ࡱ> DFCr kbjbjVV .t<<!%hh8T:#~l"Y"["["["["["["$$Z'"u""Y"Y"!"p8b!E" #0:#!,(d~("("@"":#(h q: The Schrdinger equation in matrix form 1. Solutions of the Schrdinger equation Select a solution to H( = E( which can be expressed as a linear combination of a complete set of basis functions {(i }: ( = c1(1 + c2(2 + c3(3 + . . . (1) Since the set {(i }:is complete the set {ci }of coefficients can be chosen to render ( so flexible that it can constitute a solution (the kth, say) of the Schrdinger equation for a particular system. Inserted into the equation the latter would read H(k = Ek(k (2) There are n independent ways of combining the n functions according to eqn. (1), so (k is a member of n solutions like those in eqn. (2). For the moment let us consider just the kth solution: then eqn. (1) needs to be written bearing a label on the left hand side and on the set of coefficients{ ci }: (k = c1k(1 + c2k(2 + c3k(3 + . . . + cnk(n (3) The { ci } are calculated using the Variation Principle (energy minimisation), which entails solving the secular equations. 2. The Hamiltonian matrix In order to solve for (k and Ek in eqn. (2) the energy (Hamiltonian) matrix H is constructed, whose general element is given by Hij ( +" (i* H (j d(. Obviously the elements of H depend on the basis functions {(i} used to build it. Any orthogonal set of functions formed as a linear combination of the {(i} would give rise to different matrix elements Hij' and therefore to a different matrix H', although the energy eigenvalues obtained from H and H' would be identical. Example: The allyl radical at Hckel level Using the carbon 2pz atomic orbitals as basis functions, the energy matrix for the allyl radical, 1 2 3 H2C(CH(CH2 is  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  (5) The  MO functions and energy eigenvalues for allyl are given in the table: k (k Ek1 ((1 ( (2(2 + (3)( ( (2 (2 1/(2((1 ( (3) (3 ((1 + (2(2 + (3)( + (2 ( Now instead of using the atomic orbital set ((1, (2, (3) as basis functions what if we had used the molecular orbital set to construct H? Let s try: H11 = +" (1* H (1 d( = +"((1 ( (2(2 + (3)* H((1 ( (2(2 + (3) d( = [( + 2( + ( ( (2( ( (2( ( (2( ( (2(] = ( ( (2( H22 = +" (2* H (2 d( = +"((1 ( (3)* H((1 ( (3) d( = [( + (] = ( Similarly, H33 = ( + (2( H12 = EMBED Equation.3  = 0 Similarly, H12 = 0 and H23 = 0 So the H matrix generated by the MO basis set {(k} is  EMBED Equation.3  (6) which is a diagonal matrix. A comparison of the matrices defined in eqns. (5) and (6) shows that the latter differs from that in (5) by the fact that the non-zero elements are confined to the diagonal positions Hii, while Hij = 0 for i ( j. Using H given by (6) to form the secular determinantal equation produces  EMBED Equation.3  which shows that the diagonal elements in H are already the energy eigenvalues E1, E2 and E3 that were listed in the table. A process which transforms a matrix like the one in eqn. (5) into a diagonal form as in (6) is said to diagonalise the matrix, thereby revealing the eigenvalues of the matrix in its diagonal positions. 3. Vector notation The linear combination in eqn. (3) may be written as a scalar product of two vectors ck and ( where the underlining means that the quantity is a vector. If the basis set defining (k in eqn. (3) has n terms, the vectors ck and ( are each rows or columns of n elements, and allow an alternative expression for (k as (k = ck ( ( = c1k(1 + c2k(2 + c3k(3 + . . . + cnk(n (Because of normalisation the elements  EMBED Equation.3 ) To get the second of these equations from the first we form the scalar product of the vectors ck and ( by supposing ck to be a row vector and ( a column vector, and then using the rules of matrix multiplication. For clarity well adopt the convention that a vector with elements (x1, x2, . . . ) will be written as x if it is a column vector, but as x if it is a row vector. Doing this transposes a column vector x into a row vector x, and transposing x again to x (= x) restores the column vector. Note however, that as well as turning the column into a row format, converting x into x also replaces the components xi by their complex conjugates xi*. But that will not be important until later. Again for future reference, we define the transpose A of a matrix A as one in which the rows have been swapped by the columns and vice versa, and also complex-conjugated. In other words if the general element of A is Aij, that of A is Aji*. Using this notation the above kth state function becomes (k = ck ( ( (7) 4. Matrix form of the eigenvalue equation. Part 1: the eigenvector matrix. The energy Ek of the state (k is normally calculated via the secular equations, which furnish both these quantities, but if (k is known, Ek may be extracted from it by calculating Ek = +"(k* H (k d( =  EMBED Equation.3  The factor  EMBED Equation.3 is the (i, j)th element of a matrix H. But using vector/matrix notation the same can also be written Ek = ck H ck (8) = EMBED Equation.3  H  EMBED Equation.3  row vector sq. matrix col. vector Check that this expression follows the rules of matrix multiplication of the three factors on the right of (8): the dimensions of the first (a row vector) are 1 ( n, the second is a n ( n matrix and the third is a column vector with dimensions n ( 1. The result is therefore the scalar (single number) Ek. Until now we have considered just one solution of the Schrdinger equation ( the eigenvalue Ek and the eigenvector ck. But can the whole set of solutions be handled simultaneously? Lets assemble all the eigenvectors like ck into a matrix c, whose order will be n ( n:  EMBED Equation.3  The columns  EMBED Equation.3 ,  EMBED Equation.3  EMBED Equation.3  . . . are the eigenvectors of the 1st, 2nd etc. and are associated with the energy eigenvalues E1, E2, etc. H ci = Ei ci Multiplying from the left by the adjoint of column ci which is the row vector ci+ we isolate the eigenvalue Ei which is a scalar: ci+ H ci = Ei ci+ci = Ei or  EMBED Equation.3  Let us now replace eigenvector ci and eigenvalue Ei by the square eigenvector matrix c and a matrix of eigenvalues. The last equation becomes c+ H c = Ed c+c = Ed showing that the eigenvalue matrix Ed has diagonal elements consisting of the eigenvalues E1, E2, ( and whose off-diagonal elements are zero. So the similarity transformation c+ H c has diagonalized H. 5. Properties of the eigenvector matrix The eigenvector matrix is an example of a type of matrix described as unitary. A unitary matrix A has the following important properties: The sum of the squares of the elements of any row or column is one, i.e.  EMBED Equation.3  and  EMBED Equation.3  (normalization) The scalar product of any two rows or of any two columns is zero, i.e.  EMBED Equation.3  and  EMBED Equation.3  (orthogonality) The transpose of the matrix is equal to its reciprocal, i.e. A = A(1 so that A A = I (9) where I is the unit matrix, i.e. a matrix of the same dimension as A, but its diagonal elements are unity and all the off-diagonal elements are zero (Aij = (ij, the Kronecker delta). A unit matrix I multiplying any other matrix P leaves it unchanged (I P = P). If you think of A (or c) as a matrix of LCAO coefficients, properties 1 and 2 follow from the normalisation of the MO wave functions and from the orthogonality(=QRijkop     ! " K L ź䬠亗亗亗䬠亠于Šh6OJQJh6H*mH sH h6H*mH sH h66H*]mH sH  jjh66]mH sH h66]mH sH  jyh66]mH sH  h66OJQJ]^JmH sH h6mH sH  h6CJh6CJmH sH h64()R  ; o  n dh$If pdh^p`dh`dhdh     7 8 ] ^ _ a p r 5 6 7 8 > ? @ C D E F G H K L M N O P S T U V W X c d f g h u v w x : < > H J L ӥh6CJmH sH  jjh66]mH sH h6H*mH sH h6H*mH sH h6h6mH sH  jyh66]mH sH h66H*]mH sH h66]mH sH >       " $ & ( * , 0 2 4 n p 6789ghjk q֢֌~zh6 jjh_G6]mH sH h_GmH sH  jth66]mH sH h66OJQJ]mH sH h_G6H*]mH sH  jjh66]mH sH  jh6mH sH h66H*]mH sH h66]mH sH h6mH sH h65\mH sH .qyk`RFh66H*]mH sH  jyh66]mH sH h66]mH sH jIh6EHUmH sH %j?FB h6CJUVaJmH sH jh6EHUmH sH %jTFB h6CJUVaJmH sH jh6EHUmH sH %jFB h6CJUVaJmH sH jh6UmH sH  jh6mH sH h6H*mH sH h6mH sH h6CJmH sH  "$&(*,.02468FHVXZ`bdfjnprvx jh6H*mH sH h6H*mH sH  jbh66]mH sH  jah66]mH sH  jh6mH sH  j-h6mH sH h6H*mH sH  jjh66]mH sH h6mH sH h66H*]mH sH h66]mH sH 3ukd$$IflFh x$ 06    4 la dh$If <J~uuu dh$Ifkd[$$IflFh x$ 06    4 laJLPv~uuu dh$Ifkd$$IflFh x$ 06    4 lax~Tv  Ȧ~ j-h6mH sH  jth66]mH sH h66OJQJ]mH sH h66H*]mH sH h65\mH sH h66]mH sH h6H*mH sH  jjh66]mH sH  jbh66]mH sH  jh6mH sH h6mH sH 1B$/~yyypyyypyyydh`dhkd$$IflFh x$ 06    4 la  "$&(,0246:<NPXZ`bdfhjlnprtvxz~ jbh6mH sH  jah6mH sH  jth66]mH sH h66]mH sH  jjh66]mH sH  jh6mH sH  j-h6mH sH h6mH sH h6H*mH sH ;   !"01378;<=>ABDFٴ¬¬¬¬ٴ¬¬ jbh6mH sH  jh6mH sH  jah6mH sH  j-h6mH sH h6mH sH  jth66]mH sH h6H*mH sH  jjh66]mH sH h66]mH sH h66OJQJ]mH sH h66H*]mH sH 0/?@^dox|56S  dhgd] dh^`dhFGZ[\]pqs}~뿶뿶띑~phZh뿑뿑h_Gh_G5\mH sH h_GmH sH jF h6EHUmH sH %jGB h6CJUVaJmH sH h66H*]mH sH  jyh66]mH sH h65\mH sH h6H*mH sH h66]mH sH j\h6EHUmH sH %jjFB h6CJUVaJmH sH h6mH sH jh6UmH sH "1234`b('-JKL]^ߵߔߋse jyh66]mH sH  jjh6>*mH sH h66H*]mH sH h6>*mH sH h6CJmH sH h6H*mH sH jDh6EHUmH sH %jGB h6CJUVaJmH sH jh6UmH sH h65\mH sH h6mH sH h66]mH sH  jh66]mH sH '^rstyz   :;N̨㚨̨㚨̨㚨jh]Uh] jjh66]mH sH h6H*mH sH  jh6CJmH sH  jyh66]mH sH h66]mH sH  jjh6>*mH sH h66H*]mH sH h6>*mH sH h6mH sH /NOPQSlmnpqr '(*.0ǾǦǾǾǛǦǛǛǛǾǾǛǾǾǾǾǾǾǾǛh6H*mH sH h6H*mH sH h66]mH sH  jjh6>*mH sH h66H*]mH sH h6>*mH sH h6mH sH h]jh]Uj-h]h]EHU-jP Q h]CJUVaJmH nHsH tH6JKLRXYZ)*,MNORSTUVWXYe\^`vxzh]mH sH h6CJmH sH  jjh6>*mH sH  jh6CJmH sH h6>*mH sH  jyh66]mH sH h6H*mH sH h65\mH sH h66H*]mH sH h66]mH sH h6mH sH 6 Def<& G !"####p$$$$dhgd?Zdhgdrxdh^`gdrxdhgd]dh^`gd-xdhdh` 468:RTz|~Ƹ뙋lbXS h6H*h?Zh66]j9h6EHU%jˏGB h6CJUVaJmH sH h6jh6Ujh6EHUmH sH %jGB h6CJUVaJmH sH jh6UmH sH  jth66]mH sH h66]mH sH h6OJQJmH sH  jyh66]mH sH h6mH sH h66H*]mH sH & . / 0 5 6 7 8 9 : ; < = G H I \ ] ^ _ c d l m }ug\Mjh-x5U\mH sH hm5\mH sH h-xh-x5\mH sH hmmH sH !jh-xh-xEHUmH sH -j8 Q h-xCJUVaJmH nHsH tHjh-xUmH sH h-xmH sH h65\mH sH h6H*mH sH h6>*mH sH h66H*]mH sH h66]mH sH h6mH sH h6 h65\m \!]!^!_!q!r!s!t!u!v!!!!!!!%":";"L"M"N"c"d"e"ʻwwwwwkg`gwkWkh6>*mH sH  jh6h6h66H*]mH sH h66]mH sH  jh6mH sH h6mH sH hmCJaJmH sH hmhmCJaJmH sH hm5\mH sH jh-x5U\mH sH 'jh-xhm5EHU\mH sH -j Q hmCJUVaJmH nHsH tHh-x5\mH sH "e""""""""""""######&#'#:#;#<#=#?#@#S#T#U#W#j#taSj#h6EHUmH sH %jͣGB h6CJUVaJmH sH j!h6EHUmH sH %jGB h6CJUVaJmH sH jh6EHUmH sH %j3GB h6CJUVaJmH sH jh6UmH sH  jh6mH sH h66]mH sH h65\mH sH h66H*]mH sH h6>*mH sH h6mH sH j#k#l#m#######################!$"$#$<$=$>$?$Z$[$\$s$t$u$v$w$z${$~$$ʹʮʮʝzzrh"hrx5 hrxH*h)H<hrx6h)H<hrx6H*h)H<hrx5hrxhrxmH sH h6H*mH sH h66]mH sH h?ZmH sH h6H*mH sH h6mH sH jh6UmH sH j%h6EHUmH sH %jNGB h6CJUVaJmH sH ,$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%師Ǡvg`XS h?Z5h1hrx5 hmhrxh?Zh?Z6H*]mH sH h?Zh?Z6]mH sH h?ZH*mH sH h?Z5\mH sH h?ZmH sH h?Zh?ZmH sH j'h8hrxEHUj7 Q hrxCJUVaJjhrxU h?Z6H* hrx6H*h)H<hrx6hrx hrxH*h)H<hrx5h)H<hrx6H*%%% %=%>%?%@%C%F%G%H%I%J%K%L%O%P%Q%R%V%Y%^%c%n%u%v%w%x%{%%%%%%%%%%%%%%&&& &½½½竽竽砘|hmh]>*H*hmh]5>*hmhrx>*hmhm>*hm jhrxh8hrx6h?Zhrx5\ hrxH*huehrxH*huehrx5h"hrx5 hrxH*h)H<hrx5hrxh?Zh?Zh?Z5h?Zh?Z\.$9%R% &!&I&&'h'''/(?(Y(*h,hphiidh^dh`  9r dhdh^ dh^` & Fdhdhdhgdmdhgdrx dh`gd?Z & &&&&& &!&I&&&&&' '3'4'5'6'='>'Q'R'S'T'U'g''''ºwdVNh_GmH sH j-h6EHUmH sH %jGB h6CJUVaJmH sH j$+h6EHUmH sH %j;GB h6CJUVaJmH sH jh6UmH sH h65\mH sH h66]mH sH h6mH sH h6CJmH sH hrxCJmH sH hrxhmhrx5>*hmhrx6>*]hmhrx>*hmh]>*'''''''''''6(7(8(;(<(=(>(H(I(J(L(O(U(X(Y(_(`(h(s(((((((((ʷҡʖʖʖʖʖʖvʖvj_j jdh6mH sH h66H*]mH sH h66]mH sH  j-h6H*mH sH h6H*mH sH h65\mH sH h_GmH sH j(2h6EHUmH sH %j GB h6CJUVaJmH sH h6mH sH jh6UmH sH j/h6EHUmH sH %jVGB h6CJUVaJmH sH %()!)>)?)U)Y)Z)\)p)q)v)w)))))h+hphhhhhhhhhhhhiiiiiiiiiiiiiiiiiiiiii'j(j+jJjTjUjcjdjh_Gh_G5\mH sH  jh6mH sH h6H*mH sH h66H*]mH sH h6>*mH sH h6CJmH sH Uh66]mH sH h65\mH sH h6mH sH = of a pair of MO functions, respectively. 6. Matrix form of the eigenvalue equation. Part 2: diagonalisation. With the eigenvector matrix c replacing the single eigenvector ck, the right hand side of eqn. (8) becomes cHc. Remembering that c consists of columns of eigenvectors ck, then eqn. (8) shows that when H multiplies each of these from the left, it extracts the eigenvalue Ek as a scalar as Ekc. The result of this is cHc = Ecc where E is a matrix consisting of just the eigenvalues Ek along its diagonal, and zeros everywhere else ( a diagonal matrix of eigenvalues. Because c is unitary, c(1 = c (i.e. its reciprocal is the same as its adjoint), so cc = I. Eqn. (9) then lets us write cHc = Ed (diagonal) (10) So subjecting the (non-diagonal) matrix H to the transformation cHc diagonalises it to produce the matrix Ed consisting of just eigenvalues along its diagonal.     PAGE  PAGE 6 iiijjjjkkkkkkkkkkkkkkkkk&`#$ $dha$gdmdhdhgd_G dh^`djejfjijjjkjjjjjjjjjjjjjjjjjjjjkk,k-k.k1k=kWkXkYkkkkkkkkkkkkܽܤܤܬܬ}}}}h $jh $Uh6h66]mH sH h65H*\mH sH hzy(mH sH h6mH sH h6H*mH sH h65\mH sH h_GH*mH sH h_G5\mH sH h_GmH sH h_Gh_GH*mH sH  j-h_Gh_GH*mH sH -kkkkkkkkkkkkkkkh6mH sH h $h+0JmHnHuh6 h60Jjh60JUkkkdh,1h. A!"#$% Dd J  C A? "2NR|4L(Mu*D[ `!"R|4L(Muxtxcdd``> @c112BYL%bpuR/vJ1e>JSq]yp-ʯ\%[|5s5w1Wgs5x_^OG<]YyDbWqlxțzwݴRݭ4TzN3ֽ6l(:wE 9n-_YȢ7KtZgDd TJ  C A? "24yS [ `!4yS   ȽXJkxcdd``d!0 ĜL0##0KQ* Wä2AA?H1Zc@øjx|K2B* R\``0I3ک$$If!vh55$ 5#v#v$ #v:V l0655$ 54$$If!vh55$ 5#v#v$ #v:V l0655$ 54$$If!vh55$ 5#v#v$ #v:V l0655$ 54$$If!vh55$ 5#v#v$ #v:V l0655$ 54Dd ( J  C A? "2Lj|+N9s([ `! j|+N9s㫆@ 1dxڍTK#A~fk6+"؈)"x(\E4B aQ 0ruw`h7?l0aoy;og X04"bh"dLG ͦ'8p>C KD\n{ɯBLVаe#.1FQ?N fiP( ?caSbg"5&,<)?lF* Yre+D8O{n5^5$A}}©<+ E-B5#b?TodR7eo:rʬ}:|6Z|k}X׾G/{ΉNu*_}7Gy'¹rߘciTKn)Wo\R}V|·0Wٌmuuc9%HP׷£g)[\U-"8J}3rΈK̢Dd J  C A? "2`=t.H|x|]ҭ< [ `!4=t.H|x|]ҭ  xڕAh@ߛNv`ҭETB{E R"(b{݅ maɭRcу' ")'IA- ]MLm}yy,B{"$\jz5D DEt[FPlXSGU`Hf5^N ~{}y!Ko߂K5\xs1*EMSn*\Y+#Ҽ:kR-F6#@+Kէȭ&]ފY+#ҮҌ=OH|<-x~CGP/,|SгO^225rg>6fe}]nJw-gbxIM\ 4cXr"?vkM[g+~vnK(9:m}T9Fq龊sZx%J{ܗgzccrȉe7ѭM;?@ABsEHnJIKMLNOPQRTSUVWYXZ[\^]`_bacedfgihkjlompqtuvwxyz{|}~Root Entryi F8G&Data ;q4WordDocumenth.tObjectPoolk;88_1111933699F88Ole CompObjfObjInfo  #$'*-01258;>?BEFILMNOPQRUXY\adehklmnopsvy| FMicrosoft Equation 3.0 DS Equation Equation.39q H= FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native -_1111933780 F88Ole CompObj fObjInfo Equation Native  s_1111933759 F88Ole  Wx^ & 00() FMicrosoft Equation 3.0 DS Equation Equation.39q% CompObj fObjInfoEquation Native #_1111936106,F88Ole CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39qopL 12 2  "" 2  + 2  []_1111993871F88Ole CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q~pL H=" 2  000000" 2  () FMicrosoft Equation 3.0 DS EqEquation Native _1111993999TF88Ole CompObj fuation Equation.39q~p. " 2  "E000"E000" 2  "E=0 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo!!Equation Native "_1359867216$F88Ole %CompObj#%&fObjInfo&(Equation Native )u_1111986091)F88Y, c ri  i "  2 =1 FMicrosoft Equation 3.0 DS Equation Equation.39q~Ƞ: c ikOle +CompObj(*,fObjInfo+.Equation Native /* c jkj " i "  i* +"Coronet ~H j d FMicrosoft Equation 3.0 DS Equation Equation.39q~Wo  i*_1111986123'@.F88Ole 3CompObj-/4fObjInfo06Equation Native 7s_1359867960"63F88Ole 9CompObj24:f +"Coronet ~H j d FMicrosoft Equation 3.0 DS Equation Equation.39qz(, c k1 c k2 c k3 & ()ObjInfo5<Equation Native =_13598683598F88Ole @ FMicrosoft Equation 3.0 DS Equation Equation.39qp< c k1 c k2 c k3 "()CompObj79AfObjInfo:CEquation Native D_1111991603O=F88Ole GCompObj<>HfObjInfo?JEquation Native K FMicrosoft Equation 3.0 DS Equation Equation.39q~@ c=c 11 c 12 ...c 1n c 21 c 22 ...c 2n c 31 c 32 ...c 3n ............c n1 c n2 ...c nn () FMicrosoft Equation 3.0 DS Equation Equation.39q~ c 1_1111991278EJBF88Ole SCompObjACTfObjInfoDVEquation Native W_1111991245GF88Ole ZCompObjFH[f1 c 21  . ..c n1 () FMicrosoft Equation 3.0 DS Equation Equation.39q~< ObjInfoI]Equation Native ^;_1111991374LF88Ole _CompObjKM`fObjInfoNbEquation Native c_13597348391QF88 FMicrosoft Equation 3.0 DS Equation Equation.39q~ (T c 12 c 22  . ..c n2 () FMicrosoft Equation 3.0 DS EqOle fCompObjPRgfObjInfoSiEquation Native juation Equation.39qKxطT c 1 c 2 c 3 c() i 0000000000E i 00000()c 1 c 2 c 3 c() i =E i FMicrosoft Equation 3.0 DS Equation Equation.39q~Y(< A ij  j "  2 =1_1111995707^YVF88Ole qCompObjUWrfObjInfoXtEquation Native uu_1111995821[F88Ole wCompObjZ\xf FMicrosoft Equation 3.0 DS Equation Equation.39q~YE A ji  j "  2 =1 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo]zEquation Native {u_1111995478c`F88Ole }CompObj_a~fObjInfobEquation Native q_1111995661eF88~U A ij* A kjj " =0 FMicrosoft Equation 3.0 DS Equation Equation.39q~UHA A ji*Ole CompObjdffObjInfogEquation Native q A jkj " =0Oh+'0x  ( 4 @ LX`hp(Matrix form of the Schrdinger equationDavid Morton BlakeNormalAdministrator2Microsoft Office Word@F#@tL9f@%@%5ۇ\wSο sݡB N3ko8&v~dZ(!Yp\nMpt7leXf5Qwz?kjYxCz?I{I \$r95Nͥq0#vn}Ikӹ6}Z񠸎9z"Kg/_-b©cfT$Q3,^a0ұ+e3La ADd DJ  C A? "2Ic೿jT_EF[ `!Ic೿jT_EF`Gxcdd`` @c112BYL%bpu [X+ss)\%}-?Č`u ,@RF\xA2%0.? cd_Hfnj_jBP~nbv${x@*RIJw0C{g/^F LX < 1w2l8{1YL`> |pg(E%ʆ@\S v 0# MLJ% H  33X EMDd J   C A ? "2jiGQT }[ `!jiGQT "`hn @CQxcdd`` @c112BYL%bpub|>Q]j'^y)]3tRL~'蝤&Q6ƥ;{1Q_ȽTA' '4 '8O>7SJ v ;c_L2ԐOcYXȇ䎁|đ7e# E|ȧU䱍,, r@>ț^E|ܷnzLzY=^YYGxڊ'Ý]\ߊlx YHe1s938Y}^#[&X|D~&F_CbS빾Z^3ؕnޭ~uNSN޷El?dF&km(G#JJ`|0/-u7agCrPu׵ӵPL(tf҇3w>(AK߾%mEʬ|bx/JV_9j/J՛Dd DJ   C A ? " 2E<3MPt&gV![ `!E<3MPt&g* @PxڥKA̮DADI薤xTPPj- oABDkPK?(h_n.y3;of,13ȣ(0 %s/ٴj[O<<R{;cblX6+ PxOz%$_R5vU`S{i1#"nt_f`6o۷Io`1sb.9_ɯH_8?F0L̾YK`n0gt]H~I~dӡ(/esJo4jןvCљΩ$w0nV%[ `!R9>$w0n* @PxڥJ@g7I AP,x J/=)hL+Pr+>7(J*ߣ"ZȨi`۝. @[3N=JXx2ICPgjj e'Prľ=8u-QAqI?'=O2}JQ:z̫)/qb/d&#IϞ?&{ mlRKobR–pt1JGMzDd hb  c $A? ?3"`?2Dc |''[ `!Dc |'@ (%fxڥkAL'JBZzXPk%ۢT-4JAɓo ^ XHO[nhe"z=s~uT^7PS$͝ >s')>]Dd lJ  C A? "2;*h+[ `!;*B@0= axcdd``^$d@9`,&FF(`T A?d1@0&dT20|`b e- b 3md@b,01^356A $37X/\!(?71a_@ V`lS*Hưbceb0DuP1 Ma(w aZ˝s d{/>swp'νL O1pEuo>/Y~%3ȩYHQx30%1T8fqAS8EBtA%HXXS7RpeqIj.M `3X%%R]Dd tlJ  C A? "2fsBI `ڣ-[ `!fsBI `ڣB  axcdd``^$d@9`,&FF(`T A?dl zjx|K2B* R>0pE1At 2Bagf62AX 19 AtO` ZZǰ/kq +`0߈ɕ $cX 1O?y1ps2TUs(@W&0;per'\&{XA*l\6DdR#I WT3U '0E37S"Hc&4qS$D.vDXS7RpeqIj.M `3XʼnJDd 0J  C A? "2:*ˑ^["k}?"0[ `!:*ˑ^["k}?"  kNxcdd`` @c112BYL%bpu6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH @`@ NormalCJ_HaJmH sH tH H@H  Heading 1$dh@&6]mH sH DA`D Default Paragraph FontVi@V  Table Normal :V 44 la (k (No List 8>@8 Title$a$ CJ mH sH 4@4 Header  9r .)@. Page NumberPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] ! t $$$$$' qxF^Nm e"j#$% &'(djkk !#$%&')*+,-./12378J/ $ikk"(069; O Q  & ( /CE{=QSauw  /14HJK_a(*2FH!::::::::::::::::::::  '!!8@0(  B S  ?!57cfuw$&78gj^c$VX5 R  )   !02cey#%<xAC 2Id13OQhjnpsuv{~>Avx !$!%!1!!!!!!!!!!!!!!!!Ze ^cswVZ  m p + 0 p s %/mq',dehj23GN.1$(46NST X !!!!!!!!!!!3333333333333333333333333333333333333>o>6 ; R U  ) {<=Tax 24bj.] !!!!!!!!!!!!; R  ) {=Tax 24b!!P"`pƉ^`o(.^`.pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.P"`           +?Z $zy(_G6m-xrx]!!@lp!`@` `@```(@``@@`@UnknownG*Ax Times New Roman5Symbol3. *Cx ArialOFCoronetCourier New5. .[`)TahomaA$BCambria Math"1h''F<<!24dr!r!3QHX?rx2!xx'Matrix form of the Schrdinger equationDavid Morton Blake Administrator