ࡱ> \'` ybjbjLULU :8.?.?O)zzzzzzz> ;8tE~(WWW&(((.Vv$h! zUWzzzz&&;zzRv : X&z0j b| LR zR(W>,$WWWWWWEEE{EEE2 : zzzzzz Chapter 7 -- Stocks and Stock Valuation Characteristics of common stock The market price vs. intrinsic value Stock market reporting Stock valuation models Valuing a corporation Preferred stock The efficient market hypothesis (EMH) Characteristics of common stock Ownership in a corporation: control of the firm Claim on income: residual claim on income Claim on assets: residual claim on assets Commonly used terms: voting rights, proxy, proxy fight, takeover, preemptive rights, classified stock, and limited liability The market price vs. intrinsic value Intrinsic value is an estimate of a stocks fair value (how much a stock should be worth) Market price is the actual price of a stock, which is determined by the demand and supply of the stock in the market Figure 7-1: Determinants of Intrinsic Values and Market Prices Intrinsic value is supposed to be estimated using the true or accurate risk and return data. However, since sometimes the true or accurate data is not directly observable, the intrinsic value cannot be measured precisely. Market value is based on perceived risk and return data. Since the perceived risk and return may not be equal to the true risk and return, the market value can be mispriced as well. Stock in equilibrium: when a stocks market price is equal to its intrinsic value the stock is in equilibrium Stock market in equilibrium: when all the stocks in the market are in equilibrium (i.e. for each stock in the market, the market price is equal to its intrinsic value) then the market is in equilibrium Stock market reporting Provide up-to-date trading information for different stocks Figure 7-2: Stock Quote and Other Data for GE Stock Symbol (GE) Prev close: closing price on Feb. 13, 2009 was $11.68 Change: change from the last trading price and the previous day closing price is -$0.24 = $11.68 - $11.44 Volume: trading volume for the day is 85,594,997 shares Avg Vol (3m): average daily trading volume over the past 3 months is 119,828,000 shares 52 wk Range: range of the highest and lowest prices for GE in the past 52 weeks ($10.66 - $38.52) Days Range: range of the highest and lowest prices for GE for the day ($11.35 - $11.74) Div & Yield: annual dividend and dividend yield ($1.24 is the annual dividend, or $0.31 per share last quarter) and dividend yield is 10.80% (1.24/11.44 = 10.80%) P/E (ttm): price to earnings (in the past 12 months) ratio is 6.66 (11.44/1.72) Common stock valuation Stock price vs. intrinsic value: a revisit Growth rate g: expected rate of growth in dividends g = ROE * retention ratio Retention ratio = 1 - dividend payout ratio The growth rate (g) plays an important role in stock valuation The general dividend discount model:  EMBED Equation.3  Rationale: estimate the intrinsic value for the stock and compare it with the market price to determine if the stock in the market is over-priced or under-priced Zero growth model (the dividend growth rate, g = 0) It is a perpetuity model:  EMBED Equation.3  For example, if D = $2.00 and rs = 10%, then  EMBED Equation.3  If the market price (P0) is $22, what should you do? You should not buy it because the stock is over-priced (2) Constant growth model (the dividend growth rate, g = constant)  EMBED Equation.3  For example, if D0 = $2.00, g = 5%, rs = 10%, then  EMBED Equation.3  If the market price (P0) is $40, what should you do? You should buy it because the stock is under-priced Common stock valuation: estimate the expected rate of return given the market price for a constant growth stock Expected return = expected dividend yield + expected capital gains yield  EMBED Equation.3  In the above example,  EMBED Equation.3  where 5.25% is the expected dividend yield and 5% is the expected capital gains yield (stock price will increase by 5% per year) What would be the expected dividend yield and capital gains yield under the zero growth model? Expected capital gains yield, g = 0 (price will remain constant) Expected dividend yield = D/P0 Non-constant growth model: part of the firms cycle in which it grows much faster for the first N years and gradually return to a constant growth rate Apply the constant growth model at the end of year N and then discount all expected future cash flows to the present  D0 D1 D2 DN DN+1 0 1 2 N N+1  Non-constant growth, gs Constant growth, gn Horizon value EMBED Equation.3  Figure 7-5: Non-Constant Growth Stock Example: if N = 3 gs = 30%, gn = 8%, D0 = $1.15, and rs = 13.4%, then D4 = 2.7287,  EMBED Equation.3 , and  EMBED Equation.3  Valuing a corporation It is similar to valuing a stock (using expected FCF instead of expected dividends) V = present value of expected future free cash flows FCF = EBIT*(1-T) + depreciation and amortization (capital expenditures + EMBED Equation.3 in net working capital) The discount rate should be the WACC (weighted average cost of capital) Preferred stock A hybrid security because it has both common stock and bond features Claim on assets and income: has priority over common stocks but after bonds Cumulative feature: all past unpaid dividends should be paid before any dividend can be paid to common stock shareholders Valuation of preferred stock Intrinsic value = Vp = Dp / rp and Expected return =  EMBED Equation.3  Example: if a preferred stock pays $2 per share annual dividend and has a required rate of return of 10%, then the fair value of the stock should be $20 The efficient market hypothesis (EMH) Efficient market: prices of securities in the market should fully and quickly reflect all available information, which means that market prices should be close to intrinsic values (market in equilibrium) Levels of market efficiency Weak-form efficiency - stock prices already reflect all information contained in the history of past price movements (only past trading information, including past prices, volumes, and returns) Semistrong-form efficiency - stock prices already reflect all publicly available information in the market (only past publicly available information) Strong-form efficiency - stock prices already reflect all available information in the market, including inside information (all publicly and privately available information)  Where is the market today? Less efficient More efficient  Small firms with less Large firms with more coverage and contact coverage and contact Exercises Read Summary ST-1 and ST-2 Problems: 3, 5, 9, 11, and 17 Example: investors expect a company to announce a 10% increase in earnings; instead, the company announces a 3% increase. If the market is semi-strong form efficient, which of the following would you expect to happen? (b) a. The stocks price will increase slightly because the company had a slight increase in earnings. b. The stocks price will fall because the increase in earnings was less than expected. c. The stocks price will stay the same because earnings announcements have no effect if the market is semi-strong form efficient. Problem 7: given D1 = $2.00, beta = 0.9, risk-free rate = 5.6%, market risk premium = 6%, current stock price = $25, and the market is in equilibrium Question: what should be the stock price in 3 years ( EMBED Equation.3 )? Answer: required return = expected return = 5.6% + 6%*0.9 = 11% Expected dividend yield = D1/P0 = 2/25 = 8% Expected capital gains yield = g = 11% - 8% = 3% Expected stock price after 3 years  EMBED Equation.3 = 25*(1+3%)3 = $27.32 Or D4 = D1*(1+g)3 = 2*(1+3%)3 = $2.1855 and then apply the constant growth model  EMBED Equation.3  Chapter 9 -- Cost of Capital Capital components Cost of debt before and after tax Cost of preferred stock Cost of retained earnings Cost of new common stock Weighted average cost of capital (WACC) Factors that affect WACC Adjusting the cost of capital for risk Capital components Debt: debt financing Preferred stock: preferred stock financing Equity: equity financing (internal vs. external) Internal: retained earnings External: new common stock Weighted average cost of capital (WACC) Cost of debt before and after tax Recall the bond valuation formula Replace VB by the net price of the bond and solve for I/YR I/YR = rd (cost of debt before tax) Net price = market price - flotation cost If we ignore flotation costs which are generally small, we can just use the actual market price to calculate rd Cost of debt after tax = cost of debt before tax (1-T) = rd (1-T) Example: a firm can issue a 10-year 8% coupon bond with a face value of $1,000 to raise money. The firm pays interest semiannually. The net price for each bond is $950. What is the cost of debt before tax? If the firms marginal tax rate is 40%, what is the cost of debt after tax? Answer: PMT = -40, FV = -1,000, N = 20, PV = 950, solve for I/YR = 4.38% Cost of debt before tax = rd = 8.76% Cost of debt after tax = rd*(1-T) = 8.76*(1-0.4) = 5.26% Cost of preferred stock Recall the preferred stock valuation formula Replace Vp by the net price and solve for rp (cost of preferred stock) Net price = market price - flotation cost If we ignore flotation costs, we can just use the actual market price to calculate rp  EMBED Equation.3  Example: a firm can issue preferred stock to raise money. The market price for one share of the firms preferred stock is $50 but flotation cost is 2% (or $1 per share). The firm will pay $4.00 dividend every year to preferred stock holders. What is the cost of preferred stock? Answer: 4/49 = 8.16% (net price is $49) Cost of retained earnings CAPM approach  EMBED Equation.3  DCF approach  EMBED Equation.3  Bond yield plus risk premium approach rs = bond yield + risk premium (risk premium is usually between 3-5%) When must a firm use external equity financing? R/E Retained earning breakpoint = ----------------- % of equity It is the dollar amount of capital beyond which new common stock must be issued For example, suppose the target capital structure for XYZ is 40% debt, 10% preferred stock, and 50% equity. If the firms net income is $5,000,000 and the dividend payout ratio is 40% (i.e., the firm pays out $2,000,000 as cash dividend and retains $3,000,000), then the retained earning breakpoint will be 3,000,000 --------------- = $6,000,000 50% If XYZ needs to raise more than $6,000,000, it must issue new common stock. Cost of new common stock  EMBED Equation.3 , where F is the flotation cost Weighted average cost of capital (WACC) Target capital structure: the percentages (weights) of debt, preferred stock, and common equity that will maximize the firms stock price WACC = wd rd (1-T) + wp rp + wc (rs or re) Comprehensive example Rollins Corporation is constructing its MCC schedule. Its target capital structure is 20% debt, 20% preferred stock, and 60% common equity. Its bonds have a 12% coupon, paid semiannually, a current maturity of 20 years, and a net price of $960. The firm could sell, at par, $100 preferred stock that pays a $10 annual dividend, but flotation costs of 5% would be incurred. Rollins beta is 1.5, the risk-free rate is 4%, and the market return is 12%. Rollins is a constant growth firm which just paid a dividend of $2.00, sells for $27.00 per share, and has a growth rate of 8%. Flotation cost on new common stock is 6%, and the firms marginal tax rate is 40%. a) What is Rollins component cost of debt before and after tax? Answer: Cost of debt before tax = 12.55% Cost of debt after tax = 7.53% b) What is Rollins cost of preferred stock? Answer: Cost of P/S = 10.53% c) What is Rollins cost of R/E using the CAPM approach? Answer: Cost of R/E = 16% d) What is the firms cost of R/E using the DCF approach? Answer: Cost of R/E = 16% e) What is Rollins WACC if it uses debt, preferred stock, and R/E to raise money? Answer: WACC (R/E) = 13.21% f) What is Rollins WACC once it starts using new common stock financing? Answer: Cost of N/C = 16.51% WACC (N/C) = 13.52% Factors that affect WACC Factors out of a firms control The state of the financial markets Risk premium Tax rates Factors that a firm can control Capital structure Dividend policy Investment policy Adjusting the cost of capital for risk Divisional costs of capital The pure play method Identify firms producing only one product that is the same as your project is going to produce and estimate betas for these firms; average these betas to proxy for your projects beta; use CAPM to estimate your projects required rate of return Methods to incorporate risk into capital budgeting Risk-adjusted cost of capital: use the beta risk to estimate the required rate of return for the project and use that rate as the discount rate to evaluate the project; the higher the risk, the higher the discount rate Exercise Read Summary ST-1 Problems: 5, 6, 7, 11, and 15 Chapters 10&11 -- Capital Budgeting Capital budgeting Project classifications Capital budgeting techniques Optimal capital budget Cash flow estimation Risk analysis in capital budgeting Capital budgeting Capital budgeting: the process of analyzing and deciding what projects (assets) should be included in capital budget Capital budget: a plan that outlines projected expenditures during a future period Project classifications Replacements: Need to continue current operations Need to reduce costs Expansions: Need to expand existing products or markets Need to expend into new products or markets Others: safety/environmental projects, mergers Capital budgeting techniques (Chapter 10) (1) Net present value (NPV): present value of a projects cash inflows minus the present value of its costs. The discounted rate is the project cost of capital.  EMBED Equation.3 , where r is the cost of capital, CFt is the cash flow in time t (2) Internal rate of return (IRR): rate of return a project earns (a discount rate that forces a projects NPV to equal zero)  EMBED Equation.3  Problems associated with IRR: Multiple rates of return and unrealistic reinvestment rate assumption (3) Modified internal rate of return (MIRR): discount rate at which the present value of initial cost is equal to the present value of the terminal value (4) Profitability index (PI): present value of future cash flows divided by the initial cost (5) Payback period: the length of time (years) required for a projects cash flows to recover its cost (6) Discounted payback period: the length of time (years) required for a projects cash flows, discounted at the projects cost of capital to recover its cost Example: basic data for projects L and S Year Project S Project L 0 -$10,000 -$10,000 1 5,000 1,000 2 4,000 3,000 3 3,000 4,000 4 1,000 6,750 The cost of capital for each project is 10%. Which project is a better project? Figure 10-1: Cash Flows and Selected Evaluation Criteria for Project S and L (1) NPV approach Figure 10-2: Finding NPV TI BAII plus or TI BAII plus professional (CF function) Press CF first, then press 2nd, followed by pressing CLR WORK CF0 = -10,000, press enter and ; then C01 = 5,000, press enter and ; F01 = 1, press ; repeat the same procedure to enter C02 = 4,000, C03 = 3,000, and C04 = 1,000; press NPV, you see I = 0.0000; enter 10, press enter and  ; you will see NPV = 0.0000; press CPT (on the up left corner); NPVS = 788.20 Exercise: check NPVL = 1,004.03 Decision rule: if NPV > 0, accept the project; if NPV < 0, reject the project Independent vs. mutually exclusive projects Independent projects are projects with cash flows that are not affected by the acceptance or rejection of other projects Mutually exclusive projects are a set of projects where only one can be accepted What if L and S are mutually exclusive? Choose L because NPVL > NPVS In general, you should choose the project with the highest positive NPV If they are independent, you should choose both because NPV > 0 for both projects (2) IRR approach Figure 10-3: Finding IRR TI BAII plus or TI BAII plus professional (CF function) Press CF first, then press 2nd, followed by pressing CLR WORK CF0 = -10,000, press enter and ; then C01 = 5,000, press enter and ; F01 = 1, press ; repeat the same procedure to enter C02 = 4,000, C03 = 3,000, and C04 = 1,000; press IRR, you will see IRR = 0.0000; press CPT (on the up left corner); IRRS= 14.49% Exercise: check IRRL = 13.55% Decision rule: if IRR > r, accept the project; if IRR < r, reject the project where r is the hurdle rate (the required rate of return for the project or the cost of capital for the project) Multiple IRRs: the situation where a project has two or more solutions (IRRs) Figure 10-4: Multiple IRRs Reinvestment rate assumptions: NPV approach is based on the assumption that cash flows can be reinvested at the projects risk-adjusted WACC, where the IRR approach is based on the assumption that cash flows can be reinvested at the projects IRR For most firms, assuming reinvestment at the projects WACC is better than assuming reinvestment at the projects IRR. (3) MIRR approach Step 1: compound each future cash inflow to the terminal year, using WACC Step 2: add all the future values to get terminal value Step 3: calculate I/YR to get MIRR Figure 10-5: Finding MIRR Decision rule: if MIRR > r, accept the project; if MIRR < r, reject the project where r is the hurdle rate (the required rate of return for the project or cost of capital for the project) NPV profile: a graph that shows the relationship between a projects NPV and the firms cost of capital Figure 10-6: NPV Profile for Project S When r < 14.49%, NPV for S is positive, which means that the project will be accepted When r > 14.49%, NPV for S is negative, which means that the project will be rejected Figure 10-7: NPV Profiles for Projects S and L Crossover rate: the cost of capital at which the NPV profiles of two projects cross and thus, at which the projects NPVs are equal How can you calculate the crossover rate (11.975%)? If the cost of capital is less than 11.975%, L is a better project. If the cost of capital is greater than 11.975% (but less than 14.49%), S is a better project. Ranking problem (conflict): NPV approach and IRR approach sometimes will lead to different rankings for mutually exclusive projects For example, using NPV approach, project L is better than project S if the cost of capital is 10% (L has a higher NPV than S). Other the other hand, using IRR approach, S is better than L (S has a higher IRR than L). Main conditions to cause conflicts (ranking problems) a. Timing of cash flows b. Scale of cash flows If ranking problem occurs use NPV approach to make the final decision. (4) Profitability Index Figure 10-8: Profitability Index Decision rule: if PI > 1, accept project; if PI <1, reject the project Relationship between NPV and PI If NPV > 0 then PI > 1; If NPV < 0 then PI < 1; If NPV = 0 then PI = 1 (5) Payback period approach unrecovered cost Payback = # of years prior to full recovery + ----------------------------------------- cash flow in full recovery year Figure 10-9: Payback Period Decision rule: If payback < maximum payback, then accept the project If payback > maximum payback, then reject the project Weaknesses: Arbitrary maximum payback Ignores time value of money Ignores cash flows after maximum payback period (6) Discounted payback period approach Step 1: discount future cash flows to the present at the cost of capital Step 2: follow the steps similar to payback period approach Figure 10-10: Discounted Payback Period Decision rule: similar to that of payback period Weaknesses: Arbitrary maximum discounted payback period Ignores cash flows after maximum discounted payback period Decision criteria used in practice Table 10-1: Capital Budgeting methods Used in Practice NPV and IRR are the most popular methods used by firms these days, followed by payback and then discounted payback. Projects with unequal lives Replacement chain (common life) method: analyze projects over an equal life Equivalent annual annuity (EAA) method: convert NPV into a constant annual annuity Figure 10-11: Analysis of Projects with Unequal Lives Optimal capital budget The annual investment in long-term assets (a set of projects) that maximizes the firms value Increasing marginal cost of capital: the marginal cost of capital (MCC) increases as the capital budget increases Decreasing investments opportunity schedule: the marginal return from investments decreases as the capital budget increases Figure 10-13: IOS and MCC Schedules When IOS = MCC, the optimal capital budget is reached. Capital rationing: the situation in which a firm can raise a specified, limited amount of capital regardless of how many good projects it has For example, a firm has $5 million of capital budget and has three good projects ProjectInitial investmentNPVA$5,000,000$1,000,000B$3,000,000$600,000C$2,000,000$500,000 The firm should choose projects B and C to maximize the firms value. Cash flow estimation (Chapter 11) Guidelines when estimating cash flows: Use after tax cash flows Use increment cash flows Changes in net working capital should be considered Sunk costs should not be included Opportunity costs should be considered Externalities should be considered Ignore interest payments (separate financing decisions from investment decisions) FCF = [EBIT*(1 - T) + depreciation] [capital expenditures +  EMBED Equation.3 NOWK] EBIT*(1 - T) = net operating profit after tax = NOPAT  EMBED Equation.3 NOWK = change in net operating working capital Net cash flow = NI + depreciation, if no interest payments Steps in estimating cash flows Step 1: initial outlay Step 2: differential (operating) cash flows over projects life Step 3: terminal cash flows Step 4: time line and solve Example: an expansion project Figure 11-1: Analysis of an Expansion Project Figure 11-2: Cash Flow Estimation and Performance Measures (signs are wrong) Project net cash flows: Time Line -$4,207 $1,048 $1,296 $980 $2171 Since NPV is positive and IRR > WACC, the expansion should be taken. Cash flow estimation: a new project (streamline approach) The president of Real Time, Inc. has asked you to evaluate the proposed acquisition of a new computer. The computers price is $40,000 and there will be another $2,000 for shipping and installation. The computer falls into MACRS 3- year class (Use 33%, 45%, 15%, 7% depreciation schedule). Purchase of the computer would require an increase in net working capital of $2,000. The computer would increase the firms before-tax revenues by $20,000 per year but would also increase operating costs by $5,000 per year. The computer is expected to be used for 3 years and then be sold for $15,000. The firms marginal tax rate is 40%, and the projects cost of capital is 14%. a) What is the net initial outlay (at time t = 0)? b) What are the operating cash flows over 3 years? c) What is the terminal value (not including the operating cash flow in year 3)? d) Should the firm purchase the new computer? Net cash flow = after-tax cash flows from operation + depreciation tax-shield Answer: a) CF0 = 40,000 + 2,000 + 2,000 = $44,000 b) CF1 = (20,000 - 5,000) * (1 - 0.40) + 42,000 * 0.33 * 0.4 = $14,544 CF2 = $16,560 CF3 = $11,520 c) TCF3 =15,000 - (15,000 - 42,000*0.07)*0.4 + 2,000 = $12,176 Total cash flow in year 3 = 11520 + 12,176 = $23,696 d) NPV = - $2,505.60 < 0, IRR = 10.84% < 14% Since NPV < 0 and IRR < WACC, do not take the project. Example: a replacement project Data for both old and new machines Sale revenue is fixed: $2,500 Expected life of the old and new machines: 4 years WACC: 10% Tax rate: 40% Data for old machine After-tax salvage value today: $400 Operating costs per year except depreciation: $1,200 Old machine depreciation: $400 per year (straight-line method) Data for new machine Cost of new machine: $2,000 (MACRS 3-year system with depreciation rates of 33%, 45%, 15% and 7%) Operating costs per year except depreciation: $280 Question: Should the firm buy the new machine to replace the old machine? Figure 11-9: Replacement Analysis (sings and numbers are wrong) Net cash flows before replacement $0 $940 $940 $940 $940 Streamline approach CF0 = -2,000 + 400 = -1,600 CF1 = (1,200 - 280)*(1 - 0.4) + (660 - 400)*(0.4) = $656 CF2 = (1,200 - 280)*(1 - 0.4) + (900 - 400)*(0.4) = $752 CF3 = (1,200 - 280)*(1 - 0.4) + (300 - 400)*(0.4) = $512 CF4 = (1,200 - 280)*(1 - 0.4) + (140 - 400)*(0.4) = $448 TCF = 0 NPV = $308.51 and IRR = 19.33% Since NPV for the project is positive and IRR for the project > WACC, the replacement project should be taken. Risk analysis in capital budgeting Adjusting the cost of capital for risk Project stand-alone risk: the risk of a project as if it were the firms only project Sensitivity analysis: a percentage change in NPV due to a percentage change in one input variable, keeping other input variables constant (at their expected values) Scenario analysis: allow several input variables to change at a time under different scenarios (best, good, average, below average, worse, and worst cases) Monte Carlo simulation: assign a probability distribution to each input variable and a computer will pick a random number from the distribution for each input variable. Those values will be entered into the model to calculate the project NPV. The computer will repeat the same procedure for N times to get a distribution for NPV. Projects within-firm risk: the amount of risk that a project contributes to the firm Projects market risk: the risk that a project contributes to the market, measured by the projects beta coefficient Pure play method to estimate a new projects market risk Identify firms producing only one product that is the same as your project is going to produce and estimate betas for these firms; average these betas to proxy for your projects beta: use CAPM to estimate your projects required rate of return Methods to incorporate risk into capital budgeting Risk-adjusted cost of capital: use the beta risk to estimate the required rate of return for the project and use that rate as the discount rate to evaluate the project; the higher the risk, the higher the discount rate Exercise Chapter 10 Read Summary ST-1 Problems: 8, 9, and 20 (Due next week) Chapter 11 Read Summary ST-1 and ST-2 Problems: 7 and 9 Group Mini Case: a-i only Chapter 14 -- Dividend Policy Dividend vs. retained earnings Dividend payment procedures Dividend policy: three basic views The clientele effect The information content or signaling hypothesis Dividend policy in practice Factors influencing dividend policy Stock repurchase, stock dividends and stock splits Dividend vs. retained earnings Dividend payout ratio vs. profit retention ratio: a review Higher dividends mean lower retained earnings, which means lower growth rate and less capital gains Dividend payment procedure Declaration date Holder-of-record date Ex-dividend date: two business days prior to the holder-of-record date Payment date 2 business  days  Declaration Ex-div Record Payment Tax implications: if you buy a stock before its ex-dividend date, you will receive dividend (but you pay a higher price); if you buy a stock on or after ex-dividend date, you will not receive dividend (but you pay a lower price). Dividend policy: three basic views Dividend policy: to determine the optimal payout ratio to maximize stock price View 1: dividend policy is irrelevant (Irrelevance Theory by MM 1961) Assumptions: perfect capital markets with no taxes, no transaction costs, no flotation costs, etc. Result: dividend policy doesn't matter; dividend policy does not affect firm value Rationale: in a perfect world, investors can always create their own payout ratios View 2: high dividends increase stock price (Bird-in-the-hand theory 1979) Result: investors feel more secure to receive cash dividends than the income from capital gains. Therefore, the higher the cash dividend, the better the stock. Rationale: since we are not living in a perfect world return from cash dividend is less risky than return from capital gains View 3: low dividends increase stock price (Tax differential theory 1979) The tax rates on cash dividends were higher than the tax rates on long-term capital gains before 2003. In addition, capital gains tax can be delayed until the stocks are sold (time value of money) or can be avoid if stocks are passed to beneficiaries provided the original owner passes away. Result: the lower the cash dividend, the better the stock Rationale: to reduce taxes, investors will buy stocks with less dividends and higher growth potential (more capital gains) The clientele effect People are different and different dividend policies will attract different investors. The information content or signaling hypothesis Information asymmetry: insiders and outsiders have different information Dividends reveal some inside information about firm's future profitability. By increasing dividends, managers signal to the market that the firm will have enough earnings to support future projects. Result: an increase in dividend is regarded as a good signal, which causes the stock price to go up Dividend policy in practice Residual dividend model A model that states that the dividends to be paid should equal to the capital left over after financing of profitable investments. Example: Target capital structure: 70% debt, 30% equity to raise funds The firms now needs to raise $1,200,000 and has NI = $450,000 Question: what should be the amount of dividend if the firm adopts the residual dividend policy? Answer: $1,200,000*(0.3) = $360,000 should be raised from equity (retained from NI) Dividend = NI - R/E = 450,000 - 360,000 = $90,000 Question: If the company has 1,000,000 shares outstanding, what is DPS? Answer: DPS = $0.09/share Alternatives: Constant dividend payout ratio Stable dividend per share Low regular dividend plus extras when time is good Factors influencing dividend policy Constraints: Bond indenture Preferred stock restrictions Impairment of capital structure: dividends cannot exceed the balance sheet item R/E Availability of cash Penalty tax on improperly accumulated earnings Investment opportunities: Profitable investment opportunities Possibility of accelerating or delaying projects Alternative sources of capital: Cost of selling new stock Ability to substitute debt for equity Control of the company Effects of dividend policy on cost of equity Stock repurchase, stock dividend and stock splits Stock repurchase: reduction of shares outstanding Internal investment opportunity Capital structure Increase in EPS Ownership Tax advantage Stock dividend: a distribution of shares up to 25% of the number of shares currently outstanding, issued on a pro rata basis to the current stock holders Stock splits: a stock dividend exceeding 25% of the number of shares currently outstanding After stock dividend or stock split, the number of shares outstanding increases, earnings per share, dividend per share, and stock price all decline Why stock dividends and/or stock splits? Conserve cash Optimal stock price range Positive signals Higher total value Exercise Read Summary ST-1 Problems: 2, 4, 7, 9*, and 11 Problem 9: a firm has three independent projects, each of them requires $5 million investment: Project H (high risk) Cost of capital = 16% IRR = 20% Project M (medium risk) Cost of capital = 12% IRR = 10% Project L (low risk) Cost of capital = 8% IRR = 9% The optimal capital structure is 50% debt and 50% equity. The expected net income (NI) is $7,287,500. If the firm adopts the residual dividend model, what will be the firms dividend payout ratio? Answer: the firm should choose Projects H and L since IRR > cost of capital for both H and L, which means that the firm needs to raise $10 million According to the optimal capital structure: $10 million*(0.5) = $5 million will be raised from debt $10 million*(0.5) = $5 million will be raised from equity (retained from NI) Dividends = NI - R/E = 7,287,500 - 5,000,000 = $2,287,500 Payout ratio = Dividends / NI = 2,287,500 / 7,287,500 = 31.39% Chapter 15 -- Capital Structure Capital structure Business risk vs. financial risk Capital structure theories Estimating the optimal capital structure Capital structure The mix of debt, preferred stock, and common equity that is used by a firm to finance its assets The optimal capital structure: the capital structure that maximizes the companys value or stock price (or minimizes the companys overall cost of capital, WACC) Capital structure changes over time Business risk vs. financial risk Business risk: the riskiness inherent in the firms operations if it uses no debt It is measured by the variability of expected ROE (ROA) Business risk depends on: Competition Demand variability Sales price variability Input cost variability Ability to develop new products Operating leverage Foreign risk Regulations Operating leverage: the extent to which the fixed costs are used, the higher the fixed costs, the higher the operating leverage, the higher the business risk Financial risk: the additional risk placed on stockholders as a result of the firms decision to use debt Financial leverage: the extend to which fixed income securities are used Figure 15-2: Operating Leverage and Financial Leverage Break-even condition: EBIT = PQ VQ F = 0 Capital structure theories Assumptions: perfect capital markets with no taxes, homogeneous information, EBIT is not affected by using debt, and investors can borrow at the same rate as corporations Irrelevance theory (MM 58): capital structure doesnt matter; the capital structure does not affect firm value or stock price (or the overall cost of capital) The effect of taxes (MM 63): if corporate taxes are considered, stock price and overall cost of capital will be affected by the capital structure. The higher the debt, the lower the overall cost of capital, the higher the stock price. The trade-off model: corporate taxes are considered and firms may fail Costs of financial distress vs. benefits from tax shields The greater the use of debt, the larger the fixed interest charges, the greater the probability that a firm will go bankruptcy. At the same time, the greater the use of debt, the larger the tax shields. VL = VU + PV(tax shields) - PV(financial distress and agency costs) Figure 15-4: Effect of Financial Leverage on Firm Value Implication of trade-off model: Higher-risk firms should borrow less Firms with tangible assets can borrow more Firms in higher tax bracket can borrow more Signaling theory: asymmetric information means that investors and management have different information. Any change in capital structure reveals insider information. For example, a firm issues new stock to raise money is viewed as a negative signal which causes stock price to drop. Estimating the optimal capital structure WACC and capital structure change WACC = wd(rd)(1-T) + wc(rs), assuming no preferred stock = (D/A)*(rd)*(1-T) + (E/A)*(rs) where D/A is the debt-to-assets (debt) ratio, E/A is the equity-to-assets (equity) ratio, and D/A + E/A = 1 You are going to choose D/A or E/A to minimize WACC Cost of debt increases with debt; cost of equity increases with debt; beta increases with debt (since higher debt increases the risk of bankruptcy) Hamada equation:  EMBED Equation.3  or  EMBED Equation.3  We observe EMBED Equation.3 , T, D/E ratio, therefore we can figure out  EMBED Equation.3 . We then vary D/E to figure out  EMBED Equation.3  at different capital structure. We apply CAPM to find the required rates of return and stock prices at different capital structures to find the optimal capital structure that maximizes the stock price (or minimizes the WACC) Figure 15-5: Estimating Optimal Capital Structure The optimal capital structure occurs when the firm has 40% of debt and 60% of equity. At that capital structure, the stock price is maximized at $20.79 and WACC is minimized at 11.63%. Note: EPS maximization is not the goal of a firm and usually the maximum EPS doesnt occur at the same capital structure where the stock price is maximized or the WACC is minimized. EPS is maximized when the firm has 50% debt and 50% equity. Exercise Read Summary ST-1 and ST-2 Problems: 5, 8, and 9 Problem: assets of $5 million and no debt; tax rate is 40%; NI is $1 million; dividend payout ratio is 40%; NI is expected to grow at 5% per year (constant); 200,000 shares outstanding; WACC is 13.4% (cost of equity, rs is 13.4%) Considering recapitalization: issue $1 million debt at a cost of 11% before tax and use the proceeds to buy back stocks; the new cost of equity will rise to 14.5% Question a: what is the current stock price? Answer: The current dividend per share, D0 = $400,000/200,000 = $2.00 Since the growth rate is expected to be 5%, D1 = $2.00(1.05) = $2.10 Therefore, P0 = D1/(rs g) = $2.10/(0.134 0.05) = $25.00 Question b: what would be the stock price after recapitalization? Step 1 Calculate EBIT before the recapitalization: EBIT = $1,000,000/(1 T) = $1,000,000/0.6 = $1,666,667 Note: The firm is 100% equity financed now, so there is no interest expense Step 2 Calculate net income (NI) after the recapitalization: [$1,666,667 0.11($1,000,000)]*0.6 = $934,000 Step 3 Calculate the number of shares outstanding after the recapitalization: 200,000 ($1,000,000/$25) = 160,000 shares Step 4 Calculate D1 after the recapitalization: D0 = 0.4*($934,000/160,000) = $2.335 Since the expected growth rate is 5%, D1 = $2.335(1.05) = $2.45175 Step 5 Calculate P0 after the recapitalization: P0 = D1/(rs g) = $2.45175/(0.145 0.05) = $25.81     PAGE 15 PAGE 36    (I /0012QWZi5LWX\z#[uȽj϶R hCJUVjhLICJU hKCJhk hjCJaJ huzCJ h9)CJhjCJaJ hCJ hjCJ hFCJ hLICJ hLICJ h"MxCJ =()In ; < g    8 ^gdj & Fgdj`gdLI & FgdLIgdLI$a$gdLIOx L M 2 4 a b /GQjL^`gdj & FgdjgdjgdLI^gdj_.IuGH^gd  & FgdLI`gdLIh^hgdLI & FgdLIgdLIgdj !"/0CDEFHI^_`׺ץxi_Sh1hLI6CJH*h1hLI6CJjhhhCJEHUjֶR hCJUVhG^8hLI6CJH*hG^8hLI6CJh;H(hLI6CJ h CJjhhCJEHUj˶R h7 hCJUVjh7 hLICJUh7 hLICJ hLICJjhLICJUjhEhCJEHUpy7YZCEegh & FgdK`gdLIgdLIgdLI%567ABIJKXYlmnoy{/67YZyyyy h CJh7hLICJh1hLI6CJH*h1hLI6CJj hhEHUjR hUVhG^8hLI6H*hG^8hLI6hjhhEHUjR hUVjhLIUh hLI hLICJ hCJ+ :PYy !"CF`cdeghĵ卵zvo hG^8hLIhLIh}ghLI6CJH*aJh}ghLI6CJaJh CJaJhLICJaJh}ghLICJaJ h8CJjhhCJEHUjR hUV h CJj hhCJEHUjR hUV hLICJjhLICJU)MN{|~ 56IJKLNOt񝎪| h7CJ hXCJ h( CJj,hhCJEHUjR hCJUVjhLICJUhgghLI6CJH*hgghLI6CJ hLICJH*hgghLICJH*jhLICJUmHnHu h CJ hLICJhKhLICJ0z{ NOujkfhiy & FgdLI & FgdX`gdLIgdLI^gdLI6hiϸϜχρ{n_Uh&tvhLI6CJjhu~hLICJEHUj\M hLICJUV h~CJ hKCJ h( CJjFhhCJEHUjR hCJUVjhhKCJEHUjR hKCJUVjhLICJU hLICJhLI6CJH*hgghLI6CJ hXCJ h7CJhgghLI6CJH*   t u ! !!!!! & F^gd~`gd~ & Fh^h`gd~gd~ & Fgd~gdLI`gdLIJK & 2 V s t D!^!!!!!!!!!""d"g"ڶ䪡~njh~CJUmHnHuj* h8h~CJU h}CJh4gh~CJ h~5CJhRh~CJ h~CJ hfCJh.YhLI6CJjhhCJEHUjR hUVjhLICJU hLICJh&tvhLI6CJh&tvhLI6CJH*)!!"3"b"d"g"q"""""M#####b$$$$%%%&G&y&& & FgdLIgdLIgd~g"p"q"""""""$%%%%%%%%%%%5&6&8&9&E&F&&&&&&&&&&&&&&&&&''ȵȝ||rrhnw hLICJH*hnw hLICJH*h.YhLICJH*j@%hhEHUjR hUVj#hhEHUjR hUVjhLIUhLI hOhLIh.YhLICJH* hFpCJ hLICJ h~CJh&tvhLICJ hLI5CJ,&&6'T'U'h''''''(=(>(?(R(i(((()0)1) & FgdLI & Fh^h`gd & Fh^h`gdLI & FgdLI$a$gdLIgdLI''2'3'4'5'6'7'@'T't'''(((((>)S)))))t*u******+ + +]+^+++,",@,B,H,f,g,,,,,,,,-----諸h)ihLICJh)ihLICJH* h-CJ hLICJH* hCJ hCJ hFCJ hLICJ h"MxCJ hFCJ j`'hhCJEHUjR hCJUV hLICJjhLICJU81)2)T)w))))**Y*w*x***++$,J,K,,,,,,--`gdLIgdLI & FgdLI & Fh^h`gdLI-B-C----...../"/:/;/I/c/d////00J0 ^`gdLI & F h^hgdLIh^hgdLI`gdLIgdLI------,./.2.H.W.X.a..........."/#/6/7/8/9/K/L/_/`/a/b//////ǷӪӐwkh}hLI6CJH*h}hLI6CJj/h`:hLICJEHUjM hLIUVj-hhCJEHUj R hCJUVh6)NhLICJH* hY,CJ h7CJ hCJ hLICJjhLICJUj}*hhCJEHUjR hCJUV'///1 112222G2P2g2h2i2j222222222{3}3~333333333333333 4 4$4C4X4Y444444hXCJaJhCJaJhLICJaJhWZhLICJaJ hLICJH*j2h`:hLICJEHUjM hLICJUVjhLICJUhehLICJ hXCJ hzeCJ hY,CJ hLICJ h7CJ hACJ3J0Z00011222i222222:3r3333 4Y44J5^gdLI & F h^hgdLI & FgdLI`gdLIgdLI @ ^@ `gdLI44585I5J5_5~5555555696:6S6T6U6666666667737475767n7o77777774858>8?8R8T888888888K99999:::;;;;ݿݿݰ hXCJ huCJhhLICJ hCJhWZhLI@CJaJhhLICJaJhCJaJhLICJaJhWZhLICJaJhXCJaJCJ55T6U6666674767o77777758S8T8888888 & Fgd ^`gdLIgdLI`gdLI8929@9K9L9m999999999::::,;-;; < < <`gdugdu^gdu & F h^hgdgdgdLI; < < <<<"<#<)<5<=<><H<I<J<n<<<<=====>?.?m?n???????????ſ|o`j5he"hzeCJEHUjQR hzeCJUVjh"MxCJU hzeCJ h CJ h:]CJhXh"MxCJhvZhvZCJ hvZCJ h"MxCJh"Mxh"MxaJ hFaJ ha%CJ hFpCJ hLICJh!hLICJ hLI5CJhWZhLICJaJhCJaJ huCJ% <<$<*<I<n<o<<<<<<=========> & F gd"Mxgd:] & FgdX & FgdvZ & Fgd"Mxgd"Mxgd"MxgdLI & FgdLI>>4>I>J>V>>>>>>> ??@ @@@@@ A AAABBh^hgd"Mx & Fgd"Mx^gd"Mx?????@@@@@@@@@@@AABB B2BNBVB[B\B]B`BbBqBuB CCC^C_CC+DNDODPDQDDDDDD E EEE#E$E%EョӨӢ hDCJ h%CJ h8CJ h}CJ h3v}CJ hCJ h|CCJj8he"h"MxCJEHUjTQ h"MxCJUVhe"h"MxCJ h:]CJh6h"Mx6CJH*h6h"Mx6CJ h"MxCJjh"MxCJU4BsBuBCCBCCC_CyCCCCCCPDQDDDDDDDEJE@FF^gd"Mxgd"Mxgd3v}h^hgd"Mxh^hgd%E'E)E?E@EHEIEJEKELEMEOEPEUEVE\EcEhEoErEsEuEzE|E}EEEEEEEEEEEEEEEEEEEEEEEEEF F F F3F4F9F:F>F?F@Fɹ hDCJhWCh"MxCJH* hCJ h"MxCJH*jhCJUmHnHujh3v}CJUmHnHujhHCJUmHnHu h"MxCJ h%CJh6kh"MxCJH*;@FAFGFhFiFlFmFpFFFFFFFFFFFFFFFFFGG G GH H4H6HJHKHQHRHUHWHHHI#I[IzI|IIIIIIIIIIIIIްޠޚޚ h9iCJjh CJUmHnHuh6khDCJH* h"MxCJH* hXCJ h3v}CJh3 h"MxCJH* hDCJH* hDCJ h"MxCJ h%CJjhDCJUmHnHu8FFFFFGG G8G9GGH H3H5HTHVHHHHHII"I#I[III^gdDgd"Mx^gd"MxII.J/J;Jh"h"MxCJEHUjxQ h"MxCJUVjh"MxCJU h CJ h"MxCJhjhCJh+hvZCJ h CJ hfCJ hvZCJ hCJ hYACJ hl{CJ6Z2ZZZ[ [[[[[[[x\y\\\\\\ $$Ifa$gd#gdvZ & FgdvZ\\\\]nbbb $$Ifa$gd#kd;$$IflF !    t06    44 lalyt#]]]]]nbbb $$Ifa$gd#kdu<$$IflF !    t06    44 lalyt#]]])]2]nbbb $$Ifa$gd#kd6=$$IflF !   t06    44 lalyt#2]3]5]|]~]]]]^6^Y^niidXddddd & F h^hgdvZgd"MxgdvZkd=$$IflF !   t06    44 lalyt# Y^^^^^U___``2`I```````aacadaaaab`gd"Mxgd_gd/`gd"Mxgd"Mx____`0`2`;`J`S``````PaRaaabacaaaaaaaaaaabb bb$b:b;bcceeefȻȻȻȭ{sh-CJaJh :%CJaJh_h"Mx@CJaJ hFpCJh_ hA@h"Mxh h/hh"Mxh_B*CJphh_h_B*CJph h_CJ h/CJ h :%CJ hdjCJ h"MxCJjh"MxCJUj@h"h"MxCJEHU*b;bbb%cpc dSdddeJeeeff$fNffffgd"Mx gd"Mx`gd"Mx`gd_`gd"Mxgd"Mx^gd"Mx hh^h`hgd"Mx`gd_f#f$f)f*fMfNfUfZf[ffffffffffffffffggggggSgTg[gggggggg hh hlhqhhhhhhhiiiLi_iri~iiiiiiiԴԬԤԬԤԴԤԬԬh_`CJaJh+CJaJh(ECJaJh"Mxh h/CJaJh-CJaJh"MxCJaJhA@h"MxCJH*aJhA@h"Mx@CJaJhA@h"MxCJaJ@fgTgggggg h)h]hhhwhhhh'isNsWsXsvsssRuvvvvKwpwz5{={ |||||=}l}~+;FeɸɸɊɸɸɸɸhO)ThL(@CJhO)ThL(CJhL(CJaJhL@hL(CJaJ"jhL(@CJUmHnHuhL(@CJhE7 hL(CJ hL(CJ hL(CJ hFpCJ h~CJ h-CJ hl~CJ h"Mx5CJ h"MxCJ h]*CJ1*s=sXsvswssssst6tZttttttPuQuRumuuuu $ 0*$a$gdL($ & F 0*$a$gdL( & FgdL(gdL($a$gdL(gd]*uuvvv_vavKwLwMwpwww xxsxtxxx"y$y 0*$^gdL( 0*$gdL( & FgdL(gdL( 0h*$^hgdL($ 0h*$^ha$gdL( $ 0*$a$gdL($ysyzzzzzz ||N|O|||||;}<}=}$ & F 0h*$^ha$gdL($ 0h*$^ha$gdL(^gdL( $ 0*$a$gdL( 0*$gdL( dgdL(=}m}}}~~~~~,=?,.xƁ 0*$gdL( $ 0*$a$gdL($ & F 0*$a$gdL(Ɓ;IYw͂/TÃ1 0*$gdL($ & F 0h*$^ha$gdL($ 0h*$^ha$gdL( $ 0*$a$gdL(134f̈́ބJɆ ^gdL(gdL( 0*$^gdL( & FgdL( $ 0*$a$gdL( 6959;<>?IJLMxyܗݗ疋yjjBh{hL(CJEHU#j8R h{hL(CJEHUVh{hL(CJEHjh{hL(CJEHUhL_hL(CJH*aJ hL(CJH* hL(CJ\hhL(CJh"MxhL(CJ hL(CJ h`UHhL(CJ hL(5CJ hL(CJhL(@CJh4WhL(@CJ& #)HIVX !lngdL( & Fh^hgdL(h^hgdL(%FanjȌɌ> & Fh^h`gdL(^gdL( & F gdL( & FgdL( & F gdL($a$gdL(gdL(>vwɍ ./Ўю>?ďŏ dgdL( & F^gdL( & Fh^h`gdL( & F`gdL(]^_KMҒՒ*gdL(^gdL(`gdL( & F`gdL( & Fh^h`gdL( & FgdL( & F^gdL(h^hgdL( & Fh^hgdL("#EkÔĔ`23l45^gdL( & FgdL( & FgdL(`gdL(gdL(5ɗʗ {|23pqr{@Bpq & Fh^hgdL(gdL(^gdL( +,-.Z[mnopr𾯤qb𾯤PAjKhBhL(CJEHU#j<R hBhL(CJEHUVjIh75hL(CJEHU#j;R h75hL(CJEHUVjGhBhL(CJEHU#j:R hBhL(CJEHUVhBhL(CJEHjhBhL(CJEHU hL(CJj(Eh75hL(CJEHU#j9R h75hL(CJEHUVh75hL(CJEHjh75hL(CJEHUrz{z{? $&FGNdiğ  ?@AHTUrtuv| àޠߠ̳̳̳hvYBhL(@CJaJhvYBhL(CJH*aJhvYBhL(CJaJhL(CJaJhEhL(CJH* hL(CJh3ShL(CJ hL(5CJFqz?@BDFG @Ar$ !`081$a$gdL( `0gdL( `8gdL( `088^8`gdL(gdL(rޠߠLMNOQRTUWXZ[ghi&`#$gd]*gdL( `0gdL( `8gdL($ !`081$a$gdL( `0gdL("#<KLNOPRSUVXY[\bcefgijpqstuwxyh0JmHnHuh h 0JmHnHu h 0Jjh 0JUh0jh0Uh]*hL(CJhL(h"MxhL(CJaJhvYBhL(CJH*aJhL(CJaJhvYBhL(CJaJ%iuvwxygd]*&`#$800P$:pL(/ =!"#$% Dd b   c $A? ?3"`?25Q/l\XƟBlD`! Q/l\XƟBl& ``Px+DQ= ޛ)ӌ$Y J$& % +% 5 2S[,N6j,,,A)[IJ$)bsBfs{a/>zlҹ*ef ٬mTef kzMA1fiGl obKM q[(';xP 4ݔ`-X< ӬfxB?4 '8&&g6JyF1z"]-i.V9G歗n._k 8xs%ɻa8;CWsdti7ez|,:D<鏧#\YϣVsZ ]qNto뭯9uѝ>2J|zSoWp}(>5XۅLH7jDtS|x믖侻^9!7utSAzP(HT!V T<@;*aM6pE@7װ;}Dd b   c $A? ?3"`?2|'Mob\*jq/`!|'Mob\*jq(+@2ixR=Ka ~kգ:8N*R]~`;8-T<+V(9".<ܫ"hIɧA pV 0 .}HdIm8Vi [[/CpnƀKM-h:@d\:)Fl}e4bgLqjfM# KK١NBwJ-XԃjXF^b/Vz`͕Ν3GzE ^MǍs#W!=伂3Qͬ V"$ڏl$B{<>n&kI^y_a\}>Bݴғ3ǸmO-=AoC>zT0DㅨvT і=#p:۬ݷ$FwVDd Hb   c $A? ?3"`?2tDžJ ѿ0|`!ttDžJ ѿ0b@"xtBxcdd``6dd``baV dR`1FYzP1n:LB@q56~) @ kTznĒʂTݿJ ,L ! ~ Ay ?'r 4:]j m$#(~3)ܞ k@A7ڃ&` W&00l:bP? 0l'>| voPqc d*4.=8fdbR ,.IeP;P"CDP]c!pf~+qDd 8 b  c $A ? ?3"`?2DF7?5Ȑ `!F7?5Ȑ@2xS?,Ca{{U/E `t`$M"QDla !$V 1hbQ ~iIkww hoHIWlT*+p<۽ [0_vg=p'#|^MB5Z_5 Ħ^DP#Ec{9 q/wAb f|!DFSVd|%\ゕ>['5<1 TM| )fM}B U1S?*]?62Aw3ׁ<2*gInj%+C·~S9t<=n ۭpT^{ ~?*xR?k qstyW/wy]C989Mns, \ã<)u-l&IC,J|ym1;MaπpZ].!1Dd HDb  c $A ? ?3"`?2,:VG$~<ϛ `!:VG$~<ϛ~@ xS+lQ:3ƜLÃa蒹1@Hr(OjF5>݇M(G)IH^Lk۽RoﵿsӛFtP^Wmд۽Dh]kJ~oC :u }AM$MSF}f6!5%66͎h%!5R.mdKzJW{N,mF}]v4| 7}.&Fs_5{>AC7GC<8gqќ*O6/V hT""/QCU|6O/UMs?} pj '}~~<:qw.50ֻbnu6!,hRɺ#4 +(#i8 Q_,%sхzA>i;֖_đyDd h  s *A ? ?3"`?2GɫhjG2f# `!ɫhjG2f`@2xSK#Q7odu "''Xw\Ѡ1Q1BJE^l;R;ŏ qfv@gy7~oGA@)zAT "EUE(5#{gu=¿I;6kpzci[@gX4wӄ 5kZm)qܽɎtm!8߲;ɻ L]Ӵu^h.QRNWϻq?vRQS{m?C?۫+IוӪKp9+g,ȧs:uI}sf2/8I/; 'bq{Ҿ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~J<>Root Entry Fpk:1Data MWordDocument:8ObjectPool :pk:_1376761551h;F : :Ole CompObjfObjInfo  !$'(),/012369:=@CFINQTWZ]`cdehklorsvyz{~ FMicrosoft Equation 3.0 DS Equation Equation.39qV—(T 'P 0^ =D t (1+r s ) tt=1" "Equation Native _1376761547 F : :Ole CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39qVK. 'P 0^ =Dr s FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo Equation Native  g_1376761558F : :Ole  CompObjfObjInfoEquation Native U_1376761518mF : :V9P\ 'P 0^ =$20 FMicrosoft Equation 3.0 DS Equation Equation.39qV³DL 'P 0^Ole CompObjfObjInfoEquation Native  =D 1 r s "g=D 0 *(1+g)r s "g FMicrosoft Equation 3.0 DS Equation Equation.39qVŠ7 'P 0^_1376761524"F : :Ole CompObjfObjInfoEquation Native _1376761528F : :Ole "CompObj #f =2*(1+5%)0.10"0.05=$42 FMicrosoft Equation 3.0 DS Equation Equation.39qVµ, 'r ^  s =D 1 P 0 +gObjInfo!%Equation Native &_1376761534 $F : :Ole *=D 0 *(1+g)P 0 +g FMicrosoft Equation 3.0 DS Equation Equation.39qV%X- 'r ^  s =D 0 *(1+g)PCompObj#%+fObjInfo&-Equation Native .A_13767615691)F : : 0 +g=2.00*(1+0.05)40+0.05=0.0525+0.05=10.25% FMicrosoft Equation 3.0 DS Equation Equation.39qOle 4CompObj(*5fObjInfo+7Equation Native 8Vwp 'P N^ =D N+1 r s "g n FMicrosoft Equation 3.0 DS Equation Equation.39qIL 'P 3^_1376831696Er.F : :Ole ;CompObj-/<fObjInfo0>Equation Native ?e_13767615793F : :Ole ACompObj24Bf =53.5310 FMicrosoft Equation 3.0 DS Equation Equation.39qVI< 'P 0^ =39.2134ObjInfo5DEquation Native Ee_12937823648F : :Ole GCompObj79HfObjInfo:JEquation Native K)_1376761583',=F : : FMicrosoft Equation 3.0 DS Equation Equation.39q (   FMicrosoft Equation 3.0 DS Equation Equation.39qOle LCompObj<>MfObjInfo?OEquation Native PuVY( 'r P^ =D P P P FMicrosoft Equation 3.0 DS Equation Equation.39qV(P 'P 3^S|G+q0|r3g$x}==>{0uVxO >>R&cK|/e+FNO׶M!݁Mo$[&m Y@jSI/B3@) 2ff !ZDd (h  s *A ? ?3"`?2Y`aQE<@@,`!Y`aQE<@@,l@(e>@2uxTAkA~3d55`I]+m0 HaA/"5IBB <A.RE^Sы`ٙ٬L2߼ͼ `ǙD8cr`0 ˽9\;#8 XWqBX1RB` S(Mj!Qar7Jb[fx-^o7gng}kZU&ȵܣ|+5KeW4~uS ;ھZ-޺*PN-TX>0#GF_7[?-3Oh+7gs|-KXYj)yB-[m?fOj|qdh|N[O]# {]I'"vv/zn*ĸ t󔕅pHԍtzȤͥm;/RoJwZYqwywy1YgusqLToEzʂ=Fy,6Тc "{8 Dd b  c $A? ?3"`?2"Jǩ`Ljp`!"Jǩ`LjF @2xR=HPwI҂!:8D8 tRLAV?`ZŒѱ:uqppq꠸8*bxl /}߽wڅ[V<t$A 1ݸ^Y?1$|C^V!*&^?t NT3tZif5#,65+Xgmv&f~s+v֭keX[H|⑝vXSH9Rro%j+ 7aUq_CEQ y^*G;:^QyԑuPg:]>h& C:n%O˳̻xzn'ym;_u?[C,U;Ж$ҐS=@CIv-X N:~zyʘS'Ke'ho3eDd b  c $A? ?3"`?2_ԥnha0kXo%`!_ԥnha0kXot xtQxQ1KP5Z DE ]!Rl'1BDX8uk?å?A-N˫"{wwB (l)M_KeY_5`rO\4,V9:;E06u~Tz/LA\@Cs4|O"8({aw8`w:[[c4oMۧ%>g2%j4 ]d۔\R쿌 ̭)FC3W{fvIt>FefRuG"? /}~v >508` hta(Xu^IUHԙPn;xgDd b  c $A? ?3"`? 2S.9Ai f`/`!S.9Ai f`/tx xtSxQKP5ZV Db7D8*vp*D(+P998u,N.NSGEw/"{wwBm( e/Rs8֯ZLsO\h9:%06,'a?#SL ~=< jʟl#!AGasv ݾ |v{\|qk-P3=3$SsicHJ5$C]6"/pokOM1x=0yhY£R"? /}~M>5HձkQ5(XER擭o$d;tA]wWDd b  c $A? ?3"`? 2AIf[e 1@`2`U7$Dd Hh  s *A? ?3"`? 2%KF`!%KF@"@2lxR=K`~K6 TQCW2t-P!`B_prtJP\?޼~p/w{K! X+L@(Ŝ6EqkiN[%~*,1c m[@(U/n1g!yzP$0K϶%  mBuo1hz˵S/swTZKz[Դ]? $zw&hp#W55çyr/Wu]>\2>I-_>~8G;z2;RZQ^8\u g5Dd[b\  C 8A  bod8240x_cut08c RE1$+[̈so5Β[o!n F1$+[̈so5Β[oJFIF HExifMM*bj(1r2i''Adobe Photoshop CS2 Windows2009:12:09 13:55:19ߠ&(. HHJFIFHH Adobe_CMAdobed            7" ?   3!1AQa"q2B#$Rb34rC%Scs5&DTdE£t6UeuF'Vfv7GWgw5!1AQaq"2B#R3$brCScs4%&5DTdEU6teuFVfv'7GWgw ?T9kKCZ$R9_ VxɴΊZ[eE?譵%m@tdP]ږ6,݈'%N\v?GaIxv+5BT nkB ~ WdYUSa "NĹKg~B8n>n?XUϦ?v1?^t@ :b7auq+qTx;]}XoF^SXvzj=ߕ`0qC_75oUkn85@x-?6J@Ԑԓ9Tۿe'n_ zKAu=Ad~_M|Ϗe`$7Iw;Y7Jd]c ti~',"Kwlsw;7b$cOSnG=*V="̀i:Q؆?kA->'EWT6ֹ6>s i.ԣ{/j49nk*sNAu}sb:إzwe~9ׄ e(F$LJɠλևg}hauͮsNב1QieVl!^k5z?H/kX`xw 7u bnҥĹxc~VR_[\}7}͑wQDΜ@o-{OܦIN*teTPRCm ѦDuc6iPõoq]ͪe_g}Y~dp(=ɐzqk Xʏ#ǧO ,9#)Dl6K\ƛ1l%1Vemr~goI؊Dz6ljkAi\kRޞםnuhW¤JdQ^F=:>} bt,;M-8eQފlɧLh[K?]TEA?ϦHI$7>\]?_9?Gj҂Fgq^KyԊ5s=m\Ɉ;rWJŪ\>3q [~;zwQCweʫeF.Ou1&9?I6%pDB,Z/ױӲߢgA!wal1ٓY}IiiyHkc/GMnM׺!C\}/uzXW]k[Z^C$4 4l]U0?xp͎:n? U%L YpF~?nK ᶚ ?F~}~VgmpEɍi2ֆ77|z92vJ2bEX8ϳ" w[0k+knGrm׍QMooV۲^r.n.i;ޥkZS2'wTʩ$W15cs}JBwI)xൠrmx2.jooei$qt~/oҡz{[meI$UC6ZykԱ5Aj$Z~}Umm^v5t[c߫ s?em_;GA~7Im;Bc5~>7 er%O׋s~%xNpC۞?8!_0$cHgi|H~I|J,Photoshop 3.08BIM%8BIM8BIM&?8BIM 8BIM8BIM 8BIM 8BIM' 8BIMH/fflff/ff2Z5-8BIMp8BIM8BIM8BIM08BIM-8BIM@@8BIM8BIMSbod8240x_cut08cnullboundsObjcRct1Top longLeftlongBtomlongRghtlongslicesVlLsObjcslicesliceIDlonggroupIDlongoriginenum ESliceOrigin autoGeneratedTypeenum ESliceTypeImg boundsObjcRct1Top longLeftlongBtomlongRghtlongurlTEXTnullTEXTMsgeTEXTaltTagTEXTcellTextIsHTMLboolcellTextTEXT horzAlignenumESliceHorzAligndefault vertAlignenumESliceVertAligndefault bgColorTypeenumESliceBGColorTypeNone topOutsetlong leftOutsetlong bottomOutsetlong rightOutsetlong8BIM( ?8BIM8BIM .7g JFIFHH Adobe_CMAdobed            7" ?   3!1AQa"q2B#$Rb34rC%Scs5&DTdE£t6UeuF'Vfv7GWgw5!1AQaq"2B#R3$brCScs4%&5DTdEU6teuFVfv'7GWgw ?T9kKCZ$R9_ VxɴΊZ[eE?譵%m@tdP]ږ6,݈'%N\v?GaIxv+5BT nkB ~ WdYUSa "NĹKg~B8n>n?XUϦ?v1?^t@ :b7auq+qTx;]}XoF^SXvzj=ߕ`0qC_75oUkn85@x-?6J@Ԑԓ9Tۿe'n_ zKAu=Ad~_M|Ϗe`$7Iw;Y7Jd]c ti~',"Kwlsw;7b$cOSnG=*V="̀i:Q؆?kA->'EWT6ֹ6>s i.ԣ{/j49nk*sNAu}sb:إzwe~9ׄ e(F$LJɠλևg}hauͮsNב1QieVl!^k5z?H/kX`xw 7u bnҥĹxc~VR_[\}7}͑wQDΜ@o-{OܦIN*teTPRCm ѦDuc6iPõoq]ͪe_g}Y~dp(=ɐzqk Xʏ#ǧO ,9#)Dl6K\ƛ1l%1Vemr~goI؊Dz6ljkAi\kRޞםnuhW¤JdQ^F=:>} bt,;M-8eQފlɧLh[K?]TEA?ϦHI$7>\]?_9?Gj҂Fgq^KyԊ5s=m\Ɉ;rWJŪ\>3q [~;zwQCweʫeF.Ou1&9?I6%pDB,Z/ױӲߢgA!wal1ٓY}IiiyHkc/GMnM׺!C\}/uzXW]k[Z^C$4 4l]U0?xp͎:n? U%L YpF~?nK ᶚ ?F~}~VgmpEɍi2ֆ77|z92vJ2bEX8ϳ" w[0k+knGrm׍QMooV۲^r.n.i;ޥkZS2'wTʩ$W15cs}JBwI)xൠrmx2.jooei$qt~/oҡz{[meI$UC6ZykԱ5Aj$Z~}Umm^v5t[c߫ s?em_;GA~7Im;Bc5~>7 er%O׋s~%xNpC۞?8!_0$cHgi|H~I|J8BIM!UAdobe PhotoshopAdobe Photoshop CS28BIM:http://ns.adobe.com/xap/1.0/ uuid:EF8B41629CE4DE11B9B6E46F2222CFD2 uuid:F08B41629CE4DE11B9B6E46F2222CFD2 uuid:0C5278429CE4DE11B9B6E46F2222CFD2 uuid:0C5278429CE4DE11B9B6E46F2222CFD2 2009-12-09T13:55:19+05:30 2009-12-09T13:55:19+05:30 2009-12-09T13:55:19+05:30 Adobe Photoshop CS2 Windows image/jpeg 3 sRGB IEC61966-2.1 1 2000000/10000 2000000/10000 2 256,257,258,259,262,274,277,284,530,531,282,283,296,301,318,319,529,532,306,270,271,272,305,315,33432;EA0D041E600B18D8ADAC2B6F0E4336D6 735 251 1 36864,40960,40961,37121,37122,40962,40963,37510,40964,36867,36868,33434,33437,34850,34852,34855,34856,37377,37378,37379,37380,37381,37382,37383,37384,37385,37386,37396,41483,41484,41486,41487,41488,41492,41493,41495,41728,41729,41730,41985,41986,41987,41988,41989,41990,41991,41992,41993,41994,41995,41996,42016,0,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,28,30;CEBCFAD33ED3D8FFC3BF8E8F87AB3527 XICC_PROFILE HLinomntrRGB XYZ  1acspMSFTIEC sRGB-HP cprtP3desclwtptbkptrXYZgXYZ,bXYZ@dmndTpdmddvuedLview$lumimeas $tech0 rTRC< gTRC< bTRC< textCopyright (c) 1998 Hewlett-Packard CompanydescsRGB IEC61966-2.1sRGB IEC61966-2.1XYZ QXYZ XYZ o8XYZ bXYZ $descIEC http://www.iec.chIEC http://www.iec.chdesc.IEC 61966-2.1 Default RGB colour space - sRGB.IEC 61966-2.1 Default RGB colour space - sRGBdesc,Reference Viewing Condition in IEC61966-2.1,Reference Viewing Condition in IEC61966-2.1view_. \XYZ L VPWmeassig CRT curv #(-27;@EJOTY^chmrw|      !"#$%&'()*+,-./0123456789:;]=?A@BCDEFHGIKLMNPOQSRTUVWX[YZ^_`abcdefghijklmnopqrstuvwxyz{|}~ %+28>ELRY`gnu| &/8AKT]gqz !-8COZfr~ -;HUcq~ +:IXgw'7HYj{+=Oat 2FZn  % : O d y  ' = T j " 9 Q i  * C \ u & @ Z t .Id %A^z &Ca~1Om&Ed#Cc'Ij4Vx&IlAe@e Ek*Qw;c*R{Gp@j>i  A l !!H!u!!!"'"U"""# #8#f###$$M$|$$% %8%h%%%&'&W&&&''I'z''( (?(q(())8)k))**5*h**++6+i++,,9,n,,- -A-v--..L.../$/Z///050l0011J1112*2c223 3F3334+4e4455M555676r667$7`7788P8899B999:6:t::;-;k;;<' >`>>?!?a??@#@d@@A)AjAAB0BrBBC:C}CDDGDDEEUEEF"FgFFG5G{GHHKHHIIcIIJ7J}JK KSKKL*LrLMMJMMN%NnNOOIOOP'PqPQQPQQR1R|RSS_SSTBTTU(UuUVV\VVWDWWX/X}XYYiYZZVZZ[E[[\5\\]']x]^^l^__a_``W``aOaabIbbcCccd@dde=eef=ffg=ggh?hhiCiijHjjkOkklWlmm`mnnknooxop+ppq:qqrKrss]sttptu(uuv>vvwVwxxnxy*yyzFz{{c{|!||}A}~~b~#G k͂0WGrׇ;iΉ3dʋ0cʍ1fΏ6n֑?zM _ɖ4 uL$h՛BdҞ@iءG&vVǥ8nRĩ7u\ЭD-u`ֲK³8%yhYѹJº;.! zpg_XQKFAǿ=ȼ:ɹ8ʷ6˶5̵5͵6ζ7ϸ9к<Ѿ?DINU\dlvۀ܊ݖޢ)߯6DScs 2F[p(@Xr4Pm8Ww)KmAdobed@      \  s!1AQa"q2B#R3b$r%C4Scs5D'6Tdt& EFVU(eufv7GWgw8HXhx)9IYiy*:JZjzm!1AQa"q2#BRbr3$4CS%cs5DT &6E'dtU7()󄔤euFVfvGWgw8HXhx9IYiy*:JZjz ?v*UثWb]v*UثWb]v*UثWb]v*Uتk3%R+E%^U}F[_2~q'C0y[|2nBӇcqM<__nof'Wpi:kӿpzU"$OǗ]LD ş/,%^> Ffz)77gq3γ@bo0k~\H BAPŘϹE4?+_KW\kxhŸըqCK%6?4C)CJ $kS* }'aCH{ԏ- ?? 'ȏpX7SY`g#i<ʷ5mf(4zWv%o<޵,|]ܓS/pq@>$Bz772qxһWO&_d"Й-b{Be8O˟*_Qw Y?.ȩ+Gp8jAN0^q=Y5'`*Eq>xJ#]E͟5Yw,::סmGq#Z ɧZH#󿚒dګ ƣ4ˇm֓O 4tcKxw/sQT_%ߦãVBõ81+AJׅo'FRwƑX_om9m\CRW&8}VB+ޤ7HT7Yw_jGVa&[$!Gō16 zG"MySJ S_Qq'H{lRĦ8}k2(P`T`P*0SFfiq7 V5-`BǪ@kʼnϹX^6҇̿Oz5I^˧VZU!m983(++0tpMApAUثWb]v*UثWb]v*UثWb]v*UثWb_v*UثWb]v*UثWb]v*UثWb<)O-XoCg.|U98էݾae P1P$1*~O#ЖŐ)`}8yAsYyZ@YQ+~ =_r$H2kw~4#ߡ'MK$+Kr^ &9y4HO+'y*TD֯/:VָiiR󎺎r#ްլ^cM֩'51YKί}-7g5MrF~Վmtɏ+zg_~Q*pO,mޢbv\Y1 1QD"UUQ@adv*UثWb]v*UثWb]v*UثWb]v*UBJzJѨAV\U?䏙0~Py3W]hv0a:<>^䋖<7r(EFz?H&7t;=WW%;^=fF20:hB^_7篓|>?79(9⦤ YwH)Ey/ G".4(o]j5Xc5,1WI??>l2Xʋ} ?0FH"Cbcc#п0t~pZ&Ɵy~1VMAi:ΏYGhZJiƀ$Lzv*UثWb]v*UثWb]v*UثWb_v*UثWb]v*UثWb]Y$<jZITN}w㷒.Λlwz%FJޡmSKKKraP~j-Gy,:jrץqm 'rTZ{lC^ 6Jz)wx9%ZNoȽ[Csߍ7 4Bc':~~SΤ͵O1,oi.޿#41Dt{iz-Xhmcvvp)$aTll-b]v*UثWb]v*UثWb]v*UثWb]v*UثWb]v*UثWbR]o˞^-|ǠzWq|T2A]AOqqůu<|uyѺSOj*⠌ߙ\-(0C>mqtP5(\j:XH?̟(n4o/}> }G:֥g#f@6qiOBr_+XbN ֜-́G@`iK?4g͟-ZU[GF⣡lZ/p]v*UثWb]v*UثWb]v*UثWb]v*UثWb/|!PX_Ʒt0)iqZx󕚗ԯ?3#sMZ<ʛiyw>jlp]ֲ ~b'KLpiPҤ%bGՅzWooqo;~v+T.lQS鶍id^a#oyO^G<6eBaod9s92RUثWb]v*UثWb]v*UثWb]v*UثV7y>X^^eVyjwoO zN;*^f-*5FmIߠď{s?VCO/?9S?')=BACPH' ?>ԕK9i7~Aj2nŷ8Pt(zW r#ٺr/)lSZw*ڟt[V*~]i;rx$֟utZ"!nm!<k{In סSzpXzD|b:)3\Iw-=*Be{7t>g%CV|?Pޯ vN5r!_Yf?χh\0eh\1ϏȯOXjdGr^U {:ڬ_y{kuqaˈ٭WICHo?)<O%5 euEƒ7j0OF998Β ނr?ZeZ?M&[bqIJaBՔ1hc l~`=2dy?SH?3?,o=̟)>֧ JHGO۱v}Qq=2? VHu/4gUԭq!Go~^嗛ʿX+IAZj %z0Hv*UثWϞ@< Y]>d?w3V& x?Zȗ/i< ]F:4`_[GaA jG aռAFxu {&벊5 vz~4-)S$Ѽc*.7ѻhxNayоF̰:4?9*.}و7A2Fţ>ŭ]v*UثWb]v*Uثv*UثWb]v*U??1FߘG6Z4zڕ-2Fw@K9J?jiy6ΚYQn5+~?JI\ߘr[u>-!UӖܮ5+v_Z>bjnϨݙXIs|aaثWb]v*UثWb]v*UثWb]v*Uتm 3%y"(ܳ1xU~jxmk:Ψh<އis(obLjCrkݠ{Pl;2ͪ='Y~RSת7/.duCWYŧO! ^jI}n!uğZm/&JU +z;Ix^n<}ɍ#ZΞx־VH+{x@ Ѐ>>s90e'R30{.jzRdzp7ei1?{t'Jct2Lb!_͆8h=Ɇn]v*UثWb]v*UF{{{ #2u4V`A/q?[~D3FL|w*}<][OQ+rЀ6;d|0{G.Q1ߞ^|9!-ZYyK@fm.>VN<'' %MG-[v.-8"5(+r'u}C1>Wg9D_?Nx6̚tjzJYh=ڻdLHvՊ_Wz?& <7<Թ ~iOP[y]u{GPAAv*UثWqCwߦuo fV2 ɢM}Q}5A8Ke1."/[;qSɟV`-z5:ɧZQЦPP Eo$Z+s)^TSFgES֒Zݺy`_C~_~k~ZkiW΋;6w@OE}H[O-4 UثWb]v*UثWbv*UثWb]KNnM^K,c3^7Cy%b5O˿/k:u n3eV[0ޅ;n>&$V R$!FiU58S˷/TkpPn|ztxS ӕ (?ȏOeW;Z,h}\]Ԯk,I&S"0yafUثWb]v*UثWb]v*UثWb]v*Uߘ?5?1t}S_$[ҴM>MrHbd.#Q/ȟ367KTICAn]q;.??85~YXɤy#GckR_jw01{(S+T/7$yƻ֋i;P+CA$1m=LZ<yoohm6ATdmfb+$DXKV>JጟS޳q9߱M7V{ qQ$`|6֝9O䲾. 6y[YK5$wek<7!/=J5ߓ1yP6GPC1aQG7IKO |?;QkM.cHM& , Šy2⺆:ТGGۦCfe9 [\q5yVE;_/[7ՉZs)n2xgmipi}b+;hbvT4T -UثWb]v*UثWb]v*UثWb]v*Uߜ\byK܊_Ok(CMg|Pd[rͼ/<~cJ5p oF vZn7C=HLwϑo4j6Z=/hO -sfVj,ˎxeÒ&'CATЌXv*k]<ե]^g,<Ţ_ #SexfVFF("8/Ϙ-}Gq7PEc+Y^ۆLcq %A;`yli`&/?(UӥmcwHUcĂ[#}(:xefZ}ڶDXjVr۫,e v*UثWb]v*UتյVv׼7rgm Oͷn!YI.Za`q҄D:liVX>:J$nG"E )ZW]mo6tY#7dt`C #|{8yQW/Ys>{s_y#TUހzm(S|x˖̻v~e/*䗞].|qHð U_ž)C\Z݊v*Uثv*U?JO/~Sɟ[Yw/>ċ2h]dƧH@?t_M"E?-T-o4PhAЎnj7÷tS|l}he1krKNVR+B!`i\ `N'C49N]v*Uت_:^i:֝miwјtȒh%C^7H 2cHBmI]~GXEW2KWHnsX7^*ySskLk'ϭ("q?Un|G\ꐀ)mx]"XK-([i<,r01^b]>f<_oͺ N3BJ;7q( o8[ۛQG]i5&Ag,"(m.K #p͂Ln}?Q} ]oO6'ռV/Cj62X%Fn8 FeE=O;v*Uv*#̞bN98ki>!-nkwhcS)UF\[q3)_䧖,[R$?tțVǞaQ#.eUثWb]v*UثWb]v*UثWb]v*+ ڗo˺D~H"1ZS3hi rKޥӒ盈/5pZlQfʩ<d}T_<a-Mڦ妽ԙ-,I&Ǯhr{M.<8C>ՙdb]v*UثWb]v*UثWb]v*UثWb]9iykT:$|u ($SU)\0iE]~\`~n򝼿Ca/?XDʟ̯0=~wkBhKBu S#dyGz?L,?' ;O+A7mG̷wZԮORYV{`O>L"OhQ򧗕@ƓbeP+"Ӯd8WbrSFDGc\*.|; ĺe9u0HP&_'i$yͿеZVwuoOB'3hp}Po/BV˟:|bɴ]Di Mf)/͟gzMðOҷ CDgc@ ūHd^GF6Ӹ=~ۦjfcoڕݯ;]Bd I#,>G&P(A7GafUثWb>Z6ME=-Km.wQ`@4O1~\xrq=Őr3>LQԱyc%F ARHufeW%>H9eUC++ R6 T]v*/<Ϯd]Wti|F+T:՝DwͰPaJՓ?$" iAfҼi]GR*y+[3E,|Sί6qOΟ+CХ_QuYEVOyH f|{*LFj}8#I,Jye$cAbb]v*UثWb]v*UثWb]v*UثW~rwyKcE\F#Z/zXc^JcrjUJRy̾.V0>.յm:_;̚  *?Āv Kc ]1Y3t>.JUثWb]v*UثWb]v*UثWb]v*UثV o)~]yQ1\_hΡ?hm-b $IaAQȁ2k!ŖUpyZGu;#8by3ֹ!(@<Y/>fq||>oLGG/}Yanu13]wL~O{9yNT#O-<%Xv*UثWb]v*,QOO Rh\WVee;FUZ&k}sWfoVi0]H?HQUQǗ'7G9R#IDgK!l%`D~vcDhܦv$:֎LO;3ڬy }[[ դZܢosDaUee$FVثWbK>U5;85:'5qŒHe Ђ01#0c!`yǒŋ,u |8s0IRC-ާ~tU%}0/0jg <7kv1^L[:~iڍaeWjZfwZ~k"J9ee :4n*UثWj~SySsAG\:MjTn)մ]F"+>~(R{0فBF!>> %7b[wm6}V?:ܸ \ZHGe8GɥyvK~cK˒F6kC) ض^?"cz7|hP6vwbKI45ZIer]ݍY'$_]v*UثW>e?2OɭK^Zӭu?8edW=rއS+C6"AC\ni7g6 \[߆pCՓ쏿'ߗ:?NO̍E }UM V;HHX1jeojuYu33"IzثTStuVH-x撼#VjUt;CSN^wWR,0ƿ9 ܜUniڽmi@<2JFYZTcI鴝RT[ kICq9!ET1Tv*3`Tp[dm>w~Hϗ?0|Ƹid0Z\i--E,gfV }/IǪ2c6Yv)ثWb%)YJK…X#b{~\yo5ZwTc8m@C\LbH3uA0eXq{+1ݓr~+Wb]_B]ծ.tF=K~lŨ躭ke2$MhU;1pPߛz?[_>mp,ft4-үԼj^H/`QN\y7^"ZykϪj !QV-<$-Z /+?/{y5? O1Š)>Pccalv*UثWb].б? ?iMoO}}qvW_ V4X/W,|Qo4_>o/=OIgCkmi5:*D$ԯa#OD[п*&^V:.]WRկn;յfo."bm/+.##ͿBT-發ɪ7p] %X**5eR<]iyqKB2ۿO8yn̐~p=F 4emd[X [4+QEbw qp^k</[=\.VMxiYA^<XF>DnrOv ~MűGT[ԭast=X2P(zbǀMgf959+OV4-^XWeffVe+zB 㑾A$5K9]創5i?\ϔ/]]g\%+<%=oJ2GɼC#֟ZX~p~e3~Q~b~[2'[:6t<ۏnܖuAnFWЇfUثWb]>y˟N{?˾X{NOh8nRHQn@ oϯ&id/c_O,UoB\=i B5ve^.A2Ǡv*UثWb8fg/%WZ7rEI BHW LpCM-NxhL#Vh;C0gmʻ|ū?e49&Ǚ-..#Vw6b2Z4zFe-D,1fTI'zZߙ'95et-gߔ5^fY.J)4Wu԰t @e=>x>L!ڹ4&x.ȾUk:Gn-*`0=:lWSiI'q bh F[ DHe)?0<͢Aкn7M6FH=hc+DKH x6|q(9 p{ٝɍ _~V򥆳F̷S枦u{ӓ^O1 u~EyIm<{#k/{M!#X ^M)(F>taPC$'es!η\8W2~`hϩj_7^ LX,`jI0xŪQ ^co:ߝ~~򏘴&Bc曍,j7nH#ݚ8X0 G$o<~cjߙ~[ʞqm=Nql]9ЮIOx +] <_󒟜>y(_\]2\}n[yZ*%UQ՚Nȋu neyצao{8Wjv(d-ҫA.O\3 NSWb]xW|6U~[K ZԵMo' 5АF? o\[(pC_z%{cXVQy;,rON|se#d|Xv*U_K=~JIadu}Asr:~Ӫ4clbhWKέ;ZOPj#FVESpFbܫSzd0S]~}b?w\EsLFӖz6R,˭j+qGIB9 k_]-rs)X` 1qjSzf=_Z,ݯ{T{;7Wh*;w*m:&}熗jR7~K-骟SmUP[Id Z!ylbm-c8N{ 0:,c#hfW Xރl2_}__ѭ_"fG-Ԍ-MKLDmk3lju‡b]v*5ۯʻF!{x %_ij^•1H7o܁ ײ{W&/w;/St?8n[c44ƿ=K)cg@s5ԴP*UxhҶ>Ube58Ycg@[iDD"V&?-/?>W#V[D/k^Lf2`h~L2ثWb]Hs =ToKZUWyAib-98bƵο2]Go˽7^Co:{qcSvhDȆ OT 2糢ɇWɏ1>"HI?//4~aCGп0->Wqi=LrGU$24)?-45y)-t_,XZXLmuu _l7; ٛl<%-ys#k~k~^?>JeƵj^]-hTOx h߶22顎#pci柒9Kk5\Xy3̲Z*Fbkf2\= !]\e%gJg|ѧ~xbyt5+i~)0fgf7ƷCM:̙kbH?0u[O1[: ZU5/8DpaϟU |G/-K(?3|H i̓>Q,b&&oyNܺ#?/g#V-|[mR,=as47Q$װ]qݖzM6i0<<1 gܛ9y+?>Mw^H~9Ru_j77H)r)cAciCARK< )Z_oO)˭"\[AZx$W*Ӊ' =t0NHE>9t뿖zu}6Z:ОTKS=G{;v*UثW/n?'7 eKq:oxWAUԣBl14^n8>s]v*K#yOB(/[PbW\jG^0F^Aa7QKwB1dXTQQ֙^v*UثWb]v*Uث7|}G-Ohnt( R̋)UdѭHQe HHs ,ޞ}^๽Ew\xO%V_.6Qǯ2N[WbPזvڅ݅+sg} vdU(}$`c("íj3D֧;ߕ[5,?jf5SqNX>E&,]v*U?*~y7~`D PjuJX56K$q-昄x0'G8gܦK95/5ݝq}!b]v*UثWbw;_5oXkV0/tRԶQ)RJm r?7Vߗ͝ލ>Z9]@=K#F Uvqv,{Cߝn ?Z^Au-w0$D_IXy;J~%5[p^x_!~qwd2ܢ<$ @~*Pg~ey;cqϷt7~o5]FSjQYĈQH, bM];I^MO@+M::D31<Xˈowk'::diߛ0O5߭Ռ?^+:cT(-Ƿ)Zr, C{&b]v*Uث)5п;J<[1ի۩^4! {Wl 2x'Ѽh4t[5Ҫ cmP}W 81=uثWb]v*UثWb)n2LUZYh Ǖeyhj{T1DgɔU;=-G #-;rzϚ5|Ț-?YѼ޸Ӕ[K.8 <jHY#"=~}~\L2@;m@ߚ?R<w c7y^k%UWPƒ> ڇ*wc v|9cS=M_qJgGד+"1wإʹrƎ#M+ q*}&Y N]FLaȚ<3 'jg[ڽ6LB3FEN#t S->(@ɠ;/W.|-^zyQյ ыEz1 Ý9P Ӄy̱DjD[|^A?4y]-=HsaկlhfEzJJ;Y#%QF'9ثWb]v*U>@S}M4"zI`{3ޏ}˛2H4^]v*UثV)={Z&yJκkX29H(*! kw-SM2;wU5eq1c,2޸( #NF,X#uWO?% Xgi%e&O<` @ m,_~J|wZ|Zب3G.'a;Cnј۱hސn˽WRegio{kus-Dn-ˈ(}6?&wCT_6!gXđZao#m4 HjXr*-<,ߜǞbq=SNVwv_Bd[GeUFj@MCWb]v*U ^\qͧi:-5/ahh:}ClZ ;,z7b]F%l9'mgƫy,'zNLƟ2kGYy;v*Uث?H~ 꾶She>^NI8/gK?2yڔIj({z2?0}9ثWb]v*UثW~M~R?:FjhͶ[(X%-}:61xƍ9?o+?zK|o2% ]EJx[XJ;DODW?iy򿚋knյ=u[]Jx$WAB''#eig^-'GwKfE]56A{n]v*UثWMhrqH!=ǒ-! s[IӐa\/{l3k,I9LtCGeHUثWbĈ9~$& Dӭب@Pw B3\>=fS_ Wb]dƿ#=KwB[x{}OԒ5e5^Y5_?ӲVKQ8~H-c9YlCL.cWb]v*UثWb]v*i:֏ZY6K4ycb̯xn|뿕};R䲶˥ X S~|](IcزxUثWb]v*UثWb]v*UثWb]v*UثWk?KTѿ3t)^44Q̇)b{ĊeS:R% Ñ'.E]v*UثWb]v*UثWb]v*U`>HOϾ]AN~[M gznIv*Uت]j:kWtk9 AoK#} a )r~\!km[:뱸u%jTXL|䑙"OPUثWbr:l.|8-$I%QKM (è3p8yy"<9E0_gCk_E͡im&4F-kH-+I#,φV<S||aݍE2]OwVIڃb>)v*UثWb]v*U⿚_~?_ד5,|m} ˏ2CߖD\t{]FVu .'gxeTXHϽ)d>UثWb]v*UثWb9ӿ,t -^L/RCcO{^@#*-xXNp`$A$YA ~`kyg~eU兿{RKh24f̤S9VVc-2r3P]ʟż6}K mqyaDV IqJD0f[z+y~D:Fpc[BB$+^ c) ca.V={m"Pt6] "vGYcWx%bT4$mz r2$Q#waWb]v*UثW~k">.HӮ=>h5(jm5m>A=׃͑SB5yby{/L?+</uַ:vlimitZw)$.*[RˎXc!Dz.]v*UثWiO׼vjGHV:-̺W'=/jq/$CkoP^\6wmj*:EXJVF <e'QwZii\mP(WX2 քmxwD~Am旓CO` eqjzl673)R *OڔY {;v*UثWb_6i~gh O+r]}]#I&%}fU"jiEoNP'!~:Й{.]v*-23# Kf/u>O^SIufCT7M2v&FʲxxFSQ5"H 8aB"*eOv*U??vߜ_TGe/CS>޸OVZyW`hnp1E?zs?tNV~c75$g('hCO]:3o4屜ǟ}aѯNQmNXo喊 !I}gv*UثWb]v*U9%mC~KyCLSXuM7I1O.dN%R~q0O.?]aM:{ӘMF$!1u:Q ߔW7ޣm 縍4=ET.חQCL܏v,}E]WDb/'-fVQS:W*z|Pu}C=Bt3w+X}%SLXG>| Gvju I bm%]jpɽa܀hzGWʚ.[{1/ZյkX_M+2,afpP 2Ɵ5ygZҴOuM'˖Qj]r\<("MniG‡b]v*U_7Z};^I\ryoGrL6PjP;h#| ܇hjxœ[yQ˫jɨWF\WR좿 ؊~,#>'쓜UثV95~Gޯ1 Ey7V;H_yE;&5`rLC+ N61,Mw柣5Γ hZ$:vȬer!TM|S,ϙ;Ab]\^^\Giiiuu38gwv *M_0T]Ed~z6?y4=2 cPnP]h(l /( J.>^#C\w7G~~ƹ70Y%ZΕp n*24*C+A⯍<4>EiיS~qác[@h]+Q1C{g[sGBkǏK;{푪MTWb]v*UثWb]v*UثWb]v*UثWb_:OO/]=*js=ߝ(H%OgFËqʥsٿc]d7?1>UPȦ+ޏA0ߨ$ox)DY.]v*Ui@&KJtv~^eݿ=Ʈyw-<*ym'Z }Z F4Ul+h#EѼc6Z&L:}@8T}Ko'yG˗7}XrjZI+>8Ĭ}FW'?76'1=:$ZOqP,$a92Z|^Q[)K+_u:§A@J\Oil;c/ Ⱥb]wH8RHUz?w0uˏ.h2M.zO6DC/dV"2cuŸb-Ϟlll=3MNӠ8a q4V*b~y/2+:E:]ؒ{;yXe@7BU Ќ.b'v*UثWb]v*UثWb]v*UثWb]S~Y,yOyR)DZ]d4WK*0,IG؏Tscɗs-=a1L]mƵ[Wғ`Ce},zGw>^G$sF,RxBYXTF`6 ]v*UثWb]v*UثWb]v*UثWb]y(t{X_9OWƁG):R+ȶI ,)tx5Ϧcߜ^e&s[#R[/ {,Y%Rߝ2hvFnB7'Xu }WC5.yZ6S%I#,8tv*UثWb]v*Uث|oB}nҼ׺𥽔jGv-t9/?U-,?Ƨ)-%:TK:*?psgF|h.mYư¡#(UU.*ev*ԬF Xf@U7YXE_ߓW~cuI^څF9yċvoFU.F,;ORTԥXdWί[޳zH4E`kAlo_n_-bL/Hf΃(ӖT@2H7/IH ePb*Uثv*Uث6g掋O.~jfQg[JC;Rҍ T^%(55"wIm99fӖ5_"O5,bH 0 '^>W֬ájq_O.-C$>ӬRUثWb]v*UثWb]v*UثWb]xG$/yJ51Z_IkFOCH#~F&It?!/mtxc}K-w!Pj̙1oA.*a|[?^J÷ʺWV$JPOK9M U'-5uQR˨l$;v*UثWb]v*UثWb]v*UثWb]v*UNh!H.!IJ O_1376761591BF : :Ole RCompObjACSfObjInfoDUEquation Native VD_1376761597@JGF : :Ole XCompObjFHYf FMicrosoft Equation 3.0 DS Equation Equation.39qV(p@+ 'P 3^ FMicrosoft Equation 3.0 DS EqObjInfoI[Equation Native \D_1376761599LF : :Ole ^CompObjKM_fObjInfoNaEquation Native b_1376832913QF : :uation Equation.39qV< 'P 3^ =D 4 r s "g=2.18550.11"0.03=$27.32 FMicrosoft Equation 3.0 DS EqOle fCompObjPRgfObjInfoSiEquation Native juation Equation.39qh+L r P =D Ps P Ps (1"F) FMicrosoft Equation 3.0 DS Equation Equation.39q_1376833036OcVF : :Ole mCompObjUWnfObjInfoXp~ L r i =r RF +(r M "r RF ) i FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native q_12938078446^[F : :Ole tCompObjZ\ufObjInfo]wEquation Native x_1293808123`F : :Ole |(  'r s^ =D 1 P 0 +g=D 0 (1+g)P 0 +g FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj_a}fObjInfobEquation Native _1376888145eF : :(  r e =D 1 P 0 (1"F)+g=D 0 (1+g)P 0 (1"F)+g FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjdffObjInfogEquation Native +y)L NPV=CF t (1+r) tt=0N " FMicrosoft Equation 3.0 DS Equation Equation.39qJ‹)L NPV=C_1374901420YjF ::Ole CompObjikfObjInfolEquation Native _1374910592oF::Ole CompObjnpfF t (1+IRR) t =0 t=0N " FMicrosoft Equation 3.0 DS Equation Equation.39qJ L ObjInfoqEquation Native )_1376977720T|tF::Ole CompObjsufObjInfovEquation Native _1376977721yF:: FMicrosoft Equation 3.0 DS Equation Equation.39q+i L  L = U [1+(1"T)(D/E)] FMicrosoft Equation 3.0 DS EqOle CompObjxzfObjInfo{Equation Native uation Equation.39q+m-  U = L /[1+(1"T)(D/E)] FMicrosoft Equation 3.0 DS Equation Equation.39q_1376977722w~F::Ole CompObj}fObjInfo+.  L FMicrosoft Equation 3.0 DS Equation Equation.39q+   UEquation Native 6_1376977723F::Ole CompObjfObjInfoEquation Native 6_1376977724F::Ole CompObjfObjInfoEquation Native 61Table/  FMicrosoft Equation 3.0 DS Equation Equation.39q+8L  LOh+'0   0< \ h t 8Chapter 1 -- An Introduction To Financial ManagePj^S~CNycu~]hޱ}?g0^\ ݓcWI0l!ZieJC~nҀn‡j>u=O1kwãA@ڒwėsr/DO?A^SHk?IOУ}!~?9$M9 FykD)&v*{c>j9 Nv)GgwFM=jkPa܈{##itykS'SQSKH^hqt_.~_yM|)i0[{|R"cNH&?1~%ثWb]6ʞCe<߮hdF7E9쨥@hjqiǒB#<<7t[;˨DM&CKUu ?:GK's뽢ɖpw>nzo1yP5}RzeHI$V'ry̽gv*Uy?~_Oa]iuDjzGn9 vcf"+'%eMZOU$| q2jzEO7_ŝGL_M=k3kYo y!$T E y;v*Uثv*UثUtaPA؂*7Z.>wE75H4x#֫(d+nŀAR܋b &?緞)M?rWZjϬFEzjotڒ')jA.˞o-u*kt;Mwm-:e4\oy]v*UثWb]v*UثWb]v*UثWbyޚ S^]O4YL,/1[v _$qQ6/ɯ6i<~JH}]<cހ,o ݤX]C{AöO||XvutǚQ)y&oN#Wq N6t?  Av—b]v*UثWb]v*UثWb]v*UثWb]v*UثWb]v*¼ [?|iIuAa/n!m"4N"&@sq5Z:ayd#2hzO#C =@N,L?=@Vxԃv9Y:ig-F#O?--A`^~ec>[-֖qH x#Vb͕o.IIK8v*Uy,b)hT N Y^Jǔ@=(2-3:9mw'|991f#4 RH1c\R'qk^[MCZמ#lZtQi`WNc$e,v*UثWv*UثWbV#tpUхAb84$}Zߔ˲_SGE^kJz,Q&W/2-;|墘!|v7pE PwRi<+;z̲>Raں ȳkpÎ|\2^Wb]v*UثWb]v*UثWb]v*UɞQޓ.O,kѧ}3UD*V„v8yTտ4GјO jvv*UثWb]v*UثWb]v*UثWb]v*UثWbR[Y4)u=sUt?/ZIYTtp[^L8@gXpw>d ͭXǍƳ{Z WHj}c3E#H 1|~Py~r U:CZh9P?efdYǖ1>w}WʾQ_4\;IkwEPif^}YPȺb,w/m.]7󑟔@G/|d̥z/6K#}=5$c̱$ @pG {̂-B۬iPmK#)߁鍸w=/?M֡I5HeJSEH@ڧ)s}#b]v*UثWv*UثWb]v*O̿ȏ/-/ -|m[n5}Fu O~KzKm""L_ '姣D>kJ4_9_>j%D yt ٦}5>lڊtJr#ocG7̺eSM&V#GPqo?ثWb]v*UثWb]v*UثWb]v*|#`iJϓo7Ŕzu qA|ת4ߕpʞpX蚛iMdAw~* 5Yw9G-'X/X?.ʺ̻t>dO~1a3Oc g璣VZӇtd_li2ٿ؋/Wb|^]3qq݆(m1 v\.ii}"~;K9]v*UثWb]v*UثWb]v*UثWb3*f!UEYCʏ-ܭ)'؃Mdq,ZqH%9#I,uK:M>_9.2qv޷{Xא+ Ǔ/0`{:R0Oav |$}.|rO67aXH.8@"Civۮ|@c !?$7Y>{̺{UP%6׼)_~ebGXUﰬM q_ c6O$O3K-B!qay B&dCQQ)#pkˌh,v*UثWb]v*"GGXKI#T IL3Uйk]Z?,:Q 6Mn VHy (C~QLֺ7$U`g:Xʏ*N§pv~Z:_󏿙O\jT: Re-X)n~ p{MLe/y aY~Z36>.-;>Cco}qY&O8BEA5=}'~[75>"&enOlwβZ*al֔;z4ȓn.\%./n-|pɣ\fб'rI$-b rfتk먬-Խ=_<f?2|("򿐬|{#Niv\,Pɿ=K?55T`ԚA$6-P2| ?^em&oa:PV5x$ϨO6 zǖyIߗ???_~\^d&SOڐM;v*UثWb]v*UثWv*UثWb]v*UثWb]?6y|'hp@֬-};ʽ-^۱vIݽj=M6U8y-.~2Nk, ڔ0olg!it>_oLZ [/erv#ܜ!gu ^_$'yy||BYj89pKO.i6֞Giyͭ` #ڬ󌿝kT RN8ie%̏3EUHQ{DY$ֿ?Ҥ~UkKW$ ~t(smz_䧖Lm/&hNR dXCN`$#5 <*Uث Om>{ ^ (h:wEھ89&rBKt(k榱D F<@&KquWmg4Vz>eЬFe$u?jM6z퍴T:j~QQywa%B3)U$t>nGL-L$pJ[u?[X`ZL--22SXߔJ򷗴-iqStHl֛ E" *UثWb]v*UثWb]v*v*UثWb]v*UثWb]v*UتY7,e5"[gO؏9UOQyֿ{-+c{4z/aBCX[j@>jRNÍOl H\T'U ȟ*9ygکZVVS6 Q~cG?ŻbWԼ3I**Y'wRλcmGT:Jys̜SW5$oC|vC^6C k:tF'⶧?ZNliT6;~-GC"Wb]v*UثWb]v*UثWb]v*UثWb]v*UثWb]v*UثWb]v*998驞6D.YUc_ٟYB1OqagKe5d4ۮYqaic~%qy dPԭ Rw(UثWb]v*UثWb]n=7O(#,Zr"*6*tЍfNHnu*sVLjwmGrqKB?F/KMr{[K!\QG!_?Y:wT tMkURe663ؑ;'4Urw@#=Kw5Joa@Bѷa4؝DGUwr.JHs1o+:4X괏Mvǖߘ|vLnOR C"6rv\kN%̃M!CT{6rEAjF`mL4eIN``u3D'Nx)/8#fluM:4:z#Zi8a8arQi~`CQsK09޴-\]=mbdK{&i#ʉ 4}2*T v v*UثWb]v*UثWb]v*UثWb]v*Uv*UثWb]v*UثWb]v*UثWb]v*UثWb]v*Uw/g$O?}~b¾x}_'~>ǔ}/>i)'T}f"\cg{K|RtS^\ezFO\?]%?~^8?ӿM}R?*~ZOvŰa}Az^~ԩS޷=/)\Y%UxO~ /msͥOxn53_gا;·8;·8;·8;·8U?/MKn?_9_S}n>~Iڸ2UԮC]Z?a~/nT' ʗcƜw/t5Է˷LZ=Q}b?x_?mz)ׯJYz?Sқ_!|y?\OOvŃ${}P5|{\}J/?}žF(}v*UثWb]v*UثWb]v*UثWb]v*UثWb]v*!Dd b  c $A? ?3"`? 2ku?q&S/, Gc#`!?u?q&S/, Hxt xcdd`` $X bbd12,(ㆫaztQ( TA?dmA깡jx|K2B* RvfR KXB2sSRs"6~.Ob廸ӪYt9oU q `q%oR@0+gdn+܀J.8\` ;*=0bdbR ,.IeC jg! @bd`mKO Dd b  c $A? ?3"`?2j n:r a`F%`!> n:r a`Hxt xPN@ۄHX0tPE #Rɺ%%5HOQY̮MjN۽s'.w`Ik{N꺶#z+\_doa@z+ぃJ{-tv302Jbrt* OlgE|qHޖEʈ$N|VxR|S?*ya*;b3S;!84K ‡ٿY#w=<6ޗP/CNDd 0 b  c $A? ?3"`?2gܡ㖌Rʜ\C'`!;ܡ㖌Rʜ\,:@2 xSKAff&jLR<(P!H{lHHbK/Iz*؃WWRKnR7{\ k(xv '=)t:nۻdp^f3t?ȷ v9  i}RxXXnG(GrhO5*)K'{otwhh8gA{TkoXijThʿӽG +CIa?ĩc|7|dd}sHf7)$ݕROcK&< 7)4qήL^5]/zUgXuo:H}f:KTPx%y<= NW~PZON-O(bK_2vLcKDd b  c $A? ?3"`?2QZQ[9c*`!QZQ[9c  @2xR=KA}w+c-`!{+3Hb>+:  & xRMKQ=贈H m\ehDBZjѢMBZ?*{ y~{}W!^1ퟴ"ؔrR-ęIa;,=:iLMdq/D8)PjM9jX*T\n8M;WuKg8%vjw"(w'U7Yo\%  #$?ýOњVz tvyk^ݢJԿ6I[nz $Lc=g_u(?Eu:1^2%^#\g}R_2o* 3 L^ +O!1f¬g]JUo8.]]ױR&ƅc Ij!6ɧK0ّ,½E x)k[(*R_*/Eu_xU};}P睐rw->yL 76g?^5e¬nkvf˟Tj݊Յ?bP^vf濺> XV}"җ }!ny]xeĄ#}#ڿTc[&~ wUwCW ]yWZyF}kUy> f#7yl E':kH4TvJe8)| 8Șjdig)Dd 3 b  c $A? ?3"`?2sã+E;ګQO2`!Gã+E;ګQz ` PxTOHaߛݝt60uCc;$=d0Ц ̂'Oͣv oxKico7|;y `~ꡝ#>RjvT]ղs\I~l[}:}\6@^۸`vt4 Kҟ=x!՜M]F6ml0E/Z뒵MU¥`2+/YO;(:O(̉>81ny 2~qM5A>a[_xVwUav}q Vu uoʓŜs/o_C| _'/ٴ{#tQxy /UY>C^<ɎL28C2ve⍩hi9uX6iz;[P3Dd 0b  c $A? ?3"`?2,kv7><^Z6`!kv7><^Z `HPxSKQvuuWȬD((kBԥIlF کnĎ<5:u!fޮ8Doy33|3 /@˅[gKo6BZdAǦ|@gC0^B; >>NdPZF05:/IAiJ# ^+"a4!B-sQd"WH}5B_MOGz55? UR+REMp`\r(M{w޴X^ß2#~42z;d"5`8y*RPԓutEV)CKa7^[ةo[| ,@$g9t"DK0p{+E,J+ h?I9R t6݉cOLHBn8`\rI2 @Dd b   c $A? ?3"`?2JOL`Q -$N&8`!OL`Q -$N`PxSKA~&&61z --EQO L1T JnDh/҃DMߛd%5Yf}o7D0 &amnY1n֢]x0H"J`$5>1HK_rP06w GМ#(Ycg CDznS@Ų}(i+*ւ zj>/yٟUukXj8ļˆ{b֗x)ϛpcX8u{Wc/^ P}r_ ΞvvXS^=Mz&NM+}%C2G[O7z*"٬0_5:bt™G j4ez5Qx}M3e:gzeB6mƢ7w:@o RB@tJN@;Pm`\#iz?w!_6Q$$Ifl!vh5 5 5 #v #v #v :V l t065 5 5 / alyt#$$Ifl!vh5 5 5 #v #v #v :V l t065 5 5 / alyt#$$Ifl!vh5 5 5 #v #v #v :V l t065 5 5 alyt#$$Ifl!vh5 5 5 #v #v #v :V l t065 5 5 alyt#Dd b ! c $A? ?3"`?2BjVE*Y ">`!jVE*Y ":`!xcdd`` $X bbd12,(ㆫaZ(Wcgb Р4 憪aM,,He`PP&,eBܤ\3> 1Dl\ _uUsi#F+VJ. r % 1 `+KRs.ԡÖB ; 3X?:sDd b " c $A? ?3"`?2BjVE*Y "@`!jVE*Y ":`!xcdd`` $X bbd12,(ㆫaZ(Wcgb Р4 憪aM,,He`PP&,eBܤ\3> 1Dl\ _uUsi#F+VJ. r % 1 `+KRs.ԡÖB ; 3X?:sDd< hL # C A?"?2(<+5fk3B`!(<+5fk3Z`@b|xRKQ^5O[H(eQVr 6 4ět): ݺuPO mf}T73oD|w@ H&X&8|[)WUv1Ye=`&m nq^1XԵvY3ۧ@?e D ~ yd[ cjur{VQxo]~ˡu+ZG'(쁇jIx0~(/1P~KV+ET 1 a5:bG!oO)n1]Qܪ)k(IxRI bij--Mˆ4 \ =a߼77jDd hL $ C A?"?2q1Ye*r0:SnjlE`!q1Ye*r0:SnjZ @||xRKBQ>=rhx9&6UC =D'g'h) 9.^_w= 58C1889qQl KA cpbBlT,c[!Rss۪V+ۅ Fh]?ƥ0:j}j$)y*YHN& $X bbd12,(ㆫaR`b`3H1g`YˀРc@ UXRY7PL ZZsy"+8|-OaIe0ZuTyL +ssqQy s?m`t`r*$ȇ\`n``ÄI)$5!NE.-vJv DdThL & C A!?"?2m봬ߘ?9<BIJ`!A봬ߘ?9<B @J|xuPJA}39 x\%b~@ 28Q]T~`ia_6D͙΁ݙ} Z@bؠ"uM*z$;u-Zښфm DQ՘6Nu@^!ك(MY^ayQft~DRuq8g^XR'? $X bbd12,(ㆫaR`b`3H1g`YˀРc@ UXRY7PL ZZsy"+8|-aIT 4Hq=`7S? `@W&00,⒚Qy s?m`t`r*$ȇ\`n``ÄI)$5&ȝ @ ] @u[> b#3X?KN8@8 Normal_HmH sH tH >@>  Heading 1 $^CJ`@` "Mx Heading 2$<@&$56CJOJPJQJ\]^JaJDA@D Default Paragraph FontVi@V  Table Normal :V 44 la (k(No List 4 @4 Footer  !.)@. Page Number0>@0 Title$a$CJ ."@. LICaptionCJR1R "Mx Char Char5$56CJOJPJQJ\]^JaJ.OA. "Mx Char Char42OQ2 "Mx Char Char3CJ 6B@b6 "Mx Body TextCJ aJ6Oq6 "Mx Char Char2CJ aJL@L "MxHeader$ !1$a$@OJQJh>O> "Mx Char Char1@OJQJhHC@H "MxBody Text Indenthx^h,O, "Mx Char CharDoD L(List Paragraph ^m$y8!$z !%z!&z!'z!(z!)z!*z!+z!,z!-z!.z!/z!0z!1z!2z!3z!4z!5z!6z!7z 8z 9z!:z!;z!<z!=z0 7$j*0J4 9 ?qEKIPU]_dXk%q?x}5EyD$ -   $"N#Nd^ C()In ;<g8  LM24abGQjL^_ . I u  G H   p y 7YZCEeghz{ NOujkfhiy tu  3bdgqMbGyTUh = > ? R i !0!1!2!T!w!!!!""Y"w"x"""##$$J$K$$$$$%%B%C%%%%&&&&&'"':';'I'c'd''''((J(Z((())********:+r++++ ,Y,,J--T.U...../4/6/o//////50S0T000000121@1K1L1m1111111112222,3-33 4 4 44$4*4n4o4444445555555556646I6J6V6666666 778 88888 9 999::s:u:;;B;C;_;y;;;;;;P<Q<<<<<<<=J=@>>>>>>??8?9??@ @3@5@T@V@@@@@AA"A#A[AAABBBBCCCCCCCDEEE F,F-FGFHFFGGTGoGpGGGGGJHKH{H|HII8I9I~IIIgJhJDKEK|KKKKLL4L5L}L~LLLLLMM+MMMMMMMNMNNN[NvNNNNNN8OtOuOOOOO PEPFPmPnPPPQQ;QvwɅ ./Іц>?ćŇ]^_KMҊՊ*"#EkÌČ`23l45ɏʏ {|23pqr{@Bpqz?@BFG @ArޘߘLMNiuz!Α!!<!<!<!<!<!<!<!!!<!!!!!!!!!!<!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<!!!!!!!!V!!!!!2!t!!!!!!2!!nD!!!nD!!!!!2! !!!!!!!!nD!nD!!!!!!!!!!2!!!!t!!!!!!!!!<!!!!!!!!2!!!!<!!!!!!!!!!!^ !!!!!!!!H!!!!!!!!!!!!!!!t!!!!!t!! !!<!<!<!<!<!<!<!<!!!<!!!!!!!!!<!!!!!!!!!!!!!!!!!!!!!!!!!!2!!!!!!!<!!!!!V!!!!!!!!!!!!!!!!!V!!!<!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<!!!!!!!!!!!!!H!!!!!<!<!<!<!<!<!!!<!!!!!!<!!!!!!!!!!!!<!!V!!!V!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<!!!!!!!!!!!!!!D  D D  D D  D D  D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!nD!!nD!!!!!!!!!!!!!!!!!!!!!!!!!!!!<!!!!!<!!!!<!!!!!!!nD!!nD!!!!!!!!nD!!!!<!!!!!!!!!!!!!!!!!!!!!!!!!!H!!!!!!!!!!Α!!<!<!<!<!<!<!<!<!!!<!!!!!<!!!!!!!!!!!!!<!!!!!!!!!!!!!!!!!!!!!!!!<!!!!<!!!!!!!!<!!!!!!!!!!!!!!!!!!!!!<!!!!!!!!!!!!!!!!!!!!<!!!!!!!!!!!!!!!!!!!!!!H!!!!!!!!!!!!!!!!!!!!!!!!!Α!!!<!<!<!<!!!<!!!!!!!!<!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<!!!!!!!!!!!!|!!!!!!!!!!!!!H!!!!!!!!!!!!!!!!!!!!!!!!!Z!!!Z!!!!Z!!!nD!nD!nD!nD()In ;<g8  LM24ab/GQjL^_ . I u  G H   p y 7YZCEeghz{ NOujkfhiy tu  3bdgqMbGy6TUh = > ? R i !0!1!2!T!w!!!!""Y"w"x"""##$$J$K$$$$$$%%B%C%%%%&&&&&'"':';'I'c'd''''((J(Z((())***i******:+r++++ ,Y,,J--T.U...../4/6/o//////50S0T0000000121@1K1L1m1111111112222,3-33 4 4 44$4*4I4n4o4444445555555556646I6J6V6666666 778 88888 9 999::s:u:;;B;C;_;y;;;;;;P<Q<<<<<<<=J=@>>>>>>?? ?8?9??@ @3@5@T@V@@@@@AA"A#A[AAABBBBCCCCCCCDDEEE F,F-FGFHFFGGTGoGpGGGGGJHKH{H|HII8I9I~IIIgJhJDKEK|KKKKKLL4L5L}L~LLLLLMM+MMMMMMMNMNNN[NvNNNNNN8OtOuOOOOO PEPFPHPmPnPPPQQ;QvwɅ ./Іц>?ćŇ]^_KMҊՊ*"#EkÌČ`23l45ɏʏ {|23pqr{@Bpqz?@BDFG @ArޘߘLMNOQRTUWXZ[ghiuvwz00 0 0 0 0 0 0 000 0000000000 00000000000000 0 000000000000000000 0 00000000000 000000000000000000000000000000 00000000000000 000000000 0 00000000000 0 0 0000 0 0 0 0000000000 0 000000000000000000000000 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 00000000000000000000 00000000000000 0000000000000000000000 0000 0000000000000000000000000000000000 000000000000 0000000000000 000000 0 0 0 0 0  0!00 0"00000 000000000000 0#0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O 0$O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O0O0O 0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O00Y00Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0 00_0_0_0_ 0_0_0_0_ 0_0_0_0_0_000b0b0b0b0b0b0b0b0b0b00c00c 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c 0%c0c0c0c0c0c0c0c0c000 0 0 0 0 0 0 0 000 00000 0000000000000 0000000000000000000000000 0000 00000000 000000000@0@0@0@0@0@0@0@0@0@0@00@ 00@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@ 0@0@0@0@0@0@0@0@0@0000000000000 00000000000000000000000000000 0 0 0 000 00000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0 0 0 0 00000000000000000000000000 0 0000000000000000000000000 000000000000000000000000000000000000000000000000000000 (((+g"'-/4;?%E@FISY_fiLkoryQVXYZ\^`befhknpqsvy !&1)-J0J58 <>BFIoO4T8WZ\]]2]Y^bfjKn*su$y=}Ɓ1 >5qriyRTUW[]_acdgijlmortuwxz{|}~xS / C E    X l n 5IK24%%%"'6'8'K'_'a'***7778888WLWNWWWW܏ +-Zmoy:::::::::::::::::::::::::::: !$+!!8OP@fO|(  D 0  "?P 1 3 "?P 2 3 "?J 3 # "?J 4 # "?J 5 # "?J 6 # "?J E # "?J F # "?J G # "? J H # "? J I # "? DB K  "? DB L  "? DB M  "?DB N  "?6B O "?B S  ?012 3!4"5#6(E)F*G+H,I{J=K=L=@>AAAnnnnny0  t1d:t3IIt2ItEjt5l>t6@t4@tF2tG@tIJOJ!tHU'tK!#!tL#tM#tNE #E tOpptJTJoJ#JLZV ` `MfzeV``Xfz8*urn:schemas-microsoft-com:office:smarttagsCity9*urn:schemas-microsoft-com:office:smarttagsplace ;e h " I K u$$$$%%''++++++++77QkRkHJKM!#Oz7< "4<NWcjY"_"$$''5(I(:+@+z+|+ , ,Y,_,,-J-S---33==A>E>AABBC$CFFTGWGM%MMMZZZZ%[)[p[x[ \\S\[\#j)jrjyj=mAmmnnnqrK~S~r{*5`k:=VZіӖ]c!Oz:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: / F   X o wy5LNO2V  5 $"$D$E$F$H$p$q$r$t$$$%%"'9'H4H477P:Q:U:V:\:]:J=K=L=L=AAAAFFhK{KKKKKPPPPmQmQQQRRSWTWWX0X0X2X;XJXSXXXXX[[]^__cccceeffff>f>fgg*kNOOQQRRTUWXZ[zOz4^l,3 }*.Fp8@1 `6x;DB-$>~'KH( OOPr3=V$f`_  Qa )j F/Iq8R#By*@h h^h`OJQJo(h8^8`OJQJo(hHh^`OJQJ^Jo(hHoh ^ `OJQJo(hHh ^ `OJQJo(hHhx^x`OJQJ^Jo(hHohH^H`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hH@h h^h`OJQJo(h8^8`OJQJo(hHh^`OJQJ^Jo(hHoh ^ `OJQJo(hHh ^ `OJQJo(hHhx^x`OJQJ^Jo(hHohH^H`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhp^p`OJQJ^Jo(hHoh@ ^@ `OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhP^P`OJQJ^Jo(hHoh ^ `OJQJo(hH88^8`o(() ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.@h h^h`OJQJo(h^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh^`OJQJo(hHhp^p`OJQJ^Jo(hHoh@ ^@ `OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhP^P`OJQJ^Jo(hHoh ^ `OJQJo(hH0^`0o(() ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.^`OJQJo(hHhhh^h`OJQJo(hHh88^8`OJQJ^Jo(hHoh^`OJQJo(hHh  ^ `OJQJo(hHh  ^ `OJQJ^Jo(hHohxx^x`OJQJo(hHhHH^H`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hH 8^8`OJQJo(^`OJQJ^Jo(o  ^ `OJQJo(  ^ `OJQJo(x^x`OJQJ^Jo(o H^H`OJQJo( ^`OJQJo(^`OJQJ^Jo(o ^`OJQJo(88^8`o(()     @h h^h`OJQJo(Ȭr3=V }R#By Qa~'KIq6x;,`_OO4^l-$>@1*.)jȬ`@h h^h`OJQJo(                           쨦                                                    FpU7_AQP* 4 #(E5>@c_DY%KyQ #%#u# :%9)*=*]*@+ ,Y,-1-5Ip8O@YAA9CLcF;HLIOM' P9zT?XvZ^+^_`zeff?f"h9idjvj/lG.q"Mxuzl{}3v}iVj~ZXf+u.F;r( l~u  <0CBHmG2H7 ?f|C7/6(D0/L(X:]~a%jc]cj(8cstwrK 3%jqh'~=--R\TTTTTTTTUUUUUUU)U2U3UWkMz3@Adobe PDFNe04:Adobe PDF ConverterAdobe PDFAdobe PDFS odLetterPRIV ''''0\KhCFFSMTJAdobe PDF ConverterResolution1200dpiPageSizeLetterPageRegionLeadingEdgeInputSlotOnlyOne0EBDAStandardSummaryInformation(DocumentSummaryInformation8PCompObjqmentSchool of Business Normal.dotzz180230Microsoft Office Word@+@Ko@.9k@^e0n՜.+,0  hp  CompanyN' 5Chapter 1 -- An Introduction To Financial Management Title  FMicrosoft Office Word Document MSWordDocWord.Document.89qAdobe PDFS odLetterPRIV ''''0\KhCFFSMTJAdobe PDF ConverterResolution1200dpiPageSizeLetterPageRegionLeadingEdgeInputSlotOnlyOne0EBDAStandardy`@UnknownGz Times New Roman5Symbol3& z Arial[K@CambriaPalatino Linotype5& zaTahoma?5 z Courier New;Wingdings"Ah %iGR=nNnN!243qHP(?K24Chapter 1 -- An Introduction To Financial ManagementSchool of Businesszz1802L