3.15:.3:3.15) axis equal, axis([-2.5,2.5,-3.5,3.5]), hold off From the fact that all the arrows point outward across the ellipse, we expect a positive answer to our computation. F6ell=subs(F6,[x,y],ellipse) int(realdot([-F6ell(2),F6ell(1)],diff(ellipse,t)),t,0,2*pi) We now parametrize the region inside the ellipse by introducing a factor of r, which will run from 0 to 1. Since we are not using standard polar coordinates, we will need to compute the scale factor for integrating in this coordinate system. region=r*ellipse scale=det(jacobian(region,[r,t])) We compute the divergence of F6 exactly as though it were a three-dimensional vector field, except that we do not need to specify a third variable. divF6=div(F6,[x,y]) Since the divergence of F6 is constant, we do not need to carry out a coordinate substitution, but can proceed with the integration. symint2(divF6*scale,r,0,1,t,0,2*pi) Problem 4: Based on your plots from Problem 1, make what predictions you can about the sign of the flux of F2 and F3 through the unit circle. Then verify Green's Theorem by computing the flux two different ways. The Connection with Area and Volume A curious consequence of Green's Theorem is that the area of the region R enclosed by a simple closed curve C in the plane can be computed directly from a line integral over the curve itself, without direct reference to the interior. The reason is that if we take F = [M, N] and choose M and N so that  EMBED Equation.3  then  EMBED Equation.3  is just the area of R,  EMBED Equation.3 . Example 5: Let's find the area enclosed by the astroid C: x2/3 + y2/3 =1. We could of course solve for y in terms of x and integrate, but that would give us a messy function that MATLAB con't integrate symbolically. So there's a better way. First we parametrize the curve, using the fact that the change of variables u = x1/3, v = y1/3 converts the curve to a circle u2 + v2 = 1, which has a parametrization u = cos(t), v = sin(t), t going from 0 to 2(. So we can take astroid=[cos(t)^3,sin(t)^3] If we take F = [0, x], then  EMBED Equation.3  so the line integral  EMBED Equation.3 of F will be precisely the area enclosed by C. The line integral is just  EMBED Equation.3 . So astroidarea=int(astroid(1)*diff(astroid(2)),t,0,2*pi) That's 3/8 of the area of a circular disk of radius 1. Here is the picture: ezplot(astroid(1),astroid(2)); axis equal; axis([-1,1,-1,1]) Similarly, if F is a vector field such that curl F ( n = 1 on a surface ( with boundary curve C, then Stokes' Theorem says that  EMBED Equation.3 computes the surface area of (. Problem 5: Let ( be the spherical cap x2 + y2 + z2 = 1, with z ( 1/2, so that the bounding curve of ( is the circle x2 + y2 = 3/4, z=1/2. Show that if F6=[0,atan(x/sqrt(1-x^2-y^2)),0] then curl F ( n = 1 on (, and confirm that  EMBED Equation.3 is equal to the surface area of (, which you can compute independently in spherical coordinates. Koy#$*+>?RSTU]^wx07[b_ei    A C H J  ļķķļķķ-j< 5CJOJPJQJUVmHnHuOJQJ56OJQJ 5OJQJ0J56 jEHU"j@< CJPJUVmHnHu jU6] 5OJQJ5\CJ <&;Lnohip $da$$a$$ddd[$\$a$$ddd[$\$a$"    - . ?  : ; <    + ^ _   = > F G 8 < F p r w y $%89"j < CJPJUVmHnHu jS 5OJQJ jEHU"j-< CJPJUVmHnHu60J jEHU-j< 5CJOJPJQJUVmHnHu5 5OJQJ jU jCEHU89:;CDYZ`a~&'WXklmnEx4vz0J jpEHU"j< CJPJUVmHnHu jjEHU"j< CJPJUVmHnHu 5OJQJ6 je EHU"j@< CJPJUVmHnHu6] jS5 jU j EHU:DELz{|4xyz34tu,-./56IJKLTUyzž jEHU"joO< CJPJUVmHnHu jEHU"jN< CJPJUVmHnHu60J5 jEHU"j1< CJPJUVmHnHu jEHU"j1< CJPJUVmHnHu jU jS 5OJQJ/STcdeDvw HIJ< ^ ()*+   ;>TavF<o|zwwwww0J5 j(EHUj< CJPJUV j%EHU"jS< CJPJUVmHnHu6 5OJQJ j~"EHU"jR< CJPJUVmHnHu jHEHU"jP< CJPJUVmHnHu jU jEHU"jFP< CJPJUVmHnHu.<MqrsY4RS R S !0"S"T""6879>A 12   %&'(=>@ATUVWYcüH* jv/EHUj9< CJPJUV j,EHU"j-< CJPJUVmHnHu j@*EHUj< CJPJUV jU6]5 5OJQJ0J5\B!"4P^_fgop     P !!!!!!!!(!)!>!?!`!a!t!u! jS j j5EHUj< CJPJUV j3EHUj< CJPJUV jr1EHUj< CJPJUV jU5\0J jp6]H*?u!v!w!!!!!!!!!!!!!!!!!!!!! " " """"0"Q"Y"]"^"_"`"a"b"c"k"l"""""""""" j!:EHUj< CJPJUV j5\0J jH*6] 5OJQJ jS jU j8EHU1/ =!"#$%CDdB  S A? 2\?г VxSDE`!\?г VxS潴@8 Oxcdd``bd``baV d,FYzP1C&,7\ A?d-sC0&dT20L7Ӂ`0LY \ ymm g`b`*F\YL *!5i+y@>g`lt?1F:~TDd`B  S A? 2]BҪdmﴌKE`!]BҪdmﴌK X `xcdd``ncd``baV d,FYzP1C&,7\3 A?d-l 깡jx|K2B* R&]_c&,`babMa`Usmm g`b`*F\YL *!5e^3y >01~bo/TDdLB  S A? 22yhB;fi?E`!2yhB;fi?  `xcdd``ncd``baV d,FYzP1C&,7\6! KA?HZ sC0&dT20L7Ӂ`0LY \pR@|!}9T T@Z?UBk˼vSAF\f.HdnHfnj_jBP~nb;ّ 1jVu`:c@^;VPԤ_ˁ۽Y@. ).u+ބi̸ Z) l,40OLLJ% |isA 'f~Dd B  S A? 2RTҌ`v'aL@3./E`!&TҌ`v'aL@3DPtx?Ha?ѦPD4uRt+RC!I5ҨFӞSRNNܔN 88(7)/y{1H8C(~y NiaERzk34uz4x}Qd7C0pEDue,. %W"g*w/sNR 4,uqͿ*z^]l9.|z(O u&g(4 IRakZϏy┲Ox <*ԼMbyU|jk"+;l62y<_NY.=\dFZ[M&k~T.B^fZznΎϫVtg?療h +9`ߔ[.cHCr E`!>[.cHCrYxcdd``~ @c112BYL%bL0Yn&fA! KA?HZ @P5< %!  `YB2sSRsn׼-\k? P.P16z(rRJ0?/XY3p{2c\= w.^y0gn cC~F@ \eK E`!CJx@>@ \eRxcdd`` @c112BYL%bL0YnB@?6 Rjx|K2B* R=`sYB2sSRsn׼-<Nh*6r`L-7g*Q͟d\+l >|F0ɞ@pm cFD@a #RpeqIj.CD޴v.Fl@9] `JDdB  S A? 2p a:BE Q@LE`!D a:BE Q@@xcdd`` @c112BYL%bL0Yn,B@?6 Rp7$# !L aA $37X/\!(?71v 310p e*F\ @  !"#%&'()*+^.1Y2354678:9;=<>@?ABCEDFGHJIKLMNOQPRTSUVWZX[]\vu_`abcdefghijklmnopqrstwz{|}~Root Entrys F 0'Data $@<WordDocumentrFObjectPoolu,`c _1018427200F`cwYOle CompObjfObjInfo "',/258=@ADGHKNORUVWZ]^_`cfilorux{~ FMicrosoft Equation 3.0 DS Equation Equation.39q5=L/ F"Tds C +" FMicrosoft Equation 3.0 DS EqEquation Native Q_1018429127 F@ {`Ole CompObj fuation Equation.39q9L/ F2"Tds C +" FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo Equation Native  U_1018429136F(\Ole  CompObj fObjInfoEquation Native U_1018768888F Tjw9J> F3"Tds C +" FMicrosoft Equation 3.0 DS Equation Equation.39qL/ F"Tds="N"x""M"Ole CompObjfObjInfoEquation Native y()dA R +"+" C +" FMicrosoft Equation 3.0 DS Equation Equation.39q=L/ F"Tds=curlF  +"+" C +" "ndS_1018431264 "FkiOle CompObjfObjInfoEquation Native _1018431552F4zOle  CompObj !f FMicrosoft Equation 3.0 DS Equation Equation.39q{t nT FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo!#Equation Native $1_1018431706'$FcOle %CompObj#%&fObjInfo&(Equation Native )5_1018431741)F@=L/ z=xy FMicrosoft Equation 3.0 DS Equation Equation.39q9t x 2 +y 2 =4Ole *CompObj(*+fObjInfo+-Equation Native .U_1018769839;.F `o_Ole 0CompObj-/1fObjInfo03 FMicrosoft Equation 3.0 DS Equation Equation.39qO=L/ z 2 "x 2 "y 2 =1 FMicrosoft Equation 3.0 DS EqEquation Native 4k_101876990763F`y Ole 6CompObj247fuation Equation.39q z=5 FMicrosoft Equation 3.0 DS Equation Equation.39q=L/ Tds=drObjInfo59Equation Native :1_10187773368F H`kOle ;CompObj79<fObjInfo:>Equation Native ?_10187774551O=F@wdt=dr(1)dt,dr(2)dt[] FMicrosoft Equation 3.0 DS Equation Equation.39q~T nds=dr(2)dt,"dr(1Ole BCompObj<>CfObjInfo?EEquation Native F)dt[] FMicrosoft Equation 3.0 DS Equation Equation.39q=L/ F"Tds=F(1)dr(1)dt+F(2)dr(2)dt_1018777670BF @, Ole ICompObjACJfObjInfoDLEquation Native M_1018777776@JGF @(Ole PCompObjFHQf FMicrosoft Equation 3.0 DS Equation Equation.39qK F"nds=F(1)dr(2)dt"F(2)dr(1)dt="F(2),F(1)[]"TdsObjInfoISEquation Native T_1018778267LF 8 Ole X FMicrosoft Equation 3.0 DS Equation Equation.39q=L/ F"nds="F(1)"x+"F(2)"y()dA= R +"+" C +" div R +"+" CompObjKMYfObjInfoN[Equation Native \_1018778593E^QF `#FdA FMicrosoft Equation 3.0 DS Equation Equation.39qS=L/ x 2 4+y 2 9=1Ole aCompObjPRbfObjInfoSdEquation Native eo_1019479742VF`4< Ole gCompObjUWhfObjInfoXj FMicrosoft Equation 3.0 DS Equation Equation.39q<ȀII F6"nds C +" FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native kX_1018948317[Fl@YOle mCompObjZ\nfObjInfo]pEquation Native qh_1018948409Ym`F@h_; Ole sLȀII "N"x""M"y=1,e FMicrosoft Equation 3.0 DS Equation Equation.39q,IPnI dA R +"CompObj_atfObjInfobvEquation Native wH_1018949395heF(L  +" FMicrosoft Equation 3.0 DS Equation Equation.39qdȀII "F(2)"x""F(1)"y=1,Ole yCompObjdfzfObjInfog|Equation Native }_1018949627jFDe @ Ole CompObjikfObjInfol FMicrosoft Equation 3.0 DS Equation Equation.39q8ȀII F"Tds C +" FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native T_1018949652cToF p ` Ole CompObjnpfObjInfoqEquation Native L1Tabley )SummaryInformation(t0I$I xdy C +"Oh+'0 ,@ `l    The MATLAB Notebook v1.5.2"Template for The MATLAB Notebook osDapartment of MathematicN=@&UU$ܤ^痀f3H]h[ nj`!vÈI)$5 c*v.Fl@9] `hF8DdhB  S A? 2dDƾJi.P~E`!vdDƾJi.P|@@0= |Dxcdd``cd``baV d,FYzP1C&,7\ A?dm5rC0&dT20]1 @001d++&1ܮy[~!}W8 P.P56ZjR 1O?)qi#c~abaT 3BX'27)?ΈK@;n=pưtpg/3ȄJ=~ ~E%4v16h܈ 9#RpeqIj.CWִ(v.F}l@9ݏ`DoWIDd@hB   S A ? 2H?Sppi{YEE`!H?Sppi{YE @p|Uxcdd``cd``baV d,FYzP1C&,7\ A?dm@+5rC0&dT20]1 @001d++&1ܮy[~!}(b.:]j mĵQհbbsaF?2¨ʌgd dopenR~K.Dd@edm%ׅ3B2 n.`4dP G 8ߓį&8 KP=4Ĥ\Y\P5Md?PFf~Łw Dd0B   S A ?  2w \1~,MӮS5E`!K \1~,MӮkxcdd`` @c112BYL%bL0Yn B@?6 Zjx|K2B* R  XB2sSRsn׼-܇4 P.P56r`ʹyL +ss~`*4 f0L@27"2vdwBe2 *\{&"=fdbR ,.Ie(gNcgb XX.Ddc B   S A ?  2:6j9s(a] BE`!6j9s(a] @xcdd``f`2 ĜL0##0KQ*far`Y d3H1icY[8 UXRY( XXb% % d`pҹab<0m fj1qL,L I9 sٹ.ռ- ߗ \Pn2`>¿73B?+a{AWpkz%? |tDAM-VK-WMc߁k6L`xAѕRO`aDb6Dw@eA`Ao`2ec w{?rCG0~,o_5aX p D;'0JU/o`2gC9 q(Ĥ\Y\P6`[ӤϸDdB   S A ?  2"{bhV['y.E`!{bhV['y.@@x=KAg.1IB"X#$VBJ-be?HZJNDRl,DAEQ{&3s{w K&NtjD!c~İZʨ4jcFc" 6C;T Zh( bO&s^!p!}CA-V{16E"\`{В󜩥lߜ<.:}*p3WBa|RjfJCCA *=k)4 Bs4mV161J; N񉵖V>g'sR!݁KeE5[i<ؑ.(p]i~{LN+n"“ٟ 74U0:>c>й sq1$u3<'x^~dP[7#sp j~ @swM9J^6,Ũ`xF` 5kQ3\\*{ u͓L߈+6DdxlB  S A?  2=f\/E|E`!t=f\/El 2Bx?LA߽_Ֆ" FLbb0 ehXIKaqƁ8;$cb".80iI$w5X~ɵs{w91a`!c3{J+l6[S*S­AFxDA>Co [9es#`0vD? ܲ6Dd4B  S A? 2ᙿ|"E`!tᙿN %-BxMhA߼YfV+-AZE𠇶x&)Ş$'œ Ŋ ^x"!P%毻.l?oAC}@&JȘAYEt)\rY)25)=hܓ6F'f/|t_-葊pi8B%Nkd߸G[=LWrjn\-7sߪ(cgQINYu:Ck'~SO.m>_bu@|rޏ:PAE׏^{yQaN\r|}Z/d2P?Q~lZP+q>qe ⤉3_fQ44|i'ğ}<͟M;Y5<0U'ɨ~qyf{RLp>1ǏUCߥ':~FoJt5*{KZe/BϷpQ1g/Kg7dDdB  S A? 2l;dl *%E`!l;dl *  dpxR=KAP4H3($ؤҥԀ8,SRYY b,,?`#ZGݽ=޽7oowrVE#3Gb8VhZdȓgF)X`-bM'^S&:"湌wjTShL)]OQ n?6<?G/Q=*;wȒK|Uh?/_q>H_S_lQWQri`9>;k˥o>wy.JwԹ 7}Wul MVo J St/kh)szH(Dd$P  S A? "2׿plqe`\(E`!X׿plqeHD xt&xcdd``vad``beV dX,XĐ 6! KA?H6@P5< %! *3 vL@(\q.PHqy190|k_#:翙DYC2sSRs .5i:K&!\ˤx\ncgJ1I{ 1Bٞ緀]FX{3.h,rcl4.ؑĤ\Y\ːZf:x d:NDdP  S A? "2a e‹/]R*E`!~a e‹/]Rv @ dLxcdd``f ĜL  312Ec21BUs30)<41@3PT obIFHeA*[~1AtF]F"L L`0; Sa7S? `01d++&1L tWH7DM I9 P2HMc){Y@mP~fd~"pxO`@U!.cJ|_ <3.p: `pJ`dbR ,.IeCf: TDd B  S A? 2RTҌ`v'aL@3.,E`!&TҌ`v'aL@3DPtx?Ha?ѦPD4uRt+RC!I5ҨFӞSRNNܔN 88(7)/y{1H8C(~y NiaERzk34uz4x}Qd7C0pEDue,. %W"g*w/sNR 4,uqͿ*z^]l9.|z(O u&g(4 IRakZϏy┲Ox <*ԼMbyU|jk"+;l62y<_NY.=\dFZ[M&k~T.B^fZznΎϫVtg?療h +9`ߔ/;N8|oxPfz㛆Dv:JX40Y|DdP  S A? "2{F]WtsW 4E`!OF]Wts> ~ xtxcdd``gd``beV dX,XĐ  A?d@P5< %! *3 vL@(\q.PHqy190|k_#q>ͤ$ZZIP&1j%Lbe Pp#$387.hsl>$ؑlcdbR ,.IeCw-3X9 Y8DdP  S A? "2cd5gS==x??6E`!7d5gS==x`Pxtxcdd`` @bD"L1JE `x0%Yjl R A@+XT UXRY07Ӂ`0L`;A 27)?"](6br`)vo&0} Qbr<&}4i$gI w $FI70#Ɵ6 c.p0͇WGF&&\ ~ xtxcdd``gd``beV dX,XĐ  A?d@P5< %! *3 vL@(\q.PHqy190|k_#q>ͤ$ZZIP&1j%Lbe Pp#$387.hsl>$ؑlcdbR ,.IeCw-3X9 Y8DdP  S A? "2{F]WtsWe:E`!OF]Wts> ~ xtxcdd``gd``beV dX,XĐ  A?d@P5< %! *3 vL@(\q.PHqy190|k_#q>ͤ$ZZIP&1j%Lbe Pp#$387.hsl>$ؑlcdbR ,.IeCw-3X9 Y8steapaapa m-book.dotoJonathan M. Rosenbergic28aMicrosoft Word 9.0r@Z7@@QE@Ẻz՜.+,0$ px  The MathWorks, Inc..6 Z DocumentSummaryInformation8TCompObjj The MATLAB Notebook v1.5.2 Title  FMicrosoft Word Document MSWordDocWord.Document.89q i4@4 NormalCJ_HmH sH tH 66 Heading 1CJOJQJkH>@> Heading 2x5CJOJQJkHD@D Heading 3$<@&5CJOJQJ<A@< Default Paragraph Font"O" NoGraphB*0O0 Input5B* CJOJQJkH0O0 OutputB*CJOJQJkH0O!0 Error5B*CJOJQJkH6O16 AutoInit5B* CJOJQJkH.OA. Calc<B*CJOJQJkH*BR* Body Textx F&;Lnohip-.? : ; <    D E L z { | 4 x y z STcdeDvw HIJ<MqrsY4RSRS0ST(0(@000;(0;000000000000000000000000404000000000000000000 0 00 0 0 00 0 0 0 0 00 0 0 00 0 0 00 0 00 0 00 0 00 0 0 0 00 00000000000000000000000000000000000000000000000000000000 9u!" !" <"">RT$ 8 : W k m t,.5IK(*  %'@TVo`tv:::::::::::::::::::::::::  O"$;{zSS"$/uL$GMN"$Rx\c9r+"$̙n 9k~_aV@ 0(  B S  ?INPUT_1INPUT_2INPUT_3INPUT_14INPUT_12INPUT_5INPUT_6INPUT_7INPUT_8INPUT_9INPUT_10INPUT_11INPUT_13INPUT_15INPUT_16INPUT_17INPUT_18INPUT_19INPUT_20INPUT_21INPUT_24INPUT_25INPUT_26INPUT_27i E 4 z T<40 +8  x v auFoPPQ07[bimvykv"'   L V    E I U X 4 7 8 ? I N _ i z } is%  09SVW_hkXc4;=@%&)*1:A=A&)LUimpt%'=?   E I L Q 4 7 z } []%DH  <BMR 4;%4;TX3333333333333333333333333333333333333333333333Dapartment of Mathematics)C:\TEMP\AutoRecovery save of lineint2.asdDapartment of Mathematics)C:\TEMP\AutoRecovery save of lineint2.asdJonathan M. Rosenberg$E:\class\math241\common\lineint2.docJonathan M. RosenbergLC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of lineint2.asdJonathan M. RosenbergLC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of lineint2.asdJonathan M. RosenbergLC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of lineint2.asdJonathan M. RosenbergLC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of lineint2.asdJonathan M. RosenbergLC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of lineint2.asdJonathan M. RosenbergLC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of lineint2.asdJonathan M. RosenbergLC:\WINDOWS\Application Data\Microsoft\Word\AutoRecovery save of lineint2.asd  @ AskedForShutdown2InputCellCountxCMATLABFig16ColorCMATLABFigEmbedCMATLABFigHeightCMATLABFigUnitsCMATLABFigWidtho MATLABFmtCMATLABFmtStyleCMATLABStopOnErrorCShowCellMarkersx0ShowRecalcMarkersCno27YESNO3.5Inches4ShortLooseYES11@I@UnknownGzTimes New Roman5Symbol3& zArialAMath1Symbol3@MS Minch-3 fg?5 zCourier New"CV haDTEfz 6!V20dZm2QV6C:\Program Files\Microsoft Office\Templates\m-book.dotThe MATLAB Notebook v1.5.2!Template for The MATLAB Notebook Dapartment of MathematicsJonathan M. Rosenberg