ࡱ> a ejbjb11 %[[^PPPPPPP*]*]*]*]Lv] Xu&^^^^^^^^ttttttt,~vRxt-P^^^^^trdPP^^urdrdrd^P^P^trddxPPPP^trdrdnPPt^ T*]$cN#tJt(u0XumtJPyrdPytrdPY*]*] Introduction Water Is 99% of fluid outside cells (extracellular fluid) Is an essential ingredient of cytosol (intracellular fluid) All cellular operations rely on water As a diffusion medium for gases, nutrients, and waste products Fluid, Electrolyte, and AcidBase Balance The body must maintain normal volume and composition of Extracellular fluid (ECF) Fluid Balance Is a daily balance between Amount of water gained Amount of water lost to environment Involves regulating content and distribution of body water in ECF and ICF The Digestive System Is the primary source of water gains Plus a small amount from metabolic activity The Urinary System Is the primary route of water loss Are ions released through dissociation of inorganic compounds Can conduct electrical current in solution Electrolyte balance When the gains and losses of all electrolytes are equal Primarily involves balancing rates of absorption across digestive tract with rates of loss at kidneys and sweat glands AcidBase Balance Precisely balances production and loss of hydrogen ions (pH) The body generates acids during normal metabolism Tends to reduce pH The Kidneys Secrete hydrogen ions into urine Generate buffers that enter bloodstream In distal segments of distal convoluted tubule (DCT) and collecting system The Lungs Affect pH balance through elimination of carbon dioxide Fluid Compartments Water Accounts for Roughly 60% percent of male body weight 50% percent of female body weight Mostly in intracellular fluid Water Exchange Water exchange between ICF and ECF occurs across plasma membranes by Osmosis Diffusion Carrier-mediated transport Major Subdivisions of ECF Interstitial fluid of peripheral tissues Plasma of circulating blood Minor Subdivisions of ECF Lymph, perilymph, and endolymph Cerebrospinal fluid (CSF) Synovial fluid Serous fluids (pleural, pericardial, and peritoneal) Aqueous humor Exchange among Subdivisions of ECF Occurs primarily across endothelial lining of capillaries From interstitial spaces to plasma Through lymphatic vessels that drain into the venous system ECF: Solute Content Types and amounts vary regionally Electrolytes Proteins Nutrients Waste products The ECF and the ICF Are called fluid compartments because they behave as distinct entities Are separated by plasma membranes and active transport Cations and Anions In ECF Sodium, chloride, and bicarbonate In ICF Potassium, magnesium, and phosphate ions Negatively charged proteins Membrane Functions Plasma membranes are selectively permeable Ions enter or leave via specific membrane channels Carrier mechanisms move specific ions in or out of cell The Osmotic Concentration of ICF and ECF Is identical Osmosis eliminates minor differences in concentration Because plasma membranes are permeable to water Basic Concepts in the Regulation of Fluids and Electrolytes All homeostatic mechanisms that monitor and adjust body fluid composition respond to changes in the ECF, not in the ICF No receptors directly monitor fluid or electrolyte balance Cells cannot move water molecules by active transport The bodys water or electrolyte content will rise if dietary gains exceed environmental losses, and will fall if losses exceed gains An Overview of the Primary Regulatory Hormones Affecting fluid and electrolyte balance: Antidiuretic hormone Aldosterone Natriuretic peptides Antidiuretic Hormone (ADH) Stimulates water conservation at kidneys Reducing urinary water loss Concentrating urine Stimulates thirst center Promoting fluid intake ADH Production Osmoreceptors in hypothalamus Monitor osmotic concentration of ECF Change in osmotic concentration Alters osmoreceptor activity Osmoreceptor neurons secrete ADH ADH Release Axons of neurons in anterior hypothalamus Release ADH near fenestrated capillaries In neurohypophysis (posterior lobe of pituitary gland) Rate of release varies with osmotic concentration Higher osmotic concentration increases ADH release Aldosterone Is secreted by suprarenal cortex in response to Rising K+ or falling Na+ levels in blood Activation of reninangiotensin system Determines rate of Na+ absorption and K+ loss along DCT and collecting system Water Follows Salt High aldosterone plasma concentration Causes kidneys to conserve salt Conservation of Na+ by aldosterone Also stimulates water retention Natriuretic Peptides ANP and BNP are released by cardiac muscle cells in response to abnormal stretching of heart walls Reduce thirst Block release of ADH and aldosterone Cause diuresis Lower blood pressure and plasma volume Fluid Movement When the body loses water Plasma volume decreases Electrolyte concentrations rise When the body loses electrolytes Water is lost by osmosis Regulatory mechanisms are different Fluid Balance Water circulates freely in ECF compartment At capillary beds, hydrostatic pressure forces water out of plasma and into interstitial spaces Water is reabsorbed along distal portion of capillary bed when it enters lymphatic vessels ECF and ICF are normally in osmotic equilibrium No large-scale circulation between compartments Fluid Movement within the ECF Net hydrostatic pressure Pushes water out of plasma Into interstitial fluid Net colloid osmotic pressure Draws water out of interstitial fluid Into plasma ECF fluid volume is redistributed From lymphoid system to venous system (plasma) Interaction between opposing forces Results in continuous filtration of fluid ECF volume Is 80% in interstitial fluid and minor fluid compartment Is 20% in plasma Edema The movement of abnormal amounts of water from plasma into interstitial fluid Fluid Gains and Losses Water losses Body loses about 2500 mL of water each day through urine, feces, and insensible perspiration Fever can also increase water loss Sensible perspiration (sweat) varies with activities and can cause significant water loss (4 L/hr) Water gains About 2500 mL/day Required to balance water loss Through: eating (1000 mL) drinking (1200 mL) metabolic generation (300 mL) Metabolic Generation of Water Is produced within cells Results from oxidative phosphorylation in mitochondria Fluid Shifts Are rapid water movements between ECF and ICF In response to an osmotic gradient If ECF osmotic concentration increases Fluid becomes hypertonic to ICF Water moves from cells to ECF If ECF osmotic concentration decreases Fluid becomes hypotonic to ICF Water moves from ECF to cells ICF volume is much greater than ECF volume ICF acts as water reserve Prevents large osmotic changes in ECF Dehydration Also called water depletion Develops when water loss is greater than gain Allocation of Water Losses If water is lost, but electrolytes retained ECF osmotic concentration rises Water moves from ICF to ECF Net change in ECF is small Severe Water Loss Causes Excessive perspiration Inadequate water consumption Repeated vomiting Diarrhea Homeostatic responses Physiologic mechanisms (ADH and renin secretion) Behavioral changes (increasing fluid intake) Distribution of Water Gains If water is gained, but electrolytes are not ECF volume increases ECF becomes hypotonic to ICF Fluid shifts from ECF to ICF May result in overhydration (also called water excess): occurs when excess water shifts into ICF: distorting cells changing solute concentrations around enzymes disrupting normal cell functions Causes of Overhydration Ingestion of large volume of fresh water Injection of hypotonic solution into bloodstream Endocrine disorders Excessive ADH production Inability to eliminate excess water in urine Chronic renal failure Heart failure Cirrhosis Signs of Overhydration Abnormally low Na+ concentrations (hyponatremia) Effects on CNS function (water intoxication) Electrolyte Balance Requires rates of gain and loss of each electrolyte in the body to be equal Electrolyte concentration directly affects water balance Concentrations of individual electrolytes affect cell functions Sodium Is the dominant cation in ECF Sodium salts provide 90% of ECF osmotic concentration Sodium chloride (NaCl) Sodium bicarbonate Normal Sodium Concentrations In ECF About 140 mEq/L In ICF Is 10 mEq/L or less Potassium Is the dominant cation in ICF Normal potassium concentrations In ICF: about 160 mEq/L In ECF: is 3.55.5 mEq/L Rules of Electrolyte Balance Most common problems with electrolyte balance are caused by imbalance between gains and losses of sodium ions Problems with potassium balance are less common, but more dangerous than sodium imbalance Sodium Balance Sodium ion uptake across digestive epithelium Sodium ion excretion in urine and perspiration Typical Na+ gain and loss Is 48144 mEq (1.13.3 g) per day If gains exceed losses Total ECF content rises If losses exceed gains ECF content declines Sodium Balance and ECF Volume Changes in ECF Na+ content Do not produce change in concentration Corresponding water gain or loss keeps concentration constant Na+ regulatory mechanism changes ECF volume Keeps concentration stable When Na+ losses exceed gains ECF volume decreases (increased water loss) Maintaining osmotic concentration Large Changes in ECF Volume Are corrected by homeostatic mechanisms that regulate blood volume and pressure If ECF volume rises, blood volume goes up If ECF volume drops, blood volume goes down Homeostatic Mechanisms A rise in blood volume elevates blood pressure A drop in blood volume lowers blood pressure Monitor ECF volume indirectly by monitoring blood pressure Baroreceptors at carotid sinus, aortic sinus, and right atrium Hyponatremia Body water content rises (overhydration) ECF Na+ concentration <136 mEq/L Body water content declines (dehydration) ECF Na+ concentration >145 mEq/L ECF Volume If ECF volume is inadequate Blood volume and blood pressure decline Reninangiotensin system is activated Water and Na+ losses are reduced ECF volume increases Plasma Volume If plasma volume is too large Venous return increases: stimulating release of natriuretic peptides (ANP and BNP) reducing thirst blocking secretion of ADH and aldosterone Salt and water loss at kidneys increases ECF volume declines Potassium Balance 98% of potassium in the human body is in ICF Cells expend energy to recover potassium ions diffused from cytoplasm into ECF Processes of Potassium Balance Rate of gain across digestive epithelium Rate of loss into urine Potassium Loss in Urine Is regulated by activities of ion pumps Along distal portions of nephron and collecting system Na+ from tubular fluid is exchanged for K+ in peritubular fluid Are limited to amount gained by absorption across digestive epithelium (about 50150 mEq or 1.95.8 g/day) Factors in Tubular Secretion of K+ Changes in concentration of ECF: Higher ECF concentration increases rate of secretion Changes in pH: Low ECF pH lowers peritubular fluid pH H+ rather than K+ is exchanged for Na+ in tubular fluid Rate of potassium secretion declines Aldosterone levels: Affect K+ loss in urine Ion pumps reabsorb Na+ from filtrate in exchange for K+ from peritubular fluid High K+ plasma concentrations stimulate aldosterone Calcium Balance Calcium is most abundant mineral in the body A typical individual has 12 kg (2.24.4 lb) of this element 99% of which is deposited in skeleton Functions of Calcium Ion (Ca2+) Muscular and neural activities Blood clotting Cofactors for enzymatic reactions Second messengers Hormones and Calcium Homeostasis Parathyroid hormone (PTH) and calcitriol Raise calcium concentrations in ECF Calcitonin Opposes PTH and calcitriol Calcium Absorption At digestive tract and reabsorption along DCT Is stimulated by PTH and calcitriol Calcium Ion Loss In bile, urine, or feces Is very small (0.81.2 g/day) Represents about 0.03% of calcium reserve in skeleton Hypercalcemia Exists if Ca2+ concentration in ECF is >5.5 mEq/L Is usually caused by hyperparathyroidism Resulting from oversecretion of PTH Other causes Malignant cancers (breast, lung, kidney, bone marrow) Excessive calcium or vitamin D supplementation Exists if Ca2+ concentration in ECF is <4.5 mEq/L Is much less common than hypercalcemia Is usually caused by chronic renal failure May be caused by hypoparathyroidism Undersecretion of PTH Vitamin D deficiency Magnesium Balance Is an important structural component of bone The adult body contains about 29 g of magnesium About 60% is deposited in the skeleton Is a cofactor for important enzymatic reactions Phosphorylation of glucose Use of ATP by contracting muscle fibers Is effectively reabsorbed by PCT Daily dietary requirement to balance urinary loss About 2432 mEq (0.30.4 g) Magnesium Ions (Mg2+) In body fluids are primarily in ICF Mg2+ concentration in ICF is about 26 mEq/L ECF concentration is much lower Phosphate Ions (PO43- ) Are required for bone mineralization About 740 g PO43- is bound in mineral salts of the skeleton Daily urinary and fecal losses: about 3045 mEq (0.81.2 g) In ICF, PO43- is required for formation of high-energy compounds, activation of enzymes, and synthesis of nucleic acids In plasma, PO43- is reabsorbed from tubular fluid along PCT Plasma concentration is 1.82.9 mEq/L Chloride Ions (Cl-) Are the most abundant anions in ECF Plasma concentration is 97107 mEq/L ICF concentrations are usually low Are absorbed across digestive tract with Na+ Are reabsorbed with Na+ by carrier proteins along renal tubules Daily loss is small: 48146 mEq (1.75.1 g) AcidBase Balance pH of body fluids is altered by Introduction of acids or bases Acids and bases may be strong or weak Strong acids and strong bases Dissociate completely in solution Weak acids or weak bases Do not dissociate completely in solution Some molecules remain intact Liberate fewer hydrogen ions Have less effect on pH of solution Carbonic Acid Is a weak acid In ECF at normal pH Equilibrium state exists Is diagrammed H2CO3 H+ + HCO3- The Importance of pH Control pH of body fluids depends on dissolved Acids Bases Salts pH of ECF Is narrowly limited, usually 7.35 7.45 Acidosis Physiological state resulting from abnormally low plasma pH Acidemia: plasma pH < 7.35 Alkalosis Physiological state resulting from abnormally high plasma pH Alkalemia: plasma pH > 7.45 Acidosis and Alkalosis Affect all body systems Particularly nervous and cardiovascular systems Both are dangerous But acidosis is more common Because normal cellular activities generate acids Types of Acids in the Body Volatile acids Fixed acids Organic acids Volatile Acids Can leave solution and enter the atmosphere Carbonic acid is an important volatile acid in body fluids At the lungs, carbonic acid breaks down into carbon dioxide and water Carbon dioxide diffuses into alveoli Carbon Dioxide In solution in peripheral tissues Interacts with water to form carbonic acid Carbonic acid dissociates to release Hydrogen ions Bicarbonate ions Carbonic Anhydrase (CA) Enzyme that catalyzes dissociation of carbonic acid Found in Cytoplasm of red blood cells Liver and kidney cells Parietal cells of stomach Other cells CO2 and pH Most CO2 in solution converts to carbonic acid Most carbonic acid dissociates PCO2 is the most important factor affecting pH in body tissues PCO2 and pH are inversely related When CO2 levels rise H+ and bicarbonate ions are released pH goes down At alveoli CO2 diffuses into atmosphere H+ and bicarbonate ions in alveolar capillaries drop Blood pH rises Fixed Acids Are acids that do not leave solution Once produced they remain in body fluids Until eliminated by kidneys Sulfuric acid and phosphoric acid Are most important fixed acids in the body Are generated during catabolism of: amino acids phospholipids nucleic acids Organic Acids Produced by aerobic metabolism Are metabolized rapidly Do not accumulate Produced by anaerobic metabolism (e.g., lactic acid) Build up rapidly Mechanisms of pH Control To maintain acidbase balance The body balances gains and losses of hydrogen ions Hydrogen Ions (H+) Are gained At digestive tract Through cellular metabolic activities Are eliminated At kidneys and in urine At lungs Must be neutralized to avoid tissue damage Acids produced in normal metabolic activity Are temporarily neutralized by buffers in body fluids Buffers Are dissolved compounds that stabilize pH By providing or removing H+ Weak acids Can donate H+ Weak bases Can absorb H+ Buffer System Consists of a combination of A weak acid And the anion released by its dissociation The anion functions as a weak base In solution, molecules of weak acid exist in equilibrium with its dissociation products Three Major Buffer Systems Protein buffer systems: Help regulate pH in ECF and ICF Interact extensively with other buffer systems Carbonic acidbicarbonate buffer system: Most important in ECF Phosphate buffer system: Buffers pH of ICF and urine Protein Buffer Systems Depend on amino acids Respond to pH changes by accepting or releasing H+ If pH rises Carboxyl group of amino acid dissociates Acting as weak acid, releasing a hydrogen ion Carboxyl group becomes carboxylate ion At normal pH (7.357.45) Carboxyl groups of most amino acids have already given up their H+ If pH drops Carboxylate ion and amino group act as weak bases Accept H+ Form carboxyl group and amino ion Carboxyl and amino groups in peptide bonds cannot function as buffers Other proteins contribute to buffering capabilities Plasma proteins Proteins in interstitial fluid Proteins in ICF The Hemoglobin Buffer System CO2 diffuses across RBC membrane No transport mechanism required As carbonic acid dissociates Bicarbonate ions diffuse into plasma In exchange for chloride ions (chloride shift) Hydrogen ions are buffered by hemoglobin molecules Is the only intracellular buffer system with an immediate effect on ECF pH Helps prevent major changes in pH when plasma PCO2 is rising or falling Carbonic AcidBicarbonate Buffer System Carbon Dioxide Most body cells constantly generate carbon dioxide Most carbon dioxide is converted to carbonic acid, which dissociates into H+ and a bicarbonate ion Is formed by carbonic acid and its dissociation products Prevents changes in pH caused by organic acids and fixed acids in ECF Cannot protect ECF from changes in pH that result from elevated or depressed levels of CO2 Functions only when respiratory system and respiratory control centers are working normally Ability to buffer acids is limited by availability of bicarbonate ions Phosphate Buffer System Consists of anion H2PO4- (a weak acid) Works like the carbonic acidbicarbonate buffer system Is important in buffering pH of ICF Limitations of Buffer Systems Provide only temporary solution to acidbase imbalance Do not eliminate H+ ions Supply of buffer molecules is limited Maintenance of AcidBase Balance For homeostasis to be preserved, captured H+ must: Be permanently tied up in water molecules: through CO2 removal at lungs Be removed from body fluids: through secretion at kidney Requires balancing H+ gains and losses Coordinates actions of buffer systems with Respiratory mechanisms Renal mechanisms Respiratory and Renal Mechanisms Support buffer systems by Secreting or absorbing H+ Controlling excretion of acids and bases Generating additional buffers Respiratory Compensation Is a change in respiratory rate That helps stabilize pH of ECF Occurs whenever body pH moves outside normal limits Directly affects carbonic acidbicarbonate buffer system Increasing or decreasing the rate of respiration alters pH by lowering or raising the PCO2 When PCO2 rises pH falls Addition of CO2 drives buffer system to the right When PCO2 falls pH rises Removal of CO2 drives buffer system to the left Renal Compensation Is a change in rates of H+ and HCO3- secretion or reabsorption by kidneys in response to changes in plasma pH The body normally generates enough organic and fixed acids each day to add 100 mEq of H+ to ECF Kidneys assist lungs by eliminating any CO2 that Enters renal tubules during filtration Diffuses into tubular fluid en route to renal pelvis Hydrogen Ions Are secreted into tubular fluid along Proximal convoluted tubule (PCT) Distal convoluted tubule (DCT) Collecting system Buffers in Urine The ability to eliminate large numbers of H+ in a normal volume of urine depends on the presence of buffers in urine: Carbonic acidbicarbonate buffer system Phosphate buffer system Ammonia buffer system Major Buffers in Urine Glomerular filtration provides components of Carbonic acidbicarbonate buffer system Phosphate buffer system Tubule cells of PCT Generate ammonia Renal Responses to Acidosis Secretion of H+ Activity of buffers in tubular fluid Removal of CO2 Reabsorption of NaHCO3 Renal Responses to Alkalosis Rate of secretion at kidneys declines Tubule cells do not reclaim bicarbonates in tubular fluid Collecting system transports HCO3- into tubular fluid while releasing strong acid (HCl) into peritubular fluid AcidBase Balance Disturbances Disorders: Circulating buffers Respiratory performance Renal function Cardiovascular conditions: Heart failure Hypotension Conditions affecting the CNS: Neural damage or disease that affects respiratory and cardiovascular reflexes Acute phase The initial phase pH moves rapidly out of normal range Compensated phase When condition persists Physiological adjustments occur Respiratory AcidBase Disorders Result from imbalance between CO2 generation in peripheral tissues CO2 excretion at lungs Cause abnormal CO2 levels in ECF Metabolic AcidBase Disorders Result from Generation of organic or fixed acids Conditions affecting HCO3- concentration in ECF Respiratory Acidosis Develops when the respiratory system cannot eliminate all CO2 generated by peripheral tissues Primary sign Low plasma pH due to hypercapnia Primary cause Hypoventilation Respiratory Alkalosis Primary sign High plasma pH due to hypocapnia Primary cause Hyperventilation Metabolic Acidosis Production of large numbers of fixed or organic acids: H+ overloads buffer system Impaired H+ excretion at kidneys Severe bicarbonate loss Two Types of Metabolic Acidosis Lactic acidosis Produced by anaerobic cellular respiration Ketoacidosis Produced by excess ketone bodies Combined Respiratory and Metabolic Acidosis Respiratory and metabolic acidosis are typically linked Low O2 generates lactic acid Hypoventilation leads to low PO2 Metabolic Alkalosis Is caused by elevated HCO3- concentrations Bicarbonate ions interact with H+ in solution Forming H2CO3 Reduced H+ causes alkalosis The Detection of Acidosis and Alkalosis Includes blood tests for pH, PCO2 and HCO3- levels Recognition of acidosis or alkalosis Classification as respiratory or metabolic Fetal pH Control Buffers in fetal bloodstream provide short-term pH control Maternal kidneys eliminate generated H+ Newborn Electrolyte Balance Body water content is high 75% of body weight Basic electrolyte balance is same as adults Aging and Fluid Balance Body water content, ages 4060 Males 55% Females 47% After age 60 Males 50% Females 45% Decreased body water content reduces dilution of waste products, toxins, and drugs Reduction in glomerular filtration rate and number of functional nephrons Reduces pH regulation by renal compensation Ability to concentrate urine declines More water is lost in urine Insensible perspiration increases as skin becomes thinner Maintaining fluid balance requires higher daily water intake Reduction in ADH and aldosterone sensitivity Reduces body water conservation when losses exceed gains Aging and Electrolyte Balance Muscle mass and skeletal mass decrease Cause net loss in body mineral content Loss is partially compensated by Exercise Dietary mineral supplement Aging and AcidBase Balance Reduction in vital capacity Reduces respiratory compensation Increases risk of respiratory acidosis Aggravated by arthritis and emphysema Aging and Major Systems Disorders affecting major systems increase Affecting fluid, electrolyte, and/or acidbase balance Ni 2 3 y  $ ] u _9(Z34EF$<grϾϾh35CJaJ h3H*h3CJaJh3CJaJh35CJaJh3CJaJ h35h3CJ$aJ$h3CJaJh3CJaJh3CJaJh3BINix/T & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3e 3 k 4 f y  $ \ ] p  & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 A I S n # 2 g u 2Giv & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3,@Gip'_9" & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3"8T} 0Po(Z & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & F gd3 & F gd3l$U!9Yz & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3Q ,E`x<gr & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3*7&8W`qNr & Fgd3 & Fgd3 & Fgd3 & F gd3 & Fgd3 & Fgd3 & Fgd3Nr<g !!!!!!*"7"T"""e#~###$$$ $&&s't'''(( ) )V)W)++++,,,,,-t--...//C/D/\///׾׹׹׹׹׹׹׹׹׾h3CJH*aJh3CJaJ h3H*h3CJaJh35CJaJh3CJaJh3 h35h3CJaJh3CJaJh3CJaJh3CJaJ@<g G h ! !!!S! & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3S!!!!!!"T"~""""" #Q#e#~###### & Fgd3 & Fgd3 & Fgd3 & Fgd3 & F gd3 & F gd3 & Fgd3 & Fgd3 & Fgd3#"$P$Q$e$$$*%+%3%Q%%%%%%%%&&-&M&U&e&m&~& & F gd3 & Fgd3 & Fgd3 & Fgd3~&& 'd't''''(%(=(T(i(((()4)O)l))))'* & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & F gd3 & Fgd3'*Q*}****,+k+x++++,,6,^,,,,,,-:-J- & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3J-t-----@.`...../\/// 0A0P0w0 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3/// 0A0P0x0y000000000116171U1V11@2B2!404<4>4444!5-5/555666R7n777777 8 8 88C8D8F8û噐݇h3CJH*aJh3CJH*aJh3CJH*aJh3CJaJh3CJaJh3CJH*aJh3CJaJh3CJaJ h3H*h3h3CJH*aJh3CJaJh3CJaJh35CJaJh3CJH*aJ5w00001O11111$2E2d2s222223!3<3P3~3333 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd333!404b44444!5S5z55555636c66666 7 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 7R7n777777858q88%9b99999 :6:v:: & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3F888829397999994:5:L:M::;9;[;t;;<<<<<<<<<<<===U>_>>? @EA^AAAAA B BQBTBBBBB͕h3CJaJ h35h35CJaJ h3H*h3OJQJ h3H*h3CJaJh3CJaJh3h3CJH*aJh3CJaJh3CJH*aJh3CJaJh3CJH*aJh3CJH*aJh3CJaJ5:::::;9;[;t;;;;;;<6<^<<<=\=h=t=== & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3===:>U>_>>>>>>?.?J?|???????8@~@@@ & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3@@@A&A4AEA^AAAAAAAB1BPBBBBB  & Fdgd3  & Fdgd3  & Fdgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3BBBBBBCCC!C"CdCqCCCCLDEEEEEEEF_FFFFFFFFFFGGG%G'GDG{GGH)H+HzHHHHHHH̿涮̌h35CJaJh3CJH*aJh3CJaJh3CJaJh3CJaJh35CJaJh3CJH*aJh3h3CJaJh3CJH*aJh3CJH*aJh3CJaJh3CJaJh3CJH*aJ4BBC CUCdCqCCCCC(DLDXDfDtDDDDDEE.ELE & Fgd3 & Fgd3 & Fgd3 & F gd3 & Fgd3 & Fgd3 & Fgd3LEEEEEEEEF3F_FFFFFFFGGGG'GDG & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3DGPG{GGGGH+HKHzHHHHHHIIPI\IIIIII7J & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3HIINIPI\III5J7JCJ}J~JJJK_K{K}KKKKKK/LbLLLLM M/MMMMGNNNDOEO\OqOrOtOuOvOHPIPPPQQ`Q濺Ë h3H* h35h3CJH*aJh3CJaJh3CJaJh3CJaJh35CJaJ h3H*h3h3CJH*aJh3CJH*aJh3CJaJh3CJH*aJh3CJaJh3CJaJh35CJaJ47JCJuJJJJJK.KNK_K}KKKKL/LbLdLLL M/M & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3/McMMNGNNNEO^OOOOO6PPPvPPPPQ0Q & Fgd3 & F gd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd30QLQsQQQQQRRFRdR~RRRR,SSSSSSST/T & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & F gd3`QaQRRdR|R*S,SSSSSSSSSSSSSSTT/THTITQTRTSTTT(U)U/UUOVPVWWWWWWXX1XXXX"Y-YhYYYY ZZǾh3CJaJ h3H*h3CJaJh3CJH*aJh3CJH*aJh3CJaJh35CJaJh3CJH*aJh3CJaJh3CJH*aJh3CJaJh3CJaJ h35h3 h3H*8/TTT/UVUUUUUVV$VVVVVW5W^WvWWWW & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3WWWWWX3XYXXYY"Y-YAYYYhYYYY & F'gd3 & Fgd3 & F&gd3 & F%gd3 & F$gd3 & F#gd3 & F"gd3 & F!gd3 & F gd3 & Fgd3 & Fgd3YY Z ZZ*ZOZaZyZZZZZ[7[V[b[[[[+\8\Y\ & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & F(gd3ZZZZ[[&['[7[T[[[[[[[ \ \8\Y\g\z\\\\,]-]P]Q]]]]]]] ^5^t^u^^^^^^^^__&_'_)_*_4_5______e`g`SaabCb_bch3CJaJh3CJaJh3CJ H*aJ h3CJaJh3CJH*aJh3CJaJh3CJaJh35CJaJ h3H* h3H*h3 h35BY\g\y\z\\\\\\\+]F]g]]]]]] ^7^o^^^ & F+gd3 & F*gd3 & F)gd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3 & Fgd3^^^^_+_G_o____`?`g``````a$a0a=aGaSaa & Fgd3 & Fgd3 & Fgd3 & Fgd3aabCb_bbbc>.>L>>>>>>>>?3?_???????@@@@'@D@P@{@@@@A+AKAzAAAAAABBPB\BBBBBB7CCCuCCCCCD.DND_D}DDDDE/EbEdEEE F/FcFFGGGGGEH^HHHHH6IPIvIIIIJ0JLJsJJJJJKKFKdK~KKKK,LLLLLLLM/MMM/NVNNNNNOO$OOOOOP5P^PvPPPPPPPPQ3QYQQR"R-RARYRhRRRRR S SS*SOSaSySSSSST7TVTbTTTT+U8UYUgUyUzUUUUUUU+VFVgVVVVVV W7WoWWWWWWX+XGXoXXXXY?YgYYYYYYZ$Z0Z=ZGZSZZZ[C[_[[[\<\=\\\\\\\\ ])]J]q]]]]^003 03( 03( 03( 038 03(0303 03( 03 0؃̀( 0i38 0 x38 0 x3( 0 i3 0 `ހ( 0 38 0/3 03( 03( 0 `ހ( 03( 08 08 0(0 0F`ހ( 0( 08 04 0`ހ( 0y( 0y8 0 0( 0(00 0 ]( 0!p( 0"p( 0#p 0$]آ`ހ( 0%8 0&8 0'8 0( 0)]7`ހ( 0*n( 0+n 0,]ت`ހ( 0-( 0.( 0/( 00( 01 02]d`ހ( 03u( 04u8 05 06] `ހ( 0728 08G8 09G8 0:G8 0;G 0<]h `ހ( 0=( 0> 0?] `ހ( 0@, 8 0A@ ( 0B, 8 0Ci 8 0Di  0E] `ހ( 0F ( 0G ( 0H  0I] `ހ( 0J_ ( 0K_ 8 0L  0M]؄ `ހ( 0N ( 0O ( 0P ( 0Q  0R]A`ހ( 0S 8 0 8 0 8 0  0T]`ހ( 0U8 8 0VT 8 0WT ( 0X8 8 0Y  0Z]؝`ހ( 0[ 8 0\ ( 0] 8 0^0( 0_  0`]c`ހ( 0a8 0b8 0c( 0d8 0e(80( 0f]v`ހ( 0g8 0h8 0i( 0j 0k]e`ހ( 0ll8 0m( 0nl8 0o 0p]`ހ( 0q(0( 0r( 0s( 0t( 0u0`ހ0`ހ 0v( 0w( 0x 0y( 0zY 0{ 0|`ހ( 0}( 0~( 0( 08 080 0:`ހ( 08 0,8 0,( 08 0x8 0x( 0`ހ8 0( 08 0( 08 0g8 0g 0'`ހ( 0 0؋`ހ( 08 0*8 0*8 0*( 0ذ`ހ8 08 08 0H 0WH 0WH 0W 0`ހ( 0( 0 0S`ހ( 08 0( 08 0r8 0r80r( 08`ހ8 08 0( 08 0<8 0< 0`ހ( 0( 0 0|`ހ( 08 08 08 0 0,`ހ( 08 08 08 08 0( 08 0 8 0  0 `ހ( 08 08 08 08 0H 0X 0TX 0TX 0T 0؈!`ހ( 0( 0( 08 0Q( 08 0~8 0~8 0~ 0ؒ"`ހ( 0( 00`ހ0`ހ 0Q 0Q 0Q0Q 0Q#`ހ( 0+( 0+8 0Q8 0Q 0Q؍$`ހ( 08 0( 08 0 0Q$`ހ( 0 ( 0 8 0- H 0M 8 0- H 0e  0Q؁%`ހ( 0~ ( 0~  0Q{&`ހ( 0d!( 0d!( 0d!'`ހ8 0!( 0d!8 0"( 0d!8 0=" 0Qظ'`ހ( 0i"8 0"8 0"( 0i"(`ހ8 0#( 0i"8 0O#8 0O# 0QP)`ހ( 0#( 0#( 0# 0Qد*`ހ( 0}$( 0}$( 0}$8 0$ 0Qر+`ހ( 0k%( 0k%( 0k%,`ހ( 0k% 0Qv,`ހ( 0&8 0 &8 0 &8 0 &8 0 & 0 Q6-`ހ( 0&8 0&H 0&H 0&H 0&8 0&8 0& 0Q.`ހ( 0'( 0' 0Qw/`ހ( 0@(( 0@( 0Q/`ހ( 0(8 0(8 0(( 0(0Q&1`ހ( 0)8 0)( 0)8 0A*8 0 A*8 0!A*( 0)8 0"*8 0#*8 0$* 0%Q2`ހ( 0&+( 0'+ 0(Q 0)Qث3`ހ( 0*$,( 0+$,( 0,$,( 0-$, 0.QB4`ހ( 0/,8 00,( 01,8 02- 03Q4`ހ( 04<-8 05P- 06Qe5`ހ( 07-8 08-8 09- 0:Q5`ހ( 0;!.( 0<!.8 0=b.( 0>!.8 0?.8 0@.( 0A!. 7`ހ( 0B!.( 0C!.( 0D!.8 0E/8 0F/ 0GQ8`ހ( 0H/( 0I/( 0J/( 0K/8 0L08 0M0( 0N/( 0O/8 0P 1 0QQ؏9`ހ( 0Rn18 0S18 0T1801 0UQ,:`ހ( 0V1( 0W1( 0X1( 0Y1( 0Z1( 0[1 0\Q;`ހ( 0]3( 0^3( 0_3( 0`3( 0a3( 0b3 0 0ke=( 0lx= 0me= 0n>( 0o> 0p>( 0qY>( 0rY>( 0sY>( 0tY>80> 0u>( 0v ?( 0w ?8 0x+?8 0y+? 0zy?( 0{?8 0|?8 0}?8 0~?( 0?8 0? 0@( 0'@( 0'@ 0@( 0@( 0@ 0 0@( 0A8 0A( 0A8 0`A8 0`A 0A( 0A( 0A( 0A 0B( 0*B( 0*B( 0*B8 0B(0*B 0 C( 0C8 0/C( 0C8 0|C8 0|C 0C( 0C( 0C8 0 D8 0 D8 0 D8 0 D 0D( 0D8 0D( 0D8 0D* 0bE8 0nE8 0nE( 0bE8 0E8 0E8 0E 0F( 0F( 0F8 0F( 0F8 0G8 0GH 0`GH 0`GH 0`G 0G( 0G8 0G8 0G( 0G8 0H 0^H( 0pH8 0H 0H( 0H8 0I8 0I( 0H8 0FI8 0FI( 0H( 0H8 0I 0J( 0J8 0J( 0J8 0dJ( 0J8 0}J80}J80}J 0J( 0J8 0J8 0J( 0J( 0J(0J 0K( 0K8 0K8 0K( 0K8 0L( 0K8 0]L80]L 0L( 0L( 0L( 0L8 0\M8 0\M8 0\M(0L* 0M8 0N( 0M8 0mN8 0mN8 0mN80mN* 0N( 0N8 0IO8 0IO8 0IO 07P( 0IP8 0gP( 0IP8 0P8 0P( 0IP 0LQ( 0^Q( 0^Q 0R( 0"R8 0JR8 0JR( 0"R( 0"R* 0S( 0S( 0S 0U( 00U( 0 0U( 0 0U 0 U( 0 U( 0 U( 0U 0sV( 0V8 0VH 0V8 0VH 0"W* 0mW( 0mW8 0W8 0W 0 X( 0X8 0=X8 0=X8 0=X 0X( 0X8 0X( 0 X 0"Y( 0#Y( 0$Y8 0%Z8 0&Z( 0'Y8 0(dZ8 0)dZ 0*Z( 0+Z( 0,Z( 0-Z8 0.[8 0/[ 00/\( 01A\8 02P\8 03P\8 04P\ 05\( 06\( 0\( 0\( 0\ 07]( 08]8 09]8 0:]( 0;]8 0<P^ 0 0= `( 0`( 0`(! 0`(" 0` 0>`(# 0`($ 0`(% 0` 0& 0a( 0?a( 0@a( 0Aa' 0a( 0Ba( 0Ca( 0a( 0D0b(00b 0Eb( 0Fb( 0Gb 0Hb( 0Ic( 0Jc 0KLc( 0Lkc8 0Mc8 0Nc( 0Okc 0Pd( 0Q'd8 0RFd8 0SFd 0T-f( 0ULf( 0VLf8 0Wf( 0XLf8 0Yf(0Lf 0Zg( 0[.g8 0\Eg( 0].g8 0^sg 0_jh() 0h8 0`h(* 0h(+ 0h 0a(i( 0bGi8 0chi( 0dGi8 0ei 0f9j( 0gXj8 0hj8 0ij 0 0jj( 0kk( 0lk8 0m[k( 0nk 0ol( 0p-l8 0qUl8 0rUl 0sm( 0tm( 0um 0v(n( 0wZn8 0xwn( 0yZn 0zn( 0{o8 0|o8 0}o( 0~o8 0Uo8 0Uo* 0o( 0o8 0p( 0o8 0p* 0q( 0q( 0q8 0q80q 0q( 0*r8 0Ir( 0*r8 0r8 0r 0r( 0s8 0,s8 0,s8 0,s 0s( 0s8 0t/F8BH`QZce3=DHLPTX\ S!#~&'*J-w03 7:=@BLEDG7J/M0Q/TWYY\^ade46789:;<>?@ABCEFGIJKMNOQRSUVWYZ[]e54AgnN[#+, 3  " - 8 D Wco{  MO13moAF*7 CI % _ b x { !!,%9%k%w%%%%%& &^&c&d&o&'"'h's'()H)S)))b*m***=+H+w++,,- -1-;-g-s---!...\._...M/P/l/y/////00^1a1112233333344:7B777N:W:BBCCNCaMmMMMPPP QQQQQMUXUUUVVVWZZZZ[[]]^XZ`fqyTZ~U Z m o ' ':'B'J'R'4393446666;;L=Q=X=e=f=m=II0J7JLLLL*S,S]]^::::::::::::::::::::::::::"25T0XNArvoj:ь}2X (Cj.w9V)pdޒmJj.\ޒme#ޒmi)ޒmM46ޒm|;Gj.>Ij.>_EK9V)pMь}zPrSj.;E[ޒm=GS[{Fl\roF^j.(K`4``j.Oaޒm3hmޒmrj.tь}tx?!%~*@CJOJQJo(3.@CJOJQJo(2.@CJOJQJo(2.@CJOJQJo(3.@CJOJQJo(1.@CJOJQJo(4.@CJOJQJo(1.@CJOJQJo(3.@CJOJQJo(2.@CJOJQJo(1.@CJOJQJo(2.@CJOJQJo(2.@CJOJQJo(2.@CJOJQJo(2.@CJOJQJo(1.@CJOJQJo(1.@CJOJQJo(3.@CJOJQJo(1.@CJOJQJo(2.@CJOJQJo(1.@CJOJQJo(2.@CJOJQJo(1.@CJOJQJo(2.@CJOJQJo(1.@CJOJQJo(3.@CJOJQJo(1.@CJOJQJo(2.@CJOJQJo(3.@CJOJQJo(2.@CJOJQJo(1.@CJOJQJo(1.@CJOJQJo(3.@CJOJQJo(3.+= = P= = 0pMl\wnhSM46Ci)= oF^;E[j:NA>_EK=GS[0X(K`tzPre#vo>Ipd5T2X``Oa?!%~J\3h|;Gmtx= @CJOJQJo(4 = @CJOJQJo(p= `= @CJOJQJo( @CJ OJQJo(= @CJOJQJo(U6 = @CJOJQJo(66@CJOJQJo(` nh@CJOJQJo( nh@CJOJQJo(ph`@CJOJQJo( ""@]]8]]S{r(67^` @`<`|@UnknownGTimes New Roman5Symbol3 Arial3Times;Wingdings AhjÆjÆ M'xx2C_@3 Introduction Christine WolfeChristine Wolfe"                           !  Oh+'0l^  4 @ LX`hpx'Introduction Christine WolfeNormalChristine Wolfe2Microsoft Word 11.3.5@F#@U@U MG\PICT\d ,, MSWD ,Arial S- `.(y -(!Introduc-01(Mt-)io-01)@n-)/ -) ,  Wingdings >-B(&w - ) -)Wa-B)]t-)er-k)7 ,  Wingdings 6-(g-) -) Is 99% of f-)l- K) u-)i-) d- K) -)o-)u-)ts-)*i-) de- K)< -)ce-)9ll-)s- K) -)(- K)ex-):trace-)xll- K)u-)l-) ar- K)0 -)fl- K)u-)i-) d)-)0 -(-) -)Is a- K)Wn-) esse- K)n-)t-)i-) a-)l-)  -)i-) n-)gred-)li-) e- K)n-)t-) -)of- K)- c-)+ytoso-)l-)  (-)!i- K) n-)tra- K)?c-)e-)ll- K)u-)l-) ar- K)0 -)f-)l- K) u-)i-) d)-)0 -(-) -)A-)$ll-) ce-)Hll- K)u-)l-) ar- K)0 -)operatio- K)n-)s-) -)re-)0l-) y- K) -)o- K)n -).water-)  --( -l) -) As a diffus-[)i-) on -[)@m-)&ed-[)2iu-)%m-)% -) for-[)5 g-)'ases,-)m -[) n-)utri-[)?e-)nts,-)J -) and-)K -[)w-)!aste-)V -) p-[)r-)o-[)d-)ucts-)T -)  (M K-+QFlui-0)zd-)),- 6) -)El-0)Ce-))ctr-0)To-))l- 6)y-0)&t-)e,- 6)? -0)a-))nd- 6)T -0)A-)1cid)a-0)*Ba-)Zse- 6)P -)B-0)2a-))la-0);n-))ce-3)P  B-(w-@) -)The ->)b-)&ody mu->)s-)"t main->)t-)ain-@)Y -)no->)Jr-)mal v->)o-)&lume-@) -)an->)Jd-)& c->)3o-)&mpos->)i-)tion (9of- )7  :-(~-@) -)Extra-F)c-)!el-F)0l-)ular f-F)l-)ui-F)3d-)$ (E-F)JC-)+F)-)6 -)  B-(w-@) -)Fluid ->)B-)-alance-@) - )  :-(-@) -F)I-)s-) -)a- )  -)dail- )Zy-F) -)ba-F)@l-)an-F)@c-)e-)  -F)b-)!et- )0w-)+een-)`  2-(H - Q) -)A-`)!m-)*ount-\)b -)of-`)* - Q)w-)$a-)t-) er- Q)- -)ga-\)8i-) ned-`)T -) -@ ) -( - Q) -)A-`)!m-)*ount-\)b -)of-`)* - Q)w-)$a-)t-) er- Q)- -)l-) ost to- Q)z -)env-)Qir-)on-`)8m-)*e-)nt-@ )*  :-(-@) -F)I-)nvol-F)jv-)es r-F)ae-)!gul-F)Ma-)!tin-F)=g-)! c-F)-o-)!nt-F)0e-)!nt an-F)d-)! dis-F)Zt-)ri-F) bu-)Btion of )bo-F)@d- )!y-) -F)wa-)Kte-F)0r-) in-)= -)E-F)'C-)+F (an-F)@d-)! -F)I-)CF-)M  B-(Qw-@) -)The->)r -)Digesti->)v-)"e Sy->)s-)"tem- )n  :-(-@) -F)I-)s-) -)t-F)h-)!e-)  -F)p-)!rimar-)y-) s-F)-o-)!ur-F)3c-)e-)  -)o-F) f-) -F)w-)*a-F) t-)er ga-F)i-)ns-)=  2-( - Q) -)P-)!l-) us- Q)5 -)a-) -)s-`)m-)*a-)ll-) a-`)*m-)*o-)unt- Q)F -)f-)r-)o-`)m-)* - Q)m-))etabo-)~li-)c- Q) -)act-)Ci-) v-)i-) ty-@ )'  B-(w-@) -)The->)r -)Urinar->)y-)" ->)S-)-yst->)Te-)&m- )7  :-(`-@) -F)I-)s-) -)t-F)h-)!e-)  -F)p-)!rimar-)y-) r-F)#o-)!ut-F)0e-)! o-F)0f-) -F)w-)*a-F) t-)er-)3 -F)l-)oss-)Z  2-( - `3) -)Are -)\i-) ons- Q)Q -)re-)-le-)&ased- Q)m -)t-)h-)rou-)Ig-)h- Q) -)d-)i-) ssoc-)gi-) at-)*i-) o-)n-) of- Q)8 -)i-) n-)or-)+gan-)Ti-) c- Q) -)co-`)5m-)*p-)ounds-@ ) -( - `3) -) Can conduct-(  -) e-)l-) ectr-)Ti-) ca-)5l-)  c-)'u-)rr-)"e-)nt- Q)* -)i-) n- Q) -)so-)5l-) ut-)*io-)&n-@ ) -(  - `3) -)Electrol- Q)y-)te-\)- -) bal-)Ia- Q)n-)ce-@ )8  )-(? -p) -)When-c)l -) th-c)"e-) g-c)"a-)ins-)5 -) a-c)n-)d-) -c) l-) osses-)m -c) o-)f-)  -c) a-) ll electr-c)o-)lyte-c)@s-) are equa-c)l- %)  -(o -p) -)Pr-c))i-) maril-c)Yy-) involve-c)s-) ba-c)9l-) ancin-c)cg-) rate-c)Rs-) -c) o-)f-)  -c) a-)bsorpt-c)si-) on-). -) acros-c)fs -)"digestiv-c)e -)$trac-c)Et-)  w-c))i-) th-)" -) r-c)a-)tes o-c)Zf-)  loss (3at k-c)Bi-) dneys-)o -c) a-)nd-). -) sw-c)3e-)a-c)t-)  gla-c)Bn-)ds-), - )  - %(  B-( w-@) -)Acid))%B->),a-)& se Balanc->( e-)& - )  :-( \-@) -)Precise-F)l- )y-) -F)b-)!al-F)-a-)!nce-F)]s-) p-F)0r-)o-F) d-)!ucti-F)Zo-)!n an-F)qd-)! los-F)Zs-) of-)@ -F)h- )!y-F)d-)!ro-F)3g-)!en-)@ -F)i-)on-F)@s-) -F)(-)pH)-)] -( -@) -)T-F)#h-)!e-)  -F)b-)!od- )@y-F) -)g-F) e-)!n-F) e-)!ra-F)3t-)es-)= -F)a-)!cids d-F)u-)!ri-F) n-)!g-)  -F)n-)!o-F) r-)mal-)^ -)met-F)aa-)!boli-F)Zs-)m-)0  2-(  - Q) -)Tends t-)o-) re-);d-)uce- Q)Q -)pH-@ )@  >-B( w - ) -)T-B)&h-)#e Ki-B)kdn-)Fey-B)As-)  -k)  6-( `-) -)Secrete - K)h-)ydrog- K)en-)= -)i-) o- K)n-)s-) i- K)n-)to-)- -)u-)r-)i- K) n-)e-) -( -) -)Ge- K)Hn-)erate-){ -)b- K)u-)ffers t- K)h-)at-)- -)e- K)n-)ter-)? -) bloodstream-(   --(  -l) -) In distal s-[)eg-)4m-[)%e-)nts-)= -) of-[)& -) distal-)j -) c-[)o-)nvo-[)Il-) uted-)X -) t-[) u-)b-[)u-)le-)# -[) (D)1C-)!T)-)* -[) a-)nd-)2 -[) c-)ollect-[)ji-) ng-)2 -) syst-[)Re-)m-p)%  >-B( w - ) -)T-B)&h-)#e -B)4L-)#u-B)"n-)#gs-k)A  6-( Y-) -) Affect pH ba-( Yl-) a- K)nc-):e-) -)t- K)h-)ro- K)0u-)g- K)h-) e-)-l-) im-):i- K) n-)at-)-i-) o- K)n-) of - K)Lc-)arbo- K)ln-) d-)-i-) o- K)x-)i-) de-)< -(   ! ! ! !  ! ! !  ! ! !  ! ! !  ! ! !  ! ! !  ! ! !  ! ! !  ! ! ! ՜.+,0P `hpx  ''C_ eIntroduction Introduction Water< Is 99% of fluid outside cells (extracellular fluid)D Is an essential ingredient of cytosol (intracellular fluid). All cellular operations rely on water *Fluid, Electrolyte, and AcidBase Balance< The body must maintain normal volume and composition of# Extracellular fluid (ECF)  Fluid Balance # Is a daily balance betweenR Involves regulating content and distribution of body water in ECF and ICF The Digestive System- Is the primary source of water gains The Urinary System+ Is the primary route of water lossF Are ions released through dissociation of inorganic compounds3 Can conduct electrical current in solution Electrolyte balance  AcidBase Balance E Precisely balances production and loss of hydrogen ions (pH): The body generates acids during normal metabolism The Kidneys ) Secrete hydrogen ions into urine0 Generate buffers that enter bloodstream The Lungs@ Affect pH balance through elimination of carbon dioxide Fluid Compartments Water Accounts for Roughly( 60% percent of male body weight* 50% percent of female body weight' Mostly in intracellular fluid  Water Exchange M Water exchange between ICF and ECF occurs across plasma membranes by Major Subdivisions of ECF 1 Interstitial fluid of peripheral tissues$ Plasma of circulating blood Minor Subdivisions of ECF ( Lymph, perilymph, and endolymph" Cerebrospinal fluid (CSF) Synovial fluid= Serous fluids (pleural, pericardial, and peritoneal) Aqueous humor( Exchange among Subdivisions of ECF B Occurs primarily across endothelial lining of capillaries+ From interstitial spaces to plasma ECF: Solute Content * Types and amounts vary regionally The ECF and the ICFO Are called fluid compartments because they behave as distinct entities@ Are separated by plasma membranes and active transport  Cations and Anions  In ECF In ICF Membrane Functions 3 Plasma membranes are selectively permeable; Ions enter or leave via specific membrane channels@ Carrier mechanisms move specific ions in or out of cell. The Osmotic Concentration of ICF and ECF  Is identical> Osmosis eliminates minor differences in concentration@ Basic Concepts in the Regulation of Fluids and ElectrolytesY All homeostatic mechanisms that monitor and adjust body fluid composition responC No receptors directly monitor fluid or electrolyte balance> Cells cannot move water molecules by active transportY The bodys water or electrolyte content will rise if dietary gains exceed enviro3 An Overview of the Primary Regulatory Hormones1 Affecting fluid and electrolyte balance: Antidiuretic Hormone (ADH) 1 Stimulates water conservation at kidneys! Stimulates thirst center ADH Production & Osmoreceptors in hypothalamus( Change in osmotic concentration) Osmoreceptor neurons secrete ADH ADH Release 2 Axons of neurons in anterior hypothalamus: Rate of release varies with osmotic concentration Aldosterone 8 Is secreted by suprarenal cortex in response toV Determines rate of Na+ absorption and K+ loss along DCT and collecting system Water Follows Salt . High aldosterone plasma concentration+ Conservation of Na+ by aldosterone Natriuretic Peptides 9 ANP and BNP are released by cardiac muscle cells; in response to abnormal stretching of heart walls  Reduce thirst. Block release of ADH and aldosterone  Cause diuresis / Lower blood pressure and plasma volumeFluid Movement When the body loses water Plasma volume decreases( Electrolyte concentrations rise% When the body loses electrolytes Title Headingsd  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^`abcdefghijklmnopqrstuvwxyz{|}~Root Entry F1Table_yWordDocument%SummaryInformation(^DocumentSummaryInformation8CompObjX FMicrosoft Word DocumentNB6WWord.Document.8