

Modeling the Motion using Force and Energy Concepts

Force and Newton's Second Law:

-Draw all relevant free body force diagrams
-Identify non-conservative forces
-Calculate non-conservative work

$$
W_{\mathrm{nc}}=\int_{\text {initial }}^{\text {final }} \overrightarrow{\mathbf{F}}_{\mathrm{nc}} \cdot d \overrightarrow{\mathbf{r}} \text {. }
$$

Change in Mechanical Energy:
-Choose initial and final states and draw energy diagrams.
-Choose zero point P for potential energy for each interaction in which potential energy difference is well-defined.

Identify initial and final mechanical energy.
-Apply Energy Law. $W_{\mathrm{nc}}=\Delta K+\Delta U^{\text {total }}$

$$
\begin{aligned}
& \text { Summary: Change in Mechanical } \\
& \text { Energy } \\
& \text { Total force: } \quad \overrightarrow{\mathbf{F}}^{\text {toal }}=\overrightarrow{\mathbf{F}}^{\text {toatal }}+\overrightarrow{\mathbf{F}}_{\text {nc }}^{\text {toal }} \\
& \text { Total work: } \\
& W^{\text {tooal }}=\int_{\text {initial }}^{\text {final }} \overrightarrow{\mathbf{F}}^{\text {toatal }} \cdot d \overrightarrow{\mathbf{r}}=\int_{\text {initial }}^{\text {final }}\left(\overrightarrow{\mathbf{F}}_{\mathrm{c}}^{\text {toal }}+\overrightarrow{\mathbf{F}}_{\mathrm{nc}}^{\text {toal }}\right) \cdot d \overrightarrow{\mathbf{r}} \\
& \text { Change in potential energy: } \\
& \text { Total work done is change in } \\
& \text { kinetic energy: } \\
& \text { Mechanical Energy Change: } \\
& \text { Conclusion: } \\
& \Delta U^{\text {total }}=-\int_{\text {initial }}^{\text {final }} \overrightarrow{\mathbf{F}}_{\mathrm{c}}^{\text {total }} \cdot d \overrightarrow{\mathbf{r}} \\
& W^{\text {total }}=-\Delta U^{\text {total }}+W_{\mathrm{nc}}=\Delta K
\end{aligned}
$$

Mechanical Energy Accounting

Initial state

- Total initial kinetic energy
- Total initial potential energy
- Total initial mechanical energy

Final state:

- Total final kinetic energy
- Total final potential energy
- Total final mechanical energy
- Apply Energy Law:
nergy Law:
$K_{\text {intital }}=K_{1, \text { nintial }}+K_{2, \text {,nintial }}+$
$U_{\text {initial }}=U_{1, \text {,initial }}+U_{2, \text { initial }}+$
$E_{\text {initial }}^{\text {mechincal }}=K_{\text {intitial }}+U_{\text {intital }}$
$K_{\text {final }}=K_{1, \text { tinal }}+K_{2, \text { final }}+$
$U_{\text {final }}=U_{1, \text { final }}+U_{2, \text { final }}+$
$E_{\text {final }}^{\text {mechancal }}=K_{\text {final }}+U_{\text {final }}$
$W_{\text {nc. }}=E_{\text {frol }}^{\text {mechanical }}-E_{\text {initial }}^{\text {mechaical }}$

Example: Energy Changes

A small point like object of mass m rests on top of a sphere of radius R. The object is released from the top of the sphere with a negligible speed and it slowly starts to slide. Find an expression for the angle θ with respect to the vertical at which the object just loses contact with the sphere.

Energy Flow diagrams

Initial state

Final State

Example: Energy Changes

A small point like object of mass m rests on top of a sphere of radius R. The object is released from the top of the sphere with a negligible speed and it slowly starts to slide. Find an expression for the angle θ with respect to the vertical at which the object just loses contact with the sphere.

Example (con't): Free Body Force Diagram

Newton's Second Law

$$
\begin{aligned}
& \hat{\mathbf{r}}: N-m g \cos \theta=-m \frac{v^{2}}{R} \\
& \hat{\boldsymbol{\theta}}: m g \sin \theta=m R \frac{d^{2} \theta}{d t^{2}}
\end{aligned}
$$

Constraint condition:

$$
N=0 \text { at } \theta=\theta
$$

Radial Equation becomes

- Example: x-direction
$\hat{\mathbf{i}}: \quad F_{x}^{\text {toal }}=m \frac{d^{2} x}{d t^{2}}$.
- Example: Circular motion $\hat{\mathbf{r}}: F_{r}^{\text {total }}=-m \frac{v^{2}}{R}$
$m g \cos \theta_{f}=m \frac{v_{t}^{2}}{R} \Rightarrow \quad \frac{1}{2} m v_{f}^{2}=\frac{R}{2} m g \cos \theta_{f}$
Energy Condition: $\quad \frac{1}{2} m v_{f}^{2}=m g R\left(1-\cos \theta_{f}\right)$
Conclusion: $m g R\left(1-\cos \theta_{f}\right)=\frac{R}{2} m g \cos \theta_{f} \Rightarrow \cos \theta_{f}=\frac{2}{3} \Rightarrow \theta_{f}=\cos ^{-1}\left(\frac{2}{3}\right)$

Table Problem: Loop-the-Loop

An object of mass m is released from rest at a height h above the surface of a table. The object slides along the inside of the loop-the-loop track consisting of a ramp and a circular loop of radius R shown in the figure. Assume that the track is frictionless. When the object is at the top of the track (point a) it pushes against the track with a force equal to three times it's weight. What height was the object dropped from?

Hooke's Law

Define system, choose coordinate system.
Draw free-body diagram.
Hooke's Law

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{\text {sping }}=-k x \hat{\mathbf{i}} \\
& -k x=m \frac{d^{2} x}{d t^{2}}
\end{aligned}
$$

Concept Question

Which of the following functions $x(t)$ has a second derivative which is proportional to the negative of the function

$$
\frac{d^{2} x}{d t^{2}} \propto-x ?
$$

1. $x(t)=\frac{1}{2} a t^{2}$
2. $x(t)=A e^{t / T}$
3. $x(t)=A e^{-t / T}$
4. $x(t)=A \cos \left(\frac{2 \pi}{T} t\right)$

Concept Question

The first derivative $v_{x}=d x / d t$ of the sinusoidal function

$$
x=A \cos \left(\frac{2 \pi}{T} t\right)
$$

is:

1. $v_{x}(t)=A \cos \left(\frac{2 \pi}{T} t\right)$
2. $v_{x}(t)=-\frac{2 \pi}{T} A \sin \left(\frac{2 \pi}{T} t\right)$
3. $v_{x}(t)=-A \sin \left(\frac{2 \pi}{T} t\right)$
4. $\quad v_{x}(t)=\frac{2 \pi}{T} A \cos \left(\frac{2 \pi}{T} t\right)$

Simple Harmonic Motion

$$
\begin{aligned}
& \text { Equation of Motion: } \\
& \text { Solution: Oscillatory with } \quad-k x=m \frac{d^{2} x}{d t^{2}} \\
& \text { Period } \\
& \text { Position: } \quad x=2 \pi \sqrt{\frac{m}{k}} \\
& \text { Velocity: } \quad v_{x}=\frac{d x}{d t}=-\frac{2 \pi}{T} A \sin \left(\frac{2 \pi}{T} t\right)+\frac{2 \pi}{T} B \cos \left(\frac{2 \pi}{T} t\right)+B \sin \left(\frac{2 \pi}{T} t\right) \\
& \text { Initial Position at } t=0 \text { : } \quad x_{0} \equiv x(t=0)=A \\
& \text { Initial Velocity at } t=0: \quad v_{x, 0} \equiv v_{x}(t=0)=\frac{2 \pi}{T} B \\
& \text { General Solution: } \quad x=x_{0} \cos \left(\frac{2 \pi}{T} t\right)+\frac{T}{2 \pi} v_{x, 0} \sin \left(\frac{2 \pi}{T} t\right)
\end{aligned}
$$

Period and Angular Frequency

Equation of Motion:
Solution: Oscillatory with Period $T \quad-k x=m \frac{d^{2} x}{d t^{2}}$
x-component of velocity: $\quad x=A \cos \left(\frac{2 \pi}{T} t\right)+B \sin \left(\frac{2 \pi}{T} t\right)$
x-component of acceleration: $\quad v_{x} \equiv \frac{d x}{d t}=-\frac{2 \pi}{T} A \sin \left(\frac{2 \pi}{T} t\right)+\frac{2 \pi}{T} \cos \left(\frac{2 \pi}{T} t\right)$

$$
a_{x} \equiv \frac{d^{2} x}{d t^{2}}=-\left(\frac{2 \pi}{T}\right)^{2} A \cos \left(\frac{2 \pi}{T} t\right)-\left(\frac{2 \pi}{T}\right)^{2} B \sin \left(\frac{2 \pi}{T} t\right)=-\left(\frac{2 \pi)^{2}}{T}\right)^{x}
$$

Period: $-k x=m \frac{d^{2} x}{d t^{2}}=-m\left(\frac{2 \pi}{T}\right)^{2} x \Rightarrow k=m\left(\frac{2 \pi}{T}\right)^{2} \Rightarrow T=2 \pi \sqrt{\frac{m}{k}}$
Angular frequency $\quad \omega \equiv \frac{2 \pi}{T}=\sqrt{\frac{k}{m}}$

Concept Question: Simple Harmonic Motion

A block of mass m is attached to a spring with spring constant k is free to slide along a horizontal frictionless surface. At $t=0$ the block-spring system is stretched an amount $x_{0}>0$ from the equilibrium position and is released from rest. What is the x-component of the velocity of the block when it first comes back to the equilibrium?

1. $v_{x}=-x_{0} \frac{T}{4}$
2. $v_{x}=x_{0} \frac{T}{4}$
3. $v_{x}=-\sqrt{\frac{k}{m}} x_{0}$
4. $v_{x}=\sqrt{\frac{k}{m}} x_{0}$

Initial and Final Conditions

Initial state: $x_{0}=A=0 \quad$ and $\quad v_{x, 0}=\frac{2 \pi}{T} B$

$$
x(t)=\frac{T}{2 \pi} v_{x, 0} \sin \left(\frac{2 \pi}{T} t\right) \quad v_{x}(t)=v_{x, 0} \cos \left(\frac{2 \pi}{T} t\right)
$$

First comes to rest when $v_{x}\left(t_{f}\right)=0 \Rightarrow \frac{2 \pi}{T} t_{f}=\frac{\pi}{2}$

Since at time $t_{f}=T / 4$

Final position

$$
\sin \left(\frac{2 \pi}{T} t_{f}\right)=\sin \left(\frac{\pi}{2}\right)=1 \Rightarrow
$$

$x\left(t_{f}\right)=\frac{T}{2 \pi} v_{x, 0}=\sqrt{\frac{m}{k}} v_{x, 0}$

Example: Block-Spring System with

 No FrictionA block of mass m slides along a frictionless horizontal surface with speed $v_{x, 0}$. At $t=0$ it hits a spring with spring constant k and begins to slow down. How far is the spring compressed when the block has first come momentarily to rest?

Modeling the Motion: Energy

Change in potential energy:

$U\left(x_{f}\right)-U\left(x_{0}\right)=\frac{1}{2} k\left(x_{f}^{2}-x_{0}^{2}\right)$
Choose zero point for potential energy: $\quad U(x=0)=0$
Potential energy function:

$$
U(x)=\frac{1}{2} k x^{2}, \quad U(x=0)=0
$$

Mechanical energy is constant $\left(W_{\mathrm{nc}}=0\right) \quad E_{\text {final }}^{\text {mechanical }}=E_{\text {initial }}^{\text {mechanica }}$

Kinetic Energy vs. Potential Energy

State	Kinetic energy	Potential energy	Mechanical energy
Initial $x_{0}=0$ $v_{x, 0}>0$	$K_{0}=\frac{1}{2} m v_{x, 0}^{2}$	$U_{0}=0$	$E_{0}=\frac{1}{2} m v_{x, 0}^{2}$
Final $x_{f}>0$ $v_{x, f}=0$	$K_{f}=0$	$U_{f}=\frac{1}{2} k x_{f}^{2}$	$E_{f}=\frac{1}{2} k x_{f}^{2}$

Conservation of Mechanical Energy

$$
E_{f}=E_{0} \Rightarrow \frac{1}{2} k x_{f}^{2}=\frac{1}{2} m v_{x, 0}^{2}
$$

The amount the spring has compresses when the object first comes to rest is

$$
x_{f}=\sqrt{\frac{m}{k}} v_{x, 0}
$$

Lecture Demo: Experiment 3

 Fitting the Force Curve

Position: $\quad x=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)$
Velocity $\quad v_{x}=-\omega_{0} C_{1} \sin \left(\omega_{0} t\right)+\omega_{0} C_{2} \cos \left(\omega_{0} t\right)$
Angular Frequency:
$\omega_{0}=\sqrt{k / m_{c}}$
Initial conditions: $\quad x(t=0)=0 \Rightarrow C_{1}=0 \quad v_{x}(t=0)=v_{1} \Rightarrow C_{2}=v_{1} / \omega_{0}$

Lecture Demo: Experiment 3

 Fitting the Force Curve| Position: | $x=\left(v_{1} / \omega_{0}\right) \sin \left(\omega_{0} t\right)$ | Amplitude: $\quad x_{\max }=\omega_{0} v_{1}$ |
| :--- | :--- | :--- |
| Velocity: | $v_{x}=v_{1} \cos \left(\omega_{0} t\right)$ | Acceleration $a_{x}=-\omega_{0} v_{1} \sin \left(\omega_{0} t\right)$ |
| Third Law: $\quad F_{\text {sensor }}(t)=-F_{\text {cart }}(t)=-m_{c} a_{x}=m_{c} \omega_{0} v_{1} \sin \left(\omega_{0} t\right)$ | | |
| Force on sensor vs. time graph. Best Fit: | $F_{\text {sensor }}(t)=A_{0} \sin \left(2 \pi\left(t-A_{2}\right) / A_{1}\right)$ | |
| Fit Parameters: $\quad A_{2}=$ offset time | | |
| $A_{0}=m_{c} \omega_{0} v_{1}$ | | |

Energy Diagram

Choose zero point for potential energy:

$$
U(x=0)=0
$$

Potential energy function

$$
U(x)=\frac{1}{2} k x^{2}, \quad U(x=0)=0
$$

Mechanical energy is represented by a horizontal line since it is a constant
$E^{\text {mechanical }}=K(x)+U(x)=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} k x^{2}$
Kinetic energy is difference between mechanical energy and potential energy (independent of choice of zero point)

$$
K=E^{\text {mechanical }}-U
$$

Graph of Potential energy function $U(x)$ vs. x

Concept Question: Energy Diagram

The position of a particle is given by

$$
x(t)=D \cos (\omega t)-D \sin (\omega t), \quad D>0
$$

Where was the particle at $t=0$?

1) 1
2) 1
3) 2
4) 3
5) 4
6) 5
7) 2 or 4

Concept Question: Energy Diagram 2

A particle with total mechanical energy
E has position $x>0$ at $t=0$

1) escapes to infinity
2) approximates simple harmonic motion
3) oscillates around a
4) oscillates around b

5) periodically revisits a and b
6) not enough information

Concept Question: Energy Diagram 3

A particle with total mechanical energy
E has position $x>0$ at $t=0$

1) escapes to infinity
2) approximates simple harmonic motion
3) oscillates around a
4) oscillates around b
5) periodically revisits a and b

6) not enough information

Concept Question: Energy Diagram 4

A particle with total mechanical energy
E has position $x>0$ at $t=0$

1) escapes to infinity
2) approximates simple harmonic motion
3) oscillates around a
4) oscillates around b

5) periodically revisits a and b
6) not enough information

Concept Question: Energy Diagram 5

A particle with total mechanical energy
E has position $x>0$ at $t=0$

1) escapes to infinity
2) approximates simple harmonic motion
3) oscillates around a
4) oscillates around b
5) periodically revisits a and b

