ࡱ> 8:75@ 7*bjbj22 (\XX7"2222222F*&*&*&*&d&\F=&)))))))<<<<<<<$=R@<2,)),,<22))<000,2)2)<0,<000r;T22;)& NF*&-j;<<0=x;z A0W/r=B;FF2222=B2;)^*0*tb+_)))<<FF$*&0 FF*&Chapter 8 Day 3: Percentiles and Approximating Binomial Distribution Probabilties Finding Percentiles: Percentile rankings are quick ways to compare large groups of people, Ex. SATs, GREs, GMATS, etc. kth Percentile for a data set is a number that has k% of the data values at or below it. (Same is true for Random Variables). *Often we are interested in what numerical value falls at a certain percentile* Percentile: Refers to the value of a variable Percentile Ranking: Refers to the proportion below that value. Ex. If the 75th percentile for GRE Verbal scores is 600, then 75% of GRE Verbal scores are below 600 and 25% are above 600. The percentile is 600 and the percentile ranking is 75%. *The Percentile rank for the value of a variable corresponds to the cumulative probability for that value. Ex. The 75th percentile of Verbal GRE scores is the Verbal score for which .75 is the cumulative probability (area to the left under the density curve). Finding Percentiles for a specified percentile ranking Find the z-score that has the specified cumulative probability. (Search your table). Calculate the value of the variable that has the z-score found in step 1. This can be done by using the relationship  EMBED Equation.3  Ex. IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. What is the 80th percentile for IQ scores? In other words what is the IQ score x such that  EMBED Equation.3 ? Draw a picture. Use your table on 612-613 to find the associated z-score. Calculate x. *Z-score of 0.85 correlates with the 80th percentile.  EMBED Equation.3  So  EMBED Equation.3  Implies  EMBED Equation.3  So:  EMBED Equation.3  *Someone with an IQ of 112.75 is more intelligent than about 80% of the population. Approximating Binomial Distribution Probabilities Recall the probability formula for Binomial Random Variables: P(X=k)=  EMBED Equation.3  *As n gets large this formula becomes difficult to compute because of the factorials involved. *However, the normal distribution can be used to approximate probabilities for a binomial random variable when this situation occurs. Normal Approximation to the Binomial Distribution: *If X is a binomial random variable based on n trials with success probability p, and n is large, then the random variable X is also approximately a normal random variable. So, Mean =  EMBED Equation.3  Standard Deviation =  EMBED Equation.3  *In order to use the approximation effectively, both np and n(1-p) must be at least 10. Ex. For which of the following situations could a normal approximation be made for the given binomial distribution. Scenario 1: n=32 and p=.6 Scenario 2: n=48 and p=.9 **We could make a normal approximation for Scenario 1, however, n(1-p)= 4.8 < 10, so we cannot use a normal approximation for Scenario 2. Ex. Suppose p = 0.488 is the proportion of one-child families in which the child is a boy. For a random sample of n=75 one-child families, estimate the probability that there will be 40 or fewer boys. Use the normal approximation to the binomial distribution. *np=75(.488)=36.6>10 n(1-p)=75(.512)=38.4>10 Therefore we can use the normal approximation. *We want to find  EMBED Equation.3  Also,  EMBED Equation.3   EMBED Equation.3  So,  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  About a 79% chance that there will be 40 or fewer boys out of the 75 families. Continuity Corrections: Ex. Draw the exact Binomial pdf for an event that is normally distributed with 6 outcomes. Board Example Notice that Technically,  EMBED Equation.3  for the binomial distribution is the area of 4 rectangles. Also notice that the rectangle centered at 4 goes all the way out to 4.5. *However, our normal approximation for the binomial variable found the area under a normal curve going only up to 4. (So we omitted half the original rectangle from the binomial pdf). *To make better predictions with our normal approximation to the binomial we need to make a continuity correction by either adding or subtracting 0.5. Ex. Suppose a fair coin is flipped 200 times. Let X= # of Heads. (Notice that X will have a binomial distribution). Calculate the mean and standard deviation for X= # of Heads. Mean =  EMBED Equation.3  Heads Standard Deviation =  EMBED Equation.3  Use the normal approximation to the binomial distribution to estimate the probability that the number of heads is greater than or equal to 120.  EMBED Equation.3   EMBED Equation.3   EMBED Equation.3  Repeat part (b) using the continuity correction. Board Example. **Subtract 0.5 from 120 because technically we only want to subtract out everything less than 120. Therefore  EMBED Equation.3  So,  EMBED Equation.3  Section 8.8 Sums, Differences, and Combinations of Random Variables. A Linear Combination of random variables X, Y, is a combination of the form: L = aX + bY + . . . Where a, b, etc. are numbers, which could be positive or negative. Two most common are: Sum = X + Y Difference = X Y *If X, Y, . . . are random variables, a, b, . . . are numbers, either positive or negative, and L= aX + bY + . . . The mean of L is Mean (L)= a Mean(X) + b Mean (Y) + Also: Mean (X + Y)= Mean (X) + Mean (Y) Mean (X Y) = Mean (X) Mean (Y) Ex. Suppose X= Height of Females in MA 2830 Y= Height of Males in MA 2830 *The Mean height of students in MA 2830 is going to be a weighted mean (Because there are more girls than boys in the class). So if L represents the entire MA 2830 class: Mean (L)= a Mean (Female Heights) + b Mean (Male Heights) **We could also look at the differences in the heights of the men and women. Mean (X Y) = Mean (Females Heights) Mean (Male Heights). *Suppose that MA 2830 is 70% Female and that the Mean Height of Females is 65 inches and the Mean Height of Males in 2830 is 70 inches. What is the Mean Height of MA 2830 students? Mean (L)= a Mean(X) + b Mean (Y) = 0.7 (65) + 0.3 (70) = 66.5 inches tall What is the Mean Difference in Heights between females and males in MA 2830? Mean (X Y)= Mean (X) Mean (Y) = 65 70 = 5 inches. If X and Y are independent random variables, a, b, etc. are numbers, and L = aX + bY + Then, Variance and Standard Deviation of L are: Variance(L)= a2 Variance(X) + b2Variance (Y) + Standard Dev. (L)=  EMBED Equation.3  **Notice** Variance (X + Y) = Variance (X) + Variance (Y) Variance (X Y)= Variance (X) + Variance (Y) ** They are equal because in the difference formula b= -1 and b2 = +1. Combining Independent Normal or Binomial Random Variables *Any linear combination of normally distributed variables also has a normal distribution* If X, Y, are independent, normally distributed random variables, and a, b, etc. are numbers, either positive or negative, then the random variable L = aX + bY + . . . is normally distributed and: *X + Y is normally distributed with mean  EMBED Equation.3  and standard deviation  EMBED Equation.3  *X Y is normally distributed withi mean  EMBED Equation.3 and standard deviation  EMBED Equation.3  Ex. You have recently become lackadaisical about making it to your Statistics class on time. You leave home 35 minutes before class is set to start. Your travel time from your front door to the parking lot at school is normally distributed with a mean of 20 minutes and a standard deviation of 4 minutes. The time it takes to park and then walk to class is also normally distributed with a mean of 7 minutes and a standard deviation of 3 minutes. The driving time and parking/walking time are independent of one another. What is the probability that you will walk in late to class thereby gaining the eternal angst of the instructor. X= Driving Time; normally distributed with  EMBED Equation.3  Minutes and  EMBED Equation.3 minutes. Y= Parking/Walking Time; normally distributed with  EMBED Equation.3  minutes and  EMBED Equation.3  minutes. T= X + Y = Total Time *Notice that the random variable T has a normal distribution since it is the sum of two independent, normally distributed random variables. Mean (T) =  EMBED Equation.3 = 20 + 7 = 27 minutes Standard Deviation =  EMBED Equation.3 = EMBED Equation.3  P(T>35)=1-P(T<35) = 1-  EMBED Equation.3 = 1-  EMBED Equation.3  = 1 - .9452= .0548 Therefore, there is a 5.5% chance you will be late for class. RSTg $ & J L   e g ȼȴxg_S_hCM$hCM$CJ(H*aJ(hCM$CJ(aJ(!jhSYnhCM$CJ(EHUaJ(j{yG hCM$CJUVaJjhSYnCJ(UaJ(hSYn5CJ(aJ(hSYnhSYn5CJ(aJ(hSYnhSYnCJ(H*aJ(hSYnCJ(aJ(hhCJ(H*aJ(hCJ(aJ(hh5CJ(aJ(h=b5>*CJ(aJ(h5>*CJ(aJ(hh5>*CJ(aJ(STQ R   > ?   l gdCM$ & FgdSYngd$a$gd7* ),SUdexyz{먗󏃏tcTC!jV hMhMCJ(EHUaJ(j{G hMCJUVaJ!jhMhMCJ(EHUaJ(jV{G hMCJUVaJjhMCJ(UaJ(hMCJ(aJ(!jhCM$hCM$CJ(EHUaJ(jJ{G hMCJUVaJhCM$hCM$CJ(H*aJ(hnCJ(aJ(!jChCM$hCM$CJ(EHUaJ(jzG hCM$CJUVaJhCM$CJ(aJ(jhCM$CJ(UaJ( &'()*+,d6789:;<=>?gdCM$ & FgdCM$Ew9õêÏ~vjv^vO>!jhn,8hn,8CJ(EHUaJ(j`}G hn,8CJUVaJjhn,8CJ(UaJ(hn,8hn,85CJ(aJ(hn,8CJ(aJ(!j&h@8hnCJ(EHUaJ(jܷG hnCJUVaJjhnCJ(UaJ(hnhnCJ(aJ(hnhn5>*CJ(aJ(hnCJ(aJ(!j hMhnCJ(EHUaJ(j{G hnCJUVaJhMCJ(aJ(jhMCJ(UaJ(?@ABCDEwx9:QgdCM$Q*J   !"#+,?@ABDE밨}l]L!jhsehseCJ(EHUaJ(jG hseCJUVaJ!jhseh^CJ(EHUaJ(jG h^CJUVaJjhseCJ(UaJ(hseCJ(aJ(h^CJ(aJ(h% nCJ(aJ(hsmyCJ(aJ(hnCJ(aJ(hn,8hn,8CJ(aJ(!j hn,8hsmyCJ(EHUaJ(j{}G hsmyCJUVaJhn,8CJ(aJ(jhn,8CJ(UaJ($%CD\]gd% ngdCM$EXYZ[abuvwy !#$}ld\TF\dTh;dh;d5>*CJ(aJ(h;dCJ(aJ(h @CJ(aJ(h^CJ(aJ(!j\!hsehKoCJ(EHUaJ(j&G hKoCJUVaJ!jihsehseCJ(EHUaJ(j3G hseCJUVaJ!j-hseh^CJ(EHUaJ(jG h^CJUVaJjhseCJ(UaJ(!j(hsehseCJ(EHUaJ(jԀG hseCJUVaJhseCJ(aJ( !$JK$a$gd;dgd% n\`cdwxyzABUV밟wkcTjG hsCJUVaJh'CJ(aJ(jh'CJ(UaJ(h]CJ(aJ(!j(h;dh]CJ(EHUaJ(jG h]CJUVaJ!jo&h;dh]CJ(EHUaJ(jG h]CJUVaJh;dh;d5CJ(aJ(!j7$h;dh;dCJ(EHUaJ(j߿G h;dCJUVaJh;dCJ(aJ(jh;dCJ(UaJ([\@AYqrgds & Fgdsgd] & Fgd]gd;d & Fgd;dgd% nVWXYZmnopqrsCDWXYZ`atuòҪ~o^OjG hRCJUVaJ!j[4hshRCJ(EHUaJ(jG hRCJUVaJ!j1hshsCJ(EHUaJ(jG hsCJUVaJjhsCJ(UaJ(hsCJ(aJ(!j /h'hsCJ(EHUaJ(jG hsCJUVaJh'CJ(aJ(h]CJ(aJ(jh'CJ(UaJ(!j(,h'hsCJ(EHUaJ(89[\xyz{|}~gdR$a$gdRgdsuvwyBZcpuvl | ! !!i!j!!!!!!!!!!!e""Ҿve]h=CJ(aJ(!j9hT:ghT:gCJ(EHUaJ(j]G hT:gCJUVaJjhT:gCJ(UaJ(hT:gCJ(H*aJ(hT:gCJ(aJ(hh5CJ(aJ(hCJ(aJ(h<CJ(aJ(hCJ(aJ(hRhR5CJ(aJ(hRCJ(aJ(hsCJ(aJ(jhsCJ(UaJ(!j;7hshRCJ(EHUaJ(#34%&89^_g|}gds56uv, - N ~ !!!j!k!!!!!gdT:g ^`gdgdh^hgd & Fgdgds!!!!""6"7"e"f"g"""""F#G# $ $|$}$$$$$$$$gd=$a$gd=gdT:g""""5$6$I$J$K$L$d$e$x$y$z${$$$$$$$$$$$$$$$$ǶvgVNhclCJ(aJ(!jCh=h=CJ(EHUaJ(jG h=CJUVaJ!j@h=hclCJ(EHUaJ(jG hclCJUVaJ!jS>h=hclCJ(EHUaJ(jG hclCJUVaJ!j<h=h=CJ(EHUaJ(jG h=CJUVaJjh=CJ(UaJ(h=h=5CJ(aJ(h=CJ(aJ(h=CJ(H*aJ($$$$$y'z'{''''&(n(o((())M)N)))))))7*gd=$x'y'{''''''''''''''(((;(<(=(>(K(L(_(`(a(b(( )ͼ譜|m\Th<CJ(aJ(!jXLhaQh<CJ(EHUaJ(jbG h<CJUVaJ!jJhaQh<CJ(EHUaJ(jNG h<CJUVaJ!jGhaQh<CJ(EHUaJ(j1G h<CJUVaJ!jEhaQh<CJ(EHUaJ(jG h<CJUVaJjhaQCJ(UaJ(haQCJ(aJ(h=CJ(aJ(hclCJ(aJ( )!)4)5)6)7)L)M)c)d)w)x)y)z){)|)))))))))))÷è÷Èwog[gLj-G h4CJUVaJjh4CJ(UaJ(h4CJ(aJ(hclCJ(aJ(!juShKKh4CJ(EHUaJ(juG h4CJUVaJ!jPhKKhKKCJ(EHUaJ(jG hKKCJUVaJjhKKCJ(UaJ(hKKCJ(aJ(!jNh<h<CJ(EHUaJ(jG h<CJUVaJh<CJ(aJ(jh<CJ(UaJ()))))))))6*7*˺گh=h4CJ(aJ(!jXh4h4CJ(EHUaJ(jG h4CJUVaJh4CJ(aJ(jh4CJ(UaJ(!jVh4h4CJ(EHUaJ( &1h:pSYn/ =!"#$%CDd txb  c $A? ?3"`?2c~SiD`!ac~S  H/xcdd``ed``baV d,FYzP1n: B@?b c@øjx|K2B* RvfjvL,L I9 u\Rv,\~ qUsi#.W V ~q% 1  =X@Fhm%0ZZ{bPLJį䂆"8A``㆑I)$5 dP"CX,ĀGf~_OMDd @@b  c $A? ?3"`?2'`J=%Xs`!k'`J=%XJ p 9xcdd``Ved``baV d,FYzP1n:&\B@?b u -:47$# !lo`'0LY ZZǰc@`\'͂NHq%0pdaa`5|4 @penR~ NB8gdq d-ܞK b {I'F=*`T a3wcrAC 3;LLJ%  {:@Dg!t?3f{^Dd lb  c $A? ?3"`?2v!4ĹYu`!|v!4ĹYuF@8 JxuQJA};w93#ZX vHRZx‰8:U> _`eB[ O;!,2̬ XB]X ~ #AYi)"L֞SUhé`'WY3[&) 5Ur0^d**jh/-(4.q_tm2{!!c{ݻ*F鋊`3)׶׳--fI}^^8]t§%^O-9#]9qQqx9uCu77_xlQ5d҉bTb]] Q3Z&g3hDd lb  c $A? ?3"`?2F\;2`!F\;h@ PVTxcdd``6a 2 ĜL0##0KQ* WفSRcgbR x@0@0&dT0pE1At 2Bab`a wfjQ9A $37X/\!(?71aǒXkyGM`&0?c9Дb BT$00TX_@&`)] \KsC!.beYKXAF1cm1a${`Pa.pb;ӌLLJ% 7A2u(2t5\x,Ā'f~Iym_Dd D@b  c $A? ?3"`?2WGT70Y_|E `!}WGT70Y_|E\  Kxcdd``cd``baV d,FYzP1n:&B@?b u  ㆪaM,,He` @201d++&1X +|-?ʝ&T T W:'3eh`Y2Lc9?׀CApobq10 +ss$ٸ4|bF f9]= -=$ F=@&DrA WƂ;LLJ% s:@ĞB ~bhqDd @b  c $A? ?3"`?2/: ֮; `!/: ֮;Y ]xcdd``vgd``baV d,FYzP1n:&B@?b u 9ǀqC0&dT20 KXB2sSRsv,\~ YUsi#Fk~Ma| L9<@Q*L6. MCyC q  ķ˳z06b(+ss~r;|'FoSAFY@|m8?"n/#a nȄ .hqcEx``#RpeqIj.5\E.Yݏ` nDd \b  c $A? ?3"`?2䩪V0KUKj`!䩪V0KUK` 0dxcdd``$d@9`,&FF(`TI%WRcgbR /fĒʂT @_L ĺE,a +ȝCTNA $37X/\!(?71aǒXk'^`0̮pyp2;Db_  !"#$%&'()*+,-.01234569<e>=?@ACBDFEGHIKJLNMOPQSRTUVXWY[Z\^]_`abcfdghikjlmnpoqsrtuvxwy{z|~}Root Entry F CF;<Data /ZWordDocument(\ObjectPoolTTJF CF_1203403131"FTJFTJFOle CompObjfObjInfo "%(),147:=@CFGJMPUXY\adgjknqruxy| FMicrosoft Equation 3.0 DS Equation Equation.39q!H] x=z+ FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native =_1203403400 FTJFTJFOle CompObj fObjInfo Equation Native  Q_1203403594FTJFTJFOle  5h[ P(IQd"x)=.80 FMicrosoft Equation 3.0 DS Equation Equation.39q*|l z=x"CompObj fObjInfoEquation Native F_1203403606 FTJF@KF FMicrosoft Equation 3.0 DS Equation Equation.39qBH|l 0.85=x"10015Ole CompObjfObjInfoEquation Native ^_1203403648F@KF@KFOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qAL 0.85(15)=X"100 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native ]_1203403677'F@KF@KFOle CompObj fObjInfo! Equation Native !}_1203231887$F@KF@KFOle #a0L x=100+(.85)(15)=112.75 FMicrosoft Equation 3.0 DS Equation Equation.39quG$^ n!k!(CompObj#%$fObjInfo&&Equation Native '_1203404128)F@KF@KFn"k)!p k (1"p) n"k FMicrosoft Equation 3.0 DS Equation Equation.39q0D] =npOle *CompObj(*+fObjInfo+-Equation Native .5_12034041551.F@KF@KFOle /CompObj-/0fObjInfo02 FMicrosoft Equation 3.0 DS Equation Equation.39q6(|P = np(1"p)  FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 3R_1203405326;J3F@KF@KFOle 5CompObj246fObjInfo58Equation Native 9A_12034049858F@KF@KFOle ;%\l P(Xd"40) FMicrosoft Equation 3.0 DS Equation Equation.39q- =np=36CompObj79<fObjInfo:>Equation Native ?I_12034050126E=F@KF@KF.6 FMicrosoft Equation 3.0 DS Equation Equation.39qD@ = np(1"p)  = 36.6(1".488)  =4.33Ole ACompObj<>BfObjInfo?DEquation Native E_1203405341BF@KF@KFOle HCompObjACIfObjInfoDK FMicrosoft Equation 3.0 DS Equation Equation.39q%Y P(Xd"40) FMicrosoft Equation 3.0 DS EqEquation Native LA_1203405107GF@KF@KFOle NCompObjFHOfuation Equation.39q CB H" FMicrosoft Equation 3.0 DS Equation Equation.39q (P(Zd"4ObjInfoIQEquation Native R)_1203405350@OLF@KF@KFOle SCompObjKMTfObjInfoNVEquation Native W_1203757005QF@KF@KF0"36.64.33)=P(Zd"0.785)=0.7852 FMicrosoft Equation 3.0 DS Equation Equation.39q!HLm P(Xd"4)Ole ZCompObjPR[fObjInfoS]Equation Native ^=_1203757199,VF@KF@KFOle _CompObjUW`fObjInfoXb FMicrosoft Equation 3.0 DS Equation Equation.39qaL$^ =E(X)=np=200(0.5)=100 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native c}_1203757232[F@KF@KFOle eCompObjZ\ffObjInfo]hEquation Native i_1203757479Yc`F@KF@KFOle llR = np(1"p)  = 100(0.5)  = 50  H"7.07 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj_amfObjInfoboEquation Native p_1203757515eF@KF@KF7l P(Xe"120)=1"P(Xd"120)H"1"P(Zd"x") FMicrosoft Equation 3.0 DS Equation Equation.39q` =1"P(Zd"Ole sCompObjdftfObjInfogvEquation Native w120"1007.07)=1"P(Zd"2.83) FMicrosoft Equation 3.0 DS Equation Equation.39qexX< P(Ze"120)=1".9977=0.0023_1203757536^rjF@KF@KFOle zCompObjik{fObjInfol}Equation Native ~_1203757751oF@KF@KFOle CompObjnpf FMicrosoft Equation 3.0 DS Equation Equation.39q <\ P(Zd"119.5"1007.07)=P(Zd"2.76)=0.9971ObjInfoqEquation Native _1203757796mwtF@KF@KFOle  FMicrosoft Equation 3.0 DS Equation Equation.39qi P(Ze"120)=1"0.9971=0.0029CompObjsufObjInfovEquation Native _1203758685yF@KF@KFOle CompObjxzfObjInfo{Equation Native Z FMicrosoft Equation 3.0 DS Equation Equation.39q> ;l  Variance(L)  FMicrosoft Equation 3.0 DS Equation Equation.39q_1203759132~FaMFaMFOle CompObj}fObjInfo0J[  x + y FMicrosoft Equation 3.0 DS Equation Equation.39qT P   2  Equation Native L_1203759002hFaMFaMFOle CompObjfObjInfoEquation Native p_1203759075FaMFaMFOle x + 2  y FMicrosoft Equation 3.0 DS Equation Equation.39q0(4  x " yCompObjfObjInfoEquation Native L_1203759086|FaMFaMFOle CompObjfObjInfoEquation Native p FMicrosoft Equation 3.0 DS Equation Equation.39qT P   2  x + 2  y FMicrosoft Equation 3.0 DS Equation Equation.39q_1203759362FaMFaMFOle CompObjfObjInfo'L\  x =20 FMicrosoft Equation 3.0 DS Equation Equation.39q#  x =4Equation Native C_1203759409FaMFaMFOle CompObjfObjInfoEquation Native ?_1203759438FaMFaMFOle  FMicrosoft Equation 3.0 DS Equation Equation.39q#  y =7 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjfObjInfoEquation Native ?_1203759458FaMFaMFOle CompObjfObjInfoEquation Native ?#8   y =3 FMicrosoft Equation 3.0 DS Equation Equation.39q8VA = x + y_1203759572FaMFaMFOle CompObjfObjInfoEquation Native T_1203759571FaMFaMFOle CompObjf FMicrosoft Equation 3.0 DS Equation Equation.39q\Il =  2  x + 2  y FMicrosoft Equation 3.0 DS EqObjInfoEquation Native x_1203759733FaMFaMFOle CompObjfObjInfoEquation Native s_1203759917FaMFaMFuation Equation.39qWW  4 2 +3 2 = 25  =5 FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjfObjInfoEquation Native Z>X\ P(Z<35"275) FMicrosoft Equation 3.0 DS Equation Equation.39q) P(Z<1.6)_1203760002FaMFaMFOle CompObjfObjInfoEquation Native E1TableYBSummaryInformation(DocumentSummaryInformation8t?c&w. 02Y]BLdb@/b GP@penR~v > ;# ] {+ g℘ (3N{HWT'0 S !pw|c%gMEp> wkf l_=|Ĥ\Y\ r7P"CXHB a M/Dd b  c $A? ?3"`?2y98J>h?SU!`!M98J>h?S(+xcdd`` @c112BYL%bpu jZIr܏CW^4^M?gj;^jՠ8ڤvVzǀq.F^}xxxىFp {EX! gI5Dd lePb  c $A? ?3"`?2%Ur|L?&! `!Ur|L?&F)xڕK@]mҪi?(Al.NA) QQP)]8(TP\W7(bw`}^]-a/| #3w[=8QPK!|tw0w0y0,p&ߵL,K@pAS8 40y{钑I)$5!d.P"CD|b@#3X+Dd @lpb   c $A ? ?3"`?2ux@Dgd״ŋcQA) `!Ix@Dgd״ŋcM(hxڕAkA{n6lK+4-BOD{hs` +f11 R֓7@OR{ 9x"R)t ?7f7& ?i92!RQQ qε et=Ca1x2ڔy`BXs F<Kz?)9Q{<&|zch -wR(f%tD{z\So_tBs:'y{Yf\ W ƫͭ ݙCWZq:g%Z?Q g{{m_m0ix [,T3߷InyG ޔޗPl߂od):߽Ԣlgշ^4еb"h&`"!J[E>eB! , "-Ӵ X1,轆_z$z|Y)nKq^=%1ő::Z=.[џmngx go+zuNyVu?IMAL#8.h}Zb;:@(za=H%Dd l @ " b   c $A ? ?3"`? 2;$b!ai!2 `!;$b!ai! nxcdd```d``baV d,FYzP1n:&B@?b u 30 UXRY7S?&,e`abM-VK-WMcرsA V0Z˖VT T W"1TIdVq   66_f 3Hn 84 N I9 1\[ #3׃d_ " f w0w0qlB7? \G"4f=Ĥ\Y\PC D\x,Ā`hrDd l^Pb   c $A ? ?3"`? 2*@KQ:QB܈v-r*/D[Z3bhhc2uڇ̬O\-d˱l%R,lK厏{@f7[6f f/rRi7⍠sЏ9/3?ɇ 6c/kH0O R{'u I@1cɕ ,}WVMgfLZZ I'gXIk W1 ^oUG.PV_yM ê{n+vM~Q^x< ]夷Qc):v"PX78˅cTHP&"|#䄊%]{[D+/Uʾt7O?d}(YI!>N}{g?`QJa+Sm6{PC &m!ЭzAJv=4($cg@Q{);uSDd abb  c $A? ?3"`?2 JT# =Zy: `!q JT# =Z@  h?xڕQJQ=3}D]UBB~Z`"+(&,6;+X )}mt^83s (a s@Ldq mӊyS^ &P:rI/Lga g8UNz'I|$l2ӞBK|M68iɵ$+=__uΘ:&(Byn<e9l-fIE/y7RQ`b;xsfɒ cDd b  c $A? ?3"`?2Y?VaQ% ~> `!Y?VaQ% ~ @CwxڕR=KP=&mڴb"ѡ HGBM?B B''/*?_(GRj.ss9ǐs<QyJ1#FQ)f^a+R+P);YDR G@w*p(XSF}T~̴4=ueV(֧~ǧ[%{ R=K7yvRۛv-o3xͰ͠,[:Կm.r󄿒g<jaNeE'|49ݟ=H'ސK܎_^&,b=т[ DUBLR HEz'C?Dd |b  c $A? ?3"`?2Nv{x{f⽟Ż(Ƽj}N\;TV-ҋ pϭh `ϯ*gL妪[B`hcNNBnT@/|pΗrru'#*G " bDZBklc]s<*YK1JB76f.fDqNgE'|49=Hb  c $A? ?3"`?2"jަ]vaE`!Y"jަ]vB @p|'xcdd``Vdd``baV d,FYzP1n:&&V! KA?H1ZX ㆪaM,,He`H @201d++&1X +|-Jʠ TsAN22b W&00r(`4P^P7:0568F kv0o8+KRs@2u(2tA4Ag!t?0erR<Dd hb  c $A? ?3"`?2,˃v$ɷf Pb%H`!Z,˃v$ɷf PB`@P|(xcdd``Vdd``baV d,FYzP1n:&! KA?H1Z , πqC0&dT20$ KXB2sSRsv,\~ ʠ TÙAZM*I9 x&:|a#d>[ a2NPs0Mp/(BXP;0-䂆68F kv0o8+KRsւePdhB ~`)sx;Dd |>>b  c $A? ?3"`?2w_"o0aaJ`!Yw_"o0B`0'xcdd``Vdd``baV d,FYzP1n:! KA?H1Z, l@P5< %! `35;aR&br<K>bxz2Usi#fVJ,1@penR~l^@B8cd ba 5W?\F 1jF? E {HqJ.hhscа``㐑I)$5d.P"CD|b@3X?s;Dd |b  c $A? ?3"`?2MF3d?-> ᭏ aL`!YMF3d?-> ᭏ B@`0'xcdd``Vdd``baV d,FYzP1n:&! KA?H1Z00sC0&dT20 KXB2sSRsv,\~ Icʠ T#AZ+I9 !\ > 0XH2f.#5؄J "ս Iq J.hhscа``㐑I)$5 d.P"CD|b@3Xq LDd |b  c $A? ?3"`?2ƐV\cf+KY&yxyrN`!jƐV\cf+KY&yxy*` 08xuJPƿs&K@q. Z!`lxK#C}).R7Nw_rB u˒Uc#βLwZ<*_[@+D-[hPE>b9:9JDx:x|99`F)!)ʢ#ƢQ[g,7i@n9=݊zF8yT[Ge bMzC5}f邭1םಈ{#QØ}гS3KV>WSBMwo{zaI~%ۡMKnr)q'/}Ce}eVJx9A~6Շ351"PMcqW>!Vrtd>#;G"[4ud꫷Ɉ9zʐGňsnq^[ߨ 034~_'?Gq~=𽚽5썪_>^^h\!1{A2xtI"#Ϸ.vOF2eNbU !o߳)}d޼[,'W; <ȞěERP{>/I8 ^gVDwSkDd lihb  c $A? ?3"`?2i+3^ibV`!i+3^iv Wxcdd``f 2 ĜL0##0KQ* W A?dEszjx|K2B* Rj8 :@u!f010X@/;35V ZZǰc@`𵼋/m*LF]F\ L< h6bLcyoaMamaa=@w2W&00gr]Q{~wWp{ A| {I7&πMrAc e-;#RpeqIj.T= @ ]` {> 1qmXEDd L@b   c $A ? ?3"`?2q!<kX`!cq!<: 1xcdd``ed``baV d,FYzP1n:&lB@?b u 10 UXRY7S?&,e`abM-VK-WMcرsA V0Z~#͐NHq%0jVi n, !oF%} \u~G!ade 2\F 1n Q0\P88a,#RpeqIj.!E.gOh+'0 ,< P\ x  SChapter 8 Day 3: Percentiles and Approximating Binomial Distribution Probabiltieshap Gary OlsonaaryaryNormals Gary Olsona23yMicrosoft Word 10.0@*c@_C@,F՜.+,0D hp  # cudenver >&"A SChapter 8 Day 3: Percentiles and Approximating Binomial Distribution Probabilties Title  FMicrosoft Word Document MSWordDocWord.Document.89q@@@ NormalCJ_HaJmH sH tH DAD Default Paragraph FontRiR  Table Normal4 l4a (k(No List7"\STQR>?l&'()*+,d6789:;<=>?@ABCDEwx9: Q   $ % C D \ ]  !$JK[\@AYqr89[\xyz{|}~34%&89^_g|}56uv,-N~jk67efgFG  |}yz{& n o !!M!N!!!!!!!9"00000000000000000000 0 0000 0 0 00000000000000000000000000000000000p0p0p0p0p00000 000p000000000000000000p0p0p0 00 0p00p00p00000000000000000p000 00p0p0p0p0p00p0p0p000p00p0p0p0p00 0p 0l000p00 0l00000000p00 0l00p00p00000p000 0 0p0p000p0000 0000p0p00p00p00p0p0000p00p0p0p000 0 000p00p00p00p0000p0000p00p 000p0 00p0000p000000000p00p0p00000000p0p0p00p00000p0p0p0p0p0p0p0000p000p0p0p0000p0 0p0 0p0 0 0 0p0p00 EVu"$ ))7*!#%)+,- ?!$7* "$&'(*7*dxz " + ? A D X Z a u w x cwyAUWYmorCWY`tv5IKdxz' ; = K _ a !4!6!c!w!y!{!!!!!!!!!7"::::::::::::::::::::::::::::::::::::: }* }T# }W  }W  }_# } ) }D } }Ĕ } }D } }d> }>KKSddi9"     RZZhpp9"  9*urn:schemas-microsoft-com:office:smarttagsplace= *urn:schemas-microsoft-com:office:smarttags PlaceName= *urn:schemas-microsoft-com:office:smarttags PlaceType8*urn:schemas-microsoft-com:office:smarttagsCity     FR. 0 AD"$')^`ce9"?B5 7 Q T B D $'@Brt46MUFHPS? F !!!9"33333333333333333333333333333333333333*Q%d ] #\93x&8P}!M!N!!!!!!9"9" Gary OlsonE. r%+TaF6̥gU`ff^f`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.uu^u`o() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.0^`0o(0^`0o(.88^8`o(..`^``o(... `^``o( .... ^`o( ..... pp^p`o( ......  ( ^ `(o(....... @ @ ^@ `o(........ff^f`o(.EE^E`o() pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.gU`E.at                >b{ܮ       ! =bMKKRCM$n,8 @DaQ):]T:gihcl% n,nSYnKosmy4^n]<'se*<;ds=@6"6">@776"6"7"`@UnknownGz Times New Roman5Symbol3& z Arial"qhhJBk&g>>Y24&"&" 3QH)?):]RChapter 8 Day 3: Percentiles and Approximating Binomial Distribution Probabilties Gary Olson Gary Olson#O Subject: Chapter 8 Day 3 Slides Date: Mon, 13 Mar 2006 13:02:15 -0700 MIME-Version: 1.0 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: 7bit X-Priority: 3 X-MSMail-Priority: Normal X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2180     CompObjj