ࡱ> uwpqrstbjbjcTcTޟ>>h DDDDD888@<| 8 @%~&F''''''لۄۄۄۄۄۄ`ۄDF''FFۄDD''ĆYYYF4D'D'لYFلYYY'()83{Yńچ0 YB3{dBYBDYl' 14Y)9>'''ۄۄ~''' FFFFB''''''''' :XII Workshop on apoptosis in biology and medicine UNDER THE AUSPICES  University of Calabria, Cosenza ( HYPERLINK "http://www.unical.it" www.unical.it)  University Magna Grcia, Catanzaro ( HYPERLINK "http://www.unicz.it" www.unicz.it)  Italian Society of Neuroscience ( HYPERLINK "http://www.sins.it" www.sins.it)  University Center for Adaptive Disorders and Headache (UCADH) (info UCADH at www.cefalea.it) Porto Pirgos Hotel ( HYPERLINK "http://www.portopirgos.com" www.portopirgos.com) Parghelia (VV), Calabria, Italy 20-22 May, 2009 Final programme and book OF abstractS L. Rombol, D. Amantea, R. Russo, L. Berliocchi & N. Fico (Eds.) Honorary President G. Nistic (Rome) Scientific Committee S. Amoroso (Ancona) L. Annunziato (Naples) H.P.E. Bazan (New Orleans) N. Bazan (New Orleans) F. Blandini (Pavia) G. Bonanno (Genoa) C. Caltagirone (Rome) O. Cantoni (Urbino) M. Cosentino (Varese) G. Di Renzo (Naples) M. Fresta (Catanzaro) G. Genchi (Cosenza) S.A. Lipton (La Jolla) I. Lizasoain (Madrid) N. B. Mercuri (Rome) M. Moro (Madrid) G. Nappi (Pavia) P. Nicotera (Bonn) M. Pizzi (Brescia) S. Ragusa (Catanzaro) Organizing Committee S. And (Cosenza) G. Bagetta (Cosenza) M.T. Corasaniti (Catanzaro) M. Maggiolini (Cosenza) V. Mollace (Catanzaro) G. Melino (Rome) D. Rotiroti (Catanzaro) G. Sandrini (Pavia) M.C. Tassorelli (Pavia) Local Organizing Committee S. Alcaro (Catanzaro) B. Al Mehdawy (Leicester) R. Arcone (Catanzaro) L. A. Morrone (Cosenza) R. Nistic (Cosenza) D. Sisci (Cosenza) D. Amantea (Cosenza) L. Berliocchi (Catanzaro) M.C. Caroleo (Cosenza) E. Janda (Catanzaro) F. Ortuso (Catanzaro) E. Palma (Catanzaro) L. Rombol (Cosenza) R. Russo (Cosenza) Sponsors Faculty of Pharmacy, UNICZ Federation of Private Pharmacy Holders of Catanzaro and Cosenza Pharmacists Association of Catanzaro and Cosenza ARPACAL Calabria Region Scientific Information Prof. Luigi A. Morrone, University Center for Adaptive Disorders and Headache (UCADH), Department of Pharmacobiology, University of Calabria, Via P. Bucci, Edificio Polifunzionale, 87036 Arcavacata di Rende (CS), Italy; Tel. 390984493054, Fax 390984493462 E-mail:  HYPERLINK "mailto:luigimorron@libero.it" luigimorron@libero.it Meeting Venue Porgo Pirgos Hotel (tel. 39 0963 600351) is located at Parghelia (Vibo Valentia), in one of the loveliest spots of the Tirrenian Coast facing the still active Stromboli volcano. The international airport of Lamezia Terme (Catanzaro) is 30 Km from the Hotel. Further travelling information are available on the web at  HYPERLINK "http://www.portopirgos.com" www.portopirgos.com. A reduced price has been agreed for the full board accommodation of participants to the workshop. Fellowships and financial assistance A limited number of grants will be available to support the participation of students from the PhD courses in Pharmacology and Biochemistry of Cell Death and Cellular Biochemistry and Drug Action in Oncology, presenting their original scientific data as poster communication. Language The official language of the conference is English. Secretariat Mr. Nicola Fico Department of Pharmaceutical Sciences, University of Calabria 87030 Arcavacata di Rende (CS) Italy ( (+390984) 493227 Fax (+390984) 493462 E-mail  HYPERLINK "mailto:fico@unical.it" fico@unical.it SCIENTIFIC PROGRAMME Wednesday 20th May 18.00 Welcome address and cocktail Thursday 21th May Chairpersons S.A. Lipton (USA) and G. Di Renzo (Italy) 8.30-9.00 L. Annunziato (Naples) Neurobiology of Na+/Ca++ exchanger in normal and pathological brain 9.00-9.30 L. Berliocchi, D. Rotiroti and M.T. Corasaniti (Catanzaro) Local translation and synaptic plasticity 9.30-10.00 R. Nistic (Cosenza) Cognitive strengthening of synaptic communication 10.00-10.30 P. Nicotera (Bonn) Synaptic loss and plasticity in neurodegeneration 10.30-11.00 Coffee Break Chairpersons L. Annunziato (Italy) and H.E.P. Bazan (USA) 11.00-11.30 G. Bonanno (Genoa) Astroglial control of synaptic function 11.30-12.00 M. L. Cucchiaroni, E. Guatteo and N.B. Mercuri (Rome) Physiological and pathological role of transient receptor channels (TRP) in the substantia nigra pars compacta 12.00-12.30 M. Pizzi (Brescia) NF-kappaB c-Rel factor: a molecular determinant for resilience of nigral dopaminergic neurons to aging 12.30-13.00 F. Blandini (Pavia) Mechanisms and biomarkers of neurodegeneration in Parkinsons disease: from experimental models to the patient 13.00-13.30 General Discussion 18.00-19.30 Poster Communications Friday 22nd May Chairpersons O. Cantoni (Italy) and I. Lizasoain (Spain) 8.30-9.00 S. A. Lipton (La Jolla) Redox-mediated mitochondrial damage in neurodegenerative diseases 9.00-9.30 R. Russo, L.A. Morrone, M.T. Corasaniti and G. Bagetta (Cosenza, Catanzaro) Pro-survival pathways and neuronal vulnerability 9.30-10.00 H.E.P. Bazan (New Orleans) Growth factor-mediated cornea nerve regeneration 10.00-10.30 C. Nucci (Rome) Optic nerve and optic radiation neurodegeneration in glaucoma: an in vivo analysis with MR diffusion tensor imaging 10.30-11.00 Coffee Break Chairpersons S. Amoroso (Italy) and M.A. Moro (Spain) 11.00-11.30 D. Amantea, G. Bagetta and M.T. Corasaniti (Cosenza, Catanzaro) Definition of MMPs and IL-1b interplay in the ischemic brain 11.30-12.00 I. Lizasoain (Madrid) Pre-conditioning mechanisms in stroke PARP and neuroprotection under stroke 12.00-12.30 M.A. Moro (Madrid) Nuclear receptors: role in neuroprotection and acute stroke resolution 12.30-13.00 N. Bazan (New Orleans) Novel survival signaling by docosanoids is unregulated in early stages of neurodegenerations 13.00-13.30 General Discussion Poster Communications P01 Capparelli C., Lanzino M., Sisci D., Morelli C., And S. Activated androgen receptor inhibits cYclin D1 expression in breast cancer cells P02 Malivindi R., Panza S., Gu G., Giordano C., Catalano S., And S. Inhibitory role of Farnesoid X Receptor ligand on aromatase expression in Leydig tumor cells P03 Avena P., Morelli C., Lanzino M., Casaburi I., Catalano S., Bruno R., And S. and Sisci D. AKT2/FOXO3A signalling regulates ERa expression and transcriptional activity in MCF-7 breast cancer cells P04 Vizza D., Bonofiglio D., Cione E., Genchi G., And S. PPAR and RXR ligands at nanomolar concentration induce intrinsic apoptosis in human breast cancer cells P05 Ciociaro A., Maida S., Russo R., Berliocchi L., Ragusa S., Rotiroti D., Bagetta G. and Corasaniti M.T. Antiproliferative and cytotoxic effects elicited by the essential oil of bergamot in human neuroblastoma cell cultures P06 Pingitore A., Cione E., Perri M., Vilardi E. and Genchi G. Retinoic acid induces apoptosis in Leydig cells via activation of the mitochondrial death pathway and antioxidant enzymes regulation P07 Vilardi E., Perri M., Pingitore A., Cione E. and Genchi G. High concentration of ferulic acid and its synthesized esters induce release of cytochrome c from tumoral MLTC-1 cell line P08 Ierardi M.V., Bulotta S., Maiuolo J., Cattaneo M.G., Cerullo A., Vicentini L.M., Borgese N. CHRONIC EXPOSURE TO LOW CONCENTRATIONS OF NITRIC OXIDE ATTENUATES CELL MIGRATION OF HELA AND ENDOTHELIAL CELLS P09 Senatore V., Genchi G. and Bergamaschi D. p53 polymorphism at codon 72: apoptosis and DNA repair in melanoma P10 Carito V., Russo A., Mancuso D., Bonofiglio R., Caroleo M.C. Nerve Growth Factor (NGF) and NGF-receptor expression in human podocyte cell line P11  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Antonucci%20MT%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Antonucci M.T.,  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bonofiglio%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Bonofiglio R.,  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mancuso%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Mancuso D.,  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Caroleo%20MC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Caroleo M.C. Nerve growth factor and its monocyte receptors are affected in kidney disease P12 Ledonne A., Federici M., Giustizieri M. and Mercuri N.B. MODULATION OF D2-ACTIVATED POTASSIUM CURRENTS BY TRACE AMINES IN MIDBRAIN DOPAMINERGIC NEURONS P13 Ventrice D., Muscoli C., Sacco I., Visalli V., Vizza E., Iannone M., Scalzo A., Janda E., Mollace V. HPLC determination of oxidative stresss markers to describe the protective effect of olive oil on morphine tolerance P14 Fratto V., Berliocchi L., Russo R., Levato A., Bagetta G., Sakurada S., Sakurada T., Mercuri N.B. and Corasaniti M. T. (-)-Linalool attenuates mechanical sensitivity in a mouse model of neuropathic pain P15 Petrelli F., Amantea D., Bagetta G. and Corasaniti M. T. Transient middle cerebral artery occlusion (MCAo) enhances interleukin (IL)-1beta via a mechanism implicating activation of MMPs in the brain of rat P16 Blasi F., Faraco G., Pittelli M., Cavone L., Moroni F., Chiarugi A. Role of PARP-1 in a mouse model of ischemic preconditioning P17 Cavaliere F., Russo R., Corasaniti M.T., Bagetta G., Morrone L.A. Evidence that reversal of glutamate uptake is involved in retinal excitotoxicity P18 Varano G.P., Cavaliere F., Russo R., Corasaniti M.T., Bagetta G. Morrone L.A. Retinal ischemia/reperfusion induced by high intraocular pressure (IOP) modulates PI-3K/Akt pro-survival pathway in rat P19 Cerulli A., Bolacchi F., Melis M., Span A., Floris R., Simonetti G., Garaci F.G., Nucci C. Axonal Architecture of Optic Nerve and Optic Radiations in Glaucomatous Patients. An in vivo Analysis with 3 Tesla MR Diffusion Tensor Imaging P20 Janda E., Visalli V., Sacco I., Muscoli C., Colica C., Aprigliano S., Maretta A., Vadal N., Sculco F., Palma E., Ventrice D., Rotiroti D., Spedding M. and Mollace V. The effect of tianeptine on gp120-induced apoptosis in astroglial cells: role in repression of NFkB signaling and nitric oxide synthase(s) modulation P21 Bagetta V., Picconi B., Ghiglieri V., Sgobio C., Barone I., Di Filippo M., Paill V., Gardoni F., Bernardi G., Di Luca M. and Calabresi P. PARTIAL DOPAMINE DENERVATION AS A MODEL OF EARLY PARKINSONISM: EFFECTS ON striatal synaptic plasticity, NMDA receptor subunit composition AND motor behaviour P22 Molinaro R., Citraro R., Iannone M., Cosco D., Vono M., Russo E., Celia C., Paolino D., Fresta M. PLGA NANOSPHERES FOR THE CNS DELIVERY OF ANTIEPILETIC DRUGS P23 Vono M., Cosco D., Molinaro R., Rocco F., Celia C., Costa N., Paolino D., Ceruti M., Fresta M. PREPARATION, CHARATERIZATION AND BIOLOGICAL EVALUATION OF SQUALENE-CYTARABINE CONJUGATES SELF-ASSEMBLED IN NANOAGGREGATES P24 Guido C., Aquila S., Perrotta I.,  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Laezza%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus" Laezza C., Santoro A., And S., and Bifulco M. Ultrastructural localization of the cannabinoid1 receptor (CB1-R) and a negative role of the anandamide on human sperm survival. p25 Guido C., Aquila S., Perrotta I.,  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Laezza%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus" Laezza C., Santoro A., And S., and Bifulco M. A role for anandamide on human sperm metabolism P26 Adornetto A., Parafati M., Pietropaolo C. and Arcone R. STUDIES ON BIOCHEMICAL AND CELLULAR PROPERTIES OF PROTEASE NEXIN-1 IN GLIOBLASTOMA AND NEUROBLASTOMA CELLS Abstracts Poster Communications (P1-P26) Activated androgen receptor inhibits cYclin D1 expression in breast cancer cells Capparelli C. 1, Lanzino M., Sisci D., Morelli C., And S. Dottorato di Ricerca in Biochimica Cellulare ed Attivit dei Farmaci in Oncologia1, Dept. Pharmacobiology, Faculty of Pharmacy, University of Calabria 87036 Arcavacata di Rende (Cosenza) Italy Androgens play a protective role in the pathogenesis of breast cancer since they counterbalance positive serum- and estrogen-induced growth stimuli, which are intimately linked to breast tumorigenesis. The androgen receptor is expressed in both primary and metastatic breast tumors and shows significant association with important clinical and prognostic factors since its expression and functional activity positively correlate with a low tumor grade, smaller tumor size, improved response to hormone therapy. In vitro, the non-aromatisable androgen 5--dihydrotestosterone (DHT) inhibits breast cancer cell proliferation, through a mechanism involving an increase in AR protein cell content concomitantly with the down-regulation of the G1/S transition of the cell cycle. In the present study we investigated whether DHT-dependent inhibition of breast cancer cell proliferation might be due to the modulation of cyclin D1, whose induction represents a key rate-limiting event in mitogenic signalling leading to S-phase entry. We identify a novel androgen-mediated mechanism negatively regulating cyclin D1 transcript and protein expression levels, in MCF-7 breast cancer cells. Mutagenesis, DAPA, EMSA and ChIP analysis indicated that this inhibitory effect is mediated by direct binding of AR to a putative AR response sequence, whose identification allows to define cyclin D1 as an androgen target gene in breast. Transcriptional repression of cyclin D1 gene by AR appears to be consequent to the recruitment of a multiprotein repressor complex involving the participation of the AR corepressor DAX1 and containing histone deacetylase activity. The biological significance of this AR-induced inhibition of cyclin D1 expression is highlighted by clinical studies showing a higher response to tamoxifen therapy and better survival rate in cancers with cyclin D1 low/moderate expression, suggesting the possibility that targeting the AR signalling pathway could be helpful in improving new molecular and pharmacological approaches for the treatment of breast cancer. Capparelli Claudia is a PhD student from the University of Calabria. Inhibitory role of Farnesoid X Receptor ligand on aromatase expression in Leydig tumor cells Malivindi R.1, Panza S.1, Gu G.2, Giordano C.1,4 Catalano S.2,4 And S.3,4 Dottorato di Ricerca in Biochimica Cellulare ed Attivit dei Farmaci in Oncologia1, Departments of 2Pharmacobiology and 3Cell Biology, and 4Centro Sanitario, University of Calabria 87030 Arcavacata di Rende (CS), Italy The Farnesoid X Receptor (FXR) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors, that heterodimerizes with the Retinoid X Receptor (RXR). FXR, normally present in the liver and in the gastrointestinal tract, has been characterized as a bile acid receptor, but it is also expressed in nonenterohepatic tissues, including kidneys, adrenal gland, heart, vascular tissue, thymus, ovary, spleen, breast and testis. Recently, it has been demonstrated that FXR activation represses aromatase expression in breast cancer cells. In this study, we investigated how induction of FXR by a specific ligand, chenodeoxycholic acid (CDCA), may modulate aromatase expression in R2C Leydig tumor cells. Upon prolonged exposure to CDCA we observed a strong decrease of aromatase expression, in terms of protein content, as revealed by immunocitochemistry and western-blotting analysis, mRNA and aromatase enzymatic activity. Transient transfection experiment, using vector containing rat aromatase promoter PII, evidenced that CDCA reduced basal aromatase promoter activity. We demonstrated, by mutagenesis studies, EMSA and ChIP assay, that FXR directly binds to SF-1 responsive element present in the aromatase promoter region. In conclusion our findings demonstrate that FXR ligands as aromatase inhibitors may represent potential pharmacological tools to be implemented in the novel strategies for testicular tumor treatment. Panza Salvatore is a PhD student from the University of Calabria. AKT2/FOXO3A signalling regulates ERa expression and transcriptional activity in MCF-7 breast cancer cells Avena P.1, Morelli C.2, Lanzino M.2, Casaburi I.2, Catalano S.2, Bruno R.2, And S.3 and Sisci D2. Dottorato di Ricerca in Biochimica Cellulare ed Attivit dei Farmaci in Oncologia1, Departments of 2Pharmacobiology and 3Cell Biology, University of Calabria 87030 Arcavacata di Rende (CS), Italy Estrogen receptor alpha (ER) and the insulin-like growth factor I receptor (IGF-IR) pathways are engaged in a functional cross-talk in breast cancer, promoting tumor progression and increased resistance to anticancer treatments and radiotherapy. Here we introduce new mechanisms through which IGF-I signaling influences ER pathway in absence of growth factors. Our results indicate that in ER-positive MCF-7 breast cancer cells, Akt2 modulates ER transcriptional activity at multiple levels, including 1) the regulation of ER expression and nuclear translocation and 2) the activation of one of its downstream targets, the forkhead transcription factor FoxO3a. FoxO3a co-localizes and co-precipitates with ER in the nucleus, where it binds to forkhead responsive sequences on ER target promoter pS2/TFF-1; in addition, FoxO3a silencing leads to an increase of ER transcriptional activity, suggesting a repressive role of the forkhead transcription factor on ER function. Moreover, 17b-estradiol upregulates FoxO3a levels, which could represent the basis for an ER mediated homeostatic mechanism. These findings provide further evidence of the importance of growth factors signaling molecules in ER regulation, introducing Akt2/FoxO3a axis as a pursuable target in ER-positive breast cancer therapy. Avena Paola is a PhD student from the University of Calabria. PPAR and RXR ligands at nanomolar concentration induce intrinsic apoptosis in human breast cancer cells Vizza D.1, Bonofiglio D.1, Cione E.1, Genchi G.1, And S.2,3 1Dept. Pharmacobiology, 2Dept. Cell-Biology, 3Faculty of Pharmacy Nutritional and Health Sciences, University of Calabria 87036 Arcavacata di Rende (Cosenza) Italy Ligand activation of PPAR and RXR induces antitumoral effects in cancer. We evaluated the ability of combined treatment with nanomolar levels of PPAR ligand Rosiglitazone (BRL) and RXR ligand 9-cis-retinoic acid (9RA) to promote antiproliferative effects in breast cancer cells. BRL and 9RA in combination exert a strong inhibition of cell viability in MCF-7, MCF-7TR1, SKBR-3 and T-47D breast cancer cells, while MCF-10 normal breast epithelial cells are unaffected. In MCF-7 cells, combined treatment with BRL and 9RA up-regulates mRNA and protein levels of tumor suppressor gene p53 and its effector p21WAF1/Cip1. Functional experiments indicate that NFkB site in p53 promoter is required for the transcriptional response to BRL plus 9RA. We observe that the intrinsic apoptotic pathway in MCF-7 cells displays an ordinated sequence of events, including: disruption of mitochondrial membrane potential, release of cytochrome c, strong caspase 9 activation and, finally, DNA fragmentation. An expression vector for p53 antisense abrogates the biological effect of both ligands implicating involvement of p53 in PPARg/RXR-dependent activity in all of the human breast malignant cell lines tested. Taken together, our results suggest that multidrug regimens including a combination with PPARg and RXR ligands may provide a therapeutic advantage in breast cancer treatment. Vizza Donatella is a PhD student from the University of Calabria. Antiproliferative and cytotoxic effects elicited by the essential oil of bergamot in human neuroblastoma cell cultures Ciociaro A.1, Maida S.1, Russo R.2, Berliocchi L.1, Ragusa S.1, Rotiroti D.1, Bagetta G.2 and M.T. Corasaniti1 1Department of Pharmacobiological Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy; 2Department of Pharmacobiology, University of Calabria, Cosenza, Italy The essential oil of bergamot (Citrus bergamia, Risso; BEO), a citrus growing almost exclusively in the south of Italy, minimizes neuronal damage caused by exposure of human SH-SY5Y neuroblastoma cells to the excitotoxin NMDA and this is associated with prevention of ROS accumulation, inhibition of activation of calpain I and prevention of injury-induced decrease of phospho-Akt and phospho-GSK-3beta. Monoterpene hydrocarbons account for cytoprotection induced by BEO (Corasaniti et al., 2007). Here we report that, at concentrations higher than those required to afford neuroprotection (0.05-0.01%), BEO is endowed with antiproliferative and cytotoxic effects. SH-SY5Y cells viability was evaluated by trypan blue exclusion and MTT assay; cell cycle distribution and sub-G1 hypodiploid events were detected by PI staining and cytofluorimetric analysis. A significant reduction of cell viability was obtained by incubating neuroblastoma cells with BEO for 24 h at concentrations > 0.02%, whereas no reduction of cell viability was induced by lower concentrations (0.005-0.01%) of BEO. To discriminate between antiproliferative and net cytotoxic effects, baseline cell count (by either MTT assay and trypan blue staining followed by microscopic cell count) was estimated prior to exposure to BEO; then, cells were incubated with the phytocomplex for 24-72h and optical density (OD) or cell count was estimated. Values of OD or of total cell number below baseline values were obtained in cultures exposed to BEO 0.03% whereas at lower concentration (0.02%) BEO induced a reduction of the proliferation rate. Analysis of cell cycle distribution revealed a significant increase of the percentage of cells in the S phase associated with a significant reduction of cells in the G2/M phase and this as early as after 1 h exposure to BEO. For longer periods of exposure (i.e. 24 h), these effects were accompanied by a significant reduction of the cells in the G0/G1 phase of the cell cycle. The fast alterations of the cell cycle distribution were associated with a significant increase of hypodiploid events as early as 1 h after treatment. Preliminary experiments aimed at dissecting the molecular mechanisms underlying the observed concentration-related antiproliferative or cytotoxic effects rule out a role for ROS accumulation. References Corasaniti M.T. et al. (2007) Br. J. Pharmacol. 151: 518-52. Ciociaro Antonella is a PhD student from the University of Calabria. Retinoic acid induces apoptosis in Leydig cells via activation of the mitochondrial death pathway and antioxidant enzymes regulation Pingitore A., Cione E., Perri M., Vilardi E. and Genchi G. Dept. Pharmacobiology, University of Calabria, 87036 Arcavacata di Rende (Cosenza) Italy In addition to playing a fundamental role in diverse processes such as vision, growth and differentiation, vitamin A and its main biologically active derivate, retinoic acid (RA), are clearly involved in the regulation of testicular functions. The present study was undertaken to examine the direct effect of RA in Leydig (TM-3) cells. Cells were cultured and treated with RA for 24 h. High doses of RA (1-20 M) induced a decrease in cell vitality and an increase in lipid peroxidation. RA induced also a significant degree of apoptosis in the same cells in a dose-dependent manner. Apoptosis is demonstrated by the involvement of the mitochondrial pathway, that is the release of cytochrome c, the caspase-3 enzymatic activation and DNA fragmentation. Conversely, at physiological doses (0.1-500 nM) RA did not increase lipid peroxidation, nor cell death, and this was accompanied by an activation of antioxidant enzymes activity. Pingitore Attilio is a PhD student from the University of Calabria. High concentration of ferulic acid and its synthesized esters induce release of cytochrome c from tumoral MLTC-1 cell line Vilardi E., Perri M., Pingitore A., Cione E. and Genchi G. Dept. Pharmacobiology, University of Calabria, 87036 Arcavacata di Rende (Cosenza) Italy Ferulic acid plays a chemopreventive role in cancer by inducing tumor cells apoptosis. As mitochondria play a key role in the induction of apoptosis in many cells types, we investigated in TM-3 and MLTC-1 cells the mitochondrial permeability transition (MPT) and the release of cytochrome c induced by ferulic acid and its esters in rat testes mitochondria. While in rat testes mitochondria ferulic acid, but not its esters, induced MPT and cytochrome c release, in TM-3 cells we found that both ferulic acid and its esters induced cytochrome c release from mitochondria in a dose-dependent manner, suggesting a potential target of these compounds in the induction of cell apoptosis. The apoptosis induced by ferulic acid is therefore associated with the mitochondrial pathway involving cytochrome c release and caspase-3 activation. CHRONIC EXPOSURE TO LOW CONCENTRATIONS OF NITRIC OXIDE ATTENUATES CELL MIGRATION OF HELA AND ENDOTHELIAL CELLS Ierardi M.V.a, Bulotta S.a, Maiuolo J.a, Cattaneo M.G.b, Cerullo A.a, Vicentini L.M.b, Borgese N.c a Department of Pharmaco-Biological Science, University of Catanzaro Magna Graecia, 88021 Catanzaro, Italy b Department of Medical Pharmacology, University of Milano, via Vanvitelli 32, 20129 Milano, Italy c Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Medical Pharmacology, University of Milan via Vanvitelli 32 20129 Milano, Italy; and Department of Pharmaco-Biological Science, University of Catanzaro Magna Graecia, 88021 Catanzaro, Italy Background and purpose. Nitric oxide (NO) generated by endothelial NO synthase (eNOS) is a key regulator of endothelial cell migration and vascular homeostasis. Whereas the effects on migration of acute NO generation have been extensively investigated and generally found to be stimulatory, the role of long-term basal NO release has not been explored so far. Experimental approach. We addressed the role of long-term basal NO release on chemotactic migration both in HeLa and in human endothelial cells. Migration in modified Boyden chambers was evaluated after: (i) induction of eNOS expression in a stably transfected HeLa cell line; ii) chronic treatment of non-transfected HeLa cells with an NO donor (DETA-NO); iii) chronic inhibition of endogenous eNOS in endothelial cells with L-NAME. Key results. In Hela cells, eNOS expression per se strongly inhibited chemotactic migration, an effect partially blocked by treatment with eNOS- and soluble guanylyl cyclase (sGC) inhibitors. Likewise, endothelial cell migration was stimulated by L-NAME administered for 48 h before-, but removed during migration. Pre-treatment of non-transfected HeLa cells with low, but not high, concentrations of DETA-NO strongly inhibited subsequent migration in the absence of the donor, an effect mimicked by a cGMP analogue and blocked by sGC inhibition. Conclusions and Implications. In addition to its well-known role in potentiating the migratory response of cells to motogenic factors, eNOS also attenuates migration through basal long-term NO release. These results have implications for studies aimed at modulating cellular migration by enhancing or inhibiting NO-mediated signalling pathways. Ierardi Maria Vincenza is a PhD student from the University of Calabria. p53 polymorphism at codon 72: apoptosis and DNA repair in melanoma Senatore V.1, 2, Genchi G.1 and Bergamaschi D.2 1Department of Pharmacobiology, Laboratory of Biochemistry, University of Calabria, 87036 Rende (CS), Italy 2Centre for Cutaneous Research, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, United Kingdom A common p53 polymorphism at codon 72 results at protein level in either an arginine residue (p53Arg72) or a proline residue (p53Pro72). The two polymorphic variants of wild-type p53 have been shown to have different apoptotic potential such as differential transcriptional abilities and to affect cancer outcome and its therapeutic response. Recent reports suggest involvement of p53 codon 72 polymorphism in the skin tanning response and therefore in the risk of developing melanoma. Malignant melanoma is the most serious form of skin cancer with a rapidly rising incidence worldwide. Abnormalities in apoptosis occur commonly in cancer but the role of apoptosis in melanocyte function and melanoma formation is poorly characterized. Ultraviolet (UV)-signature p53 mutations occur infrequently in melanoma suggesting that the compromised function of wild type p53 in melanoma could be a result of either upstream or downstream defects in its pathway. There is emerging evidence for a p53 role in regulating the DNA damage repair processes. Genotoxic insults such as UV irradiation have been shown to activate p53-related DNA-repair target genes such as gadd45 and p48, which regulate the Nucleotide Excision Repair (NER), and genes involved in Mismatch Repair (MMR) such as hMSH2 and hMLH1. Recently a different role of the two polymorphic variants of p53 has been suggested in transactivating NER-related genes and in mediating general DNA repair. Moreover, defects in DNA repair have been demonstrated to lead to genomic instability, resulting in cancer. In our study we investigated molecular mechanisms that affect the polymorphic response of p53 to DNA damage (in particular after UVB exposure) and how the codon 72 p53 polymorphism influences DNA repair activity (MMR and NER). Preliminary data generated on culture of freshly isolated human melanocytes with different polymorphic p53 background (p53Arg72 vs p53Pro72) showed a greater efficiency of the p53Pro72 variant in activating DNA repair. This could suggest that the observed differences may affect the apoptotic response which is somewhere altered in melanoma. Senatore Valentina is a PhD student from the University of Calabria. Nerve Growth Factor (NGF) and NGF-receptor expression in human podocyte cell line (1)Carito V., (1)Russo A., (2)Mancuso D., (2)Bonofiglio R., (1)Caroleo M.C. (1) Dip. Farmaco-Biologico UNICAL, Arcavacata-Rende, Cosenza (2) UOC Nefrologia Dialisi-Trapianto, AO Annunziata, Cosenza Introduction Glomerular podocytes are highly specialized cells with a complex cytoarchitecture. Their most prominent features are interdigitated foot processes with filtration slits in between. These are bridged by the slit diaphragm, which plays a major role in establishing the selective permeability of the glomerular filtration barrier. Injury to podocytes leads to proteinuria, a hallmark of most glomerular disease. Glomerular function alterations were also supported by change of the expression and peripheral action of factors that, generally, maintained the glomerular steady state by autocrine and paracrine actions. These factors include: cytokines, vasoactive agents, adhesion molecules and several growth factors. Among these, Nerve Growth Factor (NGF) could be play an important role. NGF is a secretory protein, belonging to the neurothrophin family, that plays a critical role in development, survival and function of cells localized within the nervous system. In addition to its well characterized action within the nervous system, several experimental and clinical findings have demonstrated that NGF is produced and released by a number of different non-neural cells. NGF induces its biological effects through the activation of two distinct receptor types located on the surface of the neurothrophin-responsive cells: the high affinity tyrosine kinase A (TrkA) receptor and the low-affinity NGF-receptor, p75. Recent data demonstrated that NGF and NGF-R are expressed in the kidney of healthy subjects and that they are affected by various renal disorders. However, scant information are available on the exact role played by NGF in the control of functional activity in the different renal cells population. The aim of the present study was to characterize NGF/NGF-R system on the immature podocytes, to this end we have used a conditionally immortalized human podocyte cell lines maintained in a proliferative state at 33C. Materials and Methods The human podocyte cell line, obtained from renal biopsy and transfected with the tsSV40 gene construct, was cultured in RPMI-1640 medium supplemented with 10% Fetal Bovine Serum (v/v), 1% Penicillin/Streptomycin (v/v) and 1% ITS (Insulin-Transferrin-Selenium; v/v) at 33C and in 5% CO2. Cells were grown to 80% of confluence and then trypsinized and reseeded at concentrations of 1x106 in 6-well plates in complete medium. After twenty four hours expression of NGF and NGF receptors on the human podocytes were evaluated with RT-PCR, Western Blotting assay and immunofluorescence technique. Results The results have shown that human immature podocytes expressed NGF, trkA and p75 mRNA as evidenced by RT-PCR. Analysis of proteins levels by Western blot revealed a band at 140 kDa which corresponds to the high affinity NGF receptor, TrkA, whereas no detectable band at 75 kDa corresponding to the low affinity NGF receptor was observed. Similar results were obtained with immunofluorescence technique. In order to better characterized the lack of p75 protein expression we studied the presence of alternative splicing in p75 gene to evaluate the existence of truncated isoforms of the low affinity NGF receptors. Gene mapping revealed that in immature podocytes p75 gene is alternatively spliced at the level of exon-1 suggesting the presence of truncated form of the receptor. Conclusion The present findings indicate that human podocyte cell lines, maintained in a proliferative state constitutively express mRNA for NGF and NGF receptors. The protein analysis through western blotting and immunofluorescence techniques revealed the existence of trkA receptor, and the absence of the mature form of p75NTR. Experiments are in progress to better clarify the role of NGF and its receptors in the functional activity of both proliferative and differentiated podocytes. Carito Valentina is a PhD student from the University of Calabria. Nerve growth factor and its monocyte receptors are affected in kidney disease (1) HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Antonucci%20MT%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Antonucci M.T., (2) HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bonofiglio%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Bonofiglio R., (2) HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mancuso%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Mancuso D., (1) HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Caroleo%20MC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Caroleo M.C. (1) Dip. Farmaco-Biologico UNICAL, Arcavacata-Rende, Cosenza (2) UOC Nefrologia Dialisi-Trapianto, AO Annunziata, Cosenza Nerve growth factor (NGF) plays a critical role in both physiological and pathological conditions. Their biological effects are mediated by two receptors (NGF-R): TrkA and p75. We previously reported NGF and NGF-R overexpression in various renal disorders. The aim of the study was to determinate NGF levels and NGF-R expression in peripheral blood mononuclear cells from subjects affected by glomerulonephritis (GN) and by end-stage renal disease before and after hemodialysis (HD). We enrolled 48 patients with biopsy-proven diagnosis of GN and 16 patients undergoing chronic HD. 25 subjects were enrolled as controls (C). Quantification of NGF in the serum samples was performed using NGF immunoassay. We demonstrated, for the first time, an increased NGF concentration in GN and HD patients compared to C. HD is able to restore serum NGF concentration. In GN, TrkA is overexpressed, whereas p75 did not show any difference versus C. By contrast in HD, TrkA expression is associated with increased p75 levels. In conclusion, NGF can act as protective factor against cytotoxic injuries. p75 plays a role in both survival and death of cells, depending on absence of ligand, cytoplasmic/ligand interaction and interaction with TrkA. The present findings suggest that cell survival during cellular damage is dependent on co-expression of TrkA and p75 and independent of NGF concentration. Further studies are required to confirm these observations. Antonucci Maria Teresa is a PhD student from the University of Calabria. MODULATION OF D2-ACTIVATED POTASSIUM CURRENTS BY TRACE AMINES IN MIDBRAIN DOPAMINERGIC NEURONS Ledonne A.a,b, Federici M.b, Giustizieri M.b and Mercuri NB.b,c. a University of Calabria, Department of Pharmacobiology, Cosenza, Italy; b IRCCS S. Lucia Foundation, Department of Experimental Neurology, Rome, Italy; c University of Rome Tor Vergata, Neurological clinic, Rome, Italy Trace amines (TAs) are a class of endogenous compounds closely related to the classical monoamines neurotransmitters for structure, metabolism and tissue distribution but expressed in mammalian brain at much lower concentration than catecholamines (Berry, 2008; Grandy, 2007). The TAs include tyramine, b-phenylethylamine (-PEA), tryptamine and octopamine and their dysregulation has been linked to different neuropsychiatric disorders including schizophrenia, attention-deficit/hyperactivity disorders, depression and Parkinsons disease (Branchet & Blackburn, 2003). Although the role of trace amines as neurotransmitters in invertebrates is well characterized, their physiological role in mammalian CNS is not completely elucidated yet. Trace amines have been historically considered false neurotransmitters for their ability to induce the release of catecholamines (amphetamine-like effects) and then they have been suggested to act as neuromodulators, having no effect on their own but regulating the sensitivity of neurons to other neurotransmitters. However the recent discovery of a family of G-protein-coupled receptors (GPCRs), the trace amine associated receptors (TAARs), strongly suggests that trace amines may modulate directly neuronal activity. Among TAARs, the trace amine 1 receptors (TA1) is the best characterized and is known to be coupled to Gs proteins so inducing cAMP accumulation but its physiological action on synaptic transmission is only poorly understood. It has been already shown that trace amines modulate neuronal activity of dopaminergic neurons of substantia nigra and tegmental ventral area and produce an inhibition of GABAB synaptic transmission, reducing G--gated inwardly rectifying potassium channels (GIRK) activity (Federici et al., 2005). Here we have performed intracellular electrophysiological recordings using mice midbrain slices to study the effects of trace amines (-PEA and tyramine) and a structurally related compound like d-amphetamine on dopaminergic responses mediated by the activation of dopamine D2 receptor, a GPCR involved, like GABAB receptors, in GIRK modulation. In particular -PEA (30-300 M) and tyramine (100-300 M) produced an inhibition of the outward current induced by the sustained bath application of quinpirole (100-300 nM) on dopaminergic neurons in a reversible and dose-dipendent manner. Also the DA releaser d-Amphetamine (30-100 M) produced a depressant effect on quinpirole-induced activation of GIRK but not dopamine transporter inhibitors like cocaine (10 M) and GBR12909 (10 M). The same experiments were then performed in mice knockout for TA1 to confirm the potential involvement of this receptor on the trace amines observed effects. In TA1 KO mice both -PEA (100-300 M) and tyramine (100 M) still reduced D2-mediated GIRK activation with the same extent recorded in wild type mice. In conclusion trace amines induced a depression of dopaminergic transmission due to D2 activation in SN dopaminergic neurons which seems to be independent on the activation of TA1 receptors. Further studies are in progress to better define the mechanisms underlying the reported effects of TAs. References Berry M.D. (2004). Mammalian central nervous system trace amines. Pharmacological amphetamines, physiological neuromodulators. J Neurochem 90: 257-271. Branchek T.A. & Blackburn T.P. (2003). Trace amines receptors as target for novel therapeutics: legend, myth and fact. Curr Opin Pharmacol 3:90-97. Federici M., Geracitano R., Tozzi A., Longone P., Di Angelantonio S., Bengtson C.P., Bernardi G. & Mercuri N.B. (2005). Trace amines depress GABAB response in dopaminergic neurons by inhibiting G--gated inwardly rectifying potassium channels. Mol Pharmacol 67:1283-1290. Grandy D.K. (2007). Trace amine-associated receptor-1- Family archetype or iconoclast? Pharmacol Ther 116:355-390. Ledonne Ada is a PhD student from the University of Calabria. HPLC determination of oxidative stresss markers to describe the protective effect of olive oil on morphine tolerance Ventrice D.2 , Muscoli C.1, Sacco I.2, Visalli V.2, Vizza E.2, Iannone M.2, Scalzo A.2, Janda E.1, Mollace V.1,2 1Dept. of Pharmacobiological Sciences, University of Catanzaro Magna Grcia, Italy; 2CETA (Centro dEccellenza in Tossicologia Alimentare) ARPACal, Italy It is well known that the so-called Mediterranean diet is able to reduce the incidence of pathologies such as coronary heart disease and cancer. A central hallmark of this diet is the high consumption of virgin olive oil that contains antioxidant molecules, including phenolic compounds, in the not-saponifiable fraction. A great body of evidences suggest the key role of N-methyl-D-aspartate (NMDA)-receptor activation in opioid tolerance. A consequence of tolerance is the need to greatly increase the dose of morphine and related opioid drugs to sustain the analgesic effect. NMDA-receptor activation has also been associated with overt production of superoxide, proposed as an important mediator of morphine tolerance. Chronic injection of morphine in mice is able to induce the development of tolerance and this was associated with increased oxidation and production of malondialdehyde (MDA), an important biomarker of oxidative stress. We previously demonstrated, in a rodent model of opiate tolerance, that phenolic compounds of olive oil - such as hydroxytyrosol and oleuropein - re-instates the analgesic action of morphine. In the present work we describe a new chromatographic (HPLC) method to determine MDA levels in morphine-tolerant mice treated with hydroxytyrosol and oleuropein. Briefly, after treatment, mice were sacrificed, the spinal cord was dissected, omogenated and MDA was extracted (solid phase extraction; SPE), derivatized using dinitrophenylhidrazine (DNPH) and determinated by HPLC (column: Nucleosil RP-18; mobile phase: acidified water pH 2.2 and ACN 45:55). In conclusion, our experimental data demonstrate that the phenolic fraction of virgin olive oil exerts antioxidant activities in vivo and that free radicals generation occurring during chronic morphine administration play a crucial role in the development of opioid tolerance. We propose, in addition, a novel analytical approach to isolate and determine MDA in biological matrices. (-)-Linalool attenuates mechanical sensitivity in a mouse model of neuropathic pain Fratto V.1 , Berliocchi L.1, Russo R.2, Levato A.1, Bagetta G.2,3, Sakurada S.4, Sakurada T.5 , Mercuri N.B.6 and Corasaniti M. T.1 1Department of Pharmacobiological Sciences, University Magna Graecia, Catanzaro, Italy; 2Department of Pharmacobiology and 3University Centre for Adaptive Disorders and Headache (UCHAD), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Cosenza, Italy; 4Department of Anatomy and Physiology, Tohoku Pharmaceutical University, Sendai, Japan; 5First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, Fukuoka, Japan; 6Department of Neuroscience, University  INCLUDEPICTURE "http://www3.interscience.wiley.com/giflibrary/12/ldquo.gif" \* MERGEFORMATINET Tor Vergata INCLUDEPICTURE "http://www3.interscience.wiley.com/giflibrary/12/rdquo.gif" \* MERGEFORMATINET  and Laboratory of Experimental Neurology CERC-IRCCS Santa Lucia, Rome, Italy (-)-Linalool is a natural compound with anti-inflammatory and anti-nociceptive properties. The anti-nociceptive action of linalool has been reported in several models of inflammatory pain. However, its effects in neuropathic pain have not been investigated. We used the spinal nerve ligation (SNL) model of neuropathic pain and studied the effects of acute and chronic administration of a standard anti-nociceptive dose of linalool on mechanical and thermal sensitivity induced by the nerve injury in mice. Linalool did not affect pain behaviour triggered by mechanical or thermal stimuli when administered as a single dose before SNL. However, mechanical allodynia was reduced transiently in neuropathic animals when linalool was administered for 7 consecutive days. No changes were seen in the sensitivity to noxious radiant heat. We investigated the possible involvement of the PI3K/Akt pathway in linalool anti-nociceptive effect by western blot analysis. Linalool did not induce significant changes in Akt expression and phopshorylation though a trend towards an increased ratio of phosphorylated versus total Akt was observed in SNL animals treated with linalool, in comparison to SNL alone or sham. We then wondered whether linalool could modulate inflammatory processes and investigated spinal glia activation and IL-1b contents following linalool treatment in SNL animals. The data suggest that mechanisms other than an action on inflammatory processes may mediate linalool ability to reduce mechanical sensitivity in this model of neuropathic pain. Financial support from the Ministry of Health (RF 2005 to MNB and CMT) is gratefully acknowledged. Fratto Vincenza is a PhD student from the University of Calabria. Transient middle cerebral artery occlusion (MCAo) enhances interleukin (IL)-1beta via a mechanism implicating activation of MMPs in the brain of rat Petrelli F.1, Amantea D.1, Bagetta G.1 and Corasaniti M.T.2 1Department of Pharmacobiology, University of Calabria, Rende (CS), Italy; 2Department of Phamacobiological Sciences, University Magna Graecia of Catanzaro, Italy The proinflammatory cytokine IL-1beta has been implicated in neurodegeneration induced by experimental cerebral ischemia in rodents (Rothwell, 2003). MMPs cleave protein components of the extracellular matrix, but also process a number of cell surface and soluble proteins including receptors, cytokines and chemokine (Sternlicht and Werb, 2001). Here we investigate the putative involvement of IL-1beta processing in the detrimental effects exerted by the early upregulation of MMPs in the brain of male Wistar rats subjected to transient (2 h) MCAo. By in situ zymography we have observed that gelatinases (MMP-2 and MMP-9) become activated 15 min and 2 h after the beginning of reperfusion in the ischemic core and penumbra, respectively. In situ zymography signal broadly co-localised with NeuN-positive cells and was mainly detected in cell nuclei, appearing in the cytosol only at later stages following the insult (i.e., after 6-22 h of reperfusion). Increased gelatinase activity in the ischemic cortex was coincident with elevation (50% vs contralateral) of mature IL-1beta detected after 2 h of reperfusion in tissue homogenates by ELISA. At this early stage of injury, IL-1beta immunoreactivity, detected by confocal microscopy on paraformaldehyde-fixed brain tissue slices, increased mainly in astrocytes and in activated microglial cells in the ischemic hemisphere. Canonical caspase-1-dependent processing of pro(31 KDa)-IL-1beta did not appear to be required to yield mature (17 KDa) IL-1beta. However, systemic administration of the broad spectrum MMPs inhibitor GM6001 (0.5 mg/rat, i.a., 15min before MCAo), but not of its negative control (GMneg), reduced the early activation of gelatinases, abolished the increase of IL-1beta in the ischemic cortex and resulted in a significant (49% vs GMneg) reduction of ischemic brain volume detected after 22 h of reperfusion by 2,3,5-triphenyltetrazolium chloride staining of coronal brain slices. In conclusion, our data demonstrate that fast activation of MMPs triggers IL-1beta processing and this is implicated in neuroinflammation and damage caused to the brain by transient focal ischemia. Rothwell (2003) Brain Behav Immunity 17:152-157. Sternlicht and Werb (2001) Annu Rev Cell Dev Biol 17:463-516. Financial support from the Italian Ministry of University and Research (PRIN prot. 2006059200_002) is gratefully acknowledged. Petrelli Francesco is a PhD student from the University of Calabria. Role of PARP-1 in a mouse model of ischemic preconditioning Blasi F., Faraco G., Pittelli M., Cavone L., Moroni F., Chiarugi A. Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy Background and Purpose Ischemic preconditioning (IPC) is a natural and adaptative phenomenon in which a brief, sublethal, ischemic insult increases the tissue tolerance to a subsequent, potentially lethal, massive ischemia (Dirnagl et al., 2009). Poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme normally involved in DNA repair process and actively implicated in ischemic brain injury, appears involved in ischemic tolerance. In particular, Garnier et al. showed that IPC in mixed mouse cortical cultures prompts PARP-1 cleavage which, in turn, reduces the detrimental PARP-1 activity during the subsequent lethal ischemic injury. Here, we sought to clarify the role of PARP-1 protein and activity in an in vivo mouse model of IPC. Methods and Results C57BL/6 WT and C57BL/6 PARP-1 KO mice undergo IPC by 5 of bilateral common carotid artery occlusion (BCCAo) 24 h before a middle cerebral artery occlusion (MCAo) of 20 duration. A group of animals receives the PARP-1 inhibitor PJ34 (20 mg/kg, i.p.) during IPC period to evaluate the effect of PARP-1 inhibition on the development of ischemic tolerance. Infarct size evaluation, assessed 72 h after the onset of ischemia, shows that IPC protects mice from ischemic brain injury. Importantly, IPC is not affected by treatment with PARP inhibitor during the preconditioning period, or genetic deletion of PARP-1. Immunostaining analyses using antibodies directed against poly(ADP-ribose) (PAR) and cleaved PARP fragment (89 kDa) reveal that both activity and integrity of enzyme are preserved during the IPC period. Finally, we analyze the bioenergetic changes that occur during IPC, and we show that cerebral levels of ATP, but not of NAD, are reduced immediately after IPC in the preconditioned tissue. Conclusions These findings demonstrate, for the first time in vivo, that PARP-1 isnt cleaved in the brain during development of ischemic preconditioning and that pharmacological or genetic suppression of PARP-1 activity doesnt abrogate the neuroprotection conferred by IPC. Key Words: ischemic preconditioning ( cerebral ischemia ( PARP-1( in vivo ( neuroprotection. Bibliography: Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009 Apr;8(4):398-412 Garnier P, Ying W, Swanson RA. Ischemic preconditioning by caspase cleavage of poly(ADP-ribose) polymerase-1. J Neurosci. 2003 Sep 3;23(22):7967-73 Blasi Francesco is a PhD student from the University of Calabria. Evidence that reversal of glutamate uptake is involved in retinal excitotoxicity Cavaliere F. (1), Russo R. (1), Corasaniti M.T. (2), Bagetta G. (1,3), Morrone L.A. (1,3) (1) Department of Pharmacobiology, University. of Calabria, Arcavacata of Rende, Italy; (2) Department. of Pharmacobiol. Science, Univ Magna Graecia, Catanzaro, Italy; (3) UCADH, Sect. Neuropharmacol. Norm. Pathol. Neur. Plasticity, Arcavacata of Rende, Italy Several studies suggest that excitotoxicity occurs during retinal ischemia with subsequent loss of retinal ganglion cells (RGCs) and that this process plays a role in the pathogenesis of ischemic retinopathy (see Osborne et al., 2004, Prog Ret Eye Res; 23:91-147). Glutamate levels may become dangerously elevated in disease states by overloading the normal glutamate reuptake mechanisms. Purpose: to study by ocular microdialysis the extracellular changes of glutamate in ischemia/reperfusion-induced retinal injury in vivo, in the presence of DL-threo-beta-benzyloxyaspartate (DL-TBOA), a non-transportable blocker of all subtypes of excitatory amino acid transporters in a model of RGC death induced by high intraocular pressure (IOP) in rat. Methods: retinal ischemia was induced in the right eye of adult, male, Wistar rat by acutely increasing the IOP (see Osborne et al., 2004, Prog Ret Eye Res; 23:91-147). Extracellular glutamate was monitored in the retina of anaesthetised rats before, during and after pressure-induced ischemia using a microdialysis technique (see Nucci et al., 2005, Neurotoxicology, 26: 935-941). DL-TBOA was administered intravitreally via the microdialysis probe. Results: the extracellular level of glutamate from the retina increases after the first 10 min of ischemia with larger and statistically significant increases observed at 10 min and 150 min after the reperfusion had started. Administration of DL-TBOA (500 microM), 60 min before ischemia, minimizes the increases of glutamate observed during ischemia and reperfusion in control experiments. Conclusion: our results show that administration of DL-TBOA before ischemia prevents the increase of glutamate during ischemia and reperfusion likely by blockade of the glutamate reversal transporters. Cavaliere Federica is a PhD student from the University of Calabria. Retinal ischemia/reperfusion induced by high intraocular pressure (IOP) modulates PI-3K/Akt pro-survival pathway in rat Varano G.P. (1), Cavaliere F. (1), Russo R. (1), Corasaniti M.T. (2), Bagetta G. (1,3) Morrone L.A. (1,3) (1) Dept. of Pharmacobiology, University of Calabria, Arcavacata of Rende, Italy; (2) Dept. of Pharmacobiol. Science, Univ. Magna Graecia, Catanzaro, Italy; (3) Department of Pharmacobiology and UCADH, Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, Arcavacata of Rende, Italy High intraocular pressure is considered the main risk factor for developing glaucoma, a neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Several intracellular mechanisms are involved in RGCs death occurring in glaucoma: pro-apoptotic and pro-survival pathways are both activated and compete leading to the survival or death of RGCs. Purpose: to investigate the role of self-defense mechanisms mediated by Akt, a serine/threonin kinase with pro-survival and anti-apoptotic activities (Franke et al., 2003, Oncogene, 22:8983-98), in a model of RGC death induced in vivo by high intraocular pressure (IOP). Methods: retinal ischemia was induced in the right eye of adult, male, Wistar rat by acutely increasing the IOP(see Osborne et al., 2004, Prog Ret Eye Res; 23:91-147). Expression and activity of Akt and its downstream targets were studied by western blotting and immunofluorescence. NMDA antagonists and Phosphoinositide-3-kinase (PI-3K) inhibitors were administered intravitreally. Results: retinal ischemia induced Akt deactivation that correlated with the activation of the pro-apoptotic protein GSK-3beta. Akt activity increased within 1 hour of reperfusion, was sustained after 6 hours and gradually returned to basal levels after 24 hours. Activation of Akt during reperfusion relayed on PI-3K function, since pharmacological inhibition of this enzyme prevented the increase of Akt phosphorylation observed at 1 hour of reperfusion. Intravitreal injection of the NMDA antagonist, MK801, did not prevent Akt deactivation induced by ischemia, however significantly potentiated Akt phosphorylation during reperfusion. Conclusions: the PI-3K/Akt pathway is modulated under retina ischemia/reperfusion showing that endogenous survival factors are strongly activated in response to injury. Potentiation of this pro-survival pathway is one of the mechanisms that mediates the neuroprotective effects of the NMDA receptor antagonist MK801. Varano Giuseppe Pasquale is a PhD student from the University of Calabria. Axonal Architecture of Optic Nerve and Optic Radiations in Glaucomatous Patients. An in vivo Analysis with 3 Tesla MR Diffusion Tensor Imaging Cerulli A., Bolacchi F., Melis M., Span A., Floris R., Simonetti G., Garaci F.G., Nucci C. Dep. of Biopathology, University of Rome Tor Vergata Rome Italy Purpose: Diffusion tensor imaging (DTI) is a magnetic resonance (MR) technique for studying white matter structures. Quantitative information on water diffusion within these structures, including its preferential direction within a voxel (fractional anisotropy, FA) and its magnitude independent of directionality (mean diffusivity, MD), can be derived from MR-DTI to characterize axonal architecture. The aim of the present study was to evaluate optic nerves and optic radiations of glaucomatous patients in vivo by using MR-DTI. Methods: 16 patients with primary open-angle glaucoma were included (9 males and 7 females, mean age 63 13 years, range 53-71 years). The glaucomatous eyes were stratified by the severity of the visual field defects into 6 stages according to the Hoddapp-Anderson-Parish system. Ten healthy subjects, matched for age and sex, served as controls. MR-DTI was performed with a 3 Tesla MR scanner. Diffusion-weighted SENSE-sshEPI sequences with a maximum b value of 800 s/mm2 were carried out along 15 directions. DTI trace images were created by averaging 15 diffusion-weighted images. Mean diffusivity and fractional anisotropy maps were automatically created. Three regions of interest (ROIs) were manually drawn over the reference SE-EPI images of both the optic nerves and the optic radiations. The ROIs were electronically superimposed over the MD and FA maps and the mean MD and mean FA values were calculated. Results: The mean MD values of the optic nerve and the glaucoma stages varied together consistently (r=0.8087, 95% CI: 0.6686-0.8934, p<0.0001). A significant difference in mean MD values was achieved between glaucoma stage 1 vs. 2 and between stage 3 vs. 4. A negative correlation was found between the mean FA values and the glaucoma stages (r=-0.7464, 95% confidence interval -0.8440 to -0.601, p<0.0001). A significant difference in FA values was achieved between stage 0 vs. stage 1, stage 1 vs. 2 and between patients with glaucoma stage 4 vs. 5. A significant elevation of MD and reduction of FA were observed in the optic radiations of patients with glaucoma with respect to control subjects. Conclusions: We found that the MD and FA of glaucomatous optic nerves correlates with disease severity. In addition, the optic radiations of glaucoma patients presented diffusion abnormalities that distinguished them from healthy controls. MR-DTI seems to have a potential role as a complementary tool for evaluating the severity of glaucoma and its response to treatment. Cerulli Angelica is a PhD student from the University of Calabria. The effect of tianeptine on gp120-induced apoptosis in astroglial cells: role in repression of NFkB signaling and nitric oxide synthase(s) modulation Janda E.1, Visalli V.2, Sacco I.2, Muscoli C.1, Colica C.3, Aprigliano S.1, Maretta A.1, Vadal N.1, Sculco F.1, Palma E.1, Ventrice D.2, Rotiroti D.1, Spedding M.4 and Mollace V.1,2 1Department of Pharmacobiological Sciences, University  Magna Grcia , Italy 2CETA (Centro d Eccellenza in Tossicologia Alimentare), ARPACal, Catanzaro, Italy 3Istituto Superiore Neuroscienze, Consiglio Nazionale delle Ricerche, Cosenza, Italy 4Experimental Sciences Department, Institut de Recherches Internationales Servier, Neuilly-sur-Seine, France Tianeptine is a tricyclic antidepressant reported to enhance the monoamine uptake in contrast to all other drugs of this class. In spite of its proven clinical efficacy, molecular effects of tianeptine are little understood. Beside its effects on glutamatergic transmission, tianeptine was reported to modulate cytokine expression in the central nervous system and protect the hyppocampus from neurodegenerative effects of chronic stress. Similarly to other neurodegenerative disorders, HIV infection is associated with inflammation and neuronal loss, causing HIV-associated dementia (HAD). The human immunodeficiency virus type-1 (HIV-1) coat glycoprotein gp120 has been proposed as a likely etiologic agent of HAD. In this report we adressed if tianeptine could protect the astroglial cells from deleterious effects of gp120 in vitro. Tianeptine showed an anti-apoptotic effect on astrogilal cells and prevented caspase-3 activation by gp120. The mechanism of tianeptine action in our model involves cNOS stabilization and iNOS repression at the protein level. Moreover, tianeptine blocked the degradation of IkBa in response to gp120, which is necessary for the classical NFkB pathway activation. Interestingly, tianeptine was able to increase NFkB inhibitor in the absence and presence of gp120. This correlated with the repression of basal and gp120-induced NFkB transcriptional activation as revealed by luciferase reporter assays. These data explain the neuroprotective role of tianeptine in our HAD model as well as suggest a mechanism for its anti-inflammatory function in chronic stress. PARTIAL DOPAMINE DENERVATION AS A MODEL OF EARLY PARKINSONISM: EFFECTS ON striatal synaptic plasticity, NMDA receptor subunit composition AND motor behaviour Bagetta V.1, Picconi B.1, Ghiglieri V.1, Sgobio C.1, Barone I.1, Di Filippo M.1,3, Paill V.4, Gardoni F.2, Bernardi G.1, Di Luca M.2 and Calabresi P.1,3 1IRCCS, S. Lucia Foundation, Department of Neurophysiology, Rome, Italy; 2Center of Excellence of Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, Milan, Italy; 3Neurological Clinic, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy 4Dynamics and Physiopathology of Neural Network, INSERM U667, Collge de France, Paris, France Parkinsons disease (PD) is a neurodegenerative disorder characterized by a massive degeneration of the dopaminergic neurons of the Substantia Nigra pars compacta (SNc). In experimental parkinsonism the complete depletion of striatal DA (> 90-95%), mimicking advanced stages PD induces a lack of synaptic plasticity at corticostriatal pathway, alterations of dendritic spines, and changes in glutamatergic signaling. All these processes have been identified as critical mechanisms underlying the expression of motor symptoms following DA denervation. Early clinical symptoms of PD are only detected when more than 70% of DA neurons are lost. A reliable model of early PD characterized by a DA lowering close to this threshold, is of key importance in the understanding the molecular and synaptic changes underlying this early stage and to find new therapeutic strategies to treat early phases of the disease. Here we present a model of early PD in which partial denervation, causing mild motor deficits, selectively affects NMDA-dependent Long Term Potentiation (LTP) but not Long Term Depression (LTD) induced in vitro and dramatically alters NMDA receptor composition in the postsynaptic density (PSD) consisting in an increased level of synaptic NR2A subunits. We suggest that an uncorrected composition of NMDA receptors is a key element in both anomalous motor behavior and pathologic synaptic plasticity in the early stages of PD. In fact, rebalancing the composition of NMDA receptor at the synaptic site, by the systemic administration of a cell permeable peptide, i.e. TAT-2A, rescues PD symptoms to control levels, physiological NMDA receptor composition and synaptic plasticity, thus providing a promising approach for innovative and early treatment of the disease. PLGA NANOSPHERES FOR THE CNS DELIVERY OF ANTIEPILETIC DRUGS Molinaro R.1, Citraro R.1,3, Iannone M.2, Cosco D.1, Vono M.1, Russo E.3, Celia C.1, Paolino D.3, Fresta M.1 1Department of Pharmacobiological Sciences and 3Department of Experimental and Clinic Medicine, University Magna Grcia of Catanzaro, Campus S. Venuta, 88100 Germaneto (CZ), Italy; 2ARPA Calabria - Environmental Epidemiology Centre and Institute of Neurological Science Section of Pharmacology, CNR, Complesso "Nin Barbieri", I-88021 Roccelletta di Borgia (CZ), Italy A particular attention has been recently drawn to the development of polymeric supramolecular colloidal systems for the site-specific release of drugs to the CNS, in the attempt to overcome the limits coming from the presence of the blood-brain barrier. Carbamazepine (CBZ) is considered the drug of choice for the therapeutic treatment of partial, generalized tonic-clonic and mixed epilepsy. Unfortunately, CBZ has unfavorable biopharmaceutical parameters, i.e. a reduced and irregular adsorption, a short blood half-life and a dose-dependent toxicity. CBZ elicit serious side-effects, i.e. ataxia, diplopic effect, vertigo, agranulocytosis and aplastic anemia. Therefore, the encapsulation of CBZ within polymeric supramolecular colloidal systems may improve the pharmacological activity and the biopharmaceutical properties of this antiepileptic drug. In this investigation polylactic-co-glycolic acid-based (PLGA) nanospheres were prepared using the method of the interfacial nano-precipitation, which is based on the formation of an oil/water emulsion. The physicochemical characterization of unloaded and CBZ-loaded PLGA nanospheres was carried out using the photocorrelation spectroscopy. The results showed a mean size of PLGA nanospheres of ~200 nm. The encapsulation of CBZ did not determined any significant variation of both mean size and size distribution, which was characterized by a polydispersity index of ~0.1, thus showing a homogenous size distribution of the colloidal dispersion. The storage stability analysis, carried out with the Turbiscan Lab Expert, showed constant profiles of transmittance and backscattering of PLGA nanospheres both before and after the addition of the antiepileptic drug. Data regarding to the drug encapsulation efficiency and release profiles were also encouraging. In fact, the amount of CBZ encapsulated within the carrier system is about 47% with respect to the amount added during the formulation preparation and, after 48 h, more than 90% of the entrapped drug is released. In vivo experiments on DBA/2 mice, which were made epileptic following the i.p. administration of pilocarpine hydrochloride (270 mg/Kg), were carried out to evaluate the therapeutic efficacy of CBZ-loaded PLGA nanospheres with respect to a solid dispersion of the antiepileptic drug with hydroxyl--cyclodextrin. The animal groups treated with CBZ-loaded nanospheres provided the best therapeutic response with respect to the control groups in terms of both the reduction of the number of epileptic discharges and their duration. This finding is probably due to a greater cerebral uptake of PLGA nanospheres, which may be favored by the presence of adsorbed TWEEN 80 on the surface of the colloidal system. The biodistribution experiments were carried out on DBA/2 mice following the i.p. administration of [3H]-radiolabeled nanospheres. These results showed an accumulation of the PLGA nanospheres at the level of the CNS as well as in RES organs, accompanied by a progressive elimination from the blood circulation. Furthermore, pharmacokinetic experiments showed that PLGA nanospheres ensured a significant longer blood circulation of CBZ (T1/2=15 h) than the free drug (T1/2=5 h). PREPARATION, CHARATERIZATION AND BIOLOGICAL EVALUATION OF SQUALENE-CYTARABINE CONJUGATES SELF-ASSEMBLED IN NANOAGGREGATES Vono M.1, Cosco D.1, Molinaro R.1, Rocco F.2, Celia C.1, Costa N.1, Paolino D.3, Ceruti M.2, Fresta M.1 1Department of Pharmacobiological Sciences and 3Department of Experimental and Clinic Medicine, University Magna Grcia of Catanzaro, Campus S. Venuta, 88100 Germaneto (CZ), Italy; 2Department of Science and Technology of Drug, University of Turin, Via P. Giuria 9, 10125, Turin, Italy The cytarabine, analogue of 2-deoxycytidine, is considered the treatment of choice for the acute myeloid leukemia and it is secondary used for the treatment of other proliferative forms of blood cells. Unfortunately, cytarabine has a number of drawbacks, which limit its therapeutic use, i.e. the short blood circulating half-life, the low oral bioavailability, emetic, gastrointestinal and neuro-toxicity, as well as the appearance drug resistance. An approach, which allows to overcome these drawbacks and to improve the pharmacologic activity of cytarabine, may be the conjugation of the drug with a molecule of squalenic acid. This conjugation allowed the transformation of a hydrophilic molecule, i.e. cytarabine, in an amphiphilic one, which was able to self-assemble into spherical nanoaggregates in an aqueous environment. The photocorrelation spectroscopy analysis showed that these nanoaggregates were characterized by a mean size of ~150 nm with a polydispersity index of ~0.1. Squalene-cytarabine nanoaggregates showed a suitable colloidal stability as a function of storage. In fact, the values of transmittance and backscattering (monitored using Turbiscan Lab Expert) of nanoaggregates obtained just after their preparation and following six months of storage showed no variation higher that 5%. The cytotoxic activity of squalene-cytarabine nanoaggregates with respect to the un-conjugated drug was assayed in vitro on three tumoral cell lines: K562 (chronic myeloid leukemia), OPM-2 (multiple myeloma) e MCF-7 (follicular breast carcinoma). The cytotoxic activity was evaluated using the MTT-test, which showed a greater anticancer effect of squalene-cytarabine nanoaggregates with respect to the un-conjugated drug in the case of responsive cell lines, i.e. K562 and OPM-2 (with a reduction of the EC50 values of four and three folds, respectively). In the case of the cytarabine-not-responsive cell line, i.e. MCF-7, squalene-cytarabine nanoaggregates elicited a significant improvement of the cytotoxic effect. The improved anticancer activity of squalene-cytarabine nanoaggregates was due to a greater uptake by cancer cells. In particular, investigations were carried out using both nanoaggregates radio-labeled with [3H]exadecyl-cholesterol and fluorescence-labeled ones. In both cases, findings showed that the interaction between the squalene-cytarabine nanoaggragtes and cancer cells reaches the maximum just after 1 h of incubation and maintained stable up to 4 h. The biodistribution studies on Wistar rats, following the e.v. administration of squalene-cytarabine radio-labeled nanoaggragtes, showed a preferable accumulation at the level of RES organs and in particular at the level of liver, with a renal elimination and a rapid decrease of the plasmatic levels. The evaluation of the plasmatic concentration profiles as a function of time (carried out on Wistar rats) showed that the conjugation with squalenic acid elicited a significant increase of the circulation half-life, which was longer (T= 7h) in the case of nanoaggregates than that of the free cytarabine (T= 3 h). Ultrastructural localization of the cannabinoid1 receptor (CB1-R) and a negative role of the anandamide on human sperm survival. Guido C.1, 2, Aquila S.1, 2, Perrotta I.3,  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Laezza%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus" Laezza C.5, Santoro A.5, And S.2, 4, and Bifulco M.5 1Dept. Pharmaco-Biology, 2Centro Sanitario, 3Dept. Ecology, 4Faculty of Pharmacy, - University of Calabria 87036 Arcavacata di Rende (Cosenza) Italy. 5Dipartimento di Scienze Farmaceutiche, Universit di Salerno, Fisciano (Salerno). Italy Cannabinoids have been always reported as harmful drugs because of their negative effects on reproduction. Recently, the endocannabinoid system and the presence of CB1-R were also identified in human sperm, however the Anandamide (N-arachidonoylethanolamine; AEA) action in this context needs to be further elucidated. In the present finding we have investigated for the first time the ultrastructural compartmentalization of CB1-R and analyzed the effects of its stimulation by using a stable analogue of anandamide, 2-methylarachidonyl-2-fluoro-ethylamide, (MET-F-AEA) on human sperm survival. The study of human sperm anatomy by transmission electron microscopy with immunogold analysis revealed the location of the CB1-R prevalently in the sperm membranes of the head and on the mitochondria. Mammalian spermatozoa are highly differentiated cells that display extreme polarization of cellular architecture and function. Briefly, the mature sperm cell has three highly specialized regions: the sperm head, involved in sperm oocyte interaction; the midpiece with mitochondria, involved in energy production; the flagellum, involved in motility. In regard to the cell polarization of functions, it was hypothesized that sperm possess compartmentalized metabolic and signalling pathways in the regions where they are needed. Altogether these observations and the evidence of the AEA synthesis in sperm, our finding intriguingly suggests that through an autocrine short loop AEA and its own receptor may modulate sperm functional maturation and metabolism. Notably, it is at our knowledge the first time that the CB1-R was evidenced at the mitochondria level, and this may be in agreement with the reported CB1-R modulation of mitochondrial functionality both in sperm and in other cellular type. The AEA functional action was tested on sperm survival. Different MET-F-AEA doses were used in our experiments and we have chosen the dose of 10 nM to mimic the concentrations observed in human seminal plasma (12.3 nM) and in mid-cycle oviductal fluid (10.5 nM), while 100 nM and 1 M are supraphysiological levels. A significantly decrease was observed at 100 nM and 1 M MET-F-AEA. The proapoptotic activity of AEA in different cellular models has been shown to occur through the activation of different receptors, which in turn trigger different signal transduction pathways. It appears that AEA exerts a proapoptotic activity by binding to vanilloid receptors and an antiapoptotic action by binding to cannabinoid receptors, discriminating the opposite effects of AEA on cell death. Transductional pathways regulated by ECs have not been studied until now in the male gamete and then the negative AEA effect on human sperm viability led us to evaluate the underlying molecular mechanism by considering its action on some classic proteins involved in cell survival. The activation of the PI3K/Akt pathway induces different cellular activities such motility, metabolism and survival. BCL2, downstream Akt is particularly studied as its phosphorylation is indicative of cell survival. On the other hand, it is well known that activated phosphatase PTEN plays a role in the negative regulation of the PI3K/Akt pathway. At the higher MET-F-AEA concentrations we observed a reduction in the Akt and BCL2 phosphorylation that was concomitantly with an increase of the PTEN phosphorylation, confirming an AEA action on PI3K/Akt pathway in the human male gamete. Importantly, MET-F-AEA effects were influenced by using CB1-R antagonist SR141716A (rimonabant, Rim) supporting a role for the CB1-R receptor on human sperm survival. The presence of CB1 receptor in human sperm together with the finding that agonism at CB1 receptor, by an endogenous cannabinoid has negative effects on human reproduction suggest that CB1 receptor could have an important role in male fertility. Targeting of the CB1 receptor might represent a therapeutic tool in reproductive pathological situations involving an imbalance of endocannabinoids tone. Concluding, our data evidenced for the first time the precise human sperm anatomic regions target of the CB1-R and revealed, at least in part, the molecular mechanisms involved in the AEA modulation of human sperm survival. Guido Carmela is a PhD student from the University of Calabria. A role for anandamide on human sperm metabolism Guido C.1, 2, Aquila S.1, 2, Perrotta I.3,  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Laezza%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus" Laezza C.5, Santoro A.5, And S.2, 4, and Bifulco M.5 1Dept. Pharmaco-Biology, 2Centro Sanitario, 3Dept. Ecology, 4Faculty of Pharmacy, - University of Calabria 87036 Arcavacata di Rende (Cosenza) Italy. 5Dipartimento di Scienze Farmaceutiche, Universit di Salerno, Fisciano (Salerno). Italy Recently, the endocannabinoid system and the presence of CB1-R, target of the Anandamide (N-arachidonoylethanolamine; AEA) were identified in human sperm, however the AEA action in this context is at the beginning of the knowledge. Interestingly, we focused on lipid and glucose sperm metabolism since it was never investigated, in order to shed light on the possible pathophysiological role of the EC system in male fertility and to correlate the energy metabolism profile of human sperm with EC-induced events. In fact, in the present study we have analyzed the effects of increasing AEA concentrations by using a stable analogue of anandamide, Met-F-anandamide (2-methylarachidonyl-2-fluoro-ethylamide, AEA) on human sperm capacitation as well as on lipid and glucose metabolism. Successful sperm maturation depends on sequential steps in both the male and female reproductive tracts. After ejaculation, the male gamete must undergo capacitation in order to be capable of fertilising an egg; this is a prerequisite for fertilisation by mammalian spermatozoa. Although the molecular mechanisms that govern the capacitation process are still under investigation, it appears to involve modifications of intracellular Ca2+, lipid remodeling in sperm plasma membrane as well as changes in protein phosphorylation. Therefore, we first aimed to evaluate the MET-F-AEA action in some events that characterize the capacitation process, such as intracellular Ca2+ levels and tyrosine phosphorylation of sperm proteins. Ca2+ signaling in sperm is critical for fertilization and recently it was demonstrated that internal Ca2+ stores provide sufficient Ca2+ for the induction of motility hyperactivation, whereas Ca2+ influx is required to maintain intracellular Ca2+ levels to sustain hyperactivation. From our results it emerges that AEA is able to slightly increase free intracellular Ca2+ levels and the blockage of CB1-R by the specific antagonist SR141716 (rimonabant, SR) significantly enhanced this effect addressing its role in the regulation of intracellular free Ca2+ and then in the induction of hyperactivated motility. A spontaneous increase of cAMP during capacitation has been demonstrated and it appears to play a key role in the increase of proteins tyrosine phosphorylation, tightly associated to the initial stage of this process. In somatic cells a major CB1-R-dependent signaling pathway involves the down-regulation of adenylate cyclase activity. In our study, MET-F-AEA decreases sperm proteins tyrosine phosphorylation, while an increase was obtained by the combination of AEA with CB1-R antagonist SR141716 (SR), leading to the suggestion that this receptor is involved in the modulation of this important early event of the capacitation process. The mechanisms controlling the interaction between energy balance and reproduction are the subject of intensive investigations. Capacitated sperm display an increased metabolic rate and overall energy expenditure, presumably to affect the changes in sperm signaling and function during capacitation process. Although ECs influence numerous systemic behaviours new data demonstrated that the EC system should now be recognized as a new crucial player in energy balance control. In general the net effect at diverse sites in the brain and throughout the body is anabolic, facilitating increased energy intake, decreased energy expenditure and increased accumulation of body fat. However, the molecular basis for the control of energy balance by the AEA are still unclear. In white adipocytes, CB1-R activation stimulates lipogenesis, while in contrast, CB1-R antagonists in vitro and in vivo reduce the expression of enzymes involved in lipogenesis. Similarly, AEA seems to exert a lipogenetic effect on human sperm lipid metabolism, since an augment in the triglycerides content was found to be associated with unchanged lipase and acyl-CoA dehydrogenase activities. Our data clearly evidenced that the blockage of CB1-R induces an increase in the energy expenditure, corroborating the idea that the receptor activation in sperm is related to the uncapacitated status. Our previous results lead us to hypothesize that the hormone modulates sperm energetic substrates availability on the basis of sperm energy needs. Glucose is required for spermatozoa during zona pellucida penetration and sperm-oocyte fusion and to ensure that tyrosine phosphorylation occurs during capacitation. Glucose is provided to sperm by the female reproductive tract fluid in vivo or by the culture medium in vitro; besides, several studies have indicated that stores of glycogen are endogenous sources of glucose in sperm allowing sperm to accommodate glucose-free conditions. On the basis of our results, we observed that under increasing MET-F-AEA, GSK3 phosphorylation increases indicating that the endocannabinoid in uncapacitated sperm is involved in the accumulation of energy substrates, which would be spent during capacitation. Accordingly, MET-F-AEA was unable to increase G6PDH activity. Increasing evidence points toward the pathophysiological significance of ECs in both female and male fertility. For example, elevated levels of AEA in the uterus inhibit blastocyst implantation and trophoblast differentiation in mice and cause miscarriage in women. AEA present in higher concentration in seminal plasma prevents premature capacitation activating CB1-R, instead in the female genital tract spermatozoa are exposed to a progressively reduced concentration of AEA and sperm capacitation might occur as a consequence of reduced action of AEA on CB1-R. These observations, together with current findings, raise the possibility that defective AEA-signaling may likewise impair sperm acquisition of fertilizing ability and thus male fertility. Apart from classical hormones like leptin and insulin, the AEA has also the ability to modulate both lipid and glucose metabolism highlighting a pivotal involvement of this EC in the control of sperm energy homeostasis.  23457JKLMNopȹȬ~i]iDi~;hC;5CJaJ0h.ahC;0J5B*CJOJQJ^JaJphh.ahC;5CJaJ(jh.ahC;5CJUaJmH sH hEhC;5CJaJjhrUhr5CJaJmH sH h\5CJaJmH sH hC;5CJaJmH sH h\5;CJaJmH sH hr5;CJaJmH sH he7a5;CJaJmH sH he7ah5mH sH he7ah5;mH sH  234567JKLN R S U * : $]a$gdr  " # C D O P Q ѸѸё{jUU8U8hp4hC;0J5B*CJOJQJ^JaJmH phsH (hp4hC;5B*CJaJmH phsH  hp4hr5B*CJaJphjhrUhr5B*CJaJphhC;5B*CJaJph0hp4hC;0J5B*CJOJQJ^JaJph1jhp4hC;5B*CJUaJmH phsH  hp4hC;5B*CJaJphhEhr5CJaJjjhrUhr5CJaJQ R S T U ƱucNA4(hz>hC;5CJaJhr5CJaJmH sH he7a5CJaJmH sH (hp4he7a5B*CJaJmH phsH "hx5B*CJaJmH phsH "hI5B*CJaJmH phsH (hp4hW|5B*CJaJmH phsH (hp4hZ/5B*CJaJmH phsH (hp4hr5B*CJaJmH phsH +j?!hr5B*CJUaJmH phsH "hr5B*CJaJmH phsH "hC;5B*CJaJmH phsH     : ; < = Q Z b c d e i ߺ~l~]~]~N>h?hUt5;@CJaJhC;5;CJaJmH sH h?5;CJaJmH sH "he7ahr5;CJaJmH sH hE5;CJaJmH sH he7ahe7a5CJaJmH sH hC;5CJaJmH sH hz>hC;5CJaJmH sH hz>hC;5CJaJ0h.ahC;0J5B*CJOJQJ^JaJphh.ahC;5CJaJ(jh.ahC;5CJUaJmH sH : ; < = e  + B V i   + d]gdK:]gdr $]a$gdri o p q r v | } ~ ᵥѥåveTEhu%qhB*mH phsH  hu%qh6B*mH phsH  hu%qhu%q6B*mH phsH  hu%qh5B*mH phsH h?hu%q5;@CJaJh?hC;5@CJaJh?hC;5;@CJaJh?hUt5@CJaJh?hR^5@CJaJh?hR^5;@CJaJh?hUt5;@CJaJh?h?5@CJaJ  # 9    : O h i  e{h朾um\!h!h!@B*mH phsH hQhUZ6h6B*mH phsH  hI}|h5B*mH phsH h<h5hI}|hZ/6B*phhI}|hB*phhe,76B*phhI}|hEM(6B*ph hI}|h6B*mH phsH hJ6B*phhI}|h6B*phhI}|h5B*ph+ < M ` s  " : O h 9P d]gd*I d]gdK:Pe{Nhi$d]a$gdK: d]gdK:$d]a$gd*I$d]a$gd*I d]gd*Ihi9:;OPVW]^_dfrsʹʘʇʇvʇvddKd1hhE0J@B*OJQJ^JmH phsH "jhhE@B*Uph!hhe7a@B*mH phsH !hhI}|@B*mH phsH h.a@B*mH phsH $hhW|5@B*mH phsH !hehW|@B*mH phsH !hhE@B*mH phsH $hhE5@B*mH phsH !hI}|h@B*mH phsH WXpCDWXij{{b{TC hI}|he7a5B*mH phsH h5B*mH phsH 1hUZhN0J@B*OJQJ^JmH phsH *jhUZhN@B*UmH phsH !hUZh'/@B*mH phsH !hUZhe7a@B*mH phsH !hUZhN@B*mH phsH !hUZhE@B*mH phsH hI}|h1[5B*phhI}|hE5B*ph h.ah5B*mH phsH 67KLMO'*5AQ_u𦕆wfUD3!hwhx@B*mH phsH !hwh@B*mH phsH  hI}|h6B*mH phsH  hI}|h5B*mH phsH hI}|hxFB*mH phsH hI}|hNB*mH phsH  hI}|hN5B*mH phsH  hI}|h1[5B*mH phsH hI}|heDB*mH phsH heB*mH phsH hI}|h;B*mH phsH hI}|h'/B*mH phsH hI}|he7aB*mH phsH 45AQ !"#$%&'()*+@T$d]a$gdK:$d]a$gdK:$d]a$gdK: d]gdK:uvwx̻̪{j{YH7YHY!h.ahw@B*mH phsH !h.ahx@B*mH phsH !h.ah@B*mH phsH !hwhw@B*mH phsH h.a@B*mH phsH  j(hwh@B*ph!hwhx@B*mH phsH !hwh@B*mH phsH !hwh@B*mH phsH !hwhx@B*mH phsH !hwhC;@B*mH phsH !hwhw@B*mH phsH   +@AMO|~sj\jL:L"h1[h1[5CJH*aJmH sH h1[h1[5CJaJmH sH h&h1[5H*mH sH h1[5mH sH h1[hNmH sH hK:hN5mH sH h.ahNmH sH h.ahxB*mH phsH h.ahNB*mH phsH !h.ah@B*mH phsH 1h.ahx0J@B*OJQJ^JmH phsH !h.ahx@B*mH phsH "jhwhx@B*UphTUxyz{-.s$ d]a$gdUt$ d]a$gdK:$d]a$gdX $ d]a$gdK: d]gdK: ,-.s°{m`P>"h1[h1[56CJaJmH sH h1[h1[5CJaJmH sH h;5CJaJmH sH hfh1[6@CJaJ#hfh1[6@CJaJmH sH hUt5@CJaJmH sH &hJh1[5@CJH*aJmH sH #hfh1[5@CJaJmH sH h1[h1[6CJaJmH sH hfh1[6CJaJmH sH h1[h1[CJaJmH sH h1[h1[CJaJmH sH CDEFcdeqrߋ{n^NN>h1[h1[6CJaJmH sH hfh1[6CJaJmH sH h1[hf6CJaJmH sH h1[6CJaJmH sH h1[hf5CJaJmH sH h1[5CJaJmH sH 0h1[h1[5B*CJ^J_H aJmH phsH h1[h1[CJaJmH sH h1[h1[6CJaJmH sH h1[h1[CJaJmH sH h1[h1[5CJaJmH sH h1[h1[5CJaJmH sH DEFcde,"#E$d]a$gdK:$d]a$gdK:$ d]a$gdK:$ d]a$gdUt,G!"Eﺦq_OB2OB2h1[hf6CJaJmH sH h1[6CJaJmH sH h1[h1[6CJaJmH sH "h1[h1[5CJ\aJmH sH )h1[h1[0JB*CJaJmH ph333sH h1[h1[5CJaJmH sH h1[h1[6CJaJmH sH 'h1[h1[5CJOJQJaJmH sH !h;5CJOJQJaJmH sH #hI}|hf'5B*CJ\aJph#hI}|hf'6B*CJ\aJph hI}|h1[6B*CJaJphIJm89$ d]a$gdK:$d]a$gdK:$d]a$gdX ]gdK:$d]a$gdK:$ d]a$gdK: /47BGHIJV¹xhXKXh: hI}|hf'6B*CJaJphhf'6CJaJmH sH h1[hf6CJaJmH sH h1[hf6CJaJmH sH hfh1[6CJaJmH sH h1[h1[CJaJmH sH "h1[h1[5CJH*aJmH sH h1[h1[5CJaJmH sH h1[5mH sH h&h1[mH sH (hUth1[5B*CJaJmH phsH hUt5CJaJmH sH hUth1[5CJaJmH sH VZ`jklm8DFP޾禎~pYD/~(hI}|hC;6B*CJaJmH phsH (hI}|h1[6B*CJaJmH phsH ,hI}|h1[5@B*CJaJmH phsH hz6B*CJaJph(hI}|h1[6B*CJaJmH phsH +hI}|h1[56B*CJaJmH phsH (hI}|h1[5B*CJaJmH phsH hI}|h1[B*CJaJph hzhz6B*CJaJph hzh1[6B*CJaJph hI}|h1[6B*CJaJphP^Bxz|ĭĚćĚxl\H\8h1[h1[6CJaJmH sH 'h1[h1[5CJOJQJaJmH sH h1[h1[5CJaJmH sH h1[h1[6CJaJh1[h1[CJaJmH sH %hzh1[B*CJaJmH phsH %hI}|h1[B*CJaJmH phsH ,hI}|h1[5@B*CJaJmH phsH (hI}|h1[6B*CJaJmH phsH (hI}|h1[5B*CJaJmH phsH "hI}|6B*CJaJmH phsH 9_BDz|"noZ[|$d]a$gdK:$d]a$gdK:$ d]a$gdK:!"mn[i{|}~# Ͽ߬~rgYE4E h<5;@CJaJmH sH &h.hf5;@CJaJmH sH hfhf6@CJaJhn$F6@CJaJhfhf5CJaJh.5CJaJmH sH h.5;CJaJmH sH "h.h5;CJaJmH sH %h1[h1[B*CJaJmH phsH h1[h1[5CJaJmH sH h1[h1[5CJaJmH sH h1[h1[6CJaJmH sH h1[h1[6CJaJmH sH # $ i '!""###W$$$%%%$d1$7$8$H$]a$gdK:$d7$8$H$]a$gdK:$d]a$gdK:$d]a$gdK:# $ ( Q S ^ ` h i '!""""ҷq]E]3#h hf5@CJaJmH sH .h hf5;@CJOJQJaJmH sH &h hf5;@CJaJmH sH hfhf6@CJaJ#hoOFhf5@CJaJmH sH #hoOFhf;@CJaJmH sH &hoOFhf5;@CJaJmH sH h.2hf@CJaJh<h<6@CJaJh<hf6@CJaJhfhf5CJaJ&hfhf5>*@CJaJmH sH """""## #######Q$R$V$W$$$$qcQA5h oh o5CJaJh oh oCJ\aJmH sH "hMmnh o5;CJaJmH sH h oh<6CJ\aJh oh o6CJH*\aJh oh o6CJ\aJh oh5CJaJ#h*CJaJmH sH hn$F5;CJaJmH sH "hEh/Ss5;CJaJmH sH hEh/SsCJaJh/Ssh/Ss6CJaJhe,76CJaJh/Ssh/SsCJaJh/Ssh/Ss5CJaJhhn$F5CJOJQJaJh/Ss5CJOJQJaJhh/Ss5CJOJQJaJ$hCh/SsCJOJQJaJmHsH'''''''''#($(%()(*((( ) ) ) )))))))))))*кwgZgOwwgOwwh6@CJaJh6@CJ\aJh2ChCa6@CJ\aJh2ChCa6@CJaJ$jh2ChCa6@CJUaJh2ChCa5@CJaJ'h/Ssh/Ss5CJOJQJaJmH sH +hEh/Ss;CJOJQJ^JaJmH sH %hEh/Ss5;CJ\aJmH sH hp4h/Ss6@CJ\aJh6@CJ\aJ*******++++++++,, ,,, ,",1,2,@,C,D,ݷģpapapapaRhn$F6CJ\aJmH sH h6CJ\aJmH sH "h*@CJ\_HaJ"hdPh,%6@CJ\_HaJhX}6@CJ\_HaJh,%h,%5CJaJh,%B*CJaJmH phsH %h,%5;B*CJaJmH phsH +hk= h,%5;B*CJaJmH phsH $hX}h,%6@B*CJaJph11p1122j4l45c6d667j7778$a$gdR)$a$gdn$F $da$gdn$F$(d](a$gdn$F$d7$8$H$]a$gdn$F$d]a$gdn$F$d1$7$8$H$]a$gdn$F1111*1+14151>1?1I1J1W1X1b1c1d1e1n1o1p111112224ĭě~p]%hvh,%5;CJ\aJmH sH hdPh,%6CJ\aJh,%h,%5CJaJ h{h,%@CJaJmH sH #h{h,%;@CJaJmH sH ,h{h,%56;@CJ\aJmH sH )h{h,%5;@CJ\aJmH sH hX}6@CJaJhdPh,%6@CJaJhdPh,%56CJaJ44*4j4l4r4t4445 56585f5h55556C6ŵkkkkXkF2&h5eVhYu5;@CJaJmH sH #h5eVhYu5@CJaJmH sH $hYu6@CJPJ\aJnHtH-hYuhYu6@CJH*PJ\aJnHtH*hYuhYu6@CJPJ\aJnHtHhYuhYu5@CJaJhYuh5;CJ\aJh5;CJ\aJmH sH h,%5;CJ\aJmH sH %hvh,%5;CJ\aJmH sH -hvh,%5;CJOJQJ\aJmH sH C6b6d6h6t66666777 7i7j77udXL>,#h^hR)5@CJaJmH sH h^hp6CJH*aJh^hp6CJaJh^hj^>5CJaJ hR)hj^>@CJaJmH sH #hR)hj^>5@CJaJmH sH h^hR)5CJaJmH sH hj^>hj^>6@CJH*aJhj^>6@CJaJhj^>hj^>6@CJaJh\hj^>6@CJaJhj^>hYu5;@CJaJ hYu5;@CJaJmH sH  hn$F5;@CJaJmH sH 7777 8 8888888888x9y9îs^F4"h^hp5;CJaJmH sH .h^hp5;CJPJaJmH nHsH tH)h^hp56CJPJ\aJnHtHh^hp6CJH*aJ6h^hp0J6>*B*CJOJQJ\^JaJph h^hp6B*CJaJph)jh^hp6B*CJUaJphh^hp6CJaJh^hp6CJ\aJ&h^hp5CJPJ\aJnHtHhR)hpCJaJmH sH 8y9z9::::d;e;f;g;h;i;j;k;l;m;n;o;p;q;$d]a$gdK:$d]a$gdK:$d7$8$H$]a$gdK:$a$gdb $a$gdn$F $7$8$H$a$gdn$Fy9z9~9999[:\:d:e:r:::::::Űr_O?0hb hb 5;CJ\aJhb 5;CJ\aJmH sH h5;CJ\aJmH sH %h^h5;CJ\aJmH sH  h^h56>*CJ\aJ6h^h0J6>*B*CJOJQJ\^JaJph h^h6B*CJaJph)jh^h6B*CJUaJphh^h6CJaJh^h6CJ\aJh^hp5;CJ\aJ"h^hp>*CJ\aJmH sH ::::::d;e;f;l;q;t;u;~;;;;;;ѿ|ndZdOD9h5;mH sH h@#5;mH sH h[Rj5;mH sH hph.5;hph5;hb h.5;mH sH hb h5CJaJmH sH hb h.5CJaJmH sH hb h5CJaJmH sH %hb h5;CJ\aJmH sH #h/hb 5@CJaJmH sH h/hb @CJaJ$hhb 6@B*CJaJphhhb 6@CJaJq;r;s;t;u;;;;;;;,<<<GGIGJG $]a$gdK:$d7$8$H$]a$gd6$d]a$gdK:$d]a$gdK:$dh]a$gd$dh]a$gd$d]a$gdK:;;;;;;;;;;< <,<}<~<<<ѬјzpcUBU0#h.h.6@CJaJmH sH $h.h456@CJH*\aJh.h46@CJaJhoOFh4@CJaJh6@CJaJhoOFh4@CJH*\aJhe,7h4>*@CJaJ&h oh.5>*@CJaJmH sH &h.h.5;@CJaJmH sH  h<5;@CJaJmH sH &h.h45;@CJaJmH sH hu%q5CJaJmH sH h5CJaJmH sH <<<==>>ADAAABBCDDD^E_EGGGGGGHGIGȷȥȗȷȷȗȃȷudRRȷ#h.h45@CJaJmH sH  h.hoOF@CJaJmH sH h4@CJaJmH sH &h.h456@CJaJmH sH h6@CJaJmH sH #h.h46@CJaJmH sH  h.h+@CJaJmH sH  h.h4@CJaJmH sH &h.h45@CJ\aJmH sH #h.h46@CJaJmH sH IGJG\GGGGGGGGGGGGGGGGGGGGGGGGGͻtfXtKKtKtKtKth.2h.2@CJaJhs8hoOF>*@CJaJhs8h[K>*@CJaJh.2h[K@CJaJh.2h[K@CJH*aJhs8hoOF@CJaJhs8h[K@CJaJ#hoOFh[K5@CJaJmH sH #hoOFh[K;@CJaJmH sH &hoOFh[K5;@CJaJmH sH  h65;@CJaJmH sH h0@CJaJmH sH JGGGGHHNNOO,P-PPTQUQxXzXXXYYFZ[[$1$7$8$H$]a$gdK:]gdK:$7$8$H$]a$gdK: $]a$gdK:GDHEHVHWH`HkHlH~HHHHHHIIJJJKKK*L+L>L?L^LMMN񻪙fXh6@CJaJmH sH <hoOFh[K0J>*@B*CJOJQJ^JaJmH phsH 'hoOFh[K0J>*@CJaJmH sH  hoOFhoOF@CJaJmH sH  hoOFh[K@CJaJmH sH hoOFh[K@CJaJhU?6@CJaJhoOFhoOF6@CJaJhoOFh[K6@CJH*aJhoOFh[K6@CJaJNOOOOOOO P+P,P-P4P5P6PBPCPOPPP]P^Pܿm_QC6C6C6Ch h[K@CJaJh h[K@CJH*aJhs8h.2>*@CJaJhs8h[K>*@CJaJ#h h.25@CJaJmH sH &h h.25;@CJaJmH sH .h h[K5;@CJOJQJaJmH sH &h h[K5;@CJaJmH sH hjCJaJmH sH  h.hBS@CJaJmH sH  hoOFh[K@CJaJmH sH #he,7h[K5@CJaJmH sH ^PkPlPvPwPPPPPPPPPPQ Q4QSQTQUQQKRtTyTVV*@CJ\aJhz`h[K>*@CJ\aJ&hZh 5@CJ\aJmH sH #hZ5;@CJ\aJmH sH &hIkh[K5@CJ\aJmH sH )h h[K5;@CJ\aJmH sH hjCJaJmH sH  h h[K@CJaJmH sH  h.hBS@CJaJmH sH ,Z0Z8Z>ZDZFZHZfZvZxZZZ[[[]]+^L^񰡏}iWBW1 h h[K@CJaJmH sH )h h[K6@CJ\]aJmH sH #h h[K@CJ\aJmH sH &h h[K5@CJ\aJmH sH #h h[K6@CJaJmH sH #h h[K6@CJaJmH sH h 6@CJaJmH sH ,h h[K56@CJH*\aJmH sH h h[K@CJH*\aJh h @CJaJh h[K@CJaJh h[K@CJ\aJL^[^^(_1_W_Z_[_e_u___j`k```bb\c^ccdddddܶܶܢ܍܍qbSB h hs8@CJaJmH sH hoz5@CJaJmH sH hz`5@CJaJmH sH hs8@CJaJmH sH h[K@CJaJmH sH (h h[K@CJOJQJaJmH sH &h h[K5@CJ\aJmH sH #h h[K6@CJaJmH sH &h h[K@CJH*\aJmH sH  h h[K@CJaJmH sH #h h[K@CJ\aJmH sH [ddCdDddd+eeeshnno=o>oooo p p $]a$gdoz 7$8$H$]gdK:$7$8$H$]a$gdK: $]a$gdK: $]a$gds8$1$7$8$H$]a$gdK:dBdCdDddddddddddddddddddeeeeeeee)e*e+eоxoxoxoxoxoxoxoxdxhU?CJH*\aJh oCJ\aJhMmnhMmnCJ\aJhMmnhMmnCJH*\aJhozh o>*CJ\aJhozhMmn>*CJ\aJhjh oCJ\aJmH sH "hMmnhMmn5;CJaJmH sH hj@CJaJmH sH  hs8hs8@CJaJmH sH  h.hBS@CJaJmH sH +e,eeeeeeefiilmmnnnnooȸ}q}aQBhU?hMmnCJaJmH sH hU?hMmn5CJaJmH sH hU?hM]5CJaJmH sH hC:CJaJmH sH hU?CJaJmH sH hMmnhMmn>*CJaJmH sH hMmnhMmn6CJaJmH sH hMmnhMmnCJaJmH sH h ohMmn6CJaJmH sH hU?6CJ\]aJmH sH %h ohMmn6CJ\]aJmH sH (h ohMmn6CJH*\]aJmH sH o0o3o=o>oHoPoQooooooDzraRD/)h{h[K5;@CJ\aJmH sH hj@CJaJmH sH hozhozCJaJmH sH  h hoz@CJaJmH sH  h.hBS@CJaJmH sH  h hoz@CJaJmH sH hM]5@CJaJmH sH hoz5@CJaJmH sH (hU?hozCJOJQJ^JaJmH sH (hU?hMmnCJOJQJ^JaJmH sH "hU?hMmn5CJ\aJmH sH "hU?hMmn6CJ]aJmH sH  o p p ppppp!p(p)p+p5p8pBpCpEpFpUpppppwwwwgWJW=h h[K@CJaJhU?6@CJ\aJh h[K6@CJ\aJh h 6@CJ\aJh h{C@CJ\aJh{Ch{C@CJ\aJh h[K@CJ\aJhU],h{C>*@CJ\aJhU],h[K>*@CJ\aJ&h{h[K5@CJ\aJmH sH )h{h[K5;@CJ\aJmH sH )h{h 5;@CJ\aJmH sH  pFpppEuFuuuvvBvvvyyyyPzz$d]^a$gdU],$d]a$gdU], $]a$gdK:]gdK:$7$8$H$]a$gdK:$7$8$H$]a$gdK: $]a$gdK:p%uDuEuFuQuWuXuuuuuuvvŶt\A)\/h{hC5;@B*CJaJmH phsH 5h{hVf56;@B*CJ]aJmH phsH /h{hVf5;@B*CJaJmH phsH  h hU],@CJaJmH sH  h.hBS@CJaJmH sH  h hU],@CJaJmH sH hBS5@CJaJmH sH hU],5@CJaJmH sH hU],@CJaJmH sH h[K@CJaJmH sH hj@CJaJmH sH  h h[K@CJaJmH sH vvvvvvv&v'v)v1v4v>v?vAvBvQv{vvvvyλxh[hF)hChVf@B*CJaJmH phsH hU?6@CJ\aJhChVf6@CJ\aJhChC6@CJ\aJ!hCh{C@B*CJaJph!h{Ch{C@B*CJaJph!hChVf@B*CJaJph$hU],h{C>*@B*CJaJph$hU],hVf>*@B*CJaJph;hChVf5>*@B*CJOJ QJ ^J aJmH phsH yyyyyPzWzXz\z]zizjzwzxzzzzzzzzzzʾ~fQfQfQfQfQfQf9.hU],h5@CJH*OJQJaJmHsH(hU],hm@CJOJQJaJmHsH.hU],hm5@CJH*OJQJaJmHsH.hU],hm>*@CJH*OJQJaJmHsH+hU],hm>*@CJOJQJaJmHsH#hU],hm5@CJOJQJaJhjB*CJaJph hU],hU],@CJaJmH sH #hU],@B*CJaJmH phsH #hVf@B*CJaJmH phsH zzzz!{"{${j{~{{{{|||}9}~ӾvbP?.? hU],h3T@CJOJQJaJ hU],hm@CJOJQJaJ#hU],hm5@CJOJQJaJ&hU],hm56@CJOJQJaJhU?6@CJOJQJaJ)hU],hm56@CJH*OJQJaJ#hU],h6@CJOJQJaJ#hU],hm6@CJOJQJaJ(hU],hC@CJOJQJaJmHsH(hU],hm@CJOJQJaJmHsH.hU],hm5@CJH*OJQJaJmHsHz||~؁c56Ãă89$d]^a$gd7$d]a$gd7$d]a$gdI$d]a$gdU],$d7$8$H$]a$gdU],$d]^a$gdU],~~~ׁ؁*+XYbc56?CELM}ȶȥȥȥȔȃqbSbB h.hBS@CJaJmH sH hU],5@CJaJmH sH hBS5@CJaJmH sH #hU],hU],5@CJaJmH sH  hU],hU],@CJaJmH sH  hU],h@CJaJmH sH  hU],hI@CJaJmH sH #hU],hm6@CJaJmH sH  hU],hm@CJaJmH sH #hU],hm5@CJaJmH sH (hU],hm@CJOJQJaJmH sH }~ƒÃẵσӃۃރ߃ѽ{m`Sm`Fm`6h7hm6@CJH*aJh7hC@CJaJh7h3T@CJaJh7hm@CJaJh7hm@CJH*aJh7hC>*@CJaJh7hm>*@CJaJ#h7hC>*@CJaJmH sH &h7hC5;@CJaJmH sH &h7hm5;@CJaJmH sH hjB*CJaJmH phsH  hU],hU],@CJaJmH sH hU?@CJaJmH sH  `aքdo789KL}񴣑o^^L^; h.hBS@CJaJmH sH #h7h75@CJaJmH sH  h7h7@CJaJmH sH  h7h3T@CJaJmH sH  h7h@CJaJmH sH #h7hm@CJ\aJmH sH  h7hm@CJaJmH sH  h7hC@CJaJmH sH h7h3T6@CJaJh7hm6@CJH*aJh7hC6@CJaJh7hm6@CJaJ9~эҍ\5ߝ./ʡD $]a$gdU? $]a$gdK:$7$8$H$]a$gdK:$d7$8$H$]a$gdK:$d]a$gd7}~ЍэҍՍݍލ !Ҽxjj\jj\jj\jj\jMhEhm6CJH*\aJh{Ch{C@CJ\aJh{Chm@CJ\aJhEMh{C>*@CJ\aJhEMhm>*@CJ\aJh{Chm@CJH*\aJ&hjhE@CJH*\aJmH sH +hEhm;CJOJQJ^JaJmH sH %hEhm5;CJ\aJmH sH hjCJaJmH sH hEh7CJaJmH sH !\`?@[wx345JȖɖؖ\]`agôØ|ôpdXLXhEMCJaJmH sH h{CCJaJmH sH hCJaJmH sH hCJaJmH sH hvCJaJmH sH hmhmCJH*aJmH sH hmhmCJ\aJmH sH hECJaJmH sH hmhmCJaJmH sH "hmhm5CJ\aJmH sH hmhm5CJ\aJhEhm6CJH*\aJhEhm6CJ\aJghjklmstϗЗߛ,{囋囋vj^jO@hBS5@CJaJmH sH hv5@CJaJmH sH hmCJaJmH sH hvCJaJmH sH )hmhm0JB*CJaJmH phsH hmhmCJ\aJmH sH "hmhm5CJ\aJmH sH hmhmCJH*aJmH sH hCJaJmH sH hEMCJaJmH sH hmhmCJH*aJmH sH hmhmCJaJmH sH h{CCJaJmH sH ޝߝ-./23Ʋl^lN>Nl0hvh{C>*@CJaJhvh{C>*@CJ\aJhvhm>*@CJ\aJhvhm>*@CJaJ$jhvhm>*@CJUaJh{Chm@CJH*aJ hEhm@CJaJmH sH &hEhE5;@CJaJmH sH &hEhm5;@CJaJmH sH hjCJaJmH sH hvCJaJmH sH  h.hBS@CJaJmH sH  h hv@CJaJmH sH נؠšơǡȡɡʡ͡ DԹԹƫԹ}m\ hEhm@CJaJmH sH hEhm6@CJ\aJ!hEhm6@CJH*\aJhvhm6CJ\aJhvhm6CJH*\aJh{Ch{C@CJ\aJh{Ch{C@CJaJh{Chm@CJ\aJ!jh{Chm@CJUaJh{Chm@CJH*aJh{Chm@CJaJ 567аnZF2&hN+hF\@CJH*\aJmH sH &hN+h{C>*@CJ\aJmH sH &hN+hF\>*@CJ\aJmH sH &hN+hF\5@CJ\aJmH sH hjCJaJmH sH  hvhv@CJaJmH sH  h.hBS@CJaJmH sH  h hv@CJaJmH sH hv5@CJaJmH sH hBS5@CJaJmH sH hv@CJaJhm@CJaJhEhm@CJaJ67&Pt"Z\$ d]a$gdN+$ dd]a$gdN+$ d]a$gdU? $]a$gdU?¨èҨӨ֨ب٨ !#qs;tcQc#hN+hF\@CJH*aJmH sH  hN+hF\@CJaJmH sH &hN+hF\6@CJ]aJmH sH ,hN+hF\56@CJ\]aJmH sH &hN+hF\6@CJ]aJmH sH &hN+hF\5@CJ\aJmH sH &hN+hF\@CJH*\aJmH sH #hN+h{C@CJ\aJmH sH #hN+hF\@CJ\aJmH sH np:nrt{<>@P@r޻ީޗޅޗwj\jQBhbthF\CJaJmH sH hbthF\CJaJhN+hF\5@CJaJhN+hF\@CJaJhN+hF\6@CJaJ#hN+hF\6@CJaJmH sH #hN+hF\5@CJaJmH sH #hN+hF\@CJH*aJmH sH #hN+hF\@CJ\aJmH sH  hN+h@CJaJmH sH  hN+hF\@CJaJmH sH  hN+h3T@CJaJmH sH rxX\t">@FXZ\rt࿭p_N=, hN+hj@CJaJmH sH  hN+hN+@CJaJmH sH  h.hBS@CJaJmH sH  h hN+@CJaJmH sH hN+5@CJaJmH sH hN+@CJaJmH sH hF\@CJaJmH sH #hN+hF\5@CJaJmH sH #hN+hF\6@CJaJmH sH  hN+hF\@CJaJmH sH hbthF\5CJaJmH sH hbthF\CJaJmH sH hbthF\CJH*aJmH sH cdqr"*+,-OPgh$d]a$gd $d]a$gdK:$  d]a$gdbt$d]a$gdbt$d]a$gdN+cdoq}~+,Qpqr!ͿxgV hbthbt@CJaJmH sH  hbth3T@CJaJmH sH  hbthv@CJaJmH sH hU?6@CJaJhbthv6@CJaJhbthv6@CJH*aJhbthv@CJaJhbthv@CJH*aJhbthv>*@CJaJ hbthv@CJaJmH sH &hbthv5;@CJaJmH sH !!%)0)*+,-1ﻪ|hSB4h hsU~>*@CJaJ h hsU~@CJaJmH sH (h hsU~@CJaJmH nHsH tH&h hsU~5;@CJaJmH sH #h hsU~5@CJaJmH sH hj@CJaJmH sH hbt@CJaJmH sH  hbthbt@CJaJmH sH  hbthsU~@CJaJmH sH #hbthv6@CJaJmH sH  hbthv@CJaJmH sH  hbthv@CJaJmH sH `aMN./ооооЪn[n[$jh hsU~6@CJUaJ#h hsU~6@CJaJmH sH &h hsU~6@CJH*aJmH sH *h hsU~6@CJH*PJ aJmH sH 'h hsU~6@CJPJ aJmH sH #h hsU~6@CJaJmH sH &h hsU~6@CJH*aJmH sH h hsU~@CJaJh hsU~@CJH*aJ"LNOPl|GfڵȦȓp[F5 h h @CJaJmH sH (h hsU~@CJOJQJaJmH sH (h hsU~@CJaJmH nH sH tH #h hsU~@CJ\aJmH sH  h hsU~@CJaJmH sH $h hsU~@CJPJ aJmH sH hU?6@CJaJmH sH $j.Fh hsU~6@CJUaJ#h hsU~6@CJaJmH sH $jh hsU~6@CJUaJ$jwDh hsU~6@CJUaJfgh >?ڳmXD2D#hhsU~5@CJaJmH sH &hhsU~5;@CJaJmH sH )h hj5;@CJ\aJmH sH )h h @B*CJaJmH phsH  h.hBS@CJaJmH sH  h h @CJaJmH sH hBS5@CJaJmH sH #h h 5@CJaJmH sH )h hsU~@B*CJaJmH phsH )h h @B*CJaJmH phsH  h hsU~@CJaJmH sH w&de*+gh$d]a$gdK:d7$8$H$]gd d]gd Sd]gd$d]a$gd$d]a$gd ,-mt]ǹo]o]]L]] hht'@CJaJmH sH #hhsU~6@CJaJmH sH &hhsU~6@CJH*aJmH sH hh{C@CJaJhhsU~@CJaJhhsU~@CJH*aJhh{C>*@CJaJhhsU~>*@CJaJ hhsU~@CJaJmH sH &hhsU~5;@CJaJmH sH &hhQ5;@CJaJmH sH ]^|~vxAWXZٶ٨مsمsٗaRA hh@CJaJmH sH hBS5@CJaJmH sH #hh5@CJaJmH sH #hhsU~5@CJaJmH sH #hhsU~6@CJaJmH sH  hh@CJaJmH sH hsU~@CJaJmH sH h@CJaJmH sH (hhsU~@CJOJQJaJmH sH  hhsU~@CJaJmH sH )hhsU~@B*CJaJmH phsH )*+ghmpxy{&'̺}r}r}r}rrbRhmht'5CJaJmH sH hmht'6CJaJmH sH ht'hCJaJhhCJaJht'ht'CJaJhym$h{C>*CJaJhym$ht'>*CJaJhmht'CJaJmH sH "ht'ht'5;CJaJmH sH #hj5;@CJ\aJmH sH  hh@CJaJmH sH  h.hBS@CJaJmH sH h&' &?hiMu$d]a$gdym$$d]a$gdK:$d]^a$gdK:$d]a$gdK:'? "RMOPT%&'1KL_`ghiʼܬ|o]]]" jnhmht'CJaJmH sH ht'5CJaJmH sH ht'@CJaJmH sH %hmht'B*CJaJmH phsH hmht'CJaJmH sH hmht'5CJaJmH sH hQ@CJaJmH sH #hht'6@CJaJmH sH  hht'@CJaJmH sH #hht'5@CJaJmH sH ipqr>?]ೡ~nbVG6 h he{;@CJaJmH sH he{;5@CJaJmH sH he{;CJaJmH sH ht'CJaJmH sH hmht'5CJaJmH sH hmht'6mH sH hmht'mH sH hmht'5mH sH "hmht'5>*CJaJmHsHhJ5>*CJaJmHsHhU?CJaJmH sH " jnhmht'CJaJmH sH hmht'CJaJmH sH hmht'6CJaJmH sH HghiuθududM;#hQhQ6@CJaJmH sH ,hQhk= 6@B*CJaJmH phsH  hA6.hk= 6B*CJaJphhA6.hk= B*CJaJph hym$hk= >*B*CJaJphhk= B*CJaJmH phsH %hk= 5;B*CJaJmH phsH +hk= hk= 5;B*CJaJmH phsH "hj5B*CJaJmH phsH he{;he{;CJaJmH sH  h.hBS@CJaJmH sH  )<MUu}ҭҘu`u`u`u`uI-hA6.hk= B*CJOJ QJ aJmH phsH (hA6.hk= 5B*CJaJmH phsH %hA6.hk= B*CJaJmH phsH hk= B*CJaJmH phsH )hQhk= @B*CJaJmH phsH $hQhk= 6@B*CJaJph#hQhQ6@CJaJmH sH ,hQhk= 6@B*CJaJmH phsH ,hQhQ6@B*CJaJmH phsH u "#/78$d]a$gda$d]a$gda$d1$7$8$H$]a$gda$d1$7$8$H$]a$gdym$$d]a$gdym$ ȷm[K9",h{hC:6@B*CJaJmH phsH "h{hC:>*@CJ\_HaJh{hC:@CJ\_HaJ"hahC:>*@CJ\_HaJ'h,%hC:@CJ\_HaJmH sH -hC:hC:5;@CJ\_HaJmH sH hym$@CJaJmH sH  h.hBS@CJaJmH sH  h hym$@CJaJmH sH hym$5@CJaJmH sH 'hym$B*CJOJ QJ aJmH phsH 'hjB*CJOJ QJ aJmH phsH  !"#/7ռrrarP9-h{hC:5>*@CJOJQJ\_HaJ h{hC:@CJaJmH sH  h{hC:@CJaJmH sH -h{hC:5>*@CJ\_HaJmH sH hQ@CJ_HaJmH sH $h{hC:@CJ_HaJmH sH hC:@CJ_HaJmH sH 0h{hC:6@B*CJ_HaJmH phsH ,h{hC:6@B*CJaJmH phsH &h6@B*CJaJmH phsH 678οq^I^9*hZ"!hC:CJaJmH sH hZ"!hC:;CJaJmH sH (hZ"!hC:56;CJ\aJmH sH %hZ"!hC:5;CJ\aJmH sH hjB*CJaJmH phsH  h{hC:@CJOJQJaJh.hBS@CJaJ h ha@CJaJmH sH hZ"!5@CJaJmH sH hBS5@CJaJmH sH ha5@CJaJmH sH ha@CJOJQJ_HaJ$h{hC:@CJOJQJ_HaJ8$de ~    4634wxyz$(d](a$gd5eV$d7$8$H$]a$gdK:$d7$8$H$]a$gdZ"!$7$8$H$]a$gdZ"! $]a$gdZ"!  "#$*dmn_fx}h}T}'hZ"!hC:6CJaJmH nHsH tH(hZ"!hC:CJPJ aJmH nHsH tH$hZ"!hC:CJaJmH nHsH tHhZ"!hC:CJaJmH sH "hZ"!hC:5>*CJaJmH sH hZ"!hC:6CJaJmH sH hZ"!hQ6CJaJmH sH hZ"!hCJaJhZ"!hC:CJaJhZ"!h>*CJaJhZ"!hC:>*CJaJx=RPQw      z | ȳȢȢ׳|l]hZ"!hfCJaJmH sH hZ"!CJaJmH nHsH tHhZ"!hC:CJH*aJmH sH +hZ"!hC:CJH*PJ aJmH nHsH tH hZ"!hC:CJPJ aJmH sH (hZ"!hC:CJPJ aJmH nHsH tHhZ"!hC:CJaJmH sH $hZ"!hC:CJaJmH nHsH tH*hZ"!hC:5>*CJaJmH nHsH tH| ~           246@Fⴥ{hVH:h?hv>*CJ\aJh?h>T>*CJ\aJ"hZ"!h>T5CJ\aJmH sH %hZ"!hv5;CJ\aJmH sH -hZ"!h>T5;CJOJQJ\aJmH sH %hZ"!h>T5;CJ\aJmH sH hZ"!hZ"!CJaJmH sH  h.hBS@CJaJmH sH hBS5CJaJmH sH hZ"!hZ"!5CJaJmH sH hZ"!hZ"!CJaJmH sH hZ"!hT3 CJaJmH sH FHZ`bpvx "(*>DFZ`bv|~>@濱%hZ"!h>T6CJH*\aJmH sH he6CJ\aJhZ"!h>T6CJ\aJhZ"!h>T6CJH*\aJhZ"!heCJ\aJhZ"!hvCJ\aJhZ"!h>TCJ\aJhZ"!h>TCJH*\aJ2234dqy "$24WvƶvvbbbbbRhZ"!hR4CJ\aJmH sH 'hZ"!h>TCJOJQJ\aJmH sH hZ"!hgCJ\aJmH sH "hZ"!h>T6CJ\aJmH sH hZ"!h>TCJaJmH sH hZ"!hgCJaJmH sH hZ"!h>TCJ\aJmH sH "hZ"!h>T5CJ\aJmH sH %hZ"!h>T56CJ\aJmH sH (hZ"!h>T6B* CJaJmH ph%sH vwyz#$-.01?@KLWXgjuvjT@T@T@T@T@T@T@T'hxh5eV@CJPJ\aJnHtH*hxh5eV@CJH*PJ\aJnHtH*hxh5eV>*@CJPJ\aJnHtH/hxh5eV@CJPJ\aJmH nHsH tH&hxhe5;@CJaJmH sH &hxh5eV5;@CJaJmH sH #hxh5eV5@CJaJmH sH hT&CJ\aJmH sH hZ"!hZ"!CJ\aJmH sH hZ"!hT&CJ\aJmH sH @Ah 1""2$3$o$p$$T&U&S')F.4444.5/5$a$gd^$a$gd^$(d](a$gd5eV$(d](a$gd5eVvwx?@s_M#hxh5eV6@CJaJmH sH 'hxh5eV0J6@CJaJmH sH *hxh5eV0J6@CJH*aJmH sH 'hxh5eV0J6@CJaJmH sH #hxh5eV6@CJaJmH sH #hxh5eV6@CJaJmH sH &hxh5eV6@CJH*aJmH sH *hxh5eV@CJH*PJ\aJnHtH'hxh5eV@CJPJ\aJnHtH@AHg  !!"0"""0$1$2$3$o$p$x${$|$ղաo`RG9h_h^@CJH*aJh^>*@CJaJh_h^>*@CJaJhvh^CJaJmH sH h^h^5CJaJmH sH  h?hY@CJaJmH sH  hxhY@CJaJmH sH  hxhds@CJaJmH sH #hxh5eV6@CJaJmH sH  hxhe@CJaJmH sH  hxh5eV@CJaJmH sH 2hxh5eV@CJH*PJ\aJmH nHsH tH|$$$$$$$$$$$$$$$$$$$$$$$$$$ % %t%%%4&S&T&U&w,x,ɹɹ{l\hvh^CJH*aJmH sH hvh^CJaJmH sH h^h^CJaJmH sH h^h^6CJaJmH sH "h^h^6CJH*aJmH sH h^6CJaJmH sH hvh^6CJaJmH sH "hvh^6CJH*aJmH sH h_h^@CJH*aJh^@CJaJh_h^@CJaJ$x,,,F.M...2283934444444.5/5356575>5񤓁rdYK>h_h^@CJaJh_h^@CJH*aJh^>*@CJaJh_h^>*@CJaJhph^CJaJmH sH #h^h^5@CJaJmH sH  h/hT3 @CJaJmH sH  h/h/@CJaJmH sH hvh^CJH*aJmH sH hvh^CJH*aJmH sH hvh^6CJaJmH sH h^CJaJmH sH hvh^CJaJmH sH >5A5B5L5O5P5W5Z5[5b5e5f5m5p5q5z5}5~5555555555/6P6Q6666R;S;L<T<[=\===~??BBɹɹɹqqhph^CJH*aJmH sH h^CJaJmH sH hph^CJH*aJmH sH hph^CJaJmH sH h^6CJaJmH sH hph^6CJaJmH sH "hph^6CJH*aJmH sH h_h^@CJaJh_h^@CJH*aJh^@CJaJ,/55669;>BBBBiCjCDwExEG}L(RUW$ o#d]a$gdd $da$gdd$d7$8$H$a$gdd$d7$8$H$]a$gdK:$a$gd_$a$gd^BBBBBBC'ChCiCjCrCsCvCCCé{gWG9+9hwh_@CJ\aJhwh_@CJH*aJhwh_>*@CJH*aJhwh_>*@CJ\aJ&hwh_>*@CJ\aJmH sH &hDmh_5;@CJaJmH sH 2hDmhw5;@CJPJaJmH nHsH tH2hDmh_5;@CJPJaJmH nHsH tHh_CJ\aJmH sH  h/h/@CJaJmH sH hph^CJH*aJmH sH hph^CJaJmH sH CCCCCCPDQDYDZD[D\DgDhDiDjDkDqDrDvDDDDDDDD±•„رs[E[+hwh_6@CJOJQJaJmHsH.hwh_6@CJH*OJQJaJmHsH!hwh_5>*@CJ\aJ!hwhw@B*CJaJph7hwh_0J>*@B*CJOJQJ\^JaJph!hwh_@B*CJaJph*jhwh_@B*CJUaJphhwh_@CJH*aJhwhw@CJaJhwh_@CJaJDDDDDEEpEqEwE~GGGGGHHIIII$J%J鶟wfKf9ff9#hwh_@CJH*aJmH sH 5hwh_@B*CJPJaJmH nHph# sH tH hwh_@CJaJmH sH  hwh_@CJaJmH sH ,hwh_@CJPJaJmH nHsH tH,hwh_6@B*CJOJQJaJph4hwh_6@B*CJOJQJaJmHphsH.hwh_6@CJH*OJQJaJmHsH+hwh_6@CJOJQJaJmHsH%JCJDJJJ|L~L`MNNNR'R(RuTTUVVWWWWWWϸ︣~l[Lhw@CJ\aJmH sH  h.hBS@CJaJmH sH #hwh_5@CJaJmH sH  hdh_@CJaJmH sH &he@CJPJaJmH nHsH tH)hwh_@B*CJaJmH phsH ,hwh_@CJPJaJmH nHsH tHhd@CJaJmH sH #hwh_@CJH*aJmH sH  hwh_@CJaJmH sH WWWWWWY Z Z]_dpsttttt u$a$gd/$d7$8$H$]a$gdw $7$8$H$a$gd/ $ o#a$gd/$a$gd/$d7$8$H$]a$gdd $da$gdd$hd^ha$gddWWWXX XXXX$X'X(X*X+XXXXXXXXX̾papGp8a8h/hf2B*CJaJph3h/hw0J>*B*CJOJQJ\^JaJphh/hwB*CJaJph&jh/hwB*CJUaJphh/hf2CJaJh/hwCJaJh/hf2CJ\aJh/hwCJ\aJh/hwCJH*aJh/hw>*CJH*aJh/hf2>*CJ\aJ"h/hw>*CJ\aJmH sH %h/hw5;CJ\aJmH sH XXXYYY YYYYYY6Y7YIYJYYYZYYYZZ Z Z4\θvaL(h/hwCJPJaJmH nHsH tH(h/hZ\aCJPJaJmH nHsH tH(h/hw6B*CJOJQJaJph0h/hw6B*CJOJQJaJmHphsH'h/hw6CJOJQJaJmHsH*h/hw6CJH*OJQJaJmHsHh/hw5>*CJ\aJh/hf2CJaJh/hwCJaJh/hwCJH*aJ4\j\\\\\]]]^^^^^._______M`]`_`|`~``````aaܺͨuueuuuuYh/CJaJmH sH h/hwCJH*aJmH sH h/hwCJH*aJmH sH h/hwCJaJmH sH &h/hw0J5CJH*aJmH sH #h/hw0J5CJaJmH sH %h/hwB*CJaJmH phsH h/hwCJaJmH sH (h/hwCJPJaJmH nHsH tHh/hwCJaJmH sH  aahajaaaa"b$b(b1b[bbc5c6cccccdFdSdddeeZe[efBffg@hܽܜ܃܃n^^܃h/hwCJH*aJmH sH (hehwCJPJaJmH nHsH tH1h/hwB*CJPJaJmH nHphsH tHh/CJaJmH sH (h/hwCJPJaJmH nHsH tHh/hwCJaJmH sH h/hwCJH*aJmH sH h/hwCJaJmH sH (h/hwCJPJaJmH nHsH tH!@hIhMhUhFi\i?jjjjjj(k)kkkkkkkkk*l+lqlrlmmWmXmmppqtttttӱӱӀqah/hw5CJaJmH sH h/hwCJaJmH sH U"h/hw6CJ]aJmH sH h/CJH*aJmH sH h/hwCJH*aJmH sH h/hwCJaJmH sH %h/hwB*CJaJmH phsH (h/hwCJPJaJmH nHsH tH.h/hw6CJPJ]aJmH nHsH tH%Concluding, in the present finding we discovered a new site of action for ECs in the control of energy metabolism. Guido Carmela is a PhD student from the University of Calabria. STUDIES ON BIOCHEMICAL AND CELLULAR PROPERTIES OF PROTEASE NEXIN-1 IN GLIOBLASTOMA AND NEUROBLASTOMA CELLS Adornetto A.1, Parafati M.1, Pietropaolo C.2 and Arcone R.1 1Dept. of Pharmaceutical Science, University of Catanzaro Magna Graecia, Italy; 2Dept. of Biochemistry and Medical Biotechnology, University of Naples Federico II, Italy Protease nexin-1 (PN1) is a physiological thrombin inhibitor, which plays a role in the modulation of neuronal survival and plasticity in brain. The aim of our study was to investigate biochemical properties and role of PN1 in nerve cell proliferation and morphological differentiation by using an in vitro system model. Experimental Recombinant PN1 (rPN1) was produced in a T7 based prokaryotic expression system, refolded in vitro and purified by Heparin-Sepharose affinity chromatography. Cells were maintained at 37 C in DMEM with 10% fetal bovine serum; Nerve Growth Factor (NGF, 50 ng/ml) treatments were performed in serum-free medium. Protein analysis was performed by SDS-PAGE and western blotting using anti-sera against PN1 followed by an HRP-anti-rabbit IgG and enhanced chemioluminescence. Results We produced a biologically active rPN1 able to induce neurite outgrowth in neuroblastoma cells (NB2A) by thrombin inhibition. We also produced a polyclonal PN1 anti-serum that specifically recognized PN1 expressed in oligodendrocytes [1] and immunoprecipitated the PN1/Thr stable complex. To study a possible modulation of NGF activity by PN1, we performed protein analysis on serum-free medium conditioned by nerve cells in absence and in presence of NGF. We observed secreted PN1 (45 kD Mr) in the medium from control and NGF treated glioblastoma (C6, Lipari, A172), astrocytoma (U373) and neuroblastoma (SH-SY5Y, NB2A) cells. In addition, an anti-PN1 immunoreactive protein (about 58 kD Mr) was detected only in NGF treated cells. It is possible that the PN1-like protein lacks an exposed heparin-binding site since it was eluted in the flow-through of Heparin-Sepharose column. Conclusions These preliminary data raise the possibility that a PN1-like protein is involved in NGF induced differentiation perhaps as neurotrophin modulator or as inhibitor of NGF induced protease(s). The biochemical purification and characterization of the PN1-like protein(s) are in progress. Reference [1] Arcone R, et al., 2009, Biochim. Biophys. Acta. 1794: 602-14. INDEX OF AUTHORS Amantea D.P15Adornetto A.P26And S.P01; P02; P03; P04; P24; P25Antonucci M.T.P11Aprigliano S.P20Aquila S.P24; P25Arcone R.P26Avena P.P03Bagetta G.P05; P14; P15; P17; P18Bagetta V.P21Barone I.P21Bergamaschi D.P09Berliocchi L.P05; P14Bernardi G. P21Bifulco M.P24; P25Blasi F.P16Bolacchi F.P19Bonofiglio D.P04Bonofiglio R.P10; P11Borgese N.P08Bruno R.P03Bulotta S.P08Calabresi P.P21Capparelli C.P01Carito V.P10Caroleo M.C.P10; P11Casaburi I.P03Catalano S.P02; P03Cattaneo M.G.P08Cavaliere F.P17; P18Cavone L.P16Celia C.P22; P23Cerulli A.P19Cerullo A.P08Ceruti M.P23Chiarugi A.P16 Ciociaro A.P05Cione E.P04; P06; P07 Citraro R.P22Colica C.P20Corasaniti M.T.P05; P14; P15; P17; P18Cosco D.P22; P23Costa N.P23Di Filippo M.P21 Di Luca M.P21Faraco G.P16Federici M.P12Floris R.P19Fratto V.P14Fresta M.P22; P23Garaci F.G.P19Gardoni F.P21Genchi G.P04; P06; P07; P09Ghiglieri V.P21Giordano C.P02Giustizieri M.P12Gu G.P02Guido C.P24; P25Iannone M.P13; P22Ierardi M.V.P08Janda E.P13; P20Laezza C.P24; P25Lanzino M.P01; P03Ledonne A.P12Levato A.P14Maida S.P05Maiuolo J.P08Malivindi R.P02Mancuso D.P10; P11Maretta A.P20Melis M.P19 Mercuri N.B.P12; P14Molinaro R.P22; P23 Mollace V.P13; P20Morelli C.P01; P03Moroni F.P16Morrone L.A.P17; P18Muscoli C.P13; P20Nucci C.P19Paill V.P21Palma E.P20Panza S.P02Paolino D.P22; P23Parafati M.P26Perri M.P06; P07Perrotta I.P24; P25Petrelli F.P15Picconi B.P21Pietropaolo C.P26Pingitore A.P06; P07Pittelli M.P16Ragusa S.P05Rocco F.P23Rotiroti D.P05; P20Russo A.P10Russo E.P22Russo R.P05; P14; P17; P18Sacco I.P13; P20Sakurada S.P14Sakurada T.P14Santoro A.P24; P25Scalzo A.P13Sculco F.P20Senatore V.P09Sgobio C.P21Simonetti G.P19 Sisci D.P01; P03Span A.P19Spedding M.P20Vadal N.P20 Varano G.P.P18Ventrice D.P13; P20Vicentini L.M.P08Vilardi E.P06; P07Visalli V.P13; P20Vizza D.P04Vizza E.P13Vono M.P22; P23 __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________     PAGE   PAGE XI P01  PAGE - 38 - P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26  PAGE viii tttt!u-u.u0u8u;uuIuLuMuRuXuYu[u\u]u^uѿykZkZkB/h/h/6@B*CJH*aJmH phsH !h/h/@B*CJaJphh/@B*CJaJphh/h/@CJH*aJh/h/@CJaJh/@CJaJ$h/h/@B*CJH*aJphhh/>*@CJaJ#h/h/5@CJaJmH sH h/@CJ\aJmH sH h/hwCJaJmH sH  h.hBS@CJaJmH sH  u!u]u v vMw0y|}}~ ~!~"~#~$~%~&~'~(~)~*~+~,~-~$d7$8$H$]a$gdK:$7$8$H$]a$gd/$a$gd/^uuu v6w>wLwMwYwww0y7y||T}t}}}}~ ~!~"~5~F~G~J~K~IJIJĤIJētf[WLhih @mH sH h @hD5\mH sH hDhD5\mH sH hDCJ\aJmH sH #h/hD@CJ\aJmH sH  h/h/@CJaJmH sH h/@CJaJmH sH #h/h/5@CJaJmH sH  h/h/@CJaJmH sH /h/h/6@B*CJH*aJmH phsH #h/h/6@CJaJmH sH -~.~/~0~1~2~3~4~5~6~G~V~Z~$d$7$8$H$If]a$gd$3 $IfgdG=B$d7$8$H$]a$gdD$d7$8$H$]a$gdK: Z~[~h~l~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdG$$Ifl0 E E t0644 laK~[~l~~~~~~~-Zkl ׀"$3l~#BSт|~-J^_ö́7Dۅ?@h @mH sH h @h @@mH sH hih @@mH sH Vl~m~u~~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdhH$$Ifl0 E E t0644 la~~~~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdH$$Ifl0 E E t0644 la~~~~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdpI$$Ifl0 E E t0644 la~~~~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdI$$Ifl0 E E t0644 la~~~~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdxJ$$Ifl0 E E t0644 la~~~~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdJ$$Ifl0 E E t0644 la~~~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdK$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdL$$Ifl0 E E t0644 la)-lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdL$$Ifl0 E E t0644 la-.=AlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd M$$Ifl0 E E t0644 laABPYlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdM$$Ifl0 E E t0644 laYZgklT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdN$$Ifl0 E E t0644 laklwlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdN$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdO$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdO$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd$P$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdP$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd,Q$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdQ$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd4R$$Ifl0 E E t0644 la lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdR$$Ifl0 E E t0644 la  lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdBlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd|[$$Ifl0 E E t0644 laBCSklT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd\$$Ifl0 E E t0644 laklu~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd\$$Ifl0 E E t0644 la~lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd]$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd]$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd^$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd^$$Ifl0 E E t0644 láЁlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd_$$Ifl0 E E t0644 laЁсہ߁lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd_$$Ifl0 E E t0644 la߁lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd `$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd`$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd(a$$Ifl0 E E t0644 la#lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkda$$Ifl0 E E t0644 la#$.AlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd0b$$Ifl0 E E t0644 laABOSlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdb$$Ifl0 E E t0644 laST`dlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd8c$$Ifl0 E E t0644 ladetxlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdc$$Ifl0 E E t0644 laxylT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd@d$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdd$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdHe$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkde$$Ifl0 E E t0644 laǂЂlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdPf$$Ifl0 E E t0644 laЂтۂlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdf$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdXg$$Ifl0 E E t0644 la lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdg$$Ifl0 E E t0644 la  lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd`h$$Ifl0 E E t0644 la"&lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdh$$Ifl0 E E t0644 la&'26lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdhi$$Ifl0 E E t0644 la67DHlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdi$$Ifl0 E E t0644 laHIT]lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdpj$$Ifl0 E E t0644 la]^imlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdj$$Ifl0 E E t0644 lamnw{lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdxk$$Ifl0 E E t0644 la{|~jR$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdk$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdl$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdm$$Ifl0 E E t0644 lãՃlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdm$$Ifl0 E E t0644 laՃփlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd n$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdn$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdo$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdo$$Ifl0 E E t0644 la)-lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdp$$Ifl0 E E t0644 la-.7;lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdp$$Ifl0 E E t0644 la;<EIlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd$q$$Ifl0 E E t0644 laIJU^lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdq$$Ifl0 E E t0644 la^_kolT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd,r$$Ifl0 E E t0644 laopylT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdr$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd4s$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkds$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkdlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd$$Ifl0 E E t0644 la>?LPlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd$$Ifl0 E E t0644 laPQ]flT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd$$Ifl0 E E t0644 lafgvzlT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd $$Ifl0 E E t0644 laz{lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd($$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd$$Ifl0 E E t0644 lalT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd0$$Ifl0 E E t0644 laɆ҆lT$d$7$8$H$If]a$gd$3$d$7$8$H$If]a$gdizkd$$Ifl0 E E t0644 la@҆ӆÕĕŕǕȕʕ˕͕ΕЕѕוٕؕݕޕƱƼƱƼƱƪ hDhhMC0JmHnHuh h0Jjh0JUh% jh% U h{h: h A@h @@mH sH hih @@mH sH )҆ӆԆLĕƕǕɕʕq^^^^\\\\$d7$8$H$]a$gd A$d7$8$H$]a$gd Azkd8$$Ifl0 E E t0644 la ʕ͕̕ϕЕٕڕەܕݕ    zgd0h`hgdu%q &`#$gdu%q !&',-2389>?DEJKPQVW\]bchinot  zgd0tuz{$d7$8$H$]a$gd AgdD  zgd0K1h0:p1[= /!n"7#n$n% P0 [00P1h0:pu%q= /!n"7#n$n% P0 DpK1h0:p1[= /!n"7#n$n% P0 [090P1h0:pu%q= /!n"7#n$n% P0 DpN091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 N091h0:pp= /!n"7#n$n% P0 [090P1h0:pu%q= /!n"7#n$n% P0 Dp[00P1h0:pD= /!n"7#n$n% P0 DpjDdm -8  J-Aimage0033"`bmqcY`jDnbmqcY`PNG  IHDR#NtEXtSoftwareMicrosoft Office5qPLTE333333333333"""ff3f3f33f3ffffwwwfffff333fffff̙̙̪fff̙f̙̙̙fffstRNS@f pHYs@@bCc[ cmPPJCmp0712HsIDATXGX w0V|TsQZq+$ӕLn}Bםr5pRc߭;z|{|@4/:6_nK'z} 1 r(#42B"!0ݗILś[ 4UtA**@i&5u|]+.{Qװ^]P_bSbٳE:!)n0o0% 3E#rSyvҥG 7 20zapީ$ꤳjc6giD,M_Z_rV/KG-(#UVDWzF-@?1^)TrgcSk6 KcSlicƫ@C=ʳ'Bm"$&kL[䗚m 1\ z&G 87I:*cQ6{QD#fRf%ʁPbF4'sC!,ɘ'*wDs:yl";!\|"S"xfErB-{p8bۄ5UvVLYV9) 뤕RڞzJ{c`(Cb2̤ͥxW{w!z4H2QjW[fȊaժMʚJ`o zׇkEFIVc2_Ҏ'E }OU$ <x0zqxU|7E .\/#b5Gd0I=|o0 M 9'rJ@a:ߡyܼ u98p0sveȋ=Tls}Gᩭl{ƢRf&Mm>R^R45:3\^7 9_~y; P|$GL3=Rz=K̫Nɯ QYAd2 tbt#}4PxzIENDB`o Dd'6ddd  C 2Amoneta_motto"`b G /f!' ʬ9lЇ}& kmD%>zXRYu@2;ā6Lb&1.tH=BAm+IA$Jnl-0 c~TeV`A9V>*d8g VD;Q5ϘJ{rntXWLs9NU{*<`P8h3uA}Є8#!$U}}mA%J˽RM2*ĺaɡ$b{_}VA0kB9,gqDLxTz$TPn ,RZ#b`yy"d)pلkZ#9) )rծTA*a Rt 7 Ê L%sL!P DQy ˜T2iux] ;|jTd9`+P (^R>[B|==Lb7&z L'N,սJvF04od5%0im BcLA3c$#Q'*aR 2kj}C GA5PNeKĐPCKPUF6o5&Ŋwd)W}t /~pPx[ݐR"y`-TM2+F_*Yӓ!eGNBٔ@:&Z N􄒯b'N>)RF=$8Vrl %'XyL1HxMy1H+]RYNCqDC0 0Hk,?y*j9)M]H4GѹT)uBbUL,?}L,: m +6PȆ숒ɔ{Hp掶v:˒:Nt?vd԰=+̃Cԉ4]gZKߡdGQZc򬮣r} +TI]Y0-w^TM=d5+F@=*seP{[TNDVv?Fk}S04'@e?ch7D0.Lop:2-;N_(SpHC7# D?9&!}O[o4GB;-0C:mkE\>O'JC_Du r ɬ}_LMc B~]Ÿcyewfzxi*AW( QK.kٽh.m`&5 ]UMkW8r, Enh;*ڒ =0c?@h5Тfv^L1$;5LHY=ԍf(l3'a&\%V>=.))\a)hw :}$Z7!S:c +(C@ 0f:0%n"f &D[]+zc[J9AvYJxj'x?tkV{\,;# k7m M$i`߆ղi %cQl!,B1΅n5@BMFjϓjռ`f I)0u5A$*>:]{)mWuudAm':jj(rWmyQs\6 c{=.F*mՀrI#4P#|Bp׉rF%jF8Γ?!5;&` ohv+vC1ڼ@EuWO [˄dxy4 X,pwk8vq?B`M4 #S= :E]p:~E5!~onμuNm:D:ђL`S]!@,{I 'k:83?Y]G? &c$y0OPsZ;<䞇Pj!D"7 tH.m<:jό0R7Vmi8UZcx)o#Ӂڣ [݂,ֵzJC0:%z$"5W2D \(g<y8x9k)kf}:VeXCFj #Ai%hO'o {'s($X<4|nXbi8цV.r^YGTH2I{7Yș*,[ |n?w̕Ps,)=۳Ǡ؝Eݹb𖖂q 5QdcɅe1S| ;mJ0z{97  %]bXp NE/]l"j?]>_m-"@ߪ Md4m ̭:,uZ?|S!~Gp^7:soK[IENDB`f DdZ  C (ALogosin"`R E-GJ#:_ F E-GJ#:_JFIF,,CC25"  /! "1#A$23Ba 1!125aqt"#374s ?1l^3Ʊ.Y\ھCk**/UU_DŝvILf8%8ΰBll:m Oq/ OIlw6s# wP~} ^~9ٶ^~&^Lܺ[xkQ:n63AsipPp>7N-ҹM2L{&jkUZYkN l$Dx{ sm+Zɚb\B \22>h`̔Hɍgg^aoXye`N]پϴ_UJLVɰ=Tcʆ=*y^A}:GJLױ|i͵X3'l M=m yGj_y< / }q`6x6rds\\`*+'gMfTZiK(uߛKyOw;RDplVt~4vM{bVkx*X}«ذ )_u.ꌧEj:%gTb}d ]cSOY>9S)KXNVͦU5V[v@X'( TDnA{b >-X?ȱGk.##4춟}NY u?Yqja{['adَS+͙")8T&DHШˆ l^su,bl㜓iEZ)n`ByU'Lowhoa\oĞuo%{K+`ǨF"Q]Z [S; 2IAEvLdLuۋO7'xJ[zPW3 I}P":\ն6Y_Ѩ, g뒙?iv6|".\!b3( i܇we74:^~o􁢧 Eԝr6H[]0LnsQ$"Pq#q7&寨pm;~t6 K/Oi6~XQh*mV *{6;50RDnudV/RE/[NGjvEgJ5EX" G~*Qj L@Ŕ~"Q1?tijֻU Yk`G =k|BQQS^9~_T]e˱}}FO>sodX^v#OV ¬:KzcuCUe6Op> c8o.qF-.\l%6&!M[ƈh>7?P=WOEɤ?+!%dz[>θO네UUxp^{ :8#Dd@ dZ  C (Aucadh_g"`R"TG}uuf"!F^"TG}uuJFIFddDuckyPAdobed      \    !1AQ"aq2#SBbv7R3s$WђC4t&g(!1AQqRa"2$BbS#C5r3%4 ?ƚ;ɺMG ^aq=:M}>Xaqwj:M}> Qk .G\wڎ_t`wBcwiG~{[ʹ[SjڍǺ6JۮV3voEAinm֜C!HRT e]LZ ޒ1[5Ri]2nE/gP^|kYcvt`B0!F#H;R)cə*4(Q]6s tlj9fl-28_r S|rLʟ~ۡU<@Æ+B$I[H>ϛEF;U\`.HR5 pH*v?X^otKZYKXIySTǒ9fDa&cgn,,ږpq+n3dgP* Mj'xEhU^ىa d mGeNNuSPxܓힲ32=UKZpo! -2 (EHX Ъs'(4*X ʽH:_jmN62ET5hDq^iQ'A?i,) p^sJ2@Kef2rNnM*0j/ntt#XArp2_SP %⡔ * E3%+0Q.9kړ˙ґ{)$۞ty2]!Sy"-e (>%֧;QJ4 nao Jqmi nBAQH$ k8f2 O;N2un~ޯzgRZw_7xcrzg}5-cRxf J*NɬqϜi$htaSr "0!!HPE 0)Opj+ޝY\HXgkK{ ([)m#ڥ`_Aj?ڶ-ػKn Kj~ߙ0P-3'-[N=D6(RV~Jquy,-X7Įput~)^hM7jҚr fфNe)kZAKR{In+{˗H^\6qYD"` -HHW YBQPa(%v%#! U [>ϳ0#r:~5~KZ"dz*Y|Bmk!aÊ+I+)^nEv9Ze1Rۗ%8PeUU̶Ee)̘Hi>d;ϳXV՗FM1MJ_mwxSEvPYL >Mek{U.҂4y}UB c nhF;{4nzUJxVZ1-dN7b3j8n֙V=w~%ml8bN"YA_\\\e787@8oo[ (ңw1KL*$g4i¼}voʜ՞ü.)m5mfIe.4!PAhkB*m֤Ȝ 5)Zhr=ܻ"1VSR(I/- Xڷ:Vj^p! B@* #v~bñoڃ\tɗ)noܮs\R\产yVJN:8m r+uy5ӳHpvl!!J=4P%{w(: 60@hS6v*RAaNd(ZThB c{(Z:aYpiq [S{6a:m5zǷ_֢  ^ $i_rkq?&7mxs+xE;0 N5ތ*DqGf­)U جM23 GʧCRiy;ei3&݌dUJDDK-+imKm'*h*IOۏ=\Nd%W4xၢ0:j~\%1DևYST" SH%Hye+ʔ(rjG,:M2."76z]t]̛uUA֞c¼>nK3#UUl C\btӲw:ͨ#-3˨Y&CrR׎;ȴ+F<Ƈ V3-sA݊TRTt4ʀ\+Î60 =4v3kj^cgXrtt.@TFl}a}̼i 6S9m2l;d( %<`wJִʧJPpVAR^4}?(g5pL$~_KMN1'3UY)yW *9ڸn>.Ʋ@ot[y[vlCP244iK)JTF@# '*UIJ25o*b4f#A8,R Q:3Q_ӯ.~yEΠ@y݌K=N ^qfZId/t' fEńM7CjJd JYJ\ckq3ol7s^uۻ$IE2 )+[fʓD$[g(85.Ifg7w^XwJY &Jj*$~mR撠9a|gk6RTw$^]or4Ji{xjdvcrAʀqk,RH`ݫ ^TfFF/@OCHYۣis}eqɃm M:f)U>,# wf1n>1]v'(cL =Uy};C] WA뎰zI]ssUU?I㲖crEE7Ɗ}k<|PFSmp\ůZm5!HuRͼ!D<;ftIeQ`Η8z Zޱ^8/`+pԝaV-e#2S9uNjь)5` VT79xL[ve؃QƏ291jp]s8(P&^ n3n/p%i$ʪҠٍr$1F$*B"Ak@>>lW )#NӒv/F\Smi֮Mqպn'¼LQ|;6}\4ri whJR<) cAJ.(RcR)K䯐l&;r绣6o/s}|/fa/ZނZ=R)jOm9aֺҙS81Li=5]1NdC\Ǽ<ꄹ4ox`V8g;FnKzEj{t#_.5c-R bʷd5ƴ)"knS=7Rݮ swAmR:҃*q%[i$'ld+x;\fvï2Mh}ןJK17!ť<4@1y|$XzUEJh]t߼6=%if,Hkw ITHyUU%5{,=V)^Ҫ|jKE' -l.VK](J#Yi[R:-!JSϲ|$mP@BlmVݛӨ/NԙkC FB[o9IE!5HFuy,Ms[Ke|mą[Pt|ԟKy$Xܬ~u{_ΑRz VU$N{:b-\77׭Ó%sf`+_GJǸw+Ϯ|#Ω?{peW}O>l9pߦse*O˞ݱa?[3>~T-@TiLQJ{y*sa2qḢς>/ῌ|i]o#s[Z2p8Éur\˫iO\9غ߮ԟ?_/RP'C߹TS\'g?W͛_}Ǘķ_{y [yz..jҽt?gh)U@k?5w,7ei??Z<Џ֡\=3qN>)G v5~>C'O:GqÍyc![_{ç| ~<N#<rdUnώ^wKy>߼9d^X7TpuݛK:eUuaKO~u|=ݑ*ӥ^wKɟ ;0}2pɎ^K> zy _tYzYtx^sݸ[^'jVX>LrE}Fɜuk5?V+7!]jϟh_ٷDd*P  S ,A ldquobJe2-pI.DnJe2-pI.PNG  IHDR \#sBITw0PLTE;M0tRNS0JbKGDH cmPPJCmp0712OmIDATc`d`  @.X R;IENDB`Dd*P  S ,A rdquobXH˹WprFnXH˹WpPNG  IHDR \#sBITw0PLTE;M0tRNS0JbKGDH cmPPJCmp0712OmIDATc``d`d$X0QHƔIENDB`$$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E $$If!vh5E 5E #vE :V l t065E ^ h02 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmHnHsHtHB`B 4NormaleCJ_HaJmHsHtHXX 4Titolo 1$<@&5CJ KH OJQJ\^JaJ LA`L Car. predefinito paragrafoXi@X Tabella normale4 l4a 4k 4 Nessun elenco bU@b [KCollegamento ipertestuale>*OJQJ^Jo(phtS@t mRientro corpo del testo 3hd^hOJ PJ QJ aJmH sH VB@V mCorpo del testoxOJ PJ QJ aJmH sH ^O"^ m affiliation1xd x^xCJaJmH sH tH .o1. mA0B*CJaJphFOBF mauthors19dH^9CJaJBW@QB 1[`Enfasi (grassetto)5\NZ@bN 1[0 Testo normaleCJOJPJQJaJtH ^q^ 1[0Testo normale CarattereCJOJPJQJaJtH tt R4Griglia tabella7:V0B @B u%q Pi di pagina  z&2)@2 u%q Numero pagina@@@ u%q Intestazione  z&8O8 dsapple-style-spanJJ MC Testo fumettoCJOJQJ^JaJZ/Z MCTesto fumetto CarattereCJOJQJ^JaJPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!HRtheme/theme/theme1.xmlYMoE#F{oc'vGuرHF[xw;jf7q7J\ʯ AxgfwIFPA}H1^3tH6r=2%@3'M 5BNe tYI?C K/^|Kx=#bjmo>]F,"BFVzn^3`ե̳_wr%:ϻ[k.eNVi2],S_sjcs7f W+Ն7`g ȘJj|l(KD-ʵ dXiJ؇kZov[fDNc@M!͐,a'4Y_wp >*D8i&X\,Wxҕ=6.^ۄ Z *lJ~auԙՍj9 !bM@-U8kp0vbp!H#m|&HyȝC)^+Ikio ,A*k,GMg,JnO#KtZ妇|1ikBԥ0 jW¦l|Vn[u~3j ȦyK$rzQL -V 5-nhxL|UviE>fO(8B#6¯S ܣioWnsΊ|{epv4Y%W:.t0O%Jݍq7ŔRN)z?@G\׶Dž8t4~_`zd kH*N69mYiHE=hK&NaV.˒eLFԕU{D vEꦛdmNU(CNޜR콶3a3/TU-!޲!ljUJ[A++T[Xs/7s b1p߃eBoC  d%;x 'hIF'|I{Z.3WSÎBWCdO(, Q݃@o)i ~SFρ(~+ѐnPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!HRtheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] ..8@FM.Y4^b)l(vҡi_ m-GOQtQi  M   T   D   4  ԙ $ t Ě  d   T   D   4  Ԟ $  &&&&&&((((..????EEEEEEKKKKKKQQQQQQWWWWWW]]]]]]cccccciiiiiioooooouuuuuu{{{{{{Q i huVP# "$%&'*D,../14C67y9:;<IGGN^PX,ZL^d+eoopvyz~}}!gr!f]'ix| Fvv@|$x,>5BCD%JWX4\a@ht^uK~@     "#$%&')*+,-/01245678LNQ: + PT9%,18q;JG[ pz9hu8/5W u-~Z~l~~~~~~~-AYk ,CTj}ƀր !3Bk~Ё߁#ASdxЂ &6H]m{Ճ-;I^ö́(6DatɅڅ/>Pfz҆ʕ t !(.3MOPRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~o"CO C W  sHVZ/<@  a+,%,,--ۆŇdptvlu-..iXXXXXXXXXXXXXXXXXCCXX  #.5<!!!!8@0(  B S  ?,%E"EEnmmT?|T@>)BBbRRWmmu$.0040=0=0888?? @FFFHH:HCHCHMMMYY"Y^^)^lllvvv~pp~ǐǐՐǡ۵۵ ZZe= `k-CCPP^T-T-b-//GGG#H>KQWW[W[W#X#Xi      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrsutvwxyz{|}~_ff"))@@] c 9CC.GGj]]\rr  |$.00;0B0B0888 @@@FFFH$HAHHHHHMMMY*Y*Y%^1^1^l&l&lv%v%v~zѐݐݐáϡϡcjj ! ? %%ip)1HHZff^-j-j-//GGG'HCKQ W W`W`W)X)Xi  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrsutvwxyz{|}~ >*urn:schemas-microsoft-com:office:smarttags PersonNameC*urn:schemas-microsoft-com:office:smarttagsmetricconverter9*urn:schemas-microsoft-com:office:smarttagsplace8*urn:schemas-microsoft-com:office:smarttagsCityB*urn:schemas-microsoft-com:office:smarttagscountry-region9*urn:schemas-microsoft-com:office:smarttagsState=*urn:schemas-microsoft-com:office:smarttags PlaceType=*urn:schemas-microsoft-com:office:smarttags PlaceName>u*urn:schemas-microsoft-com:office:smarttags PostalCode X^U1 in10.30 C11.30 G12.00 M12.30 M20 30 Km33C37 C4. A5. A5 9.30 LLa Jolla ProductID   uu    hou|#)y} %) %-=ET^>ESXhn$%3FHIN   # $ , T ] JRW[\f2C %)|4<bsejmrKPQ`$GY(1@B#[eu}+05:?FNT z IRSX0: U!\!a!i!n!y!!!!!""+"2"B"G"L"S"""## ###"#9#C#########$ $$$$$$$$$%%%"%$%+%0%7%8%<%%%%%%%%%%%^&e&j&r&w&|&&&&&&&N'S'X'_'''''''''''''''(((((((((())))))))))**a*e*j*o*t*|*****,#,B,I,----. .E.K.G/Q/X/_/d/i/////-020000 1W1]11222U2a2334"44445555526>6w66666666H7Q777Z8d889999999):2:h:s:w:}:::j;z;)<2<<<<<<<<<<<>=G=======>#>T>]>>>>>cJcOcQcXcYc\cncvc dd0d9d:dCdDdIdJdRdddddeeeefgggwgxggggggggggg5h9hmhqhyh}hhhhhhii i iiiiiiSjWjpjsjjk kkkkkkkkllllmm)m.mmmmmmnoo-p7pqqrsCtHttt u uuuuu~vvvvvvvvvvPwZw[wdwwwwwyxxxxxxxxxxzyyyyyyyykztzzz]|j|||||V~_~~~~1<FQ);z9=`cĂւ܃0Bhl9BEKLUۆŇlwzËыvʌMQUb#|&*Y`ahmuvxy@GHMOWX[]hilqxy5<KYioǓғߓɕ ї՗ JR7CښܚT^hjo{ڛܛ]_rt9;AIOQ"O^bky $3:S[ҠԠ%vIQpwĢ֢עߢGNemؤntĦӦOWyJX]g¨ ,8JSʩҩ٫ TcĬ {xȰӰűαȲӲ$'7FtKO $öն 1p;Gek˹ZdӺں4>!/7FVBE½xz{ڿ &*8<W]bjouU_}nslzP\Xgjvx$+_fnxy}*.5<[_aoquw}N["&w.<ERZ`4@#2:#X[69),"%jmn};G6=27V]%, <FY_ek|<C#)2,6",`j  LV!'-QW]dsxet@K?KU]cjry4:U[dm "#%8EOXvyVb    < ? X d e p   ` k K O U Z ` h       % + F L U ^     ^c>G+Tbaj{%&4zTghv9Cj}~w$%2 !'OXmsbly oy}%3=    B"K"+$-$q$s$$$$$$$$$$$%%%*%%&&'&9&F&\&g&&&M(P(p((((k)n)x))))h*r*+ +0+;+4,D,......../ /z///////00 01.1'21292C222U3a3|334494:444-595r5555<6K666P7Z77788 8,888/98999@999d:p:;;====!>,>N>Y>>>>>??@@@@@@@@@ AlB{BBBBBCCCC DD%D0DDDGESEEEtFzFNHWHHHK KKK8L;LIL[LLLLL>MNMWMiMKNMNNNPN}NNNNNNNOOOOOOO^PjPQQ&Q-Q/Q6Q8QWCWLWRWiWnWwW~WWWWWWWWWWWWWWXXX@XHXXXXXXXYYY Y+Y0Y>YCYLYTY]YcYmYsY~YYYYYYYYYYYYYYhhhhhhhhhhhhhi iii.iNiNiTiTiiiiiii7J*:e{Ni sFc#E"../D0jjYvڿ jx##..//MQNQcQ$T&TVV)Y+YlYmYZZ4e6ehhhhhhhhhhhhhii1i4i7i:i=i@iCiFiIiLiOiRiUiXi[i^iaidigijimipisiviyi|iiiiiiiiiiiiiiiiiiiiiiiiiiih    X X  *[*]**:+;+r8r8~8~8?@FFMMX+Y]^^2^bbbbkkkkk&lu&vMUVސС.56g]]{88:  :-k-GGMQMQVVhhhhhhhhhhhhhNiNiTiTiii D6?7N4k= % U'/=z7\ <T3 U? @AAG=B2CeDn$FoOFxF(L&MEMdPBS3TfT5eVX XYTT z>f2 A\A^ <Ip 4V:x:hh@JJV(V)V2V3V?V@EFGILM[\ $%-GiP@PP<@P"PH@P4Pl@P@P@PNP@PVPXPZP@PbP@PrP@PPX@PPx@PP@PP@PP@P PP$@PPP4@P0Pd@PNP@P@UnknownG*Ax Times New Roman5Symbol3. *Cx Arial;Wingdings;" HelveticaACentury-Book;(SimSun[SOG=  jMS Mincho-3 fgkMTimesNewRomanPSMTTimes New RomanGAdvTTb8864ccf.BSs^bfgArial Unicode MS7. [ @VerdanaaO $AppleGothicArial Unicode MS3Times9=  K @Consolas7.{ @Calibri5. *[`)TahomaA BCambria Math"1hjj_53<53<nn4d9h9h2qHX ?42!xxPACTIVATED ANDROGEN RECEPTOR INHIBITS CICLIN D1 EXPRESSION IN BREAST CANCER CELLSNic FicPieroOh+'0   @ L X dpxTACTIVATED ANDROGEN RECEPTOR INHIBITS CICLIN D1 EXPRESSION IN BREAST CANCER CELLSNic FicNormalPiero2Microsoft Office Word@@C@@<53՜.+,D՜.+,< hp  Fic Nic9h QACTIVATED ANDROGEN RECEPTOR INHIBITS CICLIN D1 EXPRESSION IN BREAST CANCER CELLS TitoloX 8@ _PID_HLINKSAr]<http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Laezza%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus]9http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Laezza%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlusDw0http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Caroleo%20MC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlusQj-http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mancuso%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlusx@*http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bonofiglio%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus''http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Antonucci%20MT%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus]$http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Laezza%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus]!http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Laezza%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlusDwhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Caroleo%20MC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlusQjhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mancuso%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlusx@http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bonofiglio%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus'http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Antonucci%20MT%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus/mailto:fico@unical.itg5http://www.portopirgos.com/b[ mailto:luigimorron@libero.itg5 http://www.portopirgos.com/#lhttp://www.sins.it/ http://www.unicz.it/X http://www.unical.it/  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\]^_`abdefghijklmnovRoot Entry FP@xData 1TableBWordDocumentޟSummaryInformation([DocumentSummaryInformation8cCompObj}  F+Documento di Microsoft Office Word 97-2003 MSWordDocWord.Document.89q