ࡱ> vxup#` bbjbj #nS%D!D!D!D!`@`@`@t@8جt@28Lԯԯ ,2.2.2.2.2.2.2$4hM7DR2`@R>R2D!D!ԯ 2Dg2D!vԯL`@ ,2,2*w7`@/ C*->1}202Z-~:H:|/:`@/R2R20^2t@t@t@KxD t@t@t@xt@t@t@D!D!D!D!D!D! Topic L. Trigonometry, Part I. Tangent Ratio in Right Triangles We can solve many applications problems using proportionality in similar triangles. Right triangles occur in many situations and the results about proportional right triangles have been systematized into a mathematical subject called trigonometry. Objectives: Convert angle measurements from degrees-minutes-seconds to decimal degrees. Use the vocabulary of angles and triangles: acute, right, obtuse, and flat angles; vertices and sides of triangles, acute, right, and obtuse triangles. Use the fact that the sum of the angles in a flat triangle is 180(. Use proportionality to find sides in similar triangles. Use the vocabulary of opposite side, adjacent side, and hypotenuse in right triangles. Find the tangent ratio of either of the smaller angles in a right triangle when the lengths of the sides are given. Use the tangent function on a calculator to find the tangent of either of the smaller angles of a right triangle. Use the arctangent function on a calculator to find an angle when given the tangent of the angle. Section 1. ANGLE MEASUREMENT In applied trigonometry, we measure angles in degrees. When we want to measure more accurately than to the nearest degree, we can either use decimal degrees, such as 38.26( or degrees-minutes-seconds, such as 38( 15 36. In this course, all answers should be reported in decimal degrees. However, angles in problems may be given with degrees in decimal degrees or in degrees-minutes-seconds. Thus you must learn to convert. There are 60 minutes in a degree and 60 seconds in a minute. When converting an angle measurement to use in an applied problem, if there is a long decimal part, you may round to three or four decimal places. Example 1: Convert 61( 27 to decimal degrees. Solution:  EMBED Equation.DSMT4  Example 2: Convert 82( 10 to decimal degrees. Solution:  EMBED Equation.DSMT4  Example 3: A very small angle is measured as 2735. Convert to decimal minutes. Solution: Notice that since there are 60 seconds in a minute, this conversion works in the same way as that of the previous examples.  EMBED Equation.DSMT4  Example 4: Convert 38( 15 37 to decimal degrees. Solution: It is easiest to work this in two steps. First convert the seconds to minutes:  EMBED Equation.DSMT4 . So we have 38( 15.6167 Then convert the minutes to degrees:  EMBED Equation.DSMT4  Section 2: REVIEW OF TRIANGLES Many mathematical measurements of size, distance, and direction are based on triangles, which are formed by the straight lines joining three points. Each of the three corners formed by the lines is called an angle of the triangle, and the lines between the corners are called sides of the triangle. The point where the lines forming the corner of an angle join is called a vertex (the plural of this originally-Latin word is vertices). It is customary to use capital letters (such as A, B, and C) to label the vertices of a triangle. The sides are usually referred to by either the lower-case letter matching the opposite angle (e.g., side a opposite the angle at vertex A) or by writing the labels of two vertices at each end with a line above them (e.g., the line  EMBED Equation.DSMT4 ). Standard triangle components: A, B, and C are vertices a is the side opposite A In this course, the sizes of angles are always measured in degrees. Degrees are defined so that turning 360 degrees puts you back facing the direction you started with. A right or left turn on a rectangular street system is a turn of 90 degrees, also written as 90(. Angles smaller than 90( are called acute angles, and angles between 90( and 180( are called obtuse angles. An angle of 180( would have its two sides pointing in exactly opposite direction, and is called a flat angle. An angle between 180( and 360( is called a reflex angle. Example 5: Are any of the angles below obtuse? Are any close to being right angles? (Use your protractor to check yourself.)  Answer: In Triangle 1, A1 is obtuse. In triangle 4, A4 is a right angle. No other angle in these triangles is either obtuse or right. Section 3. SUM OF ANGLES IN A FLAT TRIANGLE IS 180( Each angle inside a triangle is greater than 0( and less than 180(. On flat surfaces, the three angles inside a triangle always add up to exactly 180(. This useful fact permits the size of the third angle to be easily calculated when the sizes of the other two are known. Strictly speaking, the surface of the earth is not a flat surface, but it is rounded. So if we are thinking of triangles that spread over a significant portion of the earths surface, we should be hesitant to apply this rule and should instead investigate spherical geometry and spherical trigonometry. In this course we will only consider triangles on the surface of the earth small enough to assume the surface is flat. (Well use distances under 500 miles.) Section 4. SIMILAR TRIANGLES Nested figures like those to the right (or the nesting boxes measured on the first class day) show that triangles of different sizes can have the same shape. Figures with the same shape are called similar figures, and have these two important properties: [a] The corresponding angles are equal. [b] Lengths of corresponding sides have the same ratio. These properties can be used to solve problems in which figures are known to be similar and two lengths are known for one figure, but only one corresponding length for the other figure. Example 6: If a 25-inch shadow is made by a vertical post extending 35 inches above the ground at the same time that an 15-foot shadow is made by a vertical flagpole, how tall is the flagpole? You should start all problems of this kind by drawing a diagram. Since both the post and the flagpole are vertical, the angles at their base are the same. Further, the sun is at the same angle for both objects, since they are measured at the same time in nearby places. Since two of the angles are the same, the triangles are similar, so the ratios of corresponding sides are equal. Let H be the height of the flagpole.  Example 7: Triangles with the same angle sizes are still similar even if they are rotated or flipped over. Which one of these triangles is not similar to the others? Answer to Example 2: Triangle B is not similar to the other three triangles. Section 5. RIGHT TRIANGLES When two of the sides of a triangle are perpendicular to each other (such as when one is exactly vertical and the other is exactly horizontal, or when one meets the other like the sides of this sheet of paper), the triangle is called a right triangle, and that angle is called a right angle. Right triangles are especially important in both geometric theory and in practical measurement applications. Each right angle has a size of exactly 90(, one-fourth of the full-turn 360(. Because the right angle can be formed by sides that have any desired length, right triangles come in many shapes, sizes, and orientations. Here are some examples:  Since 180( is the sum of the size of all three angles of any triangle, the two acute angles of any right triangle add up to exactly 90(. Such angles are called complements of each other.  Names of the parts of a right triangle: Example 8: For each of the triangles shown below, choose the larger of the acute angles to label as A, then mark the three sides of the triangle with HYP, ADJ A, and OPP A for the hypotenuse and the sides that are respectively adjacent to and opposite to your chosen A.  Answers:    Section 6: THE TANGENT TRIGONOMETRIC RATIO Any two right triangles that have the same acute angle (for example, 52() are similar to each other. This is because their other angles must be 90( (because they are right triangles) and 38( (because that is what is left of the 180( when 52( and 90( are subtracted). This similarity means that the ratio of corresponding sides is the same. The ratios of the sides of right triangles (called trigonometric ratios) are so widely used that they are given individual names for the different combinations. One of the most important ones is the tangent ratio (abbreviated as tan), which is defined in terms of one of the angles of the right triangle and the related side lengths as:  EMBED Equation.DSMT4  Thus the tangent of 52( is close to 1.28 because all triangles of that shape have an intermediate side that is 1.28 times the length of the shortest side. Example 9: Compute a tangent ratio when the two needed sides are known. In each triangle, compute the tangent ratio for the angle labeled A: Solutions: Case 1:  EMBED Equation.DSMT4  Case 2:  EMBED Equation.DSMT4  Case 3:  EMBED Equation.DSMT4  Section 7: TRIG RATIOS FROM A CALCULATOR OR SPREADSHEET In many cases, what is known is the length of only one side, plus the size of the angle involved. In these cases, use a scientific calculator to compute trigonometric ratios such as tangent from the angle size. This is very easy once you figure out just how the trig functions work on your particular calculator, but there are a few pitfalls: Degree mode: Degrees are not the only way to measure angles, although they are by far the most common measurement in practical work and are all we will use in this course. However, calculators can also work with two other angular measurements: radians (each radian is about 57.3 degrees) and grads (100 grads is exactly 90 degrees). How the calculator interprets angle-size values is determined by a mode setting controlled by the DRG button that switches the calculator between degree, radian, and grad modes, marking which mode it is in by displaying a small DEG, RAD, or GRAD (or perhaps just a D, R, or G) at the top of the display. It is essential that you make sure you are in the right mode, because calculators often start up in radian mode, meaning that they would interpret an angle size of 10 as about 573( instead of 10(. Function first, or angle first? All scientific calculators will have keys such as tan (for tangent) that compute the trig ratios, but the order of entry is different for different kinds of calculator. For some types, you need to enter the angle size before you press the tan key; on other types, you first press tan, then enter the angle size, then press the equal-sign key to get the answer. You will need to figure out how this part of your calculator works if you dont already know. A useful trick to check how a calculator works: For a right triangle with an angle of 45(, the tangent ratio is equal to exactly one because the two acute angles are equal (both 45(), resulting in two equal sides. So when you think that you know what to do, try computing the tangent of 45(. If you get an exact 1, you are in degree mode and used the correct sequence. Otherwise, something is wrong. Spreadsheet: Typically spreadsheets use radians rather than degrees by default, so the formula you type in must include the conversion factor. =TAN(PI()*A/180) On some, including Excel, there is a shorter form: = TAN(RADIANS(A)) Example 10. Use your calculator to find the following and then use your spreadsheet program to find them as well. Give your results correct to four decimal places. a.  EMBED Equation.DSMT4  b.  EMBED Equation.DSMT4  c.  EMBED Equation.DSMT4  Answers: a. 0.2126 b. 2.9042 c. 0.3882 Section 8: COMPUTING ANGLES FROM RATIOS THE ARCTANGENT FUNCTION Since all triangles with the same tangent ratio (and therefore the same shape) will have the same size for corresponding angles, it should be possible to use the tangent ratio to compute the angle size that produced it. Using a function backwards in this way is called an inverse function. The inverse function for the tangent ratio is the arctangent function, which returns an angle-size value when you give it the corresponding tangent ratio. In written work, inverse trigonometric functions are designated either by putting a superscript of 1 after the function abbreviation and enclosing the ratio value in parentheses, by adding the prefix arc- to the function name or abbreviation, or by just putting the word inverse before the function name. Thus tan-1(1.5), arctan(1.5), and the inverse tangent of 1.5 all mean the same thing. This course will most often use the arctan form of designation, but you should be ready to understand any of these forms if they are used. To compute the size of an angle from one of its trigonometric ratios, you will have to press an extra key to tell the calculator that you wish to use an inverse trigonometric function, which converts in reverse from a ratio into an angle-size value. Depending on the brand of calculator, this key may be labeled INV, SHIFT, or 2ND, and will usually be located among the keys at the top of the keypad on the left side. In the instructions below, this will be called the INV key, but use whatever is right for your calculator. You will probably need to press this inverse key just before you press the tan key. Test the sequence that you think works on your calculator by finding the arctangent of 1. The answer should be exactly 45, as explained above. If your answer is not 45, then either the wrong inverse-function key or sequence was used or the calculator is not in degree mode try again until you get the correct value. Example 11 Compute the angles that correspond to these tangent ratios: a. 0.125 b. 0.5 c. 0.84 d. 3.6 e. 100 Solutions: a.  EMBED Equation.DSMT4  b.  EMBED Equation.DSMT4  c.  EMBED Equation.DSMT4  d.  EMBED Equation.DSMT4  e.  EMBED Equation.DSMT4  Example 12 For each of the triangles in Example 9 at the end of Section 6, use the inverse tangent function to find the angle A from the tangent ratio. Solutions: Case 1.  EMBED Equation.DSMT4  Case 2.  EMBED Equation.DSMT4  Case 3.  EMBED Equation.DSMT4  Exercises: Part I. Convert 61( 27 to decimal degrees. Convert 82( 10 to decimal degrees. A very small angle is measured as 2735. Convert to decimal minutes. Convert 38( 15 37 to decimal degrees. In Section 2, Example 5, by sight, determine which angles are obtuse or right. Check your results using a protractor. If a 25-inch shadow is cast by a vertical post that extends 35 inches above the ground, how tall is a flagpole which casts an 18-foot shadow? In section 4, example 7, which triangle is not similar to the other three triangles? In section 5, example 8, for each of the triangles shown, choose the larger of the acute angles to label as A, then mark the three sides of the triangle with HYP, ADJ A, and OPP A for the hypotenuse and the sides that are respectively adjacent to and opposite to your chosen A. In section 6, example 9, compute the tangent ratio for the angle labeled A. Use your calculator to find the following and then use your spreadsheet program to find them as well. Give your results correct to four decimal places. a.  EMBED Equation.DSMT4  b.  EMBED Equation.DSMT4  c.  EMBED Equation.DSMT4  Compute the angles that correspond to these tangent ratios: a. 0.125 b. 0.5 c. 0.84 d. 3.6 e. 100 Use the inverse tangent function to find the angles Section 6, example 9. Part II. Convert 47( 22 to decimal degrees. [Answer: 47.3667(] Convert 54( 35 to decimal degrees. Convert 13( 47 18 to decimal degrees. [Answer: 13.7883(] Convert 57( 34 21 to decimal degrees. For the following eight angles: (1) 72( (2) 127( (3) 83( (4) 15.4( (5) 178( (6) 97( (7) 180( (8) 90( a. Which are acute angles? [Answer: 72(, 83(, and 15.4( are acute] b. Which are obtuse angles? [Answer: 127(, 178(, and 97( are obtuse] c. Which are the flat angles? [Answer: 180( is flat] d. Which are right angles? [Answer: 90( is right] For these two similar triangles, whose sides are labeled with length in miles,  a. Set up an equation that has x in a denominator, then solve for it. b. Set up an equation that has x in a numerator, then solve for it. c. Did you get the same result for a. and b.? d. Find the value of y. Check your results by finding the ratio of x to y and comparing it to the ratio of 8 to 12. Draw a right triangle with the two sides which make the right angle  EMBED Equation.DSMT4  inches and  EMBED Equation.DSMT4  inches. Label the angles opposite the sides with A and B respectively. Measure the length of the hypotenuse. [Answer: The measured hypotenuse should be close to 5 inches.] Consider the Pythagorean Theorem. Is your measured value for the hypotenuse consistent with this being a right triangle? [Answer: Since 52 = 25 and 32 + 42 = 9 + 16 = 25, a 5-inch side satisfies the Pythagorean Theorem.] Measure angles A and B with your protractor. [Answer: To the nearest degree, angles A and B should be 37( and 53(, respectively.] What would you have expected to be the sum even before measuring these angles? Why? [Answer: 90( is expected for the sum, since all three should sum to 180( and the right angle is 90(.] Find the sum of angles A and B. Does it agree with what you expected? If not, why do you suppose it didnt? [Answer: The sum of the measured angles should be close to 90(.] Find the tangent of A and use that to find the measurement of angle A. [Answer: 36.86989765( (Notice that, since the side lengths are given, they are exact, so the tangent is very accurate, so the computed angle is very accurate.)] Find the tangent of B and use that to find the measurement of angle B. [Answer: 53.13010235( (Notice that, since the side lengths are given, they are exact, so the tangent is very accurate, so the computed angle is very accurate.)] Do your computed values agree with your measured values for these angles? If not, do you think your computed values or your measured values are more accurate? Why? (Consider which numbers here are exact and which are approximate.) [Answer: The computed values are more accurate, since the measured values will reflect any measurement or drawing errors.] 20. Measurements a. On a piece of graph paper, draw a right triangle like the diagram to the right of this problem and label the angles A and B. Make a reasonable scale for it so that the length of the vertical side is twice the length of the smaller side. b. On the same graph, mark half the length of the vertical side and of the horizontal side and draw the resulting smaller right triangle. c. Measure the angle A from the original right triangle using a protractor. Measure the corresponding angle from the smaller right triangle. Do they appear to be the same? d. Measure the angle B from the original right triangle using a protractor. Measure the corresponding angle from the smaller right triangle. Do they appear to be the same? e. Is the smaller triangle similar to the larger triangle? How can you tell? f. In the original triangle, write the ratio that gives tan(A), then simplify it. g. In the smaller triangle, write the ratio that gives the tangent of the angle corresponding to A, then simplify it. h. Repeat the steps in f. for angle B. i. Repeat the steps in g. for angle B. j. Use the ratio you computed in part f. and the inverse tangent keys on your calculator to find the size of the angle A in degrees. Does it agree with what you measured with your protractor? k. Use the ratio you computed in part h, and the inverse tangent keys on your calculator to find the size of the angle B in degrees. Does it agree with what you measured with your protractor? l. Add the angle-size values for A and B that you computed in the previous two sections. How close is the sum to 90 degrees? 21. Find the following, to four decimal places: a. tan 37( [Answer: 0.7536] b. tan 72( [Answer: 3.0777] c. tan 18( [Answer: 0.3249] d. tan 0( [Answer: 0.0000] e. tan 30( [Answer: 0.5774] f. tan 60( [Answer: 1.7321] g. tan 47( 22 [Answer: 1.0862] h. tan 13( 47 18 [Answer: 0.2454] 22. How can you check your work on the parts of the previous problem using the inverse tangent key of your calculator? Check parts a. f. 23. Find the following in degrees, to two decimal places: a. arctangent of 2.41 [Answer: 67.46(] b. inverse tangent of 0.695 [Answer: 34.80(] c. tan-1(1.5) [Answer: 56.31(] d. angle whose tangent is 0.12 [Answer: 6.84(] 24. How can you check your work on all the parts of the previous problem using the tangent key of your calculator? Check them. Record as your answer to this question one of these: I corrected some parts. or They were all correct. 25. Think about your answer to problem 20, and then use logic to determine what angle has a tangent ratio of exactly 1. [Answer: 45(, because a tangent of 1 means the sides are equal, which means that the two angles are equal and add to 90(.]     Mathematics for Measurement by Mary Parker and Hunter Ellinger L. page  PAGE 2 of  NUMPAGES 11 Revised 7/11/07 Topic L. Trigonometry, Part I. Tangent Ratio in Right Triangles Mathematics for Measurement by Mary Parker and Hunter Ellinger Topic L. Trigonometry, Part I. Tangent Ratio in Right Triangles L. page  PAGE 1 of  NUMPAGES 11 side opposite to A Hypotenuse (side opposite the right angle) angle A (or some other chosen symbol) Right Angle side adjacent to A Case 1 Case 2 Case 3 ADJ A ADJ A 17 in 4.5 in A 32 meters A 50 meters Triangle 3 Triangle 2 Triangle 1 A B C D 109 miles 45 miles Tangent ratio for a larger triangle of the same shape A=52( A=52(  EMBED Equation.DSMT4  A  EMBED Equation.DSMT4  25 inches 15 feet Tangent ratio for a small triangle  EMBED Equation.DSMT4  35 inches H Similar triangles have the same shapes but can be different sizes Two perpendicular lines make four right angles where they cross C4 B2 C2 B1 C1 B3 C3 A1 A2 A3 A4 B4 Triangle 2 Triangle 4 Triangle 1 C This angle is referred to by the vertex name A The side a can also be referred to as  EMBED Equation.DSMT4  a B Triangle 3 A B A 16 32 5 12 8 11 y x OPP A OPP A ADJ A OPP A A A A Triangle 3 Triangle 2 Triangle 1  ABCD? r s  y z S _ q    ! # $ ; G H I S m n !#$Aa   %&1ϽϽ϶ h@5h@h`K5h@h{dh h H*aJ h H*aJh h`K h`K:\ h@:\hUf jh}Lh}LCJaJh`h`5:\h`h`5:\ h I:\ h5hh I5 h_S52BC? @ L 1 u  z Q S q r  ! $ R $da$gdJ]0 $da$gd`Kdgd`K$ & Fda$gd`$d`a$gd`$gd`$x$a$gdn[]bR S "#&MN~ j xXx`X$x$gd`K $da$gd`K$d`a$gd 12IJKLNUWdef^ȄxgZxȄjh@h-EHU!jıE h-CJOJQJUVjh{dUhRh{dh@h{d5 h-5jh@hWEHU!j\I hWCJOJQJUV h H*aJ jh}Lh}LCJaJ h@5h@h 5jh@hWEHU!jI hWCJOJQJUVh jh U"45LMNO_`aij#DJx茅~wsisisisisbsbs h 6]h 56\]h  h :\ h@:\ h`K:\ h`Kh j5h@hWEHU!jI hWCJOJQJUVh h@H*aJ jh}Lh}LCJaJj h@h-EHU!jıE h-CJOJQJUVjh@Uh@h{d h{dH*aJ&QRpq+,BCQRklx#-0DEMN[ghijqhJ]0h`K5] hH65]h8h86 jh8h8 jh jh CJUmHnHujh EHU!jLA h CJOJQJUVjh Uh  h 6]7 (DEFGiG Xx^XgdWxgd`KgdWX`XXx`XxqrsuGOPQ"1Z`awsosososhRhr jh 6] jh hJ]0h`K5 jhJ]0hJ]05hJ]0hJ]05 hJ]05h`Kh`K5 h@5hH6h`Kh@h  h 6]$jh 6CJU]mHnHuhJ]0h`K]hJ]0h ] h5]hJ]0h 5]'G!K L O P Q R S T  gd}xxx]x^x` xxx]x^x xx]x^x x] $xXx`XhgdWX^XgdWMWab# ' ( ) * 0 G J L N [ ] ^ f ݓݏslXPhJ]0hJ]05'jhJ]0h 5CJUmHnHu hH65]jh CJUmHnHuh3zhqhq6hqh 56\] h3z]hJ]0h ] h9] h5]hJ]0hJ]05]*jhJ]0h 5CJU]mHnHu h 6]h  h :\ hr:\ jh<]:U\mHnHuT U V W X Y [ \ ] !!! !W!X!u!V###### Xx]`X pXx]p`XgdW$x0x^`0gdL0 0x^`0f g !!! !!!!'!)!V!W!X!d!e!u!a"o"""1#2#S#T### $ $$$$$$ȸȸȱ{{k{{d h 6]jhWCJUmHnHu jh h 56\]h  h :\$jh :CJU\mHnHu hJ]0:\ h>)+:\hH65:\hL05:\hJ]0hJ]05:\ hWhWhHF$5:\ hL0hH6hJ]0h 5\ hJ]0h  h5##$$$$$$$$$$$$$$$$$$&&& & & & & &&x  !xxgdW$$$$$$$$$$%%[%\%%%%%%%&& & &&&&&&&& &!&/&0&4&;&P&&쥞}llbh 56\] jhL65U\mHnHu jh$$5U\mHnHuhh\hhJ]0\ hJ]05\ h 5\h9hJ]0h 5] h5] hJ]05] h 6]h 5>*\h] 4h aJh] 4h 5\aJh jh CJUmHnHu&&&&&& &"&#&P&'()))))C*D*E*F*G*H*I*FgdJ]0 x]  x] ^ x]  ! x] hgd$$x&&&&''9':'B'C'J'K'''p(w((((()))),)-)))))))*B*C*H*I*J*L*U*W*Ʋ|qhJ]0hJ]05:\h>)+5:\ hJ]0:\ h :\hJ]0h ]h hJ]0h  h5hJ]0hJ]05'jhJ]0h 5CJUmHnHu hJ]0]jth EHU!jA h CJOJQJUVjh U h 6]h  jh (I*J*K*L***+\,/1#33 44'5d5e55i79;8====U>gdxgd aXx`Xgd/x$W*a*b*y*z*{*|*****************ɵs_TMF? h :\ hJ]0:\ h/:\hJ]0hJ]05:\&jh Ih I5:CJEHU\-jtE h Ih I5:CJOJQJUV&j,h IhJ]05:CJEHU\-jtE h IhJ]05:CJOJQJUV&jh IhJ]05:CJEHU\-jJtE h IhJ]05:CJOJQJUV"jh IhJ]05:CJU\h IhJ]05:CJ\*++],i,S-[---......////////000 000001111D2E222#3$3/3T3h333334 4 4444$444ϹϹh6" h6"h h5h6"h5hh$$hHF$OJQJ^Jh<]OJQJ^Jh chHF$hHF$5hHF$ jh  h CJ h 6] h 5\h  h :\ hHF$:\8444444444445 5 5#5$5%5&5'5c5d5e5q5555667 7286888ɸɚɆxqgqc\c\cqcq h 6]h h 56\] h 5\ hJ]05\ h/5\ h/h Ij'hh$$EHU!jI h$$CJOJQJUVj$hh$$EHU!jI h$$CJOJQJUVh6"jh6"Uj!hh$$EHU!jI h$$CJOJQJUVhjhU!88888889%9::::::h;k;;;8=A=B=C============>> > >>>>>)>ļuj*h>)+h$$EHU]!jI h$$CJOJQJUVjh>)+U] h>)+] h Ih h a h a]h Ih ]h Ih I] h5]h Ih I5] h 6] h CJh 56\]h  h 5\h 5H*\*)>*>+>,>.>/>0>2>3>4>K>L>M>N>Q>T>U>W>X>Y>p>q>r>s>w>y>z>{>>>>>>ЧɔЃtcTj8h>)+h$$EHU]!j.I h$$CJOJQJUVj4h>)+h$$EHU]!jI h$$CJOJQJUVh>)+jd1h>)+h$$EHU]!jI h$$CJOJQJUVh Ih ] h a]h h Ih  h>)+]jh>)+U]j.h>)+h$$EHU]!jI h$$CJOJQJUV U>>>4???????@'@n@@ AAACRC]DD6E7E@Egd/ & Fgd/$ & Fda$gd/gd>>>>> ???I?J?a?b?c?d?r?s??????????????????享䚋ufbZVRh9h>h>h>5h jMBhh)q}EHU]!jI h)q}CJOJQJUV h)q}]j>hh)q}EHU]!jI h)q}CJOJQJUVjj;hh)q}EHU]!jI h)q}CJOJQJUVjhU]h h6] h ] h]hh5] h5] h ] ??? @@@&@'@x@y@z@@@AAAB B B"B(B\B]BBBBBBBCCCC1CQCCCDDDDDD3D4D5D6DADBDYDļīļčļjHhh$$EHU!jOI h$$CJOJQJUVjEhh$$EHU!jDI h$$CJOJQJUVjh aUh ah hJ]0h6l h96]h6lh)q} hah9h9 h9H*aJ jh}Lh}LaJ1YDZD[D\D]DDDDDD E5E6E?E@EHEJEKELEcEfEmEuEvEwEEEEEEEEEEEEEEEEE|s|h|Օ|s|h| jhHCJaJhH6CJaJhHCJaJ h9H* jh}Lh}LaJh9 h9] h}Lh9h>h Ih)q}]h)q}h h)q}h] h Ih h a]h Ih]h ajh aUjKhh$$EHU!jI h$$CJOJQJUV(@ExEEEF!FFFGIG~GGGGGGGGGGH XX^X`Xgd/ !gd9  !gd9gd9 & F !xgd}Lgd/ Xx`Xgd/ & F5$7$8$9DH$gd/EEEF(F)F5F6FAFBFOFPF\F]FhFiFuFvFFFFFFFFFFFFFFFFFFFFGGG0G3G:G>G?GHGeGhGoGrGsG}G~GGGGGGGH$H@HAHeHjHmH h96]hajh9CJUmHnHuh9 jhHCJaJhH6CJaJhHCJaJ jh/h/h h H* jh}Lh aJAHeHHH&I'II`J@KKL1MN OpPPuQRR@ x]@ ^`gd9xgd9 & F<gdH & F<gd/ & Fgd/gd/X^Xgd<]X^Xgd/mHHHHHHHHHH%I'IkIlIIIIIIIIIIIJ"J)J_JJJJJJJJJJ?KOKPKUKVKlKoKvKKKK̿x jhHCJaJhM?h96hHCJH*aJhH6CJaJhHCJaJjyQhrh9EHUj5ϨE h9CJUVjNhrh9EHUjϨE h9CJUVjh9Uh/h<]h<]6 h96]hah9h<]/KKKLL#L&L'LbLcL}L~LLLLLLLLL-M.M0MEMFMtMvMyM|MMMMN1N2NaNbNfNiNpN|N}N OOOOoPpPrPPPPPPPPPQQuQvQxQ¾雺jh<]CJUmHnHu h96]h h<]hah/hHhM?h96h-h956h-h96hH6CJaJh9hHCJaJ jhHCJaJ=xQRRRRRRRR\S^SSSSSST_T`TtTwTTTTTTTTTTTTTx^`>gd}L0x^`0gdHxgd9x^`gd9 x] ^`gd}LWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXXXXXXXXXYYYYY!Y$Y+Y1Y2Y3Y4Y6Y;Y=YBYEYLYRYSYTYUYWYtYwY~YYYYYYY¾ jhHCJaJh ah/ h9H* jh}L h9]hH jh9h9hhvhHCJaJhH6CJaJFYY]Z^ZxZzZZZZZZZZi[j[l[n[o[q[r[t[u[w[x[z[[[[[[[[[[[[[[[[[ȾshsshZFh Y0JCJjhZFh Y0JCJUh_S0JCJmHnHuhs h Y0JCJjhs h Y0JCJUhs h YCJ h_SCJ h YCJhh Y6CJh2jh2U jhHCJaJhH6CJaJhHCJaJh/h}Lh9h a(xZm[n[p[q[s[t[v[w[y[z[[\\\\\]]]]]$y&`#$+Da$gd IgdZFgd Y$a$gdP6 $a$gd>x^`>gd}L[[[[[[\\ \\\L\U\\\\\\\\\\6]A]D]]]`]c]e]g]l]m]s]t]u]v]z]{]¾ƮƨrcjhZFhZF0JCJUh_S0JCJmHnHuhs hZF0JCJjhs hZF0JCJU hwVCJhs hZFCJ h_SCJ hZFCJhhZF6CJhG(h Y h YCJ hCJ hCJh0JCJh);0JCJhV0JCJh_S0JCJh0JCJ%{]]]]]]]]]]]]]]]]]]]]] ^^^^A^G^H^N^T^Z^[^b^c^e^f^p^q^s^t^~^^^^^^^^^^^^^^^^ýõñìââÜìâÓÓÌÌÌÌÌÌÌÌÌÌÌÌÌ h 6]hhCJ h CJh 56\] h >*h2jh U h 0Jh h CJOJQJ^J hZFCJh_S0JCJmHnHujhZFhZF0JCJUhZFhZF0JCJ7]]]]]]]]]]]]]^^^^^^^^^ ^'^(^/^0^ !0$a$4$a$$a$1$0^7^8^9^:^;^<^=^>^?^@^A^G^H^N^O^P^Q^R^S^T^Z^[^b^c^e^f^p^q^gd !q^s^t^~^^^^^^^^^^^^^^^^^^^^^^^^^^$a$^^^^^^^_____ _ _ _ _#_$_%_&_(_*_+_,_C_D_E_F_H_R_S_[_\_____________``V`W`X`[`ùj[h3zh3zEHU!j{F h3zCJOJQJUVjWh EHU!jA h CJOJQJUVjXTh EHU!jA h CJOJQJUVjh U jh  jh CJh 6CJ]h  h 6]2^__ _ _'_(_*_+_G_H_R_S_[_\____________```$a$`W`X`[`\`_```c`d`g`h`k`l`o`p`s`t`w`x`{`|`````````$a$[`\`_```c`d`g`h`k`l`o`p`s`t`w`x`{`|````````````````````aaaaa a!a"a$a%a'a(a3a4a6aaaaaaaaڷ h96]h9 h CJ#j`h CJEHOJQJU^J%jLA h CJOJQJUV^Jjh CJOJQJU^Jh CJOJQJ^Jh 6CJOJQJ]^J h 6]h :`````````!a"a$a%a'a(a3a4a6a7a8a9a:a;aa?a@aAaF$a$AaBaCaDaEaFaGaHaIaJaKaLaMaNaOaPaQaRaSaTaUaVaWaXaYaZa[a\a]a^a^a_a`aaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayaza{a{a|a}a~aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagd9Fgd9aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbb hJ]06]hL6hL66hL6hL6CJhhL6CJhL6hCJh9h  h96]#aaaaaaaaaaaaaaaaaaaaaaaaaa$a$gdJ]0gdL6gdFgd9gd9abbbbbbbbbbbbbb$a$gdJ]0gdJ]0= 0&P1h:pRBP/ =!P"#$% `!N[A/39 # (t6 &xڵWkY?L2MfaKX]dw)P0a`؊Rm&K-ZW"T|miiYl^?AdeV4T3w|$SImɜ9ssϽs@.Y WJkjߑ# S芟cک@b0T < VWƳO&̺a t3>EkP6mS=KmSWՠ}ڲpߕn[ < lQؒ? cL@ȻA8ЦF)~X_Zaۥ[ sl2a# 5=8E@XcHY=x}053!}0Svp~&]lD4W@0tgU l<grF1sPI *QEaKlDO*-U;~`z;*\#gUse{ћí2ufLQ, =1'_'}qTt=?ƌ, ڞ+skdv k`͆6u9G5|!;J֝9|0V##n1^m3=nFuߧbL.^.;\U>U}v5⪑wRB$]z>v/~V95";^ܓbOz򴬰m!J,gKхYc"{(AR?=5=żGn 33ɉ!xs(EPKվ0Me=U;IM9vfJtf,? ƃPc%$v7$S@K'i~}0Bgbo{yv{bEdF``'e5_,yay_] w6"x{'ժiBifyދNk.=MaUEUWMw%D||&f@|x^i`}prT6p] 17D2i'3"`!Ĉ(bl&1Jd5 ! xxxV=O@ݱA @)] R u *DP@t H()"AErxgz9qQt[̾7;GbL :34qY}K2d'՘̕]^,nQ|)c:f2\'`8Us%yp:Gmռ4Ƿ P>ӐOsyt~./uі[<ĺ;!˛%^%FObu.m8|7ر>?_/q}-Aa"pgsz_΄Gw"xva]u |ۏ7&7gYZaM< JFOTVod/TT6iF۽ $A~7F ̜p6)Wɝg˟O ^q!S,no/V@\8-u&8,LY;|9k-g-V* putfWW;f/Yzag\Oy Ek( DDza/ig~hQY( """"Dd H b  c $A? ?3"`?2;^X 9Ic=D`!;^X 9Ic=׬@ xxڥSoA3@AQj%RhH"1D^LUI4Rx@M޻c*23bX]tO'mT.#An,zL(iZ #Z^^? i[(-I~֍Ǹ]\Nz~`TmЌN?JuDd $ b  c $A? ?3"`?2j:dmI{p`!j:dmI{pxڥSMoQ=L (va(56RJ"DJ]!-])hI4]ո\]tEc\tm7]4:~ޙaPboxyswpʲT샇FS a#![B}'~H}6 tNj)I͕A`W(۫\u5Gp1LmHr%aMyCe dhܬ--k#~'b//u\(skxf0tX:#+ 7{P%xH*Î U3Hh*F?{i>mk3eW?2\=PYU*áfvTv2;=٩s1X1kFZ;>n: jwݶ,ݶ 4M-2nl(ӹ{z~~Ů_KzL0Q-0d>7O>l<8qިf Ic<;o͓+ogIqo* I2T]ٙ%խRݞt%lD./ `Zv ÐCui's[M VG'n<=0=(s^(MIŜoӊaNDd  b  c $A? ?3"`?2[SM:dۘtc`![SM:dۘt @PyxڵToQvJ×&jݚ(Z6JCBC #rC5zSċܓ'gxjE{ltqf? 4&y|~;c0 "l- 7gaGmAyQ;)Ck"fQWwJ `hxA8yf:wQ{-6F򮰶k|Y(+UZKuF ^~ǭ(_:mSQ)RC],?&!8cqEH~+X8PP4b!atx~og} `hɸ9c&b|8(Nsmim2S0$gȃ5op&6$2ܐtzM`&PtnwPQS&$nnXc O,-Uj;xM7xK`knaT=\rQz %{9X `pfNGch,!~6]ZwuӜ̚ڥLf L1_lެ(B]nQ {j|YON7j`vӪ&g̬Rм+e)= hY_(#ztL9uM 9L9SjUϢ$b([C!hty GĜў$.LK4'!9=bGmG}+X˚4cpD׾=3^h^ !QW%BiCRbكgxW/z4~Deo׏4,89cb|8 d \| V7!\ؒ1ˈrAԼUh n'^}?2!  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklnopqrstwz{|}~Root Entry F맓CyMData mLcWordDocument#ObjectPoolC맓C_1226233482 FCCOle CompObjiObjInfo  #$%&'*-./012589:=@ABCDEHKLMNORUVWXY\_`abehijknqrstwz{|} FMathType 5.0 Equation MathType EFEquation.DSMT49q+HDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  61++Equation Native d_1226233692 FCCOle  CompObj i 2760()  ==61.45 FMathType 5.0 Equation MathType EFEquation.DSMT49q+RDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APObjInfo Equation Native n_1169278088FCCOle G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  82++ 1060()  ==82.1667 FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObjiObjInfoEquation Native f_1169278160FCCJ XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  27'++ 3560()'==27.5833' FMathType 5.0 Equation MathTynOle CompObjiObjInfo!Equation Native "fpe EFEquation.DSMT49qJ XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  15'++ 3760()'==15.6167'_1226233734EFCCOle (CompObj)iObjInfo+ FMathType 5.0 Equation MathType EFEquation.DSMT49q+kDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  38++Equation Native ,_1106398381FCCOle 3CompObj 4i 15.616760()  ==38.2603 FMathType 4.0 Equation MathType EFEquation.DSMT49q%MU2GxDSMT4WinAllBasicCodePagesObjInfo!6Equation Native 7_1106436507$FCCOle ;Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A    BCw  FMathType 4.0 Equation MathType EFEquation.DSMT49qܔ%MU2GxDSMT4WinAllBasicCodePagesCompObj#%<iObjInfo&>Equation Native ?_1169126474)FCCTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan(A) a"  side opposite Aside adjacent A FMathType 5.0 Equation MathTyOle FCompObj(*GiObjInfo+IEquation Native JCpe EFEquation.DSMT49qO'4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tanA== 4.517==0.2647_1169126535'1.FCCOle PCompObj-/QiObjInfo0S FMathType 5.0 Equation MathType EFEquation.DSMT49qO'4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tanA== Equation Native TC_11691265773FCCOle ZCompObj24[i10945==2.4222 FMathType 5.0 Equation MathType EFEquation.DSMT49qO4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APObjInfo5]Equation Native ^4_12262343078FCCOle cG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tanA== 3250==0.64 FMathType 5.0 Equation MathType EFEquation.DSMT49q+DSMT5WinAllBasicCodePagesCompObj79diObjInfo:fEquation Native g _12262343216@=FCCTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan(12) FMathType 5.0 Equation MathType EFEquation.DSMT49qOle lCompObj<>miObjInfo?oEquation Native p +DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan(71) FMathType 5.0 Equation MathType EFEquation.DSMT49q_1226234337BFCCOle uCompObjACviObjInfoDx+DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan(2113') FMathType 5.0 Equation MathTyEquation Native y_1226234359;YGFCCOle ~CompObjFHipe EFEquation.DSMT49q+6DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan "-1 (0.125)==7.125ObjInfoIEquation Native R_1226234372LFCCOle  FMathType 5.0 Equation MathType EFEquation.DSMT49q+1DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan "-CompObjKMiObjInfoNEquation Native M_1226234385JTQFCC1 (0.5)==26.565 FMathType 5.0 Equation MathType EFEquation.DSMT49q+6DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle CompObjPRiObjInfoSEquation Native RG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan "-1 (0.84)==40.030 FMathType 5.0 Equation MathType EFEquation.DSMT49q_1226234399VFCCOle CompObjUWiObjInfoXEquation Native M_1226234414Oc[FCCOle CompObjZ\i+1DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan "-1 (3.6)==74.476 FMathType 5.0 Equation MathType EFEquation.DSMT49q+1DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan "-1 (100)==89.427ObjInfo]Equation Native M_1226611845w`FCCOle  FMathType 5.0 Equation MathType EFEquation.DSMT49q,S4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A==tan CompObj_aiObjInfobEquation Native o_1226611891rheFCC"-1 0.2647==14.82617 0 FMathType 5.0 Equation MathType EFEquation.DSMT49q,S4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle CompObjdfiObjInfogEquation Native oG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A==tan "-1 2.4222==67.56682 0 FMathType 5.0 Equation MathType EFEquation.DSMT49q_1226611948jFCCOle CompObjikiObjInfolEquation Native e_1226234436oFCCOle CompObjnpi,I4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A==tan "-1 0.64==32.61924 0 FMathType 5.0 Equation MathType EFEquation.DSMT49q+DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan(12)ObjInfoqEquation Native  _1226234447m^tFCCOle CompObjsuiObjInfovEquation Native  _1226234525yFCC FMathType 5.0 Equation MathType EFEquation.DSMT49q+DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan(71)Ole CompObjxziObjInfo{Equation Native ! FMathType 5.0 Equation MathType EFEquation.DSMT49q+DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan(21 13') FMathType 5.0 Equation MathType EFEquation.DSMT49q XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_1168690963~FCCOle CompObj}iObjInfoEquation Native _1168690997",FCCOle CompObji_A  a==3 FMathType 5.0 Equation MathType EFEquation.DSMT49q XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EObjInfoEquation Native _1106437016|FCCOle _A  b==4 FMathType 4.0 Equation MathType EFEquation.DSMT49q%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_ECompObjiObjInfoEquation Native _1106436994FCC     !"#$%&()*+,-./12346_A   Side opposite ASide adjacent A== 16.32 mm12.75 mmE"@1.28 FMathType 4.0 Equation MathType EFEquation.DSMT49qOle CompObjiObjInfoEquation Native  %MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   Side opposite ASide adjacent A== 45.19 mm35.31 mmE"@1.28 FMathType 5.0 Equation MathType EFEquation.DSMT49qZ XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_1188801659FCCOle CompObjiObjInfoEquation Native v1Table ;SummaryInformation('DocumentSummaryInformation800_A   H35inches== 15feet25inches25"H==15"35 25"H25== 15"3525 25inches"H25inches== 15feet"35inches25inchesH==21feetOh+'0vBv73~{'LB6ՖBZZ/8oS7.< Gg8 P/aolh&+D4CQd8w>'{=arИeɎ]X,Wkq;Oh7YD7d?߷-c_)Kd-AAu3 1ldGk$//4FݪGJ7"8n4* H?x|vI9i눛Dd T J  C A? "291W#'`!91W#'h hXJx]QKNA}F>f@`abItA Db@\NF#.z ʘYI"V&|UWU?dB;K*1E#D gr~D]U6+f1"rbQ~DBi.Otnvrѷ{#sAZo}?n7|'wi@^Re8wZ ^FEJ[Zs}aKR4 JN$žR5n{ XBF+;!ʟcpq$RuƆ4XFrY0 GdF6T }b+X!M){?]^ҟ"B7C]("\:Q^$&*nn.WCN!&oWDd c J  C A? "2rl >V ~,$H`!rl >V ~,$ d[xڝTMo@]'HvH{@BD D@PDRqLdE%vќE% G.C. !@"̬?$>Vٷy~ld} HAWƧөlK*r3Db8D,ԱGv}A0MpFlD]QV*߯=|zy Js8 * n}^XF?x:`̻y 'VpHi:NnK]iN p#R"M /&pY]3M0::/hIǟIb>kDXg+NUk llS5iKVo;V#Eb7Jr@?K284Ч"Ώ|  `El z. jt=M T8t lj"uV$%jp;*x {cIeW9 ^gZg {aDd lb  c $A? ?3"`?20ei>Dh~?H`!0ei>Dh~?~ MxڥSKkSQιmZP( *L4mV&.2UyHr%fe "B\IwٺpB\^E3RhOrfe 0EBN&iW^D~PƑ$ SQc(#F174w#BVVeݼW7H3$I67dK>+!O1 2tN{`/1!/-fS;-w4So;AQȦ(pvN gb0r:͡Wfֱ+a9!˷ДYfY؃;x%Af áի$@/kUx/k{PTQkk~n4Z FEkWgWxj0|x\K] ,,%bŢWZ3un Ţކ%ke m폶hbd_FBHLن} /랝u/{'/ݵs1LҷE:F ;ీg+)+[Ql?{`Dd lb   c $A ? ?3"`?2&䑪i7ygpH`!~&䑪i7yg~  &LxڥSkAf&i4_ vM=MEcꪁd%T"B<xͣzQ0x;o}ޛ'% 0?M)FJnN±s3,`("J!4a`_gFѰUzM,iP #qAяKFAnS-)r_7 Z$Vh[d{טs ؉RZ`HYA ;rGc 1OaM-4 u bU\nЄ/ВYVp=K%9ʽV0ڻzJw jཬb _JvFv+׺mf1 c'ϵkf7+Cm B?hrU/}=}|D]*h$K`/U7Y&}lHXAI*TSmGZ5X4I<ѩAfUM|~{,VXy4KlJ?&{ڔt_rO ]EѾq,(3^2%E3xH`!pZc">3d >xڥSkALȗBTCtI|`FI񘮺j Ɯ ""[{=zC OēzQ0IKv{7o= 2a<4r<;(-NxE % D11iF|vyyV vmp$̑'K:ܐ>1J`dn<_op Vk^O]鴌6>D3wypȄ\'`93po5._%1e9B2ZzuMg}*grjs,܂Sko_2Qup?fi j۫3bRODž_/r-KUs֛ͼk\/tnC?a\y ݆M}Zt~s KaqIر腺^v$cQv>kuBha^CGFubX/шe$(S']ܲHehxS[8tA2[ x;ֆr:NDd H@b   c $A ? ?3"`? 27^mv)PNL""H`! ^mv)PNL@" xuR=o`~1͗d'm$I6R?{"KP$B|T4SvA,a00fd`K+UN T+ݣ=ݽ@9%$R 9N})%d^]$Gr03!|$_QXGv_׆'PDd$E?/:x'|#-z R{Ƨ/$AuDd @b   c $A ? ?3"`? 2I3oߨ+%(H`!3oߨ+@0= xuRKQD&BPDsd`=k$+J!={!^'PRד`Yw[vxofvv>of@"t&h4EطeIfSOR\{LFcwV`uG IFnn'r-9m)Ld~iI*NP3b*E}ݝ7Vݾg)_%E7Jє BQ3 &,Oyf9LP@xEl=fqoݐ^!mU:wa_)ASDd Hhb  c $A? ?3"`? 2O*J2W y+H`!qO*J2W @ @|?xڝSKkSAfnbۛyTBi@i yB*v &ek !I$fU)Rp҅*Hw;ŭ-.snZCrg33#0( 4C$d߷PHe9sʤLݸ<$9&.9ZN֣b-/3O2,MBeoZ$qH{S.H`!s"ӹ>qH @_|AxڝSkAl|TB4|6 `$k CH̩H)^G=f.Hoz= 7MkC{qٙ{o{fJ3 DQvÑNY/3Aca"$H#'X(gs (I/ q~X7L.Jau^Aa6F0~Ԟ,BIMG#6e1|3' ƸJk6hj9ҩ:.>HP,cd"rUڇ_dfFa5ws1\{wi3i Ѫ gM`*b%,n֚Ffvjs'Vܲ:𩳵)N>>5zѮYmU /m~/ |(^ݪQu&vm֪X{n$K:clQ!1b@ը<|K]SLMRP„~k ~\EJ ,2>)sj%4Oa]C ٻgr!S/ݑ|qotVED_zz1{; ʊ@XDd Hhb  c $A? ?3"`?2,]ZQ4'~1H`!v,]ZQ4'@ @|DxڝSkAf6&e-$(Ed`$ꪁ$s%mac'xbqs 1d#ˀ{1_Nȝay3Z&,\_&􋇆v:xW,WfުW>H-<.MpE1~~|3ZPښَǴ =w 4V=M):ջ POJGٰ)S*'ߜbyC+޿t45ݽ n.W^$f^~&KN>~wQ6b~WWڻ/SY*aSlݘ9?9~lI1TWϙg繾cIJ|&0\*UY~?6 ƆلO2獲FR00B4F*u% VκbuWuBK7g-kV֤i\#-Y=gWS8=ĈSl2oHmO DpPc'Fe2.ΊphIP'fFf){>?$sg87T4[fbJb. x3ނo>.:]WVDd hb  c $A? ?3"`?2CUv( Zv|X8H`!tCUv( Zv @|BxڝSoAֲLRMۄԴ5!a D."4=⪫ah87$;cyq" ?˜ 0*̌)]; Gu@1l\X&;tpL7z?rMFwZo^ R(߆{c7N{E@J=d? BU_Q@ Lg3T&Φrh 030͈u'X͉cVNL쥝*N ǰDڨ}2!Qcu/H( n1.1Ƣ߯5O9gg$kE tQ[m߼Sի}YZeQvR{#dw)=4,Mj4sg>WadAV_jR2⍲11g.~R&C7!^cDԨ"F`2C@j@oc,Qܽ(9?z~\ЌsDd , @b  c $A? ?3"`?2+aߙM?H`!+aߙMx  _xڝT;QtPV $I"G R͚bYnaakAmXyBqιðxqchqdbI)v p.?JK$92&%igL֮] wTw @, \HǸo<>GRk%jMyVT{&Ҽd$k?qoV=f{e g:F՛JjMQz*l(%1alrA]mL9]|N+sbNNƒ*1L*1~zN];ꗋ"{6FRvL?دcxFT;?[[1X^+UҕZS7NFu(뷍$ΌqoUр&(^ O;?E0??//hDd ( @b  c $A? ?3"`?24 7 BH`!4 7 h@1 TxڝSA-8-L.'G !$DH* 0H7Q|ܑsdc.QBvfO!R~( tz I8FKNKko4h^Mb1&%PZҔY_ig mEJ-̐"j!a h{#4c[ dFeغiR$_#^SNꂍO4GGq,]&z:+ƜʩՊaJz XhkveCгŠ'vuzW".UNon'-luᳲ #o\0&{uB9+$oDcb}R Fz*%q]03*?&ʧOHq('( QEHiŒr`-qB,;I,t3EZ 2y#Rz Ez695sU2sDd H@b  c $A? ?3"`?24M)ЉO EH`!M)ЉO @" xuROPs\Hd'h@jHXH(q@(dX.eG`&qPUOO=0 @|T)Dt:>COv2I0:,t o\_Ev U\O2k"Euy_g7zXvoN#\-\]<5~$fwn¦(:N6׮%'P%nF]@y?l&\݄rtTA_&-ŊQ*-z-w1%MLMWjE? e s߭s9O-#yf3/^k"ki6-ӛI=X"`LZ3>Cԧ Guߵ0Dd [@b  c $A? ?3"`?2<( 7wNID/aHH`!( 7wNID/a`S xuROPs\HT$ (b$,"`A2mWi&*`@]c`5qB~ DeK࣒H!B$d+1zd'..!7>B/iDNS$^P0*}7>@6zQT_/ܚ֭˕S3Mz¦(:IMH<<>73"Np=UEw5J"ЫΏ.&]De7d|xe/gB,Za+Uyfn )ӄ&*?dū:Ĺ{djͬk5ų\Dd @b  c $A? ?3"`?2Oݷ{ '_+KH`!#ݷ{ '_`hn xuR=o`~ML4v Pqn%("]"F!SQŀ:40 320 vfDsl!!x{|恔O1h,(Fiҹط,2|JyL%U3>a2 [rԢ,O :iW^RdF-o޿b]_LvrITv֊z 0K@c| fT]N*I}^ξ~)hVsV]h\8nR}oO#Q^m\4;v{}>|ߜT܏OzM'a 4cne2,oڵo:vegua%wF^3n8L^f |#فߐ^Dd b  c $A? ?3"`?2-qvm<4(< N`!qvm<4(<`:HxڕRKQmI &CAt-AK!MC#D ^55 RzIKDOzv{*4܈D=x73B Ђ\a>(@$zBap7"~qq@(!Ig`|L g+)v^{bJ>!јؠ=1xOϤQ,WZS>}.m#,d ]@s? 7݋ ōtK$s:Z8~8NYeȑ@Ó+ ~"L\ 0kU*iQ.ej[^}5ЂjLU/{uPhouIDnvܱ&'?-?w#CHӵYg瀞gl-3fcr[zX 4(=cR.Dh?%\9S# ojQhzUL)|n_Γ|=M$Dd 0b  c $A? ?3"`?2)YX򜶛8ǽQ`!YX򜶛8ǽkHxڕRMKQ=MG $ A(؅ˀc2E#D\N&:@>J>TAq#.ܴJD$څg{]8} @ |QH}h*c-Ոi30'>kptWY}˸EjiF_U.HPzMs[[×w>/m# ҅6^07= G9JrdIwzE"~4#9ځ50N糅U SYʺ,{^=𚈅iA5pnX([0VEcv/l|Cpܯ'u u{fQۗң}bA✔ BI$VpZLݍ302\lyULY@q Dd J  C A? "2%⩼ıQ"3-";TH`!%⩼ıQ"3-"; "dxڝToA~3 @&jSW=4) Ě!Bӛt-]²=4^G/<AƓcY/ڈͲ 3̛o~y0Pqqf Ogh r0W0Gtq(ХM Qtx+ ݹ]i  ' qY :6%' y!Z6-^3mKorI?"0UM-$wށlx)l*p1ERG:8 ~yJM@75ej0jްםfǴ a{d{kQ~qDu9:^*ք0]YD]AYRe:6/uluHǏOsEl"ұYl8S'KݥIkV륋%-J]J.閂rULerRJGC)4}=?W\:`2 - j߲ٚkiQ6ؓysc3^*twCwrz?'Z:0o Snn{mTEU leq 0Dd b  c $A? ?3"`?2z[A/39V`Q`!N[A/39 # (t6 &xڵWkY?L2MfaKX]dw)P0a`؊Rm&K-ZW"T|miiYl^?AdeV4T3w|$SImɜ9ssϽs@.Y WJkjߑ# S芟cک@b0T < VWƳO&̺a t3>EkP6mS=KmSWՠ}ڲpߕn[ < lQؒ? cL@ȻA8ЦF)~X_Zaۥ[ sl2a# 5=8E@XcHY=x}053!}0Svp~&]lD4W@0tgU l<grF1sPI *QEaKlDO*-U;~`z;*\#gUse{ћí2ufLQ, =1'_'}qTt=?ƌ, ڞ+skdv k`͆6u9G5|!;J֝9|0V##n1^m3=nFuߧbL.^.;\U>U}v5⪑wRB$]z>v/~V95";^ܓbOz򴬰m!J,gKхYc"{(AR?=5=żGn 33ɉ!xs(EPKվ0Me=U;IM9vfJtf,? ƃPc%$v7$S@K'i~}0Bgbo{yv{bEdF``'e5_,yay_] w6"x{'ժiBifyދNk.=MaUEUWMw%D||&f@|x^i`}prT6p] 17D2i'3"Dd T J  C A? "291W#'``!91W#'h hXJx]QKNA}F>f@`abItA Db@\NF#.z ʘYI"V&|UWU?dB;K*1E#D gr~D]U6+f1"rbQ~DBi.Otnvrѷ{#sAZo}?n7|'wi@^Re8wZ ^FEJ[Zs}aKR4 JN$žR5n{ XBF+;!ʟcpq$RuƆ4XFrY0 GdF6T }b+X!M){?]^ҟ"B7C]("\:Q^$&*nn.WCN!&oClosing ?^88  Comment Text@CJ$L@$ DateARY"R  Document MapB-D M OJQJ^J<[@2< E-mail SignatureCl$@Bl Envelope Address!D@ &+D/^@ OJQJ^JaJJ%@RJ Envelope ReturnECJOJQJ^J:`@b: HTML AddressF6]Ne@rN HTML PreformattedGCJOJQJ^J: : Index 1H^`: : Index 2I^`: : Index 3J^`: : Index 4K^`:: Index 5L^`:: Index 6M^`:: Index 7N^`:: Index 8O^`:: Index 9Pp^p`H!H  Index HeadingQ5OJQJ\^J4/@"4 ListRh^h`82@28 List 2S^`83@B8 List 3T8^8`84@R8 List 4U^`85@b8 List 5V^`:0@r: List Bul      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmqorstuvwxyz{|}~let W & F >6@> List Bullet 2 X & F>7@> List Bullet 3 Y & F>8@> List Bullet 4 Z & F>9@> List Bullet 5 [ & FBD@B List Continue\hx^hFE@F List Continue 2]x^FF@F List Continue 3^8x^8FG@F List Continue 4_x^FH@F List Continue 5`x^:1@: List Number a & F>:@"> List Number 2 b & F>;@2> List Number 3 c & F><@B> List Number 4 d & F>=@R> List Number 5 e & F|-b|  Macro Text2f  ` @ qT@T Normal5$7$8$9DH$CJOJQJ_HmH sH tH L@1L Heading 1,h1$@&a$ :;CJN@1N Heading 2,h2$Xx@&a$:CJH@H Heading 3,h3$$@&5:<@1< Heading 4,h4@&:B@1B Heading 5,h5 h@&6:@@@ Heading 6$$@&a$5\\@1\ Heading 7,h7$$ @&^`5:8@q8 Heading 8,h8@&R @qR Heading 9,h9 TT@&^T`DA@D Default Paragraph FontViV  Table Normal :V 44 la (k(No List <O< text,t$d`a$>*> Endnote ReferenceH*&!& TOC 8@1"@ TOC 7d^`N2N TOC 3)$  h8x]h^8`.1B. TOC 5 p^p.1R. TOC 4 T^T61b6 TOC 2$^D1rD TOC 1$ ^5:4 @4 Footer  !4@4 Header  !D&D Footnote ReferenceCJEH::  Footnote TextCJ>> TOC 9 TT^T`.)@. Page NumberTOT reference,ref $0xx^`0a$>O!> heading fm2,hf2@& BOB text centered,tc $a$FOF text no indent,tn !`RO"R text single spaced,ts"$da$BO!B text quote,tq#^rOr hidden text,hid$$5$7$8$9DH$]$<OJQJ_HmH sH tH XORX text hanging indent,th%0^`0ZObZ left margin graphic,lg&$&@./HOrH text indent,ti'^`ROR heading fm1,hf1($d@& ;DOD MTEquationSection B*ph.1. TOC 6 * ^ 6U@6 Hyperlink >*B*phhR@h Body Text Indent 2,h5$7$8$9DH$`hCJOJQJaJR>@R Title-$5$7$8$9DH$a$5>*OJQJ\aJ^^@^ Normal (Web) .dd5$7$8$9DH$[$\$ OJQJaJdC@d Body Text Indent/x5$7$8$9DH$` OJQJaJTB@T Body Text0x5$7$8$9DH$5OJQJ\aJrT@r Block Text,1$5$7$8$9DH$]^a$56OJQJ\]aJ^O"^ MTDisplayEquation2x5$7$8$9DH$ OJQJaJlS@2l Body Text Indent 3"35$7$8$9DH$^` OJQJaJRP@BR Body Text 245$7$8$9DH$CJOJQJaJ^Q@R^ Body Text 35$5$7$8$9DH$a$6CJOJQJ]aJ.Ob. p5 6`6]8+r8  Endnote Text7CJ OQ h68O h.X@. Emphasis6]Oa n;zM@z Body Text First Indent"<x5$7$8$9DH$`5OJQJ\aJN@ Body Text First Indent 2*=hx5$7$8$9DH$^h` OJQJaJ<"< Caption >xx 5CJ\2?@2 5$7$8$9DH$OJQJ^J_HmH sH tH I@r Message Headergg8$d%d&d'd-DM NOPQ^8`OJQJ^JaJ>@> Normal Indent h^4O@4 Note Headingi@Z@@ Plain TextjCJOJQJ^J0K@0 Salutationk6@@6 Signature l^JJ@J Subtitlem$<@&a$OJQJ^JaJT,T Table of Authoritiesn^`L#L Table of Figureso ^` L.L  TOA Headingpx5OJQJ\^JaJ@gt(2jqx  L     #&*-147>ELSVY\htZ      ~}|{zyxwvsronml\Zq_[]?5)('&%$#"! PQRSTU V!W"X#Y$Z%[&\'](^)_*`+a,b-c.d/e0f1g2h3i4j5k6l7m8n9o:p;q<r=s>t?u@vAwBxCyDzE{F|G}H~IJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~@gt(2jqx  L     #&*-147>ELSVY\ht   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ZBC?@L1uzQSqr!$RS"#&MN~ j ( D E F G iG!KLOPQRSTUVWXY[\] WXuV      "#P !!!!!C"D"E"F"G"H"I"J"K"L"""#\$')#++ ,,'-d-e--i/1385555U666477777778'8n88 999;R;]<<6=7=@=x===>!>>>?I?~??????????@e@@@&A'AA`B@CCD1EF GpHHuIJJ\KKKtLLLMHNNNPPPQ4QUQQxRmSnSpSqSsStSvSwSySzSSTTTTTUUUUUUUUUUUUUUUUUVVVVVVVVV V'V(V/V0V7V8V9V:V;VV?V@VAVGVHVNVOVPVQVRVSVTVZV[VbVcVeVfVpVqVsVtV~VVVVVVVVVVVVVVVVVVVVVVVVVVWW W W'W(W*W+WGWHWRWSW[W\WWWWWWWWWWWWXXXWXXX[X\X_X`XcXdXgXhXkXlXoXpXsXtXwXxX{X|XXXXXXXXXXXXXXXXX!Y"Y$Y%Y'Y(Y3Y4Y6Y7Y8Y9Y:Y;YY?Y@YAYBYCYDYEYFYGYHYIYJYKYLYMYNYOYPYQYRYSYTYUYVYWYXYYYZY[Y\Y]Y^Y_Y`YaYbYcYdYeYfYgYhYiYjYkYlYmYnYoYpYqYrYsYtYuYvYwYxYyYzY{Y|Y}Y~YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYZZZZZZZZZZZZZ0(0(00C0C 0C 0C 0C 0C 0C 0C 0C 0C0C(00S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S(0(00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (000000000000000000000000(0(00(0(0(00X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0XF0X0X(0(0(0(0(0(00"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0 " 0 " 0 "0"0" 0 " 0 " 0" 0" 0"0"0"0"0"0" 0"0"0"0"0"0"0"0"0"0"0"0"0"0"0" 0" 0'A" 0'A" 0'A" 0'A" 0'A" 0'A" 0'A" 0'A"0000w"0w"0w"0w"0w"0w"0w"000w"0w"0000000000@000@000@000@000@0@0@0@0@0@0@0@0@0@0@0@0@0@000000040000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000F0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000F00F00F00F00F0000000000F0000000000000000000000000000000 GBC?@L1uzQSqr!$RS"#&MN~ j ( D E F G iG!KLOPQRSTUVWXY[\] WXuV      "#P !!!!!C"D"E"F"G"H"I"J"K"L"""#\$')#++ ,,'-d-e--i/1385555U666477777778'8n88 999;R;]<<6=7=@=x===>!>>>?I?~??????????@e@@@&A'AA`B@CCD1EF GpHHuIJ\KKKtLLLMHNNNPQ4QUQQxRZ0(0(00C0C 0C 0C 0C 0C 0C 0C 0C 0C0C(00S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S0S(0(00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (000000000000000000000000(0(00(0(0(00X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0XF0X0X(0(0(0(0(0(00"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0 " 0 " 0 "0"0" 0 " 0 " 0" 0" 0"0"0"0"0"0" 0"0"0"0"0"0"0"0"0"0"0"0"0"0"0" 0" 0'A" 0'A" 0'A" 0'A" 0'A" 0'A" 0'A" 0'A"@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@00T3P D!!$'1qf $&W**48)>>?YDEmHKxQWY[{]^[`ab2678:<>@BDEFGHJKLNPQRTUWX\_eR GT #&I*U>@EHRxZ]0^q^^``Aa^a{aaaab359;=?ACIMOSVYZ[]^`abcdfgb41IK4 L N !!a"y"{""""""",,,,,, -#-%-56 66)6+636K6M6X6p6r6z666I7a7c7r777777;<<<3<5<A<Y<[<kAAAAAAZ::::::::::::::::::::::::::SZ\alo '!!xr::::  2$[A/39V?$r$H_-nir$fL4³@1i2$rL"@B҈.{zb2$Ĉ(bl&1Jd5r$g\Oy EkiQ$r$/ig~hQYi@H 0(  AP&A(  ~@ |#G+  Hb B # Ԕ (  BG HIJKLN X' *   HGiH*Ia^J K<[L MN\ %h *   BGQ{H I[aJKXLMIN  d!<e$   HGH.IzJ KPL MpN  7!|#S#   BGHIJ|KLN!MPNN! )0G+ @ P 4&X `  C L@4& L` P  X #" P  X`  C P  P`  C NT N`  C M`|T M@  B:CDEdF,jJ%) 2#;&L)V,`.b0l2v357:::65455@        #" 4`  C KP  KfB  s *DTP|n   #" 3XfB   s *DjJ{9fB   s *DjJ@fB  s *DjJi`  C Jx  J @ ",C> ,L j(p; j(p;Z  3 O6l: OBR   )n9` ! C D!d j( * DZ # 3 A<9p; AZ $ 3 @<9; @~L  "%2  "%2`  b$"0 2#"  #">0ZB  S D b$0ZB  S D0"0ZB   S D b$"0Z  3 I +,5/ I` " C B"/2 BZ % 3 ? " % ?` & C >&d"z/%1 >fL ",y/ ",y/|` `(+ #" #)z-TB  C D "+TB  C D "`(+TB B C D`( Z  3 G&,+u) GZ  3 C#% C` ' C ='")-`&y/ =Z ( 3 <t)", % <,L d0)C> d0)C>Hb B # g<E5%C>Z  3 H5l8 HZ  3 Fdd9; FZ   3 Ed02 EZ ) 3 ;T&9)T; ;@ ", ZB 3 S DjJ#A +A `B 4 c $ZDjJx'x')` 5 C :5" , :T < C g & ( @ "H"0 ZB S S DԔ .."` "H"0 #" "H"0Z \ 3 3./ 3Z [ 3 7-t;/ 7TB Q C D.H".h R c ,A60%< " .ZB V S D ".n lV-. a #" l6-.rB T 6DjJl..~B U BDA olV-l.rB W 6DlV-.` Z C 4Zp .0 4` ] C 8]^( R+ 8b _ c $_A 6? "6 `  T a* #" 4b  4R   xBb   a*Bb   4b bB  @ T #k,S #" Nb gB 3 jJ%( ` n C 0nC k,g 0n ~W,- t #" W,STb fB C jJ ~(f l S 2lW,- 2f o S /o# /` q C 5q!#'  5` r C .rD$ '  .` s C -sb&& -6T 3B'T: #" Hb @ # 51T:Hb A # \=3}6Bb B  ? 5,8Hb C # He f5B's9` x C *x!O5#c7 *` y C )ydO5Dc7 )` z C (z4$47 (` { C '{ 5 7 'V@ $0(8  4b c h0b8Hb d # n(3H 8Bb eB  1'6` | C &|$,5 7 &` } C %}D 4@6 %` ~ C $~D"1(5 $T <T(P* #" Hb  # Z"@&` m C 1m\'p) 14b uB PX>(` v C ,v4,(0* ,` w C +w# % +4b   #(`  C ##<#T(% #`  C "4#<(%P* "`  C !<#`! !`  C   "$  `  C |#d % `  C $ |!$# `  C  n!%#  `  C  >%'  `  C  n#%  RT  `, #"  > C JA2MFM_trig_nestedtriangles (` ? C 9?t" `,| 9\  3 "` \  3 "`  \  3 "`  @ /,]9  n $0(8  #" /*884b  h0b8Hb  # n(3H 8Bb B  1'6`  C $,5 7 `  C D 4@6 `  C D"1(5 n  C "`X3 85 h  3 "` }7]9 h  3 "`h2H4 n  C "`(h2,H4 n  C "`052 h  3 "`=#/u'e1 b Xy   #" Z Xy   Xy ZB  S aD8  ZB  S E'>D y TB  C DXhht Xy  # #" 5 `B  c $aD8  `B  c $E'>D y ZB  S DXhhZ  3 L  Z  3 | Z  3 4x  Z  3  L  Z  3  ,@ Z  3 (l  6b T!H*/2  #" Bb   !"'0/`  C '(!* `  C #/X&/2 `  C '.H*1 ZB  S D!)$4/Z  3  T!|## 4r   "G!@/B   Z!d/' 0B S  ?_P LM]d /!?uIZ$ h tFP'tuJE&Z t` d$8tP^t_ # t!L tTp&s t k$ttxyt#5tY&1 t!-$ctct  t&t%!* t@t5't001%1LLnSnSpSpSqSqSsStSvSwSySzSSSTTUUZ S]!#$; 1 4 + , iRT',Xb^b[#d#+++, ,,,,--5->-00@5E5555555526U6V666i7p77777;;<</>5>?? @'@f@m@@@@A(D*DjGnGHHKKKLtL~LLLLL}e}d~c^f0b:Z[ Z42YX:a(L| W@Lz^X~dv:^xue%r N)p'@lX)_$s+Gv* 1pzDB2XHHf2LNwH7Uu#>X~g4G]1kdf2~}|dvX)~ ;_^e%z^U "@ 0^`0OJQJo(x$        |V        x$         lZ       L        |V        ^k\        \c        b0        &6 6Drz^x7В~S(Y0)-,K        b        0        |V        j+\~        &        hg8wVP6 v r Dv 6"$$$HF$='G(M(>)+-L0J]0W2] 4H6);>?AD I`K}L OR Y[<] c{d g$gkaz4K|})q}8@~ (2@e9!'Y 3z aV6lWa']5?H6h%/>9L6Cd '~j$fzK~UfR vk,zR7,`_SqZFa`R i4 O i ?nSpSsSvSySSSTUYZYkYkYkYkYkYkYk#0#0@Z@@Unknown Gz Times New Roman5Symbol3& z Arial?5 z Courier NewY New YorkTimes New Roman3z TimesA"GenevaArial5& zaTahoma;Wingdings#@(X㥼楼̪s F*s F*!+xx4dDSDS 2q+HX?%2CC:\WINDOWS\Application Data\Microsoft\Templates\Thesis\6TMASTER.DOTMaster Document TemplateMaster Thesis or Reportmaster document, thesis, reportSusanna HerndonHunter Ellinger Mary ParkerSusanna Wong HerndonSusanna Wong HerndonSusanna Wong HerndonSusanna Wong HerndonSusanna Wong HerndonSusanna Wong HerndonSusanna Wong HerndonSusanna Wong HerndonSusanna Wong HerndonCC Desktop Publishing & Design|                       CompObj5q