ࡱ> Y[X~[ Bbjbj 0ΐΐ7&8U" ; ; ;UUUUUUU$gW ZT6UIA9 ;IAIA6U KUEIEIEIIA&VHUEIIAUEIEISh?T3oCSTaU0US]Z F]Z T]ZT` ;$=EI>4?q ; ; ;6U6UHv ; ; ;UIAIAIAIA]Z ; ; ; ; ; ; ; ; ; : NAME: Project Activity : Trigonometry TOPICUnit CircleGOALS Explore Degree and Radian Measure Explore x- and y- coordinates on the Unit Circle Investigate Odd and Even functions Investigate the relationship of Cofunctions Examine how trigonometric functions are periodic (cyclic) MATERIALSProject Response Sheet BACKGROUND For these activities, you will be investigating the Unit Circle. You will examine the degree and radian measures of angles. Note: 180( = ( radians. You will be discovering the x- and y- coordinates on the circle for specific angles. You will use some geometry of triangles and the Pythagorean Theorem to derive certain measures. You will use symmetry to label coordinates on the Unit Circle as well as to examine the odd and even trigonometric functions. DIRECTIONS Examine the Unit Circle on the Cartesian Plane (Unit Circle: Circle centered at the origin whose radius is of length 1) Activity 1. Labeling Degree and Radian Measures on the Unit Circles You are given two Unit Circles: Circle A and Circle B. Notice that each Quadrant is 90(. What is the radian equivalent to this angle? ___________ Notice that in Circle A, the angle in each Quadrant bisects the Quadrant in which it exists. Notice that in Circle B, the angles in each Quadrant trisect the Quadrant in which they exist. The angles should increase by the same angle measure around the entire circle. For each circle, write in the angle measures in both radians and degrees for all angles. Be sure to label the angles in a counterclockwise direction, starting with 0(=0 radians as the positive x-axis. Examine the two circles. Be sure that the measures on each of the circles make sense. For Circle A, what degree measure does each angle increase by? _____________ What radian measure does each angle increase by? ______________ For Circle B, what degree measure does each angle increase by? _____________ What radian measure does each angle increase by? ______________ How many degrees are there in one full revolution of a circle? ______________ How many radians are there in one full revolution of a circle? ______________ Activity 2. Finding the x- and y- coordinates for each angle at the axes and in Quadrant I A. Consider the Unit Square, meaning a square whose sides are all of an equal length of 1. The diagonal bisects the square into two equal triangles, each of which is called a right isosceles triangle. We will examine one of these triangles. 1. You are given a Unit Square. Draw a diagonal bisecting it, and then, next to it draw one of the right isosceles triangles created within it. Label the known lengths of the sides on each figure.  2. What are the angle measures of the right isosceles triangle? _______________ Explain above how you determined those measures. Label these measures accordingly inside the triangle that you have just drawn. 3. Now use the Pythagorean Theorem (a2 + b2 = c2) to find the length of the hypotenuse of the right isosceles triangle. The hypotenuse is the longest side of a right triangle. Label that length on the triangle. 4. The hypotenuse of the right isosceles triangle is which part of the Unit Square? ______________ 5. Similar triangles are triangles whose corresponding angles equal and whose corresponding sides are in proportion. Below are drawn two right isosceles triangles. The first triangle comes from the Unit Square, as the one you were examining above. Label the lengths of its two sides and the length of its hypotenuse. The second triangle is similar to the first, but it has been scaled to be smaller. More specifically, each side and the hypotenuse were scaled so that the hypotenuse is of length 1. Find the lengths of the second triangle. In other words, multiply each side and the hypotenuse of the first triangle by a constant (a scalar). Think about what scalar is needed. (For instance, if you have a length of 5 and you need to have a length of 1, what do you multiply by?) Rationalize any denominators accordingly.   6. Now, consider a square for the scaled right isosceles triangle whose hypotenuse is of length 1. (In other words, you have half of the square.) Use your triangle to draw this square with a diagonal also drawn. Label the lengths of the sides of the square and the length of its diagonal.   7. Consider the following figure. Note: The diagonal of the square is the radius of the circle. 8. If the given figure is a Unit Circle, then what is the length of the diagonal of the square? __________ Label the lengths of the square that lie on the x- and y- axes accordingly. 9. Since the left bottom corner of the square sits at the origin (0,0), what are the coordinates of the right top corner of the square (the point that sits in Quadrant I)? _______________ Label this point on the figure above. 10. What is the angle measure created by the diagonal of the square from the positive x-axis in degrees and radians? __________ Draw in this angle and label its measure in the figure above. B. Now, consider the Unit Equilateral Triangle, a triangle whose sides are all of equal length of 1 and whose angles are all of equal measure of 60(. The altitude (height) of this triangle is drawn from one corner of the triangle to its opposite side, the base of the triangle, meeting the base perpendicularly. The altitude bisects the angle from where it is drawn as well as the base side that it connects to. This bisection creates two similar right triangles. We will examine one of these triangles. Recall: The sum of the interior angles of any triangle is 180(. 1. You are given a Unit Equilateral Triangle. First, draw in its altitude. Then, draw one of the two right triangles that are created by the altitude next to it. Label the known lengths of each of the figures.  2. What are the angle measures of the right triangle created above? _________________ Label these measures accordingly inside the triangle that you have just drawn. 3. What is the length of the base of the right triangle? ____________ What is the length of the hypotenuse of the right triangle? ____________ 4. Redraw the right triangle below. Use the Pythagorean Theorem to find its altitude. Label the lengths of the sides and the length of the hypotenuse on the triangle.  5. Consider the following figure. Note: The hypotenuse of the right triangle is the radius of the circle. 6. If the figure is a Unit Circle, then what is the length of the hypotenuse? ___________ Use the right triangle that was derived from the Unit Equilateral Triangle to label the lengths of the sides of the right triangle accordingly. 7. Since the left bottom corner of the right triangle sits at the origin (0,0), what are the coordinates of the right top corner of the right triangle, the point where the right triangle intersects the Unit Circle in Quadrant I? _______________ Label this point on the figure above. 8. What is the angle measure created by the hypotenuse of the right triangle from the positive x-axis in degrees and radians? _______ Draw in this angle and label its measure in the figure above.  9. Consider the following figure. Note: The hypotenuse of the right triangle is still the radius of the circle. The right triangle is the same right triangle as before, but it is rotated to be sitting differently inside the Unit Circle now. 10. Label the lengths of the sides of the right triangle accordingly. 11. Since the left bottom corner of the right triangle sits at the origin (0,0), what are the coordinates of the right top corner of the right triangle, the point where the right triangle intersects the Unit Circle in Quadrant I? _______________ Label this point on the figure above. 12. What is the angle measure created by the hypotenuse of the right triangle from the positive x-axis in degrees and radians? ______ Draw in this angle and label its measure in the figure above. C. Now, use the coordinates that you found in the preceding figures to label the x- and y- coordinates of the angle in Quadrant I on Circle A and to label the x- and y- coordinates of the angles in Quadrant I on Circle B. D. Remember that the Circle A and Circle B are both Unit Circles. What does that tell you about the points where the Unit Circle intersects the x- and y- axes on the Cartesian Plane? (In other words, what are those points?) E. Label the x- and y- intercepts on both circles. Activity 3. Find the x- and y- coordinates for each angle in Quadrants II, III, and IV. Note: The equation for the Unit Circle is x2 + y2 = 1. Recall: When both ((x, y) and (x, y) are on a graph, you have y-axis symmetry. When both (x, (y) and (x, y) are on a graph, you have x-axis symmetry. When both ((x, (y) and (x, y) are on a graph, you have symmetry about the origin. A. Use the equation for the Unit Circle to show that circles centered at the origin are symmetric about the x-axis, y-axis, and the origin. (In other words, perform the tests for symmetry.) (i.e.) y-axis symmetry test: ((x) 2 + y2 = 1 ( x2 + y2 = 1 Now, do the other two symmetries. B. Using y-axis symmetry and the points in Quadrant I, identify below what 3 points would be in Quadrant II on Circles A and B. Label those points accordingly on Circles A and B. C. Using x-axis symmetry and the points in Quadrant I, identify below what 3 points would be in Quadrant IV on Circles A and B. Label those points accordingly on Circles A and B. D. Using symmetry about the origin and the points in Quadrant I, identify below what 3 points would be in Quadrant III on Circles A and B. Label those points accordingly on Circles A and B. Questions to Consider Think about the questions before responding. Be specific and be thorough. Suppose that you did not have the Unit Circle on Circle A, but rather a circle of radius 5. Will the angle measures in degrees and/or radians change? Why or why not? Suppose that you did not have the Unit Circle on Circle A, but rather a circle of radius 5. What are the x- and y-intercepts of that circle? What are the x- and y- coordinates for the angle in Quadrant I? (You may want to consider the square and isosceles right triangle before responding.) Consider the two points in Quadrant I on Circle B. What is the special relationship between them? (Consider 45(-angle, which lies on the y = x line, and the relationship between the angles whose terminal sides pass through these points.) Consider the point in Quadrant I that corresponds to the angle 60( = (/3. Examine relationship between the angle measures for those in Quadrants II, III, and IV, where the angle is reflected across the y-axis, x-axis, and the origin. What is the reference angle for each of them? Consider the point in Quadrant I that corresponds to the angle 30( = (/6. Examine relationship between the angle measures for those in Quadrants II, III, and IV, where the angle is reflected across the y-axis, x-axis, and the origin. What is the reference angle for each of them? Activity 4. Using Trigonometric Functions Definitions of Trigonometric Functions on the Cartesian Plane Reciprocal Identities of Trigonometric Functions  A. Cofunctions of Complements Cofunctions: sine, cosine tangent, cotangent cosecant, secant Using the Unit Circles A and B, find the following: sin 30( = _______ cos 45( = _______ tan 30( = _______ sin ((/3)= _______ cot 30( = ______ cos 60( = _______ sin 45( = _______ cot 60( = _______ cos ((/6)= _______ tan 60( = ______  csc ((/6) = ______ sec ((/4) = ______ tan ((/4) = ______ csc ((/3) = ______ tan ((/2) = ______ sec ((/3) = ______ csc ((/4)= ______ cot ((/4) = ______ sec ((/6) = ______ cot 0 = ______  What do the problems above tell you about Cofunctions of Complementary Angles? B. Cyclic Functions Using the Unit Circles A and B, find the following: sin (-30() = _______ tan 420( = _______ cos (-90() = _______ csc ((/3)= _______ cot (-45() = ______ sin 330( = _______ tan 60( = _______ cos 270( = _______ csc (13(/3)= _______ cot (-765() = ______ sec (16(/3) = ______ csc (9(/4) = ______ tan (4() = ______ sin (3(/2) = ______ cos (-(/6) = ______ sec (4(/3) = ______ csc ((/4)= ______ tan (10() = ______ sin (11(/2) = ______ cos (11(/6) = ______ Look at each pair of angles above. What do you notice about those pairs? What conclusions can you draw about the trigonometric functions and how they work about the circle? C. Odd and Even Functions Using the Unit Circles A and B, find the following: sin (-30() = _______ tan 60( = _______ cos (-90() = _______ csc ((/3)= _______ cot (-45() = ______ sin 30( = _______ tan (-60() = _______ cos 90( = _______ csc (-(/3)= _______ cot 45( = ______ sec ((/3) = ______ csc (-(/4) = ______ sin ((/2) = ______ tan (-3(/2) = ______ cos (-(/6) = ______ sec (-(/3) = ______ csc ((/4)= ______ sin (-(/2) = ______ tan (3(/2) = ______ cos ((/6) = ______ cos ( = ______ cot (-(/4) = ______ tan ( = ______ sin (-5(/6) = ______ sec (-4(/3) = ______ cos (-() = ______ cot ((/4)= ______ tan (-() = ______ sin (5(/6) = ______ sec (4(/3) = ______ Recall: Even Functions are such that f((x) = f(x). Odd Functions are such that f((x) = (f(x). Would you consider sine an odd or even function or neither? Why or why not? Would you consider cosine an odd or even function or neither? Why or why not? Would you consider tangent an odd or even function or neither? Why or why not? What does this tell you about the graphs of sine, cosine, and tangent? What kind of functions do you think cosecant, secant, and cotangent are with respect to being odd, even, or neither? Explain.        PAGE  PAGE 10 Why doesnt this fit here? Notice the angles. Are they complements? What happens? sin ( =  EMBED Equation.3  cos ( =  EMBED Equation.3  tan ( =  EMBED Equation.3  csc ( =  EMBED Equation.3  sec ( =  EMBED Equation.3  cot ( =  EMBED Equation.3  Pythagorean Theorem: x2 + y2 = r2 for a circle of radius r. sin ( =  EMBED Equation.3  cos ( =  EMBED Equation.3  tan ( =  EMBED Equation.3  csc ( =  EMBED Equation.3  sec ( =  EMBED Equation.3  cot ( =  EMBED Equation.3  Note: For the Unit Circle (r = 1) sin ( = EMBED Equation.3  cos ( = EMBED Equation.3  tan ( =  EMBED Equation.3  csc ( =  EMBED Equation.3  sec ( =  EMBED Equation.3  cot ( =  EMBED Equation.3  Circle A Scaled Right Isosceles Triangle Scaled Right Isosceles Triangle Right Isosceles Triangle from the Unit Square Circle B  +,-.34@AFGHrsyz$ % & / 0 7 A G H I K V Ŷ||xtxle[ jhR5\ hR5\hXvOJQJhEhY hR6]hXvhXvhRCJ aJ hRhROJQJhEhYCJOJQJaJhE5CJaJh5VBhXvCJ,OJQJaJ,h5VBhRCJ,OJQJaJ,#h5VBhR:@CJ,OJQJaJ,#h5VBh5VB:@CJ,OJQJaJ, hF5CJ# ,-.4@ $IfgdXv$ T$Ifa$gdXv$ T^`a$gd5VB:$p$d%d&d'd-D M NOPQ^p`a$gdXv@&^`gdXv@AGHj$ % $$Ifa$gdXv$ T$Ifa$gdXvLkd$$Ifl0) O"4 la % & 0 G H J C/ Fh^h`gdRLkd$$Iflw0) O"4 la$$Ifa$gdXv$ T$Ifa$gdXvLkdi$$Ifl0) O"4 la   ' 2 d f g P Q ,GHcdVX(8w빲̹̹̹̲̲̲h&hR5hR5\aJhR6CJ\]hXvhR56CJ\ jhRCJ\ hRCJ\ hR5CJ hR5 hR5aJ hRCJhR56\]hROJQJ hR6]hR jphR5\ hR5\/J & ' d 1 O kl @&^gdR v@&^vgdR & F@&gdR@&gdR@&^`gdR FTT^T`gdR h^h`gdR Fh^h`gdRWX9d h@&^hgdR @&`gdRh@&^`hgdR@&gdR v@&`vgdR & F@&gdR @%,_U@F_CDRSx⼲⩝⼝ ht?CJ hR>*CJhR6CJ]hR56CJ\]hRCJ\]hR5CJH*\hR5CJ\ hXvCJjhRCJUmHnHu hR5CJ hRCJhRh&hR5h&hR56]37`abcdefg@&gdt? @&`gdR@&gdR h@&^hgdRBCEFGHIJKLMNOPQ h@&^hgdR@&gdt?@&gdR  !@&gdRQRTUx @&^gdR@&gdR h@&^hgdR<rstu44uvNOQRS h@&^hgdR @&`gdR @&`gdR@&gdR=mntuLp2454rs8@KOP ?!A!F!G!l!!!!$""6$7$^$ü|rrh?f`hR5CJh)hRCJjhRCJUmHnHuh)hR5CJ jhRCJhR56CJ] jhR5CJ hR5CJhRh hR5CJhR6CJ]hR56CJ\]hR5CJ\ hRCJht?hR>*CJ,STUVWXYZ[  M A!B!C!D!E!F!H!I!l!hh@&^h`hgdRhL@&^h`LgdR @&`gdR@&gdR h@&^hgdRl!!!!!!!!!!!!!!!!!!!!!!$"""F# @&^gdR@&gdR @&^gdRF####^$$$$$$$$$$8%t%%%%%%%%%%% @&^gdR h@&^hgdR@&gdR @&`gdR^$_$$$$$%%%&'t'u'''''1(2(8(9(W(b(c(f(n((((((((((((()S)T)Z)[)y))uuh&hR56CJhR56CJ\hphR56>*CJ\hR5CJ\ht?hR5CJht?hR5>*CJhphR56CJhR6CJ]hphR5CJjhRCJUmHnHu hRCJh hR5CJ hR5CJ,%%%%%%%%&&''''''''''a((((()) @&`gdR @&`gdR@&gdR)))))))));*<*t** +^+_+,",a,b,,,,,,@&^`gdR @&`gdR  !@&gdR@&gdR))))))))))))*9*g*h*i*l*m*n***********************++++++$+%+'+(+_+֑֑֑֑֡֡֡֡֡֡֡֡֡֡֡֡ht?hR6CJ j-hRCJ hRCJH*h&hR6CJh&hR56aJh&hR5aJh&hR5\aJhR5CJ\ hRCJh&hR5CJ\h&hR56CJ\h&hR5CJ4_++++++,,",),*,A,B,C,D,F,I,J,K,Q,R,U,V,W,Z,[,\,`,b,,,,,,,,,úੳੳੳxihEh*56>*CJaJhEhR5>*CJaJh*hR56CJaJh*hR5CJaJ jh*CJh&h*6CJ h*CJH*h*h*CJht?h*6CJ j-h*CJh*h*6CJ h*CJ hRCJh&hR56CJ hR5CJ$,,,,,,,,-C-D-E-F-G-H-I-J-K-L-M--....... @&`gdR@&gdR,,,-B-M-P-U-W-------- . .K.T.Y.Z............//$/,////ؽѢ{rrhht?hR5CJhR5CJ\hp~hR5CJ ht?5CJht?hR>*aJht?ht?5>*aJht?hR5>*aJhEh*56>*CJaJh*hR56CJaJ hRCJ hR5CJh*hR5CJaJhEhR5>*CJaJhEh*5>*CJaJ'... . ......///////1111111111@&gdR & F@&gdR ^`gdR @&`gdR@&gdR// 00>0F0G0H0M0N0s0x0y0000000111191v1x1y11111122;2=2>2?2@2A2B2D2d2v22߱xhR5CJ\ jph6hRaJ hRaJ jh6hRaJh6hRaJhphRCJ jh]xCJh]xhR5CJhp~hR6CJ h]x6CJh]xh]x6CJ h]xCJht?hR5CJ hRCJht?hR6CJ+22222333.3/3[3]3^3_3`3a3b3d3333333474;4E4F4H4e4f4g4i4444 5 55Ź易uih3OhR5>*CJh hR5aJjhRCJUmHnHu hR5h;hR5hR hR5\hR5\aJhR5CJ\ jph6hRaJ hRaJ jh6hRaJh6hRaJhphRCJ h]xCJ hRCJhphR6CJ'1333338494f4g4444444444444444@&gdR & F@&gdR@&gdR & F @&gdR4444444 5 5L5M5555=6>6@667777S7T7U7V7W7 @&^gdR & F@&gdR@&gdR555!5#51535;5=5L55555555555555555555566 6 66666*6+62636>6?6E6F6X6Y6e6f6l6m6y6z66666666666666ܱܨh hRCJjhRCJUmHnHu jphRCJh6KhRCJ jhRCJ hRCJh3OhR5>*CJ hR>*CJh3OhR>*CJB66666666667777.7Q7X7Z7^7_7c7j7s77777777777778888"8#8*8+85868>8?8I8J8R8S8_8`8j8k88888888񵫤 jhRCJ hR5aJh hR5aJhOrhR5aJh5VBhR5CJ hk.%CJjhk.%CJUmHnHuh hRCJ jphRCJ hRCJh6KhRCJ=W7X7Y7Z7[7\7]7s7t7778v8w8x88E9F9G99999999 & F@&gdR@&gdR @&^gdY @&^gdR888888888888888899 9999!9"9.9/97989\9b999999::W:X:j:k:::::::::::::::::::::::::;; ; ;;;Ƽ jhRCJh hR5aJ hR5aJ h5VBCJh5VBhR5>*CJhOrhRCJh6KhRCJ hRCJ jphRCJF99999::N:O::;;;~;;;;F<<<<<===== @&^gdR & F@&gdR@&gdR;2;3;?;@;F;G;[;\;h;i;p;q;;;;;;;;;;;;;;;;;;;;;;;< <<<<<"<#</<0<8<9<L<M<W<X<^<_<j<k<r<s<}<~<<<<<<<<<<<<<<<<<<տ j-h5VB5CJhNhR56CJhNhR5CJhOrhRCJh6KhRCJ jphRCJ hRCJK<<<<<<<<====== ==#=X=Y=l=r===== >&>E>>>>>>>>>????? ? ? ? ????~x h]x0Jjh]x0JUhQjhQU hRCJhRjhk.%UmHnHu hk.%CJhk.%hR5CJhNhRCJhNhR6CJ j-hR5CJ j-h5VB5CJhNhR56CJ hRCJhNhR5CJ/===E>F>G>H>I>J>>>>>>>>>>>>>>>>>  !gdR@&gdR @&^gdk.% & F@&gdR @&^gdR>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>@&gdR>>>>>>>>?????? ? ? ??????&?'?(?)?h]hgd]x &`#$gdLgdR@&gdR??????!?"?$?%?&?'?(?)?m?n?{?|???????????????????????Ž|rgjl=B hRUVjchREHUjl=B hRUVj;hREHUjk=B hRUVjhRU jqhR6]hRhn h5VBCJaJh5VBCJaJhRCJaJhn hRCJaJhQh30JmHnHuhLh]x h]x0Jjh]x0JU')?n?|?}??A@B@@@?A@AcAA$B%B'B(B*B+B,B-B.B7B8BXBYByBgd0E  !gdR$a$gdRgdR???????????@@@ @@@@@%@&@)@*@=@>@?@@@B@X@Y@Z@]@^@_@b@c@d@~@@@鿵骠闊~t~t~kh hRCJh hR5CJh hR5CJH*h hR56CJ]hkhRCJj hREHUjl=B hRUVj hREHUjl=B hRUVjhREHUjl=B hRUV jqhR6]hRjhRUjhREHU'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@AAAAAAAA#A$A'Aƹxkj.hkhREHUj/B hRCJUVj+hkhREHUj)B hRCJUVj)hkhREHUj@B hRCJUVj'hkhREHUj;B hRCJUVj%hkhREHUj!B hRCJUVjhRUhR jqhR*'A(A;AA@A\AaAcAgAhAjAkA~AAAAAAAAAAAAAAAAAAAAAAAAAAwjjhkhREHUjB hRCJUVjhkhREHUjB hRCJUV h hRj3hkhREHUjB hRCJUV jqhRh hR5CJh hRCJj0hkhREHUjFB hRCJUVhRjhRU'AAAAAAAAAABBBBB B B B B!B"B#B.B7BBBBBBBҾҤҏҊ҆h0E hR5h,*hR5j$hkhREHUjB hRCJUVj "hkhREHUjB hRCJUV jqhRhR h hRjhRUjhkhREHUjB hRCJUVyBzBBBBBBBBgd0EgdR.:pR/ =!"#$% g$$If!vh5 5O"#v #vO":V l,5 5O"4g$$If!vh5 5O"#v #vO":V l,5 5O"4g$$If!vh5 5O"#v #vO":V lw,5 5O"4(Dd DlJ  C A? "29.^ 5U f `!^9.^ 5U ,x]PJAvVs&衂?X ;bg!0pF3Pj&#.# `Vh^Hfnj_jBP~nb̼XVPsP )1\Pslvv0o8D+KRsʭ~3t1l067ۙv20NMV'Dd DlJ  C A? "2wah{r)ZFQXe `!]wah{r)ZFQX+x]PJA};oP `a ?`s`^Nq 6vk!h9;»}37(?X=uF@#pS)hd `!\M>pS)hk*x]PN@ۃ<.AX@¢ڴ )hd' GܥCP)> w7ޝ]& [gѤR)*R؞ZU[mzSl /挮-_pr9o"A:Y`*FUfھ߮rfy<9_6GwExxl t(sğqa/“q2[?=u^[x9+u*nd?b.\6y:d:uwūi;'L&Dd XlJ  C A? "2" ZuZBd `!\" ZuZB*x]P=K@};{f" hSr*DaHw 6 CkF}3yog@ž&#R)JئZ>;]zSl5T !Sfό_p|1`:i06^"жEf/ɷoz;磷ƀJ6̥ޖ9zz4w7H 80wz$;^[8KS2g'6~v##8 eh[$EP5q$ mODd lb  c $A? ?3"`?2LU*jox(i `! U*joxvxcdd``$d@9`,&FF(`TF! KA?H1 @f0@0&dT0pE1At 2Bab`r,7F;35v! @Hfnj_jBP~nbó_1#XLF]F\= J?̯䂺 n   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOQRSTUVWZ]^_a`bdcefgihjlkmonprqsutvxwy{z|}Root Entry_ F 3\@Data P&WordDocument^0ObjectPoola $3 3_1111321350F$3$3Ole CompObjfObjInfo  #&+05:?DINSX]abcdeghijl FMicrosoft Equation 3.0 DS Equation Equation.39q&x 1csc FMicrosoft Equation 3.0 DS EqEquation Native B_1111321794" F$3$3Ole CompObj fuation Equation.39q?x$ x xr=adjhyp FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo Equation Native  [_1111321792F$3$3Ole  CompObj fObjInfoEquation Native B_1111321795OF$3$3&x 1cot FMicrosoft Equation 3.0 DS Equation Equation.39q?x$ ry=hypoppOle CompObjfObjInfoEquation Native [_1111321793F$3$3Ole CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q&x 1cos FMicrosoft Equation 3.0 DS EqEquation Native B_1111321791F$3$3Ole CompObj fuation Equation.39q&x 1tan FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo!!Equation Native "B_1119879457@'$F$3$3Ole $CompObj#%%fObjInfo&'Equation Native (6_11198794831,)F$3$3X yr FMicrosoft Equation 3.0 DS Equation Equation.39q`ԝ xr FMicrosoft Equation 3.0 DS EqOle )CompObj(**fObjInfo+,Equation Native -6_1119879488;.F$3$3Ole .CompObj-//fObjInfo01uation Equation.39q̡ yx FMicrosoft Equation 3.0 DS Equation Equation.39q0\ ryEquation Native 26_111987946563F$3$3Ole 3CompObj244fObjInfo56Equation Native 76_11198794718FK3K3Ole 8 FMicrosoft Equation 3.0 DS Equation Equation.39q rx FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj799fObjInfo:;Equation Native <6_1119879494=FK3K3Ole =CompObj<>>fObjInfo?@Equation Native A6(̡ xy FMicrosoft Equation 3.0 DS Equation Equation.39q 0\ y_1119879355TBFK3K3Ole BCompObjACCfObjInfoDEEquation Native F)_1119879374GFK3K3Ole GCompObjFHHf FMicrosoft Equation 3.0 DS Equation Equation.39q (X x FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoIJEquation Native K)_1119879395YLFK3K3Ole LCompObjKMMfObjInfoNOEquation Native P6_1119879348QFK3K3 yx FMicrosoft Equation 3.0 DS Equation Equation.39qW 1y FMicrosoft Equation 3.0 DS EqOle QCompObjPRRfObjInfoSTEquation Native U6_1119879385EJVFK3K3Ole VCompObjUWWfObjInfoXYuation Equation.39q 1x FMicrosoft Equation 3.0 DS Equation Equation.39q@ xyEquation Native Z6_1119879403[FK3K3Ole [CompObjZ\\fObjInfo]^Equation Native _61Table}ZSummaryInformation(``x`+KRsA<.tdv3r:Dd lb  c $A? ?3"`?2LV9>Osu&(k `! V9>Osu&vRxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@#ȝATNA $37X/\!(?71ف/j&#.#tLQ%ǘWTrA]D7Nv0oߌLLJ%  H`v2@:Dd lb   c $A ? ?3"`?2L7@ǩX*%{(m `! 7@ǩX*%{vxcdd``$d@9`,&FF(`TF! KA?H1 @f0@0&dT0pE1At 2Bab`r,7F;35v! @Hfnj_jBP~nbó_1#XLF]F\= J?̯䂺 n `+KRsA<.tdv3 ;Dd b   c $A ? ?3"`? 2Mb?Ѱ$& )o `!!b?Ѱ$& v dxcdd``$d@9`,&FF(`TIe A?dA7zjx|K2B* R0pE1At 2Bab`r,7F;35v! @Hfnj_jBP~nbó_1#XLF]F\=u J?/䂺 n `+KRsA<.tdv3D:Dd lb   c $A ? ?3"`? 2LHqqVr$YW)t^(r `! HqqVr$YW)t^vRxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@#ȝATNA $37X/\!(?71ف/j&#.#LE%ǘUrA]D7Nv0oߌLLJ%  H`v2@:Dd b   c $A ? ?3"`? 2M;W;^#)t `!!;W;^#v dxcdd``$d@9`,&FF(`TIe A?dA7zjx|K2B* R0pE1At 2Bab`r,7F;35v! @Hfnj_jBP~nbó_1#XLF]F\=u J?̯䂺 n `+KRsA<.tdv3:Dd +b   c $A ? ?3"`? 2.$GU&ٲ < w `!$GU&ٲ <:`!xEN ` W 'MCu :TGGqMK~/w%B00//Q/b 'ICV>ьjB $F WE/ٓEWJqПxC~'࠮Ý,`  3K꺰o )I٠)L'KRuᢨ쬷skowAhzsZ1~Dd b  c $A? ?3"`? 2.;y1L5M [ `!;y1L5M:@`!xcdd`` @c112BYL%bpu k**p]Q Cv;#RpeqIj.E?y0Dd lb  c $A ? ?3"`?2L7@ǩX*%{(? `! 7@ǩX*%{vxcdd``$d@9`,&FF(`TF! KA?H1 @f0@0&dT0pE1At 2Bab`r,7F;35v! @Hfnj_jBP~nbó_1#XLF]F\= J?̯䂺 n `+KRsA<.tdv3 ; Dd b  c $A? ?3"`?2Vw՚],2A `!*w՚],Ӿ dxcdd``$d@9`,&FF(`TIe A?dA7zjx|K2B* R0pE1At 2Bab`r,7F;35v! @Hfnj_jBP~nbó_1#XLF]F\=u JtH2 Lǘ 6װ S.ph@tA``ÏI)$5l !v1c  F Dd lb  c $A? ?3"`?2UFCspcY1M" `!)FCspcYRxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@#ȝATNA $37X/\!(?71ف/j&#.#LE%y $?c kX)84 v 0y{Ĥ\Y\ qA}6bFDd b  c $A ? ?3"`?2M;W;^#)X$ `!!;W;^#v dxcdd``$d@9`,&FF(`TIe A?dA7zjx|K2B* R0pE1At 2Bab`r,7F;35v! @Hfnj_jBP~nbó_1#XLF]F\=u J?̯䂺 n `+KRsA<.tdv3:Oh+'0H    (08@ ACTIVITY :WallaceNormalhome2Microsoft Office Word@Ik@@@3@@3 5.՜.+,0 hp| DocumentSummaryInformation8f$CompObjky WSUc6  ACTIVITY : Title  F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q^ 666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH <`< RNormalCJ_HmH sH tH D@D R Heading 1$$@&a$5\DA`D Default Paragraph FontVi@V  Table Normal :V 44 la (k (No List 4@4 RHeader  !4 @4 ]xFooter  !.)@. ]x Page NumberH"H * Balloon TextCJOJQJ^JaJPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] T0Q:fa\ T0Q : %%%( ^$)_+,/2568;<??@'AAB"&).2568:;>?ACDHJKLM@% J QSl!F#%),.14W79=>>)?yBB#$%'(*+,-/013479<=@BEFGIN !(!!\pr}^rt~AUWauw::::::::::::::::::8@Ur(  6 W "?b *17 X #" ?n U+1x5 Y #" U-174b Z U+1t54 [ U4 x5T \ # *}-  b /,(4 ] #" ?Z !o.y#4 ^ !o.y#44b _ !o.y#44 ` ! 44T a # /,(N.  n /,(4 b C"?Z !o.y#4 c !o.y#44b d !o.y#44 e ! 44T f # /,(N. n .% g C"?` .% h# .%^Z .% i .%Z .% j .%Z .% k .%42 l *#2Z .% m .%`B nB c $DV"]"%`B o c $D.H p # jJ]"sJ(ZB q S UDK"8(ZB r S Do!s #s`B s c $DoJ(QJ(H2 t # /(E(H2 u # &""*6R  "?n u#1,6  C"?nZ u#1,6  u#1,642  &&I)3`B  c $D"u#"6`B  c $DT-1,T-Z " '%.  " '%.Hb B # jJ">'%T-ZB  S Do%,%.`B  c $Do"F'y#F'H2  # w% '%d'H2  # ""-"|- b 5 \+A  #" ?nZ 5 \+A  5 \+A42  1(`B  c $DY" Y"A`B  c $D5\+"Z !!(*  !!(*Nb  3 jJY"'~H2  # '!(H2  #  "X"ZB  S Do''*`B  c $Do!#V  # "?  V  # "? P   "?  6  "? P   "?  Hn }/.<  C"?Z }/.<  }/.<42  W,-92Z }/.<  }/.<`B  c $D.<`B  c $D}S,/S,Z ?,8  ?,8fB B s *EDH c%7fB B s *D&+42fB  s *.D  ;%7fB  s *NDx&+-2`B  c $D8`B  c $D?P,,P,P    "?  n   \   C"?`B  c $D \ `B  c $D Z !<  !<42  ?<Z !<  !<`B  c $De`B B c $D<`B  c $D<`B  c $D!V  # "?  B S  ? CROFg,h,,>./6666:Wm rtX!5a t]A%' tb5v  tg}&*Zt) t)te5(at&6tQ6t>9t]!e(wt!*ty# t5t) *b"tUqt&49d59Ld69c79 g89f99f:9e;9 f<9 e=9Lf>9e?9d@9{A9$|B9d|C9d{D9{E9~F9$}G9d}H9|I9|J9}K9$~L9d~M9~N9DO9P9Q9R9DS9T9U9V9DW9X9Y9??gg 8!8!X"X"Q'Q'''O9O9:::      !"#$%JJrr C!C!c"c"\'\' ( (Z9Z9:::  !"#$%:%*urn:schemas-microsoft-com:office:smarttagsStreet;&*urn:schemas-microsoft-com:office:smarttagsaddress И &%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%,, ------..@.C.{.~..../9/////70:0K0N00000000131w2z2222222,3/3j3m3333333F4I47777777 7 7 77777%7(7)77777888888889999::\a! $ e k   cfFN9>u?A s!x!!!_##%%%%&&p(s(;,F,,,----@.C...//00x0{000O2R22233~3333F4I47777777 7 7 777(7)7}77778888c9f999:333333333333333333333333333333333333333333333333 ,-07AF99"$`$a$a$b$$$$%%T&Z&&&>(s((((())))v))))*+++,7,////X/Y/Z/Z/[/[/11114444D66666666666666666777777777 7 7 77777%7)7m7{78888.:7:::::7777777 7 7 777(7)78888:+R3i5mNKԝ