ࡱ> 7 2bjbjUU 7|7|Y.1lZZZZ  nnn8b< A(++++3*,6b6™$ћ T @#ZZ###Zt +#+##G+ G+ `.D n G+i+0AG+E EG+"# ZZZZ6.3 Diffusion and Brownian Motion. Brownian motion is a probablistic model of certain types of motion. For example 1. Diffusion of particles in gases, e.g. diffusion of water molecules in air 2. Diffusion of particles in liquids, e.g. diffusion of sugar molecules in water 3. Heat conduction 4. Movement of stock prices Brownian motion is a continuous version of a random walk which is a discrete model of certain types of motion which have a random aspect. So, we first take a look at random walks and then see how we get Brownian motion as the limit of random walks. Random Walks. A random walk is a special type of Markov chain in which one gets from one state to another by adding a random amount. As an example we shall consider the motion of a water molecule in air. For simplicity we shall assume its motion is in one dimension which we take as the x axis. Water molecules move fairly fast at room temperature. A typical speed is v = 100 m/sec ( 0.06 miles/sec ( 200 miles/hr It doesn't go very far until it hits a nitrogen or oxygen molecule in the air. A typical distance before it hits another molecule is l = 5 ( 10-5 cm = mean free path = average distance between collisions Let's suppose when it hits it rebounds in the opposite direction with the same speed v. Let (x =  EQ \F(l,2) = 2.5 ( 10-5 cm = average distance between collisions We assume that after the water molecule has gone a distance (x it has a 50% chance of striking another molecule in the air. If it does it rebounds and goes in the opposite direction with velocity v. If it doesn't, then the water molecule continues in the same direction with velocity v and goes another distance (x and then again has a 50% chance of a collision. So on the average it goes a distance 2((x) = l before it strikes another molecule. Let (t =  EQ \F((x,v) =  EQ \F(l,2v) = 2.5 ( 10-9 sec = time it takes to go a distance (x We construct a Markov chain model of the water molcule's motion as follows. The states are the points on the x axis whose coordinates are multiple of (x, i.e the points j((x) where j is an integer, positive, negative or zero. We consider the position of the water molecule at times which are non-negative integer multiples of (t, i.e. n((t) where n is a positive integer of zero. Let Un = displacement of water molecule during the time interval (n 1)((t) < t < n((t) We treat Un as a random variable and assume that there is a 50% chance the velocity during the time interval (n 1)((t) < t < n((t) is either v or v. So Pr(Un = (x) = and Pr(Un = - (x) = . The Un all have the same distribution. We also assume that the Un are all independent of each other. Note that E{Un} = mean of Un = 0 E{(Un)2} = (1/2)(- (x 0)2 + (1/2)(- (x 0)2 = ((x)2 (Un = standard deviation of Un = (x We let X(t) = the position of the water molecule at time t Yn = X(n((t)) = the position of the water molecule at time n((t) In particular, X(t) = Yt/((t) Y0 = X(0) = starting position of the water molecule at time t = 0 Y1 = X((t) = the position of the water molecule at time (t Y2 = X(2((t)) = the position of the water molecule at time 2((t), etc One has Yn = Yn-1 + Un i.e. the state at time n is obtained by adding Un to the state at time n 1. It follows that Y1 = Y0 + U1 Y2 = Y0 + U1 + U2 Yn = Y0 + U1 + U2 + ( + Un = Y0 + Vn where Vn = U1 + U2 + ( + Un = Yn - Y0 = X(n((t)) - X(0) or X(t) - X(0) = Vt/((t) If n = t/((t) is large, then by the central limit theorem Vn is approximately normal with mean 0 and standard deviation  EQ \r(,n) ((Un) =  EQ \r(,n) ((x) =  EQ \r(,\f(t,(t)) ((x) = (  EQ \r(,t) where ( =  EQ \r(,\f(((x)2,(t)) =  EQ \r(,\f(vl,2)) For the water molecule this works out to be ( =  EQ \r(,\f((104 cm/sec)(5 ( 10-5 cm),2)) =  EQ \r(,0.25 cm2/sec) = 0.5 cm/(sec)1/2 So at time t the water molecule's displacement X(t) - X(0) is approximately normal with mean zero and standard deviation (  EQ \r(,t) with ( =  EQ \r(,\f(vl,2)). So the density function of X(t) - X(0) is approximately ft(x) =  EQ \f(1,\r(,2((2t)) e-x2/(2(2t) =  EQ \f(1,\r(,4(Dt)) e-x2/(4Dt) where D =  EQ \f((2,2) =  EQ \f(vl,4) = Diffusion coefficient Note that ( =  EQ \r(,2D) For example, if t = 25 sec and ( = cm/(sec)1/2 then f25(x) =  EQ \f(1,\r(,2((2t)) e-x2/(2(2t) =  EQ \f(1,\r(,2() (2.5)) e-x2/12.5. ( and D are macroscopic parameters that describe the motion of the water molecules or whatever particles one is modeling by diffusion. Most science and engineering books tend to use the diffusion coefficient D instead of (. However, sometimes ( is sometimes more convenient for hand computations using tables of the normal distribution. For the water molecule the diffusion coefficient is D =  EQ \f((2,2) =  EQ \f((0.5 cm/(sec)1/2)2,2) = 0.125 cm2/sec Another way of saying that the displacement X(t) - X(0) at t is approximately normal with mean zero and standard deviation (  EQ \r(,t) is to say that Z(t) = (X(t) X(0)/(( EQ \r(,t)) is approximately a standard normal random variable. Example 1. What is the approximate probability that a water molecule is a distance of at least 3 cm from its starting point after 25 sec. Assume ( = 0.5 cm/sec1/2. We want Pr{ | X(25) X(0) | > 3}. In this case Z = (X(25) X(0)/((0.5) EQ \r(,25)) = (X(25)X(0)/2.5 is approximately a standard normal random variable. So Pr{ | X(25) X(0) | > 3} = Pr{ |  EQ \f(X(25) X(0),2.5) | > 3/(2.5)} = Pr{ | Z | > 1.2} = 2 Pr{ Z > 1.2} = 2(1 - Pr{ Z ( 1.2}) = 2(1 - ((1.2)) = 2(1 0.8849) = (2)(0.1151) = 0.2302 Here ((z) = Pr{Z ( z} =  EQ \f(1,\r(,2()) \i(-(,z, e-u2/2 du) is the cummulative distribution function of a standard normal random variable. It is available in mathematics software and tables are usually included in statistics books. If we are given that X(0) = ( then X(t) is normal with mean ( and standard deviation ( EQ \r(,t), so its density is pt(x) =  EQ \f(1,\r(,2((2t)) e-(x - ()2/(2(2t). Brownian Motion. If we look at the motion of the water molecule in the limit that the mean free path l goes to zero and the velocity v goes to infinity in such a way that ( =  EQ \r(,\f(vl,2)) stays constant the resulting motion is Brownian motion X(t). It has the following properties 1. X(s + t) X(s) is normal with mean zero and standard deviation (t 2. If 0 < t0 < t1 < ( < tn then the displacements X(t1) X(t0) X(t2) X(t1)  X(tn) X(tn-1) are all independent Above we focused on the motion of a single water molecule. Now suppose we have a bunch of water molecules. In particular, suppose we are given an initial density c0(x) of water molecules in the air. For example, we might have (1) c0(x) =  EQ \B\lc\{(\a\al(4 ( 10-3 gm/cm if | x | < 2,0 otherwise))  We would like to find the density ct(x) of water molecules at a later time t. The initial density c0(x) acts like a probability distribution. If we let A =  EQ \i(-(,(, c0(x) dx) the p0(x) = c0(x)/A is the initial probablilty density function of X(0). Note that X(t) = X(0) + (X(t) X(0)). X(0) and X(t) X(0) are independent, so to get the probablity density function of X(t) we convolute the density function c0(x)/A of X(t) with the density function  EQ \f(1,\r(,2((2t)) e-x2/(2(2t) of X(t) X(0). Finally we multiply by A to get the density ct(x) of water molecules. Thus ct(x) =  EQ \f(1,\r(,2((2t)) \i(-(,(, e-(x - ()2/(2(2t) c0(() d() Using the formula (1) for c0(x) we have ct(x) = (4 ( 10-3)  EQ \f(1,\r(,2((2t)) \i(-2,2, e-(x - ()2/(2(2t) d() If we substitute z = (x - ()/((  EQ \r(,t)) the integral becomes ct(x) = (4 ( 10-3)  EQ \f(1,\r(,2()) \i((x+2)/((\r(,t)),(x-2)/((\r(,t)), e-z2/2 (-1) dz) = (4 ( 10-3)  EQ \f(1,\r(,2()) \i((x-2)/((\r(,t)),(x+2)/((\r(,t)), e-z2/2 dz)  = (4 ( 10-3) [ ( EQ \b(\f(x + 2,(\r(,t))) - ( EQ \b(\f(x - 2,(\r(,t))) ] Suppose t = 25. Then (  EQ \r(,t) = (1/2)(5) = 2.5 cm so ct(x) = (4 ( 10-3) [ ( EQ \b(\f(x + 2,2.5)) - ( EQ \b(\f(x - 2,2.5)) ] A graph is at the right. Problem 1. The diffusion coefficient of (ethyl) alcohol in air is D = 0.1 cm2/sec. Consider the diffusion of alcohol in one dimension. a. Suppose an alcohol molecule starts at position x = 2 cm. What is the probability that its position 10 seconds later will be greater than or equal to x = 2.5 cm? b. Suppose the density of alcohol to begin with is given by c0(x) =  EQ \B\lc\{(\a\al(0 for x < 0,x for 0(x ( 1,1 for 1 < x))  Find a formula for the density ct(x) of ammonia at time t. Solution to a. We want Pr{ X(10) X(0) > 0.5}.  EQ \r(,2D)In this case  EQ (\r(,t)= EQ \r(,2D) \r(,t) =  EQ \r(,2Dt) =  EQ \r(,(2)(0.1)(10)) =  EQ \r(,2). We know that X(10) X(0) is normal with mean 0 and standard deviation ( EQ \r(,t). So Z = (X(10) X(0))/ EQ \r(,2) is approximately a standard normal random variable. So Pr{ X(10) X(0) > 0.5} = Pr{ EQ \f(X(10) X(0),\r(,2)) | > 0.5/ EQ \r(,2)} = Pr{Z >  EQ \r(,2)/4} = 1 - Pr{Z (  EQ \r(,2)/4}) = 1 - (( EQ \r(,2)/4)) ( 1 ((0.35)) ( 1 0.6368 = 0.3632 Brownian Motion with Drift. Let's look again at water molecules diffusing in air. So far we have been assuming that the air as a whole has no net motion. However, it may happen that the air as a whole is moving with a certain net velocity. Let ( = net velocity of the air = drift rate Then water molecules inherit this drift and the diffusion is superimposed on top of this drift. The result is that at time t the water molecule's displacement X(t) - X(0) is now approximately normal with mean (t and standard deviation (  EQ \r(,t). So the density function of X(t) - X(0) is approximately ft(x) =  EQ \f(1,\r(,2((2t)) e-(x - (t)2/(2(2t) Example 2. Suppose a water molecule diffuses in air with ( = 0.5 cm/sec1/2. Suppose also the air has a drift of ( = 2 cm/sec. What is the probability that a water molecule will have traveled a distance of between 30 and 34 cm in the positive direction after 16 sec. We want Pr{ 30 < X(16) X(0) < 34}. In this case (t = (2 cm/sec)(16 sec) = 32 cm and  EQ (\r(,t)=(0.5cm/sec1/2)(4 sec1/2) = 2 cm. We know that X(16) X(0) is normal with mean (t and standard deviation ( EQ \r(,t). So Z = (X(16) X(0) 32)/2 is approximately a standard normal random variable. So Pr{ 30 < X(16) X(0) < 34} = Pr{ - 2 < X(16) X(0) 32 < 2} = Pr{ -1 <  EQ \f(X(16) X(0) - 32,2) < 1} = Pr{- 1 < Z < 1} = 2 Pr{0 < Z < 1} = 2(Pr{Z < 1} ) = 2(((1) ) = 2(0.8413 0.5) = (2)(0.3413) = 0.6826 ( 68% Problem 2. Redo problem 1 if the air is drifting in the negative x direction at a rate of 0.05 cm/sec. Appendix. Here are the values of some diffusion constants, D. Diffusion in air: Hydrogen, H2 1.3 cm2 / sec another source gave 0.74 Water vapor, H2O 0.22 cm2 / sec Carbon monoxide, CO 0.21 cm2 / sec Ammonia, NH3 0.2 cm2 / sec Methane, CH4 0.2 cm2 / sec Oxygen, O2 0.18 cm2 / sec Nitrogen, N2 0.18 cm2 / sec Hydrogen cyanide 0.17 cm2 / sec Carbon dioxide, CO2 0.16 cm2 / sec Mercury 0.12 cm2 / sec Ethyl alcohol 0.1 cm2 / sec Ethyl ether 0.079 cm2 / sec Diffusion in water: Alcohol 10 ( 10-6 cm2 / sec Caffein 6 ( 10-6 cm2 / sec Sugar 6 ( 10-6 cm2 / sec Dyes 2 - 6 ( 10-6 cm2 / sec Proteins 0.4 - 1 ( 10-6 cm2 / sec     6.3.1 - PAGE5 6.3.1 - PAGE1 $@Mbc{|# $ - . / 6 7 > ? B C N O R T I J     L M N U V ] ^ _ ` a b c j k r s u v w x $ ÿÿÿÿ]aJ6aJ jD6aJ jUaJ jD6]aJH*aJ jaJ jaJ 6]aJ 5\aJaJCJK$u)F@ly+ J 9 ,Za VxY222$ % M N O ` a b c d l m     ; < = } ~    #$*+134569:;EGHIJOPQ]^_ 6H*]aJ jD6]aJaJ 6]aJ[  '()*+./01NOPWXYcdef   PQXYZabcde jD6H*]aJH*aJ6EHH*]aJ 6H*]aJ js6]aJ 6]aJ jD6]aJaJH*aJLV k%(F%a17-  "#:;<RSmnovwx}~ jEHaJ 6H*]aJ jD6]aJH*aJ 6]aJaJV    !*+,-34>?@BCDEIJMNPQR6EHH*]aJ js6]aJ jUaJ jD6H*]aJ jD6]aJH*aJ 6H*]aJ 6]aJaJL'(/0<=>?@ABCEFMNY[_`%&'(./qrst|}~ 6H*]aJ jaJH*aJ 6]aJ jD6]aJ js6]aJaJ jUaJP  "$%&'()*-/09:ABIJKNOVW^`cdH*aJ js6aJ js6H*]aJ EHH*aJ 6H*]aJ jUaJaJ 6]aJH*aJ js6]aJ jp6]aJH  !"#$%&+-.34  "#3456<=DE6aJ js6]aJ jp6]aJ js6H*]aJ EHH*aJ 6H*]aJH*aJ 6]aJ jUaJaJKEGKLSTegklst{|()*+356789:;C jF6aJ jaJH*aJ5aJ 6]aJ jUaJ js6aJ6aJaJRD!&k*^p ^"""#b#$v$$%%PCDRSYZ[\]_`abcefhij-.45;<=>TUmnowxyzƙ jx6H*]aJ H*]aJ js6]aJ 6H*aJ js6aJ jx6aJ6aJ EHH*aJ 6H*]aJH*aJ 6]aJ6CJ]aJ jCJaJCJaJ jp6]aJaJ jUaJ8&'FGlmnpq|~'()678;<=@ADEFbcdefjklmntuvwx|}~ٸٸ٪ٸٸٸ 6H*aJ jEHaJH*aJ js6aJ jUaJ 6]aJ js6]aJ6aJ5aJaJ 6H*]aJ js6H*]aJH*aJ EHH*aJC~XYZ[\  3 4 5 6 7 \ ] t u v w x ǿǿ jCJaJCJaJ 6]aJH*aJ jaJ jUaJ 6H*aJjUmHnHuaJH*aJ6aJK ! !!!!!#!$!+!,!-!.!2!3!:!;!C!D!E!F!J!K!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!""""" " ")"*">"?"@"A"B"ֿ 6H*aJ6aJ js6H*]aJ EHH*aJ 6H*]aJH*aJ js6]aJ jp6]aJ jUaJH*aJ 6]aJaJGB"`"a"b"c"d"l"m"{"|"}"~""""""""""""""""""""""""""""""""""""""""""""""ֲּ֢֬ОЕО jaJ jx6]aJH*aJ js6H*]aJ EHH*aJ jx6H*]aJ 6H*]aJ jCJaJCJaJ 6]aJH*aJ js6]aJ jp6]aJ jUaJ 6H*aJ6aJaJ8""""""### # # ###############0#1#5#6#9#:#=#>#?#@#H#I#J#K#d#e#f#g#h#s#t#w#y#{#|#######ܓ6CJ]aJ jaJ 6H*aJ6aJ jUaJ jx6]aJ js6H*]aJ EHH*aJ jx6H*]aJ 6H*]aJCJaJ 6]aJH*aJ js6]aJ jp6]aJaJ8######################################$$$$ $ $ $ $$$$$$$$$$+$,$/$1$5$6$7$A$B$G$ jF6]aJjUmHnHu jp6]aJ jaJ jUaJ EHH*aJ 6H*]aJH*aJ 6]aJaJ6CJ]aJCJaJ js6CJ]aJ@G$H$L$M$P$Q$V$W$X$b$c$h$i$m$n$q$r$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%(%a%b%k%l%%%@&A&&&&&&&&&&&&&&ڼH*aJH*6]5\H*aJ jaJ 6H*aJ6aJ jF6]aJ jUaJ 6]aJaJ js6]aJH%%L&& 'D'())}***+%,2-i..2?2G2H2K2M2P2Q2X2Y2Z2\2]2_2`2b2c2m2 jU jCJCJH*CJH*CJ6]aJ 5\aJW262X2Y2[2\2^2_2a2b2d2e2v2w222222222222222 @ xh^hm2n2r2s2t2u222222222aJ mHnHu jU 222222222222222" 00/ =!"#$%@=֚@b2w}LoR4&"dx{}twҙRhOl(%oҭlq<Q]>v&KRvz@yٵ-(E85j.菴A("7vg4ťhQ Ɂ]`( 1̛"%ȇfrz0Cy| G]f3wOd.|~ًھ\Wuj! iF >UJ )_[ύN$@ Q[h XL|!QG&r'ź==)GWRxWN>}j鴳*k4SG'=HmJYTDNT\?_J/ּ+PkjXnwg#YmΫBL(4%V]lҗij|9+soE}VdJUY_s;Ut|XjŴnaVc<7:œ;yVƢlNe6֊WS,{ڰO*Մc. `(ZHe)nj.Fz&zl1AUUlL-n׊i.ZdF'͖l[\>[CI1-B!^dMƒҐ]bloъreHGW%N7=tΚd&Wݡp8_ m0*N8=b,ݦS0y_MWM, KbR;cN΋:C-l~G냾Š_ JfVRk`*46 Y*\s-$Ec39yv5` H*eKX ƪN5E3ySx#qV ]lʁ啗+3[/z?+f}2A5A,*y>/97$_uz|x.҂=iu͂ͼj˰әۜQsQsq0W* gϰR,7O̦)Oތ2M* V,t\-|4e2@SJIs+Bæzs*fcJ Of 6 ڲ۱EϣzX+TX]L*f`[뛉V*wpuNLD2z!*j 8TɊPgr[eYhrRSCJf0YSeg,b1<~VEθdE97?g*h+vS rOdYW+6]8.9S97\TVj0.kSəb.!%5ر t@8`/ XC @)9p#\Br#?t`L8rڿGGŃl ݓ)%u}f (~#{2o林O9h?}o/@yg[ʜ9Q_c74g4/J:C3DU&ňL]J3qz`ûeFN 33̟<|-(wcN!Dcls/48wLϴ7/QN/> /;ȬrP#Jxn<5LÿqymreϑM~Cmqؤ#s4T8 P=WTh2'2]KW.J~\:D XAG* +L{aIc%LdeA^OcA~N>ty֟ k+bha'S|N`Ë=~~ Ó<|h&%W{;f~`=Pep('uJZc7;i 1)suc$35s@<9u)4}IS;MP{E3נۀnXE|`uN{tUo (ztlifv^u~uZ6[N-_s?{dҦA4z,t:q]XG{vѾ>}ipM('ZY-A-5袽@c»]QG{tj`o@5غ [}NҜS3}@uo!|A{ӏ7 iZ!`E=xOguRomiuukpHireXMdۅm77ۛׯ\v{s/_F}干_O}3#`Ε޻?\YqgY>ѣYm{{G};wg{tk7&.tl߾~{wvTѿڽG_?7r>=co07,/퍲ϮwCn@t{)e~3}]O>x(>\OkJz쵠Ik2(ݽl]> x < zv&9{<^sjf(t=7i{Cَ݃~K~K=躟~{^נ~LuQFv`ϟ*7ۓ}G6i4+ЁȇC`eLlV}cu}WWC]ގwu=wB `OW:sQ}}aSy߯BNA{Y47Of{riOnҠOo"(fvc.`l'f_fEsx Pڸ:g:ouMi?CZFZt=i(*7'@='5s­mjpS46n!4x XY[|Uݽ/ "郊Ƚ(T%UI]JU%irJ*ʵ*8(p@"(Э{po->0 ѣ(uá ^":0r]iCogUeV_]|U߉pp8:4xUzktttgk>::q'WSGGџ}}:utV7n ޏUù`^ǸGʏyʗ\{k/3;.+m\w|1ʠ Sϝ{H@w "fO2Н`{ϬO>r/Cfv-alww2ȓl \:#MوBw熪alqI4 !A'fC2\@ ~Yp#qWp,ƚ΢\PS2D\$rى yiQSY"pFWyW9K,O![rh!c=CpG-uMX$S;Id2WY[Viav4dj)+d;6dE}` *Apٶf&#Sso6Gi`FwrbDK7k8dz\ i|P-;Q"y73 -$I>iEn^ RY[)J&ٜT]j!*k:>ƱCt\a[ags1xjF}l-] tE3_-}ҙ%-"#ʨQ:=]1YF;M Sؐe!v2ݷb3va (L8y]Ic8 ueLN`$,YBFGtzF*e}Y ̅ހmᴙhF~{n0)(Ђl7J2s̺ɮ1FȢdVD*? QBg#jXT^+JP[Rva@ж` $oC:(7\hNw/eD!%SnL̦8ʝfN-]g)X{lC?Pz$D {iքH48qdW(v9rٷMA-e2~juʅ99Ĩ…M+kQEhfidYaX`FЙ 2Ҥ t!:K}a#B4 VZ'ʃ. WQs20\f2uz]WMkeh(Qn=DBJ:arbrkF>Hlc;$rc,̡;r R2m9 jHbg#dD"-+bO0㮗PlS }qWs%ѕ!m+s{b#,vT Jww1i.0d)]E>V EĦ9ӳPXkٖ!"XȷVP`$T .Q bVhJ.k/-w2Z/4œi0)_sKs`雮WuwSQ|TɶюiVA֓HQ5^sToRI[VH3|ݲvPg){>1VXs[oFd$C!,J|6e~DM bOShc?BWXzPƲhAw}oS.O!z3<Ƴ *6Ĵ-Y JGKn1Evgق<[>EwBQpk&بw]b8Tcz6ꔟ]Q7d]vs~zQ$E! љA}3S$9 ɴk" ePE3 +F_!gHouwqLӓ3(:MV1K0լ^f^mLo$5fجN5r/m!.6ȓ9ڷ.x.q5ɾ(Iz N2(RH]-K2|[g&wD't;5[cۡ )FRO+a ,VlɬúÑ}g2Ф3-7 ޲+3\H+ FS/Q6fyNxbVXԏ,ǝF1¥& T 5 Mfq4U="_]&͆"Fs5gjulu116)V-Lc[a>6-2u+=+;]ͺF J?rQ+4X<^D#*ɹS&6bP0OQTڋ_Nw M tF־h;G)t[i{K#NQ/劲5!U::-r?SNPV y]_)Ar%e!o*u&f68\Ty'ZwG> '#qثfۿ<hh i^Ց35T#p8XFc7aiytv[ 7u]g ZHe"kOԘs'~^, 6"Y&2UhUa , 돕zv"$D@tY$xWM0[s2!oH\к?_Gecx9Hwwl5O;YmM͚Fr7qk$o5\%;6cFTiD[x[˘2F=Kt@&: !NvNI٭v/YMPl i[h y^9XkƭDYϧ< MacN.d&nݔBk4#)O #hKnީRxtkUK ;" 6 7)u`41bs:[h6豽C"NDx"RnC8Rߏ&s #T V8|l:b{ ú*G K69m)I!#/GY=n-5?$鬀&%I:/rew8ȉU~` 6ʋ:NU}0t~#)Lް _7l7|a NUd..?D}F<"vDIelf1=>5(Efi)nzKYmR頑{esM]mr@> +)ĪC4dSVqT :t9Ђ|Tk)kPkΚaB oG#5YQVG0YIA) K m$=kP$M~f{Y 3V]j& JW5̸-X3CsB A*ϣp!5E֒%_)Tk9õyHQ0XWȆchUvhijj\̽0.X4Ůɮ2-n+U2A&{?a>9S@2š)t0pE;nW{iEbA36>126f feہ-&`隝5Wt8sM;WқAt.uvp& άO,Z{ShŬ& X i*-+Na Jq 8e -ak{r# )4iԞDbĴG!5Svh^ۃx9+yjur !a);9C= A.w(vHv(؅LVv >Tl'jEc` xiʳ a[.bbeb魭hٶ];YRyVf=]FȏSIˌL E"to"(##.n¯zF&l[;xK%4eU^`!1sU;7p%]. d4ja- !gWMq6(.;IKlH5y=tؕ!-{$54Gy' 5M hfEP&KvE͠V9sVs[T7̜̰.MBkDLP[ZG+48z !lv=PA1Ύvىoz_6y]x+}>6CѨ;ԖzQ l:ձ}a$b6*Ő3t9UK!![11NԞ7.] ##)6 2bun7͓Jzd JʴACo7WI IB&!Zo3el7 Aaib:ś1x{`YZpg_+JD~)Z 6XR^-4`-+SO}s޷/^6!,.nzN ҭϲ倴vҩg2 4Ar1`'B4 ;ÅvӐ]A?!Uȃ>I͏M'qSLc&[fvQ(}fcz`Ci`ġ>a/r\-cme=.?S|L4%EˮQlQZ|"ј`Y,6 q ':s82u :XwA8Lvs>X! fz:! db$Y0ieXdkkQ[5lnX۩1劝>#8>-;F# iԩbF>!DHS#\ 'H`=^nvFλnwPc~n*B_K팧vK){K{ m^fJz+:KA2oJQ;$|+PdujejEơ˙ 㲻DVFfjQ阐WG!-[+sf&\QM=dZ6.zLK uM b6,p3[o )l1E P&4yz󡅭ZU6LaŁ77^Gc~r>\ [ʤ߈4΋j.΀u^zT+XNܩ 4]Nz""JgSZH yI$:LQ~~5>nC؉@YߘUXJȲv[8VǗR*6T~ Ѩ)|bC#ŷ#T124teZ> fҶ4.@m6](KIthN Pio9I-G) [HَX|yqR:Hhc4n7ÓX`:3bEUi"(IiMC("4u8ꨙu)KBF{pLdZc K:ȄN3aVYFV7Нt"&՝n#bKxkXvadGPE 98$.A븛ltV5+RQ7M}s7,#֏6&N%[\m!ǃ؞& <[$m}IP*8ɶ=ٸKLRZ0mYo;vRsʙT7s-Vk:lOq_^Cv~{)ذ\8+d]@Bt1e㊚ors`#k#\ 7TArQףȳzQb1hp9۝ Mry(B|݄{)IJj*\[b2,at3jclkm(_qŘ%å:)׀$ĻkE,hC"+K=ܤӣӇ>kvvۦ^pGSͤcAR\6JhBmK ocjϥ\@.ka{4|{dE vhIs5ݎ*PunRl#Z&tQEQ {woֈӱ> \j/qNv 5,܍qp͠tp#6%f! "\ڪIAFs-e`0/&%4w||.K2H̓ GEV d8hx~&F22-9Z>D ṂL&9rfLc\ud8$i[e ssY,EPT^:fvаύRI(7|)lfdѸfcmmCyx8i-LU8]8FAsqv6b7$'yXyNI=Ls}>. bhMz 1ѢQ2 iDȪ(m!4sA>05 BƗ~W/ɯsIdx.7xΐ[} ,;| "Ơ2 M K2>\yg'xg#% el@k xK?e-CoZ?ya#K7kpG&h{Wto >qz9:͇Nzg_ی'/0Gޏrk_~['׿o~tߛ|oX. jX퓗j?Sj=}V~T9^T׀sg/^K}8O~97swM@t06[@{}o 퀗^ xՀG}嚱h\3ki#˿Yz6pp7?x&?x/τ5'܉v{j_Z|&7w^tM^֓ok? O~j>|MN~GNvөW7kOSVKk^0NW[zI8b7x˩]SEGO> Sa# j9¬|ڨn9~~^qzZkVj<@<=IG{OA\k/:%१WR{4V{7OFj;/T_S4N?wNv癓Μ=Qu9ߪ>gUoWw淪?'ޙOT3TyGμ3Sș~wTpf_+*YWJVs+TA]>YozZ7oz}8vo~Egf3gQY,U> :sEł>^q*}C@л* @;+@_y{U={T@^G1h_TT~ +[mYiIǣ7*O?V sܪ[+T&ϪL2\Y3㘮X^ JtLVb@vLT^tW^ x1VVˎʷ^ xH嵀x3+o𽀷x\w~C<1~? x?? ςA࿀{ࣀkO~}3?h@_tq\*O6*wZmVV*H]yN_:32I垪^y^ϫ,ϯxUWWU_Ty}ŕwW_Zy{*?T}m|_U+]}Dg՞x9'}ng]go:վl^{O? fV [3Ծk8O}zۅo<׮3u9ʝz﹨so[o:=շ{[sW}UsҹʹT?rg?Ϝ|߮rwtR}}DwLM= bWղ_]+?O}ZHAϣ8wyQ|_ϋʅ~ J0}ӅY <s/ Vmu/ ;.D\~®_}BY /x_4r񥵛.~k2_^{WԞ ݋Zr;j) _S k?a\|CgqO>o!//~7\Հ-o o ۿo*w^O>QEC~?= E'@@݀!@3!r_뾻N Gזr_n=ۉ8-#>Z?<2;vn08zK_qtˣwOEo'}`w{Mkc\)_~믿~.Pʯl/myCuH;k_/u/yGGZ\kA?W=p?ĉ6p=VGkmƞNqa9_s8@9pk~p_5pe|a3rN^c'N- XkH {G#2"乿ģ݉+c=(R{{IjWv/m>nW%ᑣaob;n{x7w絷]7"Ǫ/nC=|N/r O!zqW뮉+'/ՎO%{zkt?ԥړOغ>эTCOغnܙK5̍{qV.զD7>y Ǽ~tO5cKضݿy.>VuA]3\}[OK~덭vOݷTW'_O3Q܉/]G\._^G?񏻎Qc֓O\_MuR7\FktS.ը 7Axn⥚p=>֯ѭ~~c61˿Fww1_|C]7f-N|ߔ:7ȸH'm%|]Gۏ.~:z} rzK_cccCXW쯫n]?}U[uWu!]u'۫]賀O~ѕ|G~W孏3f3f]Os;{ros?iJ/~2_| ox/Ve i<@< NormalCJOJQJ_HmH sH tH @@  Heading 1$h@&a$ CJ0OJQJ>@>  Heading 2 h@& 5OJQJ::  Heading 3 h@&^h5CJ::  Heading 4 h@&^h>*CJ66  Heading 5 @&^566  Heading 6 @&^>*66  Heading 7 @&^666  Heading 8 @&^66 6  Heading 9 @&^6<A@< Default Paragraph Font@B@@  Body Text d,CJ<C< Body Text Indent h^h@R@ Body Text Indent 2 ^HS"H Body Text Indent 3x^aJ,2, Header  !6 @B6 Footer$ !a$CJBOQB MathematicaFormatTextFormhbh MathematicaCellText 7$8$H$$CJOJQJ^J_HaJmH sH tH POqP MathematicaFormatTraditionalForm\O\ &MathematicaInlineCellInheritFromParentROR MathematicaFormatStandardFormOJQJ@@ Balloon TextCJOJQJ^JaJFOF Balloon Text CharCJOJQJ^JaJ .            .r$u)F@ly+J9 , Z a V k %(F%a17-D!&k*^p^b v !!!L"" #D#$%%}&&&'%(2)i**<++++/,A,u,,,,,-$-D-g-~-----..6.X.Y.[.^.a.d.v.w............................0000000000000000000000000000000000000000000000000000000000000000000000000000000000000@0@0@0@0000000000000000000@0@0@0@0@0@0@0@0@0@0@000@0@0@0@00@0@0@0@0@0@0@0@0 0000000000000000000000000 03$ C~ B""#G$&j(+-/m22 !"#$%'()*+,-.012357V%>XSMTJHHP LaserJet P3005 PCL 6InputBinFORMSOURCERESDLLUniresDLLResolution600dpiFastResTrueHPLpiSelectionNonePrintQualityGroupPQGroup_2OrientationPORTRAITHPOrientRotate180FalsePaperSizeLETTERMediaTypeAUTOCollateOFFRETChoiceTrueHPOutputBinOrientationFACEDOWNHPStraightPaperPathFalseOutputBinAutoEconomodeFalseHPPJLEncodingUTF8HPPaperSizeALMConstraintsENV_10TextAsBlackFalseTTAsBitmapsSettingTTModeOutlineAlternateLetterHeadFalseHPSmartDuplexSinglePageJobTrueHPSmartDuplexOddPageJobTrueHPManualDuplexDialogModelModelessHPMapManualFeedToTray1TrueHPPrintOnBothSidesManuallyFalseHPManualDuplexDialogItemsInstructionID_01_FACEDOWN-NOROTATEHPManualFeedOrientationFACEDOWNHPDocPropResourceDatahpzhl4wm.cabHPColorModeMONOCHROME_MODEHPPDLTypePDL_PCL6HPJobAccountingHPJOBACCT_JOBACNTHPJobByJobOverrideJBJOHPBornOnDateHPBODHPPrintInGrayScaleFalseHPDuplicateJobNameOverrideSWFWHPConsumerCustomPaperTrueHPEnableRAWSpoolingTrueJRConstraintsJRCHDPartialHPColorSmartAutomaticJRHDInstalledJRHDOffJRHDNotInstalledJRHDOffPSAlignmentFileHPZLS4wmHPSmartHub_OnlinediagnostictoolsTRUEHPSmartHub_SupportandtroubleshootingTRUEHPSmartHub_ProductmanualsTRUEHPSmartHub_CheckfordriverupdatesTRUEHPSmartHub_OrdersuppliesTRUEHPSmartHub_ShowmehowTRUEPSServices_DeviceandSuppliesStatusTRUEHPSmartHubInet_SID_263_BID_276_HID_265PSServicesOptionPrnStat_SID_242_BID_270_HID_15521HPDocUISUITrueHPNUseDiffFirstPageChoiceTRUEHPPageExceptionsFileHPZPE4wmHPPageExceptionsInterfaceShowPageExceptionsHPPageExceptionsLowEndHPPageExceptionsLowEndVerHPPageExceptionsCoverInsertionHPXMLFileUsedhpc30x56.xmlDuplexVERTICALHPPaperSizeDuplexConstraintsA6HPMediaTypeDuplexConstraintsHEAVY,IUPHdLetter o [none] [none]Arial4Pd?FRANK<Automatic>PR 44600dpiCustom Print SettingsdMicrosoft Word for WindowsNoneTwo-sided (Duplex) Printing  WINWORD.EXEC:\Program Files\Microsoft Office2000\Office\WINWORD.EXEIPACDRWDSGATCAPI;F4E8Q;Ki݅&E%9xPPBHAERPHP LJ P300506C odXXLetterDINU"X ,@>>XSMTJHHP LaserJet P3005 PCL 6InputBinFORMSOURCERESDLLUniresDLLResolution600dpiFastResTrueHPLpiSelectionNonePrintQualityGroupPQGroup_2OrientationPORTRAITHPOrientRotate180FalsePaperSizeLETTERMediaTypeAUTOCollateOFFRETChoiceTrueHPOutputBinOrientationFACEDOWNHPStraightPaperPathFalseOutputBinAutoEconomodeFalseHPPJLEncodingUTF8HPPaperSizeALMConstraintsENV_10TextAsBlackFalseTTAsBitmapsSettingTTModeOutlineAlternateLetterHeadFalseHPSmartDuplexSinglePageJobTrueHPSmartDuplexOddPageJobTrueHPManualDuplexDialogModelModelessHPMapManualFeedToTray1TrueHPPrintOnBothSidesManuallyFalseHPManualDuplexDialogItemsInstructionID_01_FACEDOWN-NOROTATEHPManualFeedOrientationFACEDOWNHPDocPropResourceDatahpzhl4wm.cabHPColorModeMONOCHROME_MODEHPPDLTypePDL_PCL6HPJobAccountingHPJOBACCT_JOBACNTHPJobByJobOverrideJBJOHPBornOnDateHPBODHPPrintInGrayScaleFalseHPDuplicateJobNameOverrideSWFWHPConsumerCustomPaperTrueHPEnableRAWSpoolingTrueJRConstraintsJRCHDPartialHPColorSmartAutomaticJRHDInstalledJRHDOffJRHDNotInstalledJRHDOffPSAlignmentFileHPZLS4wmHPSmartHub_OnlinediagnostictoolsTRUEHPSmartHub_SupportandtroubleshootingTRUEHPSmartHub_ProductmanualsTRUEHPSmartHub_CheckfordriverupdatesTRUEHPSmartHub_OrdersuppliesTRUEHPSmartHub_ShowmehowTRUEPSServices_DeviceandSuppliesStatusTRUEHPSmartHubInet_SID_263_BID_276_HID_265PSServicesOptionPrnStat_SID_242_BID_270_HID_15521HPDocUISUITrueHPNUseDiffFirstPageChoiceTRUEHPPageExceptionsFileHPZPE4wmHPPageExceptionsInterfaceShowPageExceptionsHPPageExceptionsLowEndHPPageExceptionsLowEndVerHPPageExceptionsCoverInsertionHPXMLFileUsedhpc30x56.xmlDuplexVERTICALHPPaperSizeDuplexConstraintsA6HPMediaTypeDuplexConstraintsHEAVY,IUPHdLetter o [none] [none]Arial4Pd?FRANK<Automatic>PR 44600dpiCustom Print SettingsdMicrosoft Word for WindowsNoneTwo-sided (Duplex) Printing  WINWORD.EXEC:\Program Files\Microsoft Office2000\Office\WINWORD.EXEIPACDRWDSGATCAPI;F4E8Q;Ki݅&E%9xPPBHAERP$B.P@UnknownGz Times New Roman5Symbol3& z Arial7Tms Rmn3Times71Courier5& zaTahoma"PhFFN +  7&Q# 24P20d.3QPHX ProbabilityFrankFrankOh+'0  4 @ L Xdlt| ProbabilityrobFrankilranran Normal.dotFrank.d32nMicrosoft Word 9.0@dE@[@@@D7&՜.+,0 hp  University of MichiganlQ.  Probability Title  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry FD1Table\EWordDocumentSummaryInformation(DocumentSummaryInformation8CompObjjObjectPoolDD  FMicrosoft Word Document MSWordDocWord.Document.89q