ࡱ> dfc#` LLbjbj .ZG        ))))<)D ?5.4********:4<4<4<4<4<4<4$m6h8r`4 *****`4  **4444*v * *:44*:444  4*(* P t2m),.4:450?54G92G94G9 48**4*****`4`43***?5****                Lecture Notes on Calculus by Reinaldo Baretti Machn  HYPERLINK "http://www.geocities.com/serienumerica2" www.geocities.com/serienumerica2  HYPERLINK "http://www.geocities.com/serienumerica" www.geocities.com/serienumerica  HYPERLINK "mailto:reibaretti2004@yahoo.com" reibaretti2004@yahoo.com  HYPERLINK "http://usa.nedstatbasic.net/cgi-bin/viewstat?name=Boladura"  INCLUDEPICTURE "http://usa.nedstatbasic.net/cgi-bin/nedstat.gif?name=Boladura" \* MERGEFORMATINET  References: 1.  HYPERLINK "http://www.amazon.com/Elements-Calculus-Analytic-Geometry-George/dp/0201076640/ref=sr_1_14?ie=UTF8&s=books&qid=1202309043&sr=8-14" \o "Elements of Calculus and Analytic Geometry" Elements of Calculus and Analytic Geometry by George B. Thomas 2.  HYPERLINK "http://www.amazon.com/Essential-Calculus-Applications-Advanced-Mathematics/dp/0486660974/ref=sr_1_1?ie=UTF8&s=books&qid=1202309215&sr=8-1" \o "Essential Calculus with Applications (Dover Books on Advanced Mathematics)" Essential Calculus with Applications (Dover Books on Advanced Mathematics) by Richard A. Silverman Contents 1.The derivative definition 2. Derivative of a polynomial 3. Derivative the sine function and cosine functions a)analytical b)use of Matlab c)numerical 2.Examples of derivatives rules 3.Maxima and minima 4.Differential equations a)numerical solutions 5.Integration 6.Examples of integration LECTURE 1. 1.The Derivative Algorithm The derivative algorithm is a formulation that answers the question, what is the instantaneous rate of change of a dependent variable  y- with respect to the independent variable x . The derivative is denoted by dy/dx is an analytic function say g(x) ,equal to the limit of the slope ,("y/"x) as "x tends to zero. A number of steps in a certain order have to be taken to obtain the derivative as an analytic expression. This assumes that y is known analytically , y = f(x). For example , a straight line has the equation y = mx + b . (1) where m is the slope ( a constant for the straight line) and b the intercept on the Y axis. It should be noticed that almost all equations and derivatives have dimensions. Suppose y~meters (m) , x ~seconds (s) then the slope m has dimensions of speed ~(meters/second) and b~meters. Fig 1. shows a body whose position in meters changes linearly with time.We take the independent variable , x=t (time) in this example. The equation is y=2t +3  Start with the question , what is "y/ "t, for this straight line ? By "y we mean the difference , y(t+"t ) - y(t) = {2(t+"t) +3 }- {2t+3} We are left with "y = 2"t and therefore "y/ "t = 2 (meters/s) =g(t) . (2) At any instant t,the straight line,of this example, has the constant rate of change g(t)=2m/s. Matlab code for differentiation (taking the derivative) syms t ; y=2*t+3 ; diff(y) ans = 2 ************* This an example of the fact,that a straight line has a constant rate of change . No matter the size of "x , or at what at value of x is the rate calculated, always "y/ "x = m =g(x) (3) for all points in the line. For all other functions "y/ "x will in general be dependent on the size of "x as well as on the point x where the changes "y and "x are calculated. It is necessary to refine the procedure and this leads to the derivative of a function. Definition of the derivative, (dy/dx) = lim"x!0 ("y/ "x ) , (4) or what is the same (dy/dx) = lim"x!0 [ y(x+ "x )  y(x) ] / "x . (5) There are four steps in this definition of the derivative of y with respect to x. They will be detailed in the next example. Suppose y(x) = 5x2 or more general , y(x) = A xn (A=5 , n=2) i) first step: obtain an expression for y(x+"x). y(x+"x) = 5 (x + "x)2 = 5 { x2 + 2 x ("x) + ("x)2 } (6) Using the binomial theorem it is shown that any power (n) of x wil have an expansion of the form (x+"x)n = xn + n xn-1 ("x) + ((n)(n-1)/2) xn-1 ("x)2 +& ..("x)n (7) ii) second step: subtract y(x) from (6) y(x+"x)- y(x) = 5 x2 + (5) 2 x ("x) + 5 ("x)2 - 5 x2 = (5) 2 x ("x) + 5 ("x)2 . (8) Notice that the result is a series in powers of "x. iii) third step: divide the expression y(x+"x)- y(x) by "x . Dividing (8) by "x gives , {y(x+"x)- y(x) } /"x = (5) 2 x + 5 ("x) . (9) Notice that the first term in (9) is now independent of "x . iv)fourth step: take the limit as "x! 0 . limit "x !0 { (5) 2 x + 5 ("x) } = 5(2)x = 10x . (10) The conclusion is that if y is of the form y = A xn the d78mno   1 2 4 5 } ~  揀lY%hY~hB*CJOJQJaJph&j9hY~hB*CJUaJphhY~hB*CJaJph&jhY~hB*CJUaJph#j:hY~hCJUaJ#jhY~hCJUaJhY~h0JCJaJ#jhY~hCJUaJjhY~hCJUaJhY~hCJaJ!673 4 I J K T U q  # < R gdLL / 0 J p s t | յpeP)hY~hB*CJOJQJ^JaJphhY~hCJaJj hY~hCJUaJhY~h5CJaJh3nhCJaJh3nh5CJaJh hCJaJhCJaJhY~hCJaJ)hY~h0JB* CJOJQJaJph3%hY~hB*CJOJQJaJph.jhY~hB*CJOJQJUaJphR ` z { | LMUV(JKBgdgdBD68GHJLtv 7$8$H$gdgdb~BDh|*,& ( 0 2 > D p v ƻ|maaaaaaaaahY~hCJH*aJhY~hCJaJmH PsH PhvbhCJaJhvbh5CJH*aJhvbh5CJaJhY~h5CJH*aJhY~h5CJaJhY~hCJaJhY~hCJOJQJaJ)hY~hB*CJOJQJ^JaJph)hY~hB*CJOJQJ^JaJph &46`b`bLN  !6"8"""">#@#gdv !"!R!T!`!b!!!8"""##%%%%&:n:p:::L<N<<<v=|=L>N>??? ?(?,??ξξξξxxxhY~hJCJaJhJCJH*aJhJCJH*aJhJCJaJhCJaJUhY~hCJH*aJhvbhCJaJhY~hCJH*aJmH PsH PhY~hCJaJmH PsH PhY~h5CJaJhY~hCJH*aJhY~hCJaJ-@#z#|#$$$$$$$%%::~: ;";;;<<<<f=h===>>>>gderivative is dy/dx = d (A xn ) /dx = n A xn-1 (11) The notation dy/dx is a shorthand for the steps outlined above. As to the units , suppose y ~ meters and x ~ seconds then A ~ meters/second n and dy/dx ~ meters/second. The numerical value of the derivative at any desired value of x is obtained by substituting in result (10). (dy/dx)x=2 = 10 *(2) =20 m/s . The result (10) is an analytical expression for the fist derivative of y = 5 x2 . But the numerical of (dy/dx) at say x=2 is easily obtained by the algorithm { y(2+"x)  y(2) } /"x as "x becomes small. The following code shows the procedure in FORTRAN language. "x = 1. originally and it is halved at each iteration. y(x)=5.*x**2 x0=2. dx=1. do 10 i=1,10 x=x0+dx dydx=(y(x0+dx)-y(x0))/dx print*,'dx,x,dydx=',dx ,x , dydx dx=dx/2. 10 continue stop end dx,x,dydx= 1. 3. 25. dx,x,dydx= 0.5 2.5 22.5 dx,x,dydx= 0.25 2.25 21.25 dx,x,dydx= 0.125 2.125 20.625 dx,x,dydx= 0.0625 2.0625 20.3125 dx,x,dydx= 0.03125 2.03125 20.15625 dx,x,dydx= 0.015625 2.015625 20.078125 dx,x,dydx= 0.0078125 2.0078125 20.0390625 dx,x,dydx= 0.00390625 2.00390625 20.0195313 dx,x,dydx= 0.001953125 2.00195313 20.0097656 So at the end when "x H" 0.002 , dy/dx H" 20.01 . At this point the reader may inquire as to how many digits is an answer necessary. Ours agrees to three digits with the exact one which in many cases is enough accuracy. MATLAB CODE for the derivative and its value at x=2 syms x; y=5*x^2 ; dydx=diff(y,x) x=2; eval(dydx) dydx = 10*x ans = 20 One can take another derivative over expression (11) , is called the second derivative and written as d2 y /dx2 = d ( n A xn-1 ) /dx = n(n-1)A xn-2 . (12) If y~ meters and x ~ seconds , d2 y /dx2 ~ meters /second2 From eq (10) one has d (10x)/dx = 10 (1) x1-1 =10 x0 =10. A third derivative in this case will give zero d3 y /dx3 = d (10 x0) /dx = 10(0) =0 (13) So a positive power xn has only n derivatives.If n is not positive the number of derivatives is endless. Obviously the derivative of a constant function say y(x) = A is zero. END OF LECTURE 1. >L?N??:@<@b@z@@@@A`A~AAAAA.BlBBBJCCC\DDD|FgdEdCgd??<@@A\DDDDDDDpEvEEEzF|F~FFF*GHGLGfGlGvGxG~GGRHbHdHǾ⮦vk`hJhCJaJhvbhCJaJhY~hCJaJhJhJCJaJh.wOh.wOCJaJh.wOh.wOCJaJmH PsH Ph.wOCJaJhJCJaJhVCJaJhEdC5CJaJhEdChEdC5CJaJhEdChEdCCJaJmH PsH PhEdChEdCCJaJhEdCCJaJhY~hEdCCJaJ |F~FFF G*G4GJGLGZG^GlG~GGGPHRHHZI\III2J4JJJXKZKKgd.wOgddHfHrHtHHHHHHHHH"I$I&I2I4IVIXIZI\IIIII4J6J8JDJFJZJ\JJJJ"L$LHLJLvvقvnchY~h-]CJaJh-]CJaJhY~hCJH*aJhY~hCJaJhVhVCJH*aJhVCJH*aJhJhVCJH*aJhJhVCJaJhVCJaJhCJaJhY~hCJH*aJmH PsH PhY~hCJaJmH PsH PhJhCJaJhJhCJH*aJ&KK$L&LJLLLgdJLLLh,1h/ =!"#$% DyK !www.geocities.com/serienumerica2yK hhttp://www.geocities.com/serienumerica2yX;H,]ą'cDyK  www.geocities.com/serienumericayK fhttp://www.geocities.com/serienumericayX;H,]ą'cDyK reibaretti2004@yahoo.comyK Xmailto:reibaretti2004@yahoo.comyX;H,]ą'cDdzzZ  c 6Anedstatb"iA"/6a1C}niA"/6a1CPNG  IHDR6qPLTE 1Asޜ 1s[ZvbKGDH cmPPJCmp0712OmcIDAT(} l vcn/;J EZAμ}Ϥ3Zי8!mI1ڋ|x&#&i(WiKRs4}(C.WS})CB|"HL5eѦp~gw&ٛn&iSl7|vv7gvno;FDBQh=BD-ovَ=cD?uP QH~5]4J4(N{zDJYBr_P+ccB[<ۙw>xu%p_B_qi( MJA h( Bqxi( MBSPJs/|EO|Ẏ`>>a (#ܜ`N0' s9 s9`wA(F7)FG=!b-. 9^3+s359qޢo߸:rug#κǧg]O?ua:OP;}Em[JCsfܼsuRs Du,5yf|"$%???LW`w<Ұ's/(FAҧAȷ(4,̝0RƄyp! m1㤉mxo>X1{=8ĸƘCr/oK||v|b+qmp;髌LxXU_m싅?v~'jquS藏3*U6| ]5J>q{Oc'نO[䜑>Z)yb,Ĭz%f[  GԸzRa8ymB[xX~d?֫%*ߴ!ߴ7moڐoZᛶ7eoJ0<77Po֐oVᛵ7k7Z{" |/hmCIooA[`ȷ-X;m`8wZv1(| |Cױw"E|56޻s{?_Y6e3|eħ=-p+ƷCooBᛰ7a7MX"}a_}|;5f f |3|3 ߌ CoΐoNᛳ7g7Y{"K|/i[4[T---*|X;#wF|m<M)Rך]R.Y{߃-aV.TF˷i?|>(ϝ ϝ_&:v}Rz|c|c ߘ1C1oN|[߮-/qdwΓ9_V,_&;5o7^rNJ yCyq-2(O0ŸcU ICIq#0>mqԐqTav\B.ї-ƍƍZ;98VNkMovkٟWV ϝ"ƽ/^wYj`AQJ rllvN^iE9 !V;COVFȺu֝nF3 7VARA~ѕy5kN^Zʼ;&j^.:ƅO@/+?~s wI Ұȏ/ڀNAj浙_)`?6jl^}3ͳ˹ =,b"ˏtֲ72~cWNz@@@ NormalCJ_HaJmH sH tH DA@D Default Paragraph FontRi@R  Table Normal4 l4a (k@(No List6U@6  Hyperlink >*B*ph.O. srtitle15\GZ6734IJKTUq#<R`z{|]LMUV(J K = >   c d z { ;<QRQR+,tu<=-.mno/0`/0ef@>?R^j}8WyO_`IJ  :;{|34FI00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000074IKzJ K = > z { ;QR/0ef@RO_`IJFI0000000000GK00F00D00 0000000000 900 000000'0 00 0@000000000000000000000@0H0000 0000000000 00000000000!00000000/0 00/00/00100100100100600100100100100100100=0 0=0 010000A0B`'0A00A00A0 @0@00A0 B̧0A0 0A0 010010010010010@00P00P0 010@00100100Q0 R )0Q00Q00100100102C010010000  v ?dHJLLL(*,R B@#>|FKLL')+LL7n14}~/GXXXXCXX&'./5{@ H b f w {   ! ( d j SXACRS} /38:9<JOWY]_NSafdfvw &9BXaz )PYdlpR{IUZ#1<>R_`j|w}s(-K Q R W  > C   ; >   <>SXeh 'UZ35y`j>Iqx JO04}FJfk EGXZdgpr 9<X[z} #PS(!4EI333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333(  ='. ;|24FIIEdC.wO-]vbVJ@'F  ! !!!!!!G@ @,@ "$:UnknownGz Times New Roman5Symbol3& z Arial7&  Verdana?5 z Courier New"qhbFcF 8383!2499 2QHX)?2Lecture Notes on Calculus R_BarettiPaOh+'0  < H T`hpxLecture Notes on Calculus R_BarettiNormalPa9Microsoft Office Word@b@cm@d(m8՜.+,D՜.+,P  hp  UPR - Humacao39 Lecture Notes on Calculus Title 8@ _PID_HLINKSA$Jhttp://www.amazon.com/Essential-Calculus-Applications-Advanced-Mathematics/dp/0486660974/ref=sr_1_1?ie=UTF8&s=books&qid=1202309215&sr=8-1Y M http://www.amazon.com/Elements-Calculus-Analytic-Geometry-George/dp/0201076640/ref=sr_1_14?ie=UTF8&s=books&qid=1202309043&sr=8-14Y oo ;http://usa.nedstatbasic.net/cgi-bin/viewstat?name=BoladuraY ; mailto:reibaretti2004@yahoo.comY 7"'http://www.geocities.com/serienumericaY 7"(http://www.geocities.com/serienumerica2Y   !"#$%&'()*+,-/012345789:;<=>?@ABCDEFGHIJKLMNOPQRTUVWXYZ\]^_`abeRoot Entry Fp2mgData .1Table6G9WordDocument.ZSummaryInformation(SDocumentSummaryInformation8[CompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q