ࡱ> IKH 75bjbj ee-'0 0 8DL;f"<<<9;;;;;;;;;;;;;$D=?_;W@_;<<t;9!9!9!l<<9;9!9;9!9!7;<IEOq:J%;;0;:J@ 0@;@; 9!_;_;9!;@0 P: AP Physics Energy Wrapup Here are the equations that you will have available for you on AP test.  EMBED Equation.DSMT4  This is the equation for kinetic energy  EMBED Equation.DSMT4  This is your basic equation for gravitational potential energy.  EMBED Equation.DSMT4  The equation for work. Remember that if the angle ( is zero, the equation simplifies and becomes the first one. The (r is the displacement.  EMBED Equation.DSMT4  Power equation. Here its called average power.  EMBED Equation.DSMT4  Another power equation. This here one uses an applied force and the velocity of the object. The  EMBED Equation.DSMT4  part is for when the velocity is at an angle to the direction of the force.  EMBED Equation.DSMT4  Hookes law, the force on a spring deal. It gives the force required to compress a spring. This is also the force that the compressed spring can exert when it is released. The minus signs just means that the force the spring exerts is in the opposite direction of the force that compressed the spring.  EMBED Equation.DSMT4  Kinetic energy stored in a spring. These are the equations for mechanical work, power, and energy. Later on in the course there will be other equations for energy as well, especially electrical potential energy and the maximum kinetic energy an electron can have after its been knocked out of the surface of a metal (the old photoelectric effect). But rest easy, well get there. Here is a list of the different sorts of things that you should be able to do in order to demonstrate your mastery of the material. Work and Energy Theorem You should understand the definition of work so you can: Calculate the work done by a specified constant force on a body that undergoes a specified displacement. Use the equation for work. Relate the work done by a force to the area under a graph of force as a function of position and calculate this work in the case where the force is a linear function of position. This is where you have a graph with force on the y axis and displacement on the x axis. The area under the curve represents the work done in changing an objects displacement from one point to another. We did a couple three of these problems. Kind of a geometry thing to find the area under the curve if the force isnt constant. Of course if the force is constant then the area is simply the width times the height and the work is F times d. Use the scalar product operation to calculate the work performed by a specified constant force F on a body that undergoes a displacement in a plane. The scalar product operation sounds pretty hairy, but actually means that you multiply. Anyway, you just use you the good old work equation. You should understand the work-energy theorem so you can: Calculate the change in kinetic energy or speed that results from performing a specified amount of work on a body. The Physics Kahuna worked hard to drill this into your brains. The basic idea is that the change in kinetic energy of a system is equal to the work done on the thing. This is also true for the change in potential energy for a system. It takes work to change somethings potential energy. It also takes work to change its kinetic energy. If you do 45 J of work changing an objects potential energy, it then has 45 J of potential energy. This means it can then do 45 J of work. This work can be transformed into other forms of energy kinetic, thermal, &tc. Calculate the work performed by the net force, or by each of the forces that makes up the net force, on a body that undergoes a specified change in speed or kinetic energy. The idea here is that the work done on the body is equal to its change in kinetic energy. So if you know the change in speed of the thing you can find its change in kinetic energy which is equal to the work done, &tc. The force is involved usually to find the acceleration of the system. Once you know the acceleration you can find the speeds, and once you know the speeds, you can find the change in kinetic energy. Apply the theorem to determine the change in a bodys kinetic energy and speed that results from the application of specified forces, or to determine the force that is required in order to bring a body to rest in a specified distance. This is a lot like the item above. Once again you use the force to find the acceleration and then that gets you into the whole speed/kinetic energy thing. You can also work backwards kinetic energy to change in speed to acceleration to force. Conservative Forces and Potential Energy You should understand the concept of conservative forces so you can: Write an expression for the force exerted by an ideal spring and for the potential energy stored in a stretched or compressed spring. You just write out the equations, which are given. Easy as pie. Calculate the potential energy of a single body in a uniform gravitational field. Use the  EMBED Equation.DSMT4  equation. You should understand conservation of energy so you can: Identify situations in which mechanical energy is or is not conserved. Energy is always conserved. Mechanical energy though means potential energy and kinetic energy. The main types of potential energy would be gravitational, energy in a spring. Later there will also be potential energy from an electric field, potential energy stored in a capacitor, and potential energy of photoelectric electrons. Its all treated the same. In elastic collisions we assume that kinetic energy is conserved. Examples where mechanical energy is not conserved is when you have friction involved. The frictional force does work, which is an energy loss. Basically you have this:  EMBED Equation.DSMT4  We did several problems involving this sort of thing. Mainly with objects sliding down ramps where there was a coefficient of friction. You recall you had stuff like;  EMBED Equation.DSMT4 where  EMBED Equation.DSMT4 is work done by friction friction force multiplied by displacement. Here d is the distance the thing slid. Apply conservation of energy in analyzing the motion of bodies that are moving in a gravitational field and are subject to constraints imposed by strings or surfaces. Think of things swinging off a platform type deal from a string to some lower height. We did several of these. These are your Tarzan on a grapevine type deal. Also you could get an object moving from a table top to the deck below. In both of these examples, the body would undergo a change in potential energy. Youd usually have to find out what its new velocity would be or what the change in height was that kind of stuff. Apply conservation of energy in analyzing the motion of bodies that move under the influence of springs. Did you not totally love the spring energy problems we did? Go look at em and relive the pleasure. Power You should understand the definition of power so you can: Calculate the power required to maintain the motion of a body with constant acceleration (e.g., to move a body along a level surface, to raise a body at a constant rate, or to overcome friction for a body that is moving at a constant speed). Use the  EMBED Equation.DSMT4  equation. Use the acceleration to find F, which will be the net force, i.e., the sum of the forces. If they throw friction at you or some other force, just remember that the force you find using acceleration is the net force. Youll have to write an equation for the sum of the forces. Calculate the work performed by a force that supplies constant power, or the average power supplied by a force that performs a specified amount of work. Use the  EMBED Equation.DSMT4  equation as above. To get into work, use the general work equation. Just remember that youre dealing with the net force as above. The big thing on the test will be conservation of energy the idea that the energy before has to equal the energy after. You should know when and how to use this concept. Expect spring problems or gravity problems, but there could be other ways to sore energy as well. The concepts will commonly be folded in with other stuff you havent had yet as well electricity, magnetism, or nuclear physics for example. Conservation of energy is one of the biggest deals in physics, so be really good at it because it will be all over the test. Here are a couple of typical problems off previous tests: This is question number 2 from the 1986 exam. One end of a spring is attached to a solid wall while the other end just reaches to the edge of a horizontal, frictionless tabletop, which is a distance h above the floor. A block of mass M is placed against the end of the spring and pushed toward the wall until the spring has been compressed a distance X, as shown below. The block is released, follows the trajectory shown, and strikes the floor a horizontal distance D from the edge of the table. Air resistance is negligible. Determine expressions for the following quantities in terms of M, X, D, h, and g. Note that these symbols do not include the spring constant. The time elapsed from the instant the block leaves the table to the instant it strikes the floor. This time is controlled by the time it takes for the block to fall.  EMBED Equation.DSMT4   EMBED Equation.DSMT4  (This is a projectile motion problem, aint it?) The horizontal component of the velocity of the block just before it hits the floor. Velocity is constant in the x direction. Weve figured out the time of flight.  EMBED Equation.DSMT4  The work done on the block by the spring. Lets use conservation of energy to solve this one. (Finally we get into work and energy.)  EMBED Equation.DSMT4  The spring constant. The work is also equal to the potential energy of the spring.  EMBED Equation.DSMT4  Heres another lovely problem: A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph. The object starts from rest at displacement x = 0 and time t = 0 and is displaced a distance of 20 m. Determine each of the following. The acceleration of the particle when its displacement x = 6 m. The force is constant from time zero till its displacement is 6 meters, so we can use the second law.  EMBED Equation.DSMT4  The time taken for the object to be displaced the first 12 m. Again, the force is constant from the start till the displacement is 12 m. This means that the acceleration is also constant, so we can use one of the kinematic equations to find the time.  EMBED Equation.DSMT4  The amount of work done by the net force in displacing the object the first 12 m. The work done is the area under the curve:  EMBED Equation.DSMT4  The speed of the object at displacement x = 12 m. We can use conservation of energy to solve this bit.  EMBED Equation.DSMT4  The final speed of the object at displacement x = 20 m. We can use conservation of energy again. The work is equal to the area under the curve, so we add the area of the rectangle to the area of the triangle.  EMBED Equation.DSMT4  f. The change in the momentum of the object as it is displaced from x = 12 m to x = 20 m. Youll learn all about momentum in the next unit.     PAGE  PAGE 125  ef}~   ' ( ) * - e f ǽⷭⷭ{oha\ⷭ hB6 jDhB jqhBjhBCJEHU$j#)? hBCJUVmHnHujhBCJEHU$j#)? hBCJUVmHnHujhBCJU hBCJjhBEHU$j#)? hBCJUVmHnHujhBUhB hBCJ,hBCJ,OJQJhBCJ4OJQJ$d  ! " & '   ]^  ]  0]^`0  ]^ ! " 9 : ; < & ' ( ? @ A B ͺӦӓvjWKjhBCJEHU$j#)? hBCJUVmHnHujAhBCJEHU$j#)? hBCJUVmHnHujhBEHU$j=dFA hBCJUVmHnHujhBUj hBCJEHU$j#)? hBCJUVmHnHu hBCJhBjhBCJUjhBCJEHU$j#)? hBCJUVmHnHu BxyBCD}~`aWX ١ٔ١wj5B hBCJUVjhB56EHU\]jb4B hBCJUVjhB56U\]jhBEHU j#)? hBUVmHnHujhBU hB56hB56\] hB5hBOJQJ hBCJ hBCJhB, ABUVCD~^^8^8 & F  & F  ^ & F !()*|}hi`aXY & F  & F  ^ & Ff^f^8^8^ & FXY  OPl m !!"^^8^8 & F  & F  ^ & Fm 4######$$$$$$&&&&&&&['*****+ʺ׶׶wg׶`[` hB6 hB56j%hB56EHU\],j#)? hB56UV\]mHnHuj#hBEHU j#)? hBUVmHnHujhBU hB5hBjC hB56EHU\]j;5B hBCJUVhB56\]jhB56U\]jhB56EHU\]#""""3#4#######$$&&&&\']'(( ! & F8^8 & F  & F  ^ & F^ & F^({)|)))))+[,,,->-?-p---..?.A.k. ^^ & F<^ & F < !<< !++D+E++++++ , ,,,,,,,,,,,,----- -!-"-9-:-;-<-?-p---.../.0.1.xnj/hBEHU$j$A hBCJUVmHnHuhB56CJ hBCJj+hBEHU$jѢ$A hBCJUVmHnHuj(hBEHU$j$)? hBCJUVmHnHujhBU hBCJ hB6jhBUmHnHuhB hB56+1.2.k.l..........3u3v3333333333e4f4}4~4444ƿƿחׄzחubXjNhBEHtU$j$A hBCJUVmHnHu hB5jIhBEHU$j>$A hBCJUVmHnHu hB56j FhB6CJEHU$j*$A hBCJUVmHnHu hB6CJjhB6CJU hB6hBjhBUj@hBEHU$j1$A hBCJUVmHnHu"44444444445555555555"5#5$5&5'5-5.51525356575h0JmHnHu hB0JjhB0JUjhBU hB6hB hB5 hB565$5%5&53545556575h]h&`#$50P}/ =!"#$% Dp}nⶸgd,PNG  IHDR  qijWgAMAPLTEU~ pHYsQQ_|WIDATxnJz]g\;Y9#: t0xF< %dd1S @A5,S$EhY~Z-GyŒR                                       psȽdK5^t,Dr?pjvd9 |%UԌ{I]Zr6dRsug 5=R5؜90 )90m cP&_0%گr',IƠyZ,IƠ$KF# K1($xw$J٬0зK1(|I7`I2Ub/ϲrwyM/(uǩֶyM/({{jL{Mr_PzIE /yJ>TsyM89?ƕ%/U4I$M%';h|B$۝l\jӾ'*%]svmkHˊ˕J*ɳ|]@A+s$'&?ƺ|^$[?_5Xyҥm ʪy5lzlAYe.sfٍ(5JDx.!J!Q8y!sA d<\P:%C6U2Sd4\ɓwAw&B0%In?LI%d,A*KPJRDd ?UKe?_S޽Ĭ(Bv/Q%j&^Jr(Y?LAJ+F͜VGk\IefVk\IR5q`߅[w@d ʩ:"d cuV"%L%yKf7>HZ%yL|},Ē4sPxDAI$ir$oPI%$oPRI%$kPRI%$gPtm0j9QIr%ٖd Jc5($9 lN'3($3(~3($Z&dl?Τ(%+d l\VCix8P҂-jW$~ŐR1($;AI(|AI('[/( %pw JJId J8꓌AIָ^?T.,R JI$ JRI< d )maFX+bI%I%$GPRK%$GPKr%$GPKr唴IR售+hGPN:aJ-' \@%O2q`{*O zI$Ý wN0HW$+[%^崍ˊ#(KK]ŐZUZj'\UlNOh$ߒƁ-ɐKrd$GKrܦN/p:$C$$C$$C$q`|*In` JzIdJIdJId4z AI_`JbCPrH%$yPrH%$yPrHЧ!I]dqPRwm J-I$yPr]ɃE8> IdO%Cˀ"JI$JI$JIH#I|$w,XuB$i;2IveMI6u&Iڠd J.I$iPrI%$iPrI$m$m$mdO%Sm$$e$$Y!qD Z@ނ#TA|ׅO*(M^0JUL>+PUj%ׯ+֏QLIù*ITJtc`fRLzD̿l.+RI&ӫ9!𠤽RDZ2@v W Brs":ɪ2f]%hYT(9iVMfLdS",RUbRfO7VmpOrs9a0}PzZ,oˏߗg:7sWjoxw}fwOCy`e5?ߊY(u֏˿W/o} 蒘[rSϲ:M+?.]eRn_W'HNpv]Qun!"H>\H]uO* PIc="Yb=k\ǨZ!/oNjU~|LtP?>%9!`HB~͗Y1Oou;_5Uޣ$O{(s5 'ItJNWp.xqNeËaz~L_;BMeY??iL7{^oՅV*햷5⥑`Mv z'ug*>nl4mӠ{Mn?(]8LYStlV/x_vϬ.];2"x>2?;^?_oV> %c=8‚I5LMX]V5dt\tf!?~E'=!}nơu.%,8mi/ή)P`pG<<.\I@RꇒGujWz(Mx2E<8n;l|%d1H B=IgW_ $_d@^Ҷ;‰/9xIVUtkY ~M2(%U(9 "d(MHVC&ԡ'd$u#ylYy;J$1wm~@j>"yJv]_bzP2J}Wj^$v"d4 Ku[$/cm׍>o;*>Ud=M2"ɫP=PbZ*ulP28>lɾTv .>nt/l-A 1 /.ުNUskw6UY5O6Ce ]P^I*zLuaY ir=6L Pբ3PrU=r&)' \6I_W|~8C4((Eא,8CAAypZ5`0PrnĵQVgݮ[u ͠|~%ljᕰ۽e/Yu$֔D}[u]_dl\tި}Z/6 2+je̒    )l)#v/jn;6R}?nokK6L=/T I{Gۭ/a^#!)J֗Pn/#")^J6p, OGm'|exeMӶbWnMyt$7iR/fYiW*qY5@q0TƺOSssVgwzv%DRwKkw^ 0v9IU7^L.jɩ%'jjI[TT.^rh%\8u{Zw:JrI"$$JP{&y"dzVKνŞIl%yJL]{b$E%YuLՉgɥԵ~H}ݞiW߮ti}ٵVZkO&}*m4bfnUy>fC1},%R7 U:SMƐ2u U}_{O˖edѭ*[$+RHR] F#wIENDB`n]6GŜrKPNG  IHDR8ZcgAMAPLTEU~ pHYsQQUZzq#IDATxnܸ(-6Jo"'h{(7+^CXH})2zq쩡askq-%o4")1ݱb>GBbX,bX,bX,bX,bX,bX,b7-`1s xnbqVۉ&j;2XI>}mrmx0z* rmx0zM\$C?^H)9[k&(|j#n}pNC$$Sc1}\gMӆ>0GϗNRmB?lD(d/! pjgy|GP KnN88c~ǟ:q>CPLTCFB"EFn٧ n4 mV/g0uOyq7ӧǂյGEҶ$_bR-X?huZIqPk}~>NFPQ]MoBP Ce.d!;TBP Ce֟~A ח={=wR4{tƷG M /|u<`S/nR%usԹdB7_ң2= _6Fӫ5ӿYP#zN) }z~IUzB/e8mO\CSz>YHiޯ%LlHH3^/Wr{J~pNO2}LgK~Pѷ+Z-o>(^wBʚ)k2tEϛ)gB].=8(kVRGx;Ipm|4桫ӄiAژ>o0(߲hĩy\Ur}jԿ-}\G>_$]pogyt/>auGY^Y$_x`y'co}]?qW=ӧhO0Lݻ=KyFOBNnKJs}+,=koBO2نOY ~خ\Q/wAoo2-}w߁g^Q_҄-?~̯VLOf&!k`}还> aMyEǘP22mLO˳Q޻KFm4;cJB:'l>'{W" bL>|紡w?ix$10W.%A4eaN}v>dL"M\?죸2K+1A~X-Hg\9/n|ӯ>б!>', ]SSW ݧ]^eyvow~֊d;׊jGR3[?Y}wh@]Mr5;\,oJٿe30ﻈ*u*XnS2a%zh΢l]Z%&o n2B} =e[/1]圅g\?S&?{O1:5IHi~Ϫ@%}L-͵@/.cX\C%kR}HV~G֏]O78~כRzD}V0~t#/vN2BLؑ%W_^y\9}'f^~SkhŁ=Ȑ\~Y'Nnl˟>P}AOS'ND\߉āϺ= l~$^Kd}Ǒ*"X%&!mR}H4`n:~E黨U5%/xKYU_.՗KO' }~z3P]_5IX(ӛ0/Hk t=ymGP_~";0Ӿ~?rw@+}Xa+}X<]Y<~K#u_?L}XG=^V,}xF2 }Kv}/6PGcۛM}襯1mAҏ6<V9t:pJeoș__}ԡ2>QhȻp@җ}]8@: ?ĥ9U4@+ 7ԇpU]Pkx\k+/( [+MMe'lnCw H2fĩ30gIr_<@z} 1Vf4}+?ӄB>y8c4>5J?6.1/T?)u Џ$cf>1[ҏ5C$} ?(?vݷbjxy3JCЇ0ʆ6W u/j*hB:0^ߣ휗?ٯ"v]Tyғ)=2ߡ?<]>ğo6H2@w}C ~2 4!x?ߦBi}/yB7U疰X,bX,bL8٢QIENDB`Dd <  C A2`65/kxag8<D `!465/kxag8` PxSkA̦m`7 Ac@* ^  &fF$im@P(C'CoͿDD( Hv}oo/8OA[T{nњj, &$b<;Id(*;z?J~0ߪV{nPE4EG*aPhQ.iaOWHpB!v{ދ܃Emp}j SE "w/C mαZYR*Ƭgta`(nּb[cQXHjúpqg嬳RYDd d<  C A29e Sf A4 `! e Sf A^ xRAKA&1VZz!&bjh;ot&2Pzk}YPآcwQEao󷃮(+*Ml>b[241I$mr[5+a%#Y/u1Qڡ :T>/'Jg$/SpY55CiWW-ʪr^m\6vEV)׼{~\v;9(eKjL/oBp̭eӹhb\vڷӧϙ6r|.,,̠/+@Gl0\-M?$xp,=M?iBdP`XQPdQ@"^yNn|n߄{_>V ~UDd `<  C A2rU d zN `!FU d zX xkAǿof7mnVƀ UMBz0U4469Y[! H\L$&\s]J- *-N ,dY]MXXDM1lY:N ZҨa|T9+ W+N $JhtK.*oÏHs`[5R|@"8,49Qĭ ~~8 !VĕB!fiR-7!d '%K<Ԟ,2d.tSK؄-oleR>͒Q| ޢAx î5A<DE97^QaFve9˘C8IfVl^W+_W$kf`o [=^ROx}j?45x0oE$=iBR\w[zlWDp}q$·;͠*lq۩8U ]/z?Ϝ`x 2bYtUb^2I:C,NR] N!'švCv>?glF5{}qT9~ ړyCCͼDd l,B  S A? 2&; e55sc37 `!; e55sc37xmRMKQ=M6t&XPRIt &AwØHͤLj\4 … lt-2;}/ ܹݹg @ @y,(B$áBh*/-4&-<1tF[_  !"#$%&'()*+,-./0123456789:;<=>?ABCDEFGJMmNOPQRSTUWVXYZ[\]^_`abcdefghijklnopqrtsuvwyx{z}|~Root Entryg F(\EOL8Data @aUWordDocumentfObjectPooliFEO(\EO_1059660758FFEOFEOOle ObjInfoEquation Native   !"%()*./015678;>?@ABEHIJKLORSTWZ[\]`cdefgjmnopqruxyz{|}~x DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  K== 12mv 2_1059660760 FFEOFEOOle ObjInfo Equation Native  x DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  DU g ==mgh [_1059660762FFEOFEOOle ObjInfo Equation Native ,x DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  W==F"Dr==FDrcosqx DSMT4WinAllBasicCodePages_1059660764 FFEOFEOOle ObjInfoEquation Native $Times New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  P avg == WDt x DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/AP_1059660767FFEOFEOOle ObjInfoEquation Native  G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  P==F"v==Fvcosq FMathType 5.0 Equation MathType EFEquation.DSMT49qDlDSMT5WinAllBasicCodePages_1095132221R*FFEOFEOOle #CompObj$iObjInfo&Equation Native '_1059660769CFFEOFEOOle +ObjInfo ,Times New RomanSymbolCourier NewMT Extra!OGE_APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cosqx DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EEquation Native -_1059660771#FFEOFEOOle 2ObjInfo"$3_A  F s =="-kxra x DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  U s == Equation Native 40_1117795426'FFEOFEOOle 9CompObj&(:i12kx 2=7 FMathType 5.0 Equation MathType EFEquation.DSMT49q>UD|DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OG/G/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EObjInfo)<Equation Native =q_1117795592%/,FFEOFEOOle C_A  E before ==E after ++W frict FMathType 5.0 Equation MathType EFEquation.DSMT49q>^DDDSMT5WinAllBasicCodePagesCompObj+-DiObjInfo.FEquation Native Gz_11177956431FFEOFEOTimes New RomanSymbolCourier NewMT Extra!OG/G/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  U g ==K++W frict U g ==K++mnd FMathType 5.0 Equation MathType EFEquation.DSMT49qOle MCompObj02NiObjInfo3PEquation Native Q>DDDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OG/G/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  mnd FMathType 4.0 Equation MathType EFEquation.DSMT49q_1059661034!M6FFEOFEOOle UCompObj57ViObjInfo8Xx@6M6GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  y== 12at 2 FMathType 5.0 Equation MathTyEquation Native Y_1092920017;FFEOFEOOle ^CompObj:<_ipe EFEquation.DSMT49q:QDtDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  t==  2ya  t==%  2hg  ObjInfo=aEquation Native bm_1092920212@FFEOFEOOle h FMathType 5.0 Equation MathType EFEquation.DSMT49q:‹DDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  0v== xtCompObj?AiiObjInfoBkEquation Native l_10929200324EFFEOFEO== D  2hg  ==%D  g2h  FMathType 5.0 Equation MathType EFEquation.DSMT49q:DtDSMT5WinAllBasicCodePagesOle sCompObjDFtiObjInfoGvEquation Native wTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  W== 12mv 2 == 12MD  g2h  () 2 ==% MD 2 g4h_1059661702JFFEOFEOOle CompObjIKiObjInfoL FMathType 4.0 Equation MathType EFEquation.DSMT49qx@6M6GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   12kx 2 ==W! 12Equation Native  _1059661880H9OFFEOFEOOle CompObjNPikx 2 == MD 2 g4h!k==% MD 2 g2hX 2  FMathType 4.0 Equation MathType EFEquation.DSMT49qObjInfoQEquation Native _1092920113WaTFFEOFEOOle x@6M6GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  F==ma a== Fm==4 kg"ms 2  10.20kg()==%20 ms 2  FMathType 5.0 Equation MathType EFEquation.DSMT49q:„DtDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_ECompObjSUiObjInfoVEquation Native _1092920106YFFEOFEO_A  x==x o ++v o t++ 12at 2  x== 12at 2  t==  2xa  ==  2(12m)20 ms 2 ==%1.1sOle CompObjXZiObjInfo[Equation Native p FMathType 5.0 Equation MathType EFEquation.DSMT49q:TDtDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  W==4N()12m()==%48J FMathType 5.0 Equation MathType EFEquation.DSMT49q:;DtDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/AP_1092920126^FFEOFEOOle CompObj]_iObjInfo`Equation Native W_1092920211\>cFFEOFEOOle CompObjbdiG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  W== 12mv 2  v==  2Wm  ==  2(48 kg"m"ms 2 )0.20kg  ==%21.9 ms FMathType 5.0 Equation MathType EFEquation.DSMT49q:1DDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!OGD/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  W== 1ObjInfoeEquation Native M1TableASummaryInformation(h24N()20"-12m()[]++4N()12m()[]==64JW== 12mv 2  v==  2Wm  ==  2(64 kg"m"ms 2 )0.20kg  ==%25.3 msOh+'0h   $ 0 <HPX` AP Physics Work and EnergyPhysics KahunaNormal David Walla2Microsoft Office Word@@z8@P&O@P&ON(:Jw>, OHJh"GQ7]? M"eɞ]2W޳wRRqi<9i ? DBrl\Rdݞ։yZFxr 4Y3k[rv\2ZM&^nK~D&VdN`/Wt6KaZ7Z|ی U հ,9Vm14 b2ԠfMra|SU*D xnyߖ~m[s8cv~IDd |<  C A2,&mgk8I `!&mgk8I`` 0xRAOA,PE]45JM쁄$x%۲MKb 'M^'/xI1{k"Mdg޼o0h.#S!ʖ`0PYE*4!hF,[L4r08-L aV;qb|BO+45sHl;~fqqXq,el7TƐml=%Y5G]E\q[13w@3l9ۧs24ew7@TQUˠ^llyPp񑌾 &k:\D2RgJݎg#e`VC/[favn"(Abdi km}Ye{ZEĊwA'/7;dD*HFYB5Ff⻅B۟s xhuz<05ʏ,8K0^5Pkˀ5gV YŜֈp6sOn\aVXcVIěXD<|s7G;.u0EynQ Qm[W;fa=a8.d325 :΀'![7pW/ 7-+ ~Ϳ7,B^a3֖?VuVժz)(i$ꥐmw.2%?v?+*w?xSTkG_%u[ )gc@R_ZhܡӋN[Ƨ-U/aDd d<   C A29e Sf AR `! e Sf A^ xRAKA&1VZz!&bjh2]a }/A$-, r7Є <7Q/J}B/:ƬA;Q= .hd/m'>JXOZ-:]['cZx&rNiWVjWk:[RZo<):h>t-Pv5A<7н%6A"q3 ixe,3"xߍ9ȡ`Ed:3%us {/juDd 's*x>X#E 9CDd |J   C A ? " 2!?soZ4`0D `!y!?soZ4`0`(GxڝSoAfvW-hRJ#-%4XW-a96 =hl&WO^5foM7ˢ h͛ޯa$/8v >gEC]`W'GǷB10F oӈE:u|ȖwsnqB<̟yBwt|!y2ZkF'za~Ј>t<O|I<4Mܮg((.^ 1gk!S,dD'"?'Y!Lu;: ^㈕깬o!Oⱐ4 I=iǭ=6ip)ʺ_)uV[.rQ1rBPnPr *ƃi4&r6M=l7Kߣ K%-gi]};upدNgN(OUh4?^%-+z1JQR+YIzZuRT.?#N #XcO2_ԥɇ"Gh{I:f L_[EtqU\|bII>.*#N7vpzZ#k?4߶i8!7'?B9TKЪ`(`g:>-ʾZL[:Eԇ+Wxxx$#U,Ѳͼm|,~wI,#n2BiL©ů,o)Jd%׮={JxMhw zAq1qXe,-F4#0PZ5N8F-[gQƓ5H_BAraNjr4\|fi 3uDd ,<   C A 2PUL.;g $,D# `!$UL.;g $J xRMo@}3NlSz@B*P%>5R|@"8,49Qĭ ~~8 !VĕB!fiR-7!d '%K<Ԟ,2d.tSK؄-oleR>͒Q| ޢAx î5A<DE97^QaFve9˘C8IfVl^W+_W$kf`o [=^ROx}j?45x0oE$=iBR\w[zlWDp}q$·;͠*lq۩8U ]/z?Ϝ`x 2bYtUb^2I:C,NR] N!'švCv>?glF5{}qT9~ ړyCCDd ,<  C A 2PUL.;g $,$& `!$UL.;g $J xRMo@}3NlSz@B*P%>5R|@"8,49Qĭ ~~8 !VĕB!fiR-7!d '%K<Ԟ,2d.tSK؄-oleR>͒Q| ޢAx î5A<DE97^QaFve9˘C8IfVl^W+_W$kf`o [=^ROx}j?45x0oE$=iBR\w[zlWDp}q$·;͠*lq۩8U ]/z?Ϝ`x 2bYtUb^2I:C,NR] N!'švCv>?glF5{}qT9~ ړyCCDd $B  S A ? 2_<눢՗(ٸ2:'f~";) `!3<눢՗(ٸ2:'f~"`HD PxAkAof7n1BnqEI#'=ģGzҫ@?,ofwCi@갓7o~^a 0p5 &[T{njY U1 nl1Up=Ǭ?6( -?|ڍ~1\IʼnP "Y=O noKÁַ3K*LW1Jiɒ m49j/eB-RJsfcT:w֌*yF~)[r3݉}п1(7ejK~vA7柗y>ZDhuK̓p".\i7nر7=U+߈'+Ǯ+3iƫV<ўu/X^kqm$@3[w,yr,0>&Y.bn6o3|*g_!؛#iÌ:6q\"ߕauY uw^p<$Î7,B3K1i:* ҺS|eW,,G#\F>B>+_^#\c|Lr!4ܦ_qV? ګd m~"u`tD;  4G6'%}Qz\GmN^O A(κp?4۳nWk,lKvkv)jTKvW-;e[B_nCZvLÔ?w$`(L}5A~1٧ZM_"g|{iKnZ[ү'.)l6dFp1]  EwTnOq䬺(=y1>J 7MUagӫov* NqDd /B  S A? 2߃g8>2%-Q]4 `!߃g8>2%-Qz# 7~ }xUMLA~3!R z -HjSP1pœ'=zğ;51iĨX7ߛ}ovpPk .b!Bj]%;jtxb1#&Gc#69:4s&T ՙ@A`7k2j]w׭Ž)E E1),m^B_aħVD]F»CA@,3؆s3@XNb188ye } 4#*W.C6ɝ Iqk`-n+nK%Kk}eFW>Lxl<; u3 8K3sk-[8 ̄9P^lnF?8}~q.2Uvn[ClBGGsIz~LB&U`N.}ҺIK?fT0"5WlJkPV!/%b$ϗi[nŻ5:Z`TbPIL[6-bW; k˝MjK[*VKo$?!\Ƞ1tHthl,K'Ov4xi}ǻǧ& af {NNĠ*y#{C9 |j؎x7\Kn!E{ŴГk-LsڣhONBJe&/̈20{[?;=|L:aٔMnG[&7EgC1FyQ[] { "u ,nB-eh!tve(Yהu3Z\%'o8la}icqv Τ') p .TÌw_3vGeDd B  S A? 2[:&%0>*^HX78 `!/:&%0>*^HX(]?xUOA~3K,٭" RSBP$m8JB X R~%&M mJIC**а'\.s Y+sl)I9ksd˙b)]pZQ[Tk:Ӽ}Z9jEby]RP^ͭhTԘH-^[ ;yAyHƦGb1<d!}m*wݚOYh(6O[y65E$ցi#2Mc:߇diLn'j'fL`wAx8IDm hov3^ ABmgXS^<gM{0H=վ݁=ێ&r\ l9c,&ŅkӋD=n'ǧkD)B"6+Gy(JrXK1y+{WJ\cJM++R i$66Dd [B  S A? 2c -GcCK|< `!tc -GcCKx)`?SBxUOA~3Ŷl[(F⁄mpUZRB1@bx@(LI#' P iQiipoyfv@YQT EЄЃ424S&bl jUhPLUZ@qAOxhM0~/c_BP1"-Kt!uRDpJ^gT$qQr Ղ%I ƽ@%t!xmpiUriUpV1*Z)N_c"IF&zxXz\+FUyc^:#ڎGy/ VÕKW^mxf)=yEo45x6afhw'G\˸3pTaY]öYG6A8?iNޫTGׇ]͢8y{0sJ=RO7q }J-ȮGg8/Hn[zchRTr?f?_~VVv>y> ~#&pg@ _<Nnu$nGH϶9cSGX,2 capBoPlZ09_إ OUCZ T]+5ϙ6]|uΐ?~>FN3"8xg@VhE0ޞY [v<ZuV\ 2Ta(Leuφ{&qrNoFlB'<<Dp;h3'?~8po« 1k_juknŤ7mtZؖoJ5U17Uӧ˹5RЧBrFԫTS'CWB3 C&̅6a_K'U/b/3>6v)R~򱰕)ٺ)ҁ_|eff>p$m%>y~QClF3~W8,npRpssp]40kθ}er}xZ^xM2To4Lk%Yz4JOKr~DwitV{;R0 ;cjyaa߭Ba9\6ED=2G\wt־_U}:#p\'YZ'60Gpky6==X"Osr}躥nRvg`YE o㱥d6XEs6hfUWJE~XL̰NhUB.|\IlLfD'JW4@4Q9loL!J'&*`!3`U,0 ې7mOt0zyyN({PYF%/&jf Ƈڝ-Y0L c;ՐQ~`Gb;IGR@=t?Q҃eO.u6s`lS}ٽ V*juwCrsM{_Bs+ٜi'pX "y>弭7R Dd xB  S A? 2cJTNF `!cJT ^&xTOAl&&\PJ!)(ZeMZj($!^dyo`bbDNqf0fO~T*Lvf܂ԥ%dPUqB1%k@?4LBd|!׫ L(O-crS'<ɇ>Zt\DuS&cwU:)7)” 9g؟;i꣭c 5cg<ow8?t QutHHTzlEt,6<̱*toeKK 8Zf8J XKP*e[-hE2|-{zrjzy;uzO˝ri< t\e mjt/KI]!$5R$HY$Ku48J4 /'9x>8aw+r#4xt]k`Y7]s ySՇM+ jmo:Lx>F0>wXuk~}ijO3Dd B  S A? 2ɵa6 \3XyI `!qɵa6 \3X .OGx ?xV_L[Ue B10h٢$h FiQ ib5mht3كK|YB"3=ӑD;sډFM=~ܜ#A-T "IIT*٨O:e^" CKA32L%;?ñ V\ˀ٥@T1Wbd_>P:! =KM/ӍОчW= _0 8w^]U[l׈TwgipƬ-UV_z$srQ-G [ r?7Ml%]Llj q5e8C XwP$XT*j}>Q<<'ATvr}6KZ&h}kC:[X(FL{!UȜo#WusT6K6ذSBhN8_lʸDd  B  S A? 2X r4$@ȇO `!X r4$@ȇj,DxX]lU>sgffgw얿Vm)Cibmh ڒSib'6V B IcIHĔ FH4ćzܹ3յ]'swO]i='8Δ8433cH SCF ֹ(AŚsX*<%Cs$R0>$jGP!)VH^uXN5b#5ִ걢T^\xq(Kٹ/b@q84 a4CFzݠJ/`Dga|S [WC쇔6Iqqˊ_?;0IQ<%X|Dtj9;*N?P*Xru=e?Hm)S(RJ!aK:uoK.z30=žPD Fr:<7q مJ" k³u:Sw)tL7\ߥUۺd%9Tx޹^yv7O]`5/@1 #)$zȵ8 R T5Z,ĵښ)xMYX#NC$$'icq*Ejk0MN$Yx䀊k~(bPF\i 3:`RO``r2b1DU1M̉-jpio[U\NC<=|q6Cg6{tDP-@9G+e(䊒B1rn͓3k5|pYo] 0\f> gЏ۫9#PY~[}Ϸh8aì\;->;?ݶ_rޛ+I{+{"_稻NxJڳ'΋m3pކTs}'wwv%SP$cofHl;ߝ'F(ʚ;a xVڦlݘ؝Um7ë\$ ۔]=Ё%Ui$ͱlE1CSC۱є% E4s5W Fdlxrc##qp>Ր1-$oGHmH#`014Oir3J =/{{m+ҺY5g ;^kZөf VQ9Ay%m8D{7 hV&՜.+,D՜.+,` hp  Kahuna Physics InstituteQ, AP Physics Work and Energy TitleH 6> MTWinEqns DocumentSummaryInformation8CompObjr^  666666666vvvvvvvvv66666686666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH <`< NormalCJ_HmH sH tH 8@8  Heading 1$@&CJ$@@@  Heading 2$@&^CJ(8@8  Heading 3$@&CJ(>@>  Heading 4$@& 56CJ4H@H  Heading 5$8@&^8 56\]H@H  Heading 6$@&^ 56\]DA`D Default Paragraph FontVi@V 0 Table Normal :V 44 la (k ( 0No List 4 @4 Footer  !.)@.  Page Number2B@2  Body TextCJ(NC@"N Body Text Indent ^ 56CJ0."@. CaptionCJ(<P@B<  Body Text 2 56CJ02R2 p21$d $*b* t3 1$d*r* t4 1$dBB p5# d1$^`22 p6d1$^BB p7# `d|1$^``DD p8& `d1$^``LRL Body Text Indent 2<^HQ@H  Body Text 3xx 56TS@T Body Text Indent 3 8^8 56\]`T@`  Block Text&  8]^8 56\]PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3N)cbJ uV4(Tn 7_?m-ٛ{UBwznʜ"Z xJZp; {/<P;,)''KQk5qpN8KGbe Sd̛\17 pa>SR! 3K4'+rzQ TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn R!y+Un;*&/HrT >>\ t=.Tġ S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv u"xA@T_q64)kڬuV7 t '%;i9s9x,ڎ-45xd8?ǘd/Y|t &LILJ`& -Gt/PK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] 7-X &&&) +1.n2475"%&)* "(k.Y1575 !#$'(+e}')!9;'?A%%%!%9%;%&/&1&&&&<'T'V'<)T)V)V*n*p**+ +u+++e,},,7-:::::::::::::::::::::::: ")!!##/Xb$ⶸgd, 7Xb$]6GŜrKCn@r"(  n  s *L4A#" ?b " S A#" ?B S  ?D#{'7-"p}& T`' Td$& }% %:%=%&2&&&<'W'<)W)V*q** +@+B+C+W+u++e,,---------#-&-2-5-8--C?VbfEr+K $&&4((++,,---------5-8-3333333333333333e[[ z!% %!%<%&2&&&<'W'<)W)V*q** +@+@+u++e,,----------#-&-2-8-"JxLsOU  OJ ȑ18.  ` 9 i5)l ;]n 9a=  c   MV0/R^bN~"~DH&S6/Sf&d1>iwu2