ࡱ> }|U@ Ndbjbj [P:::N===8=t^>N[?pf@(@@@@@@QQQQDQV[$|\R^d7[:@@@@@7[@@L[LLL@ @:@QL@QLL^MM,:M@? 0O7EY,=JMNb[0[M2_ZLF2_MNN2_:M @@L@@@@@7[7[NNd:=L(NN=Acid-Base Titration Curves NAME:________________________________________ PERIOD:___________ Prelab Show Calculations. 1. For the titration of 50.0 ml of 0.100M acetic acid with 0.200M NaOH, using a Ka of 1.76 x 10-5, calculate the pH: a. Initial (0 ml of NaOH added): b. At the half equivalence point: c. At the equivalence point: d. 15 ml beyond the equivalence point: 2. What is the difference between the endpoint in a titration and the equivalence point? 3. Does the use of a weak acid indicator have much effect on the accuracy of the endpoint of a titration? Why or why not? Acid-Base Titration Curves Three important types of acid/base reactions will be investigated in this lab. The change in pH when a strong acid is titrated with a strong base, when a weak acid is titrated with a strong base, and when a weak base is titrated with a strong acid. Each will have a characteristic shape when the titration curve is plotted, that is, the pH is plotted on the y- axis and the volume (mL) of added titrant (the solution in the buret) is plotted on the x-axis. A titration curve allows one to experimentally determine the Ka for a weak acid or the Kb for a weak base. The pH will be measured using a pH probe attached to a CBL and graphing calculator. In the titration of a strong acid with a strong base, hydrochloric acid, HCl, will be reacted with sodium hydroxide, NaOH. The concentration of the NaOH solution will be given and you will determine the unknown concentration of the HCl. This is referred to as standardizing the HCl solution. HCl reacts with NaOH in a one-to-one mole ratio to produce water in the overall reaction: HCl (aq) + NaOH (aq) ( H2O (l) + NaCl (aq) The HCl ionizes 100% and the NaOH dissociates completely in water solution giving the ionic equation: H+1(aq) + Cl-1(aq) + Na+1(aq) + OH-1(aq) ( H2O (l) + Na+1(aq) + Cl-1 (aq) Removing the spectator ions gives the net ionic equation: H+1(aq + OH-1(aq) ( H2O (l) The equivalence point for a strong acid strong base titration will be pH 7 since the Na+1 ion and the Cl-1 (the conjugate base of a strong acid) do not undergo hydrolysis. The pH of the solution is therefore the pH of pure water. The volume of NaOH solution used to reach the equivalence point will be used to determine the molarity of the HCl. A monoprotic weak acid reacts with NaOH in a one-to-one ratio to produce water and the conjugate base in the overall reaction: HA (aq) + NaOH (laq ( H2O (l) + NaA (aq) A weak acid does not ionize completely in aqueous solution giving the ionic equation: HA (aq) + Na+1(aq) + OH-1(aq) ( H2O (l) + Na+1(aq) + A-1 (aq) Removing the spectator ions gives the net ionic equation: HA (aq) + OH-1(aq) ( H2O (l) + A-1(aq) The equation for the ionization of the weak acid is shown below. HA (aq) + H2O (l) ( H3O+1 (aq) + A-1 (aq) The equilibrium constant for this reaction, Ka is:  EMBED Equation.2  [A-1] is the molar concentration of the conjugate base and [HA] is the molar concentration of the weak acid. Ka can be calculated using the initial concentration of the acid and the initial pH of the solution. The initial pH gives the [H3O+1] which equals the [A-1] in the initial weak acid solution. If the weak acid is only slightly ionized, the [HA] is assumed to be approximately equal to its initial concentration. Ka can be calculated from the pH at the half-equivalence point. At this point in the titration, half of the moles of HA have been converted to A-1. The [A-1] = [HA], the ratio [A-1]/[HA] equals one, the [H3O+1] equals Ka, and the pH of the solution equals the pKa of the weak acid. Ka can be calculated from the pH at the equivalence point. The moles of HA have been completely converted to A-1. The conjugate base, A-1, undergoes hydrolysis by the reaction: A-1 (aq) + H2O (l) ( HA (aq) + OH-1 (aq) This gives an equivalence point in the basic region (pH>7). The equilibrium for this reaction is described by the Kb for the conjugate base:  EMBED Equation.2  The [A-1] is calculated from the intial moles of HA and the total volume of the reaction mixture at the equivalence point. The pH gives the [H3O+1] and the [OH-1] by using Kw = [H3O+1] [OH-1] = 1.0 X 10-14 Since [OH-1] = [HA] at the equivalence point, the Kb for the conjugate base can be calculated. An important relationship between Ka for the acid and Kb for its conjugate base is: Kw = Ka x Kb.  EMBED Equation.2  A monobasic weak base reacts with HCl in a one-to-one mole ratio to produce chloride ion and the conjugate acid in the overall reaction: B(aq) + HCl (laq ( BH+1 (aq) ) + Cl-1 (aq) A weak base does not ionize completely in aqueous solution giving the ionic equation: B(aq) + H+1(aq) + Cl-1 (laq ( BH+1 (aq) ) + Cl-1 (aq) Removing the spectator ions gives the net ionic equation: B(aq) + H+1(aq) ( BH+1 (aq) ) The equation for the ionization of the weak base is shown below. B(aq) + H2O (l) ( BH+1 (aq) ) + OH-1 (aq) The equilibrium constant for this reaction, Kb is:  EMBED Equation.2  [BH+1] is the molar concentration of the conjugate acid and [B] is the molar concentration of the weak base. Kb can be calculated using the initial concentration of the base and the initial pH of the solution. The initial pH gives the [H3O+1] from which the [OH-1] can be calculated. The [OH-1] equals the [BH+1] in the initial weak base solution. If the weak base is only slightly ionized, the [B] is assumed to be approximately equal to its initial concentration. Kb can be calculated from the pH at the half-equivalence point. At this point in the titration, half of the moles of B have been converted to BH+1. The [BH+1] = [B], the ratio [BH+1]/[B] equals one, the [OH-1] equals Kb, and the pOH of the solution equals the pKb of the weak base. Remember that pH + pOH = 14. Kb can be calculated from the pH at the equivalence point. The moles of B have been completely converted to BH+1. The conjugate acid, BH+1, undergoes hydrolysis by the reaction: BH+1 (aq) + H2O (l) ( H3O+1 (aq) + B (aq) This gives an equivalence point in the acidic region (pH<7). This equilibrium is described by the Ka for the conjugate acid:  EMBED Equation.2  The [BH+1] is calculated from the initial moles of B and the total volume of the reaction mixture at the equivalence point. The pH gives the [H3O+1]. Since [H3O+1] = [B] at the equivalence point, the Ka for the conjugate acid can be calculated. An important relationship between Kb for the base and Ka for its conjugate acid is Kw = Kb x Ka.  EMBED Equation.2  Acid/base indicators change colors as they are converted from a weak acid to a weak base form (or vice-versa) over a known pH range. Appropriately chosen indicators give a visual indication of the equivalence point which is referred to as an endpoint. Since the indicator changes over a range of pH units instead of the exact pH at the equivalence point, some error is introduced in using a visual indicator for a titration. Observe and indicate the point, pH, in the titration curve where there is a color change and what its change is, and, of course, indicate the name of the indicator used. Procedure: The three titrations to be done will be set up on each of the three tripods in the lab. There will be a strong acid/ strong base, a weak acid/strong base, and a weak base/strong acid. After each titration, please be sure to rinse the beaker with tap water, then distilled water and dry with paper towels. Refill the buret with titrant to make things run more smoothly. Save the data from each titration as a program. Plot your data using Graphical Analysis. Submit the graph and data for all three titrations, being sure to label both axes. 1. Using the initial volumes and molarities of the strong acid and strong base, calculate the equivalence point volume of strong base and make sure that these points are part of the titration data taken in the HCl-NaOH titration. 2. Using the initial volumes and molarities of the weak acid and strong base, calculate the equivalence point and half-equivalence point volumes of strong base and make sure that these points are part of the titration data taken in the CH3COOH-NaOH titration. 3. Using the initial volumes and molarities of the weak base and strong acid, calculate the equivalence point and half-equivalence point volumes of strong acid and make sure that these points are part of the titration data taken in the TRIS-HCl titration. 4. Check your equivalence point and half-equivalence point volumes with your instructor before you start the titrations. 5. The volume increments are not the same for each titration. Be sure to use the increments for the specific titration that you are performing. 6. Use a pipet and bulb to pipet 50.00 mL of of approximately 0.10M HCl solution into a clean 150-mL beaker. Add a small magnetic stir bar. Add 3-4 drops of bromthymol blue as the indicator. 7. Rinse a 50-mL buret with a few mL of approximately 0.20 M NaOH solution. Repeat rinsing once more with a few more mL of NaOH solution. Allow the NaOH solution to drain into a waste beaker. Fill the buret a little above the 0.00 mL level with the 0.20 M NaOH solution. Drain a small amount of NaOH solution so it fills the buret tip and leaves the NaOH at the 0.00 mL level of the buret. Make sure that no air bubbles are in the buret tip. 8. Record the actual concentration of the NaOH solution. Set up the calculator and CBL for pH measurement: 1. Connect the CBL unit to the TI-82/83 calculator with the unit-to-unit link cable using the I/O ports located on the bottom edge of each unit. Press the cable ends in firmly. 2. Connect the CBL DIN adapter to the end of the Vernier pH probe and plug the adapter into channel 1, CH 1, on the CBL unit. Plug the CBL voltage adapter into the bottom of the CBL 3. Turn on the CBL unit and calculator. The CBL system is now ready to receive commands from the calculator. Calibration Procedure: Make sure the CBL unit and the calculator are turned on. 1. Press [PRGM] on the TI-82/83. Using the arrow keys, highlight the program CHEMBIO. Press [ENTER]. 2. (Display should read prgmCHEMBIO) Press [ENTER]. 3. (Display should read VERNIER SOFTWARE...) Press [ENTER]. 4. Select SET UP PROBES by using the arrow keys to highlight this choice. Press [ENTER]. (If you get the ***Link Error*** message check all link connection and make sure CBL is turned on. Press [ENTER] and continue) 5. The display should read Enter number of probes. You are using only one probe, therefore press [1] and [ENTER]. The CBL display should show three dashes. 6. You are using the pH probe, therefore, select pH. Press [ENTER]. 7. You should have your probe connected in channel one, CH 1, therefore, press 1 and [ENTER]. 8. The display should now show a Calibration Menu. You want to select Perform New by using the arrow keys to highlight this choice then press [ENTER]. The message Use [CH View] Button on CBL to Monitor Voltage When Stable Press CBL Trigger will appear. 9. Remove the pH probe from the storage bottle. Rinse the pH probe with distilled water and carefully shake off the water. Place the probe in the standard solution pH 4. When the voltage reading on the CBL is stable, press TRIGGER on the CBL. The probe is in the standard solution pH 4, enter [4] as the reference value in the calculator and press [ENTER]. 10. Rinse the pH probe with distilled water and carefully shake off the water. Place the probe in the standard solution pH 10. When the voltage reading on the CBL is stable, press TRIGGER on the CBL. The probe is in the standard solution pH 10, enter [10] as the reference value in the calculator and press [ENTER]. 11. The calculator should show the intercept and slope values of the calibration line. Record these values on the card at that station so that these values can be used by each group using the Manual Entry option under the calibration menu.. Press [ENTER]. 12. You should now be back at the Main Menu display on the calculator. 13. Place the pH back in the storage bottle until you are ready to take measurements. Collection of pH Data: 1. Place the beaker with the HCl solution under the tip of the buret. Remove the pH electrode from the storage bottle and rinse it with distilled water into the waste beaker. Clamp the pH electrode in the 150ml beaker so the tip of the electrode is below the surface of the solution. Adjust the position of the electrode so the stir bar will not hit the electrode. 2. Turn on the magnetic stirrer and stir the solution at a moderate rate but not so fast that it vortexes or splatters solution on the side of the beaker. 3. Select Collect Data. Press [ENTER]. 4. Select Trigger/Prompt. Press [ENTER]. (The calculator display should read Allow 30 sec. for CBL to warm up. The CBL should display Ready and three numbers.) 5. Press [ENTER]. 6. Monitor the CBL display and when the numbers on the CBL display have stabilized, press [TRIGGER] on the CBL. 7. [ENTER] volume (mL) should appear on the calculators display. This display is asking you to enter the amount , in mL, of NaOH you have added to the acid in the beaker. You have NOT added any NaOH from the buret to the acid, therefore, type 0 for volume of NaOH added. Press [ENTER]. 8. The calculator now displays a Data Collection menu. Select MORE DATA. Press [ENTER]. 9. Add as close to 5.00 mL of NaOH as possible from the buret to the acid in the beaker. 10. When the CBL display is stabilized, press [TRIGGER]. 11. Enter into the calculator the cumulative volume of NaOH that was added to the beaker (5.00mL) which should be the buret reading. If you accidently add more than 5.00 ml of NaOH, enter the actual buret reading (ie. 5.10ml). 12. You should now be back to the Data Collection menu. Select MORE DATA. Press [ENTER]. 13. Repeat Steps 9-12 adding 5.00 ml each time until 20.00 mL of NaOH has been added to the acid in the beaker. 14. Repeat Steps 9-12 adding 1.00 ml each time from 20.00 mL to 30.00 ml of NaOH. 15. Repeat Steps 9-12 adding 5.00 ml each time from 30.00 mL to 50.00 ml of NaOH. 16. Select Stop and Graph (a graph should appear). Press [ENTER]. 17. Select [NO] for repeating the experiment. Press [ENTER]. This should return you to the Main Menu. 18. Select Quit to exit the program. Press [ENTER]. To Store Data as a Program and Automatically Write to Lists when Program is Run. You will want to store L1 (Volume NaOH) and L2 (pH) for use in analyzing the data later and to have the data available to transfer to Graphical Analysis. The data from the first titration will be put back in L1 and L2. 1. Press [PRGM] on the calculator. 2. Arrow over to NEW. Select Create New. Press [ENTER]. 3. Input the name AB1. (The first character of a program must to be a letter and the name can only have 8 characters). Press [ENTER]. 4. Press [RCL] [L1]. (L1 is the location of the list you want to store.) This command shows at the bottom of the calculator screen. When you press ENTER the list of entries in L1 are displayed. Do not press another ENTER. 5. Press [STO] [L1] followed by [ENTER]. This command names the list that the data will be written to when the program is run. 6. Press [ENTER]. 7. Press [RCL] [L2]. (L2 is the location of the list you want to store.) This command shows at the bottom of the calculator screen. When you press ENTER the list of entries in L2 are displayed. Do not press another ENTER. 8. Press [STO] [L2] followed by [ENTER]. This command names the list that the data will be written to when the program is run. 9. Press [ENTER]. 10. Press [QUIT] to leave programming mode. 11. To put the data back into the lists at a later time, press [PRGM] on the calculator. 12. Arrow down to the name of the program storing the data (or type in the number of the program. Press [ENTER]. The program name will appear. Press [ENTER]. The data appears as a string of numbers. Not all the data will appear on the screen but the data will be placed in the lists. To see the data, press [STAT]. EDIT will be highlighted. Press [ENTER]. Use the arrow keys to see the lists and the data. 19. Empty the beaker. Rinse the beaker and pH probe with distilled water. Return the pH probe to the storage bottle. 20. Repeat the experiment for the weak acid/strong base titration with the following changes: a. Place 50.0 mL of 0.10 M CH3COOH in a beaker and titrate with 0.20 M NaOH. Use the Manual Entry under the Calibrate Probes menu and enter the slope and intercept for the previous calibration of that probe. Take pH readings every 2 mL up to 20 mL, every 1 mL from 20-30 mL, and every 5 mL from 30-50 mL. Use phenolphthalein as the indicator. b. Store the data using the program name AB2. c. Record the actual concentrations of the CH3COOH and NaOH solutions. 21. Repeat the experiment with the weak base/strong acid titration with the following changes: a. Place 50.0 mL of 0.10 M Tris: Tris(hydroxymethyl)aminomethane ((CH2OH)3CNH2) in a beaker and titrate with 0.20 M HCl. Use the Manual Entry under the Calibrate Probes menu and enter the slope and intercept for the previous calibration of that probe. Take pH measurements every 2 mL up until 20 mL, every 1 mL from 20-30 mL, and then every 5 mL from 30-50 mL. Use bromocresol green as the indicator. b. Store the data using the program name AB3. c. Record the actual concentrations of the TRIS and HCl solutions. 22. After all the titrations are finished, turn off the CBL. Graphical Analysis Graphs: 1. Strong acid/strong base titration. a. Label the X-axis, Volume of NaOH, with the units of ml. b. Label theY-axis column, pH, with the no units. c. Set the number of decimal places to two. d. Click on the graph window. Add Connecting Lines under the Graph Menu. e. Scale both axes from zero. f. Name the graph and data table as HCl-NaOH Titration. g. Click on the ZOOM box at the upper right corner of the graph window to enlarge the graph. h. Print the graph so that it goes down the page. 2. Name the other graphs, CH3COOH-NaOH Titration and Tris-HCl Titration, respectively. Calculations: 1. Calculate the molarity of the strong acid using the molarity of the strong base. Estimate graphically the volume of NaOH required to reach a pH of 7 since this is a strong acid-strong base titration and the equivalence point should be at pH 7. 2. Plot titration curves and submit a set of data for the strong acid/strong base, weak acid/strong base, and weak base/strong acid titrations. Indicate the position of the visual endpoint for the indicators for comparison to the titration curve equivalence point. 3. Use the initial molarities of the weak acid and strong base to calculate the equivalence point volume of the weak acid/strong base titration. 4. Use the initial molarities of the weak base and strong acid to calculate the equivalence point volume of the weak base/strong acid titration. 5. Use the initial pH of the weak acid and weak base solutions to calculate Ka for the weak acid and the Kb for the weak base from this data. 6. Once the equivalence point has been calculated from the known concentrations your acid and base titrants for the weak acid or the weak base, estimate graphically the pH at the half-equivalence point. Calculate Ka for the weak acid and the Kb for the weak base from this data. 7. Estimate graphically the pH at the equivalence point. Calculate Ka for the weak acid and the Kb for the weak base from this data. 8. Average the three values for Ka for the weak acid and the Kb for the weak base and compare average to the accepted value. The Ka for CH3COOH is 1.76 x 10-5. Kb for Tris is 1.20 x 10-6. Options for further data analysis: 1. The CHEMBIO data collection program contains a sub-program CMBDERIV which allows you to view the first and second derivative plots of the pH-volume data which can be used to determine the equivalence points in the titration curves since the equivalence points are inflection points in the graph. a. After the pH-volume data has been collected and the volume data is in L1 and the pH data in L2. Select Quit from the CHEMBIO Main Menu. Press [ENTER]. b. Press [PRGM]. Select CMBDERIV. Press [ENTER]. Prgm CMBDERIV appears. Press [ENTER]. A GRAPH menu appears with four options: 1: pH vs VOLUME: plots the original pH vs volume data 2: FIRST DERIV: plots the first derivative (pH/(mL versus volume 3: SECOND DERIV: plots the second derivative (2pH/(2mL versus volume 4. QUIT: returns to the main screen c. Select FIRST DERIV. Press [ENTER]. Use the arrow keys to locate the maxima, which are the volumes for the equivalence points. Press [ENTER] to return to the Graph menu. A sample graph for the titration of 10 ml approx. 0.10M HCl with approx. 0.100M NaOH appears below.  d. Select SECOND DERIV. Press [ENTER]. Use the arrow keys to locate the crossover points, which are the volumes for the equivalence points. Press [ENTER] to return to the Graph menu. A sample graph for the titration of 10 ml approx. 0.10M HCl with approx. 0.100M NaOH appears below.  (Experiment 25-Titration of a Diprotic Acid)- from Chemistry with CBL by Holmquist, Randall, and Volz from Vernier Software 1995) e. SelectQuit to return to the regular screen. Press [ENTER]. f. Further information about CMBDERIV is available in Appendix C of Chemistry with CBL by Holmquist, Randall, and Volz from Vernier Software 1995 This experiment was adapted from Experiment 24- Acid-Base Titration- from Chemistry with CBL by Holmquist, Randall, and Volz from Vernier Software 1995 Acid-Base Titration Curves NAME:_____________________________________________ PERIOD:__________ LAB PARTNER:_____________________________________ COURSE:_________ Data Table Plot your data using Graphical Analysis. Submit the graphs and data tables for all three titrations, being sure to label both axes. Clearly label which titration is on each graph. HCl-NaOH Titration Molarity of NaOHVolume of NaOH required to reach a pH of 7Moles of NaOH required to reach a pH of 7Moles of HClVolume of HCl (liters)Molarity of HCl (experimental)Molarity of HCl (actual)% ErrorCH3COOH-NaOH Titration Molarity of CH3COOHMolarity of NaOHVolume of NaOH required to reach half-equivalence pointVolume of NaOH required to reach equivalence pointpH at initial pointpH at half-equivalence pointpH at equivalence pointMolarity of the conjugate base (CH3COO-1) at the equivalence pointKa based on initial pointKa based on half-equivalence pointKa based on equivalence pointAverage value of KaAccepted value of Ka% ErrorTris-HCl Titration Molarity of TrisMolarity of HClVolume of HCl required to reach half-equivalence pointVolume of HCl required to reach equivalence pointpH at initial pointpH at half-equivalence pointpH at equivalence pointMolarity of the conjugate acid (TRISH+1) at the equivalence pointKb based on initial pointKb based on half-equivalence pointKb based on equivalence pointAverage value of KbAccepted value of Kb% ErrorShow your calculations on attached sheets. The calculations should show the specific equilibrium setups complete with the initial, change, and equilibrium concentrations. PAGE 1 PAGE 12 Acid-Base Titration Curves web version 02-03 _ei *,057;@BFKMQTUYZ\_egklmoqsth93EHOJQJh93EHOJQJh93EHH*OJQJh93EHH*OJQJ jh93OJQJh935CJOJQJh93H*OJQJh93H*OJQJh936OJQJh935OJQJh93OJQJh938^_fgz      < = > ? @ A ^ _ ` a b c $a$cLdMdc g h  (){|$a$$a$tx46EGBFLNRWY]`aefhkqswh93EHH*OJQJh93EHH*OJQJ jh93OJQJh93H*OJQJh93H*OJQJh93EHOJQJh93OJQJh93EHH*OJQJE6>?45gh#[v(_`$a$8<BCEHJKNOPRSW_abf%&]^)*+-78bcxy)+,jG8 h93EHOJQJU,jG8 h93CJOJQJUVmHnHujh93OJQJUh93H*OJQJ jh93OJQJh93H*OJQJh93OJQJh93EHOJQJ>,089;>ABHLWY^   YZmn,jY8 h93CJOJQJUVmHnHujO8 h93EHOJQJU,jO8 h93CJOJQJUVmHnHujh93OJQJUh93H*OJQJ jh93OJQJh93OJQJh93H*OJQJ8;pq Hno/0;$a$<@JNPQVXY]^_hjkp  IMTVZ]^cefjklܿܿܿܿܿܿܵܿܿܿܿh93EHOJQJh93H*OJQJ jh93OJQJh93H*OJQJh93OJQJjh93OJQJUjY8 h93EHOJQJUG+,-.35 "68TVfh  =>         % ˻ jh93OJQJh93H*OJQJjZ8 h93EHOJQJU,jZ8 h93CJOJQJUVmHnHujh93OJQJUh93OJQJh93H*OJQJ@& ' "","."$$$$&&''(())****e+f+ !$a$$a$ L!M!N!P![!\!]!_!!!!!!!"" " """""(")"*"+"!#)#$$&''(򹰹鹰鹰鹤}titth935CJOJQJh935OJQJjخ8 h93EHOJQJU,jخ8 h93CJOJQJUVmHnHujh93OJQJUh93H*OJQJh93OJQJ!j8 h93EHH*OJQJU,j8 h93CJOJQJUVmHnHuh93H*OJQJjh93H*OJQJU)(((())***[---r/////#0,0Z0b0000000m1u11111Y2\2c2j222223333_3g344 55C5J566T6X66677H8J8`8a8v::::::::::::h935CJ OJQJh93CJOJQJh935CJOJQJh93h93OJQJh935OJQJh935H*OJQJLf+ -!-Z-[----D.E.../a/q/r////!0-0.0d0e0000d1 & Fh^h` Dd1111'2(2l2m222-3333@445L5M556666 7v7777H8H8I8J8a8b899k:l:::8;9;K;M;;;<<8=9=====>> ? ? !:B;J;;;;;;;u<x<<<<<<<<='=/=7=9=====>>? ? ?-@;@[@\@c@d@p@q@u@v@@@@@@AARASA8B?BcBhBnByBBBBBCCC#CCCƼѱh93>*CJOJQJh93CJOJQJh935CJOJQJh93CJOJQJh93>*OJQJh935OJQJh935CJOJQJh93OJQJB ?{?|???!@"@e@f@@@AASATA/BRBBCCCnDoDDDaEbEEEdh !CCCCDDDxDDDDEEHEKE_EkEuEEEEEFFbFiFFFGGGGGGGGHHIIII-I.IiJlJJJ/K0K[K\K_K`KcKdKKKLLYMtMMMMMMMMVNfN¹°¹°¹°°°¹h93H*OJQJh936OJQJh93OJQJh935OJQJh935CJOJQJh93CJOJQJh93>*CJOJQJh935>*CJOJQJEEEE"F#F|F}FFHHHHH@JoJJJKLLMMXMYMtMuMMMN4NfNqNvNNN~OOOOOOOO?S@S\S]SWTXTtTuTTTTT@UAU]U^UUUUUUUUUUUWWWWWWWWWWWWWWWXX!X"X$X%X*XXXXXXXXXXX9Y:YEYLY jDh93OJQJh93CJOJQJh93H*OJQJh93H*OJQJh935OJQJh935CJOJQJh93OJQJJ4N}NNN1OcOdOOOOOPPQQ_R`RRRSSTTUUUUUV$a$ !V+W,WWWXKXXX Y/Y0Y@ZAZCZDZ_[`[a[c[d[[[%\&\\\R]S]$a$LYMYTYUYYYYAZBZNZZZaZbZiZjZZZZa[b[d[[[[[[\#\j\|\]]T]o]^^^^ _ _6_7_E_F_^______________ٶٲ٧h93CJH*OJQJh935CJH*OJQJh935CJOJQJh93h935CJOJQJjZh93OJQJUjh93OJQJUh93OJQJh93CJOJQJh935CJOJQJh935OJQJ8S]o]p]]]]^^^^^^ _ _xlkd$$Ifl0p04 la$If$a$ !$a$ _ _5_6_$IflkdY$$Ifl0p04 la6_7_D_E_$Iflkd$$Ifl0p04 laE_F_]_^_$Iflkd}$$Ifl0p04 la^___~__$Iflkd$$Ifl0p04 la____$Iflkd$$Ifl0p04 la____$Iflkd3$$Ifl0p04 la_____$If$a$lkd$$Ifl0p04 la_____``S`T`i`j`````````````aaaa(a)a*a+aHaIa[a\a^a_arasauavaaaabbbbbbbb+c,cBcCcPcccccdddd d d dҼh930JmHnHu h930Jjh930JUh}gh93OJQJh93h93CJH*OJQJh93CJH*OJQJh93CJOJQJh93CJOJQJC____$IflkdW $$Ifl0p04 la__``$Iflkd $$Ifl0p04 la``R`S`$Iflkd{ $$Ifl0p04 laS`T`h`i`$Iflkd $$Ifl0p04 lai`j```$Iflkd $$Ifl0p04 la````$Iflkd1 $$Ifl0p04 la````$Iflkd $$Ifl0p04 la``aa$IflkdU $$Ifl0p04 laaa'a(a$Iflkd $$Ifl0p04 la(a)aGaHa$Iflkdy$$Ifl0p04 laHaIa]a^a$Iflkd $$Ifl0p04 la^a_ataua$Iflkd$$Ifl0p04 lauava~aa$Iflkd/$$Ifl0p04 laaaaaa$Iflkd$$Ifl0p04 laaaaa$IflkdS$$Ifl0p04 laaaaa$Iflkd$$Ifl0p04 laaa#b$b$Iflkdw$$Ifl0p04 la$b%b9b:b$Iflkd $$Ifl0p04 la:b;bXbYb$Iflkd$$Ifl0p04 laYbZbrbsb$Iflkd-$$Ifl0p04 lasbtbbb$Iflkd$$Ifl0p04 labbbb$IflkdQ$$Ifl0p04 labbbb  !$If$Iflkd$$Ifl0p04 labbcc$Iflkdu$$Ifl0p04 lacc-c.c$Iflkd$$Ifl0p04 la.c/cDcEc$Iflkd$$Ifl0p04 laEcFcNcOc$Iflkd+$$Ifl0p04 laOcPccccccd d d ddFdGdzq$h]ha$h]h&`#$gd}glkd$$Ifl0p04 la d dddddddEdFdGdHdIdJdMdNdh93OJQJh}gh93CJOJQJh}gCJOJQJh}g0JmHnHu h930Jjh930JUh93GdHdIdJdKdLdMdNdgd}g/ =!"#$%ZDd  <  C A2 _&"DND2 `! _&"DNh(lx?KAgNC"X D SYDl,ݺ"V\OiWmdRҴʫz&(S!b կCoG9`<>aRFkq;cX ;QIIMcZ*s9y[z|^Ϥ>DN[dk:SvPt ܞ'[zC(t=O[ް ՗2`+ 1f3$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l0  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrsuvwxyz{~Root Entry5 FeEY,yData tOWordDocument4ObjectPool7 5EY,eEY,_948613703F5EY,5EY,Ole PIC TMETA   !"#$%&'()*+,-./0123457:;>@ABCDEFGHIJKLMNOPRSTUVWXYZ[\]^_`abcdefghijkmpqtvwxyz{|}~T   o  %a .  & Times New Roman-!KTimes New Roman-!a Symbol-!=Times New Roman-!H "Times New Roman-!3+Times New Roman-!O /Symbol-!+9Times New Roman-!1=Symbol-![!]BTimes New Roman-!A JSymbol-!-RTimes New Roman-!1VSymbol-![E!][Times New Roman-!HA 7Symbol-![!2!]!G "-^ & 's-%a a%dxpr PICT  CompObj6YObjInfo 8Equation Native 9 %a"%a currentpoint ",Times .%a%a+K + a, Symbol (=( "H @+ 3 ( /O j(9+B)1 aa([@)%]%a%a( JA (R-)1 aaj(E[h)]%a%ag( 7HAaae@(!2[c)]"A/MTsave save def 40 dict begin currentpoint 3 -1 roll sub neg 3 1 roll sub 3104 div 1184 3 -1 roll exch div scale currentpoint translate 64 55 translate /thick 0 def /th { dup setlinewidth /thick exch def } def 16 th 882 582 moveto 2115 0 rlineto stroke /cat { dup length 2 index length add string dup dup 5 -1 roll exch copy length 4 -1 roll putinterval } def /ff { dup FontDirectory exch known not { dup dup length string cvs (|______) exch cat dup FontDirectory exch known {exch} if pop } if findfont } def /fs 0 def /cf 0 def /sf {exch dup /fs exch def dup neg matrix scale makefont setfont} def /f1 {ff dup /cf exch def sf} def /ns {cf sf} def /sh {moveto show} def 384 /Times-Italic f1 (K) 5 681 sh (H) 1034 355 sh (O) 1468 355 sh (A) 2317 355 sh (HA) 1697 980 sh 224 ns (a) 294 777 sh 384 /Symbol f1 (=) 564 681 sh /f3 {ff 3 -1 roll .001 mul 3 -1 roll .001 mul matrix scale makefont dup /cf exch def sf} def 384 1000 1619 /Symbol f3 ([) 881 417 sh (]) 2065 417 sh ([) 2156 417 sh (]) 2871 417 sh 384 1000 1223 /Symbol f3 ([) 1544 1003 sh (]) 2208 1003 sh 224 /Symbol f1 (+) 1781 183 sh (-) 2587 183 sh 224 /Times-Roman f1 (3) 1332 451 sh (1) 1903 183 sh (1) 2709 183 sh end MTsave restore dMATHW K a =H 3 O +1 []A -1 []HA[]FMicrosoft Equation Editor 2.0DNQE Equation.2 K a =H 3 O +1 []A -1 []HA[]T3 3  '  &Y ._948639567F5EY,5EY,Ole <PIC  =TMETA ?X  & Times New Roman-!KTimes New Roman-!b Symbol-!=Times New Roman-!OH Symbol-!-3Times New Roman-!17Symbol-![!];Times New Roman-!HA CSymbol-![ >!] STimes New Roman-!A2Symbol-!-:Times New Roman-!1>Symbol-![!-!]!B "-V & 'sh&Ydxpr  &Y"&Y currentpoint ",Times .+K +b, Symbol (=( OH (3-)1  ([)]( CHA ( >[)](2A (:-)1  (!-[)]"9/MTsave save def 40 dict begin currentpoint 3 -1 roll sub neg 3 1 roll sub 2848 div 1216 3 -1 rolPICT QCompObjlYObjInfonEquation Native ol exch div scale currentpoint translate 64 45 translate /thick 0 def /th { dup setlinewidth /thick exch def } def 16 th 864 560 moveto 1859 0 rlineto stroke /cat { dup length 2 index length add string dup dup 5 -1 roll exch copy length 4 -1 roll putinterval } def /ff { dup FontDirectory exch known not { dup dup length string cvs (|______) exch cat dup FontDirectory exch known {exch} if pop } if findfont } def /fs 0 def /cf 0 def /sf {exch dup /fs exch def dup neg matrix scale makefont setfont} def /f1 {ff dup /cf exch def sf} def /ns {cf sf} def /sh {moveto show} def 384 /Times-Italic f1 (K) 5 659 sh (OH) 991 355 sh (HA) 2086 355 sh (A) 1557 963 sh 224 ns (b) 268 755 sh 384 /Symbol f1 (=) 530 659 sh /f3 {ff 3 -1 roll .001 mul 3 -1 roll .001 mul matrix scale makefont dup /cf exch def sf} def 384 1000 1619 /Symbol f3 ([) 863 417 sh (]) 1842 417 sh 384 1000 1223 /Symbol f3 ([) 1933 378 sh (]) 2597 378 sh 384 1000 1619 /Symbol f3 ([) 1396 1025 sh (]) 2063 1025 sh 224 /Symbol f1 (-) 1582 183 sh (-) 1803 791 sh 224 /Times-Roman f1 (1) 1704 183 sh (1) 1925 791 sh end MTsave restore dMATH{c K b =OH -1 []HA[]A -1 [],FMicrosoft Equation Editor 2.0DNQE Equation.2{ K b =OH -1 []HA[]A -1 []T!WdH!W   *E .  & Times New Roman-!K_948706905F5EY,5EY,Ole rPIC sTMETA u Times New Roman-!aSymbol-!(!)Times New Roman-!KTimes New Roman-!b&Symbol-!(!)+Symbol-!=2Times New Roman-!H FTimes New Roman-!3PTimes New Roman-!O TSymbol-!+^Times New Roman-!1aSymbol-![A!]fTimes New Roman-!A nSymbol-!-wTimes New Roman-!1{Symbol-![i!]Times New Roman-!HA![Symbol-!["V!]"k "-BSymbol-! ;! $;! ;! ! $! Times New Roman-!HA Symbol-![!]Times New Roman-!OH Symbol-!-Times New Roman-!1Symbol-![!]Times New Roman-!A"Symbol-!-Times New Roman-!1Symbol-![$!]$Symbol-! ! $! ! ! $! !=Times New Roman-!HTimes New Roman-!3Times New Roman-!OSymbol-!+Times New Roman-!1Symbol-![!]Times New Roman-!OH Symbol-!-Times New Roman-!1 Symbol-![!]%Symbol-!=,Times New Roman-!K6Times New Roman-!w? & ' *Edxpr  *E"*E currentpoint ",Times .+K + a, Symbol  (())) K + b  (()))=( FH + PICT  CompObjYObjInfoEquation Native 3 ( TO (^+)1  (A[)%]( nA (w-)1  (i[)](![HA ("V[)]"BA( ; * (; (  * ( ( HA ([)]( OH (-)1  ([)!]("A (-)1  ($[)]";(  * ( (  * ( ) =) H + 3 (O (+)1  ([)%]( OH (-)1  ([) ](,=) K + w/MTsave save def 40 dict begin currentpoint 3 -1 roll sub neg 3 1 roll sub 10400 div 1344 3 -1 roll exch div scale currentpoint translate 64 55 translate /thick 0 def /th { dup setlinewidth /thick exch def } def 16 th 2048 614 moveto 2115 0 rlineto stroke 4557 614 moveto 1907 0 rlineto stroke /cat { dup length 2 index length add string dup dup 5 -1 roll exch copy length 4 -1 roll putinterval } def /ff { dup FontDirectory exch known not { dup dup length string cvs (|______) exch cat dup FontDirectory exch known {exch} if pop } if findfont } def /fs 0 def /cf 0 def /sf {exch dup /fs exch def dup neg matrix scale makefont setfont} def /f1 {ff dup /cf exch def sf} def /ns {cf sf} def /sh {moveto show} def 384 /Times-Italic f1 (K) 130 713 sh (K) 866 713 sh (H) 2200 387 sh (O) 2634 387 sh (A) 3483 387 sh (HA) 2863 1012 sh (HA) 4709 387 sh (OH) 5439 387 sh (A) 5250 1039 sh (H) 7192 713 sh (O) 7626 713 sh (OH) 8442 713 sh (K) 9866 713 sh 224 ns (a) 419 809 sh (b) 1153 809 sh (w) 10155 809 sh /f3 {ff 3 -1 roll .001 mul 3 -1 roll .001 mul matrix scale makefont dup /cf exch def sf} def 384 1000 1382 /Symbol f3 (\() -20 742 sh (\)) 600 742 sh (\() 716 742 sh (\)) 1334 742 sh 384 /Symbol f1 (=) 1548 713 sh 384 1000 1619 /Symbol f3 ([) 2047 449 sh (]) 3231 449 sh ([) 3322 449 sh (]) 4037 449 sh 384 1000 1223 /Symbol f3 ([) 2710 1035 sh (]) 3374 1035 sh 384 /Symbol f1 (\346) 1851 355 sh (\350) 1851 1116 sh (\347) 1851 806 sh (\366) 4173 355 sh (\370) 4173 1116 sh (\367) 4173 806 sh 384 1000 1223 /Symbol f3 ([) 4556 410 sh (]) 5220 410 sh 384 1000 1619 /Symbol f3 ([) 5311 449 sh (]) 6338 449 sh ([) 5089 1101 sh (]) 5804 1101 sh 384 /Symbol f1 (\346) 4360 355 sh (\350) 4360 1116 sh (\347) 4360 806 sh (\366) 6474 355 sh (\370) 6474 1116 sh (\367) 6474 806 sh (=) 6754 713 sh 384 1000 1619 /Symbol f3 ([) 7039 775 sh (]) 8223 775 sh ([) 8314 775 sh (]) 9341 775 sh 384 /Symbol f1 (=) 9543 713 sh 224 ns (+) 2947 215 sh (-) 3753 215 sh (-) 6054 215 sh (-) 5520 867 sh (+) 7939 541 sh (-) 9057 541 sh 224 /Times-Roman f1 (3) 2498 483 sh (1) 3069 215 sh (1) 3875 215 sh (1) 6176 215 sh (1) 5642 867 sh (3) 7490 809 sh (1) 8061 541 sh (1) 9179 541 sh end MTsave restore dMATH6I K a ()K b ()=H 3 O +1 []A -1 []HA[]()HA[]OH -1 []A -1 []()=H 3 O +1 []OH -1 []=K wFMicrosoft Equation Editor 2.0DNQE Equation.2 K a ()K b ()=H 3 O +1 []A -1 []HA[]()HA[]OH -1 []A -1 []()=H 3 O +1 []OH -1 []=K wTp _948707162$F5EY,5EY,Ole PIC  TMETA Xp  '  %e .  & Times New Roman-!KTimes New Roman-!b Symbol-!=Times New Roman-!BH "Symbol-!+     !"%'()*+,-./0123456789;<=>?@ABCDEFGHIJKLMNOPQRSTUWZ[^`abcdefghijklmnopqrstuvwxyz{|}~4Times New Roman-!17Symbol-![!]=Times New Roman-!OH CSymbol-!-WTimes New Roman-!1ZSymbol-![?!]_Times New Roman-!B =Symbol-![!8!]!D "-b & ' s%edxpr  %e"%e currentpoint ",Times .+K + b, Symbol (=( "BH (4+)1  ([) ]( COH (W-)1  (?[) ]( =BPICT "CompObjYObjInfo!#Equation Native   (!8[) ]"E/MTsave save def 40 dict begin currentpoint 3 -1 roll sub neg 3 1 roll sub 3232 div 1184 3 -1 roll exch div scale currentpoint translate 64 55 translate /thick 0 def /th { dup setlinewidth /thick exch def } def 16 th 880 582 moveto 2253 0 rlineto stroke /cat { dup length 2 index length add string dup dup 5 -1 roll exch copy length 4 -1 roll putinterval } def /ff { dup FontDirectory exch known not { dup dup length string cvs (|______) exch cat dup FontDirectory exch known {exch} if pop } if findfont } def /fs 0 def /cf 0 def /sf {exch dup /fs exch def dup neg matrix scale makefont setfont} def /f1 {ff dup /cf exch def sf} def /ns {cf sf} def /sh {moveto show} def 384 /Times-Italic f1 (K) 5 681 sh (BH) 1033 355 sh (OH) 2108 355 sh (B) 1903 980 sh 224 ns (b) 292 777 sh 384 /Symbol f1 (=) 562 681 sh /f3 {ff 3 -1 roll .001 mul 3 -1 roll .001 mul matrix scale makefont dup /cf exch def sf} def 384 1000 1619 /Symbol f3 ([) 879 417 sh (]) 1889 417 sh ([) 1980 417 sh (]) 3007 417 sh 384 1000 1223 /Symbol f3 ([) 1749 1003 sh (]) 2136 1003 sh 224 /Symbol f1 (+) 1605 183 sh (-) 2723 183 sh 224 /Times-Roman f1 (1) 1727 183 sh (1) 2845 183 sh end MTsave restore dMATH{c K b =BH +1 []OH -1 []B[]FMicrosoft Equation Editor 2.0DNQE Equation.2{ K b =BH +1 []OH -1 []B[]T| o  &S .  & _948738468,&F5EY,5EY,Ole #PIC %($TMETA &Times New Roman-!KTimes New Roman-!a Symbol-!=Times New Roman-!H !Times New Roman-!3 +Times New Roman-!O -Symbol-!+7Times New Roman-!1:Symbol-![!]?Times New Roman-!B FSymbol-![ A!] NTimes New Roman-!BH+Symbol-!+<Times New Roman-!1@Symbol-![!&!]!D "-Q & 'le&Sdxpr  &S"&S currentpoint ",Times .+K +a, Symbol (=( !H ) 3 )O (7+)1  ([)"]( FB ( A[) ](+BH (<+)1  (!&[)]"4/MTsave save defPICT '*:CompObjVYObjInfo)+XEquation Native Y 40 dict begin currentpoint 3 -1 roll sub neg 3 1 roll sub 2656 div 1216 3 -1 roll exch div scale currentpoint translate 64 45 translate /thick 0 def /th { dup setlinewidth /thick exch def } def 16 th 866 560 moveto 1694 0 rlineto stroke /cat { dup length 2 index length add string dup dup 5 -1 roll exch copy length 4 -1 roll putinterval } def /ff { dup FontDirectory exch known not { dup dup length string cvs (|______) exch cat dup FontDirectory exch known {exch} if pop } if findfont } def /fs 0 def /cf 0 def /sf {exch dup /fs exch def dup neg matrix scale makefont setfont} def /f1 {ff dup /cf exch def sf} def /ns {cf sf} def /sh {moveto show} def 384 /Times-Italic f1 (K) 5 659 sh (H) 1018 355 sh (O) 1407 355 sh (B) 2201 355 sh (BH) 1323 963 sh 224 ns (a) 270 755 sh 384 /Symbol f1 (=) 532 659 sh /f3 {ff 3 -1 roll .001 mul 3 -1 roll .001 mul matrix scale makefont dup /cf exch def sf} def 384 1000 1619 /Symbol f3 ([) 865 417 sh (]) 1956 417 sh 384 1000 1223 /Symbol f3 ([) 2047 378 sh (]) 2434 378 sh 384 1000 1619 /Symbol f3 ([) 1169 1025 sh (]) 2131 1025 sh 224 /Symbol f1 (+) 1696 183 sh (+) 1871 791 sh 160 /Times-Roman f1 (3) 1325 355 sh 224 ns (1) 1818 183 sh (1) 1993 791 sh end MTsave restore dMATH3 K a =H 3 O +1 []B[]BH +1 []FMicrosoft Equation Editor 2.0DNQE Equation.2 K a =H 3 O +1 []B[]BH +1 []T "  "   (< ._948743896.F5EY,5EY,Ole \PIC -0]TMETA _   & Times New Roman-!KTimes New Roman-!bSymbol-!(!)Times New Roman-!KTimes New Roman-!a#Symbol-!(!)(Symbol-!=/Times New Roman-!BH DSymbol-!+UTimes New Roman-!1YSymbol-![?!]^Times New Roman-!OH dSymbol-!-wTimes New Roman-!1{Symbol-![`!]Times New Roman-!B ^Symbol-![!Y!]!e "-@Symbol-! 9! "9! 9! ! "! Times New Roman-!H Times New Roman-!3 Times New Roman-!O Symbol-!+Times New Roman-!1Symbol-![!]Times New Roman-!B Symbol-![!]Times New Roman-!BH Symbol-!+Times New Roman-!1Symbol-!["!]"Symbol-! ! "! ! ! "! !=Times New Roman-!HTimes New Roman-!3Times New Roman-!OSymbol-!+Times New Roman-!1Symbol-![!]Times New Roman-!OHSymbol-!-Times New Roman-!1Symbol-![!]Symbol-!="Times New Roman-!K-Times New Roman-!w5 & ' (<dxpr  (<"(< currentpoint ",Times .+K +PICT /2 CompObjYObjInfo13Equation Native b, Symbol  (()))K +a  (()))=( DBH (U+)1  (?[)]( dOH (w-)1  (`[)]( ^B (!Y[) ]"@B( 9 * (9 (  * ( ( H ) 3 )O (+)1  ([)#]( B ([) ]( BH (+)1  ("[)]"5(  * ( (  * ( ) =)H +3 (O (+)1  ([)"](OH (-)1  ([)]("=) K +w/MTsave save def 40 dict begin currentpoint 3 -1 roll sub neg 3 1 roll sub 10112 div 1280 3 -1 roll exch div scale currentpoint translate 64 45 translate /thick 0 def /th { dup setlinewidth /thick exch def } def 16 th 1984 592 moveto 2157 0 rlineto stroke 4535 592 moveto 1720 0 rlineto stroke /cat { dup length 2 index length add string dup dup 5 -1 roll exch copy length 4 -1 roll putinterval } def /ff { dup FontDirectory exch known not { dup dup length string cvs (|______) exch cat dup FontDirectory exch known {exch} if pop } if findfont } def /fs 0 def /cf 0 def /sf {exch dup /fs exch def dup neg matrix scale makefont setfont} def /f1 {ff dup /cf exch def sf} def /ns {cf sf} def /sh {moveto show} def 384 /Times-Italic f1 (K) 130 691 sh (K) 816 691 sh (BH) 2137 387 sh (OH) 3164 387 sh (B) 2959 992 sh (H) 4687 387 sh (O) 5102 387 sh (B) 5896 387 sh (BH) 5005 995 sh (H) 7015 691 sh (O) 7401 691 sh (OH) 8169 691 sh (K) 9577 691 sh 224 ns (b) 393 787 sh (a) 1081 787 sh (w) 9842 787 sh /f3 {ff 3 -1 roll .001 mul 3 -1 roll .001 mul matrix scale makefont dup /cf exch def sf} def 384 1000 1382 /Symbol f3 (\() -20 720 sh (\)) 550 720 sh (\() 666 720 sh (\)) 1238 720 sh 384 /Symbol f1 (=) 1468 691 sh 384 1000 1619 /Symbol f3 ([) 1983 449 sh (]) 2945 449 sh ([) 3036 449 sh (]) 4015 449 sh 384 1000 1223 /Symbol f3 ([) 2805 1015 sh (]) 3192 1015 sh 384 /Symbol f1 (\346) 1787 355 sh (\350) 1787 1072 sh (\347) 1787 806 sh (\366) 4151 355 sh (\370) 4151 1072 sh (\367) 4151 806 sh 384 1000 1619 /Symbol f3 ([) 4534 449 sh (]) 5651 449 sh 384 1000 1223 /Symbol f3 ([) 5742 410 sh (]) 6129 410 sh 384 1000 1619 /Symbol f3 ([) 4851 1057 sh (]) 5813 1057 sh 384 /Symbol f1 (\346) 4338 355 sh (\350) 4338 1072 sh (\347) 4338 806 sh (\366) 6265 355 sh (\370) 6265 1072 sh (\367) 6265 806 sh (=) 6561 691 sh 384 1000 1619 /Symbol f3 ([) 6862 753 sh (]) 7950 753 sh ([) 8041 753 sh (]) 9020 753 sh 384 /Symbol f1 (=) 9238 691 sh 224 ns (+) 2685 215 sh (-) 3755 215 sh (+) 5391 215 sh (+) 5553 823 sh (+) 7690 519 sh (-) 8760 519 sh 224 /Times-Roman f1 (1) 2807 215 sh (1) 3877 215 sh (3) 4992 387 sh (1) 5513 215 sh (1) 5675 823 sh (3) 7289 787 sh (1) 7812 519 sh (1) 8882 519 sh end MTsave restore dMATH6$ K b ()K a ()=BH +1 []OH -1 []B[]()H 3 O +1 []B[]BH +1 []()=H 3 O +1 []OH -1 []=K wFMicrosoft Equation Editor 2.0DNQE Equation.2 K b ()K a ()=BH +1 []OH -1 []B[]()H 3 O +1 []B[]BH +1 []()=H 3 O +1 []OH -1 []=K w55p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p4$$If!vh55p#v#vp:V l055p41TableB_SummaryInformation(6DocumentSummaryInformation8,CompObjjOh+'0x   ( 4 @ LX`hpAcid-Base Titrationcidncssmascss Normal.dotiroser.d2seMicrosoft Word 10.0@F#@@{@8Y,@8Y, BN՜.+,0 hp|   B/[{ Acid-Base Titration Title  FMicrosoft Word Document MSWordDocWord.Document.89q<@< NormalCJ_HmH sH tH D@D Heading 1$@&5CJOJQJDA@D Default Paragraph FontVi@V  Table Normal :V 44 la (k@(No List <>@< Title$a$5CJOJQJ4@4 Header  !4 @4 Footer  !.)@!. Page Number:B@2: Body Text CJOJQJ>P@B> Body Text 2 5OJQJ@"@@ Caption$a$5CJOJQJN\N\^_fgz<=>?@A^_`abcgh(){|6 > ? 4 5 g h # [ v(_`;pq Hno/0;&',. !!""""e#f# %!%Z%[%%%%D&E&&&'a'q'r''''!(-(.(d(e((((d))))'*(*l*m***-++++@,,-L-M--.... /v////H0I0J0a0b011k2l2228393K3M333448595555566 7 7{7|777!8"8e8f88899S9T9/:R::;;;n<o<<<a=b=====">#>|>}>>@@@@@@BoBBBCDDEEXEYEtEuEEEF4F}FFF1GcGdGGGGGHHII_J`JJJKKLLMMMMMN+O,OOOPKPPP Q/Q0Q@RARCRDR_S`SaScSdSSS%T&TTTRUSUoUpUUUUVVVVVV W W W5W6W7WDWEWFW]W^W_W~WWWWWWWWWWWWWWWWXXXRXSXTXhXiXjXXXXXXXXXXYYY'Y(Y)YGYHYIY]Y^Y_YtYuYvY~YYYYYYYYYYYYY#Z$Z%Z9Z:Z;ZXZYZZZrZsZtZZZZZZZZZZ[[[-[.[/[D[E[F[N[O[P[[[[[[ \ \ \\F\G\L\O\000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V0 @0 {0$@0@0@0@0@0@0@0 0KMORt, (:CfNLY_ dNd379:<=?@DFHKTqc f+d1H8 ?E4NVS] _6_E_^______`S`i````a(aHa^auaaaaa$b:bYbsbbbbc.cEcOcGdNd468;>ABCEGIJLMNOPQRSUVWXYZ[\]^_`abcdefghijklmnoprMd5 +-(*N\:::::: R!!_e .3X[%(36CG-/358:CENPhjoquw! ) 1 4 9 C Z ^ C E O Q Z \ t v 9 ; T V c e `c-/IK[]'-=?FIKNZ\ln  JLWYgi 14"$!!""""""""""C#M#w#|###########/$4$M$O$f$j$$$$$$$$$$$%%K%O%v&}&G(R(0000336484=4A4444444Q5S5W5[5q5v566C6H6Y6c6}666666F7H7L7P77777 8 888v9z9@@/A3AAAAAAAAAB BBBBB$C&C1C5C7C;CD@DJDLDXDZDmDoD{D}DDD EEEEEEFFGGGGH HBHFHKKMMOORPTPsPuPPPRR,R0R3S6SKSOSSSSSSSSSSSTTTTTTU"U1U5U;UBUVVVVVVVVWW@WCWPWSW_WgWkWnWWWWWWWWWWWWW)X-XXXYYYYYYYYYYYYYYtZ|Z[@\E\K\L\O\ "ABcd~`e G L ; ? ;=HJ%&&&e'o'1+6+D,I,-----.//|//*42488>>@@PHXHtUvUUU[\F\K\L\O\3333333333333333333333333333333333[[[\ \\4\E\G\K\O\[@\E\K\L\O\CompaqCompaqroserroserroserroserroserroserroserroser?nn hh^h`o(.?nn93}gVVVVV W W W5W6W7WDWEWFW]W^W_W~WWWWWWWWWWWWWWWWXXXRXSXTXhXiXjXXXXXXXXXXYYY'Y(Y)YGYHYIY]Y^Y_YtYuYvY~YYYYYYYYYYYYY#Z$Z%Z9Z:Z;ZXZYZZZrZsZtZZZZZZZZZZ[[[-[.[/[D[E[F[N[O[P[[[K\O\KV}Y@\\DEGAS\ChemistryStaffNe00:winspoolHP LaserJet 4050 Series PCL 6\\DEGAS\ChemistryStaff?dXer.HP LaserJet 4050 Series PCL 62xUA0d0_شqmp2Ҫnnoڲ-mvaaj{\;-x 2 (Fk@ R;&b:O+-L;Gx=uWcD\BVZNfHwʭN?r>'g)TUCV4l:b@lN!}ZgĮ}C+*\V2ü#Ґ^$&LE-!Ō-ׂ[ T/nYX38> )3V*Z#ǯ?QM: qPQN CCqu'a~xZQveElBU`/kY;=#N@tf\\DEGAS\ChemistryStaff?dXer.HP LaserJet 4050 Series PCL 62xUA0d0_شqmp2Ҫnnoڲ-mvaaj{\;-x 2 (Fk@ R;&b:O+-L;Gx=uWcD\BVZNfHwʭN?r>'g)TUCV4l:b@lN!}ZgĮ}C+*\V2ü#Ґ^$&LE-!Ō-ׂ[ T/nYX38> )3V*Z#ǯ?QM: qPQN CCqu'a~xZQveElBU`/kY;=#N@tf[[zW[[N\@UnknownGz Times New Roman5Symbol3& z Arial3z Times"1h3v3v R BN/ BN/!4[[2H?}gAcid-Base Titrationncssmroser