ࡱ> *,)q` "bjbjss .@4P<~.DX @BBBBBB$h%"vfdddf{dv@d@ 5kv@0"""Xdddddddff dddddddd Systems of Equations The standard technique to solve a system of equations can be simplified as follows: Given two equations in n variables, one can typically produce one equation in n-1 variables by eliminating one variable. This is done by picking a variable to eliminate and multiplying each equation by an appropriate factor, and then adding the two equations together. For example, if we have: 3x 2y + z = 7 5x + y + 4z = 18 and we want to eliminate x, we can multiply the first equation by 5 and the second one by -3 to yield: 15x 10y + 5z = 35 -15x 3y 12z = -54, adding these we get -------------------------- 13y 7z = 19 In general, this technique can be executed as long as neither coefficient of the variable to be eliminated is 0. Basically, repeating this n-1 times with a system of n linear equations in n variables will typically yield n-1 linear equations in n-1 variables. This process is repeated until one is left with one equation in one variable. Then, once this variable is solved for, all the rest can be obtained by plugging in known values into the appropriate intermediate expressions. Continuing the example above, imagine that the third equation was 2x 5y 3z = 1. Combine this with the first original equation 3x 2y + z = 7 and repeat the first set of steps described to yield 6x 4y + 2z = 14 and -6x + 15y + 9z = -3 ------------------------ 11y + 11z = 11, which we can divide by 11 to yield y + z = 1. Now we have a system of two equations in two variables: 13y 7z = 19 y + z = 1 Now repeat this process for n=2: 13y 7z = 19 13y +13z = 13 --------------------- 6z = -6, an equation in one variable. Solving, we get z = -1 Now, plug that into y + z = 1 from the previous step: y 1 = 1, so y = 2. Finally, plug in y = 2, z = -1 into one of the original equations, 2x 5y 3z = 1, yielding 2x 5(2) 3(-1) = 1, so 2x = 8 and x = 4, so the solution is x = 4, y = 2, z = -1. Systematically, we can represent this process using an augmented matrix. One advantage of an augmented matrix is that reduces the amount of writing because each variable isn't written every time. In essence, the idea is that a system of equations can be represented using matrices. The system of three equations above could be represented as follows:  EMBED Equation.3  To see this, simply use the definition of matrix multiplication to yield  EMBED Equation.3  and by the definition of matrix equality, we simply find that this holds if the original three equations are satisfied. Ultimately, we can represent our original work with matrices as follows:  EMBED Equation.3   EMBED Equation.3   EMBED Equation.3   EMBED Equation.3   EMBED Equation.3  From here, the "back substitution" proceeds as before. In the augmented matrix form, we just remove the matrix with x, y and z and write the following:  EMBED Equation.3 . (Note: typically the column of dots extends all the way down)  EMBED Equation.3 , etc. For a standard set of n linear equations in n variables, there is one unique solution. In these cases, if the use of a calculator is permitted, then the simplest way to solve the system of equations is as follows: Let M =  EMBED Equation.3 , then  EMBED Equation.3   EMBED Equation.3   EMBED Equation.3  To input this into your calculator, simply define the matrix M. Then calculate M-1 (M inverse) and multiply it by the appropriate column matrix. The result will store the answers for each variable, as long as M-1exists. If it does NOT, then the matrix M is called singular. A square matrix is singular if and only if its determinant is 0. Here is how to calculate a determinant for both 2x2 and 3x3 matrices:  EMBED Equation.3   EMBED Equation.3  A system of equations that is formed using a singular matrix has either 0 solutions or an infinite number of solutions. The only way to determine which of these is the case is to use the augmented matrix and simplify as long as possible. Ultimately, the augmented matrix will yield a line with the following format: 0 0 0 0 : c where coefficients to each variable are 0. Since it's impossible for 0x+0y+0z to equal anything but 0, we conclude that if c is 0 there are an infinite number of solutions. Otherwise there are no solutions. The proof behind why there are an infinite number of solutions in this case is fairly complicated and not included here. Here is a sample problem that makes use of this idea: For what value of k does the following system of equations have a solution? x + y + 2z = 1 3x y z = 4 -5x + 7y+ 11z = k Let's solve the problem using an augmented matrix:  EMBED Equation.3   EMBED Equation.3   EMBED Equation.3   EMBED Equation.3  For this system to have a solution, it is necessary for k+8 = 0. Thus, k = -8. Finally, one might ask how we might describe the set of solutions for such a system like the one above when k=8. We can describe it as a relationship between the variables x, y and z as follows: x + y + 2z = 1 3x y z = 4 -5x + 7y+ 11z = -8 Combine the first two equations and eliminate y (any of the three variables can be chosen, y is chosen for ease): 4x + z = 5 Now, just solve for z: z = 5 4x. This time, eliminate x from the first two equations: -4y 7z = -1 4y + 7z = 1 Once again, solve for z:  EMBED Equation.3 . Putting these two equations together we get the solution of the system to be  EMBED Equation.3 . Sometimes there are problems where although you can't solve for each individual variable, you can solve for some expression. Consider the following: Given that x+2y+z = 5 and 2x+y+2z = 7, determine the value of x+y+z. Adding the two equations yields 3x + 3y + 3z = 12. Dividing by 3 shows that x + y + z = 4. But, given these two equations, it is impossible to solve for one unique solution. For example, both x=2, y=1, z=1 and x=1, y=1, z=2 are solutions to the two given equations. Here is an example using non-linear equations: Given that (x + y + z)2 = 36 xy + xz + yz = 11 determine the value of x2 + y2 + z2. (x + y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz 36 = x2 + y2 + z2 + 2(xy + xz + yz) 36 = x2 + y2 + z2 + 2(11) x2 + y2 + z2 = 14. For this particular problem, the solutions for x, y and z are not unique. For example, both x = 1,y = 2,z = 3 and x = -2,y = -3,z = -1 are valid for the system of two equations. Both of these problems illustrate that sometimes it is possible to manipulate a set of given equations to solve for a quantity without having to solve for each individual variable in that quantity. Furthermore, in certain situations, doing the latter may be impossible because more than one unique solution exists. c67JKLMtu鶩Ҝ鍀qdj1 h6Uh6UEHUjRpH h6UCJUVaJj h6Uh6UEHUjQpH h6UCJUVaJjh6Uh6UEHUj h6Uh6UEHUjQpH h6UCJUVaJjh6Uh6UEHUj.QpH h6UCJUVaJjh6UUh6Uhy1hJ_ h5 hJ_5'jky z   2 ] x   u v $a$gdy$a$gdJ_" A B X l )*KL^q u$a$gdy56NO)*st$%$a$gdy$ŸtphpYLjh6UhwEHUjSpH hwCJUVaJjhwUhwjh6UhwEHUj SpH hwCJUVaJjCh6UhwEHUjRpH hwCJUVaJjhp:Uhp:j7h6Uhp:EHUj^RpH hp:CJUVaJhJ_jh6UUj1h6Uhp:EHUj1RpH hp:CJUVaJh6U+CD !OP^_$a$gdy'()*+,?@AB !MȻ󖎂tetZRhXOJQJhw56OJQJhwhw56H*OJQJhwhw56OJQJhwhw5OJQJhwOJQJhwH*OJQJj"h6UhwEHUjSpH hwCJUVaJjh6UhwEHUjSpH hwCJUVaJjUh6UhwEHUjSpH hwCJUVaJhwjhwUMU -.˺~ob~~SjWpH hJCJUVaJj+h6UhJEHUjVpH hJCJUVaJjhJUhJhJOJQJhOJQJ!jb(hXhXEHOJQJUjTpH hXCJUVaJ!j%hXhXEHOJQJUj|TpH hXCJUVaJjhXOJQJUhwOJQJhXOJQJhX6OJQJ,-=MhiMN#3OP$a$gdy]^qrstk  滮檢wjfbfbYh5mH*OJQJh5mh4vj8hIh4vEHUjTYpH h4vCJUVaJj6hIhIEHUj1YpH hICJUVaJjhIUhIj3h6UhJEHUjbWpH hJCJUVaJj 1h6UhJEHUj5WpH hJCJUVaJhJjhJUjJ.h6UhJEHU!()7CDvw\]uv   $a$gdy  ( A C D H I M N O P Q \ ] a b f g k l ""hyhyOJQJhyhyH*OJQJhyOJQJh5mOJQJ( ) * P Q  !!"$a$gdy ,1h/ =!"#$%  Dd `b  c $A? ?3"`?2U2q7ǟgk1D3`!)2q7ǟgkjX xڕK@ݸ.[NG kB-EP(STXce%JlmpW "uf^2'Z\l}2 <@Amry23ƛͦ ^+pȞr/*JOH"9qL~m,NS_ Ygi*W& ]gr8~i2:'U{J} , OcESC"Ӯ߳_ /r 3zaW'2&_MӁDd p`b  c $A? ?3"`?2M5lFӞ6)O3`!!5lFӞ6Ԛ X xڕKAg9 "bqO `cB-D!`TB$Xph mS(>6 _onrA@+VA"$JED}Wt1i@!EGl Qib]_W{$[_c~4{'uy<'pΖZi? 1akص1nKNtvE*J~z&{UOg\T=w(!UFKt.RU~;AKt.RU}-9_ PL ;XOu)yC{j1[ق5]cnѝZ^[h?H+WկQ܇_oMaP`2;8>_}'>"¦y"ε_6QM_64}٠$wpD; z{M5A%߀$'z6/`m+G%?gjo Dd `b  c $A? ?3"`?2U2q7ǟgk1R3`!)2q7ǟgkjX xڕK@ݸ.[NG kB-EP(STXce%JlmpW "uf^2'Z\l}2 <@Amry23ƛͦ ^+pȞr/*JOH"9qL~m,NS_ Ygi*W& ]gr8~i2:'U{J} , OcESC"Ӯ߳_ /r 3zaW'2&_MӁDd `b  c $A? ?3"`?2b+ia3Ϭ>] 3`!6+ia3Ϭ X xڕK@Ln6q=/={^Ri)x =Sj)U`LI{0aɼ߼LA 8:(⌥IhkPH1H3xJk_!}!cR;m S;-A*-Oo)lz:Gss(?3%tEy9_{*&D)ǜr$oS>`aDG9#|j!R>*6<*~iT?Sr9DS9H {&_HQ9H s}3@Q9H 3}ŪE}*(=?#r=66ڭmG~n֥/~^5uATY]QOᮭ3޵z-k Gf>G>0ӇeGe`t!nCs7p];n? 8\ wZmHT]Y˫ <&8Dd `b  c $A? ?3"`?2JZH-! R&u 3`!ZH-! R X xڕ=/QϽ3ڱV"Bk QH[: Aѐh&* DdT DHhHu#vrgγy9{ dPi+K#BͦIr2"zYtAS|Σ_9ZɹjV8 ;8r`~u=?~7\ ?ÖcWK6b7gDKԫ 50sߙzo4_Zå1ӯ SSW_bc9bSoLVsL1GLqOqo?11ũ?|k}#26oեUjuoj5[c<r9kwHM^>2szX2>220OX߲ԗ oڂ K@ρ9TQaR[OGrt&Bii:\ߨ0!} nOEN,Þ́Dd `b  c $A? ?3"`?2P#JG*n*$,  "#$%&'(Y+.R/0124356789:;=<>?@BACDEFGIHJKLNMOPQSTVUWXopZ[\]^_`abcdefghijklmnstuvwxyz{|}~Root Entryi F.v-(Data !;WordDocumenth.@ObjectPoolk' zfv.v_1215320366F zfv zfvOle CompObjfObjInfo "%&'*-./2569<=@CFIJMPQTWX[^_befghknoruvy|} FMicrosoft Equation 3.0 DS Equation Equation.39q$ÿ:T! 3"215142"5"3()xyz()=7181()Equation Native _1215320452 F zfv zfvOle CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39q$ñ} 3x"2y+z5x+y+4z2x"5y"3z()=7181()ObjInfo Equation Native  _1215320566F zfv zfvOle  FMicrosoft Equation 3.0 DS Equation Equation.39q$:T! 3"210"13"72"5"3()xyz()=7"191()CompObjfObjInfoEquation Native _1215320603 F zfv zfvOle CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39q$> 3"210"13"701111()xyz()=7"1911()_1215320625F zfv zfvOle  CompObj!fObjInfo# FMicrosoft Equation 3.0 DS Equation Equation.39q$0 3"210"13"7011()xyz()=7"191()Equation Native $_1215320670"F zfv zfvOle (CompObj )f FMicrosoft Equation 3.0 DS Equation Equation.39q$hD 3"210"13"7006()xyz()=7"19"6()ObjInfo!+Equation Native ,_1215320750$F zfv zfvOle 0 FMicrosoft Equation 3.0 DS Equation Equation.39q$Æx9 3"215142"5"3"7181()CompObj#%1fObjInfo&3Equation Native 4_1215320844;)F zfv zfvOle 7CompObj(*8fObjInfo+:Equation Native ; FMicrosoft Equation 3.0 DS Equation Equation.39q$Ö< 3"210"13"72"5"3"7"191() FMicrosoft Equation 3.0 DS Eq_121532097016.F5kv5kvOle >CompObj-/?fObjInfo0Auation Equation.39q$c84? 3"215142"5"3() FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native B_12153209653F5kv5kvOle DCompObj24EfObjInfo5GEquation Native H_12153209958F5kv5kvOle K$iHd4 Mxyz()=7181() FMicrosoft Equation 3.0 DS Equation Equation.39q$Õt M "1 MCompObj79LfObjInfo:NEquation Native O_1215321015,O=F5kv5kvxyz()=M "1 7181() FMicrosoft Equation 3.0 DS Equation Equation.39q${ xyz()=M "1 71Ole RCompObj<>SfObjInfo?UEquation Native V81() FMicrosoft Equation 3.0 DS Equation Equation.39q$Ñ:T! detabcd()=abcd=ad"bc_1215321212BF5kv5kvOle YCompObjACZfObjInfoD\Equation Native ]_1215321260@JGF5kv5kvOle `CompObjFHaf FMicrosoft Equation 3.0 DS Equation Equation.39q$ } detabcdefghi()=abcdefghi=aei+bfg+cdhObjInfoIcEquation Native d1_1215321837LF5kv5kvOle i"ceg"afh"bdi FMicrosoft Equation 3.0 DS Equation Equation.39q$Æ;T! 1123"1"1"5711"14k()CompObjKMjfObjInfoNlEquation Native m_1215321884EYQF5kv5kvOle pCompObjPRqfObjInfoSsEquation Native t FMicrosoft Equation 3.0 DS Equation Equation.39q$Æȝ ? 1120"4"7"5711"11k()_1215321909VF5kv5kvOle wCompObjUWxfObjInfoXz FMicrosoft Equation 3.0 DS Equation Equation.39q$Î| 1120"4"701221"11k+5() FMicrosoft Equation 3.0 DS EqEquation Native {_1215321954T^[F5kv5kvOle ~CompObjZ\fuation Equation.39q$Æا? 1120"4"7000"11k+8() FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo]Equation Native _1215322417c`F5kv5kvOle CompObj_afObjInfobEquation Native N_1215322452eF5kv5kv$2? z="4y+17 FMicrosoft Equation 3.0 DS Equation Equation.39q$lw "4x+5Ole CompObjdffObjInfogEquation Native 1="4y+17=z"01Oh+'0   @ L Xdlt|Systems of Equations Arup GuhaNormal Arup Guha8Microsoft Office Word@^v$@u3`!$#JG*n*$ X xڕN@ό$1! b\R  (Ңh\QPsPH4"[g3! @aG&%D[v:i!)dv 0  .3n15pxR=\kQ|H Ei~0XX]9SE8nM<5ۃ6wY~tz~"%T\1sj>%$_Oɇ9#S|e 3\ i}1srX?bT0sSSSV7YYo`V_^fV_Xo;]y-vAJRWQIW2.-w&*ILw|b'ox>Ӈ#2l]CS*yw.ȝB2NB(-F.Qؕ2.9d'ko Dd `b  c $A? ?3"`?2V J<2{3`!* J< X xڕ?K#A7ĬdM!X)NQ /`BD!1zq,W+`+ &A! ql^6_xޛHX{W4QBv-Gce(|4r0m . ]k9:&` pBD7z![] k B֩E~/oX?y(ߓiϹ+;!S~վ&ACÎ(vȔM>妶V£ +BFxՇ׃Q)'QNֳ(vȔ(7MF/;!SNSNvDC4yVȲl~JW,׽ZuuG@|5cs"Ŕk_eb&{/L_Kx;׸#ta:7,f~l*2~x4#}{} fJp`RLݢ观#rABJZ>k`g\#Qa8J+Ē?OԿDd `b  c $A? ?3"`?2q#o>AYK~<3`!q#o>AYK~>(hJUa =^6E$2eh6.rKrq=PzA $_ˎptYޤ )36py JY f]_?G/PwK:圗/˔ "%ٜzGPEoxӆׯFmt>s}Øv֨Uʠ)ϼVa' WŒz_@'vfZФ@*Pߞ "Dd `b   c $A ? ?3"`? 20 Q뭤0vm3`!0 Q뭤0vm %X uxuJ@6,DD0v-ڪOVkBĂb %;J|,Е. ( ƹuHA/s.3ijbI#-B(V/Ct9n-I"rVA 2}2بj8V\%-ˋa/wS-ܱȽ8yb=%B?y{{tO/}# s Sd?hv6\4ZZq~y龎ˎBbVl_deNֹb8u-~F<>$,5;_ }!-^HJ;E(WVQ}G,TaWXr wDd d`b   c $A ? ?3"`? 2— K"0.f<&d e糏0ΗFt,LDd `b   c $A ? ?3"`? 2,,]?ZUQEo:@ 3`!,]?ZUQEo:j xX xڥK@]k-"T(fI:؎." V'$?CN.((%v[y}z+N[z'k )DkY'!ɹ­_G 1O;d+9g8 ;8:5.t1'Ǎ9_Sssa10  *.C~ ?;AKCmO2Uewa>5 Lիr2^Y]իr2^亃0V6A@<¹kWqb 2wyj2Qȯ;!~UDtx+/OZ?sks{_4+&2dߡ]+Gv~%k|Mdÿ8'!*LuB@ڶ P:Gþ ?|?#M|@Dd `b   c $A ? ?3"`? 2EQӻ$Z"#3`!EQӻ$Z* X xڥNPϽ--T#T6 &5@er$Nщ_Éq?hK.`ls{ϯ=A @^2b80ByʢLǠb:,,G!IG6gdBb|8Ksb\ >f)[;Yp}B^u\wdkoL3;Ju2,En*?}"NwP~ DvMSys_c[3"7Σ|9͂.py~޴~4~ Kؗ 6B%2΄>LtU5v[KSuk(Jﻭ_2grn!iN'3A/T!oLa뜝8SSON+xnIPuYE NfPyXs@ݡ5K,YDd T b  c $A ? ?3"`? 2 倍H]n,rO~%3`! 倍H]n,rO~\ xڕ;KAg.K$"EL! j0 )TV",,,'5Xe$@{wf?; B9?>>CXȘm1 šcqv"R&a@sq5vLV |sA{?P*h@H3;X5UZk_;Lg֗TSz~2kUV6\7|&_JW 1Vt*Xrx}PQ4\vy/H\y]u;c>~>z鹦Unt|Z*lQ ՙRt0Ofz9J~I~u1QǣrR%?VU֍墮Eͺ}^AC@Еn5kuӂ.e!7hF(Dd `b  c $A? ?3"`?2rEGflC,oyYN(3`!FEGflC,oyYݨ%S:X xڕkQfw5uRI*x0i6MB B)xfPD<` /^zry׾70;ٷrVL=\9D(D LNh]]q$$_G z\8&nݬt#U=f]Qt('Op _iJx/Sv%Wx{Q1R:m[eKFz+d.6:1MhQgEԏhpơN}VL輛"|$qSG ͷYir_bi{~fl~޸9 M?]O6|A,5?ז潽D~wL'>Ŭ\0yɟh~V098E|Sj(_d\ʘ&;<~>ɛhxWSs;]ێN{|1|pJ;aDAV\ . p?S^Dd `b  c $A? ?3"`?2 YlDi3kϛ+3`!YlDi3kϛ 8>X xڕK@]ҴM LZbTEp(Bňͱt*ҥ['tR'Q?@0`J;xI}ݗqP6"8ԏ(!2"<eɄ|VhVx, [Z8{:@K=2' Ru;MjӋ~dV+XsR7VLpZﵔV111\sedMg[?]i5&Krp},0~ ܡak=-sFrO*xVE?eZwjF\:XV)C|.H]yw<usQ"so9`J/پ^*F#G|ƝXzM_.`o\!whWOJ0Fנ=垟3o벛uN rP.U m cb; +/ Dd D`b  c $A? ?3"`?2 bF4 .3`!bF4  X xڕK@]ҤMN"[KSW`;88X!Xi 5 8sɡ .ID)VAޯ G}yAP)O",J 1y z##ќ6Ч%|C&aFd򕝜{`!Z #ͺVӍ\_vd꽲]SIbd7m W~k?%s q~z RK:&Ζq} /[p6vsA?m'_U>7D@"$~q=m0N(k'GX(uROߔ.&y_+N#-lk¶J;-+W<hӊA_:)},á5鼱q^)aΈN?ou7ctmQ+ :3X.W Eh@#Bgg4-Dd `b  c $A? ?3"`?2 Zfzyeg>|{43`!Zfzyeg>|{ xX xڕ=K@ǟ6 :C"-X Ec-L:'qP:7pSED_@h{~v!hMa } #$-{hB(?CjF5C`z,7Ԫѹa>&sw"Vwy YiXC/˷tɏrf|+S8u8 4#,\~ߒHϗ/*" ~l0Y-m0+4Cq)]lU'GJr&mWRV2^P+WQS|iAпtR:܇Xab7WK6oK[yӞ!Oom jYwaxŒB1 '"( A_~~~dDd lb  c $A? ?3"`?22uFD]63`!2uFD]fx Pxcdd``6f 2 ĜL0##0KQ* W A?dv@=P5< %!@5 @_L ĺE&1X@V ;ȝATN`gbM-VK-WMcرsA V0Z~5Mb&#.#, ~6? TbܤeB\|a/1` g  '0^F n6+0U\88 v 0y{Ĥ\Y\ C `g!t?39nDd x lb  c $A? ?3"`?2li}.\x*Ƃ?93`!li}.\x*Ƃ.XxڕRKqwjzj^ `-aXMKcѐ‰AC84ED[N _$`k[!-]}ᤆy~c}` DӐ1Wc8YʵE/#mh$I[ % 'AxHڀGQˉ~]/g&q L $Y&s/ `^h傞mlOQV{޷xD^|bLdMҀJ}vZJfMZ Op=[Ǩ-?@x[._(Vy p??bjsd:ǸxW )< A? }]8Uumb^.On0#ЋW\[mӂ W"Iޡ&%1Tabler"SummaryInformation(jDocumentSummaryInformation8,CompObjqTF@v0v՜.+,0 hp|  UCF0  Systems of Equations Title  FMicrosoft Office Word Document MSWordDocWord.Document.89q@@@ NormalCJ_HaJmH sH tH DA@D Default Paragraph FontRi@R  Table Normal4 l4a (k@(No List@jkyz2]xuv  ABXl)*KL^q u5 6 N O ) * s t $ %  + C D !OP^_,-=MhiMN#3OP()7CDvw\]uv)*PQ00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000@000000000000000000000000000000000000000000000000M "  ""6 J L t    ' ) + ? A  ]qs::::::::::::::::::::: OLE_LINK1 OLE_LINK2..hhRSTU!# TYu} X[_d[]*3[]NP3333333333333333333BKJ_4vp:6UwJ%XI5my1y@ij`gg@@UnknownGz Times New Roman5Symbol3& z ArialETimes New (W1)"qhɧF˧F 0 0$24d2IP)?J_2Systems of Equations Arup Guha Arup Guha