How to force Intune
configuration
scripts to re-run

By Ben, In Intune Powershell
10,110 views

Hi All and welcome.

As | am about to reach the pointy end of a project to implement
an Intune MDM solution for a client, I've taken a moment to take
stock of the lessons learned, problems faced and for the most
part; the cool things I've run into and decided now is the time to
start writing about them! Hopefully you find my posts

interesting and | hope to keep the page updated fairly regularly.

Anyway, lets move onto the fun stuff!

As | mentioned, I've been working on an Intune MDM solution for
a client who currently has no other management solutions in
place (ho SCCM, no mobile device management, nothing, nada,
zilch. you get the idea) which was daunting to say the least, but
it did give us a great opportunity to provide an entirely cloud-
centric management solution (absolutely no on-premise

requirements — devices are not domain-joined?).

https://powers-hell.com/author/dangerben/
https://powers-hell.com/category/intune/
https://powers-hell.com/category/powershell/

Because of these design decisions, we have had to be very
creative with how we deploy applications & how we can
replicate group policy configurations — what that essentially
means is that we relied very heavily on the Intune

Management Extension — previously known as sidecar.

Because Intune currently only allows single file line-of-business
applications, for anything more complex than that (read: most
legacy LOB applications), handling the installation using
Powershell via the Intune Management Extension is the best

solution.

Now, while | am ecstatic that there is a script deployment
solution within Intune; there is definitely challenges with the
current implementation — case in point, the client reached out
to me and asked me a very good question the other day... “how
can we re-run the script if the script returned a successful

result, but the expected result of the script was not achieved??”

A quick explanation — The way that the Intune Management
Extension handles execution of scripts is that it will attempt to
run the script until it successfully completes. If it fails, it will
attempt again in an hour (the Intune Management Extension
synchronizes to Intune once every hour), however if for any
reason you want a script to re-run, the only obvious solution is
to delete the configuration item from within the Intune portal,
recreate the configuration item and restart the
IntuneManagementExtension service on the local device (as

well as any other device or user that is in the assignment group)

If you are shaking your head and saying “there has to be a

better way”, then read on for the solution!

The Intune Management Extension stores details of

configuration scripts that have executed in a specific registry

location:

HKLM: \ SOFTWARE \ Microsoft\ IntuneManagementExtension \ Policies
If you have a look there, you'll see a list of executed items — all

with unique GUIDs.

https://docs.microsoft.com/en-us/intune/intune-management-extension

E [Registry Editor

| File Edit View Favorites Help
wel

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\MicrosoftiIntuneManagementExtension

: InputPersonalization

> Internet Account Manager
5 Internet Domains
> Internet Explorer
v IntuneManagementExtension
v | | Policies
v | | Bccbiebeb-3f35-481c-Bfbf-Bcac255d2385

- 1dc5f1a0-8%0ed-41c7-8644-97d39caSf178
3cfledd1-83b7-4d4b-8d77-ae705cecd1d7
523bb4cc-891a-4a23-8a23-006247b0ed33
69760c13-d541-4386-aa95-8aaed 14ef14a
6d24fec?-21a2-4463-9288-c59191194a08
757731 a2-dbd3-4fa%-ael8-d480e8c32dbf
Bfel1cac-856b-4fa2-88f3-d1bb 70098943
928dfa06-8199-4557-be9e-728e760f8266
9763c567-ac31-48d2-9b5f-5d2342ebad0b
98d3ccdB-3f27-486b-8675-2b2a8d0874c2

Inside each folder, you will see a breakdown of what is stored

locally.

nsionyHolicies\docbcben-3t33-48 | C-8rbr-ScacdI12dL 38 243 b4oc-8Y 1 a-dad - dad3-Udndd fbled 53

MName Type Data

b (Default) REG_SZ {value not set)

e DownloadCount REG_DWORD Osc0DODD00T (1)

%|ErrorCode REG_DWORD 0x0D00D00D (D)

W8 InternalVersion REG_DWORD OecD000000T (1)

ab]LastUpdatedTim... REG_SZ 13/04/2018 2:30:50 AM

b PolicyHash REG_SZ wEb/dDIw/s3e3frlVNfeOSKPIwDuORLYLE Y holsk8=

ab|Result REG_5Z Success

abiR, | REG_SZ WARNING:Moving to 64bit Transcript started, output file is CAPF...

As you can see above, the script has downloaded once, there
are no errors, and even cooler — the ResultDetails property has

the full transcript of the script.

Now, the downside here is that aside from digging into the
ResultDetails item property, there isn't an easy way to decipher
which configuration item you are looking at. If you can figure
out how to identify the script from the ResultDetails item
property, then all that is required to trigger a re-run is to delete
that item from the registry and restart the

IntuneManagementExtension service on the local device.

Now we are getting somewhere.

Because the configuration items are stored in keys hamed with
GUIDs, this should give anyone with experience with Intune or
Azure in general, that if we can get a GUID id, then we should be

able to extract more data by using the Graph APL.

Alright, lets break down the solution.
First up — lets connect to the API...

In the code below | am using a module written by Jan Egil Ring
to allow unattended authentication // non-interactive
authentication against the generic Intune client application. 'm
also checking to see if we have already authenticated and if so,
only requesting a new token if the existing one has expired
which is helpful for this scenario where the script may need to

be run multiple times while doing functional testing / validation.

. function Get-IntuneToken {
' param (
$credential,
$token
)
if (!(Get-Module -Name MSGraphIntuneManagement -ListAvailable -Err
Install-Module -Name MSGraphIntuneManagement -Scope CurrentUse
}
$GMTDate = [System.TimeZoneInfo]::ConvertTimeBySystemTimeZoneId($(
if ($token -ne $null) {
$tokenExpDate = ([System.DateTimeOffset]$token.ExpiresOn).Date
if ($GMTDate -le $tokenExpDate) {
write-host "Token is still fresh." -ForegroundColor Green

return $token

}
#token is technically expired or never existed.
}
Write-Host "Token is stale or never existed." -ForegroundColor Red

$clientId = "d1ddf@e4-d672-4dae-b554-9d5bdfd93547"
$token = Get-MSGraphAuthenticationToken -Credential $Credential -C
return $token
}
' if (!($cred)) {
. $cred = Get-Credential

$token = Get-IntuneToken -credential $cred -token $token
< 3

Reset-SidecarScript.ps1 hosted with @ by GitHub view raw

Once we have our auth token, lets capture some handy
information to identify each script stored in the

IntuneManagementExtension registry hive.

https://gist.github.com/tabs-not-spaces/1a733e649beb72ff62a68a5270620db2/raw/bcb08f52a46c5d8f876fa957d77f7aa87e59a0d7/Reset-SidecarScript.ps1
http://www.powershell.no/azure,graph,api/2017/10/30/unattended-ms-graph-api-authentication.html
https://gist.github.com/tabs-not-spaces/1a733e649beb72ff62a68a5270620db2#file-reset-sidecarscript-ps1
https://github.com/

First up, lets get some info about the device.

$deviceProps = (invoke-RestMethod -Method Get -Uri "https://graph.micro
»

Reset-SidecarScript.ps1 hosted with @ by GitHub view raw

Next, using the device id captured above, lets grab some info

about the registered user of that device.

$owner = (Invoke-RestMethod -Method Get -Uri "https://graph.microsoft.c:
»

Reset-SidecarScript.ps1 hosted with @ by GitHub view raw

and finally, lets capture the script properties from Intune.

$sidecarScripts = (Invoke-RestMethod -Method Get -Uri "https://graph.mi
»

Reset-SidecarScript.ps1 hosted with @ by GitHub view raw

Here's an example of the data returned from the above API calll.

PS C:\WINDOWS\system32> $sidecarScripts | where {$_.displayName -Tike "Configure Schedule="}

id 1 9763¢567-ac31-48d2-9b5f-5d2342ebad0b
displayName : Configure Scheduled Task for LogonScript

description : Scheduled Task creation and download of logon script to
run5chedule =

scriptContent =

createdDateTime : 2018-04-08T23:38:45.42323947

lastModifiedDateTime 4-16T01:20:10. 97182197

runAsAccount

enforceSignatureCheck

f1leName : ConfigureScheduledTask. psl

Now, using the user id GUID, we simply iterate through each
script object stored in Intune, match it up with the policy objects

stored locally and present the combined data to the end user.

$deviceScriptStatus = @()
. foreach ($script in $sidecarScripts) {
. $tmpItem = Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\IntuneManage
if ($tmpItem) {
$tmpObj = [PSCustomObject]@{

displayName = $script.displayName

fileName = $script.fileName
Result = $tmpItem.Result
id = $script.id

psPath = $tmpItem.PSPath

}
$deviceScriptStatus += $tmpObj

https://gist.github.com/tabs-not-spaces/b9833b8570eed15c38d4b4bd5511f716/raw/6be4b4997de4516100d4cb8194276a1687659310/Reset-SidecarScript.ps1
https://gist.github.com/tabs-not-spaces/10b6925163a665f88079c2110af466f0/raw/3b8793ad94426a84fef14a65978332e75668a176/Reset-SidecarScript.ps1
https://gist.github.com/tabs-not-spaces/9804f9551abcc3329f2e665861dd2cb0/raw/d151a0a2f7a13cb5745445fde4dfad439194aa21/Reset-SidecarScript.ps1
https://gist.github.com/tabs-not-spaces/b9833b8570eed15c38d4b4bd5511f716#file-reset-sidecarscript-ps1
https://github.com/
https://gist.github.com/tabs-not-spaces/10b6925163a665f88079c2110af466f0#file-reset-sidecarscript-ps1
https://github.com/
https://gist.github.com/tabs-not-spaces/9804f9551abcc3329f2e665861dd2cb0#file-reset-sidecarscript-ps1
https://github.com/

}
$intuneScriptToRerun = $deviceScriptStatus | Select-Object displayName
< »

Reset-SidecarScript.ps1 hosted with @ by GitHub view raw

Here’s the example result of the above snippet — an interactive
out-gridview datatable that will pass back any selected objects

to the powershell window.

NEYISL Y LI

B g Intune Script Cenfiguration

m |Fiifer
displayMName . | fileName | Result | id
Access RT 2013 Accessnstallps1 Success bff596e7-9115-48b6-bcba-e068e5dd20fe
Configure Bitlocker Enable_BitLocker.ps1 Failed 757731a2-dbd3-4fa0-ae08-d480e8c32dbf

| Configure Scheduled Task for LogenScript ConfigureScheduledTaskps1 Success 9763c567-ac31-48d2-9b5f-5d2342ebad0b

Create Local Admin Account CreatelocalfdminAccount.ps1 Success 523bb4cc-891a-4a25-8a23-096247b0ed33
Install dotNet3.5 Get-NetFx3.ps1 Success b0177%4e-5457-435b-bee2-288a9%82852
M35 Teams Teamslnstall.ps1 Success 928dfa06-5199-4557-beQe-728760f8266
OneDrive Enable ADAL EnableADALps1 Success fodc(484-0ee7-4247-878f- 7680980053
Onelrive Enable AutoConfig EnableAutoConfig.ps1 Success 3cf2edd1-83b7-4d4b-8d77-ae705ceed1d7
Sophos AV Endpoint Sophosinstall.ps1 Success 939454ac-085c-4ac8-ab56-785a905b6666
Win10 Update Product Key updateProductkey.ps1 Success 35154144-331-4004-babf-cocb67204201

So, for this example, | want to re-run the
‘ConfigureScheduledTask.psl” script, so we select that row, hit
OK on the Out-GridView to send that object back to the script,
and using that object, we simply force a removal of that registry
key and restart the IntuneManagementExtension service to

trigger the script to re-run.

- foreach ($item in $intuneScriptToRerun){
. $itemPath = ($deviceScriptStatus | Where-Object {$_ .displayName -eq
Remove-Item $itemPath -Force
3
Get-Service -Name IntuneManagementExtension | Restart-Service
< »

Reset-SidecarScript.ps1 hosted with @ by GitHub view raw

You will find that the script / policy will re-run almost
immediately once the registry key has been removed. This will
save you countless hours over the course of setting up your
sidecar scripts — something | wish I had worked out at the start

of the project and not the end!!

https://gist.github.com/tabs-not-spaces/dbf5354556bced6eb8eb47f255267d24/raw/e8804a3a868eac1b21aaa5ce19fca5439a21ebbc/Reset-SidecarScript.ps1
https://gist.github.com/tabs-not-spaces/e55084e62a91e14e1ff5f00d3e38f2fb/raw/d35d2b058be277aaae2d321a787f9e91ef384df1/Reset-SidecarScript.ps1
https://gist.github.com/tabs-not-spaces/dbf5354556bced6eb8eb47f255267d24#file-reset-sidecarscript-ps1
https://github.com/
https://gist.github.com/tabs-not-spaces/e55084e62a91e14e1ff5f00d3e38f2fb#file-reset-sidecarscript-ps1
https://github.com/

Well that wraps up my first post — | will have the full solution
available on my GitHub account for your perusal (link here), so
please have a look, have a play, and if you use the example, or
improve the solution, please feel free to let me know below in

the comments or on my twitter @powers_hell.

Enjoy,
Ben

Azure, Intune, Powershell, Sidecar

https://github.com/tabs-not-spaces/CodeDump/tree/master/Reset-SidecarScript
https://twitter.com/powers_hell
https://powers-hell.com/tag/azure/
https://powers-hell.com/tag/intune/
https://powers-hell.com/tag/powershell/
https://powers-hell.com/tag/sidecar/

