ࡱ> q` nJbjbjqPqP 1::+BB^^^^^^^LMLMLM8M4Mh D\^NNNNNNNN[[[[[[[$]h `[^NNNNN[^^NN[zUzUzUN,^N^N[zUN[zUzU XG^^[N|N p# LMSg[[\0D\[`Td`0[`^[,zUNNN[["UXNNND\NNNNh h h CLMh h h LMr^^^^^^ Cardiovascular System - The Heart Introduction to Cardiovascular System The Pulmonary Circuit Carries blood to and from gas exchange surfaces of lungs The Systemic Circuit Carries blood to and from the body Blood alternates between pulmonary circuit and systemic circuit Three Types of Blood Vessels Arteries Carry blood away from heart Veins Carry blood to heart Capillaries Networks between arteries and veins Capillaries Also called exchange vessels Exchange materials between blood and tissues Materials include dissolved gases, nutrients, wastes Four Chambers of the Heart Right atrium Collects blood from systemic circuit Right ventricle Pumps blood to pulmonary circuit Left atrium Collects blood from pulmonary circuit Left ventricle Pumps blood to systemic circuit Anatomy of the Heart Great veins and arteries at the base Pointed tip is apex Surrounded by pericardial sac Sits between two pleural cavities in the mediastinum The Pericardium Double lining of the pericardial cavity Parietal pericardium Outer layer Forms inner layer of pericardial sac Visceral pericardium Inner layer of pericardium Pericardial cavity Is between parietal and visceral layers Contains pericardial fluid Pericardial sac Fibrous tissue Surrounds and stabilizes heart Superficial Anatomy of the Heart Atria Thin-walled Expandable outer auricle (atrial appendage) Sulci Coronary sulcus: divides atria and ventricles Anterior interventricular sulcus and posterior interventricular sulcus: separate left and right ventricles contain blood vessels of cardiac muscle The Heart Wall Epicardium (outer layer) Visceral pericardium Covers the heart Myocardium (middle layer) Muscular wall of the heart Concentric layers of cardiac muscle tissue Atrial myocardium wraps around great vessels Two divisions of ventricular myocardium Endocardium (inner layer) Simple squamous epithelium Cardiac Muscle Tissue Intercalated discs Interconnect cardiac muscle cells Secured by desmosomes Linked by gap junctions Convey force of contraction Propagate action potentials Characteristics of Cardiac Muscle Cells Small size Single, central nucleus Branching interconnections between cells Intercalated discs Internal Anatomy and Organization Interatrial septum: separates atria Interventricular septum: separates ventricles Atrioventricular (AV) valves Connect right atrium to right ventricle and left atrium to left ventricle The fibrous flaps that form bicuspid (2) and tricuspid (3) valves Permit blood flow in one direction: atria to ventricles The Right Atrium Superior vena cava Receives blood from head, neck, upper limbs, and chest Inferior vena cava Receives blood from trunk, viscera, and lower limbs Coronary sinus Cardiac veins return blood to coronary sinus Coronary sinus opens into right atrium Foramen ovale Before birth, is an opening through interatrial septum Connects the two atria Seals off at birth, forming fossa ovalis Pectinate muscles Contain prominent muscular ridges On anterior atrial wall and inner surfaces of right auricle The Right Ventricle Free edges attach to chordae tendineae from papillary muscles of ventricle Prevent valve from opening backward Right atrioventricular (AV) Valve Also called tricuspid valve Opening from right atrium to right ventricle Has three cusps Prevents backflow Trabeculae carneae Muscular ridges on internal surface of right (and left) ventricle Includes moderator band: ridge contains part of conducting system coordinates contractions of cardiac muscle cells The Pulmonary Circuit Conus arteriosus (superior end of right ventricle) leads to pulmonary trunk Pulmonary trunk divides into left and right pulmonary arteries Blood flows from right ventricle to pulmonary trunk through pulmonary valve Pulmonary valve has three semilunar cusps The Left Atrium Blood gathers into left and right pulmonary veins Pulmonary veins deliver to left atrium Blood from left atrium passes to left ventricle through left atrioventricular (AV) valve A two-cusped bicuspid valve or mitral valve The Left Ventricle Holds same volume as right ventricle Is larger; muscle is thicker and more powerful Similar internally to right ventricle but does not have moderator band Systemic circulation Blood leaves left ventricle through aortic valve into ascending aorta Ascending aorta turns (aortic arch) and becomes descending aorta Structural Differences between the Left and Right Ventricles Right ventricle wall is thinner, develops less pressure than left ventricle Right ventricle is pouch-shaped, left ventricle is round The Heart Valves Two pairs of one-way valves prevent backflow during contraction Atrioventricular (AV) valves Between atria and ventricles Blood pressure closes valve cusps during ventricular contraction Papillary muscles tense chordae tendineae: prevent valves from swinging into atria Semilunar valves Pulmonary and aortic tricuspid valves Prevent backflow from pulmonary trunk and aorta into ventricles Have no muscular support Three cusps support like tripod Aortic Sinuses At base of ascending aorta Sacs that prevent valve cusps from sticking to aorta Origin of right and left coronary arteries Connective Tissues and the Cardiac (Fibrous) Skeleton Physically support cardiac muscle fibers Distribute forces of contraction Add strength and prevent overexpansion of heart Elastic fibers return heart to original shape after contraction The Cardiac (Fibrous) Skeleton Four bands around heart valves and bases of pulmonary trunk and aorta Stabilize valves Electrically insulate ventricular cells from atrial cells The Blood Supply to the Heart = Coronary Circulation Coronary arteries and cardiac veins Supplies blood to muscle tissue of heart The Coronary Arteries Left and right Originate at aortic sinuses High blood pressure, elastic rebound forces blood through coronary arteries between contractions Right Coronary Artery Supplies blood to Right atrium Portions of both ventricles Cells of sinoatrial (SA) and atrioventricular nodes Marginal arteries (surface of right ventricle) Posterior interventricular artery Left Coronary Artery Supplies blood to Left ventricle Left atrium Interventricular septum Two main branches of left coronary artery Circumflex artery Anterior interventricular artery Arterial Anastomoses Interconnect anterior and posterior interventricular arteries Stabilize blood supply to cardiac muscle The Cardiac Veins Great cardiac vein Drains blood from area of anterior interventricular artery into coronary sinus Anterior cardiac veins Empties into right atrium Posterior cardiac vein, middle cardiac vein, and small cardiac vein Empty into great cardiac vein or coronary sinus The Conducting System Heartbeat A single contraction of the heart The entire heart contracts in series First the atria Then the ventricles Two Types of Cardiac Muscle Cells Conducting system Controls and coordinates heartbeat Contractile cells Produce contractions that propel blood The Cardiac Cycle Begins with action potential at SA node Transmitted through conducting system Produces action potentials in cardiac muscle cells (contractile cells) Electrocardiogram (ECG) Electrical events in the cardiac cycle can be recorded on an electrocardiogram (ECG) A system of specialized cardiac muscle cells Initiates and distributes electrical impulses that stimulate contraction Automaticity Cardiac muscle tissue contracts automatically Structures of the Conducting System Sinoatrial (SA) node - wall of right atrium Atrioventricular (AV) node - junction between atria and ventricles Conducting cells - throughout myocardium Conducting Cells Interconnect SA and AV nodes Distribute stimulus through myocardium In the atrium Internodal pathways In the ventricles AV bundle and the bundle branches Prepotential Also called pacemaker potential Resting potential of conducting cells Gradually depolarizes toward threshold SA node depolarizes first, establishing heart rate Heart Rate SA node generates 80100 action potentials per minute Parasympathetic stimulation slows heart rate AV node generates 4060 action potentials per minute The Sinoatrial (SA) Node In posterior wall of right atrium Contains pacemaker cells Connected to AV node by internodal pathways Begins atrial activation (Step 1) The Atrioventricular (AV) Node In floor of right atrium Receives impulse from SA node (Step 2) Delays impulse (Step 3) Atrial contraction begins The AV Bundle In the septum Carries impulse to left and right bundle branches Which conduct to Purkinje fibers (Step 4) And to the moderator band Which conducts to papillary muscles Purkinje Fibers Distribute impulse through ventricles (Step 5) Atrial contraction is completed Ventricular contraction begins Abnormal Pacemaker Function Bradycardia: abnormally slow heart rate Tachycardia: abnormally fast heart rate Ectopic pacemaker Abnormal cells Generate high rate of action potentials Bypass conducting system Disrupt ventricular contractions Electrocardiogram (ECG or EKG) A recording of electrical events in the heart Obtained by electrodes at specific body locations Abnormal patterns diagnose damage Features of an ECG P wave Atria depolarize QRS complex Ventricles depolarize T wave Ventricles repolarize Time Intervals Between ECG Waves PR interval From start of atrial depolarization To start of QRS complex QT interval From ventricular depolarization To ventricular repolarization Contractile Cells Purkinje fibers distribute the stimulus to the contractile cells, which make up most of the muscle cells in the heart Resting Potential Of a ventricular cell: about 90 mV Of an atrial cell: about 80 mV Refractory Period Absolute refractory period Long Cardiac muscle cells cannot respond Relative refractory period Short Response depends on degree of stimulus Timing of Refractory Periods Length of cardiac action potential in ventricular cell 250300 msecs: 30 times longer than skeletal muscle fiber long refractory period prevents summation and tetany The Role of Calcium Ions in Cardiac Contractions Contraction of a cardiac muscle cell is produced by an increase in calcium ion concentration around myofibrils 20% of calcium ions required for a contraction Calcium ions enter plasma membrane during plateau phase Arrival of extracellular Ca2+ Triggers release of calcium ion reserves from sarcoplasmic reticulum As slow calcium channels close Intracellular Ca2+ is absorbed by the SR Or pumped out of cell Cardiac muscle tissue Very sensitive to extracellular Ca2+ concentrations The Energy for Cardiac Contractions Aerobic energy of heart From mitochondrial breakdown of fatty acids and glucose Oxygen from circulating hemoglobin Cardiac muscles store oxygen in myoglobin The Cardiac Cycle Cardiac cycle = The period between the start of one heartbeat and the beginning of the next Includes both contraction and relaxation Phases of the Cardiac Cycle Within any one chamber Systole (contraction) Diastole (relaxation) Blood Pressure In any chamber Rises during systole Falls during diastole Blood flows from high to low pressure Controlled by timing of contractions Directed by one-way valves Cardiac Cycle and Heart Rate At 75 beats per minute Cardiac cycle lasts about 800 msecs When heart rate increases All phases of cardiac cycle shorten, particularly diastole Eight Steps in the Cardiac Cycle Atrial systole Atrial contraction begins Right and left AV valves are open Atria eject blood into ventricles Filling ventricles Atrial systole ends AV valves close Ventricles contain maximum blood volume Known as end-diastolic volume (EDV) Ventricular systole Isovolumetric ventricular contraction Pressure in ventricles rises AV valves shut Ventricular ejection Semilunar valves open Blood flows into pulmonary and aortic trunks Stroke volume (SV) = 60% of end-diastolic volume Ventricular pressure falls Semilunar valves close Ventricles contain end-systolic volume (ESV), about 40% of end-diastolic volume Ventricular diastole Ventricular pressure is higher than atrial pressure All heart valves are closed Ventricles relax (isovolumetric relaxation) Atrial pressure is higher than ventricular pressure AV valves open Passive atrial filling Passive ventricular filling Cardiac cycle ends Heart Sounds S1 Loud sounds Produced by AV valves S2 Loud sounds Produced by semilunar valves S3, S4 Soft sounds Blood flow into ventricles and atrial contraction Heart Murmur Sounds produced by regurgitation through valves Cardiodynamics The movement and force generated by cardiac contractions End-diastolic volume (EDV) End-systolic volume (ESV) Stroke volume (SV) SV = EDV ESV Ejection fraction The percentage of EDV represented by SV Cardiac output (CO) The volume pumped by left ventricle in 1 minute Cardiac Output CO = HR X SV CO = cardiac output (mL/min) HR = heart rate (beats/min) SV = stroke volume (mL/beat) Factors Affecting Cardiac Output Cardiac output Adjusted by changes in heart rate or stroke volume Heart rate Adjusted by autonomic nervous system or hormones Stroke volume Adjusted by changing EDV or ESV Factors Affecting the Heart Rate Autonomic innervation Cardiac plexuses: innervate heart Vagus nerves (X): carry parasympathetic preganglionic fibers to small ganglia in cardiac plexus Cardiac centers of medulla oblongata: cardioacceleratory center controls sympathetic neurons (increases heart rate) cardioinhibitory center controls parasympathetic neurons (slows heart rate) Autonomic Innervation Cardiac reflexes Cardiac centers monitor: blood pressure (baroreceptors) arterial oxygen and carbon dioxide levels (chemoreceptors) Cardiac centers adjust cardiac activity Autonomic tone Dual innervation maintains resting tone by releasing ACh and NE Fine adjustments meet needs of other systems Effects on the SA Node Sympathetic and parasympathetic stimulation Greatest at SA node (heart rate) Membrane potential of pacemaker cells Lower than other cardiac cells Rate of spontaneous depolarization depends on Resting membrane potential Rate of depolarization ACh (parasympathetic stimulation) Slows the heart NE (sympathetic stimulation) Speeds the heart Atrial Reflex Also called Bainbridge reflex Adjusts heart rate in response to venous return Stretch receptors in right atrium Trigger increase in heart rate Through increased sympathetic activity Hormonal Effects on Heart Rate Increase heart rate (by sympathetic stimulation of SA node) Epinephrine (E) Norepinephrine (NE) Thyroid hormone Factors Affecting the Stroke Volume The EDV: amount of blood a ventricle contains at the end of diastole Filling time: duration of ventricular diastole Venous return: rate of blood flow during ventricular diastole Preload The degree of ventricular stretching during ventricular diastole Directly proportional to EDV Affects ability of muscle cells to produce tension The EDV and Stroke Volume At rest EDV is low Myocardium stretches less Stroke volume is low With exercise EDV increases Myocardium stretches more Stroke volume increases The FrankStarling Principle As EDV increases, stroke volume increases Physical Limits Ventricular expansion is limited by Myocardial connective tissue The cardiac (fibrous) skeleton The pericardial sac End-Systolic Volume (ESV) The amount of blood that remains in the ventricle at the end of ventricular systole is the ESV Three Factors That Affect ESV Preload Ventricular stretching during diastole Contractility Force produced during contraction, at a given preload Afterload Tension the ventricle produces to open the semilunar valve and eject blood Contractility Is affected by Autonomic activity Hormones Effects of Autonomic Activity on Contractility Sympathetic stimulation NE released by postganglionic fibers of cardiac nerves Epinephrine and NE released by suprarenal (adrenal) medullae Causes ventricles to contract with more force Increases ejection fraction and decreases ESV Parasympathetic activity Acetylcholine released by vagus nerves Reduces force of cardiac contractions Hormones Many hormones affect heart contraction Pharmaceutical drugs mimic hormone actions Stimulate or block beta receptors Affect calcium ions (e.g., calcium channel blockers) Afterload Is increased by any factor that restricts arterial blood flow As afterload increases, stroke volume decreases Heart Rate Control Factors Autonomic nervous system Sympathetic and parasympathetic Circulating hormones Venous return and stretch receptors Stroke Volume Control Factors EDV Filling time Rate of venous return ESV Preload Contractility Afterload Cardiac Reserve The difference between resting and maximal cardiac output The Heart and Cardiovascular System Cardiovascular regulation Ensures adequate circulation to body tissues Cardiovascular centers Control heart and peripheral blood vessels Cardiovascular system responds to Changing activity patterns Circulatory emergencies     Cardiovascular System The Heart Page  PAGE 1 "#I8 D M T Z f h r ~ J W |   % Y ^  3 H c w ! > E Z ` 0:Jq|&2@[жжжжh}hF5OJQJh}hF6OJQJh}hFOJQJh}hFCJOJQJaJh}hF5CJOJQJaJh}h3cCJOJQJaJh}h3c5CJOJQJaJ>"#I_  / 8 T Z r ~ / J W  & FgdF & FgdF & FgdF & FgdF & FgdF$a$gd3c+JmJW |   % J ^ |  3 H c d w  & FgdF & FgdF$a$gd3c & FgdF & FgdFw  ! - Z ` !0J`q&@ & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF@[q6AY (s & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF '(I[]o|})/@`np+INQl &hk 0LNh}hF6CJOJQJaJh}hF5OJQJh}hFOJQJh}hF5CJOJQJaJh}hFCJOJQJaJII]<S|}Nr & FgdF & FgdF & FgdF & FgdF & FgdFWp,l&M 9Y & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF0Nk7w?v01 & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF).;1 < f w y +!=!>!!!!!!!""3"4"J""""#*#Q###$f$$$9&L&M&_&&&&&S)})))U*`*}*****)++++,,, ,6,W,c,d,,,,,--h}hF5OJQJh}hFOJQJh}hFCJOJQJaJh}hF5CJOJQJaJO1Q<e|1>Z  $ < f y  & FgdF & FgdF & FgdF & FgdF & FgdFy !!+!>!!!!"3"4"J"T"v""""""# & FgdF & FgdF & FgdF$a$gd} & FgdF & FgdF & FgdF#*#Q#d####$f$g$$$$%>%j%%%%&+&9&M&_& & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF_&&&&&&.'9'o'''' (%(Q(s((((())!)S)}))) & FgdF & FgdF & FgdF)))*9*U*}*****+)+H+v++++++,, ,6,W, & FgdF & FgdF & FgdF & FgdF & FgdF & FgdFW,d,,,,,,,s-------!.<.B.i.....,/]// & FgdF & FgdF & FgdF & FgdF---!.<.i.../40O0Q0R00000000 1/111A1}12222223D3j33344X4y4444445k5555[6v666o7p7778 8 8 8չչխ"h}hF5CJH*OJQJaJh}hF5OJQJh}hFH*OJQJh}hFCJH*OJQJaJh}hFOJQJh}hFCJOJQJaJh}hF5CJOJQJaJ=//40R0000000 1A1e1}111222s222222 & FgdF & FgdF & FgdF & FgdF & FgdF2 33.3D3j3333344X4y44444455G5k5 & F gdF & F gdF & FgdF & F gdF & FgdF & FgdF & FgdFk5555555*6[6v6666'7C7o7p7777777 & FgdF & FgdF & FgdF & FgdF & F gdF & FgdF & F gdF78 88-808<8Z8a8m888888%9@9Z9n9}99999 : & FgdF & FgdF & FgdF & FgdF & FgdF 8-8.8/808Z8[8\8_8`8a88n9}99999::: ;;;;s;<4<i<<<<<<y==== >9>Z>>>>>!?1?N?_??#@~@@A(A*AKAXAZAAAEBBBBBBHCC1D9DaDoDDĸĸh}hF5OJQJh}hFCJOJQJaJ"h}hF5CJH*OJQJaJh}hF5CJOJQJaJh}hFOJQJH ::5:Q:n::::: ;;;;\;s;;;<i<<<<< & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF<=Q=y==== >9>Z>>>>>>!?1?N?_?m????? & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF?#@B@~@@@@@A*AKAZAAAAAA#B=BEBPBjBB & FgdF & FgdF & FgdF & FgdF & FgdF & FgdF & FgdFBBBBBBC$CHCeCCCCCD1D9DaDoDDDDD EE & FgdF & FgdF & FgdF & FgdF & FgdFDDDE7E~ENFgFFGhGH7HHHHHcIIIII*J+J,J.J/J1J2J4J5J7J`JaJgJhJiJjJkJmJnJɺ%hF0JCJOJQJaJmHnHu hAhA0JCJOJQJaJ)jhAhA0JCJOJQJUaJhAhACJOJQJaJhFjhFUh}hFCJOJQJaJh}hFOJQJh}hF5CJOJQJaJ(E-E7EfE~EEE FNFgFFFFFG3GhGsGGGGH7HMHqH & FgdF & FgdF & FgdF & FgdF & FgdF & FgdFqHHHHHHHHHH%IIIcIIIIIJ)J*J+J-J.J0J1J & FgdF & FgdF & FgdF & FgdF & FgdF1J3J4J6J7JkJlJmJnJ$a$gdA/0P/ =!"#$% <@< NormalCJaJmH sH tH T@T Heading 1$1$7$8$@&H$a$CJ(OJQJaJ(^@^ Heading 2!1$7$8$@&H$^`CJ OJQJaJ ^@^ Heading 3!I1$7$8$@&H$^I`CJOJQJaJV@V Heading 4!L1$7$8$@&H$^`LOJQJ^@^ Heading 5!L1$7$8$@&H$^`LCJOJQJaJ^@^ Heading 6!TL1$7$8$@&H$^T`LCJOJQJaJDA@D Default Paragraph FontRi@R  Table Normal4 l4a (k@(No List 4@4 AHeader  !4 @4 AFooter  !.)@. A Page NumbernBnB"#I_/8TZr~/JW|%J^| 3Hc7BoB!L!!!S!!S!!S!!F!S!!S!!S!!F!S!S!S!S!!!!!!!!!!!S!S!S!S!!S!!!!!!!!V"#I_/8TZr~/JW|%J^| 3Hcdw!-Z`!0J`q&@[q6AY ( s  I ]  < S | }  N r   W p ,l&M 9Y0Nk7w?v01Q<e|1>Z $<fy+>34JTv*Qdfg>j+9M_.9o % Q s !!!!S!}!!!!!"9"U"}"""""#)#H#v######$$ $6$W$d$$$$$$$s%%%%%%%!&<&B&i&&&&&,']'''4(R((((((( )A)e)})))***s****** ++.+D+j+++++,,X,y,,,,,,--G-k-------*.[.v....'/C/o/p///////0 00-000<0Z0a0m000000%1@1Z1n1}11111 2252Q2n22222 33;3\3s3334i444445Q5y5555 696Z666666!717N7_7m77777#8B8~888889*9K9Z999999#:=:E:P:j:::::::;$;H;e;;;;;<1<9<a<o<<<<< ==-=7=f=~=== >N>g>>>>>?3?h?s????@7@M@q@@@@@@@@@@%AIAcAAAAAB)B*B+B-B.B0B1B3B4B6B7BkBlBoB000 0( 0 0( 0 00 0( 08 0( 08 0( 08 0 0( 0( 0( 0 0( 08 0( 08 0( 08 0( 08 000 0 0 0 00 0( 0( 08 08 0( 08 0(0( 08 08 0( 08 08 0 0( 08 08 0( 08 08 0H 0H 0 0( 08 08 0( 08 08 08 08 0( 08 0 0( 08 08 08 08 08 0 0( 0( 0( 0( 0(0 0( 0( 0( 08 08 08 00 0( 08 0( 08 0( 08 08 0( 08 08 08 080( 08 08 0 0( 0( 0( 08 08 08 08 0( 08 08 0H 0H 0 0( 0( 0( 0( 0 0( 0( 0( 0( 0 0( 0( 0( 0( 08 08 0 0( 0( 0 0( 0( 08 08 08 0( 08 08 08 08 0 0( 0( 0( 0 0( 0( 0( 0( 0(0 0( 0( 0( 0 0( 0( 0 0( 0( 0( 0 0( 08 08 08 08 08 0 0( 08 08 08 0 0( 0( 0 0( 0( 00 0( 08 0( 08 0( 08 000 0( 0( 08 08 0 0( 08 0( 08 0 0( 08 08 0( 08 0(0 0( 0 0( 0 0( 0( 0( 0 0( 0( 0( 08 0( 08 0 0( 0( 08 0( 0 0( 0( 0( 0 0( 0( 0( 0( 0 0( 0( 0( 0( 0 0( 0( 08 0( 08 0 0( 0( 0( 0 0( 0( 0( 08 08 08 08 0 0( 0( 0( 0 0( 08 0( 08 0( 08 0 0( 08 08 0( 08 08 0 0( 0( 08 08 0 0( 08 08 0( 08 08 0 0( 08 0H 0H 0 0( 0( 08 0( 08 0(00( 08 08 0( 08 0 0( 08 08 08 000 0 0 0( 08 08 0 0( 08 08 0( 08 08 0 0( 08 0( 08 00( 08 08 0( 08 0( 08 08 08 0( 08 08 08 0( 08 08 08 0( 08 08 0( 08 08 08 0(0( 08 08 08 08 00 0( 08 08 0( 08 08 0( 08 08 0 0( 000 0( 0( 0( 08 0( 08 0( 08 0 0 0 0 0 0 0( 08 0( 08 0( 08 0 0( 08 08 08 0H 0H 0 0( 08 0H 0H 0( 0( 08 08 0 0( 08 0( 08 0( 08 08 0( 08 0( 08 0 0( 0( 0( 08 08 0 0( 08 08 08 0 0( 08 0H 08 0H 0(0 0( 0( 0( 0 0( 08 08 08 0( 08 08 08 0 0( 0 0( 08 08 08 00 0( 0 0( 08 0( 08 0( 08 0(0 0( 08 08 0 0( 08 08 08 08 0( 08 08 0 0( 0( 08 08 0 0( 0( 0 0( 08 0( 0( 0 0( 08 08 0( 08 08 08 0 0( 0 0( 08 0( 08 0( 08 08 0800I00qI00I00qI00I00qI00I00qI00@0I00I00 AAAD- 8DnJ&,07<AW w @1y #_&)W,/2k57 :<?BEqH1JnJ')*+-./12345689:;=>?@BCDmJ(5<>D!GMZ_io0:&1GO   ( 3 o t u { }   ) x   0@cmw$4aq>Hjz9C= G X ^ w !"U"`"""+$5$r$x$$$%%&&%'+'?(L(((),))*+,y,,,,,-----v..//U/b/p/v///H0Q00000-2/2e2g2f3q333334-4i4y44455A5O5555567_7e788<<<<>>h?q???@@+B+B-B-B.B.B0B1B3B4B6B7BlBoBp u E$L$&&&*)*4-4i4y44455*929Z9^9+B+B-B-B.B.B0B1B3B4B6B7BlBoB3333333333333#*B+B+B-B-B.B.B0B1B3B4B6B`BjBoB+B+B-B-B.B.B0B1B3B4B6B7BlBoB $}trNL -O|mEP~,f,!lwlZWymoIi~j|*@CJOJQJo(3.@CJOJQJo(2.@CJOJQJo(4.@CJOJQJo(6.@CJOJQJo(8.@CJOJQJo(7.@CJOJQJo(1.@CJOJQJo(5.|  $ x   ! t! ! moIirN}-O~jEwlZW,f,"   @CJOJQJo(  rx@CJOJQJo(0  @CJ OJQJo(  ~@CJOJQJo( ~@CJOJQJo( ,! -~@CJOJQJo( !  @CJOJQJo(! ~@CJOJQJo(("  @CJOJQJo( FA}3cq@00l)=00nB@@UnknownGz Times New Roman5Symbol3& z Arial7&  Verdana3z Times;Wingdings hFuRFhRF K8!x K8!xxx B B@Pit2%Introduction to Cardiovascular SystemChristine WolfeWCJC0         Oh+'0, , L X d p|(Introduction to Cardiovascular SystemChristine WolfeNormalWCJC5Microsoft Office Word@b@ 9@h׎@#  K8G8+VT$m| j  ."SystemZ^9`# -@"Verdana- ,2 Cardiovascular System /(*)(("#*(.(#(A 2  C+2 G  The e)*'2  Heart 2(( 2  C+2   Page (()( 2  1C+ 2   C*'@"Verdana-+2 Cardiovascular System UN:R(PLNEES'N:'SLE5N| 2 [  C( 2  -C8 2   C'2  The Heart PSN(aNN:5 2 g CS@"Verdana- 2 J  C@@"Verdana-C2 %Introduction to Cardiovascular System7G.2EFG:."EG".E"GC2F"EAC;;G"C2"GA;.Bj 2 k  CG@Wingdings- 2 AC5@"Arial- 2 A# C<-+2 A_The Pulmonary Circuit >?<#<?a=?<+;#F+5?' 2 A CA@Wingdings- 2 C.@"Arial- 2  C0-_2 8Carries blood to and from gas exchange surfaces of lungsF<++<4#>==>#'=#<??##+=a#><4#<;4?<@><#4?+#<4<4#=##?@>4 2 6 CA- 2 8C5- 2 8# C<-)2 8_The Systemic Circuit>?<#D;4'<a4#G+4?' 2 8g C7 2 8 C@- 2 C.- 2  C0->2 "Carries blood to and from the bodyF<++<4#>==>#'=#<??##+=a#'?<#>=>; 2   CA- 2 0C5- 2 0# C<-j2 0_?Blood alternates between pulmonary circuit and systemic circuitE==>#<'<+?<'<4#><(R<<?#>?a=?<+;#4,4?'#=?>#5;4'<a5#4+4?' 2 0 CA 2  C@{@Wingdings- 2 6C={@"Arial- 2 6+ C4-#2 6_Three Types of B>?+<<#>;><4#=#"E2 6 lood Vessels=<>#D<44<4 2 6  CA- 2 C5- 2  C)-2 ArteriesD+'<+<4 2 j C@@"Verdana- - 2 .C.- 2 .H C-2 .e Carry blood F<++;#>==>#- 2 . away fromo<R<;##+=a-2 . heart#?<<+' 2 .  C@- 2 C5- 2  C)-2 VeinstD<?4 2  CA- 2 % C.- 2 % H C-2 % e Carry blood F<++;#>==>#- 2 % to'=-2 % 3 heart s#?<<+'# 2 %  CH 2 %  C, 2 %  C@- 2 C5- 2  C)-2  CapillariesF<><+<4 2  C@- 2  C.- 2  H C-2  e Networks K<'R=+;4#- 2  _betweens><'R<<?-(2   arteries and veins"<+'<+<4#<?>#;<?4 2   CA- 2 C=- 2 + C4-2 _ CapillariesF<><+<4 2 c C@- 2 ' C5- 2 '  C)-72 ' Also called exchange vessels iD4=#4<<>#<;4?<@?<#;<44<4# 2 '  C@- 2 C5- 2  C)-M2 ,Exchange materials between blood and tissues?;4?<?><#b<'<+<4$><'R<<?#>==>#<?>$'44?<4 2   CA- 2 # C5- 2 #  C)-I2 # )Materials include dissolved gases, nutrieuT<'<+<4$?4?><#?54=;<>#><4<4$#@?'+=2 # nts, wastes ?'4$#R<5'<4# 2 # / CA- 2 C5- 2 # C<-22 _Four Chambers of the Heart9=?+#F?<a><+4#=##(?<#K<<+' 2  C@- 2  C.- 2   C0-2   Right atriumN"FG."C.2"Gj 2   CG@Wingdings- 2 C&@"Arial- 2 @ C%-A2 e$Collects blood from systemic circuitF=<4'4#?==>##+=a#4;4'<a4#5+4?' 2 Z  CA- 2 C.- 2  C0-"2 Right ventricleN"FG."ABG.2";"B 2  CH- 2 C&- 2 @ C%-;2 e Pumps blood to pulmonary circuit<?a>4$>==>#'=$>?a=?<+;#4+4?' 2   CA- 2 C.- 2  C0-2  Left atrium@B*."C.2"Gj 2 T CF- 2 zC&- 2 z@ C%-C2 ze%Collects blood from pulmonary circuitF=<4'4#?==>##+=a#>?a=?<+;#5+4?' 2 z  CA- 2 C.- 2  C0- 2 Left ventricle@B*."ABG.2";"B 2  CH- 2 mC&- 2 m@ C%-;2 me Pumps blood to systemic circuit <?a>4$>==>#'=#5;4(<a4#4+4@'# 2 m  CA 2   C@-&2 `Anatomy of the HeaNGC.EjA"E*".GB"SBC2 `Hrt2. 2 ` CF- 2 C5- 2 # C<-A2 _$Great veins and arteries at the baseN+<<'#;<?4#<?>#<+(<+<4#<'#'?<#><4< 2 w  CA- 2 \C5- 2 \# C<-"2 \_Pointed tip is <=?'<>$'?#4#-2 \ apexCFBD 2 \ CG- 2 C5- 2 # C<-72 _Surrounded by pericardial saciD?++=??><>#>;$><+4<+><#4=4 2 >  CA- 2 WC5- 2 W# C<-I2 W_)Sits between two pleural cavities in the uD'4$><'R<<?#'R=#><?+<#4<;(<4#@#'?=#-2 W= mediastinumjBF"C;."GGj 2 W CH- 2  C@- 2 OC5- 2 O# C<-"2 O_The Pericardium>?<#<<+4<+>?a 2 O CA- 2 C.- 2  C0-I2 )Double lining of the pericardial cavity uM=?><#?@>#=##(?<#><+4<+><#4=;(;## 2 |  CA- 2 BC.- 2 B C0-)2 BParietal pericardium<<+<'<#><+4<+??b 2 B C@- 2 C&- 2 @ C%-2 e Outer layerO?'<+#<;<+ 2  C@- 2 5C&- 2 5@ C%-+2 5eForms inner layer of 9=+a4#??<+#=;<+#=###2 5pericardial sac ><+4<+><$4<4# 2 5w  CA- 2 C.- 2  C0-)2 Visceral pericardiumD44<+<#><+4<+??b 2  C@- 2 (C&- 2 (@ C%-22 (eInner layer of pericardium*??<+#<;<+#=##><+4<+>?a 2 (  CA-                    ՜.+,0( hp  WCJCx! B e&Introduction to Cardiovascular System"Cardiovascular System - The Heart&Introduction to Cardiovascular System The Pulmonary CircuitA Carries blood to and from gas exchange surfaces of lungs The Systemic Circuit + Carries blood to and from the bodyD Blood alternates between pulmonary circuit and systemic circuit ! Three Types of Blood Vessels Arteries Veins Capillaries Capillaries& Also called exchange vessels 5 Exchange materials between blood and tissues> Materials include dissolved gases, nutrients, wastes  Four Chambers of the Heart Right atrium Right ventricle Left atrium Left ventricleAnatomy of the Heart) Great veins and arteries at the base Pointed tip is apex" Surrounded by pericardial sac9 Sits between two pleural cavities in the mediastinum  The Pericardium2 Double lining of the pericardial cavity  Parietal pericardium Visceral pericardium  Pericardial cavity Pericardial sac % Superficial Anatomy of the Heart Atria Sulci The Heart Wall" Epicardium (outer layer) " Myocardium (middle layer)" Endocardium (inner layer) Cardiac Muscle Tissue Intercalated discs, Characteristics of Cardiac Muscle Cells Small size Single, central nucleus1 Branching interconnections between cells Intercalated discs & Internal Anatomy and Organization- Interatrial septum: separates atria 6 Interventricular septum: separates ventricles% Atrioventricular (AV) valves  The Right Atrium Superior vena cava Inferior vena cava  Coronary sinus Foramen ovale Pectinate muscles The Right VentricleS Free edges attach to chordae tendineae from papillary muscles of ventricle, Prevent valve from opening backward+ Right atrioventricular (AV) Valve  Trabeculae carneae The Pulmonary CircuitT Conus arteriosus (superior end of right ventricle) leads to pulmonary trunkH Pulmonary trunk divides into left and right pulmonary arteries T Blood flows from right ventricle to pulmonary trunk through pulmonary valve3 Pulmonary valve has three semilunar cusps  The Left Atrium; Blood gathers into left and right pulmonary veins / Pulmonary veins deliver to left atriumY Blood from left atrium passes to left ventricle through left atrioventricular (A4 A two-cusped bicuspid valve or mitral valve The Left Ventricle- Holds same volume as right ventricle7 Is larger; muscle is thicker and more powerfulO Similar internally to right ventricle but does not have moderator band Systemic circulationA Structural Differences between the Left and Right VentriclesU Right ventricle wall is thinner, develops less pressure than left ventricle A Right ventricle is pouch-shaped, left ventricle is round The Heart ValvesH Two pairs of one-way valves prevent backflow during contraction& Atrioventricular (AV) valves  Semilunar valves  Aortic Sinuses $ At base of ascending aorta = Sacs that prevent valve cusps from sticking to aorta4 Origin of right and left coronary arteries ; Connective Tissues and the Cardiac (Fibrous) Skeleton 1 Physically support cardiac muscle fibers) Distribute forces of contraction8 Add strength and prevent overexpansion of heartH Elastic fibers return heart to original shape after contraction $ The Cardiac (Fibrous) Skeleton Title Headingsd  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvxyz{|}~Root Entry F خ 1TableF`WordDocument1SummaryInformation(w -DocumentSummaryInformation8XCompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q