ࡱ> dfabc[ bjbj 4ΐΐq     9$]]]]]888$Fp9 888889  ]]V***8 ] ]*8**z]p&*r {jl0X'XX 88*8888899>)8888888X888888888 : Applied Physics I Question Bank -1 Topic: Interference of Light What is Interference of light .give the conditions necessary for sustained interference Describe and explain Youngs experiment demonstrating interference of light? Deduce an expression for the intensity at a point in the region of superposition of two waves of same periods and wavelengths. Hence establish the need of two coherent sources for the production of observable interference pattern? (Hint: Deduce I = a12 + a22 + 2a1 . a2 . cos ) What will happen in the intensity distribution curve in double slit if, Slit width is increased. Separation between the two slits is increased. Wave length of light increased. 4. Show that the formation of interference fringes is in accordance with the law of conservation of energy? (Hint: Prove Iav = a12 + a22 ). 5. Monochromatic light from the narrow slits falls on two parallel slits of the interference fringes are obtained on a screen (Youngs Expt.) . Calculate the spacing between two consecutive maxima or minima (fringe-width). What is the shape of fringes? 6. Calculate the displacement of fringes when a thin transparent lamina is introduced in the path of one of the interfering beams in a bi-prism? Show how this method is used to find the thickness of a mica plate? 7. What will happen to biprism fringes if: (a) The angle of biprism is increased. (b) The width of the slit is increased continuously. 8. Discuss the phase change due to reflection of light from the surface of a denser medium? 9. Explain the phenomenon of interference of light due to this parallel film and find the condition of maxima and minimum. Show that the interference patterns of reflected and transmitted monochromatic light are complementary? 10. Discuss the appearance of colors in thin films illuminated by an extended white light source when seen in reflected light? 11. Describe an interference method to determine the refractive index of a transparent liquid given in a very small quantity. Derive the formulae used ? 12. Explain the following: (a) A Thick film shows no colours in reflected white light. (b) An excessively thin film seen in reflected white light appears perfectly black. (c) The interference colour pattern of the same place on the surface of a soap bubble changes continuously. (d)An extended source is necessary to observe colours in thin films. 13. Discuss the formation of interference fringes due to a thin wedge- shaped films seen by normally reflected sodium light. What will happen if white light is substituted for the sodium light? 14. Describe and explain the formation of Newtons sings in reflected monochromatic light prove that in reflected light. (a) Diameters of bright rings are proportional to square roots of odd numbers. (b) Diameters of dark rings are proportional to square root of natural numbers? 15. Account for the perfect blackness of the central spot in Newtons rings system. Can you obtain a bright centre in the Newtons rings system if yes how? 16. State giving reason what change do you expect in Newtons rings? (a) If the top surface of the glass pate on which the lens is kept is highly silvered. (b) If white light is used instead of monochromatic light. (c) A planoconvex lens when placed on a flat surface, at t=o first minima is formed. The lens is gradually raised up by /4 and /2 and again by . Show how intensity varies in this process? 17. Explain briefly why the fringes in Newton s rings arrangement are circular and in air wedge are straight and parallel? 18. Describe Newtons rings method for measuring the wavelength of monochromatic light and refractive index of a liquid & give the necessary theory. 19. Show that the diameter Dn of the nth Newtons ring, when plano-convex lenses of radii R1 & R2 are placed in contact is given by the relation: 1/R1 + 1/R2 = 4n / Dn2 . 20. Find the resultant amplitude & phase of an oscillating particle when  n simple harmonic motions of equal amplitude & periods but with phase increase in arithmetical progression are simultaneously imposed on the particle? 21. How can you determine the difference in wavelength between the two D-lines of sodium using Michelson 22. Explain the working of a Michelson interferometer mention the conditions for the formation of: (a) Circular fringes (b) Localized fringes in a Michelson Interferometer. Two coherent beams of wavelength 5000A reaching a point would individually produce intensities 1.44 & 4.00 units. If they reach these together the intensity is 0.90 units. Calculate the lowest phase difference with which the beams reach that point. ( Phase Difference = 161o ). Find the ratio of intensity at the center of a bright fringe in an interference pattern to the intensity at a point one quarter of the distance between the fringes from the centre. ( I1 / I2 = 2 ) Two coherent sources having an intensity ratio  interfere. Prove that in the interference pattern: ( Imax - Imin ) / (Imax + Imin ) = ( 2 1/2 ) / ( 1 +  ) . Two wavelengths 1 & 2 are used in a double  slit experiment. If one is 1 = 430 nm, what value must the other have for the fourth-order fringes (bright) of one to fall on the sixth order bright fringes of the other. ( 2 = 286.67 nm ) . In a double slit arrangement fringes are produced using white light of wavelength 48000A. One slit is covered with a thin plate of glass of refractive index 1.4 & other slit is covered by another plate of glass of the same thickness but of refractive index 1.7. On doing so the central bright fringe shifts to the position originally occupied by the 5th bright fringe from the centre. Find the thickness of the glass plate. (Thickness = 8m). In a Youngs Double Slit Expt , angular width of fringes formed on a distant screen is 0.1 degree. The wavelengths of light used is 6000 Ao .What is the spacing between the slits? Two coherent sources are placed 0.9 mm apart & fringes are observed 1m away calculate the wavelength of monochromatic the used if it produces the second dark fringe at a distance of 10 mm from the central fringe. The shortest wavelength of visible light fall on two slits 2.80x 10-2 mm apart. The slits are immersed in water and the viewing screen is 25 cm away. How far apart are fringes on the screen? Youngs double slit arrangement produces interference fringes for Na light (  = 5890A0 ) that are 0.20o apart. What is the angular fringe separation if the entire arrangement is immersed in water . ( given for water as 4/3 ). A Fresnel s bi-prism arrangement is set with sodium light ( =5893A0) & in the field of view of the eyepiece , sixty two fringes are observed. How many fringes shall we get in the same field of a Hg lamp using green filter passing light of wavelength  = 5461A0 . Fresnel s biprism fringes are observed with white light. When a thin transparent sheet covers one-half part of the biprism the central fringe shifts sideways by 14.97mm. With the same geometry the fringe width with Hg green light (=5461A0) comes out to be 0.274mm. Deduce the thickness of the sheet assuming the refractive index of its material as 1.58. ( thickness = 5.14x10-3 mm.). If the angle of wedge is 0.25o and wavelength of Na lines are 5890Ao and 5896Ao find the distance from the apex of the wedge at which the maximum due to the two wavelengths first coincide when observed in reflected light. Youngs double slit arrangement produces interference fringe for Na light (>=5890Ao). that are 0.20 apart. what is the angular fringes separation if the entire arrangement is immersed in water of (refractive index of water is 4/3). Two Glass plates enclose a wedge  shaped air film touching at an edge and are separated by a wire of 0.05mm diameter at a distance of 15 cm from the edge calculate the fringe width? Given = 6000Ao from a source of light falling normally on the film? Fringes of equal thickness are observed in a thin glass wedge of refractive index 1.52. The fringe spacing is 1mm and  of light used to see the fringes is 5893Ao. Calculate the angle of glass wedge in seconds of arc? The distance between slit and the biprism and between the bi-prism and the screen are 50cm. each. The obtuse angle of bi-prism is 1790 and its =1.50. If the width of the fringes is 0.0135cm, calculate the wavelength of the light used? ( 2d = 0.43cm,  = 5890A0 ). A thin sheet of mica (=1.6) of the thickness 0.1 mm introduced in the path of one of the interfering beams in a biprism arrangement shifts the central fringe to a position normally occupied by the 7th bright fringes from the centre. Find the  of light used? White light is reflected from an oil film of thickness 0.01mm and refractive index 1.4 at an angel of 450 to the vertical? If the reflected light falls on the slit of the spectrometer find the no. of dark bands seen between 1= 4000A0 and 2=5000Ao ? (N=12) 41. White light falls normally upon a film of soapy water whose thickness is 5x10-5 cm. and =1.33. What wavelength in the visible region will be reflected more strongly? (=5320A0). 42. A parallel beam of light of =5890Ao is incident on a thin glass plate of =1.5, such that angel of refraction into the plate is 60. Calculate the smallest thickness of one plate which will make it appear dark by reflection? ( thickness=3927A0). 43. White light is incident on a soap film at an angle of sin-1 (4/5), the reflected light on examination by a spectroscope shows dark bands. Two consecutive dark bands correspond to wavelengths 6.1x10-5 cm & 6.0x10-5 cm. If =4/3 for the film, calculate its thickness? 44. In Newtons ring expt. Diameter of the 10th bright ring changes from 1.40cm to 1.27 cm, when a liquid is introduce between the plate and the lens. Calculate the refractive index of the liquid? 45. Newtons rings are observed in reflected light having =5.9x10-5cm, the diameter of the 10th dark ring is 0.50cm. Find the radius of curvature of the lens and thickness of the air film? 46. Newton s rings are formed by reflection in the air film between a plane glass surface and a spherical surface of radius 100 cm. if the diameter of the 3rd bright ring is 0.181cm. & that of the 13th bright ring is 0.501cm find ? (=5456Ao). 47. In a Newton s ring experiment the radius of 6 successive bright rings are ( 100, 152, 198, 248, 302 & 350) x10-4 cm. make the best possible calculation of  of light used ? given R = 100cm as the radius of curvature of the plano-convex lens used in the experiment. 48. A Newton s ring arrangement is used with a source emitting two wavelengths 1 = 6000Ao & 2 = 4500Ao and it s found that the nth dark ring due to 1 coincides with the (n+1)th dark ring due to 2. If the radius of curvature of the curved surface of lens is 90cm, find the diameter of the nth and (n+3)th dark ring for 1 ? 49. In Newton s ring experiment diameters of the 4th and 12th dark rings are 0.40cm and 0.70cm respectively. Find the diameters of the 20th dark ring? 50. When the moveable mirror of Michelson s interferometers is moved through 0.05896 mm, a shift of 200 fringes is observed. What is the wavelength of light used? (=5896Ao). 51. Calculate the distance through which the mirror of a Michelsons interferometer has to be displaced between 2 consecutive position of maximum distinctness in the case of Na lines having wavelengths 5890Ao & 5896Ao ? (distance=0.2894mm). 52. When a thin film of a transparent material of =1.45 and  = 5890Ao is inserted in one of the arms of a Michelson s interferometer, a shift of 65 circular fringes is observed. Calculate the thickness of the film? (thickness=0.00425cm) Applied Physics-1 Question Bank-2 Topic: Diffraction of Light, Dispersive Power & Resolving Power Q-1 Differentiate the single slit diffraction pattern & double slit interference pattern? Q-2 Show analytically that for a single slit diffraction pattern to hold good , the width of a single slit must necessarily be of the order of the wavelength? Q-3 Describe Fraunhofer diffraction due to a single slit & deduce the position of the maxima & minimum. Show that the relative intensities of successive maxima are nearly (1) : (1/22) : (1/61) : (1/121) : . What will be happen if the width of the slit is made equal to the wavelength of light? Q-4 What is the effect on a two-slit diffraction pattern if: (a) slit width is increased. (b) wavelength of light is increased. Q-5 Explain Fraunhofer diffraction due to a double slit. How does its intensity distributions curve differ from that obtained due to a single slit? Q-6 Give the construction & Theory of a plane diffraction grating of the transmission type & explain the formation of spectra by it? Q-7 Two Plane diffraction gratings A&B have same width of the ruled surface but A has greater no of lines ruled on it than B. Compare the intensity of fringes and the dispersive powers in the two cases? Q-8 Explain & obtain the condition of absent spectra in a plane transmission grating. if the width d of the opaque surface is equal to the width e of the transparent space which order will be absent? What will happen if d=2e ? Q-9 Find the maximum number of orders available with a diffraction grating? Q-10 Give the theory of a plane transmission diffraction grating and show how you would use it to find the wavelength of light? Q-11 Plot the diffraction pattern for N= 2, 6 & 12 slits in the diffraction grating? ( Hint N=6 means (N-1) =5 minima & (N-2) =4 secondary Maxima. ) Q-12 Define the dispersive power of a grating & obtain an expression for it? Q-13 Differentiate between prism spectra & grating spectra? Q-14 Two spectral lines have wavelengths  & + d respectively. If d <<  , find their angular separation d in a diffraction grating spectrum in the nth order. Q-15 What are Fresnel s half period zones. Prove that the area of a half period zone on a plane wave front is independent of the order of the zone & that the amplitude due to a large wave front at a point in front of it is just half that due to the first half-period zone acting alone? Q-16 Differentiate between Fraunhofer and Fresnel classes of diffraction? Q-17 What is the zone plate? Show that a zone plate has multiple foci? Q-18 Compare the zone plate with a convex lens? Q-19 Describe with necessary theory, Fresnel type of diffraction due to a straight edge. Comment on the intensity distribution? Q-20 What happens when: (a) A diffraction pattern is obtained using a beam of red light & the red light is replaced by blue light? (b) In a plane diffraction grating the distance between rulings is very close compared with the incident light? Q-21 Justify why it is easier to observe interference & diffraction in sound waves. Does the radiation antenna show the same phenomenon and is it designed for such observations in the case of light waves? Q-22 How many lines /cm must a diffraction grating have if there is to be no second order spectrum for the longest wavelength (  = 7000Ao ) of the visible light? Q-23 Show that the intensity of the principal maxima increases with the increase in the number of slits for a Fraunhofer diffraction pattern due to N identical slits ? Q-24 Obtain an expression for resolving power of a prism? With a zone plate for point source of light on the axis, the strongest & the next strongest images are formed at 30 cm & 60 cm respectively from the zone plate. Both the images are on the same side and source is on the other side. Calculate ( a ) Distance of the source from the zone plate. ( b ) Radius of the first zone. ( c ) Principal focal length of the zone plate. Q-25 If the diameter of the central zone of a zone plate is 2.5 mm & a point source of light of wavelength 7.5x10-5 cm is placed 5 meters away from the zone plate, find the position of the primary & secondary images? Q-26 Find the radius of the first three transparent zones of a zone plate whose focal length is 1 meter for =5893A0 ? Q-27 A narrow slit illuminated by light of wavelength 5896A0 is placed at a distance of 20cm from the straight edge. If the measurements are done at a distance of 150cm from the straight edge, calculate the distance between the first & the second dark band? Q-28 A narrow slit illuminated by light of wavelength 5890A0 is located at a distance of 10cm from the straight edge. If measurements are done at a distance of 50cm from the edge calculate the distance between the first & the second dark bands? (distance=0.0779cm). Q-29 Calculate the angular separation between the first order minima on either side of the central maxima when the slit has a width of 6x10-4 cm & light illuminating it has a wavelength of 6000A0? Q-30 A plane wave of wavelength =6x10-5 cm falls normally on a straight slit of width 0.2mm. Calculate the total angular width of the central diffraction maxima & also the linear width as observed on a screen placed 2m away? ( 2 = 6x10-3 radians, linear width = 1.2cm ). Q-31 Parallel light of wavelength 5000A0 is normally incident on a single slit. The central maxima fans out at 300 on both sides of the direction of incident light. Calculate the slit width. For what width of slit the central maxima spreads out to 900 from the direction of the slit? ( a=10-4cm ; and for =900 , a=5000A0). Q-32 In a double slit pattern the screen is 160cm away from the slits. The slit widths are 0.08 mm& they are 0.4mm apart. Calculate the wavelength of light if fringe spacing is 0.25cm and also deduce the missing orders? ( =6250A0, n = 6th ). Q-33 In a plane diffraction grating spectrum which spectral line in the fourth order will overlap with the third order line of wavelength 5461A0 . (=4095.75A0). Q-34 A plane diffraction grating used at normal incidence gives green light (=5400A0) in a certain order superimposed on the violet light (=4050A0) of the next higher order if  = 300 find how many lines per cm are present in the grating? (3080 lines /cm). Q-35 Find the maximum number of orders available with a grating. Show that if the width of the grating element is less than twice the wavelength of light, then only the first order is available? Q-36 A plane diffraction grating has 5000 lines /cm & is used in normal incidence of light. If the width of the opaque part be double that of the clear part in the grating, then which orders of the spectrum will be absent? (3rd, 6th, 9th). Q-37 In relation to a plane diffraction grating with 5000 lines/cm, if illuminated by a light of wavelength  = 6.0x10-5 cm, what is the highest order of spectrum which may be observed? Q-38 A plane diffraction grating is just able to resolve two lines of wavelengths 5140.34 A0 & 5140.58A0 in the first order. Will it resolve the lines 8037.50A0 & 8037.58A0 in the second order? Q-39 A plane transmission grating having 6000 lines /cm used to obtain a spectrum of light from a sodium source in the second order. Find the angular separation between the two Na lines whose wavelength are 5890A0 and 5896A0 respectively? ( 1 = 440 592 , 2 = 450 22 , 2 - 1 = 3N2 ). Q-40 Calculate the minimum thickness of the base of prism which will just resolve the D1 & D2 lines of sodium given that the refractive indices for the wavelengths 6563A0 & 5270A0 are 1.6545 &1.6635 respectively. (prism base thickness = 14.5cm ). APPLIED PHYSICS - I QUESTION BANK 3 TOPIC: POLARIZATION What is polarization of light? What is Brewsters law? Show that when a ray is incident at the Brewsters angle the reflected ray is perpendicular to the refracted ray. Define Double refraction. What are ordinary and extraordinary rays in a uniaxial crystal? Describe the construction of a Nicols prism. Explain how it can be used as a polarized and as a analyzer? State and prove the law of Malus. How can you verify the law in the laboratory? Un-polarized light falls on a polarizing sheet. Show that the intensity of the transmitted plane polarized light is half the intensity of the incident un-polarized lights? Define positive & negative crystals ? What do you mean by optical rotation? Define Specific rotation. Describe the construction and working of a Laurents half shade polarimeter, explaining fully the action of half shade device. How you would use it to determine the specific rotation of a sugar solution . 10. A glass plate is used as a polarizer. Find the angle of refraction. Given the refractive index for glass = 1.54. 11. With a slab of flint glass, the angle of polarization for reflection is found to be 620 242 . Calculate the refractive index of the flint glass. 12. A glass plate is to be used as a polarizer by the reflection method. Find the angle of polarization for it, given that for glass is 1.54 . Also find the corresponding angle of refraction for it. 13. Two polarizing sheets have their polarizing directions parallel so that the intensity of the transmitted light is maximum. Through what angle must the either sheet be turned so that the transmitted intensity through them become one half of the initial value. 14. An analyzing Nicol prism examines two adjacent plane polarized beams A and B whose planes of polarization are mutually perpendicular. In one position of the analyzer , the beam B shows zero intensity. From this position, a rotation of 30 degrees shows the two beams as matched in intensity. Deduce the intensity ratio IA/IB of the two beams. 15. Two Nicol prisms are crossed to each other. Now one of them is rotated through 600 . What percentage of incident un-polarized light will pass through the system of the two Nicols. 16. What is the optical thickness of a quarter wave plate for the light of wavelength 600 nm, the bi-refringence of the plate (E O) being 0.172? 17. Two polarizers are oriented with their planes at an angle of 300. What % of incident un-polarized light of wave length 6000 A0 shall pass through the system. 18. Plane polarized light is incident on a piece of quartz cut parallel to the axis. Find the least thickness for which the ordinary and extra-ordinary rays combine to form plane polarized light. Given that O = 1.5442 , E = 1.5533 , and  = 5x10 - 5 cm. 19. Calculate the thickness of a Mica sheet required for making a quarter wave plate for  = 5460 A0 The indices of refraction for the ordinary and extra-ordinary rays in mica are 1.586 and 1.592 respectively. 20. Calculate the thickness of (i) a quarter wave plate and (ii) a half wave plate, given that O = 1.544 , E = 1.553 , and  = 5000 A0 . 21. Plane polarized light of wavelength 6000 A0 is incident on a thin quartz plate cut with their faces parallel to the optic axis. Calculate: The ratio of the intensities of the ordinary and extra-ordinary light if the plane of vibration of the incident light makes an angle of 300 with the optic axis. The minimum thickness of the plate which introduces a phase difference of 600 between the ordinary and the extra-ordinary rays. The minimum of thickness of the plate for which the ordinary and extra-ordinary waves will combine to produce plane polarized light. Calculate the specific rotation S if the plane of polarization is turned through 26.40 , traversing 20 cm length of 20% sugar solution . A length of 25 cm of a solution, containing 50 gram of solute per liter causes a rotation of the plane of polarization of light by 50 . Find the rotation of plane of polarization by a length of 75 cm of a solution containing 100 gm of solute per liter. A 15 cm tube containing cane sugar solution ( specific rotation of cane sugar solution is 660 ) shows optical rotation of 70 . Calculate the strength of the solution. A tube of sugar solution of 20 cm length is placed between two crossed Nicols and illuminated with light of wavelength 6000 A0 . If the optical rotation produced is 130 and the specific rotation is 650 , determine the strength of the solution. A 20 length of a certain optically active solution causes right handed rotation of 400 , and a 30 cm length of an another solution causes a left handed rotation of 240 . What will be the optical rotation produced by 30 cm length of the mixture of the above solution in volume ratio 1 : 2 for the first to second respectively. It is given that the solutions do not react chemically with each other. For quartz the refractive indices for right handed and left- handed vibrations are 1.55810 and 1.55821 respectively for  = 4000 A0 . Find the amount of optical rotation produced at this wavelength by a plate of quartz 2.00 mm thick, with its faces perpendicular to the optic axis. Use formula for optical rotation as  =  . (d / ) . ( L - R ) . APPLIED PHYSICS - I QUESTION BANK -4 TOPIC: OPTICAL FIBERS What is an optical fiber? Give its construction with a neat diagram? What types of fibers are used for long-range communication? Explain with reason? What are the advantages of optical communication over microwave / satellite comm.? Derive an expression for the numerical aperture of an optical fiber. Also mention its physical significance? Draw the block diagram of an optical fiber communication system and explain the function of each block? Give the causes of losses in optical fibers? What is pulse dispersion? Derive an expression for the time-interval for the rays to reach the output? Discuss in brief the attenuation and dispersion mechanism in optical fibers. Further explain how its controlled in a graded index fiber ? Differentiate between optical fiber and fiber optics? Find the expressions for acceptance angle? Explain why an optical fiber transmits light around bends? Discuss the propagation of light in fibers? What do you mean by single-mode & multimode fibers? Explain clearly? Which of the two do you prefer & Why? In an optical fiber, refractive index of core is 1.6 and that of the cladding is 1.3? Find the critical angle & the acceptance angle? Also find the value of the acceptance cone? [ 54.340 ; 68.860]. Determine the numerical aperture of a step-index fiber for which core is of n1 = 1.5 & cladding is of n2 = 1.48? Find the maximum angle for entrance of light, if the fiber is placed in air? [0.24413 ; 14.0130] 11. Calculate the refractive index of core & cladding material of a fiber from the following data: NA = 0.22, and  = 0.012? Calculate the number of reflections for a fiber of length 1 km when n1 = 1.6 and n2 = 1.5 & radius of the fiber is 30 m? An optical signal has lost 85% of its power after traversing 500 meter of fiber? What is the loss in dB per Km of this fiber? [ 1.41 dB per Km] A step-index fiber is made with a core of index 1.52, a diameter of 29 m & fractional difference of 0.0007. It is operated at a wave-length of 1.3 m. (i) Find fiber V-number , (ii) The number of modes the fiber will support. Find the core radius necessary for single-mode operation at 850 nm in step-index fiber with n1 = 1.48 & n2 = 1.47. What is the numerical aperture & maximum acceptance angle of this fiber? [a = 1.89 m]. A glass clad fiber is made with core glass of n1 = 1.5 and the cladding is doped to give a fractional index difference of 0.0005. Find (i) the index n2 of the cladding. (ii) The critical internal reflection angle. (iii) The external critical acceptance angle. (iv) Numerical Aperture of the optical fiber. An optical fiber has a NA of 0.20 & a cladding refractive index of 1.59. Determine the acceptance angle for the fiber in water which has a refractive index of 1.33? Consider a step-index fiber for which n1 = 1.475 for core and n2 = 1.46 for cladding, and the core diameter is a = 25 m. Find The maximum value of the angle of inclination () of the rays with the central axis of the fiber for which the rays will be guided through the optical fibers? Corresponding to this maximum value of angle , calculate the number of reflections that would take place in traversing 1 km length of the fiber? Calculate the dispersion in time for an optical pulse traveling through an optical fiber of 1 km length having core of refractive index n1 = 1.45 & cladding of refractive index n2 = 1.40? Calculate the power loss in decibel (dB) if an optical pulse after traveling 1 km length of optical fiber losses its power by the fraction : Pout / Pin = 0.5 ? 21. The V- parameter for an optical fiber is given by : V = (2/). a . "(n1 2  n2 2 ) . which decides the modes of transmission of optical pulses in the optical fiber, & for V< 2.4048, the optical fiber transmits only one mode of the optical pulse. Find the maximum allowed radius  a of the core of the fiber for single mode transmission if : o = 1.30 m, n1 = 1.48 , and n2 = 1.46 , and if o = 1.55 m, n1 = 1.48 and n2 = 1.46 . Applied Physics  I Question Bank -5 Topic: SHM, Forced & Damped oscillations Set up the equation of motion of a simple harmonic oscillator, solve it and hence derive the formula for velocity and acceleration? Prove that for Simple Harmonic Motion, the average kinetic energy equals the average potential energy, when the average is taken with respect to time over one period of motion ? Discuses the motion of simple pendulum and establish that it is Simple Harmonic. Deduce its time-period? A particle of mass m is suspended between rigid supports by means of two identical springs. If T is the tension in each spring , find the frequency of the transverse oscillations? A particle in Simple Harmonic Motion has velocities u1 and u2 when its displacements from mean position are x1 and x2 respectively. Calculate the period, amplitude and maximum speed of the particle? 6. Find an expression for the frequency of a diatomic molecule whose nuclei have masses m1 & m2 and the force constant is K? 7. Two SHMs of same frequency but differing in phase and amplitude is acting in the same direction on a particle. Shows that the resultant motion is simple harmonic. Deduce expression for the resultant amplitude and phase and find the conditions of maximum & minimum of amplitudes ? 8. Set up & solve the differential equation of motion of a damped harmonic oscillator & discuss specially the case when it is under- damped? 9. Set up & solve the equation of a damped mechanical harmonic oscillator executing its motion along the axis, using the initial conditions: t = 0, x = 0, v = V0 . 10. Set up & solve the differential equation of motion of a forced harmonic oscillator? 11. What is meant by sharpness of resonance? Discuss the effect of damping on the sharpness of resonance? Discuss it with a diagram for a forced oscillator? Determine the condition for the velocity amplitude to be maximum and distinguish between amplitude resonance velocity resonance ? Show that the power absorbed by a driven oscillator from the driving force is maximum at velocity resonance? Discuss the variation of the average power absorption with the driving frequency  and find the difference of the two value of  for which the average power absorption is one half of its maximum value? Prove that for a driven oscillator the Quality Factor is : Q = ( 1/2 ) . [ 1 + (0 /  )2 ] .   . where symbols have usual meanings. Solve the equation of motion of a forced harmonic oscillator for the steady state displacement response function. Also show that the displacement response function is: (a) In phase with the driving force for the low driving frequency limit. (b) 1800 (or  radians) out of phase with the high driving frequency limit. (c) 900 ( or /2 radians) out of phase with the driving force for the resonance frequency limit. Show that in a forced oscillator resonance occurs at frequency slightly less than the natural frequency? Discuses two practical uses of resonance? A rifle bullet weighing 10g moving with a velocity of 1600cm/sec strikes and embeds itself in a 790gm block which rests on a horizontal frictionless surface and is attached to a spring of force constant 8x104 dynes/cm. Compute the amplitude of resulting SHM of the block . What happen to the kinetic energy of the bullet? what is the time period of a simple pendulum of length 2meters assuming acceleration due to gravity as g = 9.8 m/sec . What would be its time period if this pendulum is in an elevator accelerating upwards at an acceleration of 2.0 m/sec2 , in addition to the acceleration due to gravity of the earth? A particular of mass 10g is placed in a potential field given by V = ( 50 x2 + 100 ) erg/gm. Calculate the frequency of oscillations? The equation of motion of an oscillating body is: x = 6 cos(3t + /3) meter. What is the period , frequency, and phase constant of the motion? Also find the displacement, velocity and acceleration at time t = 2sec? 23. The vibrational energy levels in HCl molecules made from H & Cl Isotopes of atomic weights 1 & 35 are separated by 0.36ev. Obtain: (i) Frequency of waves limited in a pure vibrational transition. (ii) Force constant. Separation of energy levels if HCl is made from D2 & Cl37 isotopes. Mass of Hydrogen atom is 1.6x10-24 gm ? 24. Find the resultant of the following three collinear SHMs: x1 = a sin(t) , x2 = b sin(t) , and x3 = c sin( t +  ) . 25. The differential equation of an oscillating system is : d2x/dt2 + 2  dx/dt + 2 x = 0 . if  >>  then calculate the time in which amplitude becomes 1/e of its initial value energy becomes 1/e of the initial value energy becomes 1/e4 of its initial value? 26. A 2g particle is subjected to an elastic force of 30 dynes / cm and a frictional force of 5 dynes / (cm/sec). If it is displaced through 2cm and then released, find whether the resulting motion is oscillatory or not and if so , find its period? If the relaxation time of damped harmonic oscillator is 50 second. Find the time in which: The amplitude falls to 1/e times the initial value. EneAB   Ⱦȱȱȱvhvvhvh>CJ H*^JaJ hCJ ^JaJ hvCJ H*^JaJ huh>CJ H*^JaJ hvhvCJ H*^JaJ hvCJ ^JaJ huh>CJ ^JaJ h(ryCJ ^JaJ huhTCJ ^JaJ huhKi5CJ ^JaJ huh6/5CJ ^JaJ huhT5CJ ^JaJ ($AB  * j t  : ] ^ \ ] 3 \^`\gdRgd#H & Fgd>gd>8^8gd>8^8gd(ry & FgdTgdT$a$gd6/        : < C D K M N O P Q R S T U V W X Y Z [ \ ŷŞŞh(ryCJ H*^JaJ huh|CJ H*^JaJ h(ryh(ryCJ H*^JaJ h(ryCJ H*^JaJ h(ryh|CJ H*^JaJ huh|CJ ^JaJ huh#HCJ ^JaJ h^jCJ ^JaJ huh>CJ ^JaJ h(ryCJ ^JaJ 4    , - T V \ ] ` c j 234 *4UgϸϮϸܚhuh%CJ ^JaJ huh2CJ ^JaJ hM CJ ^JaJ hHUCJ ^JaJ h`RCJ ^JaJ huhCJ ^JaJ h'SCJ ^JaJ huh CJ ^JaJ huh|CJ ^JaJ huhRCJ ^JaJ h^jCJ ^JaJ .34_~5t6|}?@ ^_ 0^`0gd{h \^`\gd~{ \^`\gdR~56|}?@ADE µµ鵫”zpchuhdCJ ^JaJ h\QECJ ^JaJ huh>CJ ^JaJ huh{hCJ ^JaJ huhCJ ^JaJ h'SCJ ^JaJ hHUCJ ^JaJ huh1CJ ^JaJ huh;JCJ ^JaJ huh&OCJ ^JaJ huh2CJ ^JaJ hM CJ ^JaJ huhPxCJ ^JaJ &  ^_R\*,.   <=>_`gµܵܵwht0hQ!CJ H*^JaJ hgoCJ ^JaJ huhjZCJ H*^JaJ hQ!hjZCJ H*^JaJ hQ!CJ ^JaJ huhjZCJ ^JaJ huh]eCJ ^JaJ huh{hCJ ^JaJ h\QECJ ^JaJ huhdCJ ^JaJ huhCJ ^JaJ ._B,.>0 6VW 0^`0gdkHgdQ!^gd 0^`0gd{hghij  rtv/>?@LOs78TŸš}h_CJ ^JaJ huh6/CJ ^JaJ huh{hCJ ^JaJ huhkHCJ ^JaJ h)CJ ^JaJ huhjZCJ ^JaJ hgoCJ ^JaJ ht0hQ!CJ H*^JaJ ht0CJ ^JaJ hQ!CJ ^JaJ ht0hQ!CJ H*^JaJ 1TU    Xqrv-1267=     $ p !!! !D!ѯѯѯѯѯѡѯѯhYhCJ H*^JaJ hYhhYhCJ H*^JaJ hYhCJ ^JaJ h jCJ ^JaJ hDhDCJ H*^JaJ hDCJ ^JaJ h_h_CJ H*^JaJ huhkHCJ ^JaJ h_CJ ^JaJ 7Wwx>? v "!$!##H%I%%&&'S''''' $ & Fa$gd b@8^8gd_gdD8^8gd jgdkH^gdkH & FgdkHD!F!H!J!L!P!R!!!!!!!!!!!"""#V#X#######*$+$7$B$$$$$$$ % %%%4%G%M%c%%%%ммФЖФФФФФФЈФФФ~~h_CJ ^JaJ huhkHCJ H*^JaJ h (h (CJ H*^JaJ h (CJ ^JaJ h!wSh!wSCJ H*^JaJ h!wSCJ ^JaJ h jCJ ^JaJ huhkHCJ ^JaJ hX+MCJ H*^JaJ huhkHCJ H*^JaJ hX+MCJ ^JaJ 1%%%%%''''''!'K'S'T'X'f'i't'v'w'x''''''''''''''((((4(6(B(F(H(J(P(`(p(r((( ) ))髠h#Yh#YCJ H*^JaJ h#YCJ H*^JaJ huhkHCJ H*^JaJ h b@CJ ^JaJ h#YCJ ^JaJ h_hkHCJ H*^JaJ h_h_CJ H*^JaJ huhkHCJ ^JaJ h_CJ ^JaJ 5'R((\)^))^**\+++3.R.S.T..>/?/X0e^egd'S^gdkH & F e^`gdkHgdkHe^egd*r^gdkHe^egdN} & FgdkH$a$gdkH $^a$gd b@)))Z)`)d)))))))))))J*\*`*b*d*******6+Z+`+z+|+~+++++,,l-p-z-|-~--..).*.2.4.5.@.A.B.I.мh*rhkHCJ H*^JaJ h*rCJ ^JaJ huhkHCJ H*^JaJ hN}CJ ^JaJ hHUCJ ^JaJ h b@CJ ^JaJ h#YCJ ^JaJ huhkHCJ ^JaJ huhkHCJ H*^JaJ 7I.K.M.^.`.q.r.s.t....../ / />/?/A///\0`0f0"1*181<1111111111´ڴڴڟڇڕ}}}}}}oahfv!hkHCJ H*^JaJ hfv!hfv!CJ H*^JaJ hfv!CJ ^JaJ huhkHCJ H*^JaJ h jCJ ^JaJ h'SCJ ^JaJ h~CJ H*^JaJ h~hkHCJ H*^JaJ h~h~CJ H*^JaJ h~CJ ^JaJ huhkHCJ ^JaJ h*rCJ ^JaJ h*rh*rCJ H*^JaJ %X0Z0Z2\2 4 4K444566.808288@99B:r:t:^gdkHe^egdq; & Fgdq;^gdkHe^egdkHe^egd_gdkH & FgdkH^gdkH11&2,2`2d233P3R333333 4 4 444J4N4O4P4Q44444444444444444444444444444555545557595ɱɱɱɱhkHCJ ^JaJ h_h_CJ H*^JaJ hHUCJ ^JaJ huhkHCJ H*^JaJ h_CJ ^JaJ h jCJ ^JaJ hfv!CJ ^JaJ huhkHCJ ^JaJ hfv!CJ H*^JaJ <95:5;5<5C566666666 6&6R6T6666677 882888>8B8888888999>9F9L9N99999 :::,:0:2:6:8:J:L:X:Z:b:鮣鼕鮣鼕鮼hq;hq;CJ H*^JaJ hq;CJ H*^JaJ huhkHCJ H*^JaJ hq;CJ ^JaJ h jCJ ^JaJ h_CJ H*^JaJ h_hkHCJ H*^JaJ huhkHCJ ^JaJ h_CJ ^JaJ :b:v:x::::: ;$;&;,;4;6;8;F;v;;;;;;;;;;;;<<<D<F<H<J<V<X<Z<\<<<<<<<<<<=V===>>>>%>&>'>)>*>4>7>󮤚h^}ACJ ^JaJ hkHCJ ^JaJ hCJ ^JaJ huhkHCJ H*^JaJ h4wLCJ H*^JaJ h4wLhkHCJ H*^JaJ h4wLCJ ^JaJ h'SCJ ^JaJ huhkHCJ ^JaJ ==*>+>x>> ?Y????!@o@@@B C$C^gdkHgd:?  gd:?  gd^}A  gd^gdkHgdkH7>:>e>g>n>p>v>>>>>>>>>>>> ?????!?#?$?&?,?.?/?3?5?7?8?I?J?X?c?o??????????@@ @+@1@5@f@g@m@@@@@@@@@BBBBø߮hkHCJ ^JaJ h:?CJ H*^JaJ huhkHCJ H*^JaJ h:?h:?CJ H*^JaJ h:?CJ ^JaJ huhkHCJ ^JaJ h^}ACJ ^JaJ DBBJBNBBBBBBBBB CC.C4CCCCCCCCCCDRDfDnDpDDDDDDDDEEE:E>E@ETEXEZEfEhElE|EEEEEEF"F&F.F2F:F>FFFJFRFVF\F^FbFdFjFnFtF߹h jCJ ^JaJ h ]9h ]9CJ H*^JaJ huhkHCJ H*^JaJ h ]9CJ ^JaJ huhkHCJ ^JaJ h:?CJ ^JaJ H$CCTDDnEpEEFGGGGhHHI4JJJNKKL LL2MMgd^gdkHgd? ^ gdkHgdN,gdkHgd ]9gd:?tFxFFFFFFFFGGGGG G&G(G*G4GGGGG`HvHxHHHHHHHHHHHHHHHHHHHHII I III6IƼƮƇƼhN,hkHCJ H*^JaJ hN,hkHCJ H*^JaJ hN,CJ H*^JaJ hN,hN,CJ H*^JaJ h?CJ ^JaJ hN,CJ ^JaJ h jCJ ^JaJ h ]9CJ ^JaJ huhkHCJ ^JaJ h ]9hkHCJ H*^JaJ 36I8I:IlIrIIIIIIIIIIII0J>J@JvJJJJJJJJJJJKKK*K.K0K6KQQ RLRMRRRISJS TxTyTTTTTUUVVVVWWXX 0^`0gdWW 0^`0gdgd$a$gdXcXXXXYLYdYeYYYYYZZ$[[[\[\\] ]L]e]f]]gd 0^`0gd;n[ 0^`0gdYYYYYYYYKYZY[Y`YbYiYlYYYYYYY ZZRZTZVZ\Z`ZbZdZfZhZlZZZZZZZZZZZZ[[[[[[[[\\Z\e\\\\\\\\]]]]9]K]X]^]_]k]n]]]Ⱦh/CJ ^JaJ h;n[CJ ^JaJ huhCbCJ ^JaJ hHUCJ ^JaJ hCbCJ ^JaJ huhCJ ^JaJ K]]]]/^q^r^^^j_k_r`t`aaaabbcd(d^d_d:e p@ 0^`0gd^gd 0^`0gd]]]^^^ ^ ^ ^.^9^w^x^y^^^j_k_p_q___________` `6`8`~``aa,a6aaaaaaa$b&b,b-b=b>b`babbbbbccYcZc[cccccccddh=0CJ ^JaJ hPCJ ^JaJ hJhJCJ H*^JaJ hJCJ ^JaJ hCJ ^JaJ h/CJ ^JaJ huhCJ ^JaJ Fdd d d d dd+d.d/d0d2d9d;dHdId[dddedddeeee@eDeeefffff\f^fffgg&g(ggghhMhNhRhShhhhh iihLchCJ H*^JaJ hLcCJ ^JaJ hCJ H*^JaJ huhCJ H*^JaJ hCJ ^JaJ hhCJ H*^JaJ hCJ ^JaJ hPCJ ^JaJ h=0CJ ^JaJ huhCJ ^JaJ 7:e;eeffhh i!iii l l&n(nppppNqqq@rrvstt p@ 0^`0gdiii&i(ihiiiliriiiiiiiiiiiiijjj j*j.j0j4jjj:kFkkkkkkkkkkkkkkkkklllllll3l󯤽h<h<CJ H*^JaJ h<CJ H*^JaJ h#(hCJ H*^JaJ h<CJ ^JaJ h#(CJ ^JaJ huhCJ H*^JaJ h+CJ ^JaJ hLcCJ ^JaJ huhCJ ^JaJ 83l4l[l\l|l}l~lllllllllm m-m.m2m4m6m8m9m>mnnn n nnn n"n$n2n8nnnooooooooppppp ppppppp$p,pppp䮡huhkwCCJ ^JaJ hCJ ^JaJ hkwCCJ ^JaJ hLcCJ ^JaJ huhCJ H*^JaJ h(JCJ ^JaJ huhCJ ^JaJ h(JhCJ H*^JaJ ?ppLqfqpqrqvq|qqqqqqqqqq>rXrZr\rdrfrhrlrvrxr|r~rrrssssssPsTsVsXs\s^s`sbstsssssssstt tt1t2tKtLtMtNtttttttth_TyCJ ^JaJ hCJ ^JaJ hkwChCJ H*^JaJ hLcCJ ^JaJ huhCJ H*^JaJ huhCJ ^JaJ hkwCCJ ^JaJ Etttuu0w2waxbxVybzdz:|n||||||}}}$a$gd)2 $ & F/a$gd)2 p@ 0^`0gd p@ 0^`0gdtt0u1ufuxuuuuuuuuuuuuuuu@vBvvvvvvvvvvvv8w:wx?x@xIxJxKxdxfxgxkx:y;yhj>CJ H*^JaJ h/heoCJ H*^JaJ hj>CJ ^JaJ heoCJ H*^JaJ heoheoCJ H*^JaJ hDCJ ^JaJ hCCJ ^JaJ hTCJ ^JaJ heoCJ ^JaJ hXCJ ^JaJ h/CJ H*^JaJ h/h/CJ H*^JaJ h/CJ ^JaJ h/h/CJ H*^JaJ $FH "ŎF̏͏Xx & F2 p@ gdC p@ ^gdj> & F. p@ gdj> p@ gdj> p@ ^gdeo p@ gdTgdeo *.#%'(VWXސߐԑ֑בؑۑݑ@DϒђӒԒԼԮԮԤԤԮԤԚtthWhjCJ H*^JaJ hjhjCJ H*^JaJ hWCJ ^JaJ hjCJ ^JaJ h%aCJ ^JaJ hPhPCJ H*^JaJ hrCJ ^JaJ hPhj>CJ H*^JaJ hPCJ ^JaJ hj>hj>CJ H*^JaJ hj>CJ ^JaJ hDCJ ^JaJ ,XYݐYZՑgdZ gdW p@ ^gdC p@ ^gd%a p@ gdP & F2 p@ gdC p@ ^gdP VWєҔ&—̗Ηڗޗ>زxmbxWh"5CJ ^JaJ h5CJ ^JaJ h+~5CJ ^JaJ h1 X5CJ ^JaJ h1 XhDCJ ^JaJ h/CJ ^JaJ hDhDCJ H*^JaJ h1v5CJ ^JaJ hDhZ CJ H*^JaJ hDCJ ^JaJ hZ hZ CJ H*^JaJ hZ CJ ^JaJ hWCJ ^JaJ hjCJ ^JaJ hCCJ ^JaJ "Jڗܗޗ p@ 0^`0gd p@ ^gd/gd/ p@ ^gdjgdj p@ ^gdD~՘56ڙۙHIޚߚFGHӛԛpqgd'c88^8gd'c8 & Fgdgd p@ 0^`0gd>ABlĘ456GIpqٙڙۙGHIqsٚۚݚޚߚEFGHқӛԛO正h'c8CJ ^JaJ huh'c8CJ ^JaJ hCJ ^JaJ hCJ ^JaJ huhCJ ^JaJ h5CJ ^JaJ h5CJ ^JaJ hw\5CJ ^JaJ h`5CJ ^JaJ h-h5CJ ^JaJ h1 X5CJ ^JaJ 0OPopqr͜ϜyÝ˝̝͝Ν69:;|~̞͞ΞϞОў!# "$鴘vhKCJ ^JaJ hCJ ^JaJ huhCJ H*^JaJ hL hL CJ H*^JaJ huhCJ H*^JaJ hL CJ ^JaJ hCJ ^JaJ huh'c8CJ ^JaJ h'c8CJ ^JaJ hCJ ^JaJ huhCJ ^JaJ hHUCJ ^JaJ -qr ϝѝϞОў$((*cd 8^gdgJ6 8^gdG& 8^gd6 & F 8gd 88^8`gdgd'c8gd & Fgd8^8gd'c8̠֠ؠڠ "&(*ġҡ֡ NPQY`bcdtvբ֢ΣӣѭhgJ6CJ ^JaJ huh'c8CJ ^JaJ hG&CJ ^JaJ huhjY$CJ ^JaJ hCJ ^JaJ huhCJ H*^JaJ huhCJ ^JaJ h6CJ ^JaJ ="XϣcdF}-q' & F gd 8^gd  8^gdjY$ & F 8gd 8^gdgJ6OQ^_abcdtv,./19;egpstvҦ &^b֨ڨ:<ߺߢߢߢߢߢߢߢߢߢߢߢߢߢhuh CJ ^JaJ h CJ ^JaJ hjY$hjY$CJ H*^JaJ huhCJ H*^JaJ huhjY$CJ ^JaJ hCJ ^JaJ huhCJ ^JaJ hgJ6CJ ^JaJ hjY$CJ ^JaJ :<Y[*,PUVYZ[]_bdghm@PRTXvxzܷܷܪܪŪܪ󒄒hOhOCJ H*^JaJ hOCJ ^JaJ hvhvCJ H*^JaJ hvhvCJ ^JaJ hvhCJ H*^JaJ hvCJ ^JaJ hvhjY$CJ ^JaJ hvhCJ ^JaJ hjY$CJ ^JaJ huhCJ ^JaJ 0êm8fhjlnpr@A & Fgdgd$a$gd & F gd & F gdv gdz|.2vzLPҮܮ&(.024DNPR`dfhlņ̴̴皌皌́vh85CJ ^JaJ h5CJ ^JaJ hOhCJ H*^JaJ hOhCJ ^JaJ hOhOCJ ^JaJ huhCJ H*^JaJ hjY$CJ ^JaJ huhCJ ^JaJ hOhOCJ H*^JaJ hOCJ ^JaJ hOhOCJ H*^JaJ .nprX_~}~κκκκκκΰΰΰΰΰΰ΢ΔΰΰΰΰΰΊΊhOGCJ ^JaJ hhMhCJ H*^JaJ hhMhhMCJ H*^JaJ hhMCJ ^JaJ h%CJ ^JaJ h CJ ^JaJ huhCJ ^JaJ huh5CJ ^JaJ h|65CJ ^JaJ h5CJ ^JaJ 6AJKγϳ./y ^`gdfn^gd^gdf^fgdh^hgd ^`gdgd hh^h`hgd & FgdBCFz|}~qtz{ !(),JQͶζ @DTUZ[ѯ齢hfnhfnCJ ^JaJ hfnhCJ ^JaJ hFhFCJ H*^JaJ hfnCJ ^JaJ hHUCJ ^JaJ htxCJ ^JaJ hOGhCJ H*^JaJ huhCJ ^JaJ hOGCJ ^JaJ :?@ƷǷ"$LN0Fƽ^gd^gd^gdfn & Fgd & Fgdfn:^:gd:^:gdfngd[pqķƷ"$ .02:FHl̺κںܺJLN8:VXϻŻŻŻŻϕzhuhCJ H*^JaJ huhgCJ ^JaJ hCJ ^JaJ hghxh-CJ H*^JaJ hxh-hxh-CJ H*^JaJ hxh-CJ ^JaJ hgCJ ^JaJ huhCJ ^JaJ hfnCJ ^JaJ hfnhfnCJ ^JaJ hfnhCJ ^JaJ /XZbdz|нҽ ?AJMef $/34;=?^筟h|eh|eCJ H*^JaJ h|eCJ ^JaJ hxCJ ^JaJ hghCJ H*^JaJ huhCJ H*^JaJ hgCJ ^JaJ huhCJ ^JaJ hgCJ H*^JaJ <ƾDERM$"RT3`gd^gd=L^gdG;.^gdgd|e & Fgdgd 1JK"$&LPbfhn *8:>@BDNPln (+01HIrǽhyCJ ^JaJ hrCJ ^JaJ hCJ ^JaJ h=LCJ ^JaJ hG;.CJ ^JaJ hphpCJ H*^JaJ huhCJ ^JaJ hpCJ ^JaJ Brsvx>HI>@jpr鯡×h?oCJ ^JaJ hhCJ H*^JaJ hCJ ^JaJ hBCJ ^JaJ hCJ ^JaJ hyhyCJ H*^JaJ hyhCJ H*^JaJ huhCJ ^JaJ hyCJ ^JaJ 83u>lHJ1\]]^ & Fgd <^`<gd & F'gd?o8^8gdL^Lgdgd & Fgd^gd`gd46HJLPX\bhj01ABDE?CdddHdIdKd͹͹͹͹ͷ͹͹Uh]fCJ ^JaJ hOCJ ^JaJ huhCJ ^JaJ huh?oCJ ^JaJ h?oCJ ^JaJ h?oh?oCJ H*^JaJ E8dcdhdddeeUeheie7f8ffffgghhBiii & Fgd^gdJA & Fgd^gdB & Fgdgd & Fgdrgy of the system falls to 1/e times the initial value. Energy falls to 1/e4 of the initial value. The amplitude of an oscillator of frequency 200 cycles /sec falls to 1/10 of its initial value after 2000 cycles. Calculate: Its Relaxation time. Its quality factor. Time in which its energy falls to 1/10 of its initial value. Damping constant. The quality factor Q of a tuning fork is 5.0x104 . Calculate the time interval after which its energy becomes 1/10th of its initial value. The frequency of the fork is 300/ sec. ( take loge (10) = 2.3 ). Q-factor of a sono-meter wire is 2 x 103 . On plucking, it executes 240 vibrations /second. Calculate the time in which the amplitude decreases to 1 / e2 of its initial value? The oscillations of a tuning fork of frequency 200 cps in air die away to 1/e of their initial amplitude in 1 sec. Show that the reduction in frequency due to air damping is exceedingly small? A damped vibrating system from rest has initial amplitude of 20 cm which reduces to 2cm after 100 complete oscillations, each of period 2.3 sec. Find the logarithmic decrement of the system? A harmonic oscillator of quality factor 10 is subjected to a sinusoidal applied force of frequency one and half times the natural frequency of the oscillator. If the damping be small obtain: The amplitude of the forced oscillation in terms of the maximum amplitude. The angle by which the amplitude will be out of phase with the driving force? If power transfer versus frequency of the applied force is drawn near natural frequency of the oscillator, then what is the full width at half maximum of this power transverse graph? At what frequency of the applied force the power transfer is maximum & what is the expression for the maximum power transfer? A forced harmonic oscillator shows equal amplitudes of oscillation at angular frequencies 1 = 300 rad/sec & 2 = 400 rad/sec .What will be the value of the resonant angular frequency at which amplitude becomes maximum? 35. A particle is initially displaced by 5cm from its equilibrium position & then left. The particle executes damped linear oscillations with a logarithmic decrement of  = 0.02. Find the total distance the particle covers before it finally stops? APPLIED PHYSICS  I QUESTION PAPERS -6 TOPIC : SPECIAL THEORY OF RELATIVITY State Einsteins postulates of special relativity. On the basis of these postulates derive the standard Lorentz transformation equations? Using Lorentz transformation equations, prove that a moving clock appears to go slow? Explain the Working of Michelson Interferometer? How will you produce circular fringes with it? How will you measure the difference in wave-length between D-lines of sodium light? What were its main consequences? What are the two types of frames of reference? Define each? Give examples of each? What are Lorentz Transformations for space-time. Show that x2 + y2 + z2 - c2t2 is invariant under the Lorentz transformations ? Using the law of addition of relativistic velocities, show that in no case can the resultant velocity of a particle be greater than c, the velocity of light in free space. What do you understand by time dilation, explain? Give its experimental proof? Explain Einsteins mass-energy equivalence. Prove the relation E2 = p2 c2 + mo2 c4, where p is the relativistic momentum? In Michelson-Morley experiment, the length of the arm of interferometer is 11.5 meter, the wavelength of light is 5.0x10-7 m & earths velocity is 30 km/sec. Calculate the fringe shift? [0.46] The half life of a particle as measured in the laboratory comes out to be 4x10-8 sec when its speed is 0.8c, and it becomes 3x 10 -8 sec when its speed is 0.6 c. Explain this? How fast would a rocket go relative to an observer for its length to be contracted to 99% of its length at rest? [4.2 x 109 cm/sec] If the total energy of the particle is thrice its rest mass energy, what is the velocity of the particle? [0.943 c] A relativistic electron & a photon both have linear momentum 2.0 Mev/c. Find the total energy of each. At what speed does the Kinetic energy of an electron equal to its rest mass energy. The rest mass energy of electron is 0.5Mev. What is the corresponding momentum of the electron. Determine the fractional increase of mass of a particle with velocity 0.1c? Calculate the expected fringe shift in a Michelson- Morley experiment if the distance of each path is 2 m & light is of wave length 6000 Ao . [1/15 of a fringe] An event occurs at x = 100 m, y=10m, z = 5m on t = 1*10-4 sec in a frame S. Find the co-ordinates of this event in a frame S2 which is moving with velocity 2.7*108 m/sec with respect to the frame S along xx2 axes using : Galilean transformation. Lorentz transformation. Use Lorentz transformations to show: x2+ y2 + z2 - c2t2 = (x2 )2 + (y2 )2 + (z2 )2 - c2(t2 )2 . A rocket ship is 100 m long on the ground. When it is in flight, its length is 99 m to an observer on the ground. What is its speed? [ 4.23 x 109 cm/s] A rod has length 100 cm. When a rod is in a satellite moving with velocity that is one-half of the velocity of light relative to laboratory, what is the length of the rod as determined by an observer : in the satellite, and in the laboratory [(a) 86.6 cm] A certain particle called -meson has a life-time 2x10-6 sec. a) What is the mean life time when the particle is traveling with a speed of 2.994 x1010cm/sec? b) How far does it go during one means life? c) What distance would be traveled without relativistic effects? [31.7 x 10-6 sec, 9510 m, 598.8 m] 22. Calculate the Length & the orientation of a meter rod in a frame of reference which is moving with a velocity equal to 0.6 c, in a direction making an angle of 300 with the rod? [ 0.854 m ,  = tan -1 (0.72) ] 23. Two particles are moving in opposite directions, each with a speed of 0.9 c in the laboratory frame of reference. Find the velocity of one particle relative to the other? [ 0.994 c] An electron of rest mass 9.1 x 10-31 kg is moving with a speed of 0.99c. What is its total energy? Find the ratio of Newtonian kinetic energy to the relativistic energy? [ 5.8x10-13 joules ] 25. It is assumed that sun gets energy by fusion of four Hydrogen atoms into a helium atom. The rest mass of Hydrogen & Helium atoms are 1.0081 & 4.0039 atomic mass units respectively. Calculate the energy released in each fusion process? 26. Rockets A & B are observed from the earth to be travelling with velocities 0.8c & 0.7c in the same line in the same direction. What is the velocity of B as seen by an observer on A? [ -0.23c] 27. A charged particle shows an acceleration of 4.2 x 1012 cm/sec2 under an electric field at low speed. Compute the acceleration of the particle under the same field when the speed has reached a value 2.88 x 1010 cm/s. [ 1.176 x 1012 cm/sec2] 28. Deduce the velocity at which the mass of a particle becomes 1.25 times its rest mass? [1.8 x 108 m/s] 29. Deduce the rest energy of an electron in joules & in electro-volt. Also, deduce the speed at which the total relativistic energy becomes 1.25 times the rest energy? [0.6c] 30. Show that the mass of an electron is equivalent to 0.51 Mev energy. State the minimum energy of X-ray photon which can produce an electron-position pair? [1.02 Mev] 31. How much work must be done in order to increase the speed of an electron from 1.8x108 m/sec to 2.4x 108 m/sec. [0.215 Mev] 32. Deduce the speed of an electron accelerated through a potential difference of 1.0 million volt? [0.94c] Show by means of Lorentz transformation between inertial frames S and S2 with S2 moving with velocity v in x direction with respect to S frame that (x2 )2  (ct2 )2 = x2  (ct)2 34. A bean of particles of half-life 2x10-6 seconds travels in the laboratory with 0.96c speed. How much distance does the beam travel by the time the flux of the beam falls to times its initial flux? 35. Determine the time (as measured by a clock at rest on the rocket) taken by a rocket to reach a distant star & return to the earth with a constant velocity v = (0.9999)1/2 c, if the distance of the star from earth is 4 light years? 36. The velocity of a particle is 6 i + 5 j + 4 k in a frame of reference S2 , moving with a velocity 0.8c along the axis of x, relative to a reference frame S at rest. What is the velocity of the particle in the latter frame S ? 37. A proton of rest mass m0 = 1.67x10-24 gm is moving with a velocity 0.9c. Find its mass & momentum in motion, as it appears from a stationary frame of reference? 38. Calculate the speed of an electron having kinetic energy 1.02 Mev, given that m0 = 9.11 x 10-31 kg for electron? 39 . Given a proton moving with a velocity v such that v/c = 0.995 measured in the laboratory frame (at rest). What are the corresponding relativistic energy & momentum of the proton. Given that m0 = 1.67 x 10-27 kg for the proton? 40. The binding energy of an electron to proton (i.e. of hydrogen atom) is 13.6 ev. i) Find the loss of mass in the formation of one atom of hydrogen? ii) Calculate the binding energy of the deuteron? Given : Rest mass of electron = 9.1x10-31 kg Rest mass of proton = 1.672x 10-27 kg Rest mass of Neutron = 1.6748 x 10-27 kg Rest mass of deuteron = 3.3433 x 10-27 kg Applied Physics I Question Bank -7 Topic: Central Forces Solve the equation of motion of a particle under an inverse square force and show that the path of the particle is in general a conic section? What is meant by a central force? Show that in a central force a particle always moves in a plane and its angular momentum about of the center is conserved. Hence show that areal velocity of motion remains constant? Write the most general form of central force and discuss the cases for n= - 1 & n=2 respectively? What are the main properties of central force? Give two examples of non-central forces? What are conservative forces? Show that work done by a conservative force along a closed path is zero? Are all central forces necessarily conservative? Justify your answer? Find the central force under which the trajectory of a particle is given as: r =  . e . The mean distance KdLdhdkdddddeeeeSeTeUe\e_e`eeefe|e}eeeeeeeeeeeeee f ffffff&f'f(f6f8f;fLfNf\f]f^f·Лh\CJ ^JaJ h@8CJ H*^JaJ h@8h@8CJ H*^JaJ huhCJ H*^JaJ h@8CJ H*^JaJ h@8hCJ H*^JaJ h@8CJ ^JaJ hBCJ ^JaJ huhCJ ^JaJ h]fhCJ H*^JaJ 4^f_f`fafcfefffifffffffffffffffffffgg-g4gAgBgEgHgIgJgPgXgkgmggghh6h8hOhRhhhhhi$iii6j:jDjEjrjsjkƹhV@}CJ ^JaJ hJACJ ^JaJ huhJACJ ^JaJ hCJ ^JaJ h\CJ H*^JaJ h\hCJ H*^JaJ huhCJ ^JaJ h\CJ ^JaJ >ijkkmmn*o,o.o0o2oooppppqqq $^a$gdoE $ & Fa$gd0 gd0 {^`{gdgd & Fgd^gd & FgdkkHkIkUkXk\kdklkpklll l$l(l*l,l.l0lllmmPnXnZnbnnnpnnn2o4ooopPpQpRpSppppppppp鶬|huhoECJ ^JaJ hHVCJ ^JaJ h-h05CJ ^JaJ h8Z5CJ ^JaJ h0CJ ^JaJ huh0CJ ^JaJ h&/CJ ^JaJ h~khCJ H*^JaJ h~kh~kCJ H*^JaJ huhCJ ^JaJ h~kCJ ^JaJ 0pppqqqqq)r*r+r4r5rerfrhrirkrlrmrnrorprqrrrsrtrurvrxryrzr{r|r}rrrrrrrrrrss4s\s]s^sssssssssssssssĹĹĹĹĹhHVhHVCJ H*^JaJ h%],CJ ^JaJ hHVCJ H*^JaJ huh0CJ H*^JaJ huhoECJ ^JaJ h0CJ ^JaJ huh0CJ ^JaJ hHVCJ ^JaJ ?qq*r+rfrrr]s^ssss*t+tt*uuuPvv%w&wwwDxEx $^a$gdHV $ & Fa$gd0 $^a$gdoEssssstt)t*t+tstut~ttttttttttttttu#ufuvuxuzuuuuuuuuuuuuuu侱Ȓ䧈~p~~~~~~h h0CJ H*^JaJ h CJ ^JaJ hoECJ ^JaJ hHVCJ H*^JaJ hHVCJ ^JaJ h%~CJ ^JaJ huhoECJ ^JaJ h0CJ ^JaJ hHVhHVCJ H*^JaJ hHVh0CJ H*^JaJ huh0CJ ^JaJ huh0CJ H*^JaJ ,uuuuuuvvNvmvvvvvvvv$w%w&wBwCwSw[w`wbwlwnwowwwwwwwwwwwwx6xCxDxExGxNx`x}x~xxxxxyyyyyZy\y󾦾h/h/CJ H*^JaJ h/CJ ^JaJ huh0CJ H*^JaJ hoECJ ^JaJ h"CJ ^JaJ huhoECJ ^JaJ h0CJ ^JaJ h CJ ^JaJ huh0CJ ^JaJ r  ^` gd7a^gd7a & Fgd7agdx^gd]# & Fgdxv^vgdx^_abdehilowBCfgõëõëvhvhvvvvvvvhuh>rCJ \^JaJ h]#CJ \^JaJ huhxCJ \^JaJ huhxCJ H*^JaJ h]#h]#CJ H*^JaJ h]#CJ ^JaJ huhxCJ H*^JaJ huhxCJ ^JaJ huhxCJ H*\^JaJ huhxCJ H*\^JaJ h]#hxCJ H*\^JaJ ( DHJLNP0:>@ *.4:ʝʂuhuh#ICJ ^JaJ huh>rCJ ^JaJ h7ahxCJ H*^JaJ hUWCJ ^JaJ huh7aCJ ^JaJ hxCJ ^JaJ Uh7aCJ ^JaJ huhxCJ ^JaJ huhxCJ H*^JaJ huhxCJ \^JaJ h]#CJ H*\^JaJ .). Find the expression for force . 15. A particle follows a spiral orbit given by r = c 2 under a central force law. Find the form of the force law f(r). 16. A satellite of mass 100 Kg. moves in an elliptical orbit around the earth such that its perigee and apogee are 3000 Km and 4300 Km above the earth surface. Find. (1) The minimum and maximum distance of the satellite from the centre of the earth? (2) The equation of the orbit. (3) The eccentricity of the orbit. (4) Velocities at perigee and at apogee of the satellite. (5) Period of revolution of the orbit. (6) Total energy (K.E. + P.E. ) of the satellite. Given: Mass of the earth = 6x1024 Kg. Radius of Earth = 5700 Km G = 6.67x10 -11 Nm2 /Kg2. ,.6:DHZ\z|ĹhuhK#5CJ ^JaJ h7ah#ICJ H*^JaJ hSueCJ H*^JaJ hSueCJ ^JaJ huh#ICJ H*^JaJ h7aCJ ^JaJ huh#ICJ ^JaJ huh>rCJ ^JaJ &21h:pPx/ =!"8#$% ^ 2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH D`D rNormalCJ^J_H9aJmH sH tH DA D Default Paragraph FontRiR  Table Normal4 l4a (k (No List D@D D List Paragraph ^aJPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] q  gTD!%)I.195b:7>BtF6IMQY]di3lptzlzK~ȆJ*>O<zn[XrKd^fkpsu\y{~ipz^fhiklnoqrtuwxy{|~3_W'X0t:$CMQX]:et}pFXqA3iqExHGHݗzgjmpsvz}8@0(  B S  ?EH -1@D9=++,,a-c-22449999: :;;??PPRRRRGSLSTTiXnXYYgZmZZZ[&[]]bb0d6dooqqxxxxal~ Z]+-JN{~ٞܞqtQR z|~`c s QV[i _ d Y^MP#)HL9?/6hjpsLTah DHfimq!!)!_!g!!!" "u####$$?$G$$$8%=%p%u%&&,&7&L&X&&&&&7'<'|''''D(I(%)+)d)g)**L*Y****+++c+g+++++U,d,,,:->---..F.U.t.y.v////00.07000001"1N1X1}223333E4I4c4m45566L7Q777888888A9D9J999999':.:X:[:::::>;@;;;;;<<<<== ? ???[?^???0@:@[A^AAAAABB C%CDDNEWEEFRFGG2H@HnHqHwIzIII7J?JJJJJJKKKOKyKKLM\MNNOOOOmPvPPP4QDQiQwQS SETOTTU^UUUDVGV WWWWAXMXXY ZZ[[\\^ ^``{aatbxb c$ckcpceeeetfyffffff*gwj~jhlplllmmPnTnnnHoNooooopp qqqqqq}rr(s*smsrsdwhwwwwwwwxxxxzzzzC{H{{{g|s|||\}e}}}2~>~mq18^eҁفЂՂ5>PTX_DPUa!%ΈֈDFV]nr39ی#Z_ѐDI7>ҒҔٔetkrș͙ٙۙ<E!*6?v~|v}WYz|=G\_`e|Y](.dfz{ x߾s333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333QQQUUUUU}VVVVKWNWPWQWVXYXYYoZ[[[\\]].^1^3^5^k`k```8a9a\b]brbtbyb{bccoepeeeeffffffffffffTgddefsQQQUUUUU}VVVVKWNWPWQWVXYXYYoZ[[[\\]].^1^3^5^k`k```8a9a\b]brbtbyb{bccoepeeeeffffffffffffTgddefs2T,E:YЪo8 <1 |N|@V3[>IG4`bM8eY -}S$GEn&_e(Sg,V n/ʠ-P0F3R^1N\ 1 >b5Zi;ʕjQ>vZ8&@6d@H@@V3D $JE\~IP>ީNr>NN\n,SQ8Q4?-RT1S^ (U&_jX)y9Y>2OW^HnX_kbQWqbo\+csOnR)_t6cDu 9`u^PTvU8vnJQv?gw8=NyW|~:&o|@I_~Ĉ=yV~188^8`o(. ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH. k^`ko(. 88^8`hH. L^`LhH.   ^ `hH.   ^ `hH. xLx^x`LhH. HH^H`hH. ^`hH. L^`LhH.808^8`0o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.k^`ko(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. eke^e`ko(. ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.W^W`o( ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.^`o() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.1k^`ko(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH. ek^e`ko(. ^`hH.  L^ `LhH.  ^ `hH. x^x`hH. HL^H`LhH. ^`hH. ^`hH. L^`LhH.88^8`o(. ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH. ^`hH) ^`o(   ^ `o(. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.808^8`0o(() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h ^`hH.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.e0e^e`0o(() ^`hH. L^`LhH. m m ^m `hH. ==^=`hH.  L ^ `LhH. ^`hH. ^`hH. }L}^}`LhH.40^`0o(. ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. ^`CJ ^Jo(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`OJPJQJ^Jo(-rr^r`OJQJ^Jo(hHoB B ^B `OJQJo(hH  ^ `OJQJo(hH^`OJQJ^Jo(hHo^`OJQJo(hH^`OJQJo(hHRR^R`OJQJ^Jo(hHo""^"`OJQJo(hHk^`ko(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.k^`ko(. ^`hH. SLS^S`LhH. # # ^# `hH.   ^ `hH. L^`LhH. ^`hH. cc^c`hH. 3L3^3`LhH.k^`ko(. 88^8`hH. L^`LhH.   ^ `hH.   ^ `hH. xLx^x`LhH. HH^H`hH. ^`hH. L^`LhH./  ^ `o(. ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.*k^*`ko(. ^`hH. L^`LhH. m ^m `hH. =^=`hH.  L^ `LhH. ^`hH. ^`hH. }L^}`LhH.808^8`0o(.pp^p`o(() pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(() ^`hH.  L^ `LhH.  ^ `hH. x^x`hH. HL^H`LhH. ^`hH. ^`hH. L^`LhH.4k^`ko(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.e0e^e`0o(() ^`hH. L^`LhH. m m ^m `hH. ==^=`hH.  L ^ `LhH. ^`hH. ^`hH. }L}^}`LhH.^`o(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.  ^ `o() ^`hH. L^`LhH. | | ^| `hH. LL^L`hH. L^`LhH. ^`hH. ^`hH. L^`LhH. ^`o(.z^`zo(() pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH./k^`ko(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH. k^`ko(. 88^8`hH. L^`LhH.   ^ `hH.   ^ `hH. xLx^x`LhH. HH^H`hH. ^`hH. L^`LhH.!k^`ko(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.1k^`ko(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH./k^`ko(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.808^8`0o(.0^`0o(() pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h^`OJQJo(hHhp^p`OJQJ^Jo(hHoh@ ^@ `OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhP^P`OJQJ^Jo(hHoh ^ `OJQJo(hH+^`o(. ^`hH. n Ln ^n `LhH. > > ^> `hH. ^`hH. L^`LhH. ^`hH. ~~^~`hH. NLN^N`LhH.4k^`ko(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.p^p`o(() p^p`hH. @ L^@ `LhH. ^`hH. ^`hH. L^`LhH. ^`hH. P^P`hH.  L^ `LhH.k^`ko(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.^`o(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH. ^`hH. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. ^`CJOJQJo(. ^`hH.o 0o ^o `0o(() # # ^# `hH.   ^ `hH. L^`LhH. ^`hH. cc^c`hH. 3L3^3`LhH.21 i;En&R^1Qv)_tS$[PTvDT-P0 1yV~Z8&@DuNr>NI_~E:OW^~I@H@|N|g,n/?-Ro8 jXe(>b5M(Uy9YsOnYWqbU8v8Qgw9`uG4JEnX_o|T1Sn,SQ+cyW|Q>22t^        ^0        (                 ,~        Ή                 `        (        n,L         b.>T      Ľ                 ʂ`        Zj                  UX                          W        JX        r                 6        *xp       tH        %        c                                   "        +        3                 VW        hyl`                         tg        " 9                 \!         7                          n) D      ?>6[*r*9@rUxg  8Zx% v. N Z L Xa OU_px_zKPNX0Cb:d%?FD%~fv!# n#jY$t%G&We& (#(J9(%],xh-G;.&/ 3/6/B/=0t01J15ri5,m51v5|6gJ6i7'c8 ]9:S;q;<j>T?:?QW?!@ b@c@JA^}AkwCdD\QEoE;FwFkHUH3sH,zH(J;J~K=L4wLX+M/M&O!wS~SHUKJUUW1 XZjZpZ[;n[p[~[\w\"#a%a7a`4bLcd]eSue]fYh\h{hKi_ir~i^jlUmnn8nfneogo`q>rfsxs.'uvvxtxxPx_Ty(ryY{~{|V@}VM}3~+~ A X ?oo{~"2Hrn/RFKTeG Veu > jt.OWWv,=@&c[+ww7@hMjBT_ KKv"SE SMe7Y&}`B|W%P#I-Bt!=AH/B'S|e1 T/KM HVg><@ 1`RE8 %|#Hk(C p353:[u8K#JJfa -_gT+A$rb[ BBq~CDC N,#~koVzO_#Y\YN} ,cy]#TQ!jOGPha@8)2neD()/Q=.Eaqs@ffXff ii "#$%&)*+,-./019:>?BCBDBFBGHIJKMNOPDVDW\]^efmnMtMuMwMxMyMMMMMrrrUU׮ׯyyyyyyqp@p p@pp0@pp8@p p"pH@p(p*p,p\@p0p2ph@p6p8p:p<p|@pBpDpFpHpJpLp@pPp@pZp@p`p@pfp@pjp@pnppprp@pvp@pzp@pp@ppp@pp0@ppD@ppT@ppp`@ppppp@pp@pp@p@plpnp@pzp@pp@pp@pp$@pppp@pUnknownG* Times New Roman5Symbol3. * Arial5Mangal?= * Courier New;WingdingsA BCambria Math"qhFF+F!cb+F!cb!24d 2QHX ?r2!xxCOMPENSATORY LEAVE POLICY ADNINUSER2                           ! " # $ % & ' ( ) * + , - . / 0 1 Oh+'0  ( H T ` lxCOMPENSATORY LEAVE POLICY ADNIN Normal.dotmUSER2Microsoft Office Word@G@*v@H@H!+F՜.+,0 hp  GTBITbc COMPENSATORY LEAVE POLICY Title  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPRSTUVWXZ[\]^_`eRoot Entry F`g1Table,WordDocument4SummaryInformation(QDocumentSummaryInformation8YCompObjy  F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q