ࡱ> q qbjbjt+t+ ^XAA]BBBVVVV8$V**Jt ( ___`)b)b)b)b)b)b)$+-)AB_="___) *_R B `)VV_`).&H "B`)  ڽ7VV/ )@Elementary Statistics by Mario F. Triola, Eighth Edition DEFININITIONS, RULES AND THEOREMS CHAPTER 1: INTRODUCTION TO STATISTICS Section 1- 2: The Nature of Data Statistics a collections of methods for planning experiments, obtaining data, and then organizing, summarizing, presenting, analyzing, interpreting, and drawing conclusions based on the data. (p. 4) Population complete collection of all elements to be studied (p. 4) Census - collection of data from every element in a population (p. 4) Sample a subcollection of elements drawn from a population (p. 4) Parameter a numerical measurement describing some characteristic of a population (p. 5) Statistic a numerical measurement describing some characteristic of a sample (p. 5) Quantitative data numbers representing counts or measurements Ex: incomes of students (p. 6) Qualitative data can be separated into different categories that are distinguished by some nonnumeric characteristic Ex: genders of students (p. 6) Discrete data number of possible values is either a finite number or a countable number, Ex: number of cartons of milk on a shelf (p. 6) Continuous (numerical) data infinitely many possible values on a continuous scale Ex: amounts of milk from a cow (p. 6) Nominal level of measurement data that consist of names, labels, or categories only, Ex: survey responses of yes, no and undecided (p. 7) Ordinal level of measurement can be arranged in some order, but differences between data values either cannot be determined or are meaningless Ex: course grades of A, B, C, D, or F (p. 7) Interval level of measurement like ordinal level, with the additional property that the difference between any two data values is meaningful but no natural zero starting point. Ex: Body temperatures of 98.2 and 98.6 (p. 8) Ratio level of measurement the interval level modified to include the natural zero starting point. Ex: weights of diamond rings (p. 9) Section 1- 3: Uses and Abuses of Statistics Self-selected survey (voluntary response sample) one in which the respondents themselves decide whether to be included (p. 12) Section 1 - 4: Design of Experiments Observational study observe and measure specific characteristics, but we dont attempt to modify the subjects being studied (p. 17) Experiment some treatment is applied, then effects on the subjects are observed (p. 17) Confounding occurs in an experiment when the effects from two or more variables cannot be distinguished from each other (p. 18) Random sample members of population are selected in such a way that each has an equal chance of being selected (p. 19) Simple random sample of size n subjects is selected in such a way that every possible sample of size n has the same chance of being selected (p. 19) Systematic sampling some starting point is selected and than every kth element in the population is selected (p. 20) Convenience sampling simply use results that are readily available (p. 20) Stratified sampling subdivide population into at least 2 different subgroups (strata) that share the same characteristics, then draw a sample from each stratum (p. 21) Cluster sampling divide population area into sections (or clusters), then randomly select some of those clusters, and then choose all members from those selected clusters (p. 21) Sampling error the difference between a sample result and the true population result; such an error results from chance sample fluctuations (p. 23) Nonsampling error occurs when the sample data are incorrectly collected, recorded, or analyzed (p. 23) CHAPTER 2: DESCRIBING, EXPLORING, AND COMPARING DATA Section 2 - 2: Summarizing Data with Frequency Tables Frequency table lists classes (or categories) of values, along with frequencies (or counts) of the number of values that fall into each class (p. 35) Lower class limits smallest numbers that can belong to the different classes (p. 35) Upper class limits largest numbers that can belong to the different classes (p. 35) Class boundaries numbers used to separate classes, but without the gaps created by class limits. (p. 35) Class midpoints average of lower and upper class limits (p. 36) Class width difference between two consecutive lower class limits or two consecutive lower class boundaries (p. 36) Section 2 - 3: Pictures of Data Histogram bar graph with horizontal scale of classes, vertical scale of frequencies (p. 42) Section 2 - 4: Measures of Center Measure of center value at the center or middle of a data set (p. 55) Arithmetic mean or just mean sum of values divided by total number of values. Notation: EMBED Equation.3  (pronounced x-bar) (p. 55) Median middle value when the original data values are arrange in order from least to greatest. Notation:  EMBED Equation.3  (pronounced x-tilde) (p. 56) Mode value that occurs most frequently (p. 58) Bimodal two modes (p. 58) Multimodal 3 or more modes (p. 58) Midrange value midway between the highest and lowest valued in the original data set, average of (p. 59) Skewed not symmetric, extends more to one side than the other (p. 63) Symmetric left half of its histogram is roughly a mirror image of its right half (p. 63) Section 2 - 5: Measures of Variation Standard deviation a measure of variation of values about the mean Notation: s = sample s.d.;( = population s.d. (p. 70) Variance a measure of variation equal to the square of the standard deviation Notation: s2 = sample variance; (2 = population variance (p. 74) Range Rule of Thumb (p. 77) For estimation of standard deviation: s ( range/4 For interpretation: if the standard deviation s is known, Minimum usual value ( (mean) 2 x (standard deviation) Maximum usual value ( (mean) + 2 x (standard deviation) Empirical Rule for Data with a Bell-Shaped Distribution (p. 78) About 68% of all values fall within 1 standard deviation of the mean About 95% of all values fall within 2 standard deviations of the mean About 99.7% of all values fall within 3 standard deviations of the mean Chebyshevs Theorem (p. 80) The proportion of any set of data lying with K standard deviation of the mean is always at least 1-1/K2, where K is any positive number greater than 1. For K=2 and K=3, we get the following results: At least 3/4 (or 75%) of all values lie within 2 standard deviations of the mean At least 8/9 (or 89%) of all values lie within 3 standard deviations of the mean Section 2 - 6: Measures of Position Standard score, or z score the number of standard deviations that a given value x is above or below the mean Sample Population  EMBED Equation.3   EMBED Equation.3  Section 2 - 7: Exploratory Data Analysis (EDA) Exploratory data analysis - is the process of using statistical tools to investigate data sets in order to understand their important characteristics (p. 94) 5-number summary minimum value; the first quartile, Q1; the median, or second quartile, Q2; the third quartile, Q3; and the maximum value (p. 96) Boxplot (or box-and-whisker diagram) graph of a data set that consists of a line extending from the minimum value to the maximum value, and a box with lines drawn at Q1; the median; and Q3. (p. 96) CHAPTER 3: PROBABILITY Section 3 - 1: Overview Rare Event Rule for Inferential Statistics (p. 114) If under a given assumption (such as a lottery being fair), the probability of a particular observed event (such as five consecutive lottery wins) is extremely small, we conclude that the assumption is probably not correct. Section 3 - 2: Fundamentals Event any collection of results or outcomes of a procedure (p. 114) Simple event outcome or event that cannot be further broken down inter simpler components (p. 114) Sample space all possible simple events for a procedure (p. 114) Rule 1: Relative Frequency Approximation of Probability (p. 115) P(A) = number of times A occurred number of times trial was repeated Rule 2: Classical Approach to Probability (Requires Equally Likely Outcomes) (p. 115) P(A) = number of ways A can occur = s number of difference simple events  EMBED Equation.3  Rule 3: Subjective Probabilities (p. 115) P(A), is found by simply guessing or estimating its value based on knowledge of the relevant circumstances. Law of Large Numbers (p. 116) As a procedure is repeated again and again, the relative frequency probability (from Rule 1) of an event tends to approach the actual probability. Complement of a, denoted by(A, consists of all outcomes in which event a does not occur (p. 120) Actual odds against ratio of event A not occurring to event A occurring: P( EMBED Equation.3 ) / P( EMBED Equation.3 ) (p. 121) Actual odds in favor ratio or event A occurring to event A not occurring P( EMBED Equation.3 ) / P( EMBED Equation.3 ) (p. 121) Payoff odds ratio of net profit (if you win) to the amount bet (p. 121) Section 3 - 3: Addition Rule Compound event any event combining two or more simple events (p. 128) Formal Addition Rule (p. 128) P(A or B) = P(A) + P(B) P(A and B) Intuitive Addition Rule (p. 128) Find the sum of the number of ways event A can occur and the number of ways event B can occur, adding in such a way that every outcome is counted only once. P(A or B) is equal to that sum, divided by the total numbers of outcomes. Mutually exclusive cannot occur simultaneously (p. 129) Section 3 - 4: Multiplication Rule: Basics Independent occurrence of one event does not affect the probability of the occurrence of the other (p. 137) Formal Multiplication Rule (p. 138) P(A and B) = P(A) ( P(B(A) Intuitive Multiplication Rule (p. 138) Multiply the probability of event A by the probability of event B, but be sure that the probability of event B takes into account the previous occurrence of event A. Section 3 - 5: Multiplication Rule: Complements and Conditional Probability Conditional probability (p. 145) P(B(A) = P(A and B) P(A) Section 3 - 6: Probabilities Through Simulations Simulation process that behaves the same way as the procedure, so that similar results are produced (p. 151) Section 3 - 7: Counting Fundamental Counting Rule (p. 156) For a sequence of two events in which the first event can occur m ways, the second n ways, the events together can occur a total of m(n ways Factorial Rule (p. 158) A collection of n different items can be arranged in order n! different ways Permutations Rule (When Items Are All Different) (p. 158) (without replacement, order matters) nPr =  EMBED Equation.3  Permutations Rule (When Some Items Are Identical to Others) (p. 160)  EMBED Equation.3  Combinations Rule (p. 161) (order does not matter) nCr =  EMBED Equation.3  CHAPTER 4: PROBABILITY DISTRIBUTIONS SECTION 4 - 2: Random Variables Random variable a variable with a single numerical value, determined by chance, for each outcome of a procedure (p. 181) Probability distribution a graph, table or formula that gives the probability for each value of the random variable (p. 181) (P(x) = 1 where x assumes all possible values 0 ( P(x) ( 1 for every value of x Discrete random variable finite or countable number of values (p. 181) Continuous random variable has infinitely many values, and those values can be associated with measurements on a continuous scale with no gaps or interruptions (p. 181) Section 4 - 3: Binomial Probability Distributions Binomial probability distribution results from a procedure that meets all the following requirements: (p. 194) The procedure has a fixed number of trials. The trials must be independent. Each trail must have all outcomes classified into two categories. The probabilities must remain constant for each trial. Section 4 - 5: The Poisson Distribution Poisson distribution a discrete probability distribution that applies to occurrences of some event over a specified interval such as time, distance, area, or volume (p. 210) P(x) =  EMBED Equation.3  where e = 2.71828 CHAPTER 5: NORMAL PROBABILITY DISTRIBUTIONS Section 5 - 1: Overview Normal distribution a distribution with a graph that is symmetric and bell-shaped (p. 226) Section 5 - 2: The Standard Normal Distribution Uniform distribution one of continuous random variable with values spread evenly over the range of possibilities and rectangular in shape (p. 227) Density curve (or probability density function) a graph of continuous probability distribution with (p. 227) The total area under the curve equal to 1. Every point on the curve must have a vertical height that is 0 or greater. Standard normal distribution a normal probability distribution that has a mean of 0 and a s.d. of 1 (p, 229) Section 5 - 5: the Central Limit Theorem Sampling distribution of the mean is the probability distribution of sample means, with all samples having the same sample size n.(p. 256) Central Limit Theorem (p. 257) Given: The random variable x has a distribution with mean ( and s.d (. Samples all of the same size n are randomly selected from the population of x values. Conclusions: The distribution of sample means(x will approach a normal distribution, as the sample size increases. The mean of the sample means will approach the population mean (. The standard deviation of the sample means will approach ( / n. Section 5 - 6: Normal Distribution as approximation to Binomial Dist. If np e" 5 and nq e" 5, then the binomial random variable is approximately normally distributed with the mean and s.d. given as (p. 268) ( = np ( =  EMBED Equation.3  Continuity correction - A single value x represented by the interval from x - 0.5 to x + 0.5 when the normal distribution (continuous) is used as an approximation to the binomial distribution (discrete) (p. 272) Section 5 - 7: Determining Normality Normal quantile plot a graph of points (x, y), where each x value is from the original set of sample data, and each y value is a z score corresponding to a quantile value of the standard normal distribution. CHAPTER 6: ESTIMATES AND SAMPLE SIZES Section 6 - 2: Estimating a Population Mean: Large Samples Estimator a formula or process for using sample data to estimate a population parameter (p. 297) Estimate specific value or range of values used to approximate a population parameter (p. 297) Point estimate a single value (or point) used to approximate a population parameter, the sample mean (x being the best point estimate (p. 297) Confidence interval a range (or interval) of values used to estimate the true value of a population parameter (p. 298) Degree of confidence (or level of confidence or confidence coefficient) the probability 1 - ( that is the relative frequency of times that the confidence interval actually does contain the population parameter (p. 299) Critical value the number on the borderline separating sample statistics that are likely to occur from those that are unlikely to occur (p. 301) Za/2 is a critical value Margin of error (E) the maximum likely difference between the observed sample mean (x and the true value of the population mean ( (p. 302) E = Za/2 ( EMBED Equation.3  Note: If n > 30, replace ( by sample standard deviation s. If n < 30, the population must have a normal distribution and we must know the value of ( to use this formula Confidence interval limits the two values (x E and (x + E (p. 303) Section 6 - 3: Estimating a Population Mean: Small Samples Degrees of freedom the number of sample values that vary after certain restrictions have been imposed on all data values (p. 314) Margin of error (E) for the Estimate of ( when n < 30 and population is normal (p. 314) E = ta/2 ( EMBED Equation.3  where ta/2 has n 1 degrees of freedom Formula 6-2 Confidence Interval for the Estimate of ( (p. 315) (x E < ( < (x + E where E = ta/2 (  EMBED Equation.3  Section 6 4: Determining Sample Size Required to Estimate ( Sample Size for Estimating Mean ( (p. 323) n = za/2( 2 Formula 6-3 E Where za/2 = critical z score based on the desired degree of confidence E = desired margin of error  EMBED Equation.3 = population standard deviation Section 6 - 5: Estimating a Population Proportion Margin of Error of the Estimate of p (p, 331) E = za/2 EMBED Equation.3  Formula 6-4 Confidence Interval for the p (p, 331) p E < p < p + E where E = za/2 EMBED Equation.3  Sample Size for Estimating Proportion p (p. 334) When an estimate p is known:  EMBED Equation.3  Formula 6-5 When no estimate p is known  EMBED Equation.3  Formula 6-6 Sectiion 6 - 7: Estimating a Population Variance Chi-Square Distribution (p. 343) (2 = (n-1)s2 Formula 6-7 ( 2  EMBED Equation.3 where n = sample size, s2 = sample variance, ( 2 = population variance Confidence Interval for the Population Variance ( 2  EMBED Equation.3 < ( 2 < EMBED Equation.3  CHAPTER 7: HYPOTHESIS TESTING Section 7 - 1: Overview Hypothesis a claim or statement about a property of a population (p. 366) Section 7 - 2: Fundamental of Hypothesis Testing Test Statistic (p. 372)  EMBED Equation.3  where n > 30 Formula 7-1 Power - the probability (1  ) of rejecting a false null hypothesis (p. 378) Section 7 - 3: Testing a Claim about a Mean: Large Samples P-value  probability of getting a value of the sample test statistic that is at least as extreme as the one found from the sample data, assuming that the null hypothesis is true (p. 387) Section 7 - 4: Testing a Claim about a Mean: Small Samples Test Statistic for Claims about ( when n d" 30 and ( is Unknown (p. 400)  EMBED Equation.3  Test Statistic for Testing Hypotheses about ( or (2 (p. 418) Use Formula 6-7 CHAPTER 8: Inferences from Two Samples (n1 + n2) Section 8 - 2: Inferences about 2 Means: Independent and Large Samples Independent if sample values selected from one population are not related to or somehow paired with sample values selected from other population (p. 438) Dependent if values in one sample are related to values in other sample often referred to as matched pairs (p. 438) Test Statistic for Two Means: Independent and Large Samples (p. 439)  EMBED Equation.3  (1 and (2: If (1 and (2 are not known use s1 and s2 in their places, provided that both samples are large. P-value: Use the computed value of the test statistic z, and find the P-value by following the procedure summarized in Figure 7-8 (p. 388). Critical values: Based on the significance level , find critical values by using the procedures introduced in Section 7-2. Confidence Interval Estimate of (1 - (2: (Independent and Large Samples)  ((x 1 - x2) E < ((1 - (2) < ((x 1 - x2) + E (p. 442 CALCULATOR: STAT, TESTS, 2-SampZTest Section 8 - 3: Inferences about Two Means: Matched Pairs Test Statistic for Matched Pairs of Sample Data (p. 450)  EMBED Equation.3  where df = n - 1 d = mean value of the differences d Critical values: If n d" 30, critical values are found in Table A-3 (t distribution) If n > 30, critical values are found in Table A-2 (z distribution) Confidence Intervals d  E < (d < d  E where  EMBED Equation.3  and degrees of freedom = n - 1 CALCULATOR: Enter data in L1  L2 ! L3, STAT, TESTS, T-Test, use Data, ENTER Section 8 - 4: Inferences about Two Proportions Pooled Estimate of p1 and p2 (p. 459) x1 + x2 (p = --------------- n1 + n2 Complement of (p is(q, so (q = 1 - (p Confidence Interval Estimate of p1 and p2 (p. 463) ( EMBED Equation.3 1  EMBED Equation.3 2) E < (p1 p2) < ( EMBED Equation.3 1  EMBED Equation.3 2) + E Section 8 - 5: Comparing Variation in Two Samples Test Statistic for Hypothesis Tests with Two Variances (p. 472)  EMBED Equation.3  Critical values: Using Table A-5, we obtain critical F values that are determined by the following three values: The significance level (. Numerator degrees of freedom = n1 1 Denominator degrees of freedom = n2 1 CALCULATOR: TESTS, 2-SampFTEST Test Statistic (Small Samples with Equal Variances) (p. 481)  EMBED Equation.3  where  EMBED Equation.3  and df = n1 + n2 + 1 Confidence Interval (Small Independent Samples and Equal Variances) (p. 481)  EMBED Equation.3   EMBED Equation.3  Test Statistic (Small Samples with Unequal Variances) (p. 484)  EMBED Equation.3  where df = small of n1 1 and n2 1 Confidence Interval (Small Independent Samples and Unequal Variances) (p. 484)  EMBED Equation.3   EMBED Equation.3  and df = small of n1 1 and n2 2 CALCULATOR: TESTS, 2-SampTTEST (for a hypothesis test) or 2-SampTInt (for a confidence interval) CHAPTER 9: CORRELATION AND REGRESSION Section 9 - 2: Correlation Correlation exists between two variables when one of them is related to the other in some way (p. 506) Scatterplot (or scatter diagram) a graph in which the paired (x, y) sample data are plotted with a horizontal x-axis and a vertical y-axis. Each individual (x, y) pair is plotted as a single point. (p. 507) Linear correlation coefficient r  measures the strength of the linear relationship between the paired x- and y-values in a sample. r = nxy  (x)(y) -1 d" r d" 1 Formula 9-1 n(x2)  (x)2 n(y2)- (y)2 Test Statistic t for Linear Correlation (p. 514)  EMBED Equation.3  Critical values: Use Table A-3 with degrees of freedom = n  2 Test Statistic r for Linear Correlation (p. 514) Critical values: Refer to Table A-6 Centroid the point  EMBED Equation.3 of a collection of paired (x, y) data (p. 517) CALCULATOR: Enter paired data in L1 and L2, STAT, TESTS, LinRegTTest. 2nd, Y=, Enter, Enter, Set the X list and Y list labels to L1 and L2, ZOOM, ZoomStat, Enter Regression equation algebraically describes the relationship between the two variables (p. 525) y = bo + b1 x Regression line (or line of best fit) graph of the regression equation (p. 525) Only for linear relationships Marginal change in a variable amount that the regression equation changes when the other variable changes by exactly one unit (p. 531) Outlier point lying far away from the other data points in a scatterplot (p. 531) Influential points points that strongly affect the graph of the regression line (p. 531) Residual difference (y y) between an observed sample y-value and the value of y, which is the value of y that is predicted by using the regression equation. (p. 532) Least-squares property satisfied by straight line if the sume of the squares of the residuals is the smallest sum possible (p. 533) CALCULATOR: Enter data in lists L1 and L2, STAT, TESTS, LinRegTTest. Section 9 - 4: Variation and Prediction Intervals Total deviation - from the mean is the vertical distance  EMBED Equation.3  which is the distance between the point (x, y) and the horizontal line passing through the sample mean  EMBED Equation.3 (p. 539) Explained deviation vertical distance  EMBED Equation.3  -  EMBED Equation.3 , which is the distance between the predicted y-value and the horizontal line passing through the sample  EMBED Equation.3  (p. 539) Unexplained deviation vertical distance  EMBED Equation.3  - EMBED Equation.3 , which is the vertical distance between the point (x, y) and the regression line. (p. 539) Coefficient of determination the amount of variation in y that is explained by the regression line computed as  EMBED Equation.3  Standard error of estimate a measure of the differences (or distances) between the observed sample y-values and the predicted values y that are obtained using the regression equation give as (p. 541)  EMBED Equation.3  Prediction Interval for an Individual y (p. 543) Given the fixed value  EMBED Equation.3  Where the margin of error E is  EMBED Equation.3  xo represents the given value of x and ta/2 has n 2 df CALCULATOR: Enter paired data in lists L1 and L2, STAT, TESTS, LinRegTTest. Section 9 - 5: Multiple Regression Multiple regression equation expression of linear relationship between a dependent variable y and two or more independent variables (x1, x2, xk) (p. 549) Adjusted coefficient of determination - the multiple coefficient of determination R2 modified to account for the number of variables and the sample size calculated by Formula 9-7 (p. 552)  EMBED Equation.3   EMBED Equation.3  Formula 9-7 where n = sample size and k = number of independent (x) variables Section 9 - 6: Modeling CALCULATOR: 2ND CATALOG, choose DiagnosticOn, ENTER, ENTER, STAT, CALC, ENTER, enter L1, L2, ENTER CHAPTER 10: MULTINOMIAL EXPERIMENTS AND CONTINGENCY TABLES Section 10 - 2: Multinomial Experiments: Goodness-of-Fit Multinomial experiment an experiment that meets the following conditions: The number of trials is fixed. (p. 575) The trials are independent. All outcomes of each trial must be classified into exactly one of several different categories. The probabilities for the different categories remain constant for each trial. Goodness-of-fit test used to test the hypothesis that an observed frequency distribution fits (or conforms to) some claimed distribution (p. 576) Test Statistic for Goodness-of-Fit Tests in Multinomial Experiments (p. 577)  EMBED Equation.3  where O represents the observed frequency of an outcome Section 10 - 3: Contingency Tables: Independence and Homogeneity Contingency table (or two-way frequency table) a table in which frequencies correspond to two variables (p. 589) Test of independence tests the null hypothesis that the row variable and the column variable in a contingency table are not related (p. 590)  EMBED Equation.3  Critical values found in Table A-4 using degrees of freedom = (r 1) (c 1) CALCULATOR: 2ND X-1, EDIT, ENTER, Enter MATRIX dimensions, STAT, TESTS, (2-Test, scroll down to Calculate, ENTER CHAPTER 11: ANALYSIS OF VARIANCE Section 11 - 1: Overview Analysis of variance (ANOVA) a method of testing the equality of three or more population means by analyzing sample variances (p. 615) Section 11 - 2: One-Way ANOVA Treatment (or factor) a property, or characteristic, that allows us to distinguish the different populations from one another (p. 618) Test Statistic for One-Way ANOVA (p. 620)  EMBED Equation.3  Degrees of Freedom with k Samples of the Same Size n (p. 621) numerator df = k 1 denominator df = k(n 1) SS(total), or total sum of squares a measure of the total variation (around x) in all of the sample data combined (p. 622)  EMBED Equation.3  Formula 11-1 SS(treatment) a measure of the variation between the sample means. (p. 623)  EMBED Equation.3  Formula 11-3 SS(error) sum of squares representing the variability that is assumed to be common to all the populations being considered (p. 623) SS(error) = (n1 1)s21 + (n2 1)s22 + ``` + (nk  1)s2k Formula 11-4 = ( (ni  1)s2i MS(treatment)  a mean square for treatment (p. 623) MS(treatment) = SS(treatment) Formula 11-5 k  1 MS(error)  mean square for error (p. 624) MS(error) = SS(total) Formula 11-6 N k MS(total) mean square for the total variation (p. 624) MS(total) = SS(total) Formula 11-7 N 1 Test Statistic for ANOVA with Unequal Sample Sizes (p. 624) F = MS(treatment) Formula 11-8 MS(error) Has an F distribution (when the null hypothesis Ho is true) with degrees of freedom given by numerator df = k 1 denominator df = N k CALCULATOR: Enter data as lists in L1, L2, L3, STAT, TESTS, ANOVA, Enter the column labels (L1, L2, L3), ENTER Section 11 - 3: Two-Way ANOVA Interaction between two factors exists if the effect of one of the factors changes for different categories of the other factor (p. 632) CHAPTER 12: STATISTICAL PROCESS CONTROL Section 12 - 2: Control Charts for Variation and Mean Process data data arranged according to some time sequence which are measurements of a characteristic of goods or services that results from some combination of equipment, people, materials, methods, and conditions (p. 654) Run chart sequential plot of individual data values with axis (usually vertical) used for data values, and the other axis (usually horizontal axis) used for the time sequence (p. 655) Statically stable (or within statistical control) a process is if it has only natural variation with no patterns, cycles or unusual points (p. 656) Random variation due to chance inherent in any process that is not capable of producing every good or service exactly the same way every time (p. 658) Assignable variation results from causes that can be identified (such factors as defective machinery, untrained employees, etc.) (p. 658) CHAPTER 13: NONPARAMETRIC STATISTICS Section 13 - 1: Overview Parametric tests require assumptions about the nature or shape of the populations involved (p. 684) Nonparametric tests (or distribution-free tests) dont require assumptions about the nature or shape of the populations involved (p. 684) Rank number assigned to an individual sample item according to its order in a sorted list, the 1st item is assigned rank of 1, the 2nd rank of 2 and so on (p. 685) Section 13 - 2: Sign Test Sign test a nonparametric test that uses plus and minus signs to test different claims, including: (p. 687) Claims involving matched pairs of sample data Ho: There is no difference Claims involved nominal data H1: There is a difference. Claims about the median of a single population Test Statistic for the Sign Test (p. 689) For n d" 25: x (the number of times the less frequent sign occurs) For n > 25: EMBED Equation.3  CALCULATOR: @nd, VARS, binomcdf, complete the entry of binomcdf(n,p,x) with n = total number of plus and minus signs, 0.5 for p, and x = the number of the less frequent sign, ENTER. Section 13 - 3: Wilcoxon Signed-Ranks Test for Matched Pairs Wilcoxon signed-ranks test - a nonparametric test uses ranks of sample data consisting of matched pairs (p. 698) Ho: The two samples come from populations with the same distribution. H1: The two samples come from populations with different distributions. Test Statistic for the Wilcoxon Signed-Ranks Test for Matched Pairs (p. 699) For n d" 30: T For n > 30:  EMBED Equation.3  Where T = the smaller of the following two sums: The sum of the absolute values of the negative ranks The sum of the positive ranks Section 13 - 4: Wilcoxon Rank-Sum Test for Two Independent Samples Wilcoxon rank-sum test a nonparametric test that uses ranks of sample data from two independent populations (p. 703) Ho: The two samples come from populations with same distribution H1: The two samples come from populations with different distributions. Test Statistic for the Wilcoxon Rank-Sum Test for 2 Independent Variables (p. 705)  EMBED Equation.3 ,  EMBED Equation.3   EMBED Equation.3  n1 = size of the sample from which the rank sum R is found n2 = size of the other sample R = sum of ranks of the sample with size n1 Section 13 - 5: Kruskal-Wallis Test Kruskal-Wallis Test (also called the H test) nonparametric test using ranks of sample data from three or more independent populations to test (p. 710) Ho: The samples come from populations with the same distribution. H1: The two samples come from populations with different distributions.  EMBED Equation.3  Section 13 - 6: Rank Correlation Rank correlation test (or Spearmans rank correlation test) nonparametric test that uses ranks of sample data consisting of matched pairs to test (p.719) Ho: ps = 0 (There is no correlation between the two variables.) H1: ps `" 0 (There is a correlation between the two variables.) Test Statistic for the Rank Correlation Coefficient (p. 720)  EMBED Equation.3  where each value of d is a difference between the ranks for a pair of sample data. n d" 30: critical values are found in Table A-9. n > 30: critical values of rs are found by using  EMBED Equation.3  Formula 13-1 CALCULATOR: Enter data in L1 and L2, STAT, TESTS, LinRegTTest Section 13 - 7: Runs Test for Randomness Run a sequence of data having the same characteristic; the sequence is preceded and followed by data with a different characteristic or by no data at all (p. 729) Runs test uses the number of runs in a sequence of sample data to test for randomness in the order of the data (p. 729) 5% Cutoff Criterion (p. 731) Reject randomness if the number runs G is so small or so large i.e. Less than or equal to the smaller entry in Table A-10 Or greater than or equal to the larger entry in Table A-10. Test Statistic for the Runs Test for Randomness (p. 733) If ( = 0.05 and n1 d" 20 and n2 d" 20, the test statistic is G If ( `" 0.05 or n1 > 20 or n2 > 20, the test statistic is Z = G (G (G Where (G =  EMBED Equation.3  Formula 13-2 Where (G =  EMBED Equation.3  Formula 13-3 ROUND OFF RULES Simple rule Carry one more decimal place than ;is present in the original set of values, (p. 60) Rounding off probabilities either give the exact fraction or decimal or round off final decimal results to 3 significant digits. (p. 120) For  EMBED Equation.3  - round results by carrying one more decimal place than the number of decimal places used for random variable x. If the values of x are integers, round  EMBED Equation.3  to one decimal place. (p. 186) Confidence intervals used to estimate  (p. 304) When using the original set of data to construct a confidence interval, round the confidence interval limits to one more decimal place than is used for the original set of data. When the original set of data is unknown and only the summary statistics  EMBED Equation.3 are used, round the confidence interval limits to the same number of decimal places used for the sample mean. For sample size n if the used of Formula 6-3 does not result in a whole number, always increase the value of n to the next larger whole number. (p. 324) Confidence interval estimates of p Round to 3 significant digits. (p. 332) Determining sample size If the computed sample size is not a whole number, round it up to the next higher whole number. (p. 334) Linear correlation coefficient round r to 3 decimal places. (p. 510) Y-intercept bo and Slope b1 - try to round each of these to 3 significant digits. (p. 527) PAGE 1 PAGE 10  EMBED Equation.3  ,:;ipq~<BDP QXYlw}  ? E G g # ) + H  \ c e    $ . d k m { 5656CJOJQJ CJOJQJ5CJOJQJ5CJCJ>*CJU;]^pqCD8XY~$;]^pqCD8XY~  F G * + d e f   {xuU 9 :S tuXY !FGgAB  -  F G * + d e f   l m ijyz l m ijyzrs())*_`./JK$z{ý~{xurh   &12  =>devwT,{ BNahjGHqxzjqs '):!()*&-/D~BIK]$0z  >G5>*CJOJQJ56CJOJQJ5CJOJQJ CJOJQJSrs())*_`./JK$zGH[\]^qr#EXbikx=R)*=Q빪땋6CJH*OJQJ js6CJOJQJ5>*CJOJQJj6CJEHOJQJUj6?&? UVmH5CJOJQJ CJOJQJj6CJEHOJQJUj?&? UVmH6CJOJQJj6CJOJQJU4z{MNjkEFEF'bh & FMNjkEFEF'b] qr{spjg B    Zvw     J  A|     ]^ =>56g'&';UWbxy57`inowyr #$789:>?RSTUVcݷݼ>* jEHUjf7? CJOJQJUVmH jEHUje7? CJOJQJUVmH jU5>*CJOJQJCJH*OJQJ6 j65CJOJQJ CJOJQJ>*CJOJQJ6CJOJQJ j6CJOJQJ5] qr#Vc12  & F & F#Vc12 !!!!:";"""""&#V###K$L$v$$$$$Ŀ{xsnkfa 45 A B k ! |\] Ol%)Eijp q !!!1"J""""""""""*#/#1#;#V########$$3$4$G$H$I$J$K$L$l$m$v$$$$$%%%ׯ6CJOJQJj6EHUjE&? UVmH j6U6>*>*655>*5>*CJOJQJCJH*OJQJ5CJOJQJ CJOJQJE !!!!:";"""""&#V###K$L$v$$$$$%%%d$%%%%%F&&&&''a'b''''''((3())V)W)))))*6*7*`*Ŀ~ytoje`[IJe)*deMopij:}!%%%%%%%%&I&J&]&^&_&`&f&g&z&{&|&}&&&&&&&&&&&' ' ' ' '%'X'b'''''(1((()1)M)W))))*-*.*2*3*6*`*+ j j5>* jEHU jR EHUj+j7? CJOJQJUVmH j EHUji7? CJOJQJUVmH j EHUj"g7? CJOJQJUVmH jU56 j`=%%%F&&&&''a'b''''''((3())V)W)))))*6*6*7*`*++S+T+++++M,e,f,,--/-|-}---.E._.`....d`*++S+T+++++M,e,f,,--/-|-}---.E._.`.......v/w//%0Ŀ~ytoje`Y     !;Qij3,-yz !++S+w+z+{+++++++D,M,f,,,,,, -----/-?-@-j-m-}-----------.G.H.[.\.].^.`.{............ j/EHUj k7? CJOJQJUVmHj6EHUjk7? CJOJQJUVmH j6U jEHUjl7? CJOJQJUVmH jU j66>* j5>*5<.... /m//////'0(0)0*0.0/0H0c00061@1r111112"2.2a2p22222263x333333333333333333334R4\44452555U555 6(6o6y666%7&7'7P7>*H*H*jQ6EHUjm7? CJOJQJUVmH j6U j j5>*56O....v/w//%0H0I000?1@1r112/2q2222333333 & F  & F%0H0I000?1@1r112/2q222233333333[4\444"5#555¸|wrmhc^YR  ]^$%  Q  q    @A78[  333[4\444"5#5556 6x6y6660717P7W7777`8888 & F & F  & F 56 6x6y6660717P7W7777`8888)9;V;X;<<<<{=|====¸zupkfa\WRW          ) 0OPwx  P7W7k7l7777777777777888-8388888888)9,9::::;; ; ;;;;$;&;L;N;P;R;;;;x<<<<<<==+=,=|====8>M>>>> ? ? ?,?-?M?????j~6EHUjs&? CJOJQJUVmH j6U55>* j` js6 jm66>*N8)9;V;X;<<<<{=|====A>B>>>6?7???@@B>>>6?7???@@E_EvEEFFKFĿ~ytoje`[9:?}.ij"]t!???@@@@A"A$A(A;A=A?APAQAUAAAAAAAAAAAAAAAAAAABB-B.B3B4BBBBBBBBBBBBBBBBB$C9CCCCCCCCCDD D D jm565>* js6j}6EHUjn7? CJOJQJUVmH j6U j6 jm6 j`566H*6 ja5FBBBB$CCC\DDDE>E_EvEEFFKFLFFFF GBGGGGG D D D!D"D#D-D1D6D:DND[D\DDDDDDDDDDDDDDDDDDDDDDDEEE3E4E5EAEDEEEFEIEJEKELE^E_EoEtEڿ͚֞Ԗ>*H* js6>* 6>*H*6>*56 jm56>*jH6EHUjn7? CJOJQJUVmH j6 jm6 j` jm5655>*6H*jp6EHUjun7? CJOJQJUVmH6 j6U4tEuEvEwE}E~EEEEEEEEEEEEFKFoFrFyFFFFFFFFFFFFFFFFFFFF G G G G G3G4GBGSGUG^G_G`GsGj$6EHUjlZ&? CJOJQJUVmH6>*j"6EHUjZ&? CJOJQJUVmH j6U5>* j !EHUj"o7? CJOJQJUVmH jU6H*56566KFLFFFF GBGGGGGG:HEHHHHII:I;ISIIII|JKKKM MMN%NsNNNĿyvsmjgda^M   6;x XYEo$sGtGuGvGGGGGGGGGGGGGHHH"H(H)H*H9H:HAHBHCHEHFHGHZH[H\H]HcHdHtHuHwHHHHHHHHHHݼݴݴݥݴ~z5H*56 js56 j+EHUjYT&? CJOJQJUVmH jU js6>*H*6>*>*H* jc55>*6H*j)6EHUjC? CJOJQJUVmH6 j6Uj '6EHUj5C? CJOJQJUVmH0GG:HEHHHHII:I;ISIIII|JKKKM MMN%NsNNNNNHHHHHHHHHHHHHHIIIIIIII;ISI`IIIIIIIIIJJJ"J:J|JJKKKK׼yyo5>*CJOJQJ6CJOJQJ CJOJQJj15CJEHOJQJUjq7? UVmHj5CJOJQJU5CJOJQJ5>*56H* j{/EHUjp7? CJOJQJUVmHH*6 js6 j@-EHUjo7? CJOJQJUVmH jU56+KKK,LRLL MMMMMMMM NN!N"N#N$N%NQNRNVNWNYNbNfNsN~NNNNNNNNNNNNNNOOOHPxx CJOJQJCJH*OJQJ6CJOJQJ5;CJOJQJ5CJH*OJQJ js5CJOJQJj=45CJEHOJQJUjq7? UVmHj5CJOJQJU js6 jm66CJOJQJ CJOJQJ5CJOJQJ56CJOJQJ.NNNOOPPFPdPiPPPbQcQRR|SS"T#T\T]TTTT|VWWVWWWzX|X~XXX,YDY½~ytoje`CILR={BC<A_ %NOOPPFPdPiPPPbQcQRR|SS"T#T\T]TTTT|VWWVW5pp`@ HPIP\P]P^P_PbPhPiPjPlPpPqPrPxPyP{PPPPPPPPPPPP Q QQQbQcQR(S*S,S2S4S6S:S|S~SSSSSSSSøîîîÞÞÞÞÞÞH* j`5 jU56 56H* jm5656CJOJQJCJH*OJQJ jsCJOJQJ5;CJH*OJQJ CJOJQJCJH*OJQJj66CJEHOJQJUjMs7? UVmH5CJOJQJj6CJOJQJU2SSSSSSSSSSSSSSSSSSSS#T]TTTTTTTTTTTTTTTTUUV\V`V|VVVW.W>W@WDWXWfWhWWWWWWWWj[<6EHUjt7? CJOJQJUVmH6CJOJQJ5CJOJQJ CJOJQJj96EHUjs7? CJOJQJUVmH j6U5>*5H* j`56H* jm66;VWWWzX|X~XXX,YDYtYYYYYYYYYYYYYYYYYYYZpWWW|XXYY Y YYYYY4Y6Y8Y:Y>Y@YJYLYPY|Y~YYYYYYYYYYYYYYYYY(Z)Z+Z.Z/Z0Z2ZZQZRZSZTZXZYZlZmZnZoZpZtZxZyZzZ~Zȿj@6EHUja&? CJOJQJUVmHj>6EHUja&? CJOJQJUVmH j6U5H* j`66H* 56H*565>*56H*ADYtYYYYYYYYYYYYYYYYYYYZZZZZZZZZ;ZZZZZĿ~ytoje`[Btu+,-./0123456789:;<=>?@ABDEly!ZZZZZZZZZ;ZZZZZ2[L[[[[$\%\D\E\G\\\]O]  & F8 h8~ZZZZZZZZZZZZZZZZZZZ4[5[H[I[J[K[L[[[[[[[[[\\\%\F\G\\\\\\\\\\\ʺʩʢʒ jUjH5EHUjn@? CJOJQJUVmH j5U56 jajE6EHUjċ7? CJOJQJUVmH55>*j*D6EHUj\B6EHUja&? CJOJQJUVmH j6U6H*61Z2[L[[[[$\%\D\E\G\\\]O]]]^M^t^u^^^^^___``a:bb½|wrmhc^YTV56\]fb7  \   v A \\\\\\\\\\\] ]3]4]5]6]7]8]K]L]M]N]]]]]]]]]]]]]]]]^^^^1^2^3^4^5^6^I^J^ƽݭݔ~ݭj>V5EHU6H*j%S5EHUjYn@? CJOJQJUVmHjWP5EHUjUl@? CJOJQJUVmHjM5EHUjk@? CJOJQJUVmH j5U5H*6 jU j4KEHUj87? CJOJQJUVmH1O]]]^M^t^u^^^^^___``a:bbbbc&d'ddd%e&eeeJ^K^L^O^a^b^c^l^m^n^t^^^^^^_'_y________``L`T```````aaaaaaaaabb bbb8b:bPbRbbbdbnbpb~bbbbbbbbbcc c"c$cc쿸 j[EHUjIo@? CJOJQJUVmH jU6H*6>*>*565>*6H*H*65 j5UjX5EHUHbbbc&d'ddd%e&eeee f fffffEgFggwhxhhhhiijjdkekkĿ~ytoje`[ijCuvBJK)*I   b!ccccccd'd2di?i@iAiBikioiij_6EHUjV@? CJOJQJUVmH j6U5>*6H*5H* j]EHUj@? CJOJQJUVmH jU5656>*6Cee f fffffEgFggwhxhhhhiijjdkekkklllmpiiiiiiiiiiijjj j j j j!j"j#jPjRjjjjjjjjjjjjjjjjjjjkƽֻֻֻ{rֻj#i6EHUjg&? CJOJQJUVmH jRgEHUj@? CJOJQJUVmHje6EHUjf&? CJOJQJUVmH6jc6EHUj]f&? CJOJQJUVmH j6U565 jaEHUj@? CJOJQJUVmH jU)kkkk;kBkYkZkbkekkkkkkkkkkkl^l_lllllllllllm+m,m?m@mAmBm]m^mcmdmwmxmym»}v jsEHUj@? CJOJQJUVmH jqEHUj͝@? CJOJQJUVmH jnEHUjv@? CJOJQJUVmH jlEHUjJ@? CJOJQJUVmH jU5656 j6Ujj6EHUjrf&? CJOJQJUVmH.kklllmCmcmmmn$n%nnnooo p!p9p:pppppqq`qqqrSrTrrr6s}umjgda  6  R   z   - lhi2~OWp:;$mCmcmmmn$n%nnnooo p!p9p:pppppqq`qqqr & Fymzm|m}mmmmmmmn$n%nDnnnnnnnnnnnooo oro~ooooooooooooooooooooooٺٌٰٖjFxCJEHOJQJUj!@? UVmHjCJOJQJUjv6CJEHOJQJUj@? UVmHj6CJOJQJU6CJH*OJQJCJH*OJQJ6CJOJQJ5CJOJQJ CJOJQJ5>*56H* jU2o!p9p:pppppqq-qqqTrkrr6s7sJsKsLsMsNsTsVseswssssss3tTttttttttttu(u)u0u1uEuGuIuKuuuܽܽ jc5CJOJQJ5CJH*OJQJ56CJOJQJj }CJEHOJQJUj@? UVmH6CJOJQJjzCJEHOJQJUj@? UVmHjCJOJQJU5>*CJOJQJ5CJOJQJ CJOJQJ5rSrTrrr6sNsssssij  quEXY ;^ ST,uuuuuuvdvnvvvvv w@wAwTwUwVwWwqwrwwwwwwwwwwwwxx>xIxJx]x^x_x`xbxwxzxxxxxxxxxxܔj@? UVmHCJH*OJQJjCJEHOJQJUj@? UVmH6CJOJQJ56CJOJQJjECJEHOJQJUj@? UVmHjCJOJQJU CJOJQJ5CJOJQJ5CJH*OJQJ5Ywwww)xxxxxxxyDztzvzzF{p{r{{||"|[|||||}@ xxxxxx yzyyyyyyyyyyyyyyyyyyzzzzz z"z$z&zDzTzXzZz^z`zbzdzlznzpzrztzzzzz{{{ {D{F{J{P{T{f{n{r{{{{{{{||||иظиظ>*CJOJQJH* jS6H*6H*65CJOJQJ6CJOJQJ CJOJQJjCJOJQJUj̓CJEHOJQJUH|||"|.|R|]|h|k|t||||||||||||||||}}}}}A}B}C}D}}}}}}}.~<~~~(%ʀ̀Daށkuǂ03N.0EOiu΄ׄ=CJH*OJQJ6CJH*OJQJ>*CJOJQJ5CJOJQJ CJOJQJ6CJOJQJQ||||}}o}}}~~.~~~~~MNtuNOiׄ!]~{um.   x  &M o,- .VW  "K'}}o}}}~~.~~~~~MNtuNOiׄ!]zƆWȈZ[\*f & F hh & F=CDĆƆ^`Ї҇WtɈʈˈZ[qr*,.TVXZ\測j6>*EHUjʪ@? >*UVmHj6>*U 56>*5>*5>*56CJOJQJ5CJOJQJj"6CJEHOJQJUjU@? UVmHj6CJOJQJU CJOJQJ6CJH*OJQJ6CJOJQJ3]zƆWȈZ[\*fhnMӍ Dގ!jľ~{xrolifC B gF n of     ' u R m  '\jlfenopMNObcdegh{|}~ȍɍԍՍ֍ DYiȹCJH*OJQJjƐ6CJEHOJQJUj̬@? UVmHjl6CJEHOJQJUj?@? UVmHj@6CJEHOJQJUj@? UVmHj6CJOJQJU6CJH*OJQJ5CJOJQJ6CJOJQJ CJOJQJ1fhnMӍ Dގ!j>D & F8 h8ijsՎގߎ"#$jk~r .024fh6CJOJQJj_6CJEHOJQJUjN@? UVmHj6CJOJQJUjdCJEHOJQJUj5@? UVmHjCJOJQJU6CJH*OJQJ6CJOJQJ CJOJQJ5CJOJQJ56CJOJQJ3>D67`0TNZ)ĝû䰭wqic[   b 1             :BO     U 12     e#DJz|~ΓГғԓ֓67`fwÕĕ &(@BDXZ\Зҗԗ Ǻꖎꖎ6>*CJOJQJCJH*OJQJ6CJOJQJ jaCJOJQJCJOJQJhnH 5CJOJQJjCJEHOJQJUj@? CJOJQJUVmHjCJOJQJUCJH*OJQJ CJOJQJ6CJOJQJ CJOJQJ3D67`0T & F & F   & F8 h8"#$&'()<=>?QSU[\]abuvwx|׺מה}̲rh[r}j:CJEHOJQJUj8v&? UVmHjCJOJQJU6CJOJQJj5CJEHOJQJUjr&? UVmHj5CJOJQJU CJOJQJCJH*OJQJ jm6CJOJQJ CJOJQJ js6CJOJQJ5CJOJQJ6>*CJOJQJ>*CJH*OJQJ jm6>*CJOJQJ#+0(*PR|~ؚ8<Ll)9:yo56CJOJQJj"6CJEHOJQJUj)B? UVmHj6CJOJQJUjCJEHOJQJUj'B? UVmHjCJOJQJUj5CJEHOJQJUj'B? 5UVmHj5CJOJQJU6CJOJQJ5CJOJQJ CJOJQJ+NZ)ĝ۞78CDEQRSTUmnopq$1$h$hh&`#$ & F & F h & F:=Ýĝ+v|Ҟڞ۞ݞ.689?@ABCEFLMOPRUVijklpq j&EHUjs7? UVmH jU0JmH0J j0JU56CJH*OJQJ56CJOJQJ5CJOJQJ CJOJQJ6CJOJQJ=۞78CDEMOQRSTUmnopq  T    z  +&P0/ =!"#$%`!) 3Юi+nZ@"xOA߼v&jFu;  #Y #X\Ke _@GBau X+%Λ7;ޞL}޼7ogrz3B$KBX<ϭgJܶY.:"^_!$H 2= 12rs35qL'a_dke}*| O!˰P=©>21QSQyŎz\ #ZT dw4oV7^€֢c'qÇq/b/kq, u޵Pf/FV_8Io~gkjwxFTB<[r-ɕ~itZ?kEWtZZ -Û>Ѡ3x=AkzvQݱ]|3>W7<̑n-.'4Yڸ_c%DdB  S A? 2: e5tg_KoD`! e5tg_KoH`!x5OQ=3$66 K&J>Ckjkd;9s A`*#mAii& qEP]7=]࿮WSYP+[BCSYp ɂ7 SM}M{=U>}cL4Ù.`뎃CbB^f{5)rz߈99nwA$|gJy?:-aDdB  S A? 28uE@ ax^`! uE@ ax^d`!HxP=A}3E"E# JPh*_8h67o[BH00+%c% JqE4H)f3W&T. s(UʑT>Пv-uSD$=w.8' ޱ&ԃn~G4tCWvbP!M`=]471F[?pWoMBBy/6DdlB  S A? 2?Jn`ZTd <:\`!T?Jn`ZTd <: ~ "xMQOKp }IOeo7\? :z͋o!"dE`MR=$%:6k31UUM0K<ԋ[+mJ ~Q|*i9 'IyJ΂vj]S|J8|ǎ/O\->#JNE|8ʆ9p:x5W|GW6뼢MhPfǣ3azMfCX_&uu =۽;(q]˿TJBDdlB  S A? 2~t: ز }tt/-3Z`!Rt: ز }tt/-3@8  xmQJ`/xq >gXY"">V*r)|2366~ COKnr&eYd6lTx+elT=+ 'Jp<=D4_z5߳UA-U}ͯISQLKXnt6+,Psغ|yXޠkH^|&y0Mq<dlWu_#f}.ڿ ȧI 4;EIDd|hB  S A? 2bn" ph> `!6n" ph`@0|x]JA.s xD:RSEr`X\ $i,V ^fg7YXvoD8[[S!MumM- Aq%!{ћToMlt5E \-V~w?,:!:ݣLOoX9mki]q?JmCdELu:~*s; +;Gzm4\4nHoR.WyPedzFmI5Dd,B  S A? 2=UYkEmӐ `!UYkEmӐHx5O; P]/ ? VNAo`-ZEJS #Xx`Q?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~+Root Entryc F pF^' Yڽ7sData  WordDocumentb^XObjectPoolew Sս7 Yڽ7_1059471278 mF Sս7@$ս7Ole CompObjfObjInfo "',/258;>ADINSX]`cfiloruz} FMicrosoft Equation 3.0 DS Equation Equation.39qI`oI 2x FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 0_1059471158 F 5ս7 5ս7Ole CompObj fObjInfo Equation Native  0_1060595163Y'F 5ս7 5ս7Ole  mIyI 2x FMicrosoft Equation 3.0 DS Equation Equation.39qv0mIyI z=x"2xsCompObj fObjInfo Equation Native L_1060595230F 5ս7Oս7Ole CompObjfObjInfoEquation Native H FMicrosoft Equation 3.0 DS Equation Equation.39qv,IuI z=x" FMicrosoft Equation 3.0 DS Eq_1059472835FOս7Oս7Ole CompObjfObjInfouation Equation.39qmIyI  n  FMicrosoft Equation 3.0 DS Equation Equation.39qvmIyI 2AEquation Native 4_1060595490Fս7ս7Ole CompObj fObjInfo!Equation Native 0_1060596221$Fv`ս7v`ս7Ole   FMicrosoft Equation 3.0 DS Equation Equation.39qvmIyI A FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj#%!fObjInfo&#Equation Native $,_1060596267"6)Fhս7ս7Ole %CompObj(*&fObjInfo+(Equation Native ),vmIyI A FMicrosoft Equation 3.0 DS Equation Equation.39qv4I$}I n!(n"r)!_1060596884.Fս7ս7Ole *CompObj-/+fObjInfo0-Equation Native .P_1060596706J3F`rս7`rս7Ole 0CompObj241f FMicrosoft Equation 3.0 DS Equation Equation.39qvTIqI n!n 1 n 2 "n k FMicrosoft Equation 3.0 DS EqObjInfo53Equation Native 4p_10605964898F@;ս7@;ս7Ole 6CompObj797fObjInfo:9Equation Native :X_1060597009,E=Fcս7ս7uation Equation.39qv<mIyI n!(n"r)!r! FMicrosoft Equation 3.0 DS Equation Equation.39qOle <CompObj<>=fObjInfo??Equation Native @dvHmIyI  x *e "u x! FMicrosoft Equation 3.0 DS Equation Equation.39q mIyI  npq _1059484620NBFս7ս7Ole BCompObjACCfObjInfoDEEquation Native F<_1060597266GFս7ս7Ole GCompObjFHHf FMicrosoft Equation 3.0 DS Equation Equation.39qvmIyI n FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoIJEquation Native K8_1060597365;TLFս7ս7Ole LCompObjKMMfObjInfoNOEquation Native P8_1060597417QFս7ս7v`IuI sn FMicrosoft Equation 3.0 DS Equation Equation.39qv`IuI sn FMicrosoft Equation 3.0 DS EqOle QCompObjPRRfObjInfoSTEquation Native U8_1060597538OrVFֽ7ֽ7Ole VCompObjUWWfObjInfoXYuation Equation.39qvԛII  FMicrosoft Equation 3.0 DS Equation Equation.39q0tI`oI  2p 2q Equation Native Z,_1059478168[Fֽ7ֽ7Ole [CompObjZ\\fObjInfo]^Equation Native _L_1059478124`F` ֽ7` ֽ7Ole an  FMicrosoft Equation 3.0 DS Equation Equation.39q0~IȷI  2p 2q n CompObj_abfObjInfobdEquation Native eL_1061356341heFZ(ֽ7`#9ֽ7Ole gCompObjdfhfObjInfogjEquation Native k FMicrosoft Equation 3.0 DS Equation Equation.39qdmIyI n=(z a/2 ) 2 "2p 2q E FMicrosoft Equation 3.0 DS Equation Equation.39q_1061356447jF`#9ֽ7`#9ֽ7Ole mCompObjiknfObjInfolpdIШI n=(z a/2 ) 2 "0.25E FMicrosoft Equation 3.0 DS Equation Equation.39qmIyI Equation Native q_1059476569^oF@Iֽ7@Iֽ7Ole sCompObjnptfObjInfoqvEquation Native w$_1060597675tFSֽ7Sֽ7Ole x FMicrosoft Equation 3.0 DS Equation Equation.39qvPI`oI (n"1)s 2  R2 FMicrosoft Equation 3.0 DS EqCompObjsuyfObjInfov{Equation Native |l_10605977601yF~kֽ7F|ֽ7Ole ~CompObjxzfObjInfo{Equation Native luation Equation.39qvPtI8I (n"1)s 2  L2 FMicrosoft Equation 3.0 DS Equation Equation.39q_1060598035~FF|ֽ7F|ֽ7Ole CompObj}fObjInfoEquation Native t_1060598155|Fֽ7ֽ7Ole CompObjfvXII z=2x" 2x  n  FMicrosoft Equation 3.0 DS Equation Equation.39qvXмII t=2x" 2x s n IObjInfoEquation Native t_1060598605]F؝ֽ7ֽ7Ole  FMicrosoft Equation 3.0 DS Equation Equation.39qv$nIHI z=(2x 1 "2x 2 )"( 1 " 2 )  12 n 1 + 22 nCompObjfObjInfoEquation Native $_1060598760Fֽ7ֽ7 2 ()  FMicrosoft Equation 3.0 DS Equation Equation.39qv`tI0I t=2d" d s d  n Ole CompObjfObjInfoEquation Native |_1060598924F`jֽ7`jֽ7Ole CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qvTmIyI E=t a/2 s d  n  FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native p_1059480010F ֽ7 ֽ7Ole CompObjfObjInfoEquation Native 0_1059480043F#ֽ7#ֽ7Ole mIyI 2p  FMicrosoft Equation 3.0 DS Equation Equation.39qmIyI 2p CompObjfObjInfoEquation Native 0_1060604868Fֽ7׽7Ole CompObjfObjInfoEquation Native d FMicrosoft Equation 3.0 DS Equation Equation.39qvHmIyI F=s 12 s 22 FMicrosoft Equation 3.0 DS Equation Equation.39q_1061187093F׽7׽7Ole CompObjfObjInfoHyII t=(x 1 "x 2 )"( 1 " 2 ) s p2 n 1 +s p2 n 2 ()  FMicrosoft Equation 3.0 DS EqEquation Native _1060605496F~׽7~׽7Ole CompObjfuation Equation.39qvHII s p2 =(n 1 "1)s 12 +(n 2 "1)s 22 (n 1 "1)+(n 2 "1)ObjInfoEquation Native _1061186449F_׽7_׽7Ole CompObjfObjInfoEquation Native _1061186645Fjp׽7jp׽7 FMicrosoft Equation 3.0 DS Equation Equation.39qԴmIyI (x 1 "x 2 )"E<( 1 " 2 )<(x 1 "x 2 )+E     r !"#$%'&(*)cd,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abegfihkjlmnpoqstuvxwyz{}|~Ole CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39qIToI whereE=t a/2  s p2 n 1 +s p2 n 2 () _1061187161F N׽7 N׽7Ole CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qHyII t=(x 1 "x 2 )"( 1 " 2 ) s p2 n 1 +s p2 n 2 () Equation Native _1061187401F3׽73׽7Ole CompObjf FMicrosoft Equation 3.0 DS Equation Equation.39qXII T=r 1"r 2 n-1  FMicrosoft Equation 3.0 DS EqObjInfoEquation Native t_1061198583F׽7f׽7Ole CompObjfObjInfoEquation Native D_1061198678Ff׽7f׽7uation Equation.39q(mIyI (2x,2y) FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjfObjInfoEquation Native 8IToI y"2y  FMicrosoft Equation 3.0 DS Equation Equation.39qItI 2yII FMicrosoft Equation 3.0 DS Eq_1061198740F`׽7`׽7Ole CompObjfObjInfoEquation Native 0_1059481181F`׽7`׽7Ole CompObjfuation Equation.39qmIyI 2y  FMicrosoft Equation 3.0 DS Equation Equation.39q,IXI 2y`ObjInfoEquation Native 0_1059481221IF ׽7@׽7Ole CompObjfObjInfoEquation Native 0_1061198777F ׽7׽7Ole CompObjfObjInfoEquation Native 0  #&)*+,/4789<?BEHKLMPSVYZ[\]^adgjknqtwx{~ FMicrosoft Equation 3.0 DS Equation Equation.39qItI 2yI FMicrosoft Equation 3.0 DS Equation Equation.39q_1059481374F׽7׽7Ole CompObjfObjInfomIyI y FMicrosoft Equation 3.0 DS Equation Equation.39qmIyI 2y Equation Native  ,_1059481202FS׽7zؽ7Ole  CompObj fObjInfo Equation Native 0_1061198922FCؽ7'ؽ7Ole CompObjfObjInfoEquation Native _1061198966F'ؽ7'ؽ7 FMicrosoft Equation 3.0 DS Equation Equation.39qԨmIyI r 2 =explainedvariationtotalvariationOle CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39qlIdI s c = (y-"y ) 2  n-2  FMicrosoft Equation 3.0 DS Eq_1061199309FN8ؽ7N8ؽ7Ole CompObjfObjInfo!uation Equation.39qLmIyI x 0 ,2y "E<y<2y +E FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native "h_1061199352!FIؽ7@cؽ7Ole $CompObj%fObjInfo'Equation Native (_1061201050F@cؽ7@cؽ7Ole -mIyI E=t a/2 s e  1+1n+n(x o "2x) 2 n(x 2 )"(x) 2 ()  FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj.fObjInfo0Equation Native 1$_1061201185F@r{ؽ7@r{ؽ7mIyI  FMicrosoft Equation 3.0 DS Equation Equation.39qԬ4I\I AdjustedR 2 =1"(n"1)(Ole 2CompObj3fObjInfo5Equation Native 61"R 2 )[n"(k+1)] FMicrosoft Equation 3.0 DS Equation Equation.39qD I܂I  2 =(O"E)E_1061201301 Fbؽ7bؽ7Ole :CompObj  ;fObjInfo =Equation Native >`_1061201392Fؽ7ؽ7Ole @CompObjAf FMicrosoft Equation 3.0 DS Equation Equation.39qD I܂I  2 =(O"E)E FMicrosoft Equation 3.0 DS EqObjInfoCEquation Native D`_1061201547Fؽ7ؽ7Ole FCompObjGfObjInfoIEquation Native J_1061201591Fؽ7'ؽ7uation Equation.39qmIyI F=variancebetweensamplesvariancewithinsamples FMicrosoft Equation 3.0 DS Eqx5O; P]/ ? VNAo`-ZEJS #Xx`Q%_(`!W ,֬3LD>% d%xQ=JPf^I n!Z'Z wAio=ǰ=q޼ kIf^ !LH:왓f q]zKz仗Ŝ`Eel $R?K 1#p0>ͪZ/d=rk >lUI`~#H"GUz<,%pXޏnͣw:MufVᅯbc1mJeAN"3"WL{S|g;Ux Z=_"nl)I2DdOB   S A?  2Ԥ$ʖ=wMV3xA`!pԤ$ʖ=wMV3@ >xRN@sLb,^2))7tLC KK.5|PH=c)ַ0&st0TmHT+:v4&:BxUy4J7fud.Y5l5~@ƏhGi2 23ɪzyS5hVaW?J^=:'}ǧ3˵~ױFg;+Ŧ2>U'Wa_wou-x-{DHvm,zC̝0ORV `"DdB   S A ?  2;bd&\ԽVhs`!`;bd&\ԽV2 L d.xQJ@f66 zJ{*zh &[ċ>OI|Izpafof&k<1&qQ٧ 0%B=4Vn,c MB$x*ޣThFrJN,_2ib\5*ķ~͗>̈,'udsU? M׷V'Ǝ۪p{Sg^Qd̳9W5oy|Gg ꍳq]M{ (ʚ=+s7 (̬K-DdB   S A ?  2~d_@t~"s`!k~d_@t~" d9xJASs +^u8Xvd:8/4F|3dյ%oIN-❔tBK tՊSmmyipw Uϲ6\ i%6I2I9曢i7݋r6 :_7,DdlB  S A? 2]ZԝU$`S$9`!1ZԝU$`S$ΈHx]P=kA}3G"xB*Hg@k @,rrw ᰱKc2?%E H~Bj^ffO f۷KoYpϊjLd,m@60UK>ZmJ};*B(筠/鵈>=TgiYgٍ}r Zq?H%$~>e,ޝ BaVPnj93¨H+R)L#^K\go2NcZb7;DdlB  S A? 2B;w֑)`!;w֑)XRx5O; A }]? Vba'Zł +£xkLv dKB4`#+Yd2L$ItҧNL]⿮Osn+/CMr$1^V67 أt{#E5A}~?|3Y??_Aܞt.#n!Yr#G>\ytW|䵻_3;Ļ sZ_r(/DdlB  S A? 2B;w֑)`!;w֑)XRx5O; A }]? Vba'Zł +£xkLv dKB4`#+Yd2L$ItҧNL]⿮Osn+/CMr$1^V67 أt{#E5A}~?|3Y??_Aܞt.#n!Yr#G>\ytW|䵻_3;Ļ sZ_r(/ŮDdB  S A? 2VY3U[ i`5d!`!VY3U[ i`5`R!x5O; P V"V" @A!iҥKd`afg;R>Qb!sdj!u&/kݤ–as(O c~Z<[b1m/g@^ ̑L܊ѷiy2˛ߥ-x?^t"*DdDB  S A? 2H ~O7}m_p#`!hH ~O7}m_4`P6xQJAvHl,ҘB@:J?2M6vs5.,fv[BPM4`׆U6!\#ɫksՎڛh"M XcS:^6L밫%)jTq܁^8+y7qjӒ;?&+uЊ~ hFػJQMn?3b'R-D;2?E҄p'ȫy!MuI o2J(DdDB  S A? 2#+DŽen<%`!f#+DŽe4`P4xQ=KA}3jr xHl7X1\-.Ft6JAVb69;{o͛YB0-,ΊDL(4O;9` /뚜! WX\ГDj4?epȻoqGЦ]s܅=tH*Elwo.EBǀ\k܆|m2y^v\䃡5F_Sߩۻ,ޏP:4u- yG*j{^p5e3}GbnNǓ,SFuJaDdlB   S A? 2sM+D$r"d'`!sM+D$r" FmxJAg. x *$bJA¤ ^I@cPB|"EVܙ[=wfvEXg0 <2j#[MB8eSL#Wg玩h.; 3sx*zTsT`ٯu[p/FIX¤9h~ߩho AiFyRQ{mnhnf|oil1^$; j:ГTC T"]i{0/ai夊b%9ՔGuU^ogMXZ2^W!W4 'ԗDj #KtdiWDdlB   S A? 20亝ѬHu)`!0亝ѬHu@ pcxRJQ=3&b*($jFm,0DXPp!6ZXXXC,,kwf7\pι{f朝K!Oڬb7|Fٝv`sulEٽ4?gxO3@U 3=DdL~-f\#Dd B  S A? 2&6x=y*iY6`!a&6x=y*0@@0= /xkA߼;XA@bmD#(pxV'9,B-Lq A1i m0̼agE]}{@~"W2f4 45 h&Y fqU뻕tPa/:וXS` U¹+΍ETgm㌲ChiHI[AKE[YR!xGVtߢLW<%sme zQ>='i Os^ALҺWUIfMOb}=rToc\ZH5Tj-˼'_͟\ϫ'޴_-ic*+&|ioդՎϷ♅dnM?M/TLẋ=˻I2={+o`O˾/} ȟ3f֬ÎE9 }${2ϙGM?`! =t*Zo/ɗ`dR xP @A*X)E@٩bmahcr{ss3G(RE6]ƠD'IHtRv?se*]+WA#tT_"R)c0F SB Ù.}/po8'm.޳gnG44*`mMB$fy=4717' WoMb6Dd@B  S A? 28=t*Zo/ɗ`(@`! =t*Zo/ɗ`dR xP @A*X)E@٩bmahcr{ss3G(RE6]ƠD'IHtRv?se*]+WA#tT_"R)c0F SB Ù.}/po8'm.޳gnG44*`mMB$fy=4717' WoMb6Dd@B  S A? 28=t*Zo/ɗ`A`! =t*Zo/ɗ`dR xP @A*X)E@٩bmahcr{ss3G(RE6]ƠD'IHtRv?se*]+WA#tT_"R)c0F SB Ù.}/po8'm.޳gnG44*`mMB$fy=4717' WoMb6Dd@B  S A? 28=t*Zo/ɗ`C`! =t*Zo/ɗ`dR xP @A*X)E@٩bmahcr{ss3G(RE6]ƠD'IHtRv?se*]+WA#tT_"R)c0F SB Ù.}/po8'm.޳gnG44*`mMB$fy=4717' WoMb6#Dd B  S A? 2L(Rp-GiE`!aL(Rp-G"/xQJQ=3{}dp}AZRhia\#l@ҥ؉AAuܻ.;g93  {*l=#D!\#THgW| vװ!*ޓD(bUSqx]'Ov4Tq񜭷)ޝ~q{ҞQ"M$Oi u,U½=-fZs ?*n) EGB-+S;dW!OgKpG!B?PwVֈe$hK'Dd` B   S A? 2=' k:A5]&Ng_G`!W=' k:A5]&Ng:@ %xkA߼ٹݻ\Z#FHzIa JHN T.-sQiIrBW_iI"F͗-5Xyy 1Nsl'^|&km7'q&1:hS5,8{[Dy=S'O쯝{sfҨKL/:dѾd/Wf9@t, _{kAsg46w$qa_;NM'!н4f qfurϞ ]Ddc B  S A? 2r+ ZoUJ`!r+ ZoUVx;KAg.A(1Bb-h H"FRle'ZZإN"DGܞza/,B"'GeAru]9Kr&G8Uhw湵L2"OܺOj[HRY_̢ʞ-a-~PKiPLvX;K7ʂI99ͭ5͗aS2/W02AS_^8u$oWa?DP^s^M>6P |؛Ϧ J<;?ԭW'@S釸f5Eg4^?CS3<x}rdWo;=&^f*{3d!?>@=[=dL ;V6Iz7VJvVޒoctDdPTB   S A?  2U*pz^{zK }M`!U*pz^{zK  %XJx1K@߻Ijq H -]".V([hAWq8888&P\㽻x Gw`$AIf21D1, C1R‚)33;f. 9[JeaBJ]Q牙(ƆVx >@Z`4}ֽwIiX)vSpTqiZ$t $;1GT:>&}ۘkBWrEŻY⛌WӺ>HzIW tj<%(tM#C׫ u ,^^RRE8òI]t}J=~Ц|_)ي%hn-6ݞ˹q_Cy?Dd< B   S A?  28z"#LA(0ܐiO`! z"#LA(0ܐi`HbxK@߼IbT)x؋B/^]ѲG.LSx7O G#<' *ΛĦS7/6o3S,2BƤ0c!h T.-sQiIrBW_iI"F͗-5Xyy 1Nsl'^|&km7'q&1:hS5,8{[Dy=S'O쯝{sfҨKL/:dѾd/Wf9@t, _{kAsg46w$qa_;NM'!н4f qfurϞ ]tDdPTB   S A?  2U*pz^{zK U`!U*pz^{zK  %XJx1K@߻Ijq H -]".V([hAWq8888&P\㽻x Gw`$AIf21D1, C1R‚)33;f. 9[JeaBJ]Q牙(ƆVx >@Z`4}ֽwIiX)vSpTqiZ$t $;1GT:>&}ۘkBWrEŻY⛌WӺ>HzIW tj<%(tM#C׫ u ,^^RRE8òI]t}J=~Ц|_)ي%hn-6ݞ˹q_Cy?Dd< B  S A?  28z"#LA(0ܐiLX`! z"#LA(0ܐi`HbxK@߼IbT)x؋B/^]ѲG.LSx7O G#<' *ΛĦS7/6o3S,2BƤ0c!h;gz fpopbq=w)E.xRCp7bMQU NFe~U͝>(XɝW^Sxݰ*k'1>srP>=UZ+#U^4gADdX@B  S A ? 2m$HjW,|k I]`!A$HjW,|k  xQJQ=sV\|X/ةLŪnFl,R +3swq`ssg D+0UoҢu8#,™YufRfXյ E XCaEH5"`2ߤ_ f]Wܖ}xhICV'm)GߡI|"]fsuN: ދϥYfVax |sy_=r'͟2ߴݳ|0L3"hP+A.DdD@B  S A? 2XM2,(,Y|M4_`!,M2,(,Y|MĴ xcdd`` @bD"L1JE `x0 Yjl R A@1 N`f`8 UXRYvo`0L` ZZ ]46J`\vM%ᣛ@DF?Mc<6 4eMa`/t> !P3=pddbR ,.Iͅ&f:AeDd,B  S A? 2;ś,* ~a`!ś,* H`!x5OQ=3ދx$(t$| Z(nBHHd;#|R*Ě;&;N9\BH!jαEIi& qP]7]翮SYP+]BMS]:s ,i5f#ئȽcEAEy?|FLl )W0G* 㻤u+x) *Ds]}\^ؽUI- 'AO}zJnc7[ފ5}+LWߪSg9&e$|a޷\ -d~'3|H3ځ{K:Y§9 R[P</J$-w̋ YYMs!}J)kRM+7YBNӝH4Q[m?HW'tetD2Dd4hB  S A? 2 ?O- ֡@hxq`!p ?O- ֡@h @X|>xcdd``vgd``beV dX,XĐ ɁIWRcgb g@P5< %! `fjvF ,L ! ~ Ay 9W}nZW85'_ [YPՇ20`#$@(\q#8d> g-H6 ˊgu1B`@lfx8 :Pk02M2`%8AMN!LLJ%W#-[y-DdHB  S A? 2 b+MWAsKs`!k b+MWA@@""9x=A߼|l>.jsNkp,~^D4BllR vb'vBԀ뼙a6!ͼ@OF.r!c0"Ydg Y.bW•̰Y֞lvCDIJޔcVcM1֔Tqup5:&k3S'.0,nG5kgD݅'w&'yS'CRc&b,Fql sڗX;ܤ'8GBqAֽC N8BKysğL~7&_8f_ܪ? _x G ȧ)#>ް z/ {gagWSb:?e×+6_cC~^+'>W_+nzRW3S%koV͎Ό_mxp<]9 gMeoae[Rpl75w>Gx;˦gr߫ʺf2āj(} Ru!蕺?`\~hDdTB  S A? 28P N/7xv`!8P N/7  ȽXJtxcdd``a!0 ĜL  312Ec21BUs30)0)0Qcgb  P#7T obIFHeA*CT f0 PeDdD B  S A? 2[c~wժw`![c~wժT`kPx;OAgqppRA& ΖF,?2ZRXi;{lͷؙa2ik 72F' ǡe6K'id-3ƥ_N`p~Rɣ0kb ߬Y/"D!VnL1} QɥmSQFж-4 繈fo'_w]nL~xؿbapmrT oa7 ׊W!2.OW#״eAdEquation Native  _1061204046:XAFnfٽ7nfٽ7() FMicrosoft Equation 3.0 DS Equation Equation.39ql4IPI r s =1"6d 2 /n(n 2 "1)Ole CompObj@BfObjInfoCEquation Native _1061203959FF`7wٽ7(ٽ7Ole CompObjEGfObjInfoH FMicrosoft Equation 3.0 DS Equation Equation.39qHmIyI t s =z n"1 t FMicrosoft Equation 3.0 DS EqEquation Native d_1059484392@KF(ٽ7(ٽ7Ole CompObjJLfuation Equation.39qlI`oI 2n 1 n 2 n 1 +n 2 +1 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoMEquation Native _1059485240PFٽ7ٽ7Ole CompObjOQfObjInfoREquation Native 4_1061300118UF#ٽ7`ٽ7PyII  (2n 1 n 2 )(2n 1 n 2 "n 1 "n 2 )(n 1 n 2 ) 2 (n 1 n 2 "1)  FMicrosoft Equation 3.0 DS EqOle CompObjTVfObjInfoWEquation Native Tuation Equation.39q8mIyI , 2 ,and FMicrosoft Equation 3.0 DS Equation Equation.39q_1061300511ScZF`ٽ7`ٽ7Ole CompObjY[fObjInfo\Equation Native H_1060598686_F`~ٽ7`~ٽ7Ole CompObj^`f,mIyI (n,2x,s) FMicrosoft Equation 3.0 DS Equation Equation.39qvtII where E = z a/2     ObjInfoaEquation Native 1Table5.SummaryInformation(d 12 n 1 + 22 n 2 ()  Oh+'0 $0 L X d p|"DEFININITIONS, RULES AND THEOREMSosEFISKY/TLCKY/KY/ Normal.dotNSKY/TLC15/Microsoft Word 8.0S@!zm_\?sOD dHxJ@ڦCU(B,]ԛlThb޼x1|)>G=qvQ&gfY&?؆Yu&U QT8]gnQUQP[۬v6{cpp|Â*+ =Uv";mx?iU*S#8Ypg$RƁ`fQ2̳B|~^[KWoP3z0$=>۾1g9<*\EIUvϓd \$Tt2C\y%=}QUyXt$AXYLDd4hB ! S A?  2ݯ/`# _`!ݯ/`# _ @X|XxRJ@}3mD jA<D](bzB@Kclo~/ŋ7@Г? (wv 7j@iԂdլXSj2y==kL8L*k2E_ke]/*-86l3>Lml"d:c<5+z _7AnOH;i2 `gQ&8ߪ?c p_5>YSs%h G.$?df#T6!EϾY}~4N>nokBmZܩ ,+u ru*QR#b0KR`ϒ}Ra[UDd\|B " S A? !2!מMV.gJg`!!מMV.gJ `-`WF0axMkQϽIf$&jDb1E0.+UI v΅HEpᦿ;A\ Zh9WO 3y3s x@5$(挩^OET9,ʸh0=෢JN #ǂfx޹4d_'ʫ/V~{iK؏Q-'tlIcUۮ_%v*zgy,~0X^DdB # S A? "2ck"gp=L`!ck"gp=L6@ PV4 xJAgv.1?`RȑB1h@QZ-LTbH h,B0e-R>+Qȹ;w$xffnn$ `#J\eA@<*2\ VbRFvCIH-Uёg&v9 ܄~rTqiif_d4pCS3ΊCڏѨmZbܩ+jfWsarx~ǽ=꽾 5_zNՖWJNX4B4 Ziw˸(^Vq>[;dtiQ❜Y2n[/ |_;)`8]G~\I"Ist/iԦ d+vZj MR`;DdB $ S A? #2I܌gaދTiJ`!I܌gaދTiT@ h xKBQϹ}SQ  @1jH(H ¦ 憖"'"!gCr=8ER )^I!p8$2ΑP['/ɎrrZHk a(|(G$aީv};u<ʘG}}#ҌLz[b:Bwu&dvlϑfVw~+ZFEaTY)ۧlXRk 霃_9 !ڒ!?.;rYK,8<8C&[Է{T_o)EsE9EyiWarU%<|I!/Q~a+O4jX:H>GoC[KM@{yN&f,DdB % S A? $2< ơrڋ`!j< ơR@`0= P8xJ@g&ijӀ*.CB@X!#x<Ї* \gf 7l205U |ބ$cfvq]3{I?}G2l&YO9zUg&c&,-2xzb-}z V8z '%ޣ <ϊ8Nz|p pg)K#՗ڞ/XmI*->o Fo4G&~~/C#M=/*fMt?yޕשzÃgvnd~v] x@~&(H"'!$I1na"!0gGU؆De~hj8 /э_3dU#ԻoGD8Fs}D^ky?S BM{DSaEjcSx/Y~>3'1~TcJ1<ϨZq;QpѿZtQArϨSmA?;,8,'Cs\`7VMA E/~"Q ~Pl(liDd` B ' S A? &2l-ekܒJF6``!l-ekܒJF6`@PxSK@~.6TP(bths+*PA8::8t( .Nh1޻KB #{HA?3 fVDICq椧̍NKaMLVX ̃C$0' 2I7&F۶@ŠWR4uV>] ̐s.ET5W}4,ݤiBxOQݳe]o)exW!K Y4Meᢏ1K2_3r9$J>g}4x~Qd(ҵwZ^*+o(t'qf-yi*0_;F!>ԭf<cngt|Xfz\?;gh3g3kS?y]߿2;hX9yP'@ O 9uP s~ 0 O4jJDd |B  S A? 2~n>m=3`!~n>m=3``z0VxJAƿxD`!ZDI A4$B.QEʔ>B@D >3wY);7K+ 'a,ō1A++e(:˓7x/o-9exF194{'4T;>UIU0uUxmF~|+Έ$xrAl)#n޲޶a~U^7T| ٝQt#l%'%ÄpmlzwgfKdD->ዙ=Z '5,=h.RJzybK0ZiaRYaQM$VvbߑJAHOlZi) a̞3gp 9@P>9֙L8IS҂Ԙc]C/Ϊlɟ"-B@e*F>$J8El5I,`Чl+d̈xMeSlrMű\NCv6Ulmڃok57_̖A(:vtf n)]J䚹Yꌠދ`sRFS+]4qx*ҟZ'8e=iMĩ )L딾ӀL-{1Ku{ 5Ѽ0b.{n u_;Dd8B  S A? 2;KKQjz]!a`!y;KKQjz]!a̜`v PGxRN@ ki$NH)@jD"DZVBK>@b{V:u],p%|g T&  *K&D E!3<OEhҵl;pIx3gN.:v,L/I6ìTŘѭ,DG2'9Z9n`qf}SaKл/HToeAl$L[Dd( B  S A? 22&5JnԜ`!&5Jnn@1`\x;KAgf7K>@Bb X ˆ&H:ml, XXj"h'"' } G7ff`wdM*亮 c$RN6+#)KIvMҫIj}}SW+vBM+42ѣs4:D 2m9<]]6E@#儾[{Q)2sve p {zc,\',p-W#D}~AS_B;ʸ툩v.DI3w<\w%L6fԗ֝gG- t,(ed4?I3WU><1iI&L~b&_f jY="4)VH-6jr}LgъDdhB  S A? 2zY<-t\LV`!NY<-t\L @x |xJAƿ;s%!갰Ry%TN;U07ܒbʜL/])ʿѸ<pG(*;|\'YbOꆁd YԸ N59%I/xҝMt o"R;#aU S6оQkDdhB  S A? 2zY<-t\LV`!NY<-t\L @x |xJAƿ;s%!갰Ry%TN;U07ܒbʜL/])ʿѸ<pG(*;|\'YbOꆁd YԸ N59%I/xҝMt o"R;#aU S6оQkDd @B  S A? 2n>=W-V,8J`!B>=W-V,8 xQMJ`}M @].D PvEBFܹDUo^o[ ƙIԍo0oDjVa6ޠE:E<#3=JY",i9 FBY(YִpƗ еYɂavŎWx-Z6_ED;O,>JFEwEᩬV]7e7*?(j*u\iO7*SF;z >g$f[?j ȝADd@ H<  C A? 2U 3Юi+n1q`!) 3Юi+nZ@"xOA߼v&jFu;  #Y #X\Ke _@GBau X+%Λ7;ޞL}޼7ogrz3B$KBX<ϭgJܶY.:"^_!$H 2= 12rs35qL'a_dke}*| O!˰P=©>21QSQyŎz\ #ZT dw4oV7^€֢c'qÇq/b/kq, u޵Pf/FV_8Io~gkjwxFTB<[r-ɕ~itZ?kEWtZZ -Û>Ѡ3x=AkzvQݱ]|3>W7<̑n-.'4Yڸ_c%(@ѱ7@H.^'@7p ՜.+,D՜.+,P  hp  SMCCCD91 "DEFININITIONS, RULES AND THEOREMS Title 6> _PIDDocumentSummaryInformation8CompObjj_GUIDAN{20A3125C-8FDD-11D5-B709-0060089C0A10}  FMicrosoft Word Document MSWordDocWord.Document.89q [$@$NormalmH <@< Heading 1$@&5CJOJQJ>@> Heading 2$@&5>*CJOJQJ<@< Heading 3 $h@& CJOJQJ8@8 Heading 4$@& CJOJQJHH Heading 5$@& 5CJOJQJ<@< Heading 6 $@& CJOJQJ>@> Heading 7$@&5>*CJOJQJ<A@<Default Paragraph Font2B@2 Body Text CJOJQJ:P@: Body Text 25CJOJQJHC@HBody Text Indent @  CJOJQJLR@"LBody Text Indent 25CJOJQJ, @2,Footer  !&)@A& Page Number,R,Header  !''V { G%+.P7? DtEsGHKHPSW~Z\J^cikymoux|=\i:qY^`cfimnsvxy{}~z %6*.38BGNVWZO]emrYw}fDqZ\_adgjkoqtw| $`*%05=KFNDYZbk6s|]q[]behlpruzG[]#79>RT3 G I I"]"_"f"z"|"""""# #)))G*[*]****///555<<<:>N>P>>>?@#@%@@@@#A7A9AAAAAAAtBBB CC C,C@CBCD+D-D;FOFQFvHHH2KFKHKSLgLiLMMMM NN%N9N;N@NTNVNNNN%P9P;PDPXPZPPPPPPP.QBQDQQQQQQQU.U0UUUUZZZI[][_[[[[[[[,\@\B\x\\\\\\v]]]c^w^y^^^^___)a=a?aAaUaWadddlfffhhhiiisjjjQvevgvxxx{{{{1{3{5{I{K{ }4}6}~~~ނ+-DXZ Ymo'::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: !!:/X2$S`C|:\I2$ 3Юi+n1-V@(  H  C A ? B S  ?XJ'! Sa4$* G J ku$(8<))**e2i233#5'5,5.57595555566t7|7AA(B2BPKRK`PbPLQNQQQ#S.STTTTTTTTTTUU\VgVVV-W/W4X;XsX~XYYPZ[Z__Q_S___V`X`abh%hhhBiDi[i]iTkVkzk|kmmmmknrn3r=rfsssttxvzvvvvvvv2w:w_wgw~wwzxxzyyyyyyzz{{{|)|6|u}}}}}}=~?~su (HPGUW c , 7 s *,\bv x !-!G"I"""j#k#####$$&&w'y'''''Q)`)m)v)))**H-I-////d0e01122&3(35555@;E;<<==Q>S>>> ? ?o?p???@@O@P@AAAAAAGBJBBB!C%CqCrCCC.D5DFFHH^J_JJKOKKKLLQLLL:MPCPFQKQQQRRSSTTTTUU-W/WfZgZZZF]R]____}aa_cqcddgh8iAijimiii j#jjj%k(kzk|kkkkkkkll1l4lmlplll&m,mNmQmmmOnQnvvwwN{P{{{~~()΁Ё!"pxvw (SKY/TLC9C:\My Documents\STATISTICS SUMMARY DEFININITIONS, ETC.docSKY/TLCNC:\WINDOWS\TEMP\AutoRecovery save of STATISTICS SUMMARY DEFININITIONS, ETC.asdSKY/TLCNC:\WINDOWS\TEMP\AutoRecovery save of STATISTICS SUMMARY DEFININITIONS, ETC.asdSKY/TLCNC:\WINDOWS\TEMP\AutoRecovery save of STATISTICS SUMMARY DEFININITIONS, ETC.asdSKY/TLC9C:\My Documents\STATISTICS SUMMARY DEFININITIONS, ETC.docSKY/TLC9C:\My Documents\STATISTICS SUMMARY DEFININITIONS, ETC.docSKY/TLC9C:\My Documents\STATISTICS SUMMARY DEFININITIONS, ETC.docSKY/TLCNC:\WINDOWS\TEMP\AutoRecovery save of STATISTICS SUMMARY DEFININITIONS, ETC.asdSKY/TLC9C:\My Documents\STATISTICS SUMMARY DEFININITIONS, ETC.docSKY/TLC9C:\My Documents\STATISTICS SUMMARY DEFININITIONS, ETC.doc8P PD H` c  oy (El n * e`ќo  #_+ќC-