Formulas for Physics 1A

$\alpha \equiv$ angular acceleration $\left(1 / \mathrm{s}^{2}\right)$
$\mathbf{F} \equiv$ force ($\mathrm{N} \equiv \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$)
$\mathrm{G} \equiv$ gravitational constant $=6.67 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg}^{-3}{ }^{3}\right)$
$\mathrm{k} \equiv$ spring constant $\left(\mathrm{kg} / \mathrm{s}^{2}\right)$
$\mu \equiv$ coefficient of friction
$\mathbf{N} \equiv$ normal force
$\mathrm{P} \equiv \operatorname{pressure}\left(\mathrm{Pa} \equiv \mathrm{kg} / \mathrm{m} \bullet \mathrm{s}^{2}\right)$
$\tau \equiv$ torque $\left(\mathrm{N} \bullet \mathrm{m} \equiv \mathrm{kg} \bullet \mathrm{m}^{2} / \mathrm{s}^{2}\right)$
$\theta \equiv$ angular displacement or rotation
$\omega \equiv$ angular velocity ($1 / \mathrm{s}$)
$\mathbf{X} \equiv \operatorname{displacement}$ (m)
$\mathbf{A} \equiv \operatorname{acceleration}\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{g} \equiv$ gravitat. acceleration at Earths surface $=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{I} \equiv$ moment of inertia $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
$\mathbf{L}=$ angular momentum $\left(\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right)$
$\mathrm{m} \equiv$ mass (kg)
$\mathbf{P} \equiv$ momentum $(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s})$
$\rho \equiv$ density ($\mathrm{kg} / \mathrm{m}^{3}$)
$\mathrm{T} \equiv$ period of orbit
$\mathbf{V} \equiv$ velocity (m / s)
$\mathrm{W} \equiv \operatorname{work}\left(\mathrm{J}=\mathrm{N} \bullet \mathrm{m}=\mathrm{kg} \bullet \mathrm{m}^{2} / \mathrm{s}^{2}\right)$
$\mathbf{Y} \equiv$ displacement (m)

Kinematics

For $A=$ Constant: $\quad V(t)=V_{0}+A \bullet t \quad$ and $\quad X(t)=X_{0}+V_{0} \bullet t+(1 / 2) \bullet A \bullet t^{2}$
The above two equations lead to: $\mathrm{V}^{2}(\mathrm{t})=\mathrm{V}_{0}^{2}(\mathrm{t})+2 \bullet \mathrm{~A} \bullet\left[\mathrm{X}(\mathrm{t})-\mathrm{X}_{0}\right]$

Forces

$\mathrm{F}(\mathrm{t})=\mathrm{m}(\mathrm{t}) \bullet \mathrm{A}(\mathrm{t})$ (where we explicitly note that both mass and acceleration can change with time)
$\mathrm{P}(\mathrm{t})=\mathrm{m}(\mathrm{t}) \bullet \mathrm{V}(\mathrm{t})$ (where $\mathrm{F}=\Delta \mathrm{P} / \Delta \mathrm{t}$ or $\Delta \mathrm{P}=\mathrm{F} \Delta \mathrm{t}$; the change in momentum $\Delta \mathrm{P}$ is also referred to as impulse)

Friction models

$\mathrm{f}_{\text {static friction }} \leq \mu_{\mathrm{s}} \bullet \mathrm{N}$ (opposes the direction of motion up to a maximum value of $\mu_{\mathrm{s}} \bullet \mathrm{N}$)
$\mathrm{f}_{\text {kinetic friction }}=\mu_{\mathrm{k}} \bullet \mathrm{N}$ (opposes the direction of motion)

Rocket equation

$\mathrm{V}=\mu_{\text {exhaust }} \bullet \ln \left(\mathrm{M}_{\text {initial }} / \mathrm{M}_{\text {final }}\right)$
Spring equation
$\mathrm{F}(\mathrm{t})=\mathrm{k} \bullet\left[\mathrm{x}(\mathrm{t})-\mathrm{x}_{0}\right]$

Gravitational formula

$\mathrm{F}=\left(\mathrm{G} \bullet \mathrm{M}_{1} \bullet \mathrm{M}_{2}\right) / \mathrm{R}^{2}{ }_{12}$ (points radially inward)
$T^{2}=\left[\left(4 \pi^{2}\right) /\left(G^{\bullet} M_{\text {sun }}\right)\right] \cdot R^{3}$ (Kepler's third law, where $\left.T=2 \pi / \omega\right)$

Rotational motion

For $\alpha=$ Constant $\quad \omega(t)=\omega_{0}+\alpha \bullet t \quad$ and $\quad \theta(t)=\theta_{0}+\omega_{0} \bullet t+(1 / 2) \bullet \alpha \bullet t^{2}$ $\mathrm{A}_{\text {tangent }}=\mathrm{R} \cdot \alpha \quad$ and $\quad \mathrm{V}_{\text {tangent }}(\mathrm{t})=\mathrm{R} \cdot \omega(\mathrm{t})$
$\mathrm{A}_{\text {centrifugal }}(\mathrm{t})=\mathrm{R} \bullet \omega^{2}(\mathrm{t})=\mathrm{V}_{\text {tangent }}^{2}(\mathrm{t}) / \mathrm{R}$ (points radially inward)
$\tau(\mathrm{t})=\mathrm{R} \cdot \mathrm{F}(\mathrm{t}) \bullet \sin \theta$ (where the angle extends from the radius vector to the force vector)
$\tau(\mathrm{t})=I \cdot \alpha(\mathrm{t})$
$\mathrm{L}(\mathrm{t})=I \bullet \omega(\mathrm{t})($ where $\tau=\Delta \mathrm{L} / \Delta \mathrm{t})$
$I \equiv \Sigma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}=\mathrm{M} \cdot \mathrm{R}^{2}$ (point mass); $\mathrm{M} \cdot \mathrm{R}^{2}$ (thin cylindrical shell); (2/3) $\cdot \mathrm{M} \cdot \mathrm{R}^{2}$ (thin spherical shell); (1/2) $\cdot \mathrm{M} \cdot \mathrm{R}^{2}$ (solid cylinder rotated on axis); (1/3) $\cdot \mathrm{M} \cdot \mathrm{L}^{2}\left(\operatorname{rod}\right.$ rotated about end); (1/5) $\cdot \mathrm{M} \cdot \mathrm{R}^{2}$ (solid sphere); $(1 / 12) \cdot \mathrm{M} \cdot \mathrm{L}^{2}(\operatorname{rod}$ rotated about center); where R is the radius and L is the length

Work and Energy

$\mathrm{W}=\mathrm{F} \cdot\left(\mathrm{X}_{\text {final }}-\mathrm{X}_{\text {initial }}\right) \cdot \cos \theta$ (where the angle is between the force vector and the displacement vector)

Conservative forces: $\mathrm{KE}+\mathrm{PE}=$ Constant
Translation: $\mathrm{KE}=(1 / 2) \cdot \mathrm{m} \cdot \mathrm{V}^{2}$
Gravitational: $\mathrm{PE}=-\left(\mathrm{G} \bullet \mathrm{M}_{1} \bullet \mathrm{M}_{2}\right) / \mathrm{R}_{12}$

Nonconservative forces: $\mathrm{KE}+\mathrm{PE} \neq$ Constant
Rotation: KE $=(1 / 2) \cdot \cdot \cdot \bullet \omega^{2}$
Spring: $\mathrm{PE}=(1 / 2) \cdot \mathrm{k} \cdot\left[\mathrm{X}(\mathrm{t})-\mathrm{X}_{0}\right]^{2}$

Fluids
Continuity: $\mathrm{A} \bullet \mathrm{V}=\mathrm{A}^{\prime} \cdot \mathrm{V}^{\prime}$
Bernouli: $\mathrm{P}+\rho \cdot \mathrm{g} \bullet \mathrm{Y}+(1 / 2) \bullet \rho \bullet \mathrm{V}^{2}=\mathrm{Constant}$

